

RECEIVED

2:36 pm, Jun 03, 2008

Alameda County Environmental Health

REPORT OF ADDITIONAL SITE CHARACTERIZATION & GROUNDWATER MONITORING

5930 College Avenue, Oakland, California
ACHCSA Site # RO0000377

Prepared For:

Dr. Brian Sheaff

William G. Sheaff Trust 1945 Parkside Avenue Concord, California 94519

Prepared By:

Golden Gate Tank Removal, Inc.

255 Shipley Street San Francisco, California 94107

GGTR Project No. 7335 Date of Report: August 29, 2006

ADDITIONAL SITE CHARACTERIZATION & GROUNDWATER MONITORING

5930 College Avenue, Oakland, California

TABLE OF CONTENTS

INTRODUCTION	1
Site Location and Description.	2
Geology & Shallow Soils	2
Groundwater Setting & Conditions	3
CORRECTIVE ACTION BACKGROUND	4
Underground Tank Removal August to October 1996	4
Preliminary Investigation & Monitor Well Installation 1998-1999	5
Quarterly Groundwater Monitoring 2000 to 2002	5
Additional Soil and Groundwater Investigation 2002	6
Continued Quarterly Groundwater Monitoring 2003 to Present	6
Preferential Migration Pathway Survey	6
Subsurface Utility Corridor Survey	6
Site Vicinity Receptor Well Survey	7
ADDITIONAL SITE CHARACTERIZATION	8
Soil Boring and Sampling Activities (B12-B24)	9
Grab Groundwater Sampling & Backfilling Activities	9
Piezometer PW1 Development & Surveying	10
Laboratory Analysis of Soil Samples	10
Laboratory Analysis of Groundwater Samples	11
QUARTERLY GROUNDWATER MONITORING	12
Groundwater Sampling Field Procedures	12
Results of Groundwater Sampling and Laboratory Analysis	12
Results of Groundwater Measurements	13
FINDINGS OF ADDITIONAL INVESTIGATION	15
RECOMMENDATIONS FOR FUTURE ACTION	18
GEOTRACKER AB2886 ELECTRONIC SUBMITTAL	19
WASTE MANAGEMENT	20
LIMITATIONS	20
REPORT DISTRIBUTION	21
CERTIFICATION	22
REFERENCES	23

TABLE OF CONTENTS CONTINUED.....

FIGURES:

- 1 Site Location Map
- 2 Site Plan
- 3 Geologic Map
- 4 Regional Map of Creeks and Conduits
- 5 Local Map of Storm Conduits
- 6 Subsurface Utility Map
- 7 Groundwater Flow Direction
- 8 Rose Diagram: Historical Hydraulic Gradient
- 9 TPH-G, Benzene and MTBE in Groundwater
- 10 TPH-G in 2005 Grab Water Samples
- 11 April 2006 TPH-G in Monitor Wells
- 12 Chart TPH Gasoline in Groundwater

TABLES:

- TABLE 1A Results of Soil Sample Analysis for Petroleum Hydrocarbon Constituents -
- TABLE 1B Results of Soil Sample Analysis for Volatile Organic Compounds
- TABLE 1C Results of Soil Sample Analysis for LUFT-5 Metals
- TABLE 2A Historical Results of Grab Groundwater Hydrocarbon Sample Analysis
- TABLE 2B Historical Results of Grab Groundwater Volatile Organic Compound Analysis
- TABLE 2C Results of Grab Groundwater Sample Analysis for LUFT-5 Metals
- TABLE 3A Historical Results of Groundwater Sample Analysis & Fluid-Level Data
- TABLE 3B 2004 -2006 Groundwater Sampling Results for VOCs

APPENDICES:

- A Photographs, Regulatory Correspondence, Permits
- B Fluid-Level Data Form, Well Purging/Sampling Data Sheets
- C Analytical Reports, Chain of Custody Records, Gettler-Ryan Data
- D Soil Boring Logs, Groundwater Gradient Calculation Sheets
- E Geotracker EDD Upload Confirmation Forms, Hazardous Waste Manifests

ADDITIONAL SITE CHARACTERIZATION and GROUNDWATER MONITORING

5930 College Avenue, Oakland, California

INTRODUCTION

Golden Gate Tank Removal, Inc. (GGTR) is pleased to submit this report summarizing the activities, findings and conclusions of the additional soil and groundwater investigation performed at the site called "Sheaff's Garage" located at 5930 College Avenue in Oakland, California. This report also presents the results of the January 13, 2006, and April 14, 2006, groundwater monitoring and sampling at the site. The report was prepared in response to a September 8, 2003 directive letter issued by the Alameda County Health Care Services Agency (ACHCSA; Site #RO0000377) that requested additional characterization associated with the former underground gasoline and waste oil storage tank (UST) systems. Figure 1 is a *Site Location Map* showing the vicinity of the subject property. Figure 2 is a *Site Plan* showing the approximate location of the former USTs, historical soil borings, and existing groundwater monitoring field points MW-1, MW-2, MW-3 and piezometer PW-1. The attached Table 3 contains the historical fluid level monitoring data and laboratory analytical results for the monitoring field points. Appendix A contains photographs of the subject property and building showing the location of field points and former UST systems.

