

Chevron U.S.A. Products Company

2410 Camino Ramon, San Ramon, California • Phone (510) 842-9500
Mail Address: P.O. Box 5004, San Ramon, CA 94583-0804

Y8 33VIZZ IO 21AVZ

October 30, 1992

NUV US 1992

SCVWD Coordinator Regional Water Quality Control Board San Francisco Bay Region 2101 Webster Street, Suite #500 Oakland, California 94612 HAYWARD FIRE DEPARTMENT

Re: Chevron Service Station #9-0260 21995 Foothill Boulevard Hayward, California 94541

Dear Coordinator,

Please find attached the 'Third Quarter 1992 Ground Water Monitoring Report' for the above referenced site. Chevron has a total of thirteen ground water monitoring wells here with six wells onsite and seven off-site. Eight of the wells were sampled this event. The depth-to-water ranged from 13.95 to 21.07 feet-below-grade. Ground water was flowing to the southwest with a gradient of 0.025 ft/ft. The levels of dissolved hydrocarbons in the ground water samples were consistent with previous observations at this site.

A downgradient piezometer and ground water monitoring well were installed and sampled in August 1992. We will soon be sending you a subsurface investigation report for these installations. The biological treatment system for ground water remediation continues to operate effectively at this site.

I declare under penalty of perjury that the information contained in the attached report is true and correct, and that any recommended actions are appropriate under the current circumstances, to the best of my knowledge.

If you have any questions, please call me at (510) 842-8896.

Truly yours,

Jeff Zindel

Environmental Engineer

cc: Mr. Rafat Shahid, Alameda County Mr. Hugh Murphy, Hayward Fire Dept. File(MAC 9-0260R11)

cc: w/o attachments: Bill Scudder, PDS-Chevron

5500 Shellmound Street, Emeryville, CA 94608-2411

Fax: 510-547-5043 Phone: 510-547-5420

September 22, 1992

Jeff Zindel Chevron U.S.A. Products Company P.O. Box 5004 San Ramon, CA 94583-0804

Re: Third Quarter 1992
Ground Water Monitoring Report
Chevron Service Station #9-0260
21995 Foothill Boulevard
Hayward, California
WA Job #4-310-91

Dear Mr. Zindel:

As you requested, Weiss Associates (WA) is providing this Ground Water Monitoring Report for the site referenced above (Figure 1). WA sampled the ground water monitoring wells (Figure 2) on August 13, 1992, in accordance with the requirements and procedures of the California Regional Water Quality Control Board - San Francisco Bay Region and local regulatory agencies.

SAMPLING PROCEDURES

Prior to purging and sampling the wells, WA measured the depth to ground water in each well to the nearest 0.01 ft using an electronic sounder (Table 1). We also checked the wells for floating hydrocarbons. About 0.3 ft of floating hydrocarbons were measured in monitoring well MW-8. The hydrocarbons were subsequently bailed from the well.

WA collected ground water samples for analysis after purging at least 3 well-casing volumes of ground water from each well or puring the well dry and either allowing it to recover to 80% of its static water level or for two hours. Each sample was decanted from a dedicated or disposable bailer into appropriate clean sample containers and delivered to a California-certified laboratory following proper sample preservation and chain-of-custody

Jeff Zindel September 22, 1992

procedures. Purged ground water was removed from the site and transported to the Chevron terminal in Richmond, California for recycling.

MONITORING AND ANALYTIC RESULTS

The top-of-casing elevation, depth to ground water and the ground water elevation for each well are presented in Table 1. Ground water elevation contours and the ground water flow direction are shown on Figure 2. The ground water elevation contours indicate that ground water flows southwestward with a gradient of about 0.025 ft/ft.

Current and historical ground water analytic results are tabulated in Table 2. Total petroleum hydrocarbons as gasoline (TPH-G) and benzene isoconcentration contour maps are included as Figures 3 and 4, respectively. The water sample collection records, and analytic report and chain-of-custody forms are included as Attachments A and B, respectively.

PROPOSED WORK SCHEDULE

The Fourth Quarter 1992 ground water sampling is scheduled for December 3, 1992. We will submit a report presenting the field and analytic data by mid-January 1993.

We appreciate this opportunity to provide hydrogeologic consulting services to Chevron and trust that this submittal meets your needs. Please call if you have any questions regarding this report.

No. EG 1576
CERTIFIED
ENGINEERING
GEOLOGIST

STATE OF CALIFORNIT

Sincerely, Weiss Associates

Mariette Shin Staff Geologist

James W. Carmody, C.E.G. Senior Hydrogeologist

MMS/JWC:fcr

E:\ALL\CHEV\300\310QM\$E2.WP

Attachments A - Water Sample Collection Records

B - Analytic Report and Chain-of-Custody Forms

WEISS ASSOCIATES

Figure 1. Site Location Map - Chevron Service Station #9-0260, 21995 Foothill Beulevard, Hayward, California

Figure 2. Monitoring Well and Piezometer Locations and Ground Water Elevation Contours - August 13, 1992 - Chevron Service Station #9-0260, 21995 Foothill Boulevard, Hayward, California

Figure 3. TPH-G Concentrations in Ground Water - August 13, 1992 - Chevron Service Station #9-0260, 21995 Foothill Boulevard, Hayward, California

Figure 4. Benzene Concentrations in Ground Water - August 13, 1992 - Chevron Service Station #9-0260, 21995 Foothill Boulevard, Hayward, California

TABLE 1. Ground Water Elevation Data, Chevron Service Station #9-0260, 21995 Foothill Boulevard, Hayward, California

Well ID	Date	Top-of-Casing Elevation (ft above msl)	Depth to Water (ft)	Floating Hydrocarbon Thickness (ft)	Ground Water Elevation (ft above msl) ^b
MW-4	06/15/88	100.75	12.92		87.83
1,1,1	09/27/88	2000.0	14.22	***	86.53
	01/05/89		13.20		87.55
	04/06/89		12.32		88.43
	06/28/89	•	14.25	***	86.50
	10/03/89		14.75		86.00
	01/04/90		14.75		86.00
	04/03/90		13.81		86.94
	07/03/90		14.06		86.69
	11/06/90		15.66		85.09
	01/04/91		15.18	₩#	85.57
	04/03/91		11.00		89.75
	07/02/91		14.25		86.50
	10/02/91		16.16	440	84.59
	01/02/92		15.26		85.49
	04/07/92		12.38		88.37
	08/13/92	100.73 ^a	16.68		84.05
MW-5	06/15/88	99.97	12.30	***	87.67
	09/27/88		13.25		86.72
	01/05/89		12.70		87.27
	04/06/89		12.22		87.75
	06/28/89		13.81		86.16
	10/03/89		14.27		85.70
	01/04/90		14.31		85.66
	04/03/90		13.50		86.47
	07/03/90		13.64		86.33
	11/06/90		15.14		84.83
	01/04/91	•	14.90	0.01	85.08
	04/03/91		11.56		88.41
	07/02/91		13.89		86.08
	10/02/91		15.26	***	84.71
	01/02/92		14.97		85.00
	04/07/92		13.44		86.53
	08/13/92		15.61		84.36

⁻⁻ Table 1 continues on next page --

TABLE 1. Ground Water Elevation Data, Chevron Service Station #9-0260, 21995 Foothill Boulevard, Hayward, California (continued)

Well ID	Date	Top-of-Casing Elevation (ft above msl)	Depth to Water (ft)	Floating Hydrocarbon Thickness (ft)	Ground Water Elevation (ft above msl) ^b
MW-6	06/15/88	101.43	13.51		87.92
141 44 0	09/27/88	101,45	14.56		86.87
	01/05/89		13.48		87.95
	04/06/89		12.60		88.83
	06/28/89	•	14.58		86.85
	10/03/89		13.03		88.40
	01/04/90		15.08		86.35
	04/03/90		14.06		87.37
	07/03/90		14.28		87.15
	11/06/90		16.10		85.33
	01/04/91		15.52		85.91
	04/03/91		11.03		90.40
	07/02/91	•	14.44		86.99
	10/02/91		16.22		85.21
	01/02/92		15.71		85.72
	04/07/92		13.47		87.96
	08/13/92		15.97	-	85.46
MW-7	06/15/88	100.91	12.57		88.34
	09/27/88		13.60		87.31
	01/05/89		12.98		87.93
	04/06/89		12.34		88.57
	06/28/89		14.08		86.83
	10/03/89		14.53		86.38
	01/04/90	,	14.49		86.42
	04/03/90	•	13.66		87.25
	07/03/90		13.86		87.05
	11/06/90		15.58		85.33
	01/04/91		15.25		85.66
	04/03/91		11.41		89.50
	07/02/91		14.18		86.73
	10/02/91		15.78		85.13
	01/02/92		15.45		85.46
	04/07/92		13.48		87.43
	08/13/92		15.89		85.02

