CYPRESS PROPERTY

New Care

1120 Nye Street Suite 400 San Rafael, CA 94901 415 457-4964 FAX 415 459-4605

September 6, 1991

Richard Hiett San Francisco Bay Region 2101 Webster Street, Suite 500 Oakland, CA 94612

CALIFFER OF COUNTY WAY QUALITY CONTROL BOARD

Dear Mr. Byrne:

Enclosed, please find a copy of the August 13, 1991 report on the tank removal work at 2855 Cypress.

Please review the report and contact me to discuss the next action.

Sincerely,

Daniel M. Nourse, for CYPRESS PROPERTY

An Moura

Enclosure

cc: Rich Robbins Jeff Allen

MXSL = 1800 PPM TOH-d. Div. = UST

Ste Name: Wareham Property

STAT = 0

Comment: Napethalene, 3-morked napethalene.

Colorobangene, Napethalene, 3-morked napethalene

Planae

Planae

Ret

(RP)

(RP)

Harding Lawson Associates

A Su's givery of Narding Associates

Staff Geologist

Tel (916) 678-6128

Mobile (916) 952-1640

Chris Rossitto

7655 Redwood Blvd., P.O. Box 578 Novato, California 94948 415/892-0821 Telecopy: 415/892-1586

Engineering and **Environmental Services**

DEES EXCAVATION AN ENVIRONMENTAL COMPANY 3645 Leafwood Circle Antioch, CA 94509 Cliff Dees Fred Bourres

(415) 757-7712

(415) 518-1732

August 13, 1991

18452,047.02

2

Wareham Property Group 1120 Nye Street, Suite 400 San Rafael, California 94901

Attention: Mr. Dan Nourse

Report
Underground Storage Tank Removal
2855 Cypress Street
Oakland, California

This letter presents to the Wareham Property Group (Wareham) the results of Harding Lawson Associates' (HLA's) environmental services during the removal of two underground storage tanks (UST's) at 2855 Cypress Street, Oakland, California (site). An area map showing the site location is presented in Plate 1. The work was performed in response to the discovery of the USTs and the detection of hydrocarbon odors in soil from a nearby excavation. The purpose of HLA's investigation was to observe and document tank removal activities and perform soil sampling. The work was performed in accordance with HLA's proposal dated March 7, 1991, and authorized by a signed HLA Service Agreement dated March 27, 1991.

BACKGROUND

Harding Lawson Associates (HLA) has provided Wareham Property Group with a Preliminary Hazardous Materials Site Assessment (PSA) report of the 2855 Cypress Street property dated September 5, 1990. The purpose of the PSA was to provide information about the site and surrounding area relative to the potential presence of hazardous materials. During the course of the PSA investigation a vent line was observed indicating that a UST may be present at the site. No records regarding the history, age, and integrity testing of the UST are currently available. HLA recommended in the PSA that the possible presence for a UST be further evaluated.

FIELD INVESTIGATION

Geophysical Investigation

HLA was authorized by Wareham to perform an underground tank evaluation at the site. Pursuant to HLA's proposal of February 14, 1991, a geophysical investigation was performed to locate a possible UST and associated pipelines. The geophysical

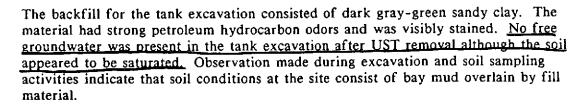
investigation was conducted by use a pipe and cable locator and ground penetrating radar (GPR). The results of our investigation indicated that two USTs were located at the site: in approximate sizes they appeared to be a 350-gallon gasoline UST and a 200-gallon waste oil tank. Access to both USTs was made. The gasoline UST had approximately 1 foot of product in the tank, while the waste oil tank was full of oil with a thicker sludge at the bottom of the tank.

UST Content and Ramp Excavation Sampling

On June 20, 1991, HLA collected samples of the contents of the gasoline and waste oil USTs. The samplers were collected using disposable teflon bailers and decanted into 40-milliliter volatile organic analysis (VOA) vials, 1-liter amber glass containers, 1-liter plastic containers, labelled, and placed in a cooler. The purpose of the sampling was to document the contents of the USTs prior to their removal. The tank contents were then removed by a vacuum truck supplied by KVS Transportation (KVS), Bakersfield, California. The KVS truck remained onsite until tank removal activities started the next day. Two soil samples were collected at 2.5 feet below ground surface (bgs) from an excavation for a loading dock (ramp excavation) approximately 35 feet south of the USTs. The samples were collected in response to detection of hydrocarbon odors during the ramp excavation. In addition, a sample of water from the ramp excavation was collected in the same manner as the UST content samples previously mentioned. The soil samples were collected by pushing a clean stainless steel tube into the soil until it was completely filled and the ends of the samples tubes were then covered with teflon-lined plastic caps, labeled and placed in a cooler along with the water sample and UST content samples.

TANK REMOVAL ACTIVITIES

On June 20, 1991, Dees Excavation (Dees), Antioch, California, removed the concrete surface above the two USTs by use of a jack-hammer and backhoe.


On June 21, 1991, Dees began tank excavation activities at the site. Representatives from HLA, Wareham, and the Alameda County Health Care Service Agency (County), were on site to observe UST removal. Prior to tank removal, permits were obtained by Dees from the County, the City of Oakland Fire Department (City), and the Bay Area Air Quality Management District.

One 250-gallon waste oil tank and one 350-gallon gasoline tank were adjacent to a building wall (Plate 2). A concrete pump island which supported a former fuel dispenser was observed directly inside the building adjacent to the USTs. A backhoe was used to remove soil above the USTs. The soil was stockpiled in the vicinity of the excavation. The product line, between the gasoline UST and pump island, was cut off at the building wall. At this time, the remaining product line has not been capped. Water, which had entered the tanks since being pumped the previous day, was removed

from the tanks by KVS. Approximately 1,250 gallons of water and tank contents were transported from the site for disposal under appropriate manifest to Gibson Oil and Refining (Gibson), Bakersfield, California. A copy of the original uniform hazardous waste manifest is attached to this letter.

Approximately 50 pounds of dry ice was added to each tank to purge hydrocarbon vapors from them. Vapors were monitored by HLA for the presence of explosive hydrocarbon vapors using a Gastech Model 1314 combustible gas indicator (Gastech) and found to be below 10 percent of the lower explosive limit (LEL). The County then approved tank removal from the excavation.

The tanks were then removed by attaching a chain to them and lifting them out of the excavation with the backhoe. The tanks were composed of single wall steel wrapped with burlap. The burlap was badly deteriorated. Visual examination of the two USTs found numerous holes up to 3 inches in diameter. The largest hole observed was approximately 2 inches wide by 10 inches long at the bottom of the gasoline UST. The tanks were then loaded onto a truck provided by H&H Shipping Services (H&H), San Francisco, California, and transported under appropriate manifest from the site to the H&H Yard for steam cleaning. Copies of the original uniform hazardous waste manifests are attached to this letter. Upon completion of steam cleaning, the 350-gallon tank was disposed as scrap metal to Schnitzer Steel Oakland, California, and the 250-gallon tank was disposed as scrap metal to Levin Metals Company, Richmond, California.

SOIL SAMPLING

Following removal of the two USTs from the site, two soil samples were collected from the excavation. One soil sample was collected from beneath the waste oil UST, and one soil sample from the east excavation wall adjacent to the gasoline tank. In addition, four samples were collected from the tank backfill soil stockpile for compositing in the laboratory. The number of samples and sampling locations were specified by the County. The excavation samples were collected by having the backhoe remove a bucket of soil from the desired sample location. The bucket was then brought to the surface and samples were then directly sampled as described before.

The samples were labeled, placed in a cooler along with the previously collected samples, and transported under chain of custody to NET Pacific Inc. Laboratories (NET), Santa Rosa, California. NET is a state-certified laboratory for the analyses requested. Sample locations are shown on Plate 2.

Upon completion of sample collection, the tank excavation was lined with plastic sheeting. The tank backfill stockpiled soil was then placed back into the plastic lined tank excavation pending receipt of laboratory analytical results and recommendation.

LABORATORY ANALYSES

Soil samples collected from the soil stockpile and excavation wall adjacent to the east end of the gasoline UST were analyzed for total petroleum hydrocarbons (TPH) as gasoline, diesel, and motor oil, and benzene, toluene, ethylbenzene, and xylene's (BTEX). The ramp excavation soil and water samples, tank content samples, and excavation floor soil sample from beneath the waste oil UST were analyzed for TPH as gasoline, diesel, and motor oil, BTEX, total oil and grease (TOG), volatile organic compounds (EPA Test Method 8010), semivolatile organic compounds (EPA Test Method 8270), and the metals cadmium, chromium, lead, nickel, and zinc. Analytical results are listed in Tables 1 and 2. Copies of the original laboratory reports are attached to this letter.

SUMMARY OF ANALYTICAL RESULTS

Analytical results of soil samples collected from the ramp excavation indicate that TPH as gasoline was present at concentrations ranging from nondetect (ND) to 16 parts per million (ppm), TPH as diesel ranged from ND to 11 ppm, TPH as motor oil ranged from 14 to 32 ppm, TOG ranged from 85 to 370 ppm, and BTEX was ND. No EPA Test Method 8010 and 8270 parameters were detected. Results of the ramp excavation water sample indicate TPH as gasoline was detected at a concentration oi \$\infty\$8 ppm), and TPH as diesel at 1.3 ppm. TPH as motor oil was not detected. BTEX was detected at concentrations from 0.078 to 0.48 ppm. The semivolatile compound, phenol, was present in the water sample at a concentration of 0.067 ppm. No other EPA Method 8270 constituents were detected. No EPA Method 8010 constituents were detected. The metals chromium, lead, nickel, and zinc were detected at concentrations of 30, 2.9, 27, and 19 respectively. Cadmium was not detected.

Review of analytical results of soil samples collected from the tank excavation floor, sidewall, and backfill indicate TPH as gas ranged from 41 to 240 ppm, TPH as diesel ranged from 12 to 1,800 ppm, TPH as motor oil ranged from 14 to 2,000 ppm, and TOG was present at 120 ppm in the floor sample beneath the waste oil UST. BTEX concentrations ranged between ND and 5.7 ppm. Volatile organic compounds (EPA Test Method 8010 parameters) and semivolatile organic compounds (EPA Test Method 8270 parameters) were detected in the soil sample collected from beneath the waste oil UST. The volatile compound, chlorobenzene, was present at 0.012 ppm and

TPH3. 58,000 Mg

the semivolatile compounds, 2-methylnaphthalene and naphthalene, were present at 0.44 and 0.87 ppm, respectively. No other EPA Test Method 8010 and 8270 constituents were detected. In addition, the metals chromium, lead, nickel, and zinc were detected at 65, 5.1, 70, and 57 ppm respectively in the soil sample collected from beneath the waste oil UST.

DISCUSSION

Based on visual examination and analytical results there has been a release of petroleum hydrocarbons to the area surrounding the USTs. The majority of constituents detected are gasoline, diesel, motor oil, and oil and grease. At the present time, the extent of release of petroleum hydrocarbons has not been defined. The highest concentrations of TPH as gasoline, diesel, and motor oil (240, 1,800, and 2,000 ppm respectively) were detected in soil collected from the UST excavation. In those samples analyzed for 10G, the highest concentration was detected at 370 ppm in soil collected from the ramp excavation approximately 35 feet south of the UST excavation.

HLA recommends that copies of this report be submitted to the California Regional Water Quality Control Board, San Francisco Bay Region (RWQCB) and the Alameda County Health Care Service Agency (County).

