

Epigene International

CONSULTING GEOLOGISTS

July 18, 1995

Mr. J. W. Silveira J. W. Silveira Company 499 Embarcadero Oakland, CA 94606

Subject:

Quarterly Monitoring Report for Site Located at 2301 East 12th Street,

Oakland, Second Quarter 1995

Dear Mr. Silveira,

The purpose of this report is to provide data regarding the results of investigations that have been carried out at the subject site during the second quarter of 1995. The site is located at the southwest corner of the intersection of East 12th Street and 23rd Ave. in Oakland. The location of the site is shown on Figure 1. A site plan is shown on Figure 2. The former tenant at the site, Alejo Auto Repair Shop vacated the property in June 1994 and the site continues to be vacant.

GROUNDWATER GRADIENT

In the past, groundwater elevations for the project wells were relative to an assumed elevation for the top of casing of MW-1. The top of casing elevations were resurveyed on June 20, 1995 using an automatic level. The elevations are now tied to a City of Oakland sea level datum. The revised elevations are tabulated in Appendix C. The data from previous gauging events were recalculated using the new datum and are also presented in Appendix C. A summary of groundwater gradient directions from March 1994 to June 1995 is shown on a Figure in Appendix C.

Quarterly Monitoring Report 2301 East 12th Street, Oakland July 18, 1995 Page 2

Gauging of the depth to groundwater was carried out for each project well on June 20, 1995 prior to any purging of the wells. An electronic probe was used to measure the depth to groundwater from the surveyed mark on the top of the casing. The probe is calibrated to hundredths of a foot. The groundwater elevations were calculated and are presented on Figure 3. Groundwater elevation contours are also plotted on Figure 3.

In addition to the contouring, a direction and slope of the gradient was also calculated by a graphical solution to a three-point problem based on the groundwater elevations of MW-1, MW-5 and MW-6. The results of this calculation are plotted on Figure 3. The direction of the gradient is generally consistent with the groundwater elevation contouring. The direction of the gradient is more northwesterly than the calculation for February and consistent with most of the previous calculations.

GROUNDWATER SAMPLING

Groundwater samples were collected on June 20 from all of the project wells. The wells were purged of approximately five casing volumes prior to sampling by bailing or pumping with a purge pump. Purge water was placed in new 55 gallon drums and left on the site. The samples were collected using a dedicated bailer for each well. The samples were placed in appropriate sample containers provided by the laboratory. After labeling each sample, it was stored in a cooled ice chest and transferred to a State certified laboratory under chain-of-custody control.

The requested analysis for each sample was based on the original Workplan, amendment and the results of the past quarter sampling and analysis. The results of the water samples are summarized for each well in Appendix B which also includes the results of previous data for each well. In addition, LUFT metals were run for the samples from MW-2, MW-3 and EW-1. These results are presented in Appendix A. The Certified Laboratory

Quarterly Monitoring Report 2301 East 12th Street, Oakland July 18, 1995 Page 3

Report and chain-of custody documentation are included in Appendix A. Significant levels of contamination continue to be present in all of the project wells. Summary graphs showing concentrations of gasoline, diesel, benzene and ethylbenzene for each well through time are presented on Figures 5 and 6.

The Remedial Action Plan was prepared during this quarter and sent to Mr. Barney Chan at the Alameda County Department of Environmental Health on June 9, 1995. Mr. Chan subsequently requested summary data inadvertently omitted from the tables included in the Remedial Action Plan. These data are included in the new summary tables for each well in Appendix B. Mr. Chan also requested a location map of the proposed new wells. The proposed well locations are shown on Figure 4 of this report.

Should you have any questions, please contact the undersigned.