The investigation activities were conducted in general accordance with our Work Plan for Additional Site Characterization and its Addendum, dated December 29, 2003 and September 30, 2004, respectively, which were approved by the ACHCSA in letters dated June 3, 2004 and February 22, 2005. The general scope of work proposed in the work plan included drilling additional subsurface soil and Hydropunch borings to further assess the extent of both soil contamination in the vicinity of the former USTs – dispenser, and groundwater contamination at and in the vicinity of the site. The investigation activities were performed in general accordance with the State Water Resources Control Board's Leaking Underground Fuel Tank (LUFT) manual and the TRI-Regional Board Staff Recommendation for Preliminary Evaluation and Investigation of Underground Tank Sites.

Gettler-Ryan, Inc. of Dublin, California is currently conducting a separate groundwater investigation for the former Chevron Station #20-9339 located adjacent to the north side of the subject property at 5940 College Avenue. Two groundwater monitoring wells (GR-MW1 & GR-MW2) are used to evaluate the hydrocarbon concentrations in groundwater at this site. GGTR and Gettler-Ryan, Inc. have conducted joint monitoring and sampling activities at the associated sites on a quarterly basis since October 2000. As of the April 8, 2002 monitoring event, Gettler-Ryan has decreased their monitoring schedule to a biannual basis. Gettler-Ryan, Inc. performed their most recent joint/biannual monitoring and sampling of GR-MW1 & GR-MW2 on April 14, 2006. Figure 2, *Site Plan*, shows the location of the Gettler-Ryan wells relative to the subject property.

Site Location and Description

The subject commercial property is located at 5930 College Avenue, along the east side of College Avenue between Harwood Street and Chabot Road in Oakland, California. The site lies approximately 0.2 mile (1,000 feet) north of Highway 24 and about two miles east of Interstate 80 and the San Francisco Bay. The property (former Sheaff's Garage) is currently occupied by Stauder Automotive Service for the maintenance and repair of automobiles. No active fuel storage / distribution system exist onsite. The site is approximately 5,500 square feet in area with about 75% utilized by an industrial garage building and 25% used as an exterior concrete-paved storage yard. The elevation of the site is approximately 195 feet above Mean Sea Level (Figure 1). The property is relatively flat lying with the local topographic relief directed toward the west-southwest in the general direction of the San Francisco Bay as shown on Figure 1, Site Location Map.

Adjacent to the site on the south is a multi-story building at 5916-20 College Avenue. This building contains parking space and a retail store (T-Mobile) on the ground floor with multifamily apartments on upper floors. To the east of the site is a large older single-family residential neighborhood. The surface channel of Harwood Branch creek is located within this residential neighborhood about one block from the site. An Alameda County Flood Control District cutoff storm drain (90" diameter) associated with Harwood Branch is located within College Avenue adjacent to the site. The adjacent property to the north was formerly occupied by Chevron Service Station #209339 and is currently occupied by a restaurant (Barclays Restaurant & Pub) and office space (5940 College Avenue). This commercial development is approximately 3 feet below the grade of the subject property. A sump pump pit is located near the location of Gettler-Ryan well GR-MW1. As previously reported, the property located at the northeast corner of Chabot Road and College Avenue was occupied by a gasoline fuel distribution facility from approximately 1939 to 1965. Reportedly, a gasoline fueling facility also formerly existed at the northwest corner of Chabot Road and College Avenue. Historical research shows that the subject building has occupied the site since approximately 1952.

Geology & Shallow Soils

Geologic information for the site is provided in the "Geologic Map and Map Database of the Oakland Metropolitan Area, Alameda, Contra Costa, and San Francisco Counties, California, 2000, by R.W. Graymer, U.S. Geological Survey Misc. Field Studies MF-2342. See Figure 3, *Geologic Map*, for a portion of this geologic map showing the site and immediate vicinity. According to this document, the site is located less than one mile west of the Hayward fault zone. The area of the site is on a broad sloping alluvial plain along the margin of San Francisco Bay. Franciscan Complex bedrock of ancient Cretaceous-Jurassic age (shown as *KJfs, Kfgm, Kfn* and *KJfm* on the map) is exposed less than one-half mile east of the site. The bedrock consists of mélange (sheared rock), sandstone, greenstone, Serpentenite, and quartz diorite. The depth of the Franciscan Complex bedrock below the site has not been evaluated. However, the map suggests that bedrock may be less than 100 feet deep in this area. The bedrock is not believed to contain significant groundwater resources.

The map indicates the site is located near the eastern margin of Holocene-age alluvial fan and fluvial deposits shown as *Qhaf* on the map. The alluvial fan deposits are described on the map as brown or tan, medium dense to dense, gravely sand or sandy gravel that generally grades upward to sandy or silty clay. Near the distal fan edges, the fluvial deposits are typically brown, never reddish, medium dense sand that fines upward to sandy or silty clay. Underlying the most recent alluvial fan and basin deposits are older materials called Pleistocene alluvial fan and fluvial deposits (shown as *Qpaf* on the map). The older Pleistocene alluvial fan deposits are described on the map as brown dense gravely and clayey sand or clayey gravel that fines upward to sandy clay. All Pleistocene alluvial fan deposits can be related to modern stream courses. They are distinguished from younger alluvial fans and fluvial deposits by higher topographic position, greater degree of dissection, and stronger soil profile development. They are less permeable than Holocene deposits. They are overlain by Holocene deposits on lower parts of the alluvial plain, and incised by channels that are partly filled with Holocene alluvium on higher parts of the alluvial plain.