Very truly yours,

HARDING LAWSON ASSOCIATES

Christopher D. Rossitto

Staff Geologist

Michael L. Siembieda Associate Geologist

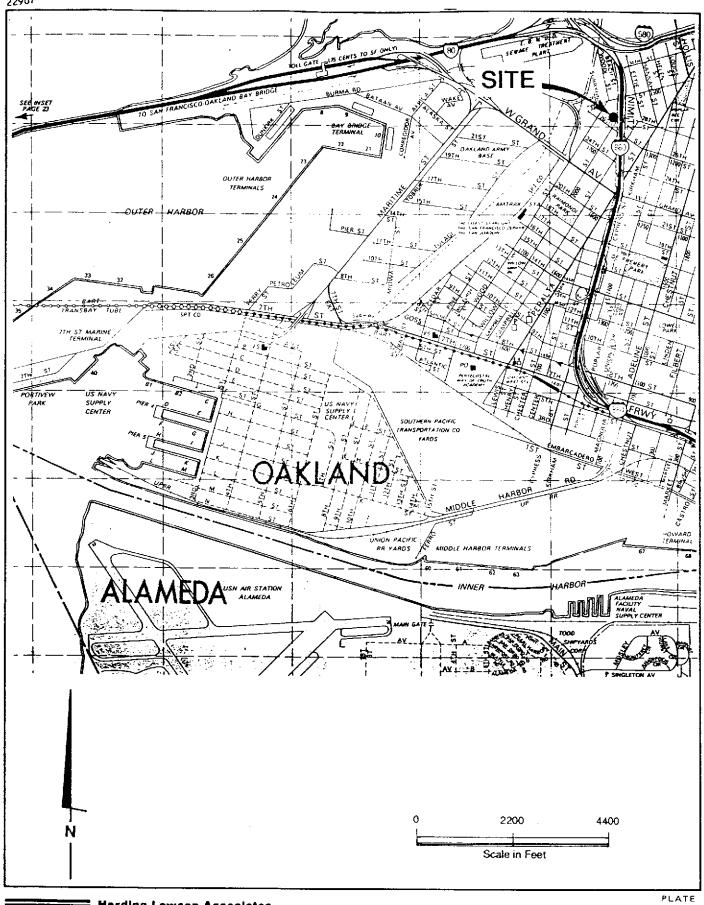
CDR/MLS/elb/E18429-H

Table 1. Analytical Results of Petroleum Hydrocarbons Constituents in Samples (ppm)¹

Harding Lawson Associates

Sample Number	Sample Date	Sample Location ²	Sample Type	Sample Depth (ft) ³	TPH as Gasoline	TPH as Diesel	TPH as Motor Oil	Total Oil & Grease	Benzene	Toluene	Ethyl- benzene	Total Xylenes
91062001	6/20/91	1	Soil-ramp Excavation (East End)	2.5	ND(1) ⁴	ND(1)	14	85	ND(0.0025)	ND(0.0025)	ND(0.0025)	ND(0.0025)
91062002	6/20/91	2	Soil-ramp Excavation (West End)	2.5	16	11	32	370	ND(0.0025)	ND(0.0025)	ND(0.0025)	ND(0.0025)
91062003	6/20/91	3	Water-ramp Excavation	3.0	58	1.3	ND(0.5)	NA ⁵	0.29	0.36	0.078	0.48
91062004	6/20/91	4	Waste Oil UST Contents	-	130,000	290,000	460,000	450,000	ND(0.0005)	85	ND(0.0005)	ND(0.0005)
91062005	6/20/91	5	Gasoline UST Contents		53	110	74	NA	0.86	0.079	0.065	2
91062101	6/21/91	6	Soil - UST Excavation Floor	6.5	41	12	14	120	0.93	1.3	0.89	2.5
91062102	6/21/91	7	Soil - UST Excavation Sidewall	2.5	240	1,800	2,000	NA	1.1	0.2	1.8	5.7
91062103	6/21/91	8	Soil - UST Backfill		81	230	410	NA	ND(0.0025)	ND(0.0025)	0.5	3.6

ppm - parts per million.


² Sample locations shown on Plate 2.

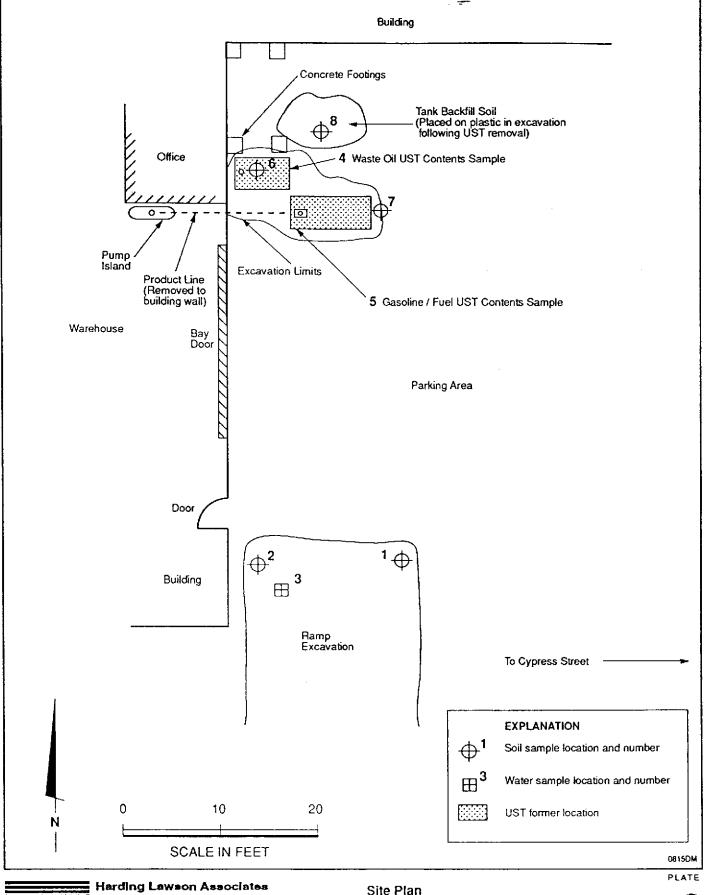
³ Sample depth in feet below ground surface.

ND(1) - Not detected at indicated detection limit.

⁵ NA - Not Analyzed.

Harding Lawson Associates

Engineering and **Environmental Services** Area Map 2855 Cypress Street


Oakland, California

DRAWN JOB NUMBER 18452,047.02 PΚ

APPROVED

DATE 8/91

REVISED DATE

Engineering and Environmental Services

Site Plan 2855 Cypress Street

Oakland, California

DRAWN JOB NUMBER PKc 18452,047.02 APPROVED

DATE 8/91

REVISED DATE

Table 2. Analytical Results of Volatile and Semivolatile Organic Compounds and Metals in Samples (ppm)¹

Harding Lawson Associates

		Harding Lawson Associate tank intent							
Sample Number ² Sample Location	91062001 1	91062002 2	91062003 3	91062004	91062005	91062101 6	92062102 7	92062103 8	
EPA Method 8010 Parameters ³ (Volatile Organic Compounds)									
Chlorobenzene	ND ⁴	ND	ND	0.032	ND	0.012	NA ⁵	NA	
1,2-Dichloroethaπe	ND	ND	ND	0.61	0.0064	ND	NA	NA	
Methylene Chloride	ND	ND	ND	12	ND	ND	NA	NA	
Trichloroethane	ND	ND	ND	0.0095	ND .	ND	NA	NA	
EPA Method 8270 Parameters ⁶ (Semivolatile Organic Compounds)				Andready of the Andready of th	,	and the second s			
2-Methylnapthalene	ND	ND	ND	87	2	0.44	NA	NA	
Naphthalene	ND	ND	ND	ND	2.4	0.87	NA	NA	
Phenol	ND	ND	0.067	170	ND	\ ND	NA	NA	
4-Methylphenol	ND	ND	ND	160	ND	ND	NA	NA	
2,4-Dimethylphenol	ND	ND	ND	ND	0.51	ND	NÁ	NA	
Metals									
Cadmium	ND	ND	ND	3	ND	ND	NA	NA	
Chromium	30	50	0.21	21	ND	65	NA	NA	
Lead	2.9	20	0.13	640	0.04	5.1	NA	NA	
Nickel	27	48	0.25	30	0.09	70	NA NA	NA NA	
Zinc	19	42	0.3	870	0.63	√ 57	NA	NA	
d									
ppm - parts per million. Corresponding sample dal	te. location, type, ar	nd depth are show	wn in Table 1.						
3 All other EPA Method 801						1			

⁵ NA - Not Analyzed.

ND - Not Detected (detection limits shown in laboratory analytical report).

All other EPA Method 8270 Parameters were not detected.

DHS 8022 A EPA 8700—22 (Rev. 8-89) Previous editions are obsolete.

EPA 8700-22 (Rev. 6-89) Previous editions are obsolete.

White ISO SENDS THE COPY TO DONS WITH N BO DATE

20. Facility Owner or Operator Certification of receipt of hazardous materials covered by this manifest except as noted in item 19.

Do Not Write Below This Line

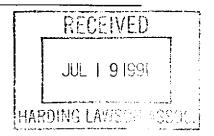
Day

EPA 8700-22 (Rev. 6-89) Previous editions are obsolete.

AC.

DHS 8022 A

7


つつつつか

GREEN: HAULER RETAINS

NET Pacific, Inc. 435 Tesconi Circle Santa Rosa, CA 95401

Tel: (707) 526-7200 Fax: (707) 526-9623

Mike Siembieda Harding Lawson Associates 200 Rush Landing Novato, CA 94947

Date: 07-16-91

NET Client Acct. No: 281 NET Pacific Log No: 8242 Received: 06-21-91 1734

Client Reference Information

Wareham/2855 Cypress St., Job: 18452,047.02

Sample analysis in support of the project referenced above has been completed and results are presented on following pages. Please refer to the enclosed "Key to Abbreviations" for definition of terms. Should you have questions regarding procedures or results, please feel welcome to contact Client Services.

Approved by:

Jules Skamarack Laboratory Manager

Enclosure(s)

Client Acct: 281 ©Client Name: Harding Lawson Associates

NET Log No: 8242

Date: 07-16-91

Page: 2

Ref: Wareham/2855 Cypress St., Job: 18452,047.02

SAMPLE DESCRIPTION:

91062001

06-20-91

1020

LAB Job No: (-89637)

LAB JOD NO: (-89637)							
Parameter	Method	Reporti Limit	ng Results	Units			
Oil & Grease(Total)	5520E	50	85	mg/Kg			
Cadmium	6010	2	ND	mg/Kg			
Chromium	6010	2	30	mg/Kg			
Lead (EPA 7421)	7421	0.2	2.9	mg/Kg			
Nickel	6010	5	27	mg/Kg			
Zinc	6010	2	19	mg/Kg			
METHOD 8010							
DATE ANALYZED			07-02-91				
DILUTION FACTOR*			1				
Bromodichloromethane		2.0	ND	ug/Kg			
Bromoform	•	2.0	ND	ug/Kg			
Bromomethane		2.0	ND	ug/Kg			
Carbon tetrachloride		2.0	ND	ug/Kg			
Chlorobenzene		2.0	ND	ug/Kg			
Chloroethane		2.0	ND	ug/Kg			
2-Chloroethylvinyl ether		5.0	מא	ug/Kg			
Chloroform		2.0	ND	ug/Kg			
Chloromethane		2.0	ND,	ug/Kg			
Dibromochloromethane		2.0	ND	ug/Kg			
1,2-Dichlorobenzene		2.0	ND	ug/Kg			
1,3-Dichlorobenzene		2.0	ND	ug/Kg			
1,4-Dichlorobenzene		2.0	ND	ug/Kg			
Dichlorodifluoromethane		2.0	ND	ug/Kg			
1,1-Dichloroethane		2.0	ND	ug/Kg			
1,2-Dichloroethane		2.0	ND	ug/Kg			
1,1-Dichloroethene		2.0	ND	ug/Kg			
trans-1,2-Dichloroethene		2.0	ND	ug/Kg			
1,2-Dichloropropane		2.0	ND	ug/Kg			
cis-1,3-Dichloropropene		2.0	ND	ug/Kg			
trans-1,3-Dichloropropene		2.0	ND	ug/Kg			
Methylene Chloride		50	ND	ug/Kg			
1,1,2,2-Tetrachloroethane		2.0	ND	ug/Kg			
Tetrachloroethene		2.0	ND	ug/Kg			
1,1,1-Trichloroethane		2.0	ND	ug/Kg			
1,1,2-Trichloroethane		2.0	ND	ug/Kg			
Trichloroethene		2.0	ND	ug/Kg			
Trichlorofluoromethane		2.0	ND	ug/Kg			
Vinyl chloride		2.0	ND	ug/Kg			

[®] Client Name: Harding Lawson Associates

NET Log No: 8242

Date: 07-16-91

Page: 3

Ref: Wareham/2855 Cypress St., Job: 18452,047.02

SAMPLE DESCRIPTION: 91062001

06-20-91

1020

LAB Job No: (-8	19637)			
Parameter	Method	Reporting Limit	Results	Unite
PETROLEUM HYDROCARBONS				
VOLATILE (SOIL)				
DILUTION FACTOR *			1	
DATE ANALYZED			07-03-91	
METHOD GC FID/5030				
as Gasoline		1	ND	mg/Kg
METHOD 8020		-		mg/ kg
DILUTION FACTOR *			1	
DATE ANALYZED			07-03-91	
Benzene		2.5	ND	ug/Kg
Ethylbenzene		2.5	ND	ug/Kg
Toluene		2.5	ND	ug/Kg
Xylenes, total		2.5	ND	ug/Kg
PETROLEUM HYDROCARBONS				
EXTRACTABLE (SOIL)				
DILUTION FACTOR *			1	
DATE EXTRACTED			_ 06-27-91	
DATE ANALYZED			06-30-91	5
METHOD GC FID/3550				
as Diesel		1	ND.	mg/Kg
as Motor Oil		10	14	mg/Kg

Client Name: Harding Lawson Associates

NET Log No: 8242

Date: 07-16-91

Page: 4

Ref: Wareham/2855 Cypress St., Job: 18452,047.02

SAMPLE DESCRIPTION: 91062001

06-20-91 1020

LAB Job No: (-89637)