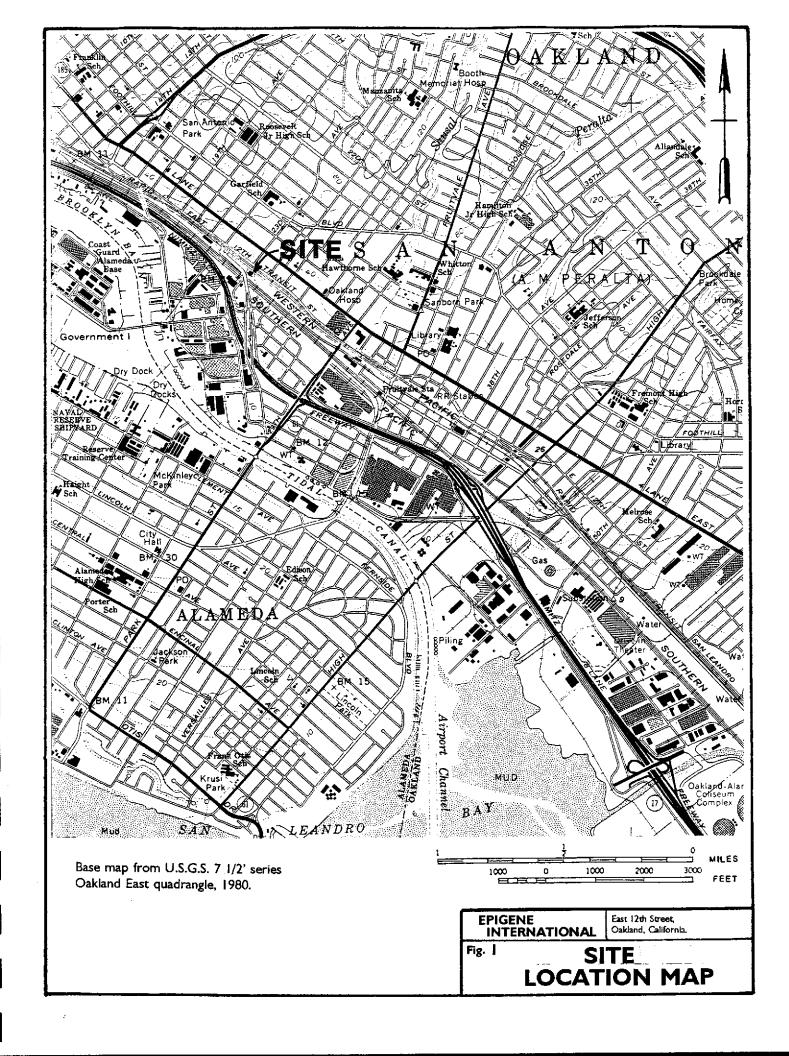
John N. Alt, CEG No. 1136

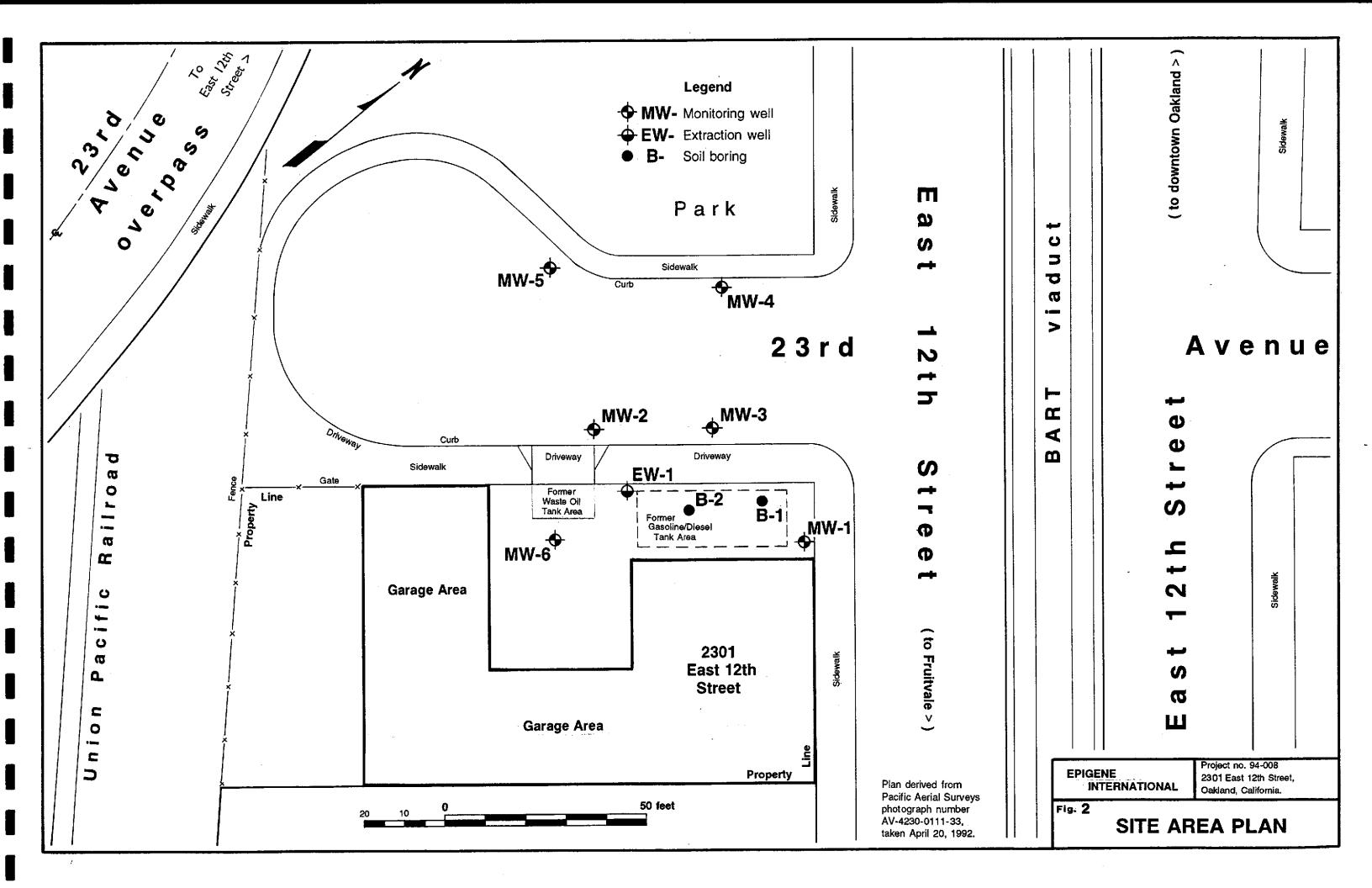
Attachments

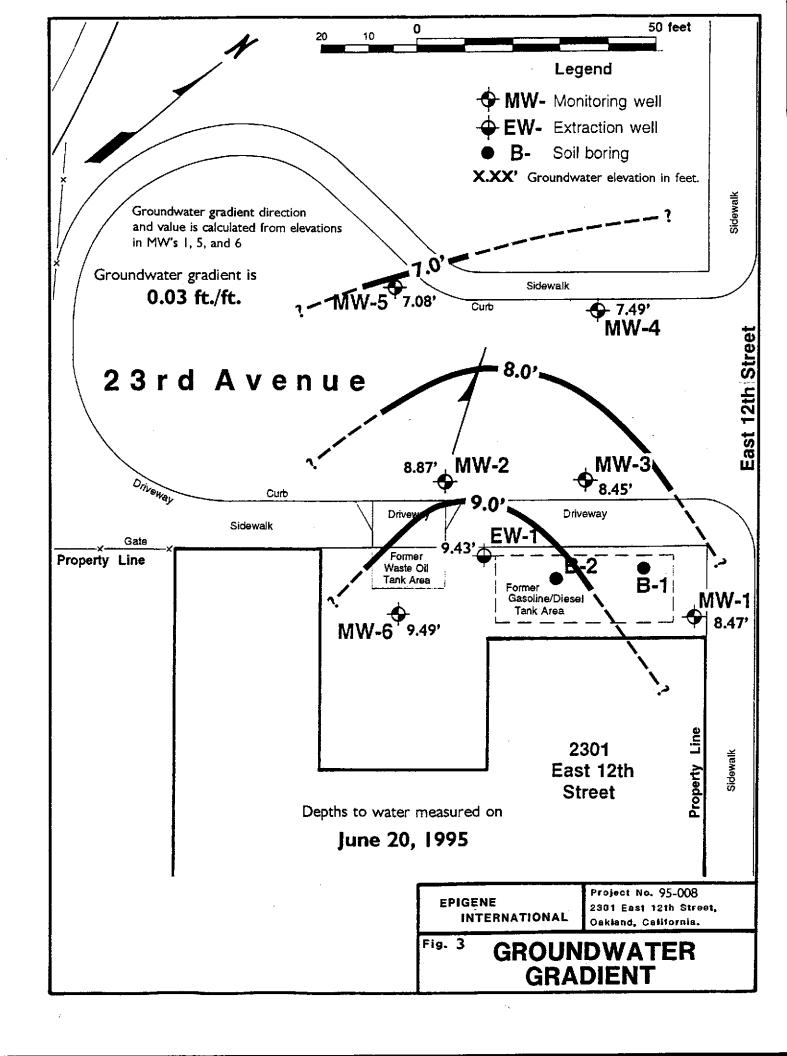
Sincerely,

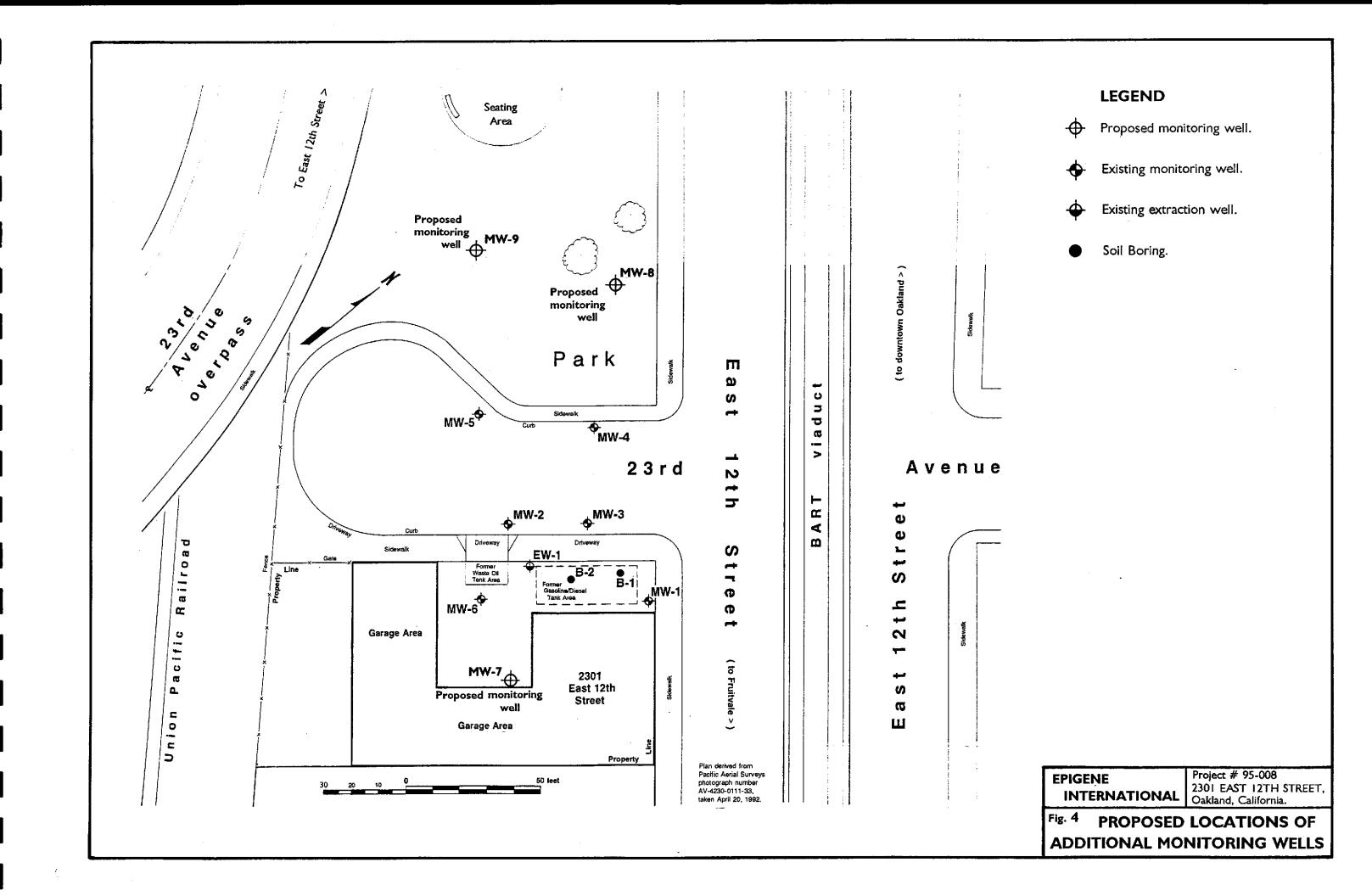
JOHN N. ALT

Nº 1136

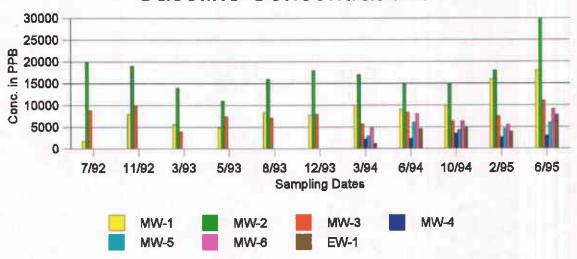

CERTIFIED

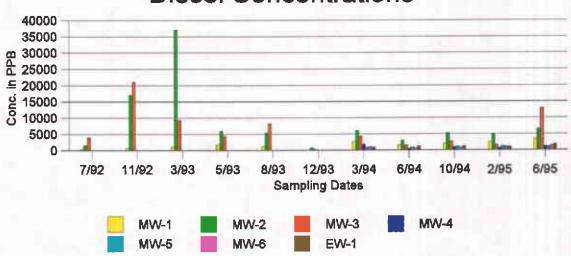

ENGINEERING

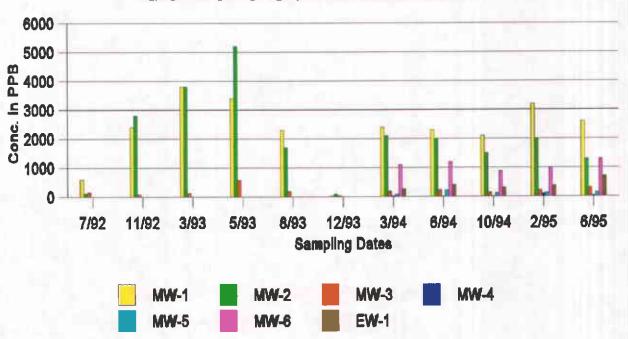

GEOLOGIST

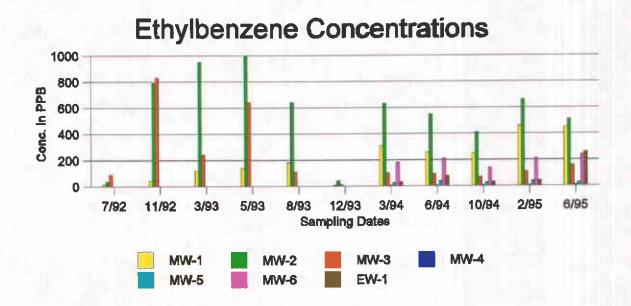

ATE OF CALIFORNIA

cc: Mr. Barney Chan, Alameda County Dept. of Environmental Health Mr. Robert Shapiro, Esq.






Gasoline Concentrations



Diesel Concentrations

Benzene Concentrations

APPENDIX A

CERTIFIED LABORATORY REPORT

07/07/95

Dear John:

Enclosed are:

- 1). the results of 7 samples from your # 95-008; 2301 E. 12th Street, Oakland project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Yours truly,

Edward Hamilton

Epigene International	Client Project ID: #95-008; 2301 E. 12th	Date Sampled: 06/20/95		
38750 Paseo Padre Pkwy, # A11	Street, Oakland	Date Received: 06/22/95		
Fremont, CA 94536	Client Contact: John Alt	Date Extracted: 06/24-06/29/95		
	Client P.O:	Date Analyzed: 06/24-06/29/95		

Gaso line Range (C6-C12) Volatile Hydrocarbons as Gasoline*, with BTEX EPA methods 5030, modified 8015, and 8020 or 602; California RWQCB (SF Bay Region) method GCFID(5030) % Rec. Ethylben-Xylenes $TPH(g)^{+}$ Benzene Toluene Client ID Matrix Surrogate Lab ID zene 116# 52 260 W 7800,a 710 14 EW-1 53558 220 102 450 87 18,000,c,a,h 2600 MW-1 W 53559 109 520 85 510 1300 30,000,b,c MW-2 W 53560 107 160 63 23 11,000,c,b,h 310 MW-3 W 53561 104 6.1 12 3.4 31 W 3000,b,d 53562 MW-4 116# 6.7 27 29 6000,b,c 140 W 53563 MW-5 79 101 240 24 9100.a 1300 W 53564 MW-6 0.5 0.5 0.5 W 0.5 Reporting Limit unless other-50 ug/L wise stated; ND means not de-0.005 tected above the reporting limit 0.005 0.005 S 1.0 mg/kg 0.005

^{*} water and vapor samples are reported in ug/L, soil samples in my/kg, and all TCLP extracts in mg/L

[#] cluttered chromatogram; sample peak coelutes with surrogate peak

⁺ The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~ 5 vol. % sediment; j) no recognizable pattern.

Epigene International		1	roject ID: # 95-008; 2301 E. 12th	Date Sampled: 06/20/95			
38750 Paseo P	adre Pkwy, # A11	Street, C	Pakland	Date Received: 06/22/95 Date Extracted: 06/22-06/28/95			