Native subsurface soil encountered at the site consists of clayey silt, silty clay and finegrained sand with lenses of coarser-grained sand with gravel. Soil in the direct vicinity of the former UST cavity, as described in B21 to B23, was moderate to dark yellowish brown intermixed lenses of silty clay and clayey silt with fine-to coarse-grained sand, to a total explored sample depth of 25 fbg. Boring B15 in the southeastern corner of the site encountered silty fine-grained sand to a depth of 10 feet. As described in the previously reported Particle Size Distribution and Moisture-Density-porosity Reports, soil in boring B8 at 17 fbg was described as a olive gray clay w/ sand containing 57.9 % silt, 27.3% clay & 14.8% sand with a porosity of 38.6%, moisture content of 22.8%, and density of 106 pounds per cubic foot (pcf). Soil in boring B9 at 7 fbg was described as a brown clayey sand w/ trace gravel containing 47.3% sand with trace gravel, 39.5% porosity, 19% moisture, and approximately 102 pcf density. The soil sample collected in B11 at the north side of site at 19 fbg was described as a brown clayey sand w/gravel containing 25.5% silt, 22.9% clay, and 34.8% sand with 43% porosity, 21.9% moisture content, and an approximate density of 97 pcf. These materials appear consistent with young Holocene-age alluvial fan-fluvial deposits as described on the geologic map.

Groundwater Setting & Conditions

The regional groundwater flow in the vicinity of the site is assumed to be towards the west-southwest in the direction of the San Francisco Bay and generally following the natural topographic relief of the area. The site is in the East Bay Plain Groundwater Basin according to the San Francisco Bay Basin Water Quality Control Plan prepared by the California Regional Water Quality Control Board – Region 2 (CRWQCB, 1995). Groundwater in this basin is designated beneficial for municipal and domestic water supply and industrial process, service water, and agricultural water supply. Although no domestic water supply wells are located in the site vicinity, the shallow groundwater beneath the site is considered a potential drinking water source by local regulatory agencies.

The nearest surface water body is Harwood Branch (aka Claremont Creek) that is the northernmost tributary of Temescal Creek / watershed. As shown on Figure 4, *Regional Map of Creeks and Conduits*, Harwood Branch flows via an intermittent underground culvert and an open surface channel in the vicinity of the site. Figure 5, *Local Map of Storm Conduits*, shows a detail map of the Harwood Branch drainage in the immediate vicinity of the site. As shown on these maps, flow from Harwood Branch is diverted into two conduits on both sides of the subject property. To the west along College Avenue, storm flow is directed within the Alameda County Flood Control District 90" RCP underground conduit. To the east of the site Harwood Branch flows within an open channel. To the south along Chabot Avenue, Harwood Branch flows within an underground box culvert. The two drainage systems apparently join at the intersection of College and Chabot Avenues. Flow lines in conduits at this intersection are listed on the map with elevations of about 180 feet.

Historical groundwater flow directions and gradients have shown high variability at the site with historic flow directions varying widely from eastward to westward. In general, the data suggests that groundwater flow direction varies from westerly towards the 90" conduit within College Avenue and south / easterly towards Harwood Branch. Groundwater elevations at the site also show large seasonal variations. In well MW-1, the depth to water has historically varied from 3.08 feet in wet weather conditions to 11.04 feet in dry weather conditions. Similarly, in well MW-2, the depth to water has varied from 3.61 feet to 13.85 feet and well MW-3 has varied from 3.41 feet to 10.02 feet below top of casing. The lowest groundwater elevations measured at the site are approximately 183-184 feet. The nearby drainage conduits appear to have flow lines below the elevation of the onsite groundwater table. We surmise that groundwater flow at the site is significantly influenced by the 90" RCP conduit / Harwood Branch drainage system as well as other subsurface utilities along College Avenue with inverts of 12 feet below grade (see Figure 6, Subsurface Utility Map).

CORRECTIVE ACTION BACKGROUND

Underground Tank Removal August to October 1996

Two underground storage tanks (UST) were located beneath the sidewalk at the southwest corner of the site. In August 1996, GGTR removed the two USTs from the site at the locations shown in Figure 2, Site Plan. The following table presents a summary of the tank designations, size, type of construction and contents:

Designation	Construction	Diameter (Feet)	Length (Feet)	Volume (Gallons)	Contents
TANK 1	Steel	4	7	675	Gasoline
TANK 2	Steel	4	3.5	340	Waste Oil

GGTR removed the residual fuel from the subsurface product piping (left in place), thoroughly flushed and drained the piping then capped both ends (the piping was subsequently removed). GGTR over-excavated the gasoline-contaminated soil surrounding the former UST location. Analytical results of soil samples collected during the UST removal and over-excavation activities at the site are summarized in the attached Table 1A. The tank

removal and over-excavation activities are documented in the GGTR *Tank Removal Report*, dated October 11, 1996.