Reporting

Parameter	Method	Limit	Results	Unite

Parameter	Method	Limit	Results	Units
METHOD 8270	<u> </u>			
DATE EXTRACTED			06-26-91	
DATE ANALYZED			06-28-91	
DILUTION FACTOR *			1	
Acenaphthene		330	ND	ug/Kg
Acenaphthylene		330	ND	ug/Kg
Aldrin		1600	ND	ug/Kg
Anthracene		330	ND	ug/Kg
Benzidine		1600	ND	ug/Kg
Benzo(a)anthracene		330	ND	ug/Kg
Benzo(b)fluoranthene		330	ND	ug/Kg
Benzo(k)fluoranthene		330	ND	ug/Kg
Benzo(a)pyrene		330	ND	ug/Kg
Benzo(g,h,i)perylene		330	ND	ug/Kg
Benzoic Acid		1600	ND	ug/Kg
Benyzl Alcohol		330	ND	ug/Kg
Butyl benzyl phthalate		330	ND	ug/Kg
delta-BHC		1600	ND	ug/Kg
gamma-BHC		1600	ND	ug/Kg
ois(2-chloroethyl)ether		330	ND.	ug/Kg
ois(2-chloroethoxy)methane		330	ND	ug/Kg
ois(2-chloroisopropyl)ethe		330	ИD	ug/Kg
ois(2-ethylhexyl)phthalate		330	ND	ug/Kg
4-Bromophenyl phenyl ether 4-Chloroanaline		330	ND	ug/Kg
		330	ND	ug/Kg
2-Chloronaphthalene		330	ND	ug/K g
4-Chlorophenyl phenyl ethe Chrysene		330	ND	ug/Kg
4,4'-DDD		330	ND	ug/Kg
1,4'-DDE		1600	ND	ug/Kg
4,4'-DDT		1600	ND	ug/Kg
Dibenzo(a,h)anthracene		1600	ND	ug/Kg
Dibenzofuran		330	ND	ug/Kg
Di-n-butylphthalate		330	ND	ug/Kg
l,2-Dichlorobenzene		330	ND	ug/Kg
1,3-Dichlorobenzene		330	ND	ug/Kg
l,4-Dichlorobenzene		330	ND	ug/Kg
3,3'-Dichlorobenzidine		330	ND	ug/Kg
Dieldrin		660	ND	ug/Kg
Diethylphthalate		1600	ND	ug/Kg
Dimethyl phthalate		330	ND	ug/Kg
2,4-Dinitrotoluene		330	ND	ug/Kg
2,6-Dinitrotoluene		330	ND	ug/Kg
Di-n-octyl phthalate		330	ND	ug/Kg
Indrin aldehyde		330	ND	ug/Kg
azacnyac		1600	ND	ug/Kg

Client Name: Harding Lawson Associates

NET Log No: 8242

Date: 07-16-91

Page: 5

Ref: Wareham/2855 Cypress St., Job: 18452,047.02

SAMPLE DESCRIPTION: 91062001

06-20-91

1020

LAB Job No: (-	-89637)
----------------	----------

_		Reportin	g	
Parameter	Method	Limit	Results	Units
Fluoranthene		330	ND	ug/Kg
Fluorene		330	ND	ug/Kg
Heptachlor		1600	ND	ug/Kg
Heptachlor epoxide		1600	ND	ug/Kg
Hexachlorobenzene		330	ND	ug/Kg
Hexachlorobutadiene		330	ND	ug/Kg
Hexachlorocyclopentadiene		330	ND	ug/Kg
Hexachloroethane		330	ND	ug/Kg
Indeno(1,2,3-cd)pyrene		330	ND	ug/Kg
Isophorone		330	ND	ug/Kg
2-Methylnaphthalene		330	ND	ug/Kg
Naphthalene		330	ND	ug/Kg
2-Nitroaniline		1600	ND	ug/Kg
3-Nitroaniline		1600	ND	ug/Kg
4-Nitroaniline		1600	ND	ug/Kg
Nitrobenzene		330	ND	ug/Kg
N-Nitroso-Di-N-propylamine	:	330	ND	ug/Kg
N-Nitrosodiphenylamine		330	ND	ug/Kg
Phenanthrene		330	ND	ug/Kg
Pyrene		330	ND	ug/Kg
1,2,4-Trichlorobenzene		330	ND.	ug/Kg
4-Chloro-3-methylphenol		330	ND	ug/Kg
2-Chlorophenol		330	ND	ug/Kg
2,4-Dichlorophenol		330	ND	ug/Kg
2,4-Dimethylphenol		330	ND	ug/Kg
2,4-Dinitrophenol		1600	ND	ug/Kg
4,6-Dinitro-2-methylphenol	•	1600	ND	ug/Kg
2-Nitrophenol		330	ND	ug/Kg
4~Nitrophenol		1600	ND	ug/Kg
Pentachlorophenol		1600	ND	ug/Kg
Phenol		330	ND	ug/Kg
2,4,6-Trichlorophenol		330	ND	ug/Kg
2-Methylphenol		330	ND	ug/Kg
4-Methylphenol		330	ND	ug/Kg
2,4,5-Trichlorophenol		1600	ND	ug/Kg
SURROGATE RESULTS				
Nitrobenzene-d5			45	% Rec.
2-Fluorobiphenyl			52	% Rec.
p-terphenyl-d14			. 70	% Rec.
Phenol-d5			45	% Rec.
2-Fluorophenol			40	% Rec.
2,4,6-Tribromophenol			64	% Rec.

©Client Name: Harding Lawson Associates

Date: 07-16-91

Page: 6

Ref: Wareham/2855 Cypress St., Job: 18452,047.02

SAMPLE DESCRIPTION: 91062002

06-20-91

1150

LAB Job No: (-89638)

DAD 000 00. (-030	30)	Reporti	5.7		
Parameter	Method	Limit	Results	Units	
Oil & Grease(Total)	5520E	50	370	mg/Kg	
Cadmium	6010	2	ND	mg/Kg	
Chromium	6010	2	50	mg/Kg	
Lead (EPA 7421)	7421	0.2	20	mg/Kg	
Nickel	6010	5	48	mg/Kg	
Zinc	6010	2	42	mg/Kg	
METHOD 8010					
DATE ANALYZED			07-02-91		
DILUTION FACTOR*			1		
Bromodichloromethane		2.0	ND	ug/Kg	
Bromoform		2.0	ИD	ug/Kg	
Bromomethane		2.0	ND	ug/Kg	
Carbon tetrachloride		2.0	ND	ug/Kg	
Chlorobenzene		2.0	ND	ug/Kg	
Chloroethane		2.0	ND	ug/Kg	
2-Chloroethylvinyl ether		5.0	ND	ug/Kg	
Chloroform		2.0	ND	ug/Kg	
Chloromethane		2.0	ND,	ug/Kg	
Dibromochloromethane		2.0	ND	ug/Kg	
1,2-Dichlorobenzene		2.0	ND	ug/Kg	
1,3-Dichlorobenzene		2.0	ND	ug/Kg	
1,4-Dichlorobenzene		2.0	ND	ug/Kg	
Dichlorodifluoromethane		2.0	ND	ug/Kg	
1,1-Dichloroethane		2.0	ND	ug/Kg	
1,2-Dichloroethane		2.0	ND	ug/Kg	
1,1-Dichloroethene		2.0	ND	ug/Kg	
trans-1,2-Dichloroethene		2.0	ND	ug/Kg	
1,2-Dichloropropane		2.0	ND	ug/Kg	
cis-1,3-Dichloropropene		2.0	ND	ug/Kg	
trans-1,3-Dichloropropene		2.0	ND	ug/Kg	
Methylene Chloride		50	ND	ug/Kg	
1,1,2,2-Tetrachloroethane		2.0	ND	ug/Kg	
Tetrachloroethene		2.0	ND	ug/Kg	
1,1,1-Trichloroethane		2.0	ND	ug/Kg	
1,1,2-Trichloroethane		2.0	ND	ug/Kg	
Trichloroethene		2.0	ND	ug/Kg	
Trichlorofluoromethane		2.0	ИD	ug/Kg	
Vinyl chloride		2.0	ND	ug/Kg	

Client Name: Harding Lawson Associates

Date: 07-16-91 Page: 7

NET Log No: 8242

Ref: Wareham/2855 Cypress St., Job: 18452,047.02

SAMPLE DESCRIPTION:

91062002

06-20-91

1150

LAB Job No: (-89638**)

Parameter	Method	Reporting Limit	Results	Units
PETROLEUM HYDROCARBONS				
VOLATILE (SOIL)				
DILUTION FACTOR *			1	
DATE ANALYZED			07-02-91	
METHOD GC FID/5030				
as Gasoline		1	16	mg/Kg
METHOD 8020				2, 2
DILUTION FACTOR *			1	
DATE ANALYZED			07-02-91	
Benzene		2.5	ND	ug/Kg
Ethylbenzene		2.5	ND	ug/Kg
Toluene		2.5	ND	ug/Kg
Xylenes, total		2.5	ND	ug/Kg
PETROLEUM HYDROCARBONS				
EXTRACTABLE (SOIL)				
DILUTION FACTOR *			1	
DATE EXTRACTED			06-27-91	
DATE ANALYZED			06-30-91	•
METHOD GC FID/3550				
as Diesel		1	11.	mg/Kg
as Motor Oil		10	32	mg/Kg

^{**} Note: The positive result for the PETROLEUM HYDROCARBONS as Gasoline analysis on this sample appears to be a heavier hydrocarbon than gasoline.

Client Name: Harding Lawson Associates

NET Log No: 8242

Date: 07-16-91

Page: 8

Ref: Wareham/2855 Cypress St., Job: 18452,047.02

SAMPLE DESCRIPTION: 91062002

06-20-91 1150

Daramatar	Vathad	Reporting Limit Results		Marika
Parameter	Method	Limit	Results	Units
METHOD 8270				
DATE EXTRACTED			06-26-91	
DATE ANALYZED			06-28-91	
DILUTION FACTOR *			1	
Acenaphthene		330	ND	ug/Kg
Acenaphthylene		330	ND	ug/Kg
Aldrin		1600	ND	ug/Kg
Anthracene		330	ND	ug/Kg
Benzidine		1600	ND	ug/Kg
Benzo(a)anthracene		330	ND	ug/Kg
Benzo(b)fluoranthene		330	ND	ug/Kg
Benzo(k)fluoranthene		330	ND	ug/Kg
Benzo(a)pyrene		330	ND	ug/Kg
Benzo(g,h,i)perylene		330	ND	ug/Kg
Benzoic Acid		1600	ND	ug/Kg
Benyzl Alcohol		330	ND	ug/Kg
Butyl benzyl phthalate		330	ND	ug/Kg
delta-BHC		1600	ND	ug/Kg
gamma-BHC		1600	ND	ug/Kg
<pre>bis(2-chloroethyl)ether bis(2-chloroethoxy)methane</pre>		330	ND.	ug/Kg
bis(2-chloroisopropyl)ethe		330 330	ND	ug/Kg
bis(2-ethylhexyl)phthalate		330	ND ND	ug/Kg
4-Bromophenyl phenyl ether		330	ND ND	ug/Kg
4-Chloroanaline	•	330		ug/Kg
2-Chloronaphthalene		330	ND ND	ug/Kg
4-Chlorophenyl phenyl ethe	5	330	ND	ug/Kg
Chrysene	-	330	ND	ug/Kg
4,4'-DDD		1600	ND	ug/Kg
4,4'-DDE		1600	ND	ug/Kg
4,4'-DDT		1600	ND	ug/Kg ug/Kg
Dibenzo(a,h)anthracene		330	ND	ug/Kg ug/Kg
Dibenzofuran		330	ND	ug/Kg
Di-n-butylphthalate		330	ND	ug/Kg
1,2-Dichlorobenzene		330	ND	ug/Kg
1,3-Dichlorobenzene		330	ND	ug/Kg
1,4-Dichlorobenzene		330	ND	ug/Kg
3,3'-Dichlorobenzidine		660	ND	ug/Kg
Dieldrin		1600	ND	ug/Kg
Diethylphthalate		330	ND	ug/Kg
Dimethyl phthalate		330	ND	ug/Kg
2,4-Dinitrotoluene		330	ND	ug/Kg
2,6-Dinitrotoluene		330	ND	ug/Kg
Di-n-octyl phthalate		330	ND	ug/Kg
Endrin aldehyde		1600	ND	ug/Kg

® Client Name: Harding Lawson Associates

Date: 07-16-91

Page: 9

NET Log No: 8242

Ref: Wareham/2855 Cypress St., Job: 18452,047.02

SAMPLE DESCRIPTION: 91062002

06-20-91

1150

LAB Job No: (-89638)

LAB Job No: (-8	9638)	Reporting			
Parameter	Method	Limit	Results	Units	
• · · · · · · · · · · · · · · · · · · ·					
Fluoranthene		330	ND	ug/Kg	
Fluorene		330	ND	ug/Kg	
Heptachlor		1600	ND	ug/Kg	
Heptachlor epoxide		1600	ND	ug/Kg	
Hexachlorobenzene		330	ND	ug/Kg	
Hexachlorobutadiene		330	ND	ug/Kg	
Hexachlorocyclopentadien	е	330	ND	ug/Kg	
Hexachloroethane		330	ND ·	ug/Kg	
Indeno(1,2,3-cd)pyrene		330	ND	ug/Kg	
Isophorone		330	ND	ug/Kg	
2-Methylnaphthalene		330	ND	ug/Kg	
Naphthalene		330	ND	ug/Kg	
2-Nitroaniline		1600	ND	ug/Kg	
3-Nitroaniline		1600	ND	ug/Kg	
4-Nitroaniline		1600	ND	ug/Kg	
Nitrobenzene		330	ND	ug/Kg	
N-Nitroso-Di-N-propylami	ne	330	ND	ug/Kg	
N-Nitrosodiphenylamine		330	ND	ug/Kg	
Phenanthrene		330	ND	ug/Kg	
Pyrene		330	ND	ug/Kg	
1,2,4-Trichlorobenzene		330	ND	ug/Kg	
4-Chloro-3-methylphenol		330	ND	ug/Kg	
2-Chlorophenol		330	ND	ug/Kg	
2,4-Dichlorophenol		330	ND	ug/Kg	
2,4-Dimethylphenol		330	ND	ug/Kg	
2,4-Dinitrophenol		1600	ND	ug/Kg	
4,6-Dinitro-2-methylphen	a ì	1600	ND	ug/Kg	
2-Nitrophenol	-	330	ND	ug/Kg	
4-Nitrophenol		1600	ND		
Pentachlorophenol		1600	ND	ug/Kg	
Phenol		330	ND	ug/Kg	
2,4,6-Trichlorophenol				ug/Kg	
2-Methylphenol		330	ND	ug/Kg	
4-Methylphenol		330	ND	ug/Kg	
2,4,5-Trichlorophenol		330	ND	ug/Kg	
SURROGATE RESULTS		1600	ND	ug/Kg	
Nitrobenzene-d5					
			48	% Rec.	
2-Fluorobiphenyl			58	% Rec.	
p-terphenyl-d14			81	% Rec.	
Phenol-d5			50	% Rec.	
2-Fluorophenol			43	% Rec.	
2,4,6-Tribromophenol			75	% Rec.	