⁻ Table 1 continues on next page -

TABLE 1. Ground Water Elevation Data, Chevron Service Station #9-0260, 21995 Foothill Boulevard, Hayward, California (continued)

Well ID	Date	Top-of-Casing Elevation (ft above msl)	Depth to Water (ft)	Floating Hydrocarbon Thickness (ft)	Ground Water Elevation (ft above msl) ^b
MW-8	01/05/89	99.67	12.02		87.65
IAT AA_C	04/06/89	33.07	11.78		87.89
	04/00/89		13,40	<u> </u>	86.27
	10/03/89		13.84	0.11	85.92
	01/03/89		13.99	0.10	85.76
	04/03/90		13.07	0.30	86.84
	04/03/90		13.11	0.04	86.59
	11/06/90		14.77	0.15	85.02
	01/04/91		14.59	0.18	85.22
	04/03/91		11.53	0.05	88.18
	07/02/91		13.71	0.48	86.34
	10/02/91		14.84	0.27	85.05
	01/02/91		15.05	0.30	84.86
	04/07/92		12.17	0.29	87.73
	08/13/92		14.96	0.31	84.96
MW-9	01/05/89	101.15	12.63		88.52
	04/06/89		12.46		88.69
	06/28/89		14.04		87.11
	10/03/89		14.61		86.54
	01/04/90		14.59		86.56
	04/03/90		13.75		87.40
	07/03/90		13.84		87.31
	11/06/90		15.42		85.73
	01/04/91		15.37		85.78
	04/03/91	,	12.27		88.88
	07/02/91		14.17		86.98
	10/02/91		15.68		85.47
	01/02/91		15.65		85.50
	04/07/92		13.84		87.31
	08/13/92		15.50		85.65

⁻ Table 1 continues on next page -

TABLE 1. Ground Water Elevation Data, Chevron Service Station #9-0260, 21995 Foothill Boulevard, Hayward, California (continued)

Well ID	Date	Top-of-Casing Elevation (ft above msl)	Depth to Water (ft)	Floating Hydrocarbon Thickness (ft)	Ground Water Elevation (ft above msl) ^b
MW-10	01/05/89	102.36	12.64		89.72
	04/06/89	102.50	11.38		90.98
	06/28/89		13.64		88.72
	10/03/89		13.85		88.51
	01/04/90		13.75		88.61
	04/03/90		12.86		89.50
	07/03/90		13.43		88.93
	11/06/90		14.82		87.54
	01/04/91		13.98		88.38
	04/03/91		9.79		92.57
	07/02/91		12.28		90.08
	10/02/91		14.53		87.83
	01/02/91		13.60		88.76
	04/07/92		11.83		90.53
	08/13/92		13.95		88.41
MW-11	06/28/89	99.97	14.33		85.64
	10/03/89		14.61		85.36
	01/04/90		14.55		85.42
	04/03/90		13.82		86.15
	07/03/90		14.00		85.97
	11/06/90		15.56		84.41
	01/04/91	С	14.88	0.30	
	04/03/91		10.75	0.21	
	07/02/91	. *	13.97	0.02	
	10/02/91	•	15.60		
	01/02/92		14.51		85.46
	04/07/92		13.13		86.84
	08/13/92	99.57ª	17.04		82.53
MW-12	06/28/89	99.64	14.10		85.54
	10/03/89		14.30		85.34
	01/04/90		14.35		85.29
	04/03/90		13.59		86.05
	07/03/90		13.77		85.87
	11/06/90	-	15.19		84.45
	01/04/91	c	14.52	0 .06	
	04/03/91		10.91		
	07/02/91	•	13.51		
	10/02/91		14.93		***
	01/02/92		14.45		85.19
	04/07/92		13.05		86.59
	08/13/92	99.22ª	17.39	~~~	81.83

⁻ Table 1 continues on next page -

TABLE 1. Ground Water Elevation Data, Chevron Service Station #9-0260, 21995 Foothill Boulevard, Hayward, California (continued)

Well ID	Date	Top-of-Casing Elevation (ft above msl)	Depth to Water (ft)	Floating Hydrocarbon Thickness (ft)	Ground Water Elevation (ft above ms!) ^b
MW-13	06/28/89	98.47	13.22		85.25
	10/03/89	50.1.	13.54		84.93
	01/04/90		13.64		84.83
	04/03/90		12.95		85.52
	07/03/90		13.05		85.42
	11/06/90		14.12		84.35
	01/04/91		14.05		84.42
	04/03/91		11.41		87.06
	07/02/91		13.17		85.30
	10/02/91		14.24		84.23
	01/02/92		14.13	0.03	84.34
	04/07/92		13.06		85.41
	08/13/92		14.26		84.21
	00, 13, 72		14.20		51.21
MW-14	08/29/90	99.68	21.39		78.29
	11/06/90	22.00	21.62		78.06
	01/04/91		21.69		77.99
	04/03/91		19.53		80.15
	07/02/91		20.93		78.75
	10/02/91		21.52		78.16
	01/02/92		21.43		78.25
	04/07/92		21.36		78.32
	08/13/92		21.07		78.61
	00/15/52		21.07		
MW-15	08/29/90	96.06	16.58		79.48
	11/06/90	3.0.0	17.43		78.63
	01/04/91		16.37		79.69
	04/03/91		12.46		83.60
	07/02/91		16.53		79.53
	10/02/91		17.33		78.73
	01/02/92		16.46		79.60
	04/07/92		14.70		81.36
	08/13/92		16.72		79.34
	00, 10, 72		10		
MW-16	08/29/90	98.15	20.89		77.26
· · · · · · · · · · · · · · · · · · ·	11/06/90	-	21.27		76.88
	01/04/91		21.63		76.52
a.	04/03/91		19.32		78.83
	07/02/91		20.68		77.47
	10/02/91		21.18		76.97
	01/02/92		21.30		76.85
	- 04/07/92		20.19		77.96
	08/13/92		20.77		77.38

⁻ Table 1 continues on next page -

TABLE 1. Ground Water Elevation Data, Chevron Service Station #9-0260, 21995 Foothill Boulevard, Hayward, California (continued)

Well ID	Date	Top-of-Casing Elevation (ft above msl)	Depth to Water (ft)	Floating Hydrocarbon Thickness (ft)	Ground Water Elevation (ft above msl) ^b
MW-17	08/13/92	106.00	23.30	. 	82.70
P-1	08/13/92	86.43	10.02		76.41

a = Top-of-casing resurveyed on August 13, 1992

c = Top-of-casing cut down; elevation unknown

b = When floating hydrocarbons are present ground water elevation corrected by the formula: Ground water elevation = Top-of-casing elevation - Depth to ground water + (0.8 x hydrocarbon thickness)