Preliminary Investigation & Monitor Well Installation 1998-1999

As requested by the ACHCSA, between May 1998 and October 1999, GGTR performed a preliminary subsurface investigation at the subject property and subsequently installed three groundwater monitor wells MW-1, MW-2 and MW-3 in the vicinity of the former UST cavity. On May 6, 1998, Soil borings B1 through B3 were advanced immediately south, east, and west, respectively, of the former UST cavity at the approximate locations shown in Figure 2, Site Plan. The soil sample collected in B2 at approximately 9 fbg contained 2800 mg/kg TPH-G and 13 mg/kg benzene. All other soil boring sample concentrations were either insignificant or below the respective laboratory reporting limit. Grab groundwater samples collected in each borehole between 6.5 and 8.5 fbg, contained a maximum of 1,000,000 micrograms per liter (ug/l) TPH-G (B3), 30000 ug/l benzene (B2), and 18000 ug/l MTBE (B3). Additional details are presented in the GGTR June 17, 1998 Soil & Groundwater Investigation Report.

Based on review of the preliminary soil and grab groundwater sample results, the ACHCSA in their letter dated April 20, 1999, requested additional work to further assess the extent of contamination in soil and groundwater in the vicinity of the former USTs. In June/October 1999, GGTR advanced additional soil borings B4 to B6 at the site to approximately 20 fbg and converted each to respective 2-inch-diameter groundwater monitoring wells, MW-1 thru MW-3. Soil samples collected from each associated boring contained a maximum of 280 mg/kg TPH-G and 4 mg/kg benzene (B4 @ 9 fbg). Representative well samples collected in MW-1 in June and September 1998, contained a maximum of 290000 ug/l TPH-G, 28000 ug/l benzene, and 1900 ug/l MTBE. Samples collected in each well in October 1999, contained a maximum of 85000 ug/l TPH-G, 20000 ug/l benzene, and 1100 ug/l MTBE (MW-1). The locations of the soil borings/monitor wells are shown in Figure 2, Site Plan. Additional details are presented in the GGTR Soil & Groundwater Investigation Report dated October 22, 1999. The results of the laboratory analyses of soil and grab groundwater samples are summarized on the attached Tables 1 and 2.

Quarterly Groundwater Monitoring 2000 to 2002

The ACHCSA, in a letter dated November 4, 1999, requested that all onsite wells be sampled on a quarterly basis. Also, as requested by the ACHCSA (March 1, 2001 Directive Letter), in collaboration with Gettler-Ryan, Inc. of Dublin, California, which is conducting a separate groundwater investigation adjacent to the subject property (5940 College Avenue; Former Chevron Station), GGTR has jointly monitored and sampled each well on a quarterly basis between January 2000 and October 2002. Thereafter, Gettler-Ryan conducted semi-annual monitoring and sampling only. The locations of the subject monitor wells and Gettler-Ryan's monitoring wells are shown on Figure 2, Site Plan. The attached Table 3 presents the historical monitor well fluid-level data and groundwater analytical results for samples collected in MW-1 thru MW-3. Additional details are presented in the associated GGTR Groundwater Monitoring Reports.

Additional Soil and Groundwater Investigation 2002

Based on review of analytical results of the GGTR April 2001 Groundwater Monitoring Report, the ACHCSA, in a letter dated July 9, 2001, requested a work plan to assess whether any additional contaminant sources potentially exist that may be contributing to the elevated hydrocarbon concentration in groundwater in the vicinity of MW-1. GGTR submitted the work plan on December 19, 2001, which was subsequently approved by the ACHCSA in a letter dated January 3, 2002. In August, October, and November 2002, GGTR implemented the UST product line excavation/removal and soil boring (B7-B11) activities. Boring locations are shown in Figure 2, Site Plan. Shallow soil samples collected beneath the product line at approximately 3.5 fbg, contained insignificant or non detectable concentrations of TPH-G, BTEX, and MTBE. Soil samples collected in B7 (former fuel dispenser location) and B8 & B9 (east parking lane of College Avenue) between 8 and 20 fbg also contained insignificant concentrations of TPH-G and BTEX. However, grab groundwater samples collected in B7 to B9 contained significant TPH-G, BTEX and MTBE. Soil and groundwater samples in B10 (Vicinity of former USTs, east parking lane of College Avenue) contained significant TPH-G, BTEX and MTBE. Soil collected in B11 at 8 and 13 fbg, located along the north property line, contained insignificant concentrations of TPH-G, BTEX, and MTBE. No groundwater was encountered in B11. Additional details of the additional site characterization are presented in the GGTR June 10, 2003 Report of Additional Soil and Groundwater Investigation. The results of the laboratory analyses of soil and grab groundwater samples are summarized on the attached Tables 1 and 2.

Continued Quarterly Groundwater Monitoring 2003 to Present

GGTR, in collaboration with Gettler-Ryan, Inc. jointly monitored and sampled associated site wells on a quarterly/semi-annual basis between October 2003 and January 2006. The attached Table 3 includes the historical monitor well fluid-level data and groundwater analytical results for samples collected in MW-1 to MW-3 for these events. Additional details are presented in the associated GGTR Groundwater Monitoring Reports.