Fremont, CA	94536	Client C	ontact: John Alt				
		Client P.	O:	Date Analyzed:	06/22-06/28/95		
EPA methods me			C23) Extractable Hydrocarbons as rnia RWQCB (SF Bay Region) method GO)(3510)		
Lab ID	Client ID	Matrix	TPH(d) ⁺		% Recovery Surrogate		
53558	EW-1	W	1800,d	1800,d			
53559	MW-1	w	3500,d,h		102		
53560	MW-2	W	6600,d,a		108		
53561	MW-3	W	13,000,d,a,h		104		
53562	MW-4	w	1100,d		107		
53563	MW-5	W	1000,d		104		
53564	MW-6	w	1400,d		105		
Reporting	Limit unless other-	W	50 ug/L				

^{*} water samples are reported in ug/L, soil samples in mg/kg, and all TCLP and STLC extracts in mg/L

1.0 mg/kg

wise stated; ND means not detected above the reporting limit

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺ The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) medium boiling point pattern that does not match diesel (?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~ 5 vol. % sediment.

Epigene Internat	ional	Client Project	ID: # 95-008; 2301 E. 12th	Date Sampled: 06/20/95				
88750 Paseo Padi		Street, Oakland	1	Date Received: 06/22/95				
Fremont, CA 945	536	Client Contact:	: John Alt	Date Extracted: 06/23/95				
		Client P.O:		Date Analyzed: 06/23/95				
	le Petroleum Hyo r 9073; Standard Met		oil & Grease (with Silica Gel trometry*	Clean-up) by Scanning IR Spec-				
Lab ID	Client ID	Matrix	TRPH ⁺					
53558	EW-1	W	6.5					
53560	MW-2	w	11					
53561	MW-3	w	8.5					
	<u></u>							
Deporting Lin	nit unless other-	w	1.0 mg/L					
wise stated; NI	D means not de- ne reporting limit	S	10 mg/kg					
_	are reported in r	ng/L and soils ir	ı mg/kg					
_	uted out of range			air air a shearanta arambu with EID				
+ At the laborate detection. The f b) diesel range patterned solve that complex b	atory's discretion ollowing commen compounds (CI nt (?); e) isolated iologically derive	one positive sa ts pertain to this 0-C23) are pre peaks; f) GC co I molecules (lip	mple may be run by direct its GC result: a) gasoline-range sent; c) oil-range compour impounds are absent or insignids?) are the source of IR a contains greater than ~ 5.	njection chromatography with FID e compounds (C6-C12) are present ids (> C18) are present; d) other mificant relative to TRPH inferring absorption; h) a lighter than water ol. % sediment.				