ample ID			Depth to	TPH-G	В	E	Ţ	X	EDC	EDB	VO
Sampling requency)	Sample Date	Analytical Lab	Water (ft)	<			parts per bil	lion (µg/L)		*****	
W-4	02/05/88	B&Č		88,000	24,000	1,700	19,000	10,000			
2nd & 4th	06/15/88	B&C	12.92	95,000	45,000	2,100	30,000	17,000			••
uarters)	09/27/88 ^a	CCAS	14.22	500,000	41,000	<5,000	27,000	16,000	<5,000	<5,000	
· -	09/27/88 ^{ab}	CCAS	14.22	88,000	1,200	1,600	4,100	12,000	270	230	
	01/05/89	SPA	13.20	64,000	41,000	2,700	29,000	14,000			
	06/28/89	SPA	14.25	110,000	34,000	2,400	24,000	13,000			•
	10/03/89	SPA	14.75	240,000	36,000	3,200	31,000	19,000			
	01/04/90	SPA	14.75	130,000	33,000	2,400	28,000	14,000			
	04/03/90	SPA	13.81	110,000	41,000	2,900	32,000	17,000			
	07/03/90	SPA	14.06	180,000	32,000	2,600	30,000	15,000			
	11/06/90	SPA	15.66	170,000	31,000	2,700	30,000	17,000			_
	04/03/91	SPA	11.00	130,000	21,000	2,300	24,000	14,000			
	10/02/91	SPA	16.16	240,000	27,000	2,600	33,000	16,000			
	04/07/92 ^c	3FA	12.38	240,000		2,000					_
				″ 				45.444			
∤- 5	02/05/88	B&C		80,000	16,000	2,600	15,000	17,000			•
2nd & 4th	06/15/88	8&C	12.30	77,000	42,000	2,500	38,000	16,000			
uarters)	09/27/88 ^a	CCAS	13.25	470,000	39,000	<5,000	32,000	16,000	<5,000	<5,000	-
	09/27/88 ^{ab}	CCAS	13.25	48,000	1,800	1,600	3,500	10,000	410	420	-
	01/05/89	SPA	12.70	82,000	44,000	2,400	37,000	14,000			-
	06/28/89	SPA	13.81	80,000	36,000	2,400	24,000	13,000			-
	10/03/89	SPA	14.27	240,000	40,000	2,600	35,000	15,000			-
	01/04/90	SPA	14.31	130,000	37,000	2,400	31,000	13,000			-
	04/03/90	SPA	13.50	120,000	41,000	2,500	33,000	14,000	+		-
	07/03/90	SPA	13.64	200,000	28,000	1,800	25,000	10,000			-
	11/06/90	SPA	15.14	370,000	38,000	4,700	36,000	31,000			-
	04/03/91	SPA	11.56	140,000	36,000	2,700	32,000	17,000			
	10/02/91	SPA	15.26	230,000	34,000	2,700	31,000	16,000			-
	04/07/92	SPA	13.44	220,000	35,000	2,500	30,000	14,000	•••		-
H-6	02/05/88	B&C		53,000	5,100	2,100	4,400	14,000			_
1st & 3rd	06/15/88	B&C	13.51	33,000	9,200	520	5,500	20,000			-
uarters)	09/27/88 ^a	CCAS	14.56	17,000	2,200	1,700	2.800	5,100	130	<10	-
uai (ci s)	01/05/89	SPA	13.48	37,000	5,000	2,200	3,400	10,000			_
	06/28/89	SPA	14.58	80,000	7,000	2,000	4,100	9,700			-
	10/03/89	SPA	13.03	110,000	8,500	2,600	5,100	14,000			
	01/04/90	SPA	15.08	59,000	5,200	2,000	2,600	11,000			
		SPA	14.06	31,000	6,600	2,200	2,600	12,000			
•	04/03/90		14.28	66,000	5,800	2,000	2,900	9.800	+	•••	
	07/03/90	SPA	15.52	50,000	5,600	1,800	2,200	9,400			
•	01/04/91	SPA					2,700	13,000			_
	07/02/91	SPA	14.44	81,000 67,000	11,000 7,500	2,100	1,900	9,500		•••	_
	01/02/92 08/13/92 d	SPA	15.71	67,000	7,200	1,800	1,700	2,200			_

⁻⁻ Table 2 continues on next page --

ample ID Sampling	Sample	Analytical	Depth to Water	TPH-G	В	E	T	X	EDĊ	EDB	VOC
requency)	Date	Lab	(ft)	<		pa	rts per bill	ion (μg/L)			
₩-7	02/05/88	B&C		81,000	34,000	2,400	36,000	16,000			
2nd & 4th	06/15/88	B&C	12.57	77,000	40,000	1,400	41,000	24,000			
uarters)	09/27/88 ⁸	CCAS	13.60	30,000	9,700	400	8,900	4,100	2,600	<10	
dol (clay	01/05/89	SPA	12.98	96,000	36,000	2,800	38,000	16,000			
	06/28/89	SPA	14.08	110,000	31,000	2,600	30,000	16,000			
	10/03/89	SPA	14.53	230,000	34,000	2,400	34,000	15,000			
	01/04/90	SPA	14.49	150,000	41,000	2,400	40,000	15,000			
	04/03/90	SPA	13.66	100,000	31,000	2,100	28,000	16,000			
	07/03/90	SPA	13.86	190,000	30,000	1,800	27,000	13,000			
	11/06/90	SPA	15.58	160,000	27,000	1,900	25,000	15,000			
	04/03/91	SPA	11.41	240,000	40,000	2,400	36,000	18,000			
			15.78	220,000	26,000	2,500	27,000	18,000			
	10/02/91	SPA	13.48	260,000	27,000	2,400	26,000	15,000			
	04/07/92	SPA	13.40	200,000	27,000	2,400	20,000	15,000			
	10/27/88 ⁸	0040		190,000	27,000	2,200	43,000	15,000	<500	<500	
W-8	10/27/88	CCAS	12.02	87,000	24,000	3,000	39,000	15,000			
2nd & 4th	01/05/89	SPA	12.02		22,000	2,900	35,000	16,000			
uarters)	06/28/89	SPA	13.40	120,000	22,000	2,900	33,000	10,000			
	10/03/89 ^e		13.84		•••			•••			
	01/04/90 ^e		13.99								
	04/03/90 ^e		13.07				•••				-
	07/03/90 ^e		13.11						•••		
	11/06/90 ^e		14.77								
	04/03/91 ^e		11.53			**-		•••			
	10/02/91 ^e		14.84								
	04/07/92 ^e		12.17			•••					*-
u- 9	10/27/88 ⁸	CCAS		50,000	2,000	2,000	9,900	14,000	<500	<500	<u>.</u> .
1st & 3rd	01/05/89	SPA	12.63	55,000	670	3,400	8,900	16.000			
uarters)	06/28/90	SPA	14.04	100,000	510	2,600	4,500	13.000			-
lagi cei o	10/03/89	SPA	14.61	130,000	540	3,200	8,000	17,000			-
	01/04/90	SPA	14.59	83,000	600	2,600	4,600	14,000			
	04/03/90	SPA	13.75	52,000	1,600	3,100	5,400	16,000			
	07/03/90	SPA	13.84	100,000	520	3,200	5,400	16,000			_
		SPA	15.37	59,000	1,100	2,500	5,600	13,000			
	01/04/91		14.17	130,000	1,900	3,600	7,600	20,000			
	07/02/91	SPA			3,300	2,800	8,200	14,000			-
	01/02/92	SPA	15.65	100,000		1,500	3,000	7,100			_
2	08/13/92	SPA	15.50	45,000	1,300	1,300	3,000	7,100			
IW-10	10/27/88 ⁸	CCAS		<500	26	<5	13	<5	<5	<5	-
ist quarter)	01/05/89	SPA	12.64	<1,000	<0.3	<0.3	<0.3	<0.3			-
ine don't con	06/28/89	SPA	13.64	<500	<0.5	<0.5	<0.5	<0.5			-
	10/03/89	SPA	13.85	<500	<0.5	<0.5	<0.5	<0.5			•
	01/04/90	SPA	13.75	<50	0.5	<0.5	1.1	1.7			-

⁻⁻ Table 2 continues on next page --

ample ID	Cample	Analytical	Depth to Water	TPH-G	В	E	T	X	EDC	EOB	VOCs
Sampling requency)	Sample Date	Lab	(ft)	<		ра	rts per bill	ion (μg/L)			
4	04/03/90	SPA	12.86	<50	<0.5	<0.5	<0.5	<0.5			
	01/04/91	SPA	13.98	<50	<0.5	<0.5	<0.5	<0.5			
	01/02/92	SPA	13.60	<50	<0.5	<0.5	<0.5	<0.5		***	
w-11	06/28/89	SPA	14.33	60,000	36,000	2,500	13,000	12,000			f
1st & 3rd	10/03/89	SPA	14.61	14,000	4,200	240	1,400	1,300			
uarters)	01/04/90	SPA	14.55	82,000	33,000	2,000	11,000	10,000			
dal fel 2)	04/03/90	SPA	13.82	78,000	35,000	2,300	12,000	12,000			
	07/03/90	SPA	14.00	140,000	32,000	2,100	12,000	10,000			
	01/04/91e		14.88		•••			• • • •			
	04/03/91e		10.75					•••			
	07/02/91	SPA	13.97	340,000	29,000	3,700	14,000	24,000		***	*
		SPA	14.51	130,000	27,000	2,200	14,000	12,000			
	01/02/92 08/13/92	SPA	17.04		18,000	1,900	14,000	10,000			
				-	<u>-</u>		24 000	19,000			
W-12	06/28/89	SPA	14.10	55,000	30,000	2,900	21,000				
2nd & 4th	10/03/89	SPA	14.30	170,000	30,000	2,700	23,000	15,000			
uarters)	01/04/90	SPA	14.35	110,000	24,000	2,300	19,000	12,000			
	04/03/90	SPA	13.59	89,000	41,000	3,300	28,000	17,000		***	
	07/03/90	SPA	13.77	170,000	27,000	2,200	20,000	12,000			
	11/06/90	SPA	15.19	110,000	28,000	2,400	21,000	14,000			
	04/09/91	SPA	10.91	170,000	39,000	2,400	17,000	14,000			
	10/02/91	SPA	14.93	170,000	27,000	2,600	15,000	17,000			
	04/07/92 [¢]		13.05	***		•••	•••				
w-13	06/28/89	SPA	13.22	54,000	12,000	1,900	10,000	15,000			
1st & 3rd	10/03/89	SPA	13.54	120,000	10.000	2,300	10,000	15,000			
uarters)	01/04/90	SPA	13.64	87,000	6,800	2,000	10,000	12,000			
100 , 10, 23	04/03/90	SPA	12.95	53,000	12,000	2,900	14,000	17,000			
	07/03/90	SPA	13.05	90,000	8,400	2,000	11,000	11,000			
	01/04/91	SPA	14.05	72,000	5,500	2,300	12,000	12,000			
	07/02/91	SPA	13.17	120,000	12,000	2,500	13,000	14,000			
	01/02/92 ^e	SPA	14.13	•••		•••					
	08/13/92	SPA	14.26	84,000	7,400	2,600	11,000	13,000			
n 1 - 4 /	08/29/90	SPA	21.39	970	4	0.7	2	2	1		
W-14	,	SPA	21.62	920	10	4	10	9			
(All quarters)	11/06/90			1,000	<0.5	2.6	4.0	4.2		***	
	01/04/91	SPA	21.69		380	7	6	18			
1	04/03/91	SPA	19.53	1,200	27	1.2	1.0	1.0		••-	
	07/02/91	SPA	20.93	460 480		1.4	0.8	1.8			
	10/02/91	SPA	21.52	480	6.7	6.2	1.5	18			
	01/02/92	SPA	21.43	1,100	2.4	0.2	1.2	10			

ample ID			Depth to	TPH-G	В	£	T	X	EDC	EDB	VOC
Sampling requency)	Sample Date	Analytical Lab	Water (ft)	<		ра	rts per bill	ion (μg/L)			
1	04/07/92	SPA	21.36	290	<0.5	<0.5	1.4	1.2		•••	
	08/13/92	SPA	21.07	370	10	<0.5	1.2	0.9			
W-15	08/29/90	SPA	16.58	2,000	26	72	2	110	<0.5		h
All quarters)	11/06/90	SPA	17.43	1,300	40	45	5	63		* ***	
,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	01/04/91	SPA	16.37	1,700	46	58	2.8	86			
	04/03/91	SPA	12.46	2,100	74	44	0.8	85			
	07/02/91	SPA	16.53	1,700	39	35	<0.5	46			*
	10/02/91	SPA	17.33	1,100	50	40	<0.5	33			
	01/02/92	SPA	16.46	1,300	51	30	<0.5	30			
	04/07/92	SPA	14.70	2,600	98	64	< 5	36			
	08/13/92	SPA	16.72	510	55	35	<0.5	2.8			
W-16	08/29/90	SPA	20.89	11,000	6,000	1,100	51	20	<0.5	***	
All quarters)	11/06/90	SPA	21.27	15,000	6,300	1,300	340	540			
Acc quarters,	01/04/91	SPA	21.63	16,000	6,800	1,300	820	1,500			
	04/03/91	SPA	19.32	45,000	7,300	1,800	2,200	4,900			
	07/02/91	SPA	20.68	30,000	6,400	1,500	530	1.800		***	
	10/02/91	SPA	21.18	24,000	4,600	1,400	450	1,600		***	
	01/02/92	SPA	21.30	20,000	4,700	1,200	240	1 100			
	04/07/92	SPA	20.19	40,000	5,000	1,100	980	2,100		••-	
	08/13/92	SPA	20.77	17,000	4,500	860	240	530			
w-17	08/13/92	SPA	23.30	<50	<0.5	<0.5	<0.5	<0.5		***	
(All quarters)											
Bailer Blank	01/05/89	SPA		<1,000	<0.3	<0.3	<0.3	<0.3			••
rip Blank	01/05/89	SPA		<1,000	<0.3	<0.3	<0.3	<0.3			• •
, , , =	10/03/89	SPA		<500	<0.5	<0.5	<0.5	<0.5			
	01/04/90	SPA		<50	<0.5	<0.5	<0.5	<0.5			
	04/03/90	SPA		<50	<0.5	<0.5	<0.5	<0.5			
	07/03/90	SPA		<50	<0.5	<0.5	<0.5	<0.5			
	11/06/90	SPA		<50	<0.5	<0.5	<0.5	<0.5			
	01/04/91	SPA		<50	<0.5	<0.5	<0.5	<0.5			
	04/03/91	SPA		< 50	<0.5	<0.5	<0.5	<0.5			
	07/02/91	SPA		< 50	<0.5	<0.5	<0.5	<0.5			
1	10/02/91	SPA		< 50	<0.5	<0.5	<0.5	<0.5			
	01/02/92	SPA		<50	<0.5	<0.5	<0.5	<0.5			
i				<50	<0.5	<0.5	<0.5	<0.5			
:	04/07/92 08/13/92	SPA SPA		<50 <50	<0.5	<0.5	<0.5	<0.5			
OTSC MCLs	· -			NE	1	680	100 ^j	1,750	0.5	0.02	

⁻⁻ Table 2 continues on next page --

TABLE 2. Analytic Results for Ground Water - Chevron Service Station #9-0260, 21995 Foothill Boulevard, Hayward, California (continued)

Abbreviations:

TPH-G = Total petroleum hydrocarbons as gasoline by Modified EPA Method 8015

B = Benzene by Method 602 or 8020

E = Ethylbenzene by EPA Method 602 or 8020

T = Toluene by EPA Method 602 or 8020

X = Xylenes by EPA Method 602 or 8020

EDC = 1,2-dichloroethane by EPA Method 524.2/8240

EDB = Ethylene dibromide by EPA Method 524.2/8240

VOCs = Volatile Organic Compounds by EPA Method 8010

--- = Not analyzed

<n = Not detected at laboratory method detection limit of n parts per billion

DTSC MCL = California Department of Toxic Substances Control maximum contaminant level for drinking water

NE = Not established

Analytical Laboratory:

B&C = BC Analytical of Emeryville, California

CCAS = Central Coast Analytical Services of San Luis Obispo, California

SPA = Superior Precision Analytical of San Francisco and Martinez,

California

Notes:

a = Samples analyzed by Fuel Fingerprint Analysis - EPA Method 524.2/8240 for total fuel and aromatic volatile hydrocarbons

b = Sample was analyzed a second time after the holding time expired to confirm the high TPH-G concentration reported in the original analysis. Although the samples were preserved with NaHSO, and refrigerated, the second analysis was conducted 52 days after sample collection.