Preferential Migration Pathway Survey Subsurface Utility Corridor Survey

The ACHCSA in their September 8, 2003, letter requested a subsurface utility survey in the general vicinity of the site to evaluate whether any underground utility corridors may potentially act as preferential pathways for migration of dissolved-phase contaminant hydrocarbons. The results were presented in the GGTR's *Work Plan for Additional Site Characterization* dated December 29, 2003. The approximate locations of the pertinent subsurface site vicinity utilities are shown in Figure 6, *Subsurface Utility Map*. Associated cross sections C-C' & D-D' (locations referenced in Figure 6) showing the approximate locations and depths of the utilities and trenches within and in the direct vicinity of the known contaminant plume area were presented in Figures 4 and 5 of the December 29, 2003,

work plan, respectively. Cross Sections A-A' and B-B' were presented previously in the GGTR June 2003 Report of Additional Soil and Groundwater Investigation.

The survey indicates the following subsurface utility features exist along College Avenue, flowing southward and extending between and beyond Harwood and Chabot Avenues: 1) an 18-inch-diameter, utility storm water line with invert flow depth of approximately 12 fbg, located 12 to 14 feet west of the former UST cavity; 2) an 8 to 12 inch-diameter sanitary sewer line with invert flow depth of approximately 12 fbg located 15 feet west of the former UST cavity; 3) a 90-inch-diameter storm water line (Alameda County Flood Control) with invert depth of approximately 12 fbg located approximately 22 to 23 feet west of the former UST cavity, and 4) an 8-inch diameter sanitary sewer line with invert depth approximately 10 fbg and located approximately 38 to 40 feet west of the former UST cavity and MW-1. Based on the information provided by the subsurface utility corridor survey and on the historical fluctuation of the groundwater depth reported at the site (about 2.5 to 13.5 fbg), it appears that the sanitary, storm water, and water utilities located west of the subject property along College Avenue occur at the approximate lower vertical limit of the historical water table fluctuation and potentially act as a pathway for on- and/or off-site migration of groundwater and contaminant hydrocarbons.

Site Vicinity Receptor Well Survey

As part of the preferential migration pathway survey, the ACHCSA also requested that a site vicinity well survey be conducted within a 0.25-mile radius of the subject property. The purpose of the survey was to determine whether any domestic and/or irrigation water-producing wells and monitor wells exist within this area that may both potentially act as receptors for offsite migration of the hydrocarbon-affected groundwater and potentially act as conduits for continued vertical migration. On November 4, 2003, GGTR submitted a Well Completion Report Release Agreement to the Department of Water Resources (DWR), Central District for all domestic/irrigation and monitoring wells installed within a 0.25-mile radius of the subject property. On November 12, 2003, GGTR visited the DWR Central District office in Sacramento to access their database for the associated well search. Well Completion Reports were provided within a 2-mile radius of the subject property.

Only two irrigation wells and three monitoring wells were located as result of the search. The two irrigation wells exist at the Claremont Resort and Tennis Club located approximately 0.75 mile northeast of the subject property, at the intersection of Claremont and Ashby Avenues in Oakland, California. One of the three monitoring wells exists at the Chevron Service Station at 3048 Ashby Avenue (southwest corner of intersection of Ashby & Domingo Avenues), approximately 0.75 mile northeast of the site. It appears that three additional monitor wells currently exist on this property, although no well driller reports were provided. The two other monitor wells exist at the Arco Service Station at 6407 Telegraph Avenue, located approximately 0.5 mile west-northwest of the site, at the intersection of Alcatraz and Telegraph Avenues.

Based on results of the receptor well survey, no known active domestic and/or irrigation wells exist within the 0.25-mile survey radius of the subject property. Only two irrigation wells reportedly exist approximately 0.75 mile from the site and are located regionally upgradient of the property. At least three groundwater monitoring wells, in addition to the site and adjacent property wells, exist within 0.75 mile of the subject property. The three above reported monitor wells are located regionally up- and lateral gradient of the site. Because of their distance and up-/lateral-gradient locations from the subject property impacted groundwater, the reported irrigation and monitor wells will not act as potential receptors or vertical conduits for continued contaminant migration.

ADDITIONAL SITE CHARACTERIZATION

Based on review of the GGTR June 2003 report, the ACHCSA, in their letter dated September 8, 2003 requested a work plan addressing additional source and site characterization of contaminants in soil and groundwater at the subject property. GGTR submitted their Work Plan for Additional Site Characterization on December 29, 2003, and its June 3, 2004 Addendum, which were conditionally approved by the ACHCSA in letters dated September 30, 2004 and February 22, 2005. Between April and July 2005, GGTR installed additional borings B12 to B24 to approximately 25 fbg and Hydropunch borings HB-1 to HB-6 to approximately 15 fbg, and converted HB-2 to piezometer well PW-1. The location of each additional boring is shown in Figure 2, Site Plan. The results of the laboratory analyses of soil and grab groundwater samples are summarized on the attached Tables 1 and 2.

The following is GGTR's general scope of work for additional investigation and site characterization activities performed at the subject property between April and July 2005.