© Client Name: Harding Lawson Associates

NET Log No: 8242

Date: 07-16-91

Page: 10

Ref: Wareham/2855 Cypress St., Job: 18452,047.02

SAMPLE DESCRIPTION: 91062101 06-21-91 1142

LAB Job No: (-89639)

Parameter	Method	Reporti Limit	ng Results	Units
Oil & Grease(Total)	5520E	50	120	mg/Kg
Cadmium	6010	2	ND	mg/Kg
Chromium	6010	2	65	mg/Kg
Lead (EPA 7421)	7421	0.2	5.1	mg/Kg
Nickel	6010	5	70	mg/Kg
Zinc	6010	2	57	mg/Kg
METHOD 8010				
DATE ANALYZED			07-02-91	
DILUTION FACTOR*			1	
Bromodichloromethane		2.0	ND	ug/Kg
Bromoform		2.0	ND	ug/Kg
Bromomethane		2.0	ND	ug/Kg
Carbon tetrachloride		2.0	ND	ug/Kg
Chlorobenzene		2.0	12	ug/Kg
Chloroethane		2.0	ND	ug/Kg
2-Chloroethylvinyl ether		5.0	ND	ug/Kg
Chloroform		2.0	ND	ug/Kg
Chloromethane		2.0	ND.	ug/Kg
Dibromochloromethane		2.0	ND	ug/Kg
1,2-Dichlorobenzene		2.0	ND	ug/Kg
1,3-Dichlorobenzene		2.0	ND	ug/Kg
1,4-Dichlorobenzene		2.0	ND	ug/Kg
Dichlorodifluoromethane		2.0	ND	ug/Kg
1,1-Dichloroethane		2.0	ND	ug/Kg
1,2-Dichloroethane		2.0	ND	ug/Kg
1,1-Dichloroethene		2.0	ND	ug/Kg
trans-1,2-Dichloroethene		2.0	ND	ug/Kg
1,2-Dichloropropane		2.0	ND	ug/Kg
cis-1,3-Dichloropropene		2.0	ND	ug/Kg
trans-1,3-Dichloropropene		2.0	ND	ug/Kg
Methylene Chloride		50	ND	ug/Kg
1,1,2,2-Tetrachloroethane		2.0	ND	ug/Kg
Tetrachloroethene		2.0	ND	ug/Kg
1,1,1-Trichloroethane		2.0	ND	ug/Kg
1,1,2-Trichloroethane		2.0	ND	ug/Kg
Trichloroethene		2.0	ND	ug/Kg
Trichlorofluoromethane		2.0	ND	ug/Kg
Vinyl chloride		2.0	ND	ug/Kg

© Client Name: Harding Lawson Associates

NET Log No: 8242

Date: 07-16-91

Page: 11

Ref: Wareham/2855 Cypress St., Job: 18452,047.02

SAMPLE DESCRIPTION: 91062101

06-21-91

1142

LAB Job No: (-89639)

LAB JOD NO: (-8	,,,,,	Reportin	a	
Parameter	Method	Limit	Results	Units
PETROLEUM HYDROCARBONS				
VOLATILE (SOIL)				
DILUTION FACTOR *			5	
DATE ANALYZED			07-03-91	
METHOD GC FID/5030				
as Gasoline		1	41	mg/Kg
METHOD 8020				
DILUTION FACTOR *			20	
DATE ANALYZED			07-06-91	
Benzene		2.5	930	ug/Kg
Ethylbenzene		2.5	890	ug/Kg
Toluene		2.5	1,300	ug/Kg
Xylenes, total		2.5	2,500	ug/Kg
PETROLEUM HYDROCARBONS				
EXTRACTABLE (SOIL)				
DILUTION FACTOR *			1	
DATE EXTRACTED			06-27-91	
DATE ANALYZED			06-30-91	-
METHOD GC FID/3550				
as Diesel		1	12	mg/Kg
as Motor Oil		10	14	mg/Kg

® Client Name: Harding Lawson Associates

NET Log No: 8242

Date: 07-16-91

Page: 12

Ref: Wareham/2855 Cypress St., Job: 18452,047.02

SAMPLE DESCRIPTION: 91062101

06-21-91

1142

LAB Job No:

(-89639)

Reporting

~	-		
Limit		Results	Unite

Parameter	Method	Limit	Results	Units
METHOD 8270				
DATE EXTRACTED			06-26-91	
DATE ANALYZED			06-28-91	
DILUTION FACTOR *			1	
Acenaphthene		330	ND	ug/Kg
Acenaphthylene		330	ND	ug/Kg
Aldrin		1600	ND	ug/Kg
Anthracene		330	ND	ug/Kg
Benzidine		1600	ND	ug/Kg
Benzo(a)anthracene		330	ND	ug/Kg
Benzo(b)fluoranthene		330	ND	ug/Kg
Benzo(k) fluoranthene		330	ND	ug/Kg
Benzo(a)pyrene		330	ND	ug/Kg
Benzo(g,h,i)perylene		330	ND	ug/Kg
Benzoic Acid		1600	ND	ug/Kg
Benyzl Alcohol		330	ND	ug/Kg
Butyl benzyl phthalate		330	ND	ug/Kg
delta-BHC		1600	ND	ug/Kg
gamma-BHC		1600	ND	ug/Kg
bis(2-chloroethyl)ether		330	ND.	ug/Kg
bis(2-chloroethoxy)methane		330	ND	ug/Kg
bis(2-chloroisopropyl)ethe		330	ND	ug/Kg
bis(2-ethylhexyl)phthalate		330	ND	ug/Kg
4-Bromophenyl phenyl ether		330	ND	ug/Kg
4-Chloroanaline		330	ND	ug/Kg
2-Chloronaphthalene		330	ND	ug/Kg
4-Chlorophenyl phenyl ethe		330	ND	ug/Kg
Chrysene		330	ND	ug/Kg
4,4'-DDD		1600	ND	ug/Kg
4,4'-DDE		1600	ND	ug/Kg
4,4'-DDT		1600	ИD	ug/Kg
Dibenzo(a,h)anthracene		330	ND	ug/Kg
Dibenzofuran		330	ND	ug/Kg
Di-n-butylphthalate		330	ND	ug/Kg
1,2-Dichlorobenzene		330	ND	ug/Kg
1,3-Dichlorobenzene		330	ND	ug/Kg
1,4-Dichlorobenzene		330	ND	ug/Kg
3,3'-Dichlorobenzidine		660	ND	ug/Kg
Dieldrin		1600	ND	ug/Kg
Diethylphthalate		330	ND	ug/Kg
Dimethyl phthalate		330	ND	ug/Kg
2,4-Dinitrotoluene		330	ND	ug/Kg
2,6-Dinitrotoluene		330	ND	ug/Kg
Di-n-octyl phthalate		330	ND	ug/Kg
Endrin aldehyde		1600	ND	ug/Kg

Client Name: Harding Lawson Associates

NET Log No: 8242

Date: 07-16-91

Page: 13

Ref: Wareham/2855 Cypress St., Job: 18452,047.02

SAMPLE DESCRIPTION: 91062101 06-21-91 1142

LAB Job No: (-89639)

		Reportin		
Parameter	Method	Limit	Results	Units
Fluoranthene		330	ND	ug/Kg
Fluorene		330	ND	ug/Kg
Heptachlor		1600	ND	ug/Kg
Heptachlor epoxide		1600	ND	ug/Kg
Hexachlorobenzene		330	ND	ug/Kg
Hexachlorobutadiene		330	ND	ug/Kg
Hexachl orocyclopentadie:	ne	330	ND	ug/Kg
Hexachloroethane		330	ND	ug/Kg
Indeno(1,2,3-cd)pyrene		330	ND	ug/Kg
Isophorone		330	ND	ug/Kg
2-Methylnaphthalene		330	440	ug/Kg
Naphthalene		330	870	ug/Kg
2-Nitroaniline		1600	ND	ug/Kg
3-Nitroaniline		1600	ND	ug/Kg
4-Nitroaniline		1600	ND	ug/Kg
Nitrobenzene		330	ND	ug/Kg
N-Nitroso-Di-N-propylam:	ine	330	ND	ug/Kg
N-Nitrosodiphenylamine		330	ND	ug/Kg
Phenanthrene		330	ND	ug/Kg
Pyrene		330	ND	ug/Kg
1,2,4-Trichlorobenzene		330	ND	ug/Kg
4-Chloro-3-methylphenol		330	ND	ug/Kg
2-Chlorophenol		330	ND	ug/Kg
2,4-Dichlorophenol		330	ND	ug/Kg
2,4-Dimethylphenol		330	ИD	ug/Kg
2,4-Dinitrophenol		1600	ND	ug/Kg
4,6-Dinitro-2-methylphe	nol	1600	ND	ug/Kg
2-Nitrophenol		330	ND	ug/Kg
4-Nitrophenol		1600	ND	ug/Kg
Pentachlorophenol		1600	ND	ug/Kg
Phenol		330	ND	ug/Kg
2,4,6-Trichlorophenol		330	ND	ug/Kg
2-Methylphenol		330	ND	ug/Kg
4-Methylphenol		330	ND	ug/Kg
2,4,5-Trichlorophenol		1600	ND	ug/Kg
SURROGATE RESULTS				
Nitrobenzene-d5			43	% Rec.
2-Fluorobiphenyl			53	% Rec.
p-terphenyl-d14			74	% Rec.
Phenol-d5			46	% Rec.
2-Fluorophenol			39	% Rec.
2,4,6-Tribromophenol			73	% Rec.

[®] Client Name: Harding Lawson Associates

NET Log No: 8242w

Date: 07-16-91

Page: 14

Ref: Wareham/2855 Cypress St., Job: 18452,047.02

SAMPLE DESCRIPTION: 91062003 06-20-91 1215

LAB Job No: (-89640)

,	,	Doporting			
Parameter	Method	Reporting Limit	Results	Units	
Cadmium	6010	0.02	ND	mg/L	
Chromium, total	6010	0.02	0.21	mg/L	
Lead (EPA 7421)	7421	0.002	0.13	mg/L	
Nickel	6010	0.05	0.25	mg/L	
Zinc	6010	0.02	0.30	mg/L	
METHOD 601					
DATE ANALYZED			07-02-91		
DILUTION FACTOR*			1		
Bromodichloromethane		0.4	ND	ug/L	
Bromoform		0.4	ND	ug/L	
Bromomethane		0.4	ND	ug/L	
Carbon tetrachloride		0.4	ND	ug/L	
Chlorobenzene		0.4	ND	ug/L	
Chloroethane		0.4	ND	ug/L	
2-Chloroethylvinyl ether		1.0	ND	ug/L	
Chloroform		0.4	ND	ug/L	
Chloromethane		0.4	ND	ug/L	
Dibromochloromethane		0.4	ND	ug/L	
1,2-Dichlorobenzene		0.4	ND.	ug/L	
1,3-Dichlorobenzene		0.4	ND	ug/L	
1,4-Dichlorobenzene		0.4	ND	ug/L	
Dichlorodifluoromethane		0.4	ND	ug/L	
1,1-Dichloroethane		0.4	ND	ug/L	
1,2-Dichloroethane		0.4	ND	ug/L	
1,1-Dichloroethene		0.4	ND	ug/L	
trans-1,2-Dichloroethene		0.4	ND	ug/L	
1,2-Dichloropropane		0.4	ND	ug/L	
cis-1,3-Dichloropropene		0.4	ND	ug/L	
trans-1,3-Dichloropropene		0.4	ND	ug/L	
Methylene Chloride		10	ND	ug/L	
1,1,2,2-Tetrachloroethane		0.4	ND	ug/L	
Tetrachloroethene		0.4	ND	ug/L	
l,1,1-Trichloroethane		0.4	ND	ug/L	
1,1,2-Trichloroethane		0.4	ND	ug/L	
Trichloroethene		0.4	ND	ug/L	
Trichlorofluoromethane		0.4	ND	ug/L	
Vinyl chloride		2.0	ND	ug/L	