Epigene International			E. 12th Date Sample	Date Sampled: 06/20/95				
38750 Paseo Padre Pkwy, # A11	Street, Oakland	L	Date Receiv	ed: 06/22/95				
Fremont, CA 94536	Client Contact:	John Alt	Date Extrac	ted: 06/23/95				
	Client P.O:		Date Analyz	ed: 06/23/95				
	Volat	ile Halocarbons						
EPA method 601 or 8010	52550	53550	525(0)	53561				
Lab ID	53558	53559	53560	MW-3				
Client ID	EW-1	MW-1 W	MW-2 W	W W				
Matrix Community	W		1	YY				
Compound	ND	Concer	ND	ND				
Bromodichloromethane	ND	ND ND		ND				
Bromoform ^(b)	ND ND	ND ND	ND ND	ND ND				
Bromomethane	ND ND	ND ND	ND ND	ND				
Carbon Tetrachloride ^(c)	ND	ND ND	1	ND				
Chlorobenzene	ND	ND	7.9	<u> </u>				
Chloroethane (d)	2.0	1.1	1.5	0.5 ND				
2-Chloroethyl Viny l Ether ^(d) Chloroform ^(e)	ND	ND ND	ND ND	<u> </u>				
	ND	ND	ND ND	ND ND				
Chloromethane	ND	ND	ND ND	ND ND				
Dibromochloromethane	ND	ND	ND	ND				
1,2-Dichlorobenzene	ND	ND	ND ND	ND				
1,3-Dichlorobenzene	ND	ND	ND	ND				
1,4-Dichlorobenzene	ND	ND	ND	ND				
Dichlorodifluoromethane	ND	ND	ND	ND				
1,1-Dichleroethane	ND	ND	ND	ND				
1,2-Dichloroethane	ND	ND	1.4	ND				
1,1-Dichloroethene	ND	ND	ND	ND				
cis 1,2-Dichloroethene	4.3	1.1	1.0	4.9				
trans 1,2-Dichloroethene	2.0	ND	ND	1.7				
1,2-Dichloropropane	ND	ND	ND	ND				
cis 1,3-Dichloropropene	ND	ND	ND	ND				
trans 1,3-Dichloropropene	ND	ND	ND	ND				
Methylene Chloride ^(f)	ND	ND	ND	ND				
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND				
Tetrachloroethene	ND	ND	ND	ND				
1,1,1-Trichloroethane	ND	ND	ND	ND				
1,1,2-Trichloroethane	ND	ND	ND	ND				
Trichloroethene	6.0	6.5	ND	5.7				
Trichlorofluoromethane	ND	ND	ND	ND				
Vinyl Chloride ^(g)	2.8	ND	2.1	ND				
% Recovery Surrogate	101	104	119	109				
Comments		h		h				

^{*} water and vapor samples are reported in ug/L, soil samples in ug/kg and all TCLP extracts in ug/L.

Reporting limit unless otherwise stated: water/TCLP extracts, ND < 0.5ug/L; soil, ND < 5ug/kg

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

⁽b) tribromomethane; (c) tetrachloromethane; (d) (2-chloroethoxy) ethene; (e) trichloromethane; (f) dichloromethane; (g) chloroethene;

⁽h) a lighter than water immiscible sheen is present; (i) liquid sample that contains greater than ~ 5 vol. % sediment.

Epigene International			E. 12th Date Sampled: 06/				
38750 Paseo Padre Pkwy, # A11	Street, Oakland		Date Received: 06	Date Received: 06/22/95			
Fremont, CA 94536	Client Contact:	John Alt	Date Extracted: 0	6/23/95			
	Client P.O:		Date Analyzed: 06	Date Analyzed: 06/23/95			
	Volat	ile Halocarbons					
EPA method 601 or 8010	******	525(2	53564				
Lab ID	53562	53563	MW-6				
Client ID	MW-4	MW-5 W	W W				
<u>Matrix</u>	<u> </u>		ntration				
Compound	NE	ND	ND< 5				
Bromodichloromethane	ND ND	+ — — — — — — — — — — — — — — — — — — —	ND < 5				
Bromoform ^(b)	ND ND	ND ND	ND < 5				
Bromomethane (c)	ND	ND ND	ND< 5				
Carbon Tetrachloride(c)	ND	ND	ND< 5				
Chlorobenzene	ND	0.95	ND< 5				
Chloroethane (d)	ND ND	ND ND	ND< 5				
2-Chloroethyl Viny l Ether ^(d)	ND ND	ND ND	ND< 5				
Chloroform (e)	ND	ND ND	ND< 5	 			
Chloromethane	ND		ND< 5				
Dibromochloromethane	ND ND	ND	ND< 5				
1,2-Dichlorobenzene	ND ND	ND ND	ND< 5				
1,3-Dichlorobenzene	ND	ND ND					
1,4-Dichlorobenzene	ND	ND	ND< 5				
Dichlorodifluoromethane	ND	ND	ND< 5				
1,1-Dichloroethane	ND	ND ND	ND< 5				
1,2-Dichloroethane	ND	ND	ND< 5				
1,1-Dichloroethene	ND	ND	ND< 5	-			
cis 1,2-Dichloroethene	2.2	12	26				
trans 1,2-Dichloroethene	1.0	4.1	17				
1,2-Dichloropropane	ND	ND	ND< 5				
cis 1,3-Dichloropropene	ND	ND	ND< 5				
trans 1,3-Dichloropropene	ND	ND	ND< 5				
Methylene Chloride ^(f)	ND	ND	ND< 5				
1,1,2,2-Tetrachloroethane	ND	ND	ND < 5				
Tetrachloroethene	ND	ND	ND < 5				
1,1,1-Trichloroethane	ND	ND	ND< 5				
1,1,2-Trichloroethane	ND	ND	ND< 5				
Trichloroethene	ND	ND	29				
Trichlorofluoromethane	ND	ND ND	ND< 5				
Vinyl Chloride ^(g)	ND	10	130				
% Recovery Surrogate	108	95	109				
* water and vapor samples are reported							

^{*} water and vapor samples are reported in ug/L, soil samples in ug/kg and all TCLP extracts in ug/L.

Reporting limit unless otherwise stated: water/TCLP extracts, ND< 0.5ug/L; soil, ND< 5ug/kg

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

⁽b) tribromomethane; (c) tetrachloromethane; (d) (2-chloroethoxy) ethene; (e) trichloromethane; (f) dichloromethane; (g) chloroethene; (h) a lighter than water immiscible sheen is present; (i) liquid sample that contains greater than ~ 5 vol. % sediment.

DHS Certification No. 1644

Edward Hamil

DHS Certification No. 1644

Epigene I	nternational		Client Project ID: # 95-008; 2301 E. 12th Date Sampled: 06/20/95						
38750 Pas	eo Padre Pkwy, #	# A11	Street, Oakl	and			Date Recei	ved: 06/22/	95
Fremont,	CA 94536		Client Conta	act: John A	lt	Date Extracted: 06/22/95			
			Client P.O:				Date Analy	zed: 06/22-	-06/27/95
EPA analyti	cal methods 6010/200) 7. 239 2 ⁺		LUFT Me	etals*				
Lab ID	Client ID		Extraction	Cadmium	Chromium	Lead	Nickel	Zinc	% Rec. Surrogate
53558	EW-1	W	TTLC	ND	ND	ND ND		ND	95
53560	MW-2	w	TTLC	ND	ND	0.007	ND	ND	94
53561	MW-3	w	TTLC	ND	0.078	0.044	0.16	0.10	97
								-	
								· · ·	
		,							
	Limit unless other-	S	TTLC	0.5 mg/L	0.5	3.0	2.0	1.0	
	e the reporting limit	w	TTLC	0.01 mg/kg	0.005	0.005	0.05	0.01	
			STLC,TCLP	0.01 mg/L	0.05	0.2	0.05	0.05	

^{*} soil samples are reported in mg/kg, and water samples and all STLC & TCLP extracts in mg/L

⁺ Lead is analysed using EPA method 6010 (ICP) for soils, STLC & TCLP extracts and method 239.2 (AA Furnace) for water samples

o EPA extraction methods 1311(TCLP), 3010/3020(water, TTLC), 3040(organic matrices, TTLC), 3050(solids, TTLC); STLC from CA Title 22

[#] surrogate diluted out of range; N/A means surrogate not applicable to this analysis

i) liquid sample that contains greater than ~ 2 vol. % sediment; this sediment is extracted with the liquid, in accordance with EPA methodologies and can significantly effect reported metal concentrations.

QC REPORT FOR HYDROCARBON ANALYSES

Date: 06/22/95-06/23/95 Matrix:

Water

	Concent	ration	(ug/L)		· · · · · · · · · · · · · · · · · · ·		
Analyte	Sample	MS	MSD	Amount Spiked	MS	MSD	RPD
TPH (gas)	0.0	96.0	92.0	100	96.0	92.0	4.3
Benzene Toluene	0	9 9.4	8.9 9.1	10 10	90.0 94.0	89.0 91.0	1.1 3.2
Ethyl Benzene Xylenes	0	9.6 30.6	9.2 28.8	10 30	96.0 102.0	92.0 96.0	4.3 6.1
TPH (diesel)	0	173	173	150	. 115	115	0.1
TRPH (oil & grease)	0	20200	21300	23700	85	90	5.3

% Rec. = (MS - Sample) / amount spiked x 100

QC REPORT FOR HYDROCARBON ANALYSES

Date:

06/25/95

Matrix:

Water

Analyte	Concent	Concentration (ug/L)			% Recovery		
	Sample	MS	MSD	Amount Spiked	MS	MSD	RPD
TPH (gas)	0.0	100.8	102.3	100	100.8	102.3	1.4
Benzene	0	10.6	11.2	10	106.0	112.0	5.5
Toluene	0	10.1	11.4	10	101.0	114.0	12.1
Ethyl Benzene	0	10.4	10.3	10	104.0	103.0	1.0
Xylenes	0	32.1	33.9	30	107.0	113.0	5.5
TPH (diesel)	N/A	N/A	N/A	II/A	N/A	N/A	N/A
TRPH (oil & grease)	N/A	N/A	N/A	N/A	N/A	N/A	N/A

% Rec. = (MS - Sample) / amount spiked x 100

QC REPORT FOR HYDROCARBON ANALYSES

Date:

06/28/95

Matrix:

Water

	Concent	oncentration (ug/L) % Recovery					
Analyte	Sample	MS	MSD	Amount Spiked	MS	MSD	RPD
TPH (gas)	0.0	99.2	99.3	100	99.2	99.3	0.1
Benzene	0	10.4	10.7	10	104.0	107.0	2.8
Toluene	0	10.2	10.4	10	102.0	104.0	1.9
Ethyl Benzene	0	10.2	10.5	10	102.0	105.0	2.9
Xylenes	0	31.9	32.7	30	106.3	109.0	2.5
TPH (diesel)	N/A	N/A	N/A	N/A	N/A	N/A	N/A
TRPH (oil & grease)	0	21600	21100	23700	91	89	2.3

% Rec. = (MS - Sample) / amount spiked x 100

QC REPORT FOR EPA 8010/8020/EDB

Date: 06/23/95

Matrix: Water

	Conce	entrati	on (ug/L)	% Reco		
Analyte	Sample	MS	MSD	Amount Spiked	MS	MSD	RPD
1,1-DCE	0.0	9.8	10.4	10.0	98	104	5.9
Trichloroethene	0.0	9.1	9.6	10.0	91	96	5.3
EDB	0.0	9.4	9.7	10.0	94	97	3.1
Chlorobenzene	0.0	10.4	11.0	10.0	104	110	5.6
Benzene	0.0	11.8	11.7	10.0	118	117	0.9
Toluene	0.0	10.2	10.9	10.0	102	109	6.6
Chlorobz (PID)	0.0	11.3	11.1	10.0	113	111	1.8

% Rec. = (MS - Sample) / amount spiked x 100

QC REPORT FOR AA METALS

Date:

06/22/95

Matrix: Water

3 3 · 4	Concent	ration	(mg/L)		% Recove		
Analyte	Sample	MS	MSD	Amount	MS	MSD	RPD
Total Lead	0.00	4.99	4.76	1.00	499	476	4.7
Total Cadmium	0.00	4.91	4.72	1.00	491	472	3.9
Total Chromium	0.00	4.73	4.62	3.00	158	154	2.4
Total Nickel	0.00	4.77	4.49	1.00	477	449	6.0
Total Zinc	0.00	4.64	4.53	3.00	155	151	2.4
STLC Lead	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Organic Lead	N/A	N/A	N/A	N/A	N/A	N/A	N/A

% Rec. = (MS - Sample) / amount spiked x 100

QC REPORT FOR AA METALS

Date:

06/27/95-06/28/95

Matrix: Water

Analyte	Concentration (mg/L)				% Reco	very	
	Sample	MS	MSD	Amount	MS	MSD	RPD
Total Calcium Total Magnesium Total Sodium Total Potassium Total Chromium	0.00 0.00 0.00 0.00	0.99 1.03 10.23 9.66 5.91	0.984 1.044 10.42 10.00 5.76	1 1 10 10.00 5.00	99 103 102 97 118	98 104 104 100 115	0.6 1.4 1.8 3.5 2.6
Potal Iron	0.00	0.97	1.02	1	97	102	5.0
Organic Lead	N/A	N/A	N/A	N/A	N/A	N/A	N/A

% Rec. = (MS - Sample) / amount spiked x 100

CHAIN OF CUSTODY

Ed Hamilton

Contact:

Laboratory: McCampbell Analytical Inc.

Pacheco, CA 94553 (510) 798-1620

110 2nd Avenue South #D7

4354AEIX47

Epigene International

CONSULTING GEOLOGISTS

4-11

38750 Paseo Padre Parkway, Suite *****
Fremont, California, 94536

Business: (510) 791-1986 FAX: (510) 791-3306

Contact: John Alt	Sampler: INA/APA/MD
Project Name: 7301 E. 12 5	2 Street DALLAN CA
Project no. 95-008	Date: 6/20/95

	toene 🍎			YOAS D	AG PENS!	Chin			\angle		A I	alys	es R	ques	ted	7
ļ		TION ABSENT	This same of			ipon arrival	/	Al Gas	JIN®	PH/DIO	01/30/60	2/807	O KY	4,6,05	<i>y/</i>	
	Sample I.D.	Date/Time Sampled	Matrix Desc.	Cont No. of	ainer. Type	Lab. ≠	18	4/	/ /	64.	0)/60	1/5	0			Comments
4)	1-EW-1.	6/20/95/12:40	H, 0	4	VOAS	r	X	X		X						
	2. 11		Ĭ		liter Bottle				X							5 355 8
	3. (1			- [Plastic Bottle							\times				
	4. ()	V V	<u> </u>	1	liter Bottle								X			
	5.MW-1	620 95/1:25M	H20	4	VOAS		X	X	7	X					F	
-	6. 1)	4 4	↓	i	1,ter Bottle				X							53559
-	7-MW-Z	6/20/95/1:53m	420	4	VOAS		×	X		\langle						
-	8.				liter Bottle				X						1	EDECC
-	9.				Plastic Bo Hle							X				53560
L	10.	V V	<u> </u>		1:ter BoHle								X			
	Relinquished b	v: M. Di	ugai	Date:	6/21/95	Time: 3 <u>25</u> pw	Rece	ived	by:	R1	1-60-6	1		Dat	e • (d)	1/g Time: 3,25
	Relinquished b	y: Bot San	to			Fime: 5:30							£6.3			// Time: 15-2
	Relinquished b	y: Lon Sile	na	1	ا ما ا	rime: 1055					idi)		cu			/ Time:/055
	Turnaround Tir	STANDARD													/-/	75
	Additional No Comments: all	plastic	bott 1	tain es c	HCI	as a pr	ce.se	ν V .	~ + .,	ve esev	Nat	ارو	,		р	290 01 Z

CHAIN OF CUSTODY

4354AEEX41

		100 11 000
Laboratory:	McCampbell Analytical Inc.	
· I	110 2nd Avenue South #D7	
	Pacheco, CA 94553	
	(510) 798–1620	
Contact:	Ed Hamilton	9

Epigene International

CONSULTING GEOLOGISTS

38750 Paseo Padre Parkway, Suite B-4 Fremont, California, 94536

Business: (510) 791-1986 FAX: (510) 791-3306

(510) 798-162	0		2011	ract:	oun Alf			Sample	":JNA/APA/M
Contact: Ed Hamilton			Proj	ect no. 9	5-00	<u>21 E.</u> 8	12 5 St	reet Oct	aland CA
<u> </u>				Gasolino ATE	24101801	/0/	ses Requ	ested	
Sample 1.D. Date/Time Sampled	Matrix Contain Desc. No. of Ty	pe Lab. +	ZON!		841/801	602/		×///	Comments
1.MW-3 62095 1:10 PM		ias	X	XI_	X				53581
3.	Pla	ev Hle Hic	_	_ X		X			·
4. V V	V 1 lit	the the					X		
5.MW-4 6/20/95/459M		AS HIE	X	X	X			+	53562
8. 1	H20 4 Vo	45	X	X	X				53563
9. MW-6 0/20/95/16pm	H.D 4 Vol	-5	X >	×	X				53564
Relinquished by: M. Dzug		195 Timo: 325 pm	Receiv	/ed by:	BB 4	74	ם	ate: [/4/9g	Time: 3 '3
Relinquished by: Rot Relinquished by:	Date: 65	/95 Time: 5:30		ed by:	m S		1914 0	atoglate.	Time: 9750
Turnaround Time: STANDARD Additional See page Comments:	1	ICET •	, cs .	(*************************************	YOUS DE	GIVENSIO			Time:/055
3		GOOD CONUTION SHEAD SPACE ABSENT			79 0 190	perwed o	yon Wive		Z 10 Z 01

APPENDIX B

SUMMARY TABLES

Table 1A-Summary of Hydrocarbon Concentrations (in PPB) Detected in MW-1

Sampling Date	TPH Diesel	TPH Gasoline	Benzene	l'oluene	Ethyl- benzene	Xylenes	TRPH*
7/27/92	360	1800	600	5.1	13	18	ND
11/6/92	670	8000	2400	6.1	41	ND	NA
3/2/93	1100	5600	3800	ND	120	ND	NA
5/26/93	1700	4800	3400	44	140	150	NA
8/27/93	1200	8400	2300	35	180	57	ND
12/23/93	ND	7800	29	16	5.8	26	NA
3/27/94	2600	10,000	2400	84	310	280	NA
6/24/94	1500	9000	2300	44	260	170	NA
10/16/94	2000	10,000	2100	35	250	140	NA
2/13/95	2500	16,000	3200	110	460	260	NA
6/20/95	3500	18,000	2600	87	450	220	NA

MW-1 is a 2 inch PVC well installed 12/23/91 to a total depth of 28 feet.

NOTE:

NA is not analyzed; ND is not detected above detection limits which are typically 50 PPB for diesel and gasoline and 0.5 PPB for BTEX; *TRPH is Total Recoverable Petroleum Hydrocarbons as oil and grease. Results for TRPH is presented in PPM with a detection limit of 5 PPM.

Table 1B-Summary of Volatile Halocarbon Concentrations (in PPB) Detected in MW-1

Sampling Date	Chloro- benzene	Chloro- ethnie	1,2-Dt Chloro- ethane	Cis 1,2 Dichloro- étliene	Trans 1,2 Dichlere- efficae	PCR	TCE	Vinyl Chloride
7/27/92	NA	NA	NA	NA	NA	NA	NA	NA
11/6/92	NA	NA	NA	· NA	NA	NA	NA	NA
3/2/93	ND	ND	ND	ND	ND	ND	5.8	ND
5/26/93	ND	ND	ND	ND	ND	ND	6.8	ND
8/27/93	ND	ND	ND	1.1	ND	5.4	ND	ND
12/23/94	NA	NA	NA	NA	NA	NA	NA	NA
3/27/94	NA	NA	NA	NA	NA	NA	NA	NA
6/24/94	NA	NA	NA	NA	NA	NA	NA	NA
10/16/94	NA	NA	NA	NA	NA	NA	NA	NA
2/13/95	ND	ND	ND	1.3	ND	ND	ND	ND
6/20/95 `	ND	1.1	ND	1.1	ND	ND	6.5	ND

NOTE:

Table presents only those compounds that have been detected in any of the site wells; data from EPA Method either 8010 or 8240; NA is not analyzed; ND is not detected above detection limits which are typically 0.5 PPB.

Table 2A-Summary of Hydrocarbon Concentrations (in PPB) Detected in MW-2

Sampling Date	TPH Diesel	TPH Gasoline	Benzene	Toluene	Ethyl- benzene	Xylenes	TRPH*
7/27/92	1500	20,000	110	6	37	39	ND
11/6/92	17,000	19,000	2800	120	790	1100	NA
3/2/93	37,000	14,000	3800	110	950	1100	NA
5/26/93	6000	11,000	5200	140	1000	990	32
8/27/93	5400	16,000	1700	120	640	710	ND
12/23/93	720	18,000	87	79	42	400	NA
3/27/94	6100	17,000	2100	100	630	750	ND
6/24/94	3000	15,000	2000	72	550	520	7.9
10/16/94	5300	15,000	1500	81	410	520	13
2/13/95	4900	18,000	2000	120	660	900	20
6/20/95	6600	30,000	1300	85	510	520	11

MW-2 is a 2 inch PVC well installed 7/8/92 to a total depth of 19 feet.

NOTE:

NA is not analyzed; ND is not detected above detection limits which are typically 50 PPB for diesel and gasoline and 0.5 PPB for BTEX; *TRPH is Total Recoverable Petroleum Hydrocarbons as oil and grease. Results for TRPH is presented in PPM with a detection limit of 5 PPM.

Table 2B-Summary of Volatile Halocarbons Concentrations (in PPB) Detected in MW-2

Sampling Date	Cluoro- benzene	Chioru- ethme	1,2-Dt Chloro- ethuse	CB 1.2 Dichlors efficie	Trans 1,2 Dicklore- ethene	PCE	TCB	Vinyl Chloride
7/27/92	NA	NA	NA	NA	NA	NA	NA	NA
11/6/92	NA	NA	NA	NA	NA	NA	NA	NA
3/2/93	ND	ND	ND	ND	ND	ND	ND	ND
5/26/93	9.8	ND	ND	2.7	2.7	ND	ND	ND
8/27/93	10	1.3	0.66	3.2	ND	ND	ND	2.2
12/23/93	4.3	ND	ND	1.0	ND	ND	ND	1.5
3/27/94	ND	ND	ND	ND	ND	ND	ND	ND
6/24/94	6.5	ND	ND	ND	ND	ND	ND	ND
10/16/94	5.7	1.1	ND	0.73	ND	ND	ND	1.0
2/13/95	12	ND	ND	ND	ND	ND	ND	ND
6/20/95	7.9	1.5	1.4	1.0	ND	ND	ND	2.1
	<u> </u>							
							<u> </u>	
						<u> </u>	<u></u>	

NOTE:

Table presents only those compounds that have been detected in any of the site wells; data from EPA Method either 8010 or 8240; NA is not analyzed; ND is not detected above detection limits which are typically 0.5 PPB.