- Obtain site Excavation Permit from City of Oakland Department of Public Works
- Obtain Drilling Permit from Alameda County Public Works Agency
- Conduct site mark-out and notify Underground Service Alert for utility clearance
- Conduct additional soil boring and sampling activities (B12 to B24)
- Hydropunch boring and sampling activities (HB-1 to HB-6)
- Piezometer PW-1 installation, development, sampling, and surveying
- Perform soil and grab groundwater sampling activities in each boring
- Backfill soil borings with neat Portland cement and surface concrete
- Submit all samples to State-licensed environmental laboratory for analysis
- Profile, transport, and dispose of all impacted solid/liquid waste
- GeoTracker AB2886 submittal
- Interpret all field and analytical data and prepare summary report

Soil and Hydropunch Boring & Sampling Activities

During April to June 2005, GGTR contracted Gregg Drilling (State Contractors C-57 License #485165) to perform the additional soil boring and sampling activities at the site. GGTR initially conducted a safety tailgate meeting with all pertinent site personnel to discuss all information provided in the project Health & Safety Plan. GGTR inspected the drilling equipment for cleanliness to avoid cross contamination between differing sites. Prior to drilling, GGTR directed Gregg to hand auger or probe the proposed boring locations up to approximately 4 fbg to clear for any unmarked utilities. Gregg drilled Soil Borings B12 to B24 and Hydropunch Borings HB-1 to HB-6 to depths of approximately 9.5-25 fbg using 2-inch diameter, percussion drill tubing (Direct Push Technology). Continuous soil samples were collected in all soil borings (and HB-2/PW-1) at 4-feet intervals, between 5 and 25 fbg, by hydraulically driving a 1- to 2-inch-diameter, butyrate plastic tube-lined, core sampler into relatively undisturbed soil.

At the bottom section of each sample interval, GGTR monitored and recorded the organic vapor concentrations of each soil sample using a Thermo® 580B Organic Vapor Analyzer and classified and logged all samples and hand auger soil cuttings using the Unified Soil Classification System and Munsell Rock Color Chart. Soil boring logs are presented in Appendix D. Immediately following sample collection, GGTR chose a representative portion of the sample tube (6-inch-length) from each sample interval, sealed the ends of each sample tube with Teflon® tape and plastic caps, appropriately labeled each tube and transferred the samples to a cooler chilled to approximately 4° Centigrade. The core sampler was washed between each sample interval using an Alconox® solution and double rinsed with clean, potable water. Equipment wash and rinse water was subsequently transferred to a 55-gallon D.O.T.-approved steel drum and temporarily stored onsite.

Grab Groundwater Sampling & Backfilling Activities

Following soil sampling activities in the majority of all borings, Gregg temporarily placed 0.75-inch-diameter, factory-sealed, screened piezometer casing to the approximate total depth of each borehole. GGTR monitored and recorded the depth to groundwater (DTW) in each borehole (relative to grade surface) using an electronic water level indicator. Groundwater was not observed in B13, B22, and HB-5, most likely due to the compacted borehole sidewalls and the relatively impermeable silty clay / clayey silt material observed in each boring.

Between April 14 and July 11, 2005, GGTR and Gregg collected grab groundwater samples using a clean, stainless steel, 0.5-inch-diameter bailer. GGTR carefully drained the groundwater sample from the bottom of the bailer directly into laboratory-cleaned, 40-milliliter volatile organic analysis (VOA) vials. A specialized drainage tip was used to prevent loss of any volatile constituents during sample transfer. GGTR sealed each sample container with a threaded cap and inverted the VOA vials to insure no headspaces or entrapped air bubbles were present. GGTR appropriately labeled each sample container and immediately placed the samples in a cooler chilled to approximately 4° Centigrade.

The down-hole monitoring equipment was washed between each boring location using an Alconox® solution and double rinsed with clean, potable water. Equipment wash and rinse water was subsequently transferred to a 55-gallon D.O.T.-approved steel drum. Following grab groundwater sampling GGTR removed the temporary well casing from the borings and backfilled each borehole with neat Portland cement and asphalt patch. GGTR then secured the well casing in selected borings at grade surface and placed a steel cover and hydrated bentonite paste above each borehole location to inhibit any potential surface water infiltration.

Piezometer PW-1: Installation, Development, Sampling and Surveying

Because of the high variability in onsite groundwater measurements, GGTR proposed converting exploratory soil boring HB-2 located in the rear concrete-paved courtyard to a groundwater piezometer. Following approval by the ACHCSA, GGTR and Gregg, on April 5, 2005, constructed a 2-inch diameter piezometer well (PW-1) using a limited access truck equipped with continuous flight, hollow stem augers. The location of HB-2/PW-1 is shown in Figure 2. Piezometer construction specifications are depicted in the associated Boring Log presented in Appendix D.

Approximately 72 hours following construction of PW-1, similar to a conventional monitor well, GGTR developed the piezometer well by surging the entire water column of the well with a 2-inch-diameter surge block and subsequently purging at least 10 well casing volumes from the well. GGTR transferred the well purge water to a 55-gallon drum. On April 14, July 26, and October 14, 2005, GGTR returned to the site and sampled PW-1, as part of the continued quarterly monitoring and sampling activities (MW-1 to MW-3) performed at the site.

On July 11, 2005, GGTR returned to the site and surveyed the wellhead elevation (TOC & grade) of PW-1 relative to the known TOC elevation of MW-1. The survey is informal (not conducted by at Licensed Land Surveyor) at this time.

Laboratory Analysis of Soil Samples

GGTR submitted soil samples collected during the additional soil boring activities under respective formal chain-of-custody command to the former North State Labs of South San Francisco, California and Entech Analytical Labs, Inc. of Santa Clara, California (Entech; CA ELAP 2346) for analyses.

- Total Petroleum Hydrocarbons (TPH) as Gasoline (TPH-G; EPA 8015M/8021B)
- Benzene, Toluene, Ethylbenzene and Total Xylenes (BTEX; EPA 8015M/8021B)
- Methyl Tertiary-Butyl Ether (MTBE; EPA 8015M/8021B)
- Ethylene Dibromide and Ethylene Dichloride (EDB & EDC; EPA 8260B)

Selected soil samples collected from B12 and B21-B23 (former UST source area) were additionally analyzed for:

- TPH as motor and hydraulic oil (EPA Method 8015M)
- Total Oil & Grease (TOG; Standard Method 5520 E&F)
- Cadmium, Chromium, Lead, Nickel, and Zinc (LUFT Metals; EPA 3000/7000)
- Fuel Oxygenates (EPA Method 8260)
- VOCs (EPA Method 8260)

The attached Table 1 (A-C) summarizes the historical laboratory results of soil boring samples collected during the additional soil boring activities. A copy of the respective laboratory analytical reports and chain of custody records as well as associated Quality Assurance and Quality Control (QA/QC) details is presented in Appendix C.

Laboratory Analysis of Groundwater Samples

All groundwater samples collected in the borings and piezometer well were analyzed for the following chemical constituents:

- TPH-G (SW8020F)
- BTEX (SW8020F)
- MTBE (SW8020F)
- Fuel Oxygenates (EPA Method 8260), including EDB & EDC

All grab groundwater samples collected from B12 and B21-B23 (former UST source area) were additionally analyzed for:

- TPH as motor and hydraulic oil (EPA Method 8015M)
- TOG; Standard Method 5520 E&F
- LUFT Metals; EPA 3000/7000
- VOCs (EPA Method 8260)

The attached Table 2 (A-C) summarizes the historical laboratory analytical results of the grab groundwater samples and fluid-level monitoring data measured during the additional soil and groundwater investigation activities. Analytical results of the groundwater samples collected in PW-1 during the April, July, and October 2005 quarterly monitoring events are presented in Table 3 (A&B). A copy of the respective laboratory analytical reports, QA/QC details, and chain of custody records is included in Appendix C.

QUARTERLY GROUNDWATER MONITORING – January/April 2006

The scope of the work for the First and Second Quarter 2006 groundwater monitoring and sampling includes the following:

- Monitoring, purging and sampling of three monitor wells (MW-1, MW-2 & MW-3) and one piezometer (PW-1)
- Groundwater sample laboratory analysis
- Waste management
- Data interpretation
- Electronic Data Upload to GeoTracker Database System (State Assembly Bill 2886)

Groundwater Sampling Field Procedures

GGTR continued quarterly groundwater monitoring and sampling activities at the subject property on January 13 and April 14, 2006, in accordance with the requirements and procedures of the California Regional Water Quality Control Board, San Francisco Bay Region (RWQCB) and the ACHCSA. Prior to purging and sampling each of the four monitoring field points, GGTR measured and recorded the depth to groundwater and presence of floating product using an oil/water interface meter. Fluid levels were measured to the nearest 0.01 foot. A copy of the associated Fluid-Level Monitoring Data Forms is presented in attachment B.

GGTR then purged approximately three (3) well casing volumes of groundwater from each field point using a direct current, centrifugal purge pump. GGTR simultaneously monitored and recorded the pH, temperature, specific conductivity of the purged water. The purge water was transferred directly to a 55-gallon, D.O.T.-approved steel drum. After recharge of approximately 80% of the groundwater column, GGTR collected a groundwater sample by lowering a disposable, bottom-fill, acrylic bailer to just below the air-water interface. GGTR initially checked for the presence of surface sheen and then carefully decanted each sample from the bailer into the appropriate laboratory sample containers. All volatile organic analysis (VOA) vials were inverted and checked to insure that no entrapped air was present. Well Purging/Sampling Data Sheets are included in Attachment B.

Results of Groundwater Sampling and Laboratory Analysis

The groundwater samples were then appropriately labeled and immediately stored in a cooler chilled to 4°centigrade. On January 16 and April 14, 2006, GGTR submitted the groundwater samples under formal chain of custody command to Entech for laboratory analysis of the following fuel constituents:

- TPH-G GC-MS Method
- Fuel Oxygenates, including EDB & EDC (EPA Method 8260)
- VOCs, including BTEX (EPA Method 8260)

Entech performed all volatile analyses within the maximum 14-day hold time for these analyses. Copies of the official Laboratory Certificates of Analysis and the associated Chain-of-Custody Forms are included in Appendix C. The results of the groundwater monitoring and laboratory analyses (performed to date) are summarized in Table 3 (A&B), attached to this report.