[®] Client Name: Harding Lawson Associates

NET Log No: 8242w

Date: 07-16-91

Page: 15

Ref: Wareham/2855 Cypress St., Job: 18452,047.02

SAMPLE DESCRIPTION: 91062003

06-20-91

1215

LAB	Job	No:	(-89640	}
-----	-----	-----	---------	---

	,	Reporting		
Parameter	Method	Limit	Results	Units
PETROLEUM HYDROCARBONS				
VOLATILE (WATER)				
DILUTION FACTOR *			100	
DATE ANALYZED			07-04-91	
METHOD GC FID/5030				
as Gasoline		0.05	58	mg/L
METHOD 602				··· ·j / –
DILUTION FACTOR *			100	
DATE ANALYZED			07-04-91	•
Benzene		0.5	290	ug/L
Ethylbenzene		0.5	78	ug/L
Toluene		0.5	360	ug/L
Xylenes, total		0.5	480	ug/L
PETROLEUM HYDROCARBONS				
EXTRACTABLE (WATER)				
DILUTION FACTOR *			1	
DATE EXTRACTED			06-26-91	
DATE ANALYZED			06-27-91	
METHOD GC FID/3510			-	
as Diesel		0.05	1.3	mg/L
as Motor Oil		0.5	ND	mg/L

® Client Name: Harding Lawson Associates

NET Log No: 8242w

Date: 07-16-91

Page: 16

Ref: Wareham/2855 Cypress St., Job: 18452,047.02

SAMPLE DESCRIPTION: 91062003

06-20-91

1215

LAB Job No: (-89640)

Parameter	Method	Reporting Limit	Results	Units
METHOD 8270				_ '
DATE EXTRACTED			06-28-91	
DATE ANALYZED			07-01-91	
DILUTION FACTOR *			2	
Acenaphthene		10	ND	ug/L
Acenaphthylene		10	ND	ug/L
Aldrin		50	ND	ug/L
Anthracene		10	ND	ug/L
Benzidine		44	ND	ug/L
Benzo(a)anthracene		10	ND	ug/L
Benzo(b)fluoranthene		10	ND .	ug/L
Benzo(k) fluoranthene		10	ND	ug/L
Benzo(a)pyrene		10	ND	ug/L
Benzo(g,h,i)perylene		10	ND	ug/L
Benzoic Acid		50	ND	ug/L
Benzyl Alcohol		10	ND	ug/L
Butyl benzyl phthalate		10	ND	ug/L
delta-BHC		50	ND	ug/L
gamma-BHC		50	ND	ug/L
bis(2-chloroethyl) ether		10	ND.	ug/L
bis(2-chloroethoxy)methane	2	10	ND	ug/L
bis(2-chloroisopropyl)ethe	2	10	ND	ug/L
bis(2-ethylhexyl)phthalate	•	10	ND	ug/L
4-Bromophenyl phenyl ether	_	10	ND	ug/L
4-Chloroaniline		10	ND	ug/L
2-Chloronaphthalene		10	ND	ug/L
4-Chlorophenyl phenyl ethe	2	10	ND	ug/L
Chrysene		10	ND	ug/Ļ
4,4-DDD		50	ND	ug/L
4,4-DDE		50	ND	ug/L
4,4-DDT		50	ND	ug/L
Dibenzo(a,h)anthracene		10	ND	ug/L
Dibenzofuran		10	ND	ug/L
Di-n-butylphthalate		10	ND	ug/L
1,2-Dichlorobenzene		10	ND	ug/L
1,3-Dichlorobenzene		10	ND	ug/L
1,4-Dichlorobenzene		10	ND	ug/L
3,3'-Dichlorobenzidine		20	ND	ug/L
Dieldrin		50	ND	ug/L
Diethylphthalate		10	ND	ug/L
Dimethyl phthalate		10	ND	ug/L
2,4-Dinitrotoluene		10	ND	ug/L
2,6-Dinitrotoluene		10	ND	ug/L
Di-n-octyl phthalate		10	ND	ug/L
Endrin aldehyde		50	ND	ug/L

® Client Name: Harding Lawson Associates

Page: 17 NET Log No: 8242w

Date: 07-16-91

Ref: Wareham/2855 Cypress St., Job: 18452,047.02

SAMPLE DESCRIPTION: 91062003 06-20-91 1215

LAB Job No: (-89640)

Parameter Method Limit Results Units	22 002 110. (0)0	,	Reporting			
Fluoranthene	Parameter	Method	-	-	Units	
Fluorene						
Fluorene	Fluoranthene		10	ND	ug/L	
Heptachlor	Fluorene		10	ND		
Heptachlor epoxide	Heptachlor		50	ND		
Hexachlorobenzene 10 ND ug/L Hexachlorocyclopentadiene 10 ND ug/L Hexachlorocyclopentadiene 10 ND ug/L Hexachlorocethane 10 ND ug/L Indeno(1,2,3-cd)pyrene 10 ND ug/L Isophorone 10 ND ug/L 2-Methylnaphthalene 10 ND ug/L Naphthalene 10 ND ug/L 2-Nitroaniline 50 ND ug/L 3-Nitroaniline 50 ND ug/L 4-Nitroaniline 50 ND ug/L N-Introaniline 50 ND ug/L N-Introaniline 50 ND ug/L 4-Nitroaniline 50 ND ug/L N-Introaniline 50 ND ug/L N-Introaniline 50 ND ug/L N-Introaniline 50 ND ug/L N-Introaniline 50 ND	Heptachlor epoxide		50	ND		
Hexachlorobutadiene				ND		
Hexachlorocyclopentadiene 10 ND ug/L Hexachlorocethane 10 ND ug/L Indeno(1,2,3-cd)pyrene 10 ND ug/L Isophorone 10 ND ug/L 2-Methylnaphthalene 10 ND ug/L Naphthalene 10 ND ug/L 2-Nitroaniline 50 ND ug/L 3-Nitroaniline 50 ND ug/L 4-Nitroaniline 50 ND ug/L Nitrobenzene 10 ND ug/L Nitrobenzene 10 ND ug/L N-nitroso-Di-N-propylamine 10 ND ug/L N-nitroso-Di-N-propylamine 10 ND ug/L N-nitroso-Di-N-propylamine 10 ND ug/L N-nitroso-Di-N-propylamine 10 ND ug/L N-ritroso-Di-N-propylamine 10 ND ug/L N-ritroso-Di-N-propylamine 10 ND ug/L 1,2,4-Trichlor	Hexachlorobutadiene		10		- ·	
Hexachloroethane	Hexachlorocyclopentadiene		10	ND		
Indeno(1,2,3-cd)pyrene				ND		
Isophorone	Indeno(1,2,3-cd)pyrene		10	ND		
2-Methylnaphthalene 10 ND ug/L Naphthalene 10 ND ug/L 2-Nitroaniline 50 ND ug/L 3-Nitroaniline 50 ND ug/L 4-Nitroaniline 50 ND ug/L N-trosaniline 50 ND ug/L N-trosaniline 10 ND ug/L N-trosaniline 50 ND ug/L N-trosaniline 10 ND ug/L N-trosaniline 10 ND ug/L N-trosaniline 10 ND ug/L N-ritroscolline 10 ND ug/L ND ug/L ND ug/L N-trosc			10	ND		
Naphthalene			10		- · · · · · · · · · · · · · · · · · · ·	
2-Nitroaniline	- -				•	
3-Nitroaniline	_		50			
4-Nitroaniline 50 ND ug/L Nitrobenzene 10 ND ug/L N-Nitroso-Di-N-propylamine 10 ND ug/L N-nitrosodiphenylamine 10 ND ug/L Phenanthrene 10 ND ug/L Phenanthrene 10 ND ug/L 1,2,4-Trichlorobenzene 10 ND ug/L 4-Chloro-3-methylphenol 10 ND ug/L 2,4-Dichlorophenol 10 ND ug/L 2,4-Dichlorophenol 10 ND ug/L 2,4-Dimethylphenol 10 ND ug/L 2,4-Dimethylphenol 50 ND ug/L 4,6-Dinitrophenol 50 ND ug/L 4,6-Dinitrophenol 50 ND ug/L 2-Nitrophenol 50 ND ug/L 4-Nitrophenol 50 ND ug/L Phenol 10 ND ug/L 2,4,6-Trichlorophenol 10	3-Nitroaniline					
Nitrobenzene 10 ND ug/L N-Nitroso-Di-N-propylamine 10 ND ug/L N-nitrosodiphenylamine 10 ND ug/L Phenanthrene 10 ND ug/L Pyrene 10 ND ug/L 1,2,4-Trichlorobenzene 10 ND ug/L 4-Chloro-3-methylphenol 10 ND ug/L 2-d-Dinchlorophenol 10 ND ug/L 2,4-Dimethylphenol 10 ND ug/L 2,4-Dimitrophenol 50 ND ug/L 2,4-Dinitrophenol 50 ND ug/L 2-Nitrophenol 50 ND ug/L 2-Nitrophenol 50 ND ug/L 4-Nitrophenol 50 ND ug/L Pentachlorophenol 50 ND ug/L 2,4,6-Trichlorophenol 10 ND ug/L 2,4,6-Trichlorophenol 10 ND ug/L 2,4,5-Trichlorophenol 50					- · ·	
N-Nitroso-Di-N-propylamine 10 ND ug/L N-nitrosodiphenylamine 10 ND ug/L Phenanthrene 10 ND ug/L Pyrene 10 ND ug/L 1,2,4-Trichlorobenzene 10 ND ug/L 4-Chloro-3-methylphenol 10 ND ug/L 2,4-Dichlorophenol 10 ND ug/L 2,4-Dintlorophenol 10 ND ug/L 2,4-Dinitrophenol 50 ND ug/L 4,6-Dinitro-2-methylphenol 50 ND ug/L 2-Nitrophenol 10 ND ug/L 4-Nitrophenol 50 ND ug/L 4-Nitrophenol 50 ND ug/L Pentachlorophenol 50 ND ug/L 2,4,6-Trichlorophenol 10 ND ug/L 2,4,6-Trichlorophenol 10 ND ug/L 2,4,5-Trichlorophenol 50 ND ug/L 2,4,5-Trichlorophenol	Nitrobenzene				-,	
N-nitrosodiphenylamine 10	N-Nitroso-Di-N-propylamine		10			
Phenanthrene 10 ND ug/L Pyrene 10 ND ug/L 1,2,4-Trichlorobenzene 10 ND ug/L 4-Chloro-3-methylphenol 10 ND ug/L 2-Chlorophenol 10 ND ug/L 2-Chlorophenol 10 ND ug/L 2,4-Dichlorophenol 10 ND ug/L 2,4-Dimethylphenol 50 ND ug/L 2,4-Dimitrophenol 50 ND ug/L 2,4-Dimitrophenol 50 ND ug/L 2,4-Dimitrophenol 50 ND ug/L 4,6-Dimitro-2-methylphenol 50 ND ug/L 2-Nitrophenol 50 ND ug/L 4-Nitrophenol 50 ND ug/L Phenol 10 ND ug/L 2,4,6-Trichlorophenol 10 ND ug/L 2-Methylphenol 10 ND ug/L 2,4,5-Trichlorophenol 50 ND	N-nitrosodiphenylamine					
Pyrene 10 ND ug/L 1,2,4-Trichlorobenzene 10 ND ug/L 4-Chloro-3-methylphenol 10 ND ug/L 2-Chlorophenol 10 ND ug/L 2,4-Dichlorophenol 10 ND ug/L 2,4-Dimethylphenol 10 ND ug/L 2,4-Dimethylphenol 50 ND ug/L 2,4-Dinitrophenol 10 ND ug/L 2-Nitrophenol 50 ND ug/L 2-Nitrophenol 50 ND ug/L 2,4-S-Trichlorophenol 10 ND ug/L 2,4-S-Trichlorophenol 50 ND ug/L 2,4-S-Trichlorophenol 50 ND ug/L 2,4-S-Trichlorophenol 49						
1,2,4-Trichlorobenzene 10 ND ug/L 4-Chloro-3-methylphenol 10 ND ug/L 2-Chlorophenol 10 ND ug/L 2,4-Dichlorophenol 10 ND ug/L 2,4-Dimethylphenol 10 ND ug/L 2,4-Dinitrophenol 50 ND ug/L 2,4-Dinitrophenol 50 ND ug/L 4,6-Dinitro-2-methylphenol 50 ND ug/L 2-Nitrophenol 10 ND ug/L 4-Nitrophenol 50 ND ug/L Pentachlorophenol 50 ND ug/L Pentachlorophenol 10 ND ug/L 2,4,6-Trichlorophenol 10 ND ug/L 2,4,5-Trichlorophenol 10 ND ug/L 2,4,5-Trichlorophenol 50 ND ug/L SURROGATE RESULTS Nitrobenzene-d5 49 % Rec. 2-Fluorobiphenyl 49 % Rec. 2-Fluorophenol 54 % Rec. 2-Fluorophenol	Pyrene		10	ND		
4-Chloro-3-methylphenol 10 ND ug/L 2-Chlorophenol 10 ND ug/L 2,4-Dichlorophenol 10 ND ug/L 2,4-Dimethylphenol 10 ND ug/L 2,4-Dinitrophenol 50 ND ug/L 4,6-Dinitro-2-methylphenol 50 ND ug/L 2-Nitrophenol 10 ND ug/L 4-Nitrophenol 50 ND ug/L Pentachlorophenol 50 ND ug/L Pentachlorophenol 10 67 ug/L 2,4,6-Trichlorophenol 10 ND ug/L 2-Methylphenol 10 ND ug/L 2-Methylphenol 10 ND ug/L 3-Antichlorophenol 50 ND	1,2,4-Trichlorobenzene		10			
2-Chlorophenol 10 ND ug/L 2,4-Dichlorophenol 10 ND ug/L 2,4-Dimethylphenol 10 ND ug/L 2,4-Dinitrophenol 50 ND ug/L 4,6-Dinitro-2-methylphenol 50 ND ug/L 2-Nitrophenol 10 ND ug/L 4-Nitrophenol 50 ND ug/L Pentachlorophenol 50 ND ug/L Pentachlorophenol 10 67 ug/L 2,4,6-Trichlorophenol 10 ND ug/L 2-Methylphenol 10 ND ug/L 2-Methylphenol 10 ND ug/L 2,4,5-Trichlorophenol 50 ND ug/L SURROGATE RESULTS Nitrobenzene-d5 49 % Rec. 2-Fluorobiphenyl 49 % Rec. p-terphenyl-d14 44 % Rec. Phenol-d5 57 % Rec. 2-Fluorophenol 54 % Rec.						
2,4-Dichlorophenol 10 ND ug/L 2,4-Dimethylphenol 10 ND ug/L 2,4-Dinitrophenol 50 ND ug/L 4,6-Dinitro-2-methylphenol 50 ND ug/L 2-Nitrophenol 10 ND ug/L 4-Nitrophenol 50 ND ug/L Pentachlorophenol 50 ND ug/L Phenol 10 67 ug/L 2,4,6-Trichlorophenol 10 ND ug/L 2-Methylphenol 10 ND ug/L 2-Methylphenol 10 ND ug/L 2,4,5-Trichlorophenol 50 ND ug/L SURROGATE RESULTS NItrobenzene-d5 49 % Rec. 2-Fluorobiphenyl 49 % Rec. p-terphenyl-d14 44 % Rec. Phenol-d5 57 % Rec. 2-Fluorophenol 54 % Rec.						
2,4-Dimethylphenol 10 ND ug/L 2,4-Dinitrophenol 50 ND ug/L 4,6-Dinitro-2-methylphenol 50 ND ug/L 2-Nitrophenol 10 ND ug/L 4-Nitrophenol 50 ND ug/L Pentachlorophenol 50 ND ug/L Phenol 10 67 ug/L 2,4,6-Trichlorophenol 10 ND ug/L 2-Methylphenol 10 ND ug/L 4-Methylphenol 10 ND ug/L 2,4,5-Trichlorophenol 50 ND ug/L SURROGATE RESULTS ND ug/L Nitrobenzene-d5 49 % Rec. 2-Fluorobiphenyl 49 % Rec. p-terphenyl-d14 44 % Rec. Phenol-d5 57 % Rec. 2-Fluorophenol 54 % Rec.			10	ND		
2,4-Dinitrophenol 50 ND ug/L 4,6-Dinitro-2-methylphenol 50 ND ug/L 2-Nitrophenol 10 ND ug/L 4-Nitrophenol 50 ND ug/L Pentachlorophenol 50 ND ug/L Pentachlorophenol 10 67 ug/L 2,4,6-Trichlorophenol 10 ND ug/L 2-Methylphenol 10 ND ug/L 4-Methylphenol 10 ND ug/L 2,4,5-Trichlorophenol 50 ND ug/L SURROGATE RESULTS NItrobenzene-d5 49 % Rec. Nitrobenzene-d5 49 % Rec. % Rec. 2-Fluorobiphenyl 49 % Rec. Phenol-d5 57 % Rec. 2-Fluorophenol 54 % Rec.			10	ND	T .	
4,6-Dinitro-2-methylphenol 50 ND ug/L 2-Nitrophenol 10 ND ug/L 4-Nitrophenol 50 ND ug/L Pentachlorophenol 50 ND ug/L Phenol 10 67 ug/L 2,4,6-Trichlorophenol 10 ND ug/L 2-Methylphenol 10 ND ug/L 4-Methylphenol 10 ND ug/L 2,4,5-Trichlorophenol 50 ND ug/L SURROGATE RESULTS NItrobenzene-d5 49 % Rec. 2-Fluorobiphenyl 49 % Rec. % Rec. P-terphenyl-d14 44 % Rec. Phenol-d5 57 % Rec. 2-Fluorophenol 54 % Rec.						
2-Nitrophenol 10 ND ug/L 4-Nitrophenol 50 ND ug/L Pentachlorophenol 50 ND ug/L Phenol 10 67 ug/L 2,4,6-Trichlorophenol 10 ND ug/L 2-Methylphenol 10 ND ug/L 4-Methylphenol 10 ND ug/L 2,4,5-Trichlorophenol 50 ND ug/L SURROGATE RESULTS NItrobenzene-d5 49 % Rec. 2-Fluorobiphenyl 49 % Rec. % Rec. p-terphenyl-d14 44 % Rec. Phenol-d5 57 % Rec. 2-Fluorophenol 54 % Rec.						
4-Nitrophenol 50 ND ug/L Pentachlorophenol 50 ND ug/L Phenol 10 67 ug/L 2,4,6-Trichlorophenol 10 ND ug/L 2-Methylphenol 10 ND ug/L 4-Methylphenol 10 ND ug/L 2,4,5-Trichlorophenol 50 ND ug/L SURROGATE RESULTS Nitrobenzene-d5 49 % Rec. 2-Fluorobiphenyl 49 % Rec. % Rec. p-terphenyl-d14 44 % Rec. Phenol-d5 57 % Rec. 2-Fluorophenol 54 % Rec.						
Pentachlorophenol 50 ND ug/L Phenol 10 67 ug/L 2,4,6-Trichlorophenol 10 ND ug/L 2-Methylphenol 10 ND ug/L 4-Methylphenol 10 ND ug/L 2,4,5-Trichlorophenol 50 ND ug/L SURROGATE RESULTS Nitrobenzene-d5 49 % Rec. 2-Fluorobiphenyl 49 % Rec. Pec. p-terphenyl-d14 44 % Rec. Phenol-d5 57 % Rec. 2-Fluorophenol 54 % Rec.						
Phenol 10 67 ug/L 2,4,6-Trichlorophenol 10 ND ug/L 2-Methylphenol 10 ND ug/L 4-Methylphenol 10 ND ug/L 2,4,5-Trichlorophenol 50 ND ug/L SURROGATE RESULTS Nitrobenzene-d5 49 % Rec. 2-Fluorobiphenyl 49 % Rec. Pec. p-terphenyl-d14 44 % Rec. Phenol-d5 57 % Rec. 2-Fluorophenol 54 % Rec.					- · · · · · · · · · · · · · · · · · · ·	
2,4,6-Trichlorophenol 10 ND ug/L 2-Methylphenol 10 ND ug/L 4-Methylphenol 10 ND ug/L 2,4,5-Trichlorophenol 50 ND ug/L SURROGATE RESULTS Nitrobenzene-d5 49 % Rec. 2-Fluorobiphenyl 49 % Rec. p-terphenyl-d14 44 % Rec. Phenol-d5 57 % Rec. 2-Fluorophenol 54 % Rec.	-				- '.	
2-Methylphenol 10 ND ug/L 4-Methylphenol 10 ND ug/L 2,4,5-Trichlorophenol 50 ND ug/L SURROGATE RESULTS Nitrobenzene-d5 49 % Rec. 2-Fluorobiphenyl 49 % Rec. p-terphenyl-d14 44 % Rec. Phenol-d5 57 % Rec. 2-Fluorophenol 54 % Rec.	2,4,6-Trichlorophenol					
4-Methylphenol 10 ND ug/L 2,4,5-Trichlorophenol 50 ND ug/L SURROGATE RESULTS Nitrobenzene-d5 49 % Rec. 2-Fluorobiphenyl 49 % Rec. p-terphenyl-d14 44 % Rec. Phenol-d5 57 % Rec. 2-Fluorophenol 54 % Rec.						
2,4,5-Trichlorophenol 50 ND ug/L SURROGATE RESULTS Nitrobenzene-d5 49 % Rec. 2-Fluorobiphenyl 49 % Rec. p-terphenyl-d14 44 % Rec. Phenol-d5 57 % Rec. 2-Fluorophenol 54 % Rec.				ND		
SURROGATE RESULTS Nitrobenzene-d5 49 % Rec. 2-Fluorobiphenyl 49 % Rec. p-terphenyl-d14 44 % Rec. Phenol-d5 57 % Rec. 2-Fluorophenol 54 % Rec.						
Nitrobenzene-d5 49 % Rec. 2-Fluorobiphenyl 49 % Rec. p-terphenyl-d14 44 % Rec. Phenol-d5 57 % Rec. 2-Fluorophenol 54 % Rec.	_				7/	
2-Fluorobiphenyl 49 % Rec. p-terphenyl-d14 44 % Rec. Phenol-d5 57 % Rec. 2-Fluorophenol 54 % Rec.				49	% Rec.	
p-terphenyl-d14 44 % Rec. Phenol-d5 57 % Rec. 2-Fluorophenol 54 % Rec.						
Phenol-d5 57 % Rec. 2-Fluorophenol 54 % Rec.				= =		
2-Fluorophenol 54 % Rec.						
	2,4,6-Tribromophenol			44	% Rec.	