Table 3A-Summary of Hydrocarbon Concentrations (in PPB) Detected in MW-3

Sampling Date	TPH Diesel	TPH Gasoline	Dénzene	Toluene	Ethyl- benzene	Xylenes	TRPH*
7/27/92	4000	8800	150	8.6	88	13	ND
11/6/92	21,000	10,000	78	3.1	830	13	NA
3/2/93	9300	3900	120	ND	240	37	NA
5/26/93	4400	7400	570	4.1	640	8.4	ND
8/27/93	8200	7100	180	15	110	9.4	ND
12/23/93	230	7900	30	14	12	62	NA
3/27/94	4300	5700	180	10	100	24	ND
6/24/94	1500	8400	230	13	93	7.6	NA
10/16/94	2700	6300	140	8.7	68	25	7.3
2/13/95	1600	7500	220	17	110	22	8.3
6/20/95	13,000	11,000	310	23	160	63	8.5

MW-3 is a 2 inch PVC well installed 7/8/92 to a total depth of 19 feet.

NOTE:

NA is not analyzed; ND is not detected above detection limits which are typically 50 PPB for diesel and gasoline and 0.5 PPB for BTEX; *TRPH is Total Recoverable Petroleum Hydrocarbons as oil and grease. Results for TRPH is presented in PPM with a detection limit of 5 PPM.

Table 3B-Summary of Volatile Halocarbons Concentrations (in PPB) Detected in MW-3

Sampling Date	Chilere benzene	Chloro- ethane	1,7:13 Chloro- etinac	Cis 1,2 Dichloro- efficae	Traus 1,2 Dichlero- efficie	PCE	ICE	Vinyl Chloride
7/27/92	NA	NA	NA	NA	NA	NA	NA	NA
11/6/92	NA	NA	NA	NA	NA	NA	NA	NA
3/2/93	ND	ND	ND	ND	ND	ND	ND	ND
5/26/93	NA	NA	NA	NA	NA	NA	NA	NA
8/27/93	ND	ND	ND	ND	ND	ND	16	ND
12/23/93	NA	NA	NA	NA	NA	NA	NA	NA
3/27/94	ND	ND	ND	ND	ND	ND	6	ND
6/24/94	ND	ND	ND	6.0	1.5	ND	ND	ND
10/16/94	ND	ND	ND	8.4	2.1	ND	12	ND
2/13/95	ND	ND	ND	4.3	1.3	ND	5.1	ND
6/20/95 `	ND	0.5	ND	4.9	1.7	ND	5.7	ND
								<u> </u>
				<u> </u>				

NOTE: Table presents only those compounds that have been detected in any of the site wells; data from EPA Method either 8010 or 8240; NA is not analyzed; ND is not detected above detection limits which are typically 0.5 PPB.

Table 4A-Summary of Hydrocarbon Concentrations (in PPB) Detected in MW-4

Sampling Date	TPH Diesei	TPH Gasoline	Benzene	Toluene	Ethyl- benzene	Xylenes	TRPH*
3/27/94	1800	2200	19	1.2	2.9	12	NA
6/24/94	420	2300	2.9	1.6	2.8	4.6	NA
10/16/94	900	3500	3.8	2	5.2	24	NA
2/13/95	630	2600	100	100	3.8	7.1	NA
6/20/95	1100	3000	31	3.4	6.1	12	NA
				:			
k.							
				:			

MW-4 is a 2 inch PVC well installed 3/18/94 to a total depth of 20 feet.

NOTE:

NA is not analyzed; ND is not detected above detection limits which are typically 50 PPB for diesel and gasoline and 0.5 PPB for BTEX; *TRPH is Total Recoverable Petroleum Hydrocarbons as oil and grease. Results for TRPH is presented in PPM with a detection limit of 5 PPM.

Table 4B-Summary of Volatile Halocarbons Concentrations (in PPB) Detected in MW-4

Sampling Date	Chioro- beuzene	Chioro- ethane	1,2-10t Cldoro- ethnrie	CB 1.2 Dichloro- cthene	Trans 1,2 Dichloro- etBene	PCB	TCE	Vinyi Chloride
3/27/94	NA	NA	NA	NA	NA	NA	NA	NA
6/24/94	NA	NA	NA	NA	NA	NA	NA	NA
10/16/94	ND	ND	0.67	0.71	ND	ND	ND	ND
2/13/95	ND	ND	ND	ND	ND	ND	ND	ND
6/20/95	ND	ND	ND	2.2	1.0	ND	ND	ND
		:						
			:					

NOTE:

Table presents only those compounds that have been detected in any of the site wells; data from EPA Method either 8010 or 8240; NA is not analyzed; ND is not detected above detection limits which are typically 0.5 PPB.

Table 5A-Summary of Hydrocarbon Concentrations (in PPB) Detected in MW-5

TPH Diesol	TPH Gasoline	Benzene	Toluene	Ethyl- benzene	Xylenes	TRPH*
870	2900	71	ND	27	15	NA
950	6100	220	12	38	24	NA
1100	4300	120	5.1	27	13	NA
1200	4600	130	7.9	38	29	NA
1000	6000	140	6.7	27	29	NA
	950 1100 1200	Diesel Gasoline 870 2900 950 6100 1100 4300 1200 4600	Diesel Gasoline 870 2900 71 950 6100 220 1100 4300 120 1200 4600 130	Diesel Gasoline 870 2900 71 ND 950 6100 220 12 1100 4300 120 5.1 1200 4600 130 7.9	Diesel Gasoline bienzene 870 2900 71 ND 27 950 6100 220 12 38 1100 4300 120 5.1 27 1200 4600 130 7.9 38	Diesel Gasoline benzene 870 2900 71 ND 27 15 950 6100 220 12 38 24 1100 4300 120 5.1 27 13 1200 4600 130 7.9 38 29

MW-5 is a 2 inch PVC well installed 3/17/94 to a total depth of 20 feet.

NOTE:

NA is not analyzed; ND is not detected above detection limits which are typically 50 PPB for diesel and gasoline and 0.5 PPB for BTEX; *TRPH is Total Recoverable Petroleum Hydrocarbons as oil and grease. Results for TRPH is presented in PPM with a detection limit of 5 PPM.

Page 1 of 1

Table 5B-Summary of Volatile Haolcarbons Concentrations (in PPB) Detected in MW-5

Sampling Date	Chioro: benzene	Chloro- ethine	1,2-DE Chloro- chase	Cts 1,2 Dichloro- otherse	Trans 1-2 Edebloro- elliene	PCE	TCE	Vingi Chlaride
3/27/94	NA	NA	NA	NA	NA	NA	NA	NA
6/24/94	0.53	ND	ND	11	3.1	ND	ND	7.5
10/16/94	0.66	ND	ND	16	4.2	ND	ND	9.6
2/13/95	ND	ND	ND	20	5.1	ND	ND	8.4
6/20/95	0.95	ND	ND	12	4.1	ND	ND	10
	 						,	
					<u> </u>			

NOTE: Table presents only those compounds that have been detected in any of the site wells; data from EPA Method either 8010 or 8240; NA is not analyzed; ND is not detected above detection limits which are typically 0.5 PPB.

Table 6A-Summary of Hydrocarbon Concentrations (in PPB) Detected in MW-6

Sampling Date	TPH Diesel	TPH Gasoline	Benzone	Toluene	Ethyl- benzene	Xvienes	TRPH*
3/27/94	1000	5000	1100	17	180	41	NA
6/24/94	660	8000	1200	21	210	54	NA
10/16/94	850	6300	870	14	140	49	NA
2/13/95	1000	5500	1000	17	210	55	NA
6/20/95	1400	9100	1300	24	240	79	NA
L							

MW-6 is a 2 inch PVC well installed 3/17/94 to a total depth of 20 feet.

NOTE:

NA is not analyzed; ND is not detected above detection limits which are typically 50 PPB for diesel and gasoline and 0.5 PPB for BTEX; *TRPH is Total Recoverable Petroleum Hydrocarbons as oil and grease. Results for TRPH is presented in PPM with a detection limit of 5 PPM.

Page 1 of 1

Table 6B-Summary of Volatile Halocarbons Concentrations (in PPB) Detected in MW-6

Sampling Date	Chioro beuzene	Chloro- etfiane	1,2-Di Chioro- ethnic	Cls 1,2 Dichloro- otheric	Trans 1.2 Dichlore- ell: Ré	PCE	TCE	Vinyi Chioride
3/27/94	NA	NA	NA	NA	NA	NA	NA	NA
6/24/94	NA	NA	NA	NA	NA	NA	NA	NA
10/16/94	NA	NA	NA	NA	NA	NA	NA	NA
2/13/95	ND	ND	ND	40	13	ND	99	87
6/20/95	ND	ND	ND	26	17	ND	29	130
·······								
<u>. </u>								
							· · · · · · · · · · · · · · · · · · ·	
1					· · ·			
				-		-		
			-					

NOTE: Table presents only those compounds that have been detected in any of the site wells; data from EPA Method either 8010 or 8240; NA is not analyzed; ND is not detected above detection limits which are typically 0.5 PPB.

Table 7A-Summary of Hydrocarbon Concentrations (in PPB) Detected in EW-1

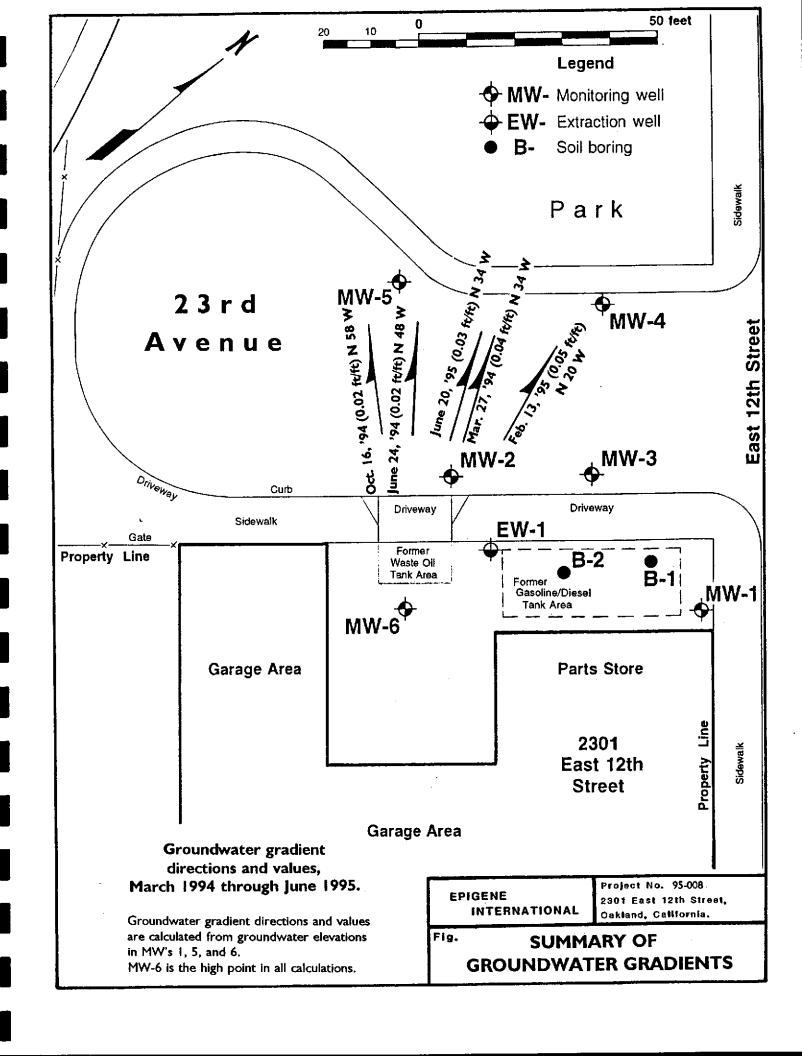
Sampling Date	TPH Diesel	TPH Gasoline	Benzene	Tolucue	Ethyl- benzene	Xylenes	TRPH*
3/27/94	920	1200	270	6.2	30	13	ND
6/24/94	1200	4600	410	5.6	78	22	NA
10/16/94	1200	4900	310	5.2	30	32	6.4
2/13/95	1000	3900	380	5.9	41	22	ND
6/20/95	1800	7800	710	14	260	52	6.5
.							
	 						

EW-1 is a 4 inch PVC well installed 3/16/94 to a total depth of 30 feet.

NOTE:

NA is not analyzed; ND is not detected above detection limits which are typically 50 PPB for diesel and gasoline and 0.5 PPB for BTEX; *TRPH is Total Recoverable Petroleum Hydrocarbons as oil and grease. Results for TRPH is presented in PPM with a detection limit of 5 PPM.

Page 1 of 1


. Table 7B-Summary of Volatile Halocarbons Concentrations (in PPB) Detected in EW-1

Sampling Date	Chiora- benzene	Chloro- ethme	1,2-Di Chioro- ethane	Cls 1,2 Dictiloro officise	Trans 1,2 Dichlere elliene	PCK	TCB	Virvi Chloride
3/27/94	ND	ND	ND	ND	ND	ND	40	ND
6/24/94	ND	ND	1.3	42	11	ND	68	3.2
10/16/94	ND	ND	ND	36	ND	ND	74	ND
2/13/95	ND	ND	ND	13	4.4	ND	53	ND
6/20/95	ND	2.0	ND	4.3	2.0	ND	6.0	2.8
				į.				
		i						

NOTE: Table presents only those compounds that have been detected in any of the site wells; data from EPA Method either 8010 or 8240; NA is not analyzed; ND is not detected above detection limits which are typically 0.5 PPB.

APPENDIX C

SUMMARY OF GRADIENT DATA

Summary of Groundwater Elevations and Gradients for site at 2301 East 12th Street, Oakland. March 27, 1994 through June 20, 1995

Well	March 27, '94 June 24, 1994		October 16, 1994		February	13, 1995	June 20, 1995		
Number	Groundwater Elevation	Change in GW elevation	Groundwater Elevation	Change in GW elevation	Groundwater Elevation	Change in GW elevation	Groundwater Elevation	Change in GW elevation	Groundwater Elevation
MW-I	8.27'	- 0.28'	7.99'	- 0.89'	7.10'	+1.44'	8.54'	- 0.07'	8.47'
MW-2	8.48'	- 1.75'(?)	6.73'	- 0.07'	6.66'	+2.46'	9.12'	- 0.25'	8.87'
MW-3	8.02'	- 0.28'	7.74'	- 0.02'	6.72'	+1.71'	8.43'	+0.02'	8.45'
MW-4	7.09'	+0.04'	7.13'	- 0.84'	6.29'	+1.38'	7.67'	- 0.18'	7.49'
MW-5	6.68'	+0.16'	6.84'	- 0.98'	5.86'	+1.41'	7.27'	- 0.19'	7.08'
MW-6	8.94'	- 0.88'	8.06'	- 0.98'	7.08'	+2.81'	9.89'	- 0.40'	9.49'
EW-I	8.66'	- 0.76'	7.90'	- 1.00'	6.90'	+2.58'	9.48'	- 0.05'	9.43'
Average	8.02'	- 0.54'	7.48'	- 0.82'	6.66'	+1.97'	8.63'	- 0.16'	8.47'
	March 27, '94	june 2	4, 1994	October 16, 1994		February 13, 1995		June 20, 1995	
		Change		Change		Change		Change	
Groundwater Gradient	0.04 ft./ft.	- 0.02	0.02 ft./ft.	nihl	0.02 ft./ft.	+0.03	0.05 ft./ft.	- 0.02	0.03 ft./ft.
Gradient Direction	N 34 W	l4 deg. W	N 48 W	10 deg. W _,	N 58 W	38 deg. N	N 20 W	14 deg. W	N 34 W

NOTE: Groundwater elevations for March 27, 1994 through February 13, 1995 have been adjusted from the elevations given in the reports for this period. They are based on the Top Of Casing elevations surveyed by Epigene International on June 20, 1995.