c = Not sampled due to ground water extraction pump installation

d = Well was dry, not sampled

e = Well not sampled due to the presence of floating hydrocarbons

f = Not detected at detection limits ranging from 500 to 2,000 ppb

g = Not detected at detection limits ranging from 0.5 to 4.0 ppb

h = Chloroform detected limits ranging from 25 to 500 ppb

i = Not detected at detection limits ranging from 25 to 500 ppb

j = DTSC Recommended Action Level for Drinking Water

k = DTSC MCL for chloroform = 100 ppb - MCLs vary for other compounds

ATTACHMENT A WATER SAMPLE COLLECTION RECORDS

WATE	R SAMPLING	DATA		₽	: 0 0	_		12.1 .X	Empleo	-not
Well N	ame mw-6		Date_	<u> පි-</u>	15.9	Z Time	of Sampl	ing <i>enoug</i>	h wat	<u> </u>
Job Na	ame CHEV. HAY	WARD	Job N	lumber	4	-310-91		_Initials _	<u> </u>	
	e Point Descrip							(M =	Monitor	ing Wcll)
Locati	on NE EL	GE OF	SITE							
WELL	DATA: Dep	th to Wate	er 15.97	_ f K(Si	atic, p	umping)		Depth to Prod		
Produ	et Thickness -	We	il Depth	16.5 ft	(spec	Well Depth '	ft(so	unded) Well	Diamete	er <u>4</u> in
	In	itial Heig	ht of Wa	ter in C	asing	0.53	$_{}$ ft. = $^{\circ}$	volume	0.34	gal.
		3 (Casing Vo	lumes	to be F	Evacuated.	Total to	be evacuate	d <u>/</u>	gal.
EVAC	UATION MET		P	ump # :	and ty	pe	Hose	# and type _		
<u> </u>	Ba	iler# and	type 3	x 3' "	PVC D	edicated	<u> </u>	(Y/N)		
•		ther		_						
Evacu	ation Time: St	op 14:28	700					-		
Liuco	St	art 14:26	<u> </u>					Formulas/Conv	rersions	
		otal Evaca		$\frac{1}{100}$	1/2			r = well radius	in ft.	
						g	gal.	h = ht of water	r col in ft.	
						gal. per n		vol. in cyl. = π		
Danth	to Water durin							7.48 gal/ft ³		
Depth	to Water at So	ng Lvacua	34.22		· · · · · ·	time		V_2 " casing = 0	.163 gal/ft	
	ated Dry? Y							V_3 " casing = 0		
	ecovery =			gai.	I IIIIC _	11,00		V_4 " casing = 0		
00% K	.ccovery =	lo Timo	و روستهد	4		16:05		V _{4.5} " casing =		ſŧ
yo Rec	oyery at Samp	10 111110 <u> </u>	THE STATE OF THE S	<u>.</u> 1111 . mel.	1	s compla		V_5 " casing = 1		
				•		•		V8 casing = 2.		
	IICAL DATA:		and/Nun	7.0		10.0		10 casing = 2.	01 801/14	
	ation:			_ 7.0 _	TOC	10.0 , Time	Volum	ie Evacuated	(oal)	
Measu	red:	SC/µmho	s pH		T°C		v Oluli	ic Lvacuated	(841.)	-
				V-	1	/ /} -				
				$-\!\!\!/ \setminus$		<i> - </i>				
				<u> </u>	\mathcal{A}					
				' _	<u> </u>					
										
				_		0-	J			
	LE: Color		<u></u>		-		ior			
	iption of matte ing Method:		H:				 			
	e Port: Rate		Totalizer			gal.				
	Time									
		_	?	·3	n 64	.	۸ _	alvetia	Turn ⁵	LAB
# of	Sample	Cont.	Vol ²	Fil ³	Ret '	Preservative (specify)		alytic ethod	Luin	LAD
Cont.	ID	Type ¹	•			(specify)		•	1	
2	082-06	WICV	40 ml	N	γ	HCL	EPA	8015/602	<u>~~</u> .	SPA
		`-								
										
		•								
							· ——-	• ;		
										
										

¹ Sample Type Codes: W = Water, S = Soil, Describe Other
Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
Cap Codes: PT = Plastic, Teflon lined;
2 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
5 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

WATER SAMPLING DATA Well Name MW-9 Date 8-13-92 Time of Sampling 15:55
ALIAN MAD TINE A 1 24 Al Initials
Job Name <u>CHEV. HAY WARD</u> Job Number <u>4-3/0-91</u> Initials <u>M</u> Sample Point Description M (M = Monitoring Well)
Sample voint bescription
Location NE EDGE OF REX RD.
WELL DATA: Depth to Water 15.50 ft (static, pumping) Depth to Product ft.
Product Thickness Well Depth 19.2 ft (spec) Well Depth ft(sounded) Well Diameter 4 in
Initial Height of Water in Casing 3.7 ft. = volume 2.4 gal.
Casing Volumes to be Evacuated. Total to be evacuated 7.2 gal.
EVACUATION METHOD: Pump # and type Hose # and type
Bailer# and type 3x 'PVC Dedicated Y (Y/N)
Other
Evacuation Time: Stop 14:37
Start 14:35 Formulas/Conversions
Total Evacation Time $2min$ $r = well radius in t.$
Total Evacuated Prior to Sampling gal. h = ht of water col in ft.
Evacuation Rate gal. per minute vol. in cyl. = $\pi r^2 h$
Depth to Water during Evacuation ft time 7.48 gal/ft ³
Depth to Water at Sampling $15/65$ ft. $15/53$ time V_2 " casing = 0.163 gal/ft
Evacuated Dry? Vc) After 3 gal. Time 14:37 V ₃ " casing = 0.367 gal/ft
80% Recovery = $\frac{16.24}{\text{casing}} = 0.653 \text{ gal/ft}$
% Recovery at Sample Time 96 Time 15153 $V_{4.5}$ casing = 0.826 gal/ft
V ₆ " casing = 1.47 gal/ft
CHEMICAL DATA: Meter Brand/Number V8 casing = 2.61 gal/ft
Calibration: 4.0 7.0 10.0
Carrolation.
Measured: SC/μmhos pH T°C Time Volume Evacuated (gal.)
——————————————————————————————————————
SAMPLE: Color None Odor Moilerate
Description of matter in sample: Fire sitt
Sampling Method: <u>sample</u> port on <u>dedicated</u> bailer
Sampling Method: sample port on dedicated barrer
Sampling Method: 5 annie port on dedicated barrer Sample Port: Rategpm Totalizer gal. Time
Sampling Method: 5 angle port on dedicated batter Sample Port: Rate gpm Totalizer gal. # of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LAB
Sampling Method: 5 angle port on dedicated batter Sample Port: Rategpm Totalizer gal. # of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LAB Cont. ID Type ¹ (specify) Method
Sampling Method: 5 angle port on dedicated batter Sample Port: Rate gpm Totalizer gal. # of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LAB
Sampling Method: 5 angle port on dedicated batter Sample Port: Rategpm Totalizer gal. # of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LAB Cont. ID Type ¹ (specify) Method
Sampling Method: 5 angle port on dedicated batter Sample Port: Rategpm Totalizer gal. # of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LAB Cont. ID Type ¹ (specify) Method
Sampling Method: 5 angle port on dedicated batter Sample Port: Rategpm Totalizer gal. # of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LAB Cont. ID Type ¹ (specify) Method
Sampling Method: 5 angle port on dedicated batter Sample Port: Rategpm Totalizer gal. # of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LAB Cont. ID Type ¹ (specify) Method
Sampling Method: 5 angle port on dedicated batter Sample Port: Rategpm Totalizer gal. # of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LAB Cont. ID Type ¹ (specify) Method
Sampling Method: 5 angle port on dedicated backer Sample Port: Rategpm Totalizer gal. # of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LAB Cont. ID Type ¹ (specify) Method
Sampling Method: 5 angle port on dedicated batter Sample Port: Rategpm Totalizer gal. # of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LAB Cont. ID Type ¹ (specify) Method

Sample Type Codes: W = Water, S = Soil, Describe Other
 Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
 Cap Codes: PT = Plastic, Teflon lined;
 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
 ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

WATER SAMPLING DATA Well Name MW-1/ Date 8-13-92 Time	of Sampling 16103
Job Name CHEV. HAYWARD Job Number 4-310-91	Initials P.Z.
Sample Point Description BO-HI EXTRACTION WELL	(M = Monitoring Well)
Location W CORNER OF SITE	(Mr = Monitoring well)
Location VV CORNER OF SITE	Depth to Product ft
WELL DATA: Depth to Water 17.04 ft static pumping BB	Standed Well Diameter 4 in
Product Thickness Well Depth [961 ft (spec) Well Depth _	It(Sounded) Went Diameterin
Initial Height of Water in Casing	
Casing Volumes to be Evacuated.	
<u>Billouitraotti iliantiono</u>	Hose # and type
Bailer# and type 2x "PVC Dedicated Other SAMPLING PORT BB	<u></u>
Evacuation Time: Stop	•
Start	Formulas/Conversions
Total Evacation Time	r = well radius in ft.
Total Evacuated Prior to Sampling	gal. h = ht of water col in ft.
Evacuation Rate 2 gal. per	minute vol. in cyl. = $\pi r^2 h$
Evacuation Rate gal. per Depth to Water during Evacuation ft time	7.48 gal/ft ³
Depth to Water at Sampling ft time	V_2 " casing = 0.163 gal/ft
Evacuated Dry? After gal. Time	V ₃ " casing = 0.367 gal/ft
80% Recovery =	V_4 " casing = 0.653 gal/ft
% Recovery at Sample Time Time	V_4 5" casing = 0.826 gal/ft
70 Recovery at Bampto 17mo	V_6 " casing = 1.47 gal/ft
CHEMICAL DATA: Meter Brand/Number	V8 casing = 2.61 gal/ft
Calibration: 4.0	
	Volume Evacuated (gal.)
Measured: $SC/\mu \text{minos}$ pri	V 014.1.0 20 14.0 4.0 14.0 14.0 14.0 14.0 14.0 14.0
CONTRACT ALBA	dar Clickt
Description of matter in sample: Nove	Odor Slight
Sampling Method: Sampling Aget	
Sampling Method: sampling poet Sample Port: Rate — gpm Yotalizer — gal.	
Time —	
# of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative Cont. ID Type ¹ (specify)	e Analytic Turn ⁵ LAB Method
23.5	,
2 082 - 11 W/CV 40ml N Y HCl	EPA 8015/602 N SPA
·	

Sample Type Codes: W = Water, S = Soil, Describe Other
 Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
 Cap Codes: PT = Plastic, Teflon lined;
 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
 ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

WATER SAMPLING	<u> DATA</u>		6	12.	an		11-1	100	
WATER SAMPLING Well Name	- 13	Datc	<u> </u>	· (5 ·	Tim	ne of Samp	ling 1516	73	·
Job Name CHEV. H	AYWARD	_ Job N	umber	<u> </u>	-310-91		Initials _		
Sample Point Descri	ption	m					(M =	Monitori	ng Well)
Location PLANTE	5R, SE.S.	DE OF	RE	K RD.					
WELL DATA: Dep							Depth to Proc	·	
Product Thickness _	Wel	l Depth	17.77 f	t (spec) Well Depth	f t(s	ounded) Well	Diamete	r_4_in
I	nitial Heig	ht of Wat	er in (Casing	3.51	ft. =	volume		gal.
					Evacuated.	Total to	o be evacuate	d <u>6.9</u>	gal.
EVACUATION ME	THOD:	Pı	ımp #	and tv	rpe	Hose	# and type _		
В	ailer# and	type 3x	: '"(PVC Ď	Dedicated	У	_(Y/N)		
Evacuation Time: S						•			
	tart 1444	T					Formulas/Cony	versions	
	otal Evaca		_ 7	m 10			r = well radius		
					g 2.5	gal	h = ht of water		
					gal, pe		vol. in cyl. = π		
					gan pe		7.48 gal/ft ³	• ••	
Depth to Water duri	ng Evacua	1// 73	1 64	11	15 146 tim		V_2 " casing = 0	163 mal/ft	
Depth to Water at Sa						ic	V_2 casing = 0 V_3 " casing = 0		
Evacuated Dry? Ye				lime .	17.16	_	V_3 casing = 0		
80% Recovery =					15:41		•		F+
% Recovery at Samp	ole l'ime <u>F</u>	<u> </u>	_ 111	me	13 11	_	V _{4.5} " casing =		
			_				V_6 " casing = 1		
CHEMICAL DATA:		and/Num				_	V8 casing $= 2.0$	61 gai/It	
	4.0		_ 7.0 _	-	/0.0	** •	.	1 .	
Measured: SC/μmhos pH T/C /Time Volume Evacuated (gal.)									
$ \wedge$ \wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge									
					<i>/ /-</i> /-				
			<i>-</i> ∤ \	-	/ <i>f</i>				
					/				
			<u> </u>	<u>, </u>					
	.1 .			1		- 41			
SAMPLE: Color	None					Odor <u>M</u>	sacrove		
Description of matt Sampling Method:	er in sampl	le: <u>N/O/</u>	22	A . A :	actual b	ailer			
Sampling Method. Sample Port: Rate	- gnm	<i>port</i> Fotalizer			ga ga	277 G 1.			
Time		. otalizo.							
		2	. 7				1	m5	TAD
# of Sample	Cont.	Vol ²	Fil ³	Rcf"	Preservativ		nalytic	Turn ⁵	LAB
Cont. ID	Type ¹				(specify)		lethod		
2 082-13	w/cv	40ml	N	Y	HCR	EPA	8015/602	_ <i>N</i>	SPA
	- 								
	. '								
									
	,						1		

Sample Type Codes: W = Water, S = Soil, Describe Other
 Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
 Cap Codes: PT = Plastic, Teflon lined;
 Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
 ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

WATER SAMPLING DATA Well Name AW-14 Date 8-13.92 Time of Sampling /5:38	
Well Name ///	_
Job Name CHEV. HAYWARD Job Number 4-310-91 Initials BC	_
Sample Point Description (M = Monitoring Well	1)
Location PEX RD., 5W OF SITE	
WELL DATA: Depth to Water 21.07 ft (static pumping) Depth to Product	t.
Product Thickness — Well Depth 41.5 ft (spec) Well Depth — ft(sounded) Well Diameter 2	in
Initial Height of Water in Casing 20.43 ft. = volume 3.33 gs	ıl.
3 Casing Volumes to be Evacuated. Total to be evacuated 10 ga	ıl.
EVACUATION METHOD: Pump # and type Hose # and type	
Bailer# and type 1.25" × 5' PVC Dedicated Y (Y/N)	_
Other	
Evacuation Time: Stop 15:37	
Start 15:23 Formulas/Conversions	
Total Evacation Time $\frac{14 \text{ min}}{1000 \text{ min}}$ $r = \text{well radius in ft.}$	
Total Evacuated Prior to Sampling $\frac{10}{1000}$ gal. $h = ht$ of water col in ft.	
Evacuation Rate 0.71 gal. per minute vol. in cyl. = $\pi r^2 h$	
Depth to Water during Evacuation ft. time 7.48 gal/ft ³	
Depth to Water at Sampling ft time V ₂ " casing = 0.163 gal/ft	
Evacuated Dry? No After gal. Time V ₃ " casing = 0.367 gal/ft	
80% Recovery =	
% Recovery at Sample Time Time V _{4.5} " casing = 0.826 gal/ft	
V ₆ " casing = 1.47 gal/ft	
CHEMICAL DATA: Meter Brand/Number V8 casing = 2.61 gal/ft	
Calibration: 4.0 7.0 10.0	
Measured: SC/μmhos pH T°C Time Volume Evacuated (gal.)	
1.14 C	
SAMPLE: Color Cight Grey Oder Work	—
Description of matter in sample: Suspended Silt particles Sampling Method: Sampled from port on ded. PUC blr.	
Sampling Method: Sampled from port on ded. the bir. Sample Port: Rate gpm Totalizer gal.	
Time Totalizer	
5	
# of Sample Cont. Vol2 Fil3 Ref4 Preservative Analytic Turn5 LA	В
Cont. ID Type ¹ (specify) Method	
2 082-14 W/CV 40ml N Y HCL EPA 8015/602 N SPA	
2 00 Z - 14 VO CV TOMA IV T	

Sample Type Codes: W = Water, S = Soil, Describe Other
 Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
 Cap Codes: PT = Plastic, Teflon lined;
 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
 ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

Well Name MW-15 Date 8-13.92 Time of Sampling 14:38
Well Name MW-15 Date 8-(3.72 Time of Sampling 17.38 Job Name CHEV. HAYWARD Job Number 4-310-91 Initials BB
Sample Point Description (M = Monitoring Well)
WELL DATA: Depth to Water 16.72 ft (static pumping) Depth to Product ft.
Product Thickness Well Depth 22 ft (spec) Well Depth ft(sounded) Well Diameter 2 in Initial Height of Water in Casing 5.28 ft. = volume 0.8 gal.
_ 0
W THE
EVACUATION METHOD: Pump # and type Hose # and type
Bailer# and type 1.75" x5' PVC Dedicated (Y/N)
Other Hb26
Evacuation Time: Stop 14:36
Start 4:32 Formulas/Conversions
Total Evacation Time $\frac{4 min}{c}$ c $r = well radius in ft.$
Total Evacuated Prior to Sampling 2.5 gal. h = ht of water col in ft.
Evacuation Rate 0.62 gal. per minute vol. in cyl. = $\pi r^2 h$
Depth to Water during Evacuation ft. time 7.48 gal/ft ³
Depth to Water at Sampling ft time V_2 " casing = 0.163 gal/ft
Evacuated Dry? NO After gal. Time V ₃ " casing = 0.367 gal/ft
80% Recovery = V_4 casing = 0.653 gal/ft
% Recovery at Sample Time Time V _{4.5} " casing = 0.826 gal/ft
V_6 " casing = 1.47 gal/ft
CHEMICAL DATA: Meter Brand/Number
Calibration' 4.0 7.0 10.0
Measured: SC/μmhos pH T°G Time Volume Evacuated (gal.)
Measured: SC/μmhos pH T°G Time Volume Evacuated (gal.)
Measured: SC/μmhos pH T°G Time Volume Evacuated (gal.) SAMPLE: Color Slightly Cloudy Grey Odor Faint
SAMPLE: Color Slightly Cloudy Grey Odor faint Description of matter in sample: Suspended Silt Particles Sampling Method: Sampled from part on ded, PVC bailer.
SAMPLE: Color Slightly Cloudy Grey Odor faint Description of matter in sample: Suspended Silt particles Sampling Method: Sampled from pert on ded. PVC bailey. Sample Port: Rategpm Totalizer gal.
Measured: SC/μmhos pH T°G Time Volume Evacuated (gal.) SAMPLE: Color Slightly Cloudy Grey Odor faint Description of matter in sample: Svspended Silt Particles Sampling Method: Sampled from port on ded, PVC bailey.
SAMPLE: Color Slightly Cloydy Grey Odor faint Description of matter in sample: Syspended Silt Particles Sampling Method: Sampled from part on ded. PVC bailey. Sample Port: Rate _ gpm Totalizer gal.
Measured: SC/μmhos pH T°C time Volume Evacuated (gal.) SAMPLE: Color Slightly (loydy Grey Odor Faint Description of matter in sample: 5 v s rended 5 i l + particles Sampling Method: Sampled from pert on ded. PVC bailes. Sample Port: Rate gal. # of Sample Cont. Vol² Fil³ Ref Preservative Analytic Turn⁵ LAB
SAMPLE: Color Slightly Cloudy Gray Odor Faint Description of matter in sample: Suspended silt Particles Sampling Method: Sampled from port on ded. Puc bailey. Sample Port: Rate — gpm Totalizer — gal. # of Sample Cont. Vol2 Fil3 Ref Preservative Analytic Turn5 LAB Cont. ID Type1 (specify) Method
Measured: SC/μmhos pH T°C time Volume Evacuated (gal.) SAMPLE: Color Slightly (loydy Grey Odor Faint Description of matter in sample: 5 v s rended 5 i l + particles Sampling Method: Sampled from pert on ded. PVC bailes. Sample Port: Rate gal. # of Sample Cont. Vol² Fil³ Ref Preservative Analytic Turn⁵ LAB
SAMPLE: Color Slightly Cloudy Gray Odor Faint Description of matter in sample: Suspended silt Particles Sampling Method: Sampled from port on ded. Puc bailey. Sample Port: Rate — gpm Totalizer — gal. # of Sample Cont. Vol2 Fil3 Ref Preservative Analytic Turn5 LAB Cont. ID Type1 (specify) Method
SAMPLE: Color Slightly Cloudy Gray Odor Faint Description of matter in sample: Suspended silt Particles Sampling Method: Sampled from port on ded. Puc bailey. Sample Port: Rate — gpm Totalizer — gal. # of Sample Cont. Vol2 Fil3 Ref Preservative Analytic Turn5 LAB Cont. ID Type1 (specify) Method
SAMPLE: Color Slightly Cloudy Gray Odor Faint Description of matter in sample: Suspended silt Particles Sampling Method: Sampled from port on ded. Puc bailey. Sample Port: Rate — gpm Totalizer — gal. # of Sample Cont. Vol2 Fil3 Ref Preservative Analytic Turn5 LAB Cont. ID Type1 (specify) Method
SAMPLE: Color Slightly Cloudy Gray Odor Faint Description of matter in sample: Suspended silt Particles Sampling Method: Sampled from port on ded. Puc bailey. Sample Port: Rate — gpm Totalizer — gal. # of Sample Cont. Vol2 Fil3 Ref Preservative Analytic Turn5 LAB Cont. ID Type1 (specify) Method
SAMPLE: Color Slightly Cloudy Gray Odor Faint Description of matter in sample: Suspended silt Particles Sampling Method: Sampled from port on ded. Puc bailey. Sample Port: Rate — gpm Totalizer — gal. # of Sample Cont. Vol2 Fil3 Ref Preservative Analytic Turn5 LAB Cont. ID Type1 (specify) Method
SAMPLE: Color Slightly Cloudy Gray Odor Faint Description of matter in sample: Suspended silt Particles Sampling Method: Sampled from port on ded. Puc bailey. Sample Port: Rate — gpm Totalizer — gal. # of Sample Cont. Vol2 Fil3 Ref Preservative Analytic Turn5 LAB Cont. ID Type1 (specify) Method

¹ Sample Type Codes: W = Water, S = Soil, Describe Other
Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
Cap Codes: PT = Plastic, Teflon lined;
2 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
5 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

WATER SAMPLING DATA WALL Name MW-16 Date 8-13-92	15:01
Well Name 144 77	Inde of Sampling
Job Name CHEV. HAYWARD Job Number	1-310-91 Initials <u>2313</u>
Sample Point Description	(M = Monitoring Well)
Location CUL-DE-SAC, REX RD.	
WELL DATA: Depth to Water 20.77 ft (static pun	nping) Depth to Product ft.
Product Thickness Well Depth 40 ft (spec)	Well Depth ft(sounded) Well Diameter in
Initial Height of Water in Casing _	$[0, 2]$ [t. = volume $\underline{}$ gal.
3 Casing Volumes to be Eve	acuated. Total to be evacuated 9.3 gal.
EVACUATION METHOD: Pump # and type	<u>-</u>
Bailer# and type 1.25"x5"PVC Dec	licated Y (Y/N)
Other	
Time Star 15'00	
Evacuation Time: Stop 15:00	Formulas/Conversions
Start 14:47	r = well radius in ft.
Total Evacation Time 15min	$\mathcal{G}^{(i)}$
Total Evacuated Prior to Sampling	
	gal. per minute vol. in cyl. = $\pi r^2 h$
Depth to Water during Evacuation ft	time 7.48 gal/ft ³
Depth to Water at Samplingft	time V_2 " casing = 0.163 gal/ft
Evacuated Dry? No After gal. Time	
80% Recovery =	V_4 " casing = 0.653 gal/ft
% Recovery at Sample Time Time	V _{4.5} " casing = 0.826 gal/ft
	V6" casing = 1.47 gal/ft
CHEMICAL DATA: Meter Brand/Number	V8 casing = 2.61 gal/ft
Calibration: 4.0 7.0	10.0
Measured: SC/\mumbos pH T°C/	T/me Volume Evacuated (gal.)
integration.	
——————————————————————————————————————	
	
— L-V-7	/
-	
Child Child Ga	odor Moderate
SAMPLE: Color Stightly Charles Ore	It particles
Description of matter in sample: Suspended si Sampling Method: Sampled from port on	ded. Prc baile.
Sample Port: Rategpm Totalizer	gal.
Time	
	Preservative Analytic Turn ⁵ LAB
# of Sample Cont. Vol ² Fil ³ Ref ⁴	
Cont. ID Type ¹	(=F-12)
2 082-16 WKV 40ml N Y	HCL EPA 8015/602 N SPA
	· · · · · · · · · · · · · · · · · · ·
	•

¹ Sample Type Codes: W = Water, S = Soil, Describe Other
Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
Cap Codes: PT = Plastic, Teflon lined;
2 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
5 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

WATER SAMPLI		Q-12.	.97	of Sampling <u>/3</u>	. # 3
Well Name MW	-17 Date		Time	of Sampling /3	70 2
		Number 4-		Initials	TC
Sample Point Des				(M =	= Monitoring Well)
Location <u>COKNE</u>	R OF MAIN AND	SUNSET		75 11 1 15	
WELL DATA:	Depth to Water <u>27</u>	30ft (statis, p	umping)	Depth to Pr	oduct it.
Product Thickness	ss Well Dept	h <u>38.5</u> ft (spec) Well Depth 2	<i>3.39</i> ft(sounded) We	II Diameter <u>in</u>
	Initial Height of V	later in Casing	10.09	_ft. = volume	// gal.
	ろ Casing	Volumes to be I	Evacuated.	Total to be evacua	ted 7.692 gal.
EVACUATION N	METHOD:	Pump # and ty	pe	Hose # and type	
· · · · · · · · · · · · · · · · · · ·	Bailer# and type _	13" x5' D	edicated	/(Y/N)	
V	Other disposat		for sampli	<u> </u>	with total
Evacuation Time	: Stop	2142 13442	Se PINU	ing was do	nc w
	Start 1/:25 12	125 13:32	Total	•	account
	Total Evacation T	ime 47n/n		r = well radio	is in st. wisdome @
	Total Evacuated P			$_{-}$ gal. $h = ht of was$	ter col in ft. Same
	Evacuation Rate_	.51	gal, per n		$\pi r^2 h$ time.
Depth to Water d	uring Evacuation _	ft	time	7.48 gal/ft ³	
Depth to Water a	t Sampling	ft	time	V ₂ " casing =	0.163 gal/ft
Evacuated Dry?	Nd After	gal. Time_		V_3 " casing =	0.367 gal/ft
80% Recovery =	·	-		V ₄ " casing =	0.653 gal/ft
% Recovery at Sa	mple Time	Time 		V _{4.5} " casing	= 0.826 gal/ft
				V6" casing =	1.47 gal/ft
CHEMICAL DAT	<u>[A: Meter Brand/Nu</u>	ımber		V8 casing =	2.61 gal/ft
Calibration:	4.0	7.0	10,0		
	SC/µmhos pI		7/ime	Volume Evacuate	ed (gal.)
		^	_/		The state of the s
		~ / \	1 ++ _		
		777			
					
		 			
SAMPLE: Color	None		Od	for None	
Description of m	atter in sample: 61	4 5/16	1 1 1		
Sampling Method	: foured from	ausposa	sk bailer		
Sample Port: Ra	te <u> </u>	er <u> </u>	gai.		
111	IIIO	·			
# of Sample	Cont. Vol ²	Fil ³ Ref ⁴	Preservative	Analytic	Turn ⁵ LAB
Cont. ID	Type ¹		(specify)	Method	/
2 082-17	1 W/W 400	nl No Yes	HCI	EPA 8015/8020	N SAL
	W/00 1/C/	140 10			
		<u> </u>			
	<u> </u>				

¹ Sample Type Codes: W = Water, S = Soil, Describe Other
Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
Cap Codes: PT = Plastic, Teflon lined;
2 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
5 Turnaround {N = Normal, W = 1 week, R = 24 hour, HOLD (spell)}
ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

WATER SAMPLING DATA Well Name TRAVEL BUANKS Date 8-13-92 Time of Sampling 0900
Well Name TRAVEL BUANKS Date O 10 12 Time of Sampling O 10
Job Name CHGV. HAYWARD Job Number 4-310-91 Initials BB Sample Roint Description (M = Monitoring Well)
Sample Point Description
WELL DATA: Depth to Water (static pumping) Depth to Product ft
Product Thickness Well Depth ft (spec) Well Depth ft(sounded) Well Diameter in
Initial Height of Water in Casingft. = volumegal
Casing Volumes to be Evacuated. Total to be evacuated gal
EVACUATION METHOD: Pump # and type Hose # and type
Bailer# and type Dedicated(Y/N)
Other
Evacuation Time: Stop
Start Formulas/Conversions
Total Evacation Time r = well radius in st.
Total Evacuated Prior to Sampling gal. h = ht of water col in ft.
Evacuation Rate gal. per minute vol. in cyl. = $\pi r^2 h$
Depth to Water during Evacuationfttime 7.48 gal/ft ³
Depth to Water at Sampling tt time v ₂ casing = 0.103 gai/tt
Evacuated Dry? After gal. Time V_3 " casing = 0.367 gal/it
80% Recovery = V_4 " casing = 0.653 gal/it
% Recovery at Sample Time V _{4.5} " casing = 0.826 gal/ft
V_6 " casing = 1.47 gal/ft
CHEMICAL DATA: Meter Brand/Number
Calibration: 4.0 7.0 10.0
Measured: SC/µmhos pH T°C Time Volume Evacuated (gal.)
SAMPLE: Color Clear Odor Nove
Description of matter in sample: None
Sampling Method: prepared by Clayton labs. Sample Port: Rate gpm Totalizer gal.
Sample Port: Rategpm Totalizer gal. Time
of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LAB
Cont. ID Type ¹ (specify) Method
2 082-EB/18W/CV HOND N Y HCL EPA 8015/602 N SPA
<u> </u>

Sample Type Codes: W = Water, S = Soil, Describe Other
 Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
 Cap Codes: PT = Plastic, Teflon lined;
 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
 ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

ATTACHMENT B ANALYTIC REPORT AND CHAIN-OF-CUSTODY FORMS

Superior Precision Analytical, Inc.

1555 Burke, Unit L • San Francisco, California 94124 • (415) 647-2081 / fax (415) 821-7123

Weiss Associates Attn: MARIETTE SHIN

Project 4-310-01 Reported 08/24/92

TOTAL PETROLEUM HYDROCARBON	TOTAL	I'ROLEUM HYDROCARRON	12
-----------------------------	-------	----------------------	----

Lab #	Sample	Identifica	ntion	Sampled	Analyzed	Matrix
13380- 1	082-09			08/13/92	09/21/02	Mada
13380- 2	082-11			08/13/92	, ,	
13380- 3	082-13				, ,	
13380- 4				08/13/92	08/24/92	Water
·- · •	082-14			08/13/92	08/24/92	Water
13380- 5	082-15			08/13/92	08/24/92	
13380~ 6	082-16			08/13/92		
13380- 7	082-17				08/21/92	
				08/13/92	08/21/92	Water
13380- 8	TB-LB			08/13/92	08/21/92	
		RESUL	TS OF ANAL	YSIS		
Laboratory	Number:		13380- 2		13380- 4 13	3380- 5
Gasoline:		45000	77000	84000	370	F10

Gasoline: Benzene: Toluene: Ethyl Benzene: Xylenes:	45000 1300 3000 1500 7100	77000 18000 14000 1900 10000	84000 7400 11000 2600 13000	370 10 1.2 ND<0.5 0.9	510 55 ND<0.5 35 2.8
Concentration:	ug/L	ug/L	ug/L	ug/L	ug/L

Laboratory Number: 13380- 6 13380- 7 13380- 8

Gasoline: Benzene: Toluene: Ethyl Benzene: Xylenes:	17000	ND<50	ND<50
	4500	ND<0.5	ND<0.5
	240	ND<0.5	ND<0.5
	860	ND<0.5	ND<0.5
	530	ND<0.5	ND<0.5
Concentration:	ug/L	ug/L	uα/T

1555 Burke, Unit I • San Francisco, California 94124 • (415) 647-2081 / fax (415) 821-7123

CERTIFICATE OF ANALYSIS

ANALYSIS FOR TOTAL PETROLEUM HYDROCARBONS

Page 2 of 2 QA/QC INFORMATION SET: 13380

NA = ANALYSIS NOT REQUESTED

ND = ANALYSIS NOT DETECTED ABOVE QUANTITATION LIMIT

ug/L = parts per billion (ppb)

OIL AND GREASE ANALYSIS By Standard Methods Method 5520F: Minimum Detection Limit in Water: 5000ug/L

Modified EPA SW-846 Method 8015 for Extractable Hydrocarbons: Minimum Quantitation Limit for Diesel in Water: 50ug/L

EPA SW-846 Method 8015/5030 Total Purgable Petroleum Hydrocarbons: Minimum Quantitation Limit for Gasoline in Water: 50ug/L

EPA SW-846 Method 8020/BTXE
Minimum Quantitation Limit in Water: 0.5ug/L

ANALYTE	MS/MSD RECOVERY	RPD	CONTROL LIMIT
**			
Gasoline:	90/99	10%	76-111
Benzene:	95/98	3%	78-110
Toluene:	91/95	48	78-111
Ethyl Benzene:	89/93	4 %	78-118
Xylenes:	92/95	3%	73-113

Richard Srna, Ph.D.

Laboratory Director

1320-Chain-ot-Custoay-Record Chevron Contact (Name) JEFF ZINDEL Chevron Facility Number 9-0260 Focility Address 21995 FOOTHILL BLVD (Phone) 510 -842-8896 HAYWARD Laboratory Name SUPERIUR PRECISION ANALYTICAL Chevron U.S.A. Inc. Consultant Project, Number 4-310-01 Laboratory Release Number 6999320

Samples Collected by (Name) BRIAN BUSCH | Paul CARDIEI

Collection Date 8-13.92 P.O. BOX 5004 Consultant Name WEISS ASSOCIATES San Ramon, CA 94583 Address 5500 SHELLMOUND ST EMERYVILLE FAX (415)842-9591 Project Contact (Name) MARIETTE SHIN Brian Busil (Phone) 510-547-5420 (Fox Number) 510-547-5043 Signature ____ Analyses To Be Performed Air Charcoal Containers BTEX + TPH CAS (8020 + 8015) Non Chlorinated (8020) ti g Chlorinated HC (8010) Oil and Grease (5520) Metrix S = Soil W = Weter 111 ဖပဓ Remarks BB YES 1)0 NOT BILL 6:50 082-09 082-11 1500 Х ANALYSIS OF 082-13 χ TB/LB SAMPLES 082-14 15 13 082-15 14:38 182-16 15:01 X 13:52 082-17 X 0900 X 082-21TB/13/V Date/Time 8/17/92 Organization Welcas Assac Turn Around Time (Circle Choice) Dote/Time 8/13/92 Received By (Signature) Organization Relingationed By (Signature) RECEIVED WETSS Brian Busch Peccelved By (Signature) 09100 24 Hra. FROM SECURE 48 Hrs. Date/Time Organization accept Date/Time 8/17/92 10:30 Organization Relinquished By (Signature) 5 Days AREA Relinquished By (Signature) assoc Received For Laboratory By (Signature) Date/Time Date/Time Organization शागिक्र ॥:33 As Contracted

STORED WERNIGHT IN A LOCKED, SECURE PLACE.