© Client Name: Harding Lawson Associates

NET Log No: 8242w

Date: 07-16-91

ug/L

Page: 18

Ref: Wareham/2855 Cypress St., Job: 18452,047.02

06-20-91

1100

SAMPLE DESCRIPTION: 91062004

Vinyl chloride

LAB Job No: (-896	•	Reporting		** **
Parameter	Method	Limit	Results	Units
Oil & Grease(Total)	5520B	5	450,000	mg/L
Cadmium	6010	0.02	3	mg/Kg
Chromium, total	6010	0.02	21	mg/Kg
Lead (EPA 7421)	7421	0.002	640	mg/Kg
Nickel	6010	0.05	30	mg/Kg
Zinc	6010	0.02	870	mg/Kg
METHOD 601				
DATE ANALYZED			07-02-91	
DILUTION FACTOR*			1	
Bromodichloromethane		0.4	ND	ug/L
Bromoform		0.4	ND	ug/L
Bromomethane		0.4	ND	ug/L
Carbon tetrachloride		0.4	ND	ug/L
Chlorobenzene		0.4	32	ug/L
Chloroethane		0.4	ND	ug/L
2-Chloroethylvinyl ether		1.0	ND	ug/L
Chloroform		0.4	ND	ug/L
Chloromethane		0.4	ND .	ug/L
Dibromochloromethane		0.4	ND	ug/L
1,2-Dichlorobenzene		0.4	ND	ug/L
1,3-Dichlorobenzene		0.4	ND	ug/L
1,4-Dichlorobenzene		0.4	ND	ug/L
Dichlorodifluoromethane		0.4	ND	ug/L
1,1-Dichloroethane		0.4	ND	ug/L
1,2-Dichloroethane		0.4	610	ug/L
1,1-Dichloroethene		0.4	ИD	ug/L
trans-1,2-Dichloroethene		0.4	ND	ug/L
1,2-Dichloropropane		0.4	ND	ug/L
cis-1,3-Dichloropropene		0.4	ND	ug/L
trans-1,3-Dichloropropene		0.4	ND	ug/L
Methylene Chloride		10	12,000	ug/L
1,1,2,2-Tetrachloroethane		0.4	ND	ug/L
Tetrachloroethene		0.4	10	ug/L
1,1,1-Trichloroethane		0.4	ND	ug/L
1,1,2-Trichloroethane		0.4	ND	ug/L
Trichloroethene		0.4	9.5	ug/L
Trichlorofluoromethane		0.4	ND	ug/L
152 3 1-3 2-3 -				

2.0 ND

Client Name: Harding Lawson Associates

Date: 07-16-91 Page: 19

NET Log No: 8242w

Ref: Wareham/2855 Cypress St., Job: 18452,047.02

SAMPLE DESCRIPTION: 91062004

06-20-91

1100

LAB Job No: (-89641**)

Parameter	Method	Reporting Limit	Results	Units
PETROLEUM HYDROCARBONS				
VOLATILE (WATER)				
DILUTION FACTOR *			1,000,000	
DATE ANALYZED			07-03-91	
METHOD GC FID/5030				
as Gasoline		0.05	130,000	mg/L
METHOD 602				
DILUTION FACTOR *			1,000,000	
DATE ANALYZED			07-03-91	
Benzene		0.5	ND	ug/L
Ethylbenzene		0.5	ND	ug/L
Toluene		0.5	850,000	ug/L
Xylenes, total		0.5	ND	ug/L
PETROLEUM HYDROCARBONS				
EXTRACTABLE (WATER)				
DILUTION FACTOR *			500	
DATE EXTRACTED			06-27-91	
DATE ANALYZED			06-28-91	•
METHOD GC FID/3510			- -	
as Diesel		0.05	290,000	mg/Kg
as Motor Oil		0.5	460,000	mg/Kg

^{**} Note: The positive result for the PETROLEUM HYDROCARBONS as Gasoline analysis on this sample appears to be a heavier hydrocarbon than gasoline.

Client Name: Harding Lawson Associates

NET Log No: 8242w

Date: 07-16-91

Page: 20

Ref: Wareham/2855 Cypress St., Job: 18452,047.02

SAMPLE DESCRIPTION: 91062004

06-20-91

1100

(-89641) LAR Job No:

LAB Job No: (-896	- 1	Reportin	a	
Parameter	Method	Limit	Results	Units
ETHOD 8270	<u> </u>			
DATE EXTRACTED			06-28-91	
DATE ANALYZED			07-01-91	
DILUTION FACTOR *			10	
Acenaphthene		10	ND	ug/L
Acenaphthylene		10	ND	ug/L
Aldrin		50	ND	ug/L
Anthracene		10	ND	ug/L
Benzidine		44	ND	ug/L
Benzo(a)anthracene		10	ND	ug/L
Benzo(b)fluoranthene		10	ND	ug/L
Benzo(k)fluoranthene		10	ND	ug/L
Benzo(a) pyrene		10	ND	ug/L
Benzo(g,h,i)perylene		10	ND	ug/L
enzoic Acid		50	ND	ug/L
Benzyl Alcohol		10	ND	ug/L
Butyl benzyl phthalate		10	ND	ug/L
lelta-BHC		50	ND	ug/L
amma-BHC		50	ND	ug/L
is(2-chloroethyl) ether		10	ND.	ug/L
is(2-chloroethoxy)methane	•	10	ND ND	ug/L
is(2-chloroisopropyl)ethe	•	10	ND	ug/L
is(2-ethylhexyl)phthalate	•	10	ND	ug/L
-Bromophenyl phenyl ether	•	10	ND	ug/L
-Chloroaniline		10	ND	ug/L
-Chloronaphthalene		10	ND	ug/L ug/L
-Chlorophenyl phenyl ethe	•	10	ND .	ug/L
Chrysene	•	10	ND	
4,4-DDD		50	ND	ug/L
1,4-DDE		50	ND	ug/L ug/L
4,4-DDT		50	ND	-
Dibenzo(a,h)anthracene		10	ND	ug/L
ibenzofuran		10	ND	ug/L ug/L
i-n-butylphthalate		10	ND	
,2-Dichlorobenzene		10	ND	ug/L
.,3-Dichlorobenzene				ug/L
1,4-Dichlorobenzene		10 10	ND	ug/L
3,3'-Dichlorobenzene		20	ND ND	ug/L
ieldrin		50 50	ND	ug/L
iethylphthalate			ND ND	ug/L
Dimethyl phthalate		10	ND	ug/L
2,4-Dinitrotoluene		10	ND ND	ug/L
2,6-Dinitrotoluene		10	ND ND	ug/L
Di-n-octyl phthalate		10	ND ND	ug/L
Indrin aldehyde		10	ND	ug/L
norin aldenåde		50	ND	ug/L

©Client Name: Harding Lawson Associates

NET Log No: 8242w

Date: 07-16-91

Page: 21

Ref: Wareham/2855 Cypress St., Job: 18452,047.02

SAMPLE DESCRIPTION:

91062004

06-20-91

1100

LAB Job No: (-89641**)

	/	Reportin	ıg	
Parameter	Method	Limit	Results	Units
Fluoranthene		10	ND	ug/L
Fluorene		10	ND	ug/L
Heptachlor		50	ND	ug/L
Heptachlor epoxide		50	ND	ug/L
Hexachlorobenzene		10	ND	ug/L
Hexachlorobutadiene		10	ND	ug/L
Hexachlorocyclopentadiene		10	ND	ug/L
Hexachloroethane		10	ND	ug/L
Indeno(1,2,3-cd)pyrene		10	ND	ug/L
Isophorone		10	ND	ug/L
2-Methylnaphthalene		10	87,000	ug/L
Naphthalene		10	ND	ug/L
2-Nitroaniline		50	ND	ug/L
3-Nitroaniline		50	ND	ug/L ug/L
4-Nitroaniline		50	ND	ug/L ug/L
Nitrobenzene		10	ND	ug/L
N-Nitroso-Di-N-propylamine		10	ND	ug/L
N-nitrosodiphenylamine		10	ND	ug/L
Phenanthrene		10	ND	ug/L
Pyrene		10	ND	ug/L
1,2,4-Trichlorobenzene		10	ND	ug/L
4-Chloro-3-methylphenol		10	ND	ug/L
2-Chlorophenol		10	ND	ug/L
2,4-Dichlorophenol		10	ND	ug/L
2,4-Dimethylphenol		10	ND	ug/L
2,4-Dinitrophenol		50	ND	ug/L
4,6-Dinitro-2-methylphenol		50	ND	ug/L
2-Nitrophenol		10	ND	ug/L
4-Nitrophenol		50	ND	ug/L
Pentachlorophenol		50	ND	ug/L
Phenol		10	170,000	ug/L
2,4,6-Trichlorophenol		10	ND	ug/L
2-Methylphenol		10	ND	ug/L
4-Methylphenol		10	160,000	ug/L
2,4,5-Trichlorophenol		50	ND	ug/L
SURROGATE RESULTS				57
Nitrobenzene-d5			NA	% Rec.
2-Fluorobiphenyl			NA	% Rec.
p-terphenyl-d14			NA	% Rec.
Phenol-d5			NA	% Rec.
2-Fluorophenol			NA	% Rec.
2,4,6-Tribromophenol			NA.	% Rec.
			****	a Mec.

^{**} Note: This sample was analyzed as a dilute and shoot due to the oil matrix and surrogate recoveries were not analyzed (NA).

Client Name: Harding Lawson Associates

NET Log No: 8242w

Date: 07-16-91

Page: 22

Ref: Wareham/2855 Cypress St., Job: 18452,047.02

SAMPLE DESCRIPTION: 91062005 06-20-91 1115

LAB Job No: (-89642)

(,	Danauk I wa		
Parameter Method		Reporting Limit	Results	Units
Cadmium	6010	0.02	ND	mg/L
Chromium, total	6010	0.02	ND	mg/L
Lead (EPA 7421)	7421	0.002	0.040	mg/L
Nickel	6010	0.05	0.09	mg/L
Zinc	6010	0.02	0.63	mg/L
METHOD 601				
DATE ANALYZED			07-02-91	
DILUTION FACTOR*			1	
Bromodichloromethane		0.4	ND	ug/L
Bromoform		0.4	ND	ug/L
Bromomethane		0.4	ND	ug/L
Carbon tetrachloride		0.4	ND	ug/L
Chlorobenzene		0.4	ND	ug/L
Chloroethane		0.4	ND	ug/L
2-Chloroethylvinyl ether		1.0	ND	ug/L
Chloroform		0.4	ND	ug/L
Chloromethane		0.4	ND	ug/L
Dibromochloromethane		0.4	ND	ug/L
1,2-Dichlorobenzene		0.4	ND.	ug/L
1,3-Dichlorobenzene		0.4	ND	ug/L
1,4-Dichlorobenzene		0.4	ND	ug/L
Dichlorodifluoromethane		0.4	ND	ug/L
1,1-Dichloroethane		0.4	ND	ug/L
1,2-Dichloroethane		0.4	6.4	ug/L
1,1-Dichloroethene		0.4	ND	ug/L
trans-1,2-Dichloroethene		0.4	ND	ug/L
1,2-Dichloropropane		0.4	ND	ug/L
cis-1,3-Dichloropropene		0.4	ND	ug/L
trans-1,3-Dichloropropene		0.4	ND	ug/L
Methylene Chloride		10	ND	ug/L
1,1,2,2-Tetrachloroethane		0.4	ND	ug/L
Tetrachloroethene		0.4	ND	ug/L
1,1,1-Trichloroethane	0.4	ND	ug/L	
1,1,2-Trichloroethane	0.4	ND	ug/L	
Trichloroethene		0.4	ND	ug/L
Trichlorofluoromethane		0.4	ND	ug/L
Vinyl chloride		2.0	ND	ug/L

Client Name: Harding Lawson Associates NET Log No: 8242w

Date: 07-16-91

Page: 23

Ref: Wareham/2855 Cypress St., Job: 18452,047.02

SAMPLE DESCRIPTION: 91062005

06-20-91

1115

LAB Job No: (-89642**)

·	,	Reporting			
Parameter	Method	Limit	Results	Units	
PETROLEUM HYDROCARBONS				<u> </u>	
VOLATILE (WATER)					
DILUTION FACTOR *			100		
DATE ANALYZED			07-04-91		
METHOD GC FID/5030					
as Gasoline		0.05	53	mg/L	
METHOD 602					
DILUTION FACTOR *			100		
DATE ANALYZED			07-04-91		
Benzene		0.5	860	ug/L	
Ethylbenzene		0.5	65	ug/L	
Toluene		0.5	79	ug/L	
Xylenes, total		0.5	2,000	ug/L	
PETROLEUM HYDROCARBONS					
EXTRACTABLE (WATER)					
DILUTION FACTOR *			100		
DATE EXTRACTED			06-26-91		
DATE ANALYZED			06-28-91	~	
METHOD GC FID/3510					
as Diesel		0.05	110	mg/L	
as Motor Oil		0.5	74	mg/L	

^{**} Note: The positive result for the PETROLEUM HYDROCARBONS as Diesel analysis on this sample appears to be a mixture of lighter hydrocarbon and diesel.

B Client Name: Harding Lawson Associates

NET Log No: 8242w

Date: 07-16-91 Page: 24

Ref: Wareham/2855 Cypress St., Job: 18452,047.02

SAMPLE DESCRIPTION: 91062005

06-20-91

1115

LAB Job No: (-89642)

Parameter	Method	Reporting Limit	Results	Units
METHOD 8270				
DATE EXTRACTED			06-28-91	
DATE ANALYZED			07-03-91	
DILUTION FACTOR *			20	
Acenaphthene		10	ND	ug/L
Acenaphthylene		10	ND	ug/L
Aldrin		50	ND	ug/L
Anthracene		10	ND	ug/L
Benzidine		44	ND	ug/L
Benzo(a)anthracene		10	ND	ug/L
Benzo(b)fluoranthene		10	ND	ug/L
Benzo(k)fluoranthene		10	ND	ug/L
Benzo(a)pyrene		10	ND	ug/L
Benzo(g,h,i)perylene		10	ND	ug/L
Benzoic Acid		50	ND	ug/L
Benzyl Alcohol		10	ND	ug/L
Butyl benzyl phthalate		10	ND	ug/L
delta-BHC		50	ND	ug/L
gamma-BHC		50	ND	ug/L
bis(2-chloroethyl) ether		10	ND,	ug/L
bis(2-chloroethoxy)methane		10	ND	ug/L
bis(2-chloroisopropyl)ethe		10	ND	ug/L
bis(2-ethylhexyl)phthalate		10	ND	ug/L
4-Bromophenyl phenyl ether		10	ND	ug/L
4-Chloroaniline		10	ND	ug/L
2-Chloronaphthalene		10	ND	ug/L
4-Chlorophenyl phenyl ethe		10	ND	ug/L
Chrysene		10	ND	ug/L
4,4-DDD		50	ND	ug/L
4,4-DDE		50	ND	ug/L
4,4-DDT		50	ND	ug/L
Dibenzo(a,h)anthracene		10	ND	ug/L
Dibenzofuran		10	ND	ug/L
Di-n-butylphthalate		10	ND	ug/L
1,2-Dichlorobenzene		10	ND	ug/L
1,3-Dichlorobenzene		10	ND	ug/L
1,4-Dichlorobenzene		10	ND	ug/L
3,3'-Dichlorobenzidine		20	ND	ug/L
Dieldrin		50 10	ND	ug/L
	iethylphthalate			ug/L
	imethyl phthalate			\mathtt{ug}/\mathtt{L}
2,4-Dinitrotoluene		10	ND	ug/L
2,6-Dinitrotoluene		10	ND	ug/L
Di-n-octyl phthalate		10	ND	ug/L
Endrin aldehyde		50	ND	ug/L

Client Name: Harding Lawson Associates

NET Log No: 8242w

Date: 07-16-91

Page: 25

Ref: Wareham/2855 Cypress St., Job: 18452,047.02

SAMPLE DESCRIPTION: 91062005 06-20-91 1115

LAB Job No: (-89642)

		Reportin	g	
Parameter	Method	Limit	Results	Units
Fluoranthene		10	ND	ug/L
Fluorene		10	ND	ug/L
Heptachlor		50	ND	ug/L
Heptachlor epoxide		50	ND	ug/L
Hexachlorobenzene		10	ND	ug/L
Hexachlorobutadiene		10	ND	ug/L
Hexachlorocyclopentadiene	e	10	ND	ug/L
Hexachloroethane		10	ND	ug/L
Indeno(1,2,3-cd)pyrene		10	ND	ug/L
Isophorone		10	ND	ug/L
2-Methylnaphthalene		10	2,000	ug/L
Naphthalene		10	2,400	ug/L
2-Nitroaniline		50	ND	ug/L
3-Nitroaniline		50	ND	ug/L
4-Nitroaniline		50	ND	ug/L
Nitrobenzene		10	ND	ug/L
N-Nitroso-Di-N-propylami:	ne	10	ND	ug/L
N-nitrosodiphenylamine		10	ND	ug/L
Phenanthrene		10	ND	ug/L
Pyrene		10	ND	uq/L
1,2,4-Trichlorobenzene		10	ND	ug/L
4-Chloro-3-methylphenol		10	ND	ug/L
2-Chlorophenol		10	ND	ug/L
2,4-Dichlorophenol		10	ND	ug/L
2,4-Dimethylphenol		10	510	ug/L
2,4-Dinitrophenol		50	ND	ug/L
4,6-Dinitro-2-methylphen	ol	50	ND	ug/L
2-Nitrophenol	_	10	ND	ug/L
4-Nitrophenol		50	ND	ug/L
Pentachlorophenol		50	ND	ug/L
Phenol		10	ND	ug/L
2,4,6-Trichlorophenol		10	ND	ug/L
2-Methylphenol		10	ND	ug/L
4-Methylphenol		10	ND	-·.
2,4,5-Trichlorophenol		50	ND	ug/L
SURROGATE RESULTS		30	 MD	ug/L
Nitrobenzene-d5			56	9 Da-
2-Fluorobiphenyl			111	% Rec
p-terphenyl-d14			· · · · =	% Rec
Phenol-d5			101 97	% Rec. % Rec.
			97 85	% Rec
2-Fluorophenol				

© Client Name: Harding Lawson Associates

Date: 07-16-91

Page: 26

Ref: Wareham/2855 Cypress St., Job: 18452,047.02

SAMPLE DESCRIPTION:

91062102

06-21-91

1148

LAB Job No: (-89643**)

Parameter	Method	Reporting Limit	Results	Units
PETROLEUM HYDROCARBONS	•			 -
VOLATILE (SOIL)				
DILUTION FACTOR *	•		50	
DATE ANALYZED			07-06-91	
METHOD GC FID/5030				
as Gasoline		1	240	mg/Kg
METHOD 8020			- -	
DILUTION FACTOR *			50	
DATE ANALYZED			07-06-91	
Benzene		2.5	1,100	ug/Kg
Ethylbenzene		2.5	1,800	ug/Kg
Toluene		2.5	200	ug/Kg
Xylenes, total		2.5	5,700	ug/Kg
PETROLEUM HYDROCARBONS				
EXTRACTABLE (SOIL)				
DILUTION FACTOR *			50	
DATE EXTRACTED			06-27-91	
DATE ANALYZED			06-30-91	•
METHOD GC FID/3550				
as Diesel		1	1,800	mg/Kg
as Motor Oil		10	2,000	mg/Kg

Note: The positive result for the PETROLEUM HYDROCARBONS as Diesel analysis on this sample appears to be a mixture of lighter hydrocarbon and diesel. This sample was analyzed on 07-02-91 at a 1:100 dilution, 07-03-91 at a 1:5 dilution, and 07-06-91 at a 1:50 dilution to achieve a result within linear range of the instrument. The results from these three dates were comparable.

NET Pacific, Inc.

Client Acct: 281

Client Name: Harding Lawson Associates

NET Log No: 82428

Date: 07-16-91

Page: 27

Ref: Wareham/2855 Cypress St., Job: 18452,047.02

SAMPLE DESCRIPTION:

91062103

06-21-91

1220

LAB Job No: (-89644**)

	Reporting		
Method	Limit	Results	Units
		100	
		07-08-91	
	1	81	mg/Kg
			2, 2
		10	
		07-09-91	
	2.5	ND	ug/Kg
	2.5	500	ug/Kg
	2.5	ND	ug/Kg
	2.5	3,600	ug/Kg
		10	
		06-27-91	
		06-30-91	-
	1	230	mg/Kg
	10	410	mg/Kg
	Method	Method Limit 1 2.5 2.5 2.5 2.5 2.5	Method Limit Results

Note: The positive result for the PETROLEUM HYDROCARBONS as Diesel analysis on this sample appears to be a mixture of lighter hydrocarbon and diesel. This sample was analyzed five separate times for Gasoline. Each reanalysis had results which were not consistent with the previous analysis. This is possibly due to non-homogenous particulates and analyte in the sample. The results from the five analyses are listed below.

Date Analyzed	(Gasoline) (Dilution factor)	Gasoline	BTXE
07-02-91	(>20 mg/Kg*)(100) =	>2000 mg/Kg*	ND
07-03-91	(1.4 mg/Kg)(500) =	700 mg/Kg*	ND
07-06-91	Port leaked	N/A	N/A
07-08-91	(0.81 mg/Kg)(100) =	81 mg/Kg	ND
07-09-91	(28 mg/Kg*)(10) =	280 mg/Kg*	As reported.

^{*} These samples were off-scale and not reported because the results were out of the linear range of the instrumentation. The linear range of the instruments is between 0.5 mg/Kg and 20 ug/Kg.

© Client Name: Harding Lawson Associates

Date: 07-15-91

Page: 28

NET Log No: 8242

Ref: Wareham/2855 Cypress St., Job: 18452,047.02

QUALITY CONTROL DATA

Parameter	Report Limit:	•	Cal Verf Stand % Recovery	Blank	Spike % Recovery	Duplicate Spike % Recovery	
Cadmium	2	mg/Kg	104	ND	99	97	1.5
Chromium	2	mg/Kg	102	ND	101	95	4.1
Lead	0.2	mg/Kg	102	ND	101	99	2.2
Nickel	5	mg/Kg	104	ND	100	95	3.5
Zinc	2	mg/Kg	103	ND	98	95	2.3
O&G(Total) 50	mg/Kg	88	ND	104	125	18
Diesel	1	mg/Kg	110	ND	36	43	10
Motor Oil	10	mg/Kg	98	ND	N/A	N/A	N/A
Diesel	0.05	mg/L	102	ND	50	52	3.9
Motor Oil	0.5	mg/L	87	ND	N/A	N/A	N/A
Gasoline	0.05	mg/L	114	ND	107	100	6.0
Benzene	0.5	ug/L	97	ND	98	90	7.0
Toluene	0.5	ug/L	107	ND	93	89	4.0
	COMMENT:	Blank Results	were ND o	n other	analytes test	ced.	
Gasoline	0.05	mg/L	108	ND	108	106	2.0
Benzene	0.5	ug/L	102	ND	102	102	< 1
Toluene	0.5	ug/L	112	ND	97	98	1.0
	COMMENT:	Blank Results	were ND o	n other	analytes test	ed.	
Benzene	2.5	ug/Kg	103	ND	98	87	2.3
Toluene	2.5	ug/Kg	108	ND	91	91	< 1
	COMMENT:	Blank Results	were ND o	n other	analytes test	ted.	-
Gasoline	1	mg/Kg	101	ND	98	98	< 1
Benzene	2.5	ug/Kg	105	ND	95	99	4.1
Toluene	2.5	ug/Kg	104	ND	98	100	2.0
	COMMENT:	Blank Results	were ND o	n other	analytes tes	ted.	
Gasoline	1	mg/Kg	96	ND	87	95	8.8
Gasoline	1	mg/Kg	104	ND	93	112	19

COMMENT: Blank Results were ND on other analytes tested.

Client Name: Harding Lawson Associates

Date: 07-15-91

Page: 29

ET Pacific, Inc. NET Log No: 8242

Ref: Wareham/2855 Cypress St., Job: 18452,047.02

QUALITY CONTROL DATA

Parameter	Reporting Limits	Units	Cal Verf Stand % Recovery	Blank Data	Spike % Recovery	Duplicate Spike % Recovery	RPD
Chlorobenzene	2.0	ug/Kg	128	ND	131	130	< 1
1,1-Dichloroethene	2.0	ug/Kg	123	ND	118	126	6.6
Trichloroethene	2.0	ug/Kg	100	ОИ	103	106	2.9
COMMENT: Bla	nk Results	were NI	on other	analy	tes teste	d.	
1,1-Dichloroethene	0.4	ug/L	123	ND	130	118	8.9
Trichloroethene	0.4	ug/L	100	ND	104	104	< 1
COMMENT: Bla	nk Results	were N	on other	analy	tes teste	d.	
Acenaphthene	330	ug/Kg	87	ND	104	100	4.0
1,4-Dichlorobenzene	330	ug/Kg	96	ND	66	61	8.0
Pyrene	330	ug/Kg	91	ND	271	177	42
1,2,4-Trichlorobenzene	330	ug/Kg	89	ND	96	89	7.0
2-Chlorophenol	330	ug/Kg	100	ND	71	64	11
4-Nitrophenol	1600	ug/Kg	78	ND	77	84	9.0
Phenol	330	ug/Kg	101	ND	71	^ 64	9.0
COMMENT: Bla	nk Results	were N	D on other	analy	tes teste	d.	
1,4-Dichlorobenzene	10	ug/L	94	ND	45	42	7.0
Pyrene	10	ug/L	87	ND	97	103	6.0
1,2,4-Trichlorobenzene	10	ug/L	93	ND	47	44	6.0
2-Chlorophenol	10	ug/L	89	ND	81	86	6.0
4-Nitrophenol	50	ug/L	108	ND	87	92	6.0
Phenol	10	ug/L	90	ND	77	80	5.0
2,4-Dinitrotoluene	10	ug/L	88	ND	78	75	4.0

COMMENT: Blank Results were ND on other analytes tested.

KEY TO ABBREVIATIONS and METHOD REFERENCES

<	•	Less than; When appearing in results column indicates analyte
		not detected at the value following. This datum supercedes
		the listed Reporting Limit.

: Reporting Limits are a function of the dilution factor for any given sample. To obtain the actual reporting limits for this sample, multiply the stated Reporting Limits by the dilution factor (but do not multiply reported values).

ICVS : Initial Calibration Verification Standard (External Standard).

mean : Average; sum of measurements divided by number of measurements.

mg/Kg (ppm) : Concentration in units of milligrams of analyte per kilogram

of sample, wet-weight basis (parts per million).

mg/L : Concentration in units of milligrams of analyte per liter of

sample.

mL/L/hr : Milliliters per liter per hour.

MPN/100 mL : Most probable number of bacteria per one hundred milliliters

of sample.

N/A : Not applicable.

NA : Not analyzed.

ND : Not detected; the analyte concentration is less than applicable

listed reporting limit.

NTU : Nephelometric turbidity units.

RPD : Relative percent difference, 100 [Value 1 - Value 2]/mean value.

SNA : Standard not available.

ug/Kg (ppb) : Concentration in units of micrograms of analyte per kilogram

of sample, wet-weight basis (parts per billion).

ug/L : Concentration in units of micrograms of analyte per liter of

sample.

umhos/cm : Micromhos per centimeter.

Method References

Methods 100 through 493: see "Methods for Chemical Analysis of Water & Wastes", U.S. EPA, 600/4-79-020, rev. 1983.

Methods 601 through 625: see "Guidelines Establishing Test Procedures for the Analysis of Pollutants" U.S. EPA, 40 CFR, Part 136, rev. 1988.

Methods 1000 through 9999: see "Test Methods for Evaluating Solid Waste", U.S. EPA SW-846, 3rd edition, 1986.

SM: see "Standard Methods for the Examination of Water & Wastewater, 16th Edition, APHA, 1985.

Harding Lawson Associates 7655 Redwood Boulevard P.O. Box 578 Novato, California 94948

CHAIN OF	CUSTODY	′ FORM
----------	---------	--------

Lab: NET (8242,)

415/892-0821 Telecopy: General: 415/892-0831	Samplers: Chris Ross, tto	ANALYSIS REQUESTED					
Job Number: 18452,047.02		CL HC CL HC Tas Tas Cale(83) C					
Name/Location: Waveham/2855 Cypi	ress 5+.	20 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
Name/Location: Waveham/2855 Cype Project Manager: Mike Siembieda	1						
MATRIX #CONTAINERS SAMPLE NUMBER OR LAB NUMBER OR LAB NUMBER Yr Wk Seq Yr	DATE STATION DESCRIPTION/ NOTES Mo Dy Time	EPA 601/8010 EPA 602/8020 EPA 622/8220 EPA 625/8270 CP METALS CP METALS CP METALS CA 6 55					
49 X 1 91062001916	06201020						
49 8 9 9 6 2 0 0 2	11150						
10 X 6 91062003 4	12157						
01 X 3 91062004							
	8 11154	X XXXXX					
49 X 11 91062101916	06211142						
	06211148						
	06211220	XXX					

LAB NUMBER				DEPTH IN FEET		- 1	COL MTD CD		QA CODE		.	MISCELLANEOUS	CHAIN OF CUSTODY RECORD				
Yr	Wk	<u> </u>	Sec	1	L	re	E 1	<u>'</u>		1			. T	· · · · · · · · · · · · · · · · · · ·	RELINQUISHED 8Y: (Signature)	RECEIVED BY: (Signature) DATE/TI	,DATE/TIME
-	-	H	-	+	L			╬	\dashv	+	+	-		10 day TAT	Chis Rositto	Kein Tenyah 6/21/91/1	62×
-			+	-	H			+	+	+	+-		 	FAX results to	RELINQUISHED BY: (Signature)	RECEIVED BY: (Signature) DATE/TI	ME
										1	_			Milce Siembieda	RELINQUISHED BY: (Signature)	RECEIVED BY: (Signature) DATE/TI	ME
		-	+	+	L		+	-	+	+	+	-	-	4 and, 2 liters morel.	RELINQUISHED BY: (Signature)	RECEIVED BY: (Signature) DATE/Ti	ME
		\dagger		+-	T	-		\forall	\dashv	+	+	╁	\dagger	gent do one andyis	The state of the s		-
					L									a it - doit do	4, 4	TIME RECEIVED FOR LAB BY: DATE/TI	ME
			_	-	┞	-	-	\dashv	+	+	+	-	-	Or Gran mstant 6/28/	Temple 6/21/91 METHOD OF SHIPMENT	1734 Kanpl 6/21/11	739
L	<u> </u>			<u>l</u>	ا	L	i l	1			!	Lab	orate Wh		Milice Copy	1 Ann	6533