
Franklin J. Goldman, ChG.

Environmental and Hydrogeological Consulting

PO BOX 2217, Guerneville, CA 95446

Phone: (707) 869-0850 Frankscable@attbi.com

Alameda, CA 94502-9335

November 15, 2002

Barney M. Chan Hazardous Materials Specialist Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250

Telephone: (510) 567-6765

FAX: (510) 337-9335

SUBJECT:

GROUNDWATER MONITORING OF HYDROCARBONS RELATED TO THE FORMER UNDERGROUND STORAGE TANKS AT THE FORMER BILL CHUN SERVICE STATION

@ 2301 SANTA CLARA AVENUE, ALAMEDA, CA 94501

10382

Dear Barney:

Enclosed are the details of a subsurface hydrogeologic investigation for the above designated site as required according to the approved workplan. Three (3) groundwater extraction wells were installed on October 24 & 25, 2002 onsite to be utilized for groundwater pumping and vapor extraction pilot testing. On October 28, 2002 the wells were developed by Blaine Tech Services and the wells sampled on October 31, 2002.

Gasoline contamination was identified in soil and groundwater at the three extraction well locations. Groundwater monitoring well MW-11 was also sampled as it was inadvertently left out of the sampling suite during the past two groundwater monitoring sampling events. Data evaluation reported herein reveals no significant changes in the distribution of the dissolved contaminant plumes as reported in the past two groundwater monitoring events and therefore no change in the placement and location of the three extraction wells to be utilized for pilot testing was deemed applicable on this basis.

Sincerely,

Franklin J. Goldman

Certified Hydrogeologist No. 466

CERTIFIED HYDROGEOLOGIST

HO 466

Alameda County

NOV 2 2 2002

Environmental Health

SUBSURFACE INVESTIGATION

SITE LOCATION AND DESCRIPTION

The site is located in a commercial area on the Island of Alameda. The site is bordered on the southeast by a flower shop which has residents living on the second story. A one story office building is located to the north and Oak and Santa Clara Avenues border the remainder of the site.

WORK ACTIVITIES COMPLETED, CORRECTIONS TO GROUNDWATER MONITORING REPORTING AND CHANGES TO THE WORKPLAN

Potential groundwater extraction well locations were marked at the site in white paint. The soil boring locations were marked for Underground Service Alert which was contacted prior to drilling. Each soil boring location was screened with a magnetometer and was then hand augered to a depth of 5 feet bgs prior to excavation with the hollow-stem auger drill rig to avoid damage to underground piping and utility lines.

On October 24, 2002, during the field investigation, Eva Chu of Alameda County Health identified MW-11 out in the field on the opposite side of the Flower Shop and requested that it be sampled and a lab analysis be performed for gasoline contaminants. The lab results for the groundwater grab sample collected from MW-11 revealed dissolved TPHg (59,000 ppb) and benzene (5,140 ppb) concentrations which were significantly less than what had been reported for the past two groundwater monitoring events [(July 04, 2002 - TPHg (140,000 ppb) and benzene (15,000 ppb) & September 07, 2000 - TPHg (220,000 ppb) and benzene (32,000 ppb)]. This indicates that the dissolved plume has not migrated as far down gradient as was displayed on the concentration gradient maps submitted for the past two groundwater monitoring events. Nothing has changed, however, with respect to the fact that the dissolved plume has migrated beneath the flower shop and that there is no apparent feasible location for placement of an extraction well within the flower shop building or between the flower shop and the greenhouse further to the east. Remediation efforts must still be focused onsite, as originally proposed, where the most effective remediation and practical cleanup can be attained in the least amount of time. During Eva Chu's field visit, a new location for EW-14 was discussed and a change in location was made based upon her advice as discussed below. On the next day, a discussion with Barney Chan of Alameda County in the field revealed that the proposed analyses for soil physical characteristics were perhaps redundant considering that fact that the soil vapor and groundwater pumping tests will provide more representative data between soil borings and wells than a few isolated soil samples collected from the well bores. Furthermore, since most of the soil samples were collected from non-cohesive sandy soils, which required a sand catcher, to retain the samples, the soil samples designated for physical lab testing could be too disturbed to provide useful data for bulk density testing and the gasoline content would skew the results for the fraction of organic carbon content testing (i.e. an attempt was made to chose soil samples in less contaminated locations, however, the final lab results showed gasoline contamination in soil which were too high for foc analysis).

Three (3) groundwater extraction wells EW-12, EW-13, and EW-14 were installed on October 24 & 25, 2002 to 25 feet bgs (See Figure 1 for extraction well locations). EW-12 was placed in the same location as recommended in the workplan, immediately adjacent to SV-1, which was not shown on figures 3, 4, and 9 of the June 1998 ENSR Corrective Action Evaluation and Feasibility Study. There was no indication in the field that SV-1 was anything other than a monitoring well as there was no extraction equipment in the well. Since identification of SV-1 was not readily apparent in the field, SV-1 had been sampled and reported in the past two groundwater monitoring reports as groundwater monitoring well MW-2; MW-2 was sampled and reported as MW-7; MW-7 was sampled and reported as MW-11; and MW-11 was never sampled and reported. As a result, groundwater monitoring data for the past two groundwater monitoring events were re-evaluated (See Attachment A for revised groundwater monitoring tables and map comparisons of last quarters plume and groundwater

gradient distributions). In spite of the discrepancy, the reported distribution of the dissolved plumes are essentially the same as the reevaluated distribution due to the very close proximity of the monitoring wells to one another on site and the fact that the wells were mislabeled in the predominant downgradient direction. Since the pilot extraction well testing designs and configuration as well as the remediation engineering designs were based upon a plume centered onsite, which were designed to capture subsurface contamination where accessible, and the recent re-evaluation of the data for the past two groundwater monitoring events has demonstrated that the majority of the mass of the gasoline plume is still within the reach of the proposed system, no change to the field pilot testing or remediation design is considered applicable at this time. EW-13 was placed in the northeast corner of the site as proposed in the workplan. EW-14 was placed a little further to the north, in the most down gradient corner of the former UST excavation so that the well would be more effectively used as an interim remediation measure after the groundwater pump testing is completed. In addition, the extraction well location for EW-14 will provide better field data regarding the influence that the UST backfill material will have on the effectiveness of a future groundwater and vapor extraction pumping system.

SOIL SAMPLING PROCEDURES FOR EXTRACTION WELL EXCAVATIONS AND LAB RESULTS

Three (3) soil borings were drilled by Clearheart Drilling, a C-57 drilling licensed driller. All borehole logging was performed by a State Certified Hydrogeologist who kept a detailed hydrostratigraphic log of each borehole, noting lithologic changes, hydrogeological characteristics, sample locations, and well construction. Soil sampling was performed on the day of the subsurface investigation. Soil sampling was performed where appropriate in order of identify significant changes in soil hydrostratigraphy. The well excavations sampled at a minimum of every five (5) vertical feet. Most of the soils encountered to a depth of 25 feet bgs were predominantly comprised of non-cohesive medium sands (See Appendix A for Soil Boring Logs).

All soil borings were continuously cored to obtain a representative distribution of gasoline contaminants in soil. Soil samples were collected with a two (2) inch inner diameter, three (3) foot long, split spoon sampler depending upon the soil stratigraphy and contaminants encountered. The soil samples were obtained by the compressive force of a 140 lb hammer dropped from a height of 18 inches. The soil samples were be extruded into six (6)-inch long steel sample liners. Soil samples were chosen for lab analyses based upon obvious olfactory and visual evidence of contamination, by photoionization detector (PID) screening and/or at significant changes in hydrostratigraphic horizons. Non-detect levels of benzene were verified in soil at a depth of 25 feet bgs in all three soil boring excavations identified in soil (See table I for lab results and Appendix B for Laboratory Data Sheets).

Each soil sample collected was covered at each end of the metal cylinder with Teflon tape, plastic end caps, and sealed with non-VOC "duct tape" to adhere the caps to the liners at each end, to hermetically seal the samples. The soil samples were labeled with a non-toxic ink field marker as to the depth and location the sample was collected, the sample number, and the project name and inserted into a plastic Zip-Lock bag and then placed into an ice chest for transport back to the laboratory. The chain-of-custody was similarly designated and included the date and time the sample was collected as well as the depth interval. All soil samples were analyzed for TPH(g)/BTEX by EPA Method 8015 modified/8020.

The sampler was decontaminated before and after each use by rinsing with an Alconox solution wash and fresh tap water rinse. All rinseate water, purge water, and soil waste were stored in 55 gallon DOT approved drums. The drums have been stored onsite until authorization for transport to legal point of disposal is made.

Hydrocarbon contaminants were identified in soil in all three extractions well excavations (See table I for lab results and Appendix B for Laboratory Data Sheets).

WELL CONSTRUCTION

The three (3) wells were constructed with a 0.02 inch PVC schedule 40 slotted casing from 25 to 7 feet bgs and schedule 40, 2 inch diameter PVC blank casing from 7 to approximately ½ foot bgs. No. 212 silica sand pack was placed in the annular space between the screened casing and the open borehole to one foot above the top of the screen. The bentonite seal was three feet thick and was placed on top of the sand pack in the annular space from 6 to 3 feet bgs. A Type II Cement bentonite grout was then tremmied from the bottom up to within approximately 1 foot from the top of the surface cover. A continuous concrete pour was then be placed on top of the grout to the surface where it will be finished with a 3 inch high concrete apron around a Boart Longyear well box and locking well cap (See Figure 2 for extraction well construction detail).

WELL DEVELOPMENT, PURGING, SAMPLING ACTIVITIES AND LAB RESULTS

On October 28, 2002 the wells were swabbed, bailed and pumped by a qualified field technician from Blaine Tech Services until the water was relatively clear. The resulting turbidity was relatively low. On October 20, 2002 the wells were purged and sampled according to the following procedures.

On October 31, 2002 a Slope Indicator water level meter was used to measure the depth to groundwater in the groundwater extraction wells prior to well development and sampling. The measurements were read to the nearest 100th of an inch from the top of casing.

The three wells were then purged and developed to obtain a representative groundwater samples. Each well purged of approximately three (3) borehole volumes allowing the water level to recover to at least 80% of the original, static level. Temperature, electrical conductivity, and pH were monitored during each purging, so that the three parameters were within a 10% error difference from one another, over a minimum of three consecutive readings. The data was used to verify that water had been removed from well casing storage and that the well water was representative of the aquifer, prior to sampling. Low turbidity was observed in the wells after well development and purging (See Appendix D for Well Development Logs).

For reference purposes, EW-12, EW-13, and EW-14 were labeled in the field by Clearheart drilling as EW-1, EW-3, and EW-2, respectively. The groundwater flow direction is to the east at 0.004 ft/ft. (See Figure 1 for gradient and water table elevations and Appendix C for Well Survey).

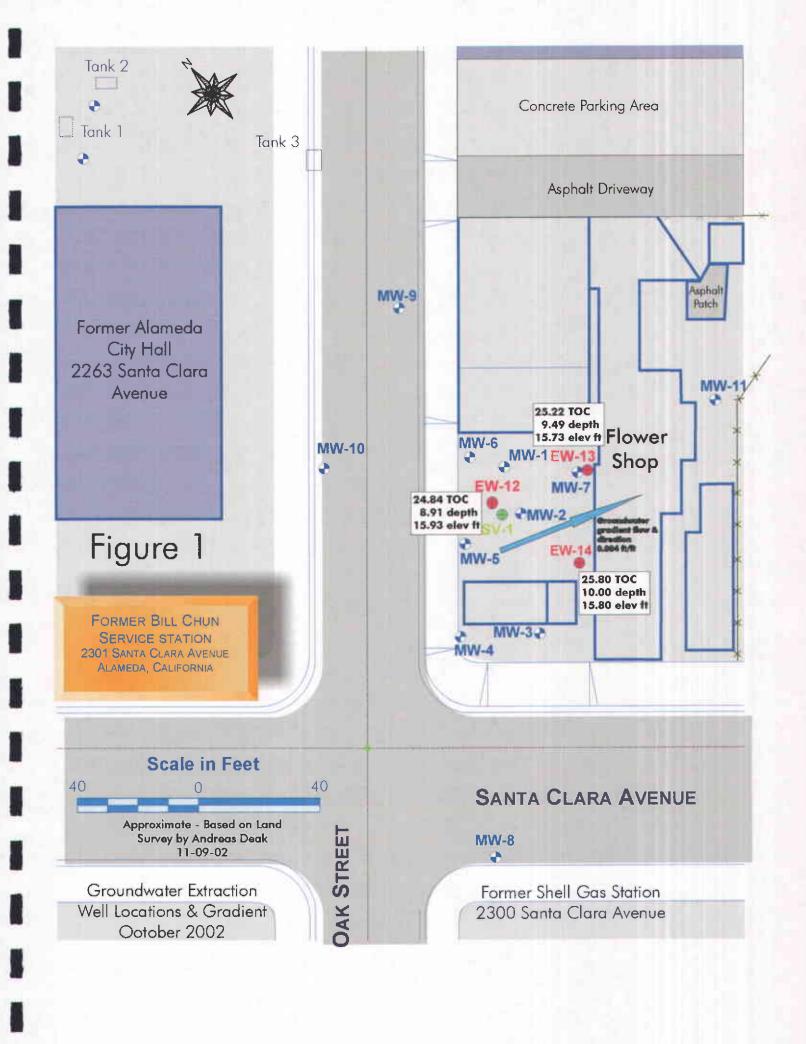
Water samples were collected by lowering a plastic disposable check valve bailor down the center of each PVC well casing after the static water level had recovered. The bailor was lowered to the bottom of the well casing and pulled to the surface to be decanted from the bottom of the bailor by temporarily unplugging the check valve until water flowed freely into the glass sample container. Water samples were contained in 40-milliliter VOA vials for TPH-g, MTBE, BTEX, oxygenates, and lead scavenger analyses. The samples were labeled and stored on ice at 4 degrees centigrade until delivered, under chain-of-custody procedures, to State-certified analytical laboratory. All samples were analyzed by appropriate and applicable EPA test methods.

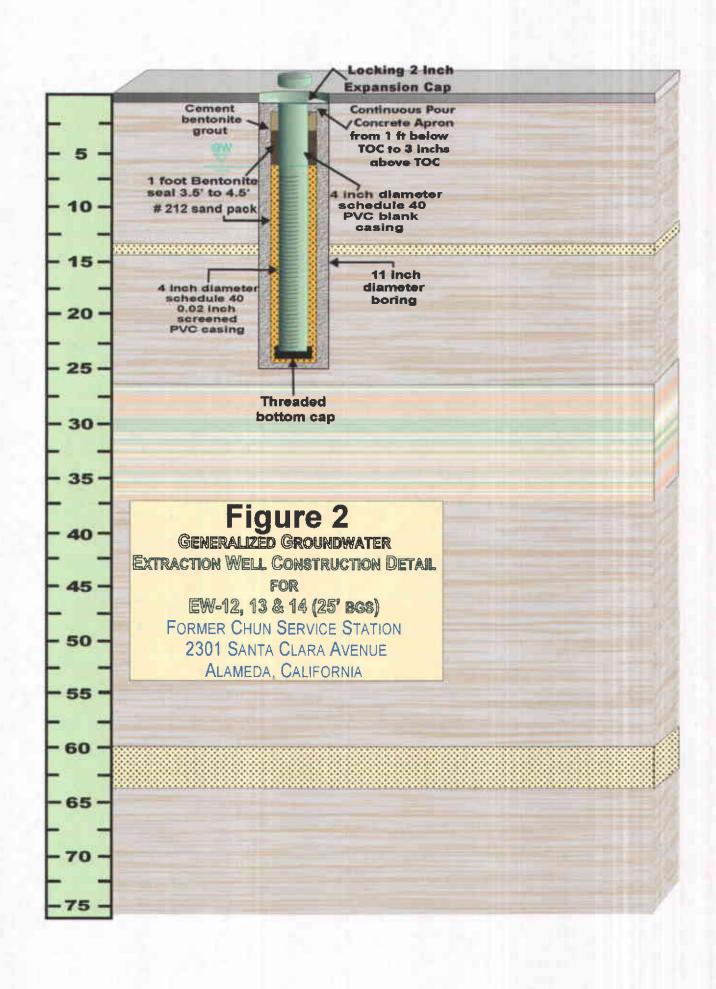
Hydrocarbon contaminants were identified in groundwater in all three extraction wells and in groundwater monitoring well MW-11 (See Table 1 and Appendix B for Laboratory Data Sheets). TPHg and BTEX was identified in all wells sampled. Low levels of TBA were identified in EW-13 & 14. Low levels of MTBE were identified in MW-11, and EW-13 & 14. Di-Isopropyl ether was identified in EW-14. EDB was identified in MW-11 and EW-14.1,2 DCA was identified in all wells.

CONCLUSIONS

Most of the contaminant hydrocarbon mass appears to be onsite, however, some of the dissolved plume has migrated beneath the Flower Shop and as far northeast as groundwater monitoring well MW-11. The soils encountered beneath the site appear to be sandier than was anticipated and may be more conducive to remediation efforts as well. Although low levels of oxygenates and lead scavengers were identified in groundwater the concentrations do not appear to be significant enough to warrant any alterations to the field pilot testing of the remediation plan at this time.

RECOMMENDATIONS


Groundwater sampling events should be performed immediately before and after the groundwater pumping and vapor pilot tests are completed in order to make a comparison as to the effectiveness of short term remediation activities in order to calibrate the remediation system. In addition, a comparison should be made between hydrocarbons identified in soil onsite during the past soil investigations and the soil lab results from samples obtained from the extraction well excavations. Also, a rose diagram should be developed for all groundwater monitoring events performed in the past; although it is readily apparent, based upon consistent plume distributions that the predominant groundwater gradient is spreading the plume to the east beneath the Flower Shop. It is not advisable to perform groundwater extraction at, or in the vicinity of, MW-11 at this time, as this may draw the dissolved plume underneath the building; perhaps inducing a greater health threat.


LIMITATIONS

This report has been prepared in accordance with generally accepted environmental, geological and engineering practices. No warranty, either expressed or implied, is made as to the professional advice presented herein. The analyses, conclusions and recommendations contained in this report are based upon site conditions as they existed at the time of the investigation and they are subject to change. The conclusions presented in this report are professional opinions based solely upon visual observations made within individual soil excavations and of the site and vicinity as well as on interpretations of available information as designated in this report. Franklin J. Goldman, maintains that the limited scope of services performed in the execution of this investigation may not be sufficient to satisfy the needs, and/or requirements of all regulatory agencies or other users. Any use or reuse of this document, its findings, its conclusions and/or recommendations presented herein, is done so at the sole risk of the said user.

Sample	Date		TPH(g)⁺			Benzene Tolu		uene	Ethyl- benzene	Xylenes
MW-11	10-24-0	2	59,000		5,14	40	5,	940	1,640	9,230
EW-12	10-31-0	2	5,840 109,200			.7	3	58	210	96.2 8,228
EW-13	10-31-0	2				20	13	,440	1,908	
EW-14	10-31-0	2	101,880		7,3	60	13	,160	1,360	7,200
Sample	Date	TBA	МТВЕ		opropyl ther	tert E	-	TAME	EDB	1,2 DCA
MW-11	10-24-02	ND	2.6	2.6		ND		ND	5.8	10.7
EW-12	10-31-02	ND	ND		ND	N	D	ND	ND	1.48
EW-13	10-31-02	50.8	12.2		ND		ND N		ND	14.7
EW-14	10-31-02	22.9 Hydrocarb	8.6 ons in Soil		.63 for Sam	N ples co		ND I for Chu	1.86 in	34.9
Samp	le	Date	TPH	(g) ⁺	Benz	ene	Tol	uene	Ethyl- benzene	Xylenes
W-12 5 -	5 1/2	10-24-02	2 0.0	06	NI	0	ı	ND	ND	0.009
W-12 10	- 10 1/2	10-24-02	2 0.6	16	N		0	.05	ND	0.10
W-12 15	- 15 1/2	10-24-02	-02 ND		ND		ND		ND	ND

Sample	Date	TPH(g) ⁺	Benzene	Toluene	Ethyl- benzene	Xylenes
EW-12 5 - 5 ½	10-24-02	0.06	ND	ND	ND	0.009
EW-12 10 - 10 ½	10-24-02	0.616	ND	0.05	ND	0.10
EW-12 15 - 15 ½	10-24-02	ND	ND	ND	ND	ND
EW-12 20 - 20 ½	10-24-02	0.05	ND	ND	ND	ND
EW-12 24½ - 25	10-24-02	0.05	ND	ND	ND	0.009
Sample	Date	TPH(g)⁺	Benzene	Tolvene	Ethyl- benzene	Xylenes
EW-13 4 ½ - 5	10-24-02	8.7	ND	0.065	0.178	0.994
EW-13 10 - 10 ½	10-24-02	2,760	45.9	271	72.3	375
EW-13 15 - 15 ½	10-24-02	11.4	0.047	0.248	0.053	0.029
EW-13 19 ½ - 20	10-24-02	0.065	0.02	0.06	0.015	0.094
EW-13 24½ - 25	10-24-02	0.10	ND	0.01	ND	0.016
Sample	Date	TPH(g) ⁺	Benzene	Toluene	Ethyl- benzene	Xylenes
EW-14 4 ½ - 5	10-24-02	0.09	ND	0.008	ND	0.017
EW-14 9 - 9 ½	10-24-02	7.19	0.045	0.245	0.053	0.284
EW-14 14 ½ - 15	10-24-02	0.16	0.007	0.012	ND	0.017
EW-14 19 - 19 ½	10-24-02	ND	ND	ND	ND	0.007
EW-14 24½ - 25	10-24-02	ND	ND	ND	ND	ND

Appendix A
Soil Boring Logs

DEPTH TO GROUNDWATER: LITHOLOGIC DESCRIPTION	BORING DIAM			Page 2 of LOGGED BY: Frank Goldman						
LITHOLOGIC DESCRIPTION	DOIGITO DE G	METER:		DRILLING METHOD: HSA						
		SAMPLE	'THO'GE	DEPTH	WEEL.	ME TO THE	USCS			
Sitty Sand, med red bru, med, sl moist.	ddense,	-		1 -2 -						
				-3 -4-						
Silty sand, grn, med deuse, mi	ed, simois)	<u> </u>	EW-12 5-52 103944 5ppm	5 -6						
water @ Gt			5 ppm	8 - - 9 -						
Siltier w/depth, mod gas or very moist	Jon		10-10-10-10-10-10-10-10-10-10-10-10-10-1	-10- -11- -12- -13-						
mod gas odor, wet		>	Ew-12 11 5 An Oppn	 -15						
no odor			1132 pm Ew-12 20-2012 Oppm	-18- -19- -20-						
PROJECT ADDRESS:	NAME: Chu	n	Oppm The Clara		BORING DATE:	Eu G number	1-12 12.4			

DRILL COMPANY: Clear Heart	PLORATORY SURFACE ELL			IOGG	ED BY: F	Page rank Goldmo	
DEPTH TO GROUNDWATER:	BORING DIA				NG METHO		 -
LITHOLOGIC DESCRIPTION		SAMPLE	(Mologic	E B	WE SE	ME TON ONE OF THE	SXMBOLS
				-21- -22-			
			Ew-12	-23- -24-			
End@ 25'			1145 Oppn	25 -26			
End@ 25' 7-25' screen 1', sand 3' bent				-27- -28- -29-			
·				-30 -31-			
				-32 -33 -34-			
			•••	-35 -36-			
				-3 <i>7</i> - -38-			
				-39 -40-			
			·				
PROJECT ADDRESS:	230		ta Clara A CA	ve	BORING DATE:	number Eu 10/24/02	ナーレ -

DRILL COMPANY: Clear Heart	SURFACE ELI			LOGG	ED BY: F	Page rank Goldma	
DEPTH TO GROUNDWATER:	BORING DIA	METER:			NG METHO		
LITHOLOGIC DESCRIPTION		SAMPLE	Turbe Oec	DEPTH	WER	MERIC TON	USCS
		7/	EW-13 24=25 322	2] -22 -23 -24-			
End @ 25' Screen 7-25' Sand 6-25 Bend 3-6 Crout 1-3			Oppn	-26- -27- -28- -29- -30- -31- -32- -33-			
				-35 -36- -37- -38- -39- -40-		- 1	
PROJECT ADDRESS:	230		nta Clara A . CA	\ve	BORING DATE:	number Eu 10/24/92	서3

Alameda, CA

PROJECT NAME:

Chun

ADDRESS:

2301 Santa Clara Ave Alameda, CA BORING number 10/25/02

DATE: EW-14

Appendix B Laboratory Data Sheets

ENVIRONMENTAL LABORATORIES, Ltd

Client:

Franklin J. Goldman

PO Box 9390

Santa Rosa, CA95405

Ref.:

R7419_400 s

Method

5030 GCFID/

8020/8015M

Client Project ID:

Chun

Sampled: Received:

10/31/02 11/5/02

Matrix:

Water

Analyzed: 11/12/02

Reported: 11/12/02

Attention:Franklin J. Goldman

Units:

ug/L

Laboratory Results for TPH-G + BTEX Analysis

	Detection		Results	
Analyte	Limit		Sample ID	
	ug/L	EW-12	EW-13	EW-14
		7419-1	7419-2	7419-3
BTEX				
Benzene	0.5	75.7	9120	7360
Toluene	0.5	358	13440	13160
Ethylbenzen	0.5	210	1908	1360
total·Xylene	1.0	96.2	8228	7200
TPH-Gas	50	5840	109200	101880

ND:Not Detected

Delta Environmental Laboratories

Hosselin Khosh Khoo, Ph.D.

ENVIRONMENTAL LABORATORIES, Ltd

Client:

Franklin J. Goldman PO Box 9390 Santa Rosa, CA95405 Client Project ID:

Chun

Ref.:

Method Sampled:

Received: Matrix;

Analyzed: Reported; Units: QC Batch: R7419_oxyw 82608

10/31/02 11/5/02 Water 11/7/02

11/12/02 ug/L 110302

Attention:Franklin J. Goldman

Laboratory Results for Oxygenates & lead Excavengers Analysis

Detection		Results	į
Limit			
ug/L	EW-12	EW-14	
	7419-1	7419-2	7419-3
20	ND	50.8	22.9
	ND	12.2	8.60
0.5	ND	ND	1.63
0.5	ND	ND	ND
0.5	ND	ND	: ND
			:
0.5	םא		1.86
0.5	1.48	14.7	34.9
	20 0.5 0.5 0.5 0.5	20 ND 0.5 ND 0.5 ND 0.5 ND 0.5 ND 0.5 ND 0.5 ND	BW-12 EW-13 T419-2

ND:Not Detected

Delta Engironmental Laboratories

Hossein Khosh Khoo, Ph.D.

D-E-L-T-A

Project Name Chun Project Number		ng]			14	1/	J			bora	tory	Analy	sis P.	O. N	iO able i	ODY		ı	
EW-12 10	anta Cl la, CA	Time	TPH as Gasoline BD1.	TPH cs Diesel 8015	TPH-9/8TEX 8015/8020 8-4440E	BTEX & EPA 8020	Oil and Grease 5520	Valifile Organics (8010)	CAM Metals (17)	Base/Neu/Acids (Organic)			Bulk density, moisture, porosity	Di	AMPLE	Laborat Della Env 685 Stor Benicia. Phone: FAX: Phone Tur Rush 24 Repeat	ory Delivironment of Road. CA 945: (707) 747 (707) XXI maroun Hour 46 to: Fix Comm	ery Local ial Labo #11 53 -6081 (-XXX ad Time Thour s ink ents	A CONTRACTOR OF THE PROPERTY O
Frail Holm 14	Date USO2 Date	-4 6		Th		JP	Porce	nli	//- /-	 Tim 10:7 12:0	5 6,09	Metho	iners ad of : al Ship	ihis S Shipn omen	nent:	(KI8)9	145 vs 108 -c	295	

Cilent:

Franklin J. Goldman PO Box 9390

Santa Rosa, CA95405

Ref.:

R386_400 s

Method

5030 GCFiD/

8020/8015M

Client Project ID:

Chun

Sampled: 10/24/02

Received: 10/25/02

Matrix:

Water

Analyzed: 11/1/02

Reported: 11/4/02

Units:

mg/L

Attention: Franklin J. Goldman

Laboratory Results for TPH-G + BTEX Analysis

	Detection	Results				
Analyte	Limit	Sample ID				
	mg/L	MW-11				
		7386-6				
,						
BTEX						
Benzene	0.0005	5.14				
Toluene	0.0005	5.94				
Etnylbenzen	0.0005	1.64				
total-Xylene	0.001	9.23				
TPH-Gas	0.05	59				

ND:Not Detected

Delta Environmental Laboratories

ENVIRONMENTAL LABORATORIES, Ltd.

Client:

Frankiin J. Goldman PO Box 9390 Santa Posa, CA95405 Client Project (D:

Спип

Ref

87386_oxyw

Method Sampled 82608 10/34-02

Received Matrix 10, 25:02 Water

Analyzed Reported. Units 10 29/02 11 8/02

ug/L

QC Batch.

Attention:Franklin J. Goldman

Laboratory Results for Oxygenates & lead Excevengers Analysis

	Detection	Results
Analyte	Limit	Sample (D
	ug/L	
		WA-11
		:
ter-Butyl alcohol(t-Butanol)	20	ND
Methyr ter-butyl ether(MTBE)	0.5	2.5
Di-isapropyl ether	0.5	. CN
ter-Butyl ethyl ether	0.5	NO
ter Amyl methyl ether	0.5	. ND
Lead Excavengers		
1.2-Dibromoethane (EDB)	0.5	5 8
1.2-Cichloethane (1.2-DCA)	0.5	107
Surrogate	Conc	% Resovery 107
Toluene-d8	20.0	107

ND:Not Detected

Delta Environmental Laboratories

Hossein Khosh Khoo, Ph D

Quality Control Report

Ctient:

Franklin J. Goldman PO 86x 9390 Santa Resa, CA95405 Client Project ID:

Chun

Ref. Sampleg. Received Q7386_oxy 10/24/02 10/25/02

Matrix Analyzed: Reported: Linus: Water 10 29/02 11/8/02 ug/L

Surrogate Standard Recovery Summary

Method : EPA 8260B

		Percent Recovery	
Cate		Taluene	
Analyzed	Ļab ₹d.	8.	
	Blank	104	
	Brass	105	
QC limit:		81-117	

Date Analyzed: Sample | Spikad:Blank

Matrix Spike Recovery Mairix Spike Matrix Relative Added Spike Stake Dup % Difference 売 Recovery RPD ug/L %Recovery Anal<u>yte</u> 110 2.3 107 Methyl ter-butyl ather(MTBE) 20 28 107 Dissecropyl ether 20 110 110 117 52 ter-Bulyl athyl ether 0.9. ter Amyl methyl ether

H Khosh Khoo, PhD Laboratory Director/President

ENVIRONMENTAL LABORATORIES, Ltd

Client:

Franklin J. Goldman

PO Box 9390

Santa Rosa, CA95405

Attention:Franklin J. Goldman

Client Project ID:

Chun

Ref.: Method R7386_400 s

5030 GCFID!

8020/8015M

10/24/2002

Sampled: Received: 10/25/2002

Matrix: Soil

Analyzed:

Reported:

10/24-11/5/02 11/6/2002

Units:

mg/kg

Laboratory Results for TPH-G + BTEX Analysis

	Detection			Results			
Analyte	Llmit mg/kg			Sample ID	:		
		EW-12	EW-12	EW-12	EW-12	EW-12	
		5-5.5	10-10.5	15-15.5	20-20.5	24.5-25	
		7386-1	7386-2	7386-3	7386-4	7386-5	
BTEX					V., 22 20.22. At 11.		
Benzene	0.005	ND	ND	ND	ND	ND	
Toluene	0.005	ND	0.050	ND	ND	ND	
Ethylbenzene	0.005	ND	ND	ND	ND	ND	
total-Xylene	0.005	0.009	0.10	ND	ND	0.009	
	age and community of America Safetimes	and the second s			: ·		
		· · · · · · · · · · · · · · · · · · ·					
	· · · · · · · · · · · · · · · · · · ·						
TPH-Gas	0.05	0.06	0.616	ND	0.05	0.05	

ND:Not Detected

Delta Environmental Laboratories

Hossein Khosh Khoo, Ph.D.

ENVIRONMENTAL LABORATORIES, Ltd

Client:

Franklin J. Goldman

Santa Rosa, CA95405

Attention:Franklin J. Goldman

PO Box 9390

Client Project ID:

Chun

Ref.:

R7386_400 s

Method

5030 GCFID/

8020/8015M

Sampled:

10/24/2002

Received:

10/25/2002

Matrix:

Soil

Analyzed:

10/24-11/6/02 11/6/2002

Reported: Units:

mg/kg

Laboratory Results for TPH-G + BTEX Analysis

	Detection			Results		
Analyte	Limit			Sample ID		
·	mg/kg	EW-13	EW-13	EW-13	EW-13	EW-13
	•	4.5-5	10-10.5	15-15.5	19.5-20	24.5-25
		7386-7	7386-8	7386-10	7386-12	7386-13
BTEX						
Benzene	0.005	ND	45.9	0.047	0.02	ND
Toluene	0.005	0.65	271	0.248	0.06	0.01
Ethylbenzene	0.005	0.178	72.3	0.053	0.015	ND
total-Xylene	0.005	0.994	375	0.029	0.094	0.016
	and a market come or every security of the second of the s					
					The second secon	
TPH-Gas	0.05	8.7	2760	11.4	0.065	0.10

ND:Not Detected

Delta Environmental Laboratories

Hosseln Khosh Khoo, Ph.D.

Client:

Franklin J. Goldman

PO Box 9390

Santa Rosa, CA95405

Attention:Franklin J. Goldman

Client Project ID:

Chun

Ref.:

R7386_400 s

Method 5030 GCFID/

8020/8015M

Sampled: 10/24/2002

Received: 10/25/2002

Matrix: Soil

Analyzed: 10/24-11/6/02

Reported: 11/6/2002

Units: mg

mg/kg

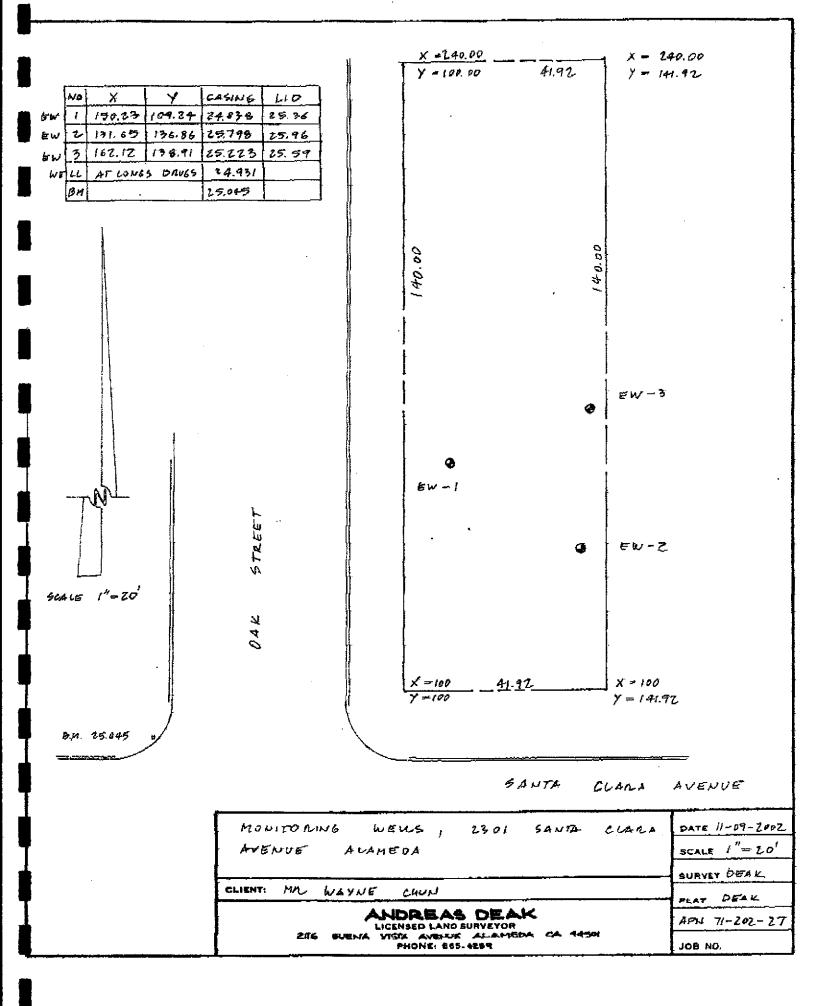
Laboratory Results for TPH-G + BTEX Analysis

	Detection			Results		
Analyte	Limit			Sample ID		
	mg/kg	EW-14	EW-14	EW-14	EW-14	EW-14
		4.5-5	9-9.5	14.5-15	19-19.5	24.5-25
		7386-14	7386-16	7386-18	7386-19	7386-21
BTEX						
Benzene	0.005	ND	0.045	0.007	ND	ND
Toluene	0.005	0.008	0.245	0.012	ND	ND
Ethylbenzene	0.005	ND	0.053	ND	, ND	ND
total-Xylene	0.005	0.017	0.284	0.017	0.007	ND
And the second s						
TPH-Gas	0.05	0.09	7.19	0.16	ND	ND

ND:Not Detected

Delta Environmental Laboratories

Hossein Khosh Khoo, Ph.D.


Franklin J. Goldman CHAIN OF CUSTODY RECORD PO BOX 9390, Santa Rosa, CA 95405 (by US mail) Laboratory Analysis P.O. No.___ Phone: (707) 869-0850 Laboratory Please Call Accounts Payable for P.O. No.
Date: 102402 Sheet Phone: (707) 869-0864 [Call before Faxing] **Parameters** Project Name Chun Laboratory Delivery Location Delta Environmental Laboratory Project Number 2301 Santa Clara Ave Method 8260b for 5 oxygenates & 2 lead scavengers
RSCA Risk-based Care 685 Stone Road, #11 Benicia, CA 94553 Base/Neu/Acids (Organic) PH-g/8TEX 8015/8020-454 WATER SAMPLE Volitile Organics (8010) Pollutant Metals (13) Phone: (707) 747-6081 SOIL SAMPLE 5520 Alameda, CA Pesficides 8140/8141 (707) XXX-XXX FAX: Sampler's Name: CAM Metals (17) ^{Phone} Turnaround Time Gasoline Oil and Grease Frank Goldman Rush 24 Hour 48 Hour 5-Day Sampler's Signature: Repeat to: _Erank 30.K Sample Date Time Comments Number 100 10/24/02 EW-12 Don't run unti 1045 receive Dayment 20-20g EW-12 244-25 31/0AS MW-1 220 10-10字 225 250 Date Time Received By Date Time Total Number of Containers this Sheet: Dinasais 0/25/02 Method of Shipment: Special Shipment/Handiling or Storage Requirements: Dispatched By Received in Lab By Date Time Date Time Keep on Ice

Franklin J. Goldman CHAIN OF CUSTODY RECORD PO BOX 9390, Santa Rosa, CA 95405 (by US mall) Laboratory Analysis P.O. No._ Phone: (707) 869-0850 Laboratory Please Call Accounts Payable for P.O. No. Date: 10-24 65 28heet 2 Of Phone: (707) 869-0864 [Call before Faxing] Project Name Chun **Parameters** Laboratory Delivery Location Delta Environmental Laboratory density, moisture, porosity Method 8260b for 5 oxygen-ates & 2 lead scavengers Project Number ... 685 Stone Road, #11 Base/Neu/Acids (Organic) raction of organic carbon 2301 Santa Clara Ave Benicia, CA 94553 (8010) WATER SAMPLE Pollutant Metals (13) Address Phone: (707) 747-6081 as Gasoline 8015 PH-g/BTEX 8015/8020 SAMPLE Oil and Grease 5520 Alameda, CA Pesticides 8140/8141 FAX: (707) XXX-XXX TPH as Diesel 8015 Sampler's Name: Volitile Organics **BTEX & EPA 8020** CAM Metals (17) ^{Phone} Turnaround Time Frank Goldman Sampler's Sjanatyre: Rush 24 Hour 48 Hour 5-Day Repeat to: Frank 훒 Date Time Number Comments 1dzyloz 1)out run until 10/24/01 receive payment 10/25/02 915434-2305 3. 435 UIU 19-19-1015 Relinquished By Date Received By Time Date Time Total Number of Containers this Sheet: Dina Strain 0/26/2 Method of Shipment: Special Shipment/Handiling or Storage Requirements: Dispatched By Received in Lab By Date Time Date Time Keep on Ice

CHAIN OF CUSTODY RECORD Franklin J. Goldman PO BOX 9390, Santa Rosa, CA 95405 (by US mall) 73863/3 Laboratory Analysis P.O. No.__ Phone: (707) 869-0850 Laboratory Please Call Accounts Payable for PO. No.

Date: 10/25/02 Sheet 3 Of 3 Phone: (707) 869-0864 [Call before Faxing] Project Name Chun **Parameters** Laboratory Delivery Location Delta Environmental Laboratory Bulk density, moisture, porosity fraction of organic carbon Method 8260b for 5 oxygen-ates & 2 lead scavengers Project Number 2301 Santa Clara Ave 685 Stone Road, #11 Base/Neu/Acids (Organic) Benicia, CA 94553 **WATER SAMPLE** Volifile Organics (8010) Pr. Pollutant Metals (13) Phone: (707) 747-6081 SAMPLE PH-g/BIEX 8015/8020 and Grease 5520 8 Alameda, CA Pesticides 8140/8141 FAX: (707) XXX-XXX **IPH as Diesel 8015** Sampler's Name: & EPA 8020 CAM Metals (17) ^{Phone} Turnaround Time **TPH as Gasoline** Frank Goldman Sampler's Signature: Rush 24 Hour 48 Hour 5-Day Repeat to: Frank BTEX Sample Location Date Time Comments Number EW-14 2性-25 Jort von unti receive payment Date Received By Date Time Total Number of Time Containers this Sheet: 10/25/0 Oina Sami Method of Shipment: Special Shipment/Handiling or Storage Requirements: Received in Lab By Dispatched By Date **Time** Date Time Keep on Ice

Appendix C Land Survey

Appendix D
Well Development Logs

WELL DEVELOPMENT DATA SHEET									
Project #:	021028	-MNI		Client: Cle	ar Heart L	Drilling]		
Develope				Date Developed: 10/2×/0>					
Well I.D.	···				Well Diameter: (circle one) 2 3 (4) 6				
Total Wel	Total Well Depth:				Vater:		1		
Before 24	1.22	After 25.0	**3	Before 9.6	Afte	er 12.91			
Reason no	ot develop	ed:		If Free Pro	duct, thickn	iess:			
Additiona	l Notation	18: Surged	well La-	- 15 min	prior t	o purze			
Volume Conversion Factor (VCF): Well dia. VCF $\{12 \times (d^3/4) \times \pi\} / 231$ $2^n = 0.16$ where $3^n = 0.37$ $12 = in / foot$ $4^n = 0.65$ d diameter (in.) $6^n = 1.47$ $\pi = 3.1416$ $10^n = 4.08$ $231 = in 3/gat$ $12^n = 6.87$									
95		X		10		95.0			
1 Case	Volume		Specifie	d Volumes	=	gallons]		
Purging De	vice:	Bailer Middleburg	□ Ølgpm	Electric Subr Suction Pum		□ Ø 5gpm			
		Type of Insta Other equipn		4" Surge	block				
			Cond.	TURBIDITY	VOLUME		TOS		
TIME	TEMP (F)	pН	(mS or (LS)	(NTUs)	REMOVED:	NOTATIONS: Dank Silts Mediabum Strong			
1337	67.0	7. 2	2056	7200	9.5	Brown (Fine), Dump CAEr	1487		
1347	46.6	7.2	1897	2345	19.0	Brown Shahrly Strong Less Silty , ado -	1370		
1357	66.7	7.1	woo	7700	28.5		1135		
1407	iele.7	7.1	1581	7200	38.0	To bottom	uzc		
1417	66.6	7.0	1486	7200	47.5	Brown Chedy hard odor Brown Dri-1594	1027		
1427	66.6	7. 0	1462	7200	57.0	4 11 oder switching	1015		
1430	68.3	6.9	1518	7700	66.5	Brown, Chustiness, eder	1074		
1433	679	6.9	1398	7700	75 .€	9 4 11	979		
1436	67.4	6.9	1824	フシレン	85.5	Brown, Cloudy, edor, Sit	1748		
1438	67.5	7.0	८७३५	7200	95.0	light boom, cloudy clearing, where	1160		
-						071 = 1291			

If yes, note above.

Did Well Dewater?

95.0°

Gallons Actually Evacuated:

WELL DEVELOPMENT DATA SHEET

Project #	: 021028	-prNi		Client: Cla	ar Heart L	Dr. Iluy			
	er: Mad			Date Devel	loped: 10/	28/02			
Well I.D.				I	eter: (circle]		
Total We	ll Depth:	·		Depth to W					
Before 2		After 24	54	Before 9.09 After 21.05					
Reason n	ot develop	ed:		If Free Pro	duct, thickn	ess:			
Addition	al Notation	18: Suiger	I well has	- 15 min	prior t	o puze			
(12 x where 12 ≃ in d = d π = 3 231 ≈ in	iameter (in.) ,1416 ;3/gal		Well dia. VC 2" = 0.1 0.3 3" = 0.6 0.6 6" = 1.4 10" = 4.6 12" = 6.8 0.8	6 17 15 17 18 18		A-1	7		
9.	7 Volume	X		d Volumes	==	<u>97. €</u> gallons			
Purging D		Bailer Middleburg	D Belgen	Electric Subr Suction Pum		□ Ø5gpm□	J		
		Type of Inst Other equip	ment used	4" Surge	biocle		٦.		
TIME	TEMP (F)	pН	Cond. (mS or (µS)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:	T		
1142	44.7	7.0	1831	>200	9.7	Brewn (Fine) bamos adar	130		
1152	66.8	6.8	1470	7700	19.4	Brown Sity 2008 Shipping	103		
1212	44.8	6.7	1149	7240	19.1	is is it is proposed pump	80		
17-17-	66.7	6.7	1275	7700	38.8	Dark Sandy He Thick	89		
1222	66.6	6.7	1016	משנד	48.5	Spoin Less ut clearing only = 15 Sandy after clearing, 12.39	70		
1232	60-8	6.6	866	7300	38.i	Brun Chiefy oder bettem Espe	4-		
1239	67.9	6.6	761	2200	649	11 11 11 ES	55		
1247	68-2	66	949	7200	74.6	Brown increased the	65		
1245	65.0	6.7	1-119	7200	84.3	R 11 11	(6)		
1248	650	6.8	2102	7200	97.0	Light clovely redor	76		
						000-2102			
						- Fast Recharge -			
Did Wall De	overer? N/O	If ves. note al	poye.	Gallons Actual	ly Evacuated:	97.0	-		

WELL GAUGING DATA

Project #	02-1028-MN1	_ Date	10/28/02	Client C	lear Hear	1 Do lling
				-		
Site 2301	Santa Clera	Ave.	Alameda			

Well ID	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Volume of Immiscibles Removed (ml)	Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or TOC	
EW-1	4				850	23.20	C'	
EW-3	4				9 161	14.22		
EW-3	4				9.09	2380	6	
		•						
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4							
		i, 1						
	:							•
			al linear specific and specific		. 3			

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

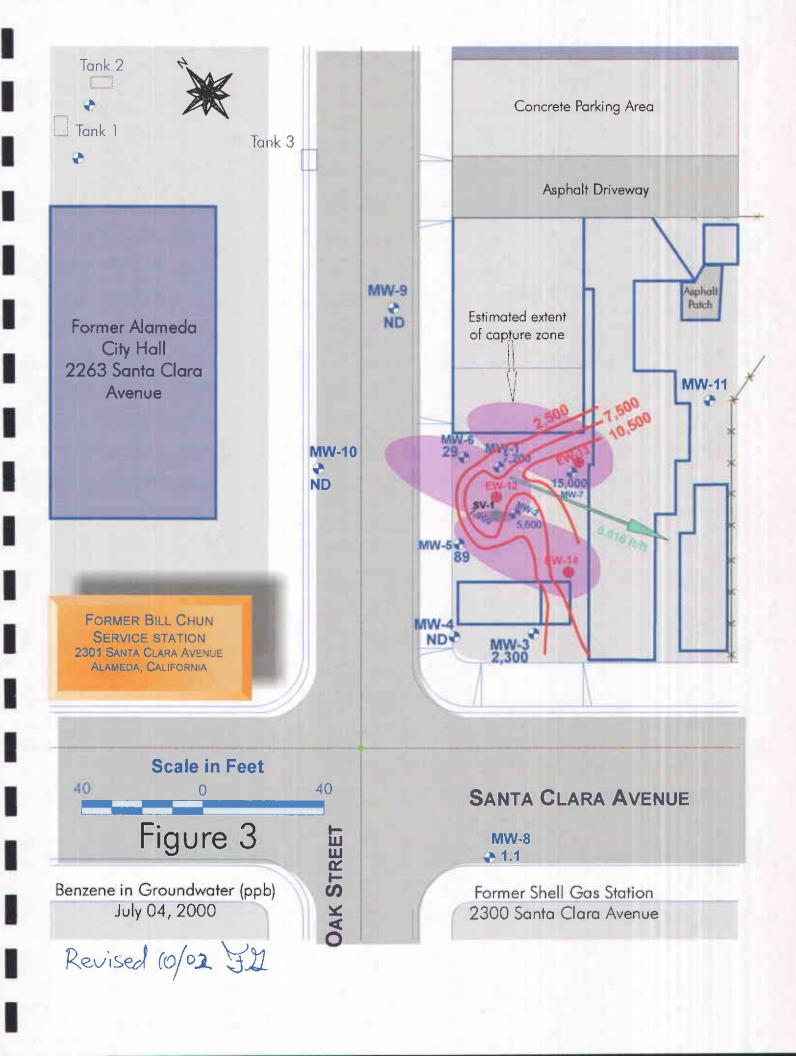
WELL DEVELOPMENT DATA SHEET

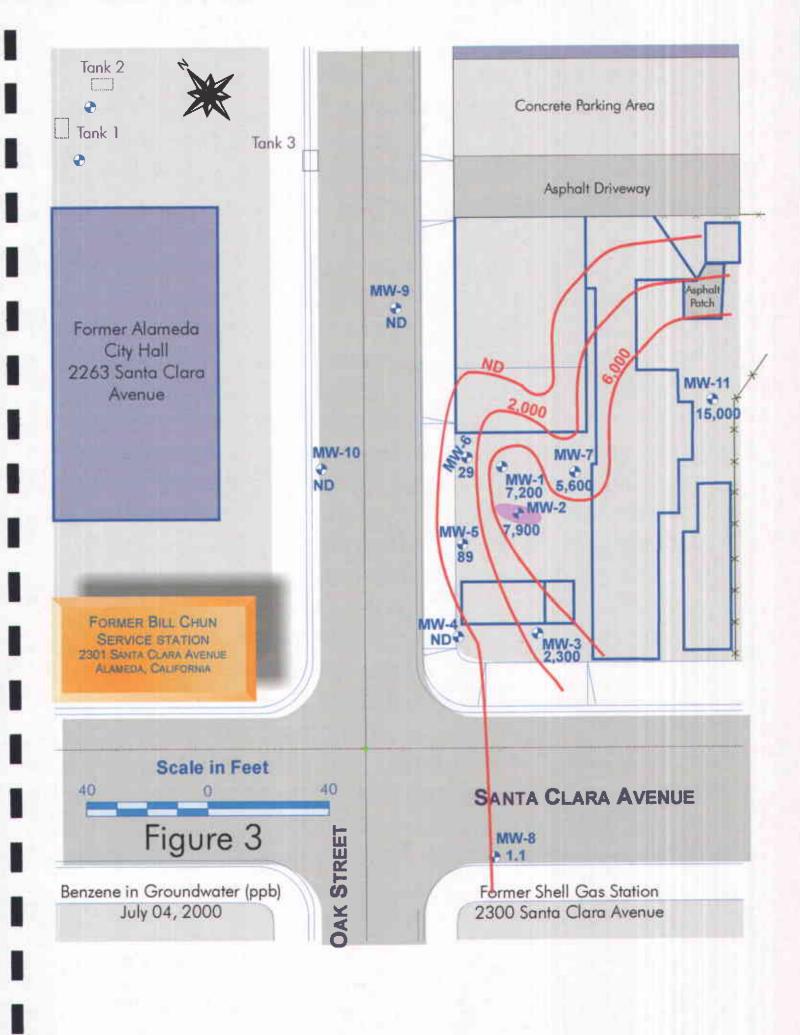
Project #	: 021028	-MNI		Client: Clear Heart Drilling					
	er: MAN				loped: 101				
Well I.D					eter: (circle				
	ell Depth:				Depth to Water:				
Before 2	-	After 24.	laO	Before 5.5		er 21.80			
	ot develor			If Free Product, thickness:					
<u> </u>	al Notatio		well he.			to purze			
Volume Co (12 x where 12 = ir d = d	nversion Factor (VCI $\times (d^3/4) \times \pi$) /23 In / foot liameter (in.)		Well dia. VC 2" = 0. 3" = 0. 4" - 0. 6" = 1. 10" = 4.6 12" = 6.3	다 16 37 65 47 08					
· · · · · · · · · · · · · · · · · ·	Volume	Х		d Volumes	=	gallons			
Purging D	evice:	Bailer Middleburg	□ BØlgen	Electric Subr Suction Pum		Ø 055pm			
		Type of Insta Other equipm		4" Surge	block				
TIME	TEMP (F)	pH	Cond. (mS or p(S))	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:			
953	683	6.8	1692	7200	9.6	Dark Brown Silty (Fine) Middle burg ox			
1003	69.0	7.0	1602	7700	19.2	in it color			
1013	693	7.0	1203	>200	288	Brown Shartly less char			
1023	69.5	7.0	1047	7260	38.4	Primp @ Silty Bown oder 7			
1033	693	69	971	7200	48.0	Brown Loss Silty Sightly notron 67			
1843	69.1	6.9	809	7700	57.6	11 , 11 clearing 11.90 50 ES			
1090	699	6.8	811	7200	67.7	Bown closely eder			
1053	71.4	6.9	827	סמור	76.8	Brown Closedings eder			
uste	70.8	4.8	1061	7100	86.4	Brown cloudy (sit fine) ador - 7			
1059	70-2	6.9	941	7700	16.0	Brown 11 11 clearing = 6			
						DIW=2180			
Did Well De	ewater? NO	If yes, note abo	ve.	Gallons Actuali	y Evacuated:	96.0			

PROJECT: Ch	nun E	VENT:	SAM	PLER:	FG	— DATE:—	Oct 31 02	
WELL/H	IYDROLOGIC STATIS		Ac	ction	Time	Pump Rate	(low yield)	
Depth 8.91 packer intake bailer depth Stop Stop Sampled [Final ML) Purae Calculator gals. X 3 =							gals. purge volume- 3 casings Only) gals	
Electronic wate bailor, Hydac I	Electronic water level indicator, weighted plastic disposable Well Yield:							
		-		COC Samp		Analysis	Lab	
Additional Commo	ents:						<u> </u>	
,								
Gailons purged	TEMP C/F (Circle One)	EC (us/cm)	PH	TURBIDITY (NTU)	'	HEAD (FT)	TIME	
1. 1.5	70.3	931	6.8				450	
2. 1.5	70.1	942	6.9				<u> </u>	
3. 1.0	70.3	940	6.9				<u>515</u>	
4. 2.0	70.5	947	7.0				530	
5.								
*Take measurement approximately each casing volume pur	h W.L. d	rop volumes du	uring one sittir g pump rate	ng volum	to purge (nes by retu or next da	urning u	Inimal recharge nable to purge s volumes.	

PROJECT: Ch	nun E	VENT:	SAM	PLER:	-G	DATE:	Oct 31 02	
WELL/H	HYDROLOGIC STATIS		Ac	ction	Time	Pump Rate	(low yield)	
		<u>EW-13</u> (EW-3)						
į		_				·		
Depth 9.49	<u> </u>	<u></u>		· · · · · · · · · · · · · · · · · · ·				
a malus			Stop					
packer intake bailer	-		Sam	oled				
depth			(Fina	IWL)				
					Purge Co	<u>alculator</u>		
				- gal/ff.	ニ゛ラ	gals, X 3	~	
				SWL to B packer t		one (volume	purge volume- 3 casings	
						ulation (Airlift (
			<u> </u>	gal/ff.		ft	gals	
packer to SWL								
Equipitien usea/so	Equipment Used/Sampling method/Description of Event: Actual Gallons Purged:							
				Actual '	volumes I	Purged:		
Electronic water bailor, Hydac I		, weighted plastic	c disposable	Well Yie (See Be				
		•		COC #	! :			
				Sampi	<u>e i.D.</u>	Analysis	<u>Lab</u>	
Additional Commo	ents:				······································			
					 -			
Gallons purged	TEMP C/F (Circle One)	EC (us/cm)	PH	TURBIDITY (NTU)		HEAD (FT)	TIME	
1. 1.5	66.3	1324	7.2				545	
2. ,0	6.9	1361	7.2				2-22	
3. 1.0	67.5	1369	7.1				6 <u>ar</u>	
4. 1.5	67.0	1378	7.2				6.0	
5.								
*Take measurement approximately eac casing volume pur	ch Tw.L. d	rop volumes di	uring one sittir ng pump rate	ng volum	o purge 3 nes by retu or next dan	iming u	inimal recharge nable to purge volumes.	

·							
PROJECT: C	nun E	VENT:	SAM	PLER:	FG	DATE:	Oct 31 02
TROOLOI.	IYDROLOGIC STATIS		T Ac	etion	Time	Pump Rate	(low yield)
intake bailer	-		Samp	oled			
depth			(Final	IWL)		<u> </u>	
Final ML Purae Calculator gal/ft							
Galions purged	TEMP C/F	EC	l nu T	TURBIDITY	1		
	(Circle One)	(us/cm)	PH	(NTU)		HEAD (FT)	TIME
1. 1.5	67.6	1428	7.1			,	625
2. 2.0	67.9	1461	7.2				640
3. 1.0	68.3	1452	7.2				650
4. (,0	68.3	1433	7.3				7-00
5.							
*Take measurement approximately eac casing volume pur	h W.L. d	rop volumes di.	uring one sitting g pump rate (g volum	to purge 3 nes by retu or next da	uming u	inimal recharge nable to purge volumes.


Attachment 1


Revised Groundwater Monitoring Data for the

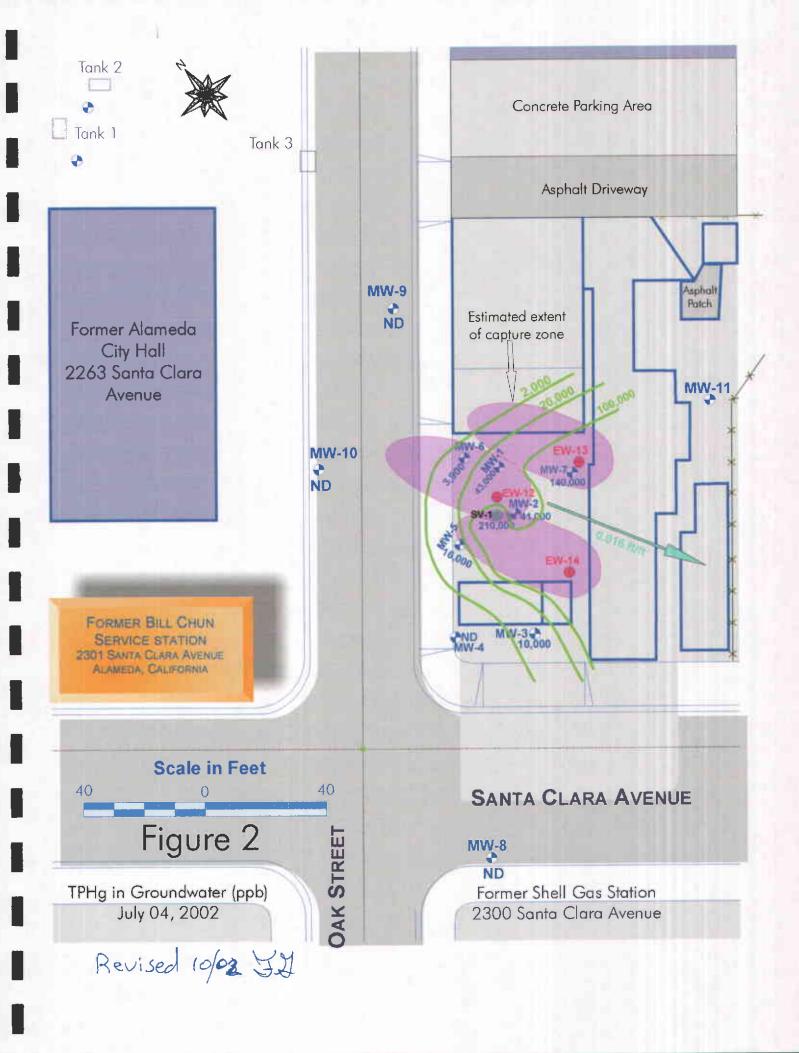

09-17-00 & 07-04-02 SAMPLING EVENTS

TABLE 1 - Revised Analytical for Gasoline in Groundwater (ppb) Chun

Well No	ТРНд	Benzene
MW-1 (07-04-02)	43,000 DECREASE	7,200 DECREASE
MW-1 (09-17-00)	65,000	15,000
MW-2 (07-04-02)	41,000 DECREASE	5,600 DECREASE
MW-2 (09-17-00)	140,000	21,000
MW-3 (07-04-02)	10,000 INCREASE	2,300 DECREASE
MW-3 (09-17-00)	9,300	3,000
MW-4 (07-04-02)	ND	ND
MW-4 (09-17-00)	ND	ND
MW-5 (07-04-02)	16,000 DECREASE	89 DECREASE
MW-5 (09-17-00)	44,000	490
MW-6 (07-04-02)	3,900 DECREASE	29 DECREASE
MW-6 (09-17-00)	10,000	110
MW-7 (07-04-02)	140,000 DECREASE	15,000 DECREASE
MW-7 (09-17-00)	220,000	32,000
MW-8 (07-03-02)	ND	1.1 DECREASE
MW-8 (09-17-00)	ND	1.4
MW-9 (07-03-02)	ND	ND
MW-9 (09-17-00)	ND	מא
MW-10 (07-03-02)	ND	ND
MW-10 (09-17-00)	ND	ND
MW-11 (10-31-02)	59,000	5,140
MW-11 (07-03-02)		
MW-11 (09-17-00)		
SV-1 (07-04-02)	210,000 DECREASE	7,900 DECREASE
SV-1 (09-17-00)	560,000	10,000

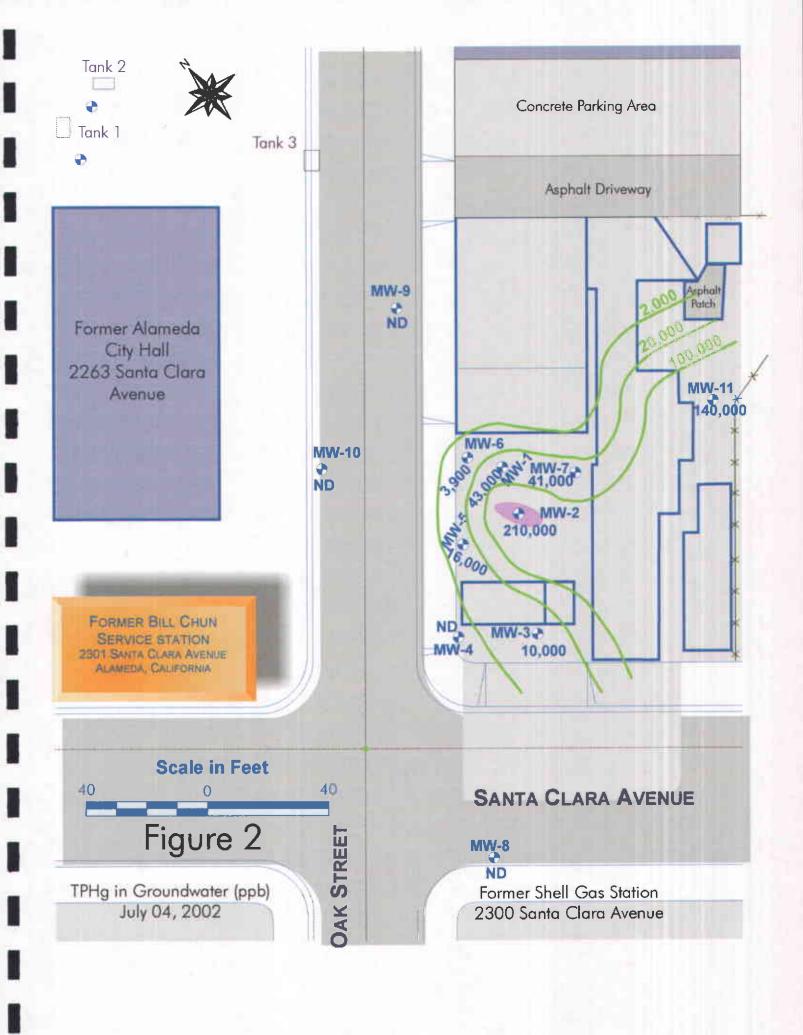
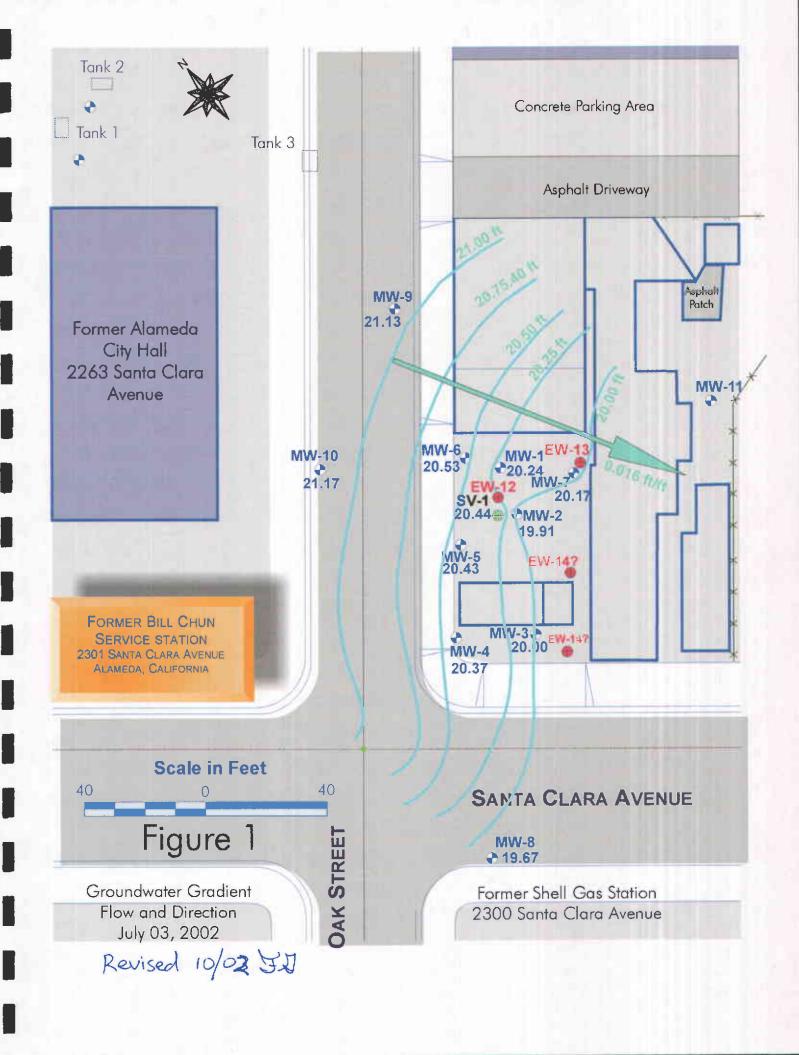
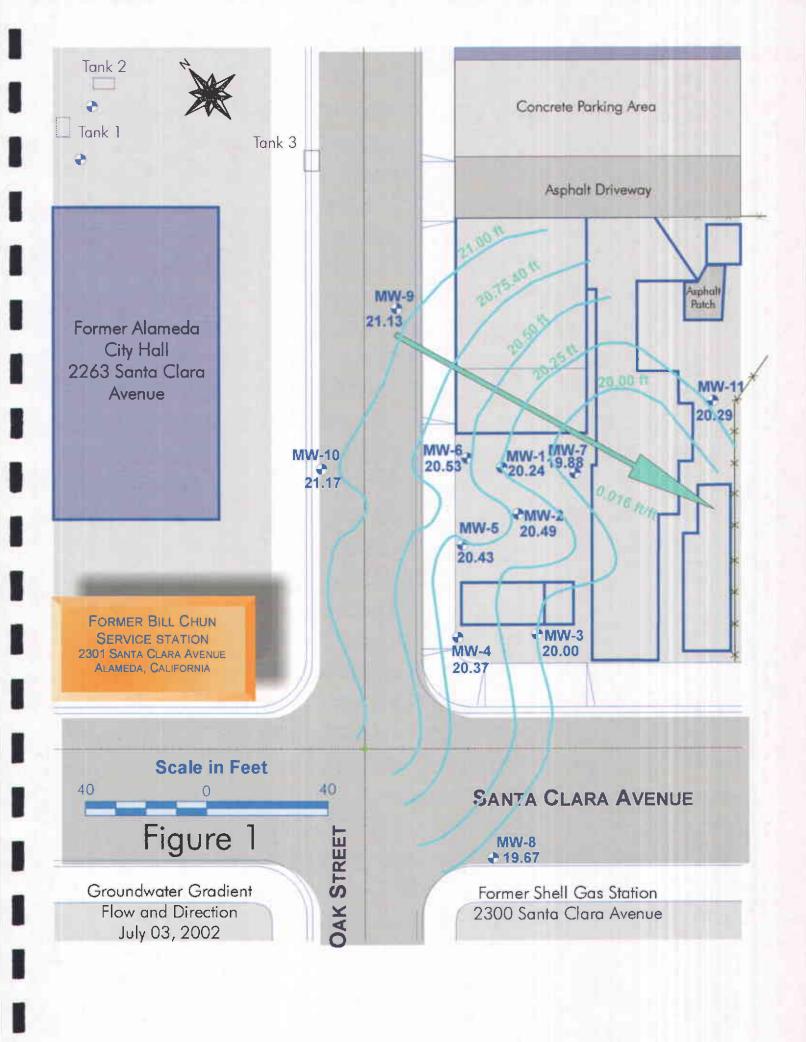




TABLE 2
Depth to Groundwater Measurements
July 03, 2002

Well No	Depth to Groundwater from TOC (feet bgs)	TOC Elevation (feet)	Water Table Elevation (feet)
MW-1	8.25	28.49	20.24
MW-2	8.56	28.47	19.91
MW-3	8.78	28.78	20.00
MW-4	8.16	28.53	20.37
MW-5	7.90	28.33	20.43
MW-6	7.83	28.36	20.53
MW-7	8.27	28.44	20.17
MW-8	8.50	28.17	19.67
MW-9	6.32	27.45	21.13
MW-10	6.15	27.32	21.17
MW-11			
SV-1	7.98	28.42	20.44