Elevated concentrations of TPH as Gasoline as high as 51,000 ug/l, benzene as high as 14,000 ug/l, and other significant concentrations of VOCs, which continue to exceed applicable groundwater ESLs, were measured in MW-1 through MW-3 during this event. Concentrations of TPH-G (450 ug/l) and benzene (10 ug/l) remain in Piezometer Well PW-1; however, have shown a general decreasing trend since the April 2005 sampling event. MTBE was detected in well MW-1 at an elevated concentration 270 ug/l. Slightly detectable concentrations of other gasoline-range VOCs (maximum concentrations of 170 ug/l n-propylbenzene and 2,400 ug/l 1,2,4-trimethylbenzene) were measured in MW-1 thru MW-3 at levels relatively similar to those measured during previous events (Table 3). A concentration of tetrachloroethene (PCE) was detected in PW-1 at 95 ug/l on January 13th and 68 ug/l on April 14, 2006.

Figure 9 - TPH-G, Benzene and MTBE in Groundwater; Figure 10 - TPH-G in 2005 Grab Water Samples; and Figure 11 - April 2006 TPH-G in Monitor Wells, illustrates the results of groundwater analytical results. Figure 12 - Chart of TPH Gasoline in Groundwater for monitor wells MW-1 thru MW-3 illustrates a significant decreasing trend in contamination concentrations at the site.

Results of Groundwater Measurements

The groundwater levels measured in each well during the monitoring event were used to calculate an approximate groundwater gradient and flow direction across the site. The groundwater gradient data calculated for the January 13 and April 14, 2006 monitoring events are shown on Figure 7, *Groundwater Flow Direction*. The table below presents the historical data on mean groundwater elevation, flow direction and gradient magnitude for the site since October 1999.

Mean Groundwater Elevation, Flow Direction, and Gradient

Measurement	Mean Groundwater	Groundwater Flow	Gradient
Date	Elevation (feet)	Direction	(feet / 100 feet)
10/07/99	39.87	11° west of south	0.67 foot / 100 feet
01/26/00	43.1	23° west of north	9.12 feet / 100 feet
10/25/00	39.96	40° east of north	0.64 foot / 100 feet
04/25/01	188.6	55° west of north	0.69 foot / 100 feet
07/10/01	186.26	4° east of north	0.5 foot / 100 feet
10/08/01	184.99	48° east of north	1.6 feet / 100 feet
01/07/02	191.63	52° west of south	2.3 feet / 100 feet
04/08/02	188.94	43° east of south	0.6 foot / 100 feet
07/09/02	186.63	51° west of north	0.7 foot / 100 feet

10/23/02	184.50	71° east of north	3.2 foot / 100 feet
10/15/03	185.14	28° east of north	1.0 foot / 100 feet
02/02/04	188.47	18° east of south	0.5 foot / 100 feet
04/23/04	189.00	77° east of south	0.5 foot / 100 feet
07/19/04	186.97	51° west of north	0.1 foot / 100 feet
10/22/04	186.49	82° west of north	2.9 foot / 100 feet
01/21/05	190.36	16° west of south	1.25 foot / 100 feet
04/14/05	190.01	13° east of south	1.10 foot / 100 feet
07/26/05	188.37	56° west of north	0.08 foot / 100 feet
10/14/05	186.38	27° west of north	0.2 foot / 100 feet
01/13/06	191.50	33° west of south	1.6 foot / 100 feet
04/14/06	193.3	37° west of south	2.5 foot / 100 feet

The groundwater elevations are referenced to mean sea level (MSL) as determined by the April 26, 2001, Virgil Chavez Land Surveying; Wellhead Elevation and Coordinate Survey. The benchmark for the survey was a City of Oakland benchmark being a cut square in the top of curb at the northeast corner of College Avenue and Miles Avenue (benchmark elevation is 179.075 feet MSL). The groundwater elevations prior to April 26, 2001 are referenced to an arbitrary site-specific datum point (MW-1) with an arbitrary elevation of 50 feet.

Groundwater elevation data since April 2005 has incorporated data from the new piezometer PW-1. Beginning with the January 13 and April 14, 2006, measurements, the groundwater gradient and flow direction was calculated using the U.S. Environmental Protection Agency (EPA) On-Line Tools for Site Assessment Calculation – Gradient and Direction from Four or More Points. Groundwater elevations from the four onsite monitoring field points were utilized to calculate an overall site gradient and flow direction (See Appendix D - Groundwater Gradient Calculation Sheets). Figure 8 presents a *Rose Diagram-Historical Hydraulic Gradients* showing the historical hydraulic gradients (magnitude and direction) to date across the site. The April 14, 2006, mean groundwater elevation is the highest elevation measured since 2001. The high groundwater elevation reflects the abundant rainfall experienced during April 2006. The January 13 and April 14, 2006, flow directions generally agree with flow directed towards College Avenue to the southwest (33-37° west of south).

GGTR also calculated a flow direction and gradient to the north of the site at the former Chevron service station case (5940 College Avenue) using Gettler-Ryan wells GR-MW1 and GR-MW2 and onsite well MW-1. At the former Chevron station, the April 14, 2006, gradient is steeper (0.04 ft/ft) and the flow direction is more westerly towards College Avenue at 129° west of south. The large difference in flow direction and gradient at the Gettler-Ryan site is due to the lower groundwater elevations measured in the Gettler-Ryan wells. Both well surveys were based on the same benchmark and performed by Virgil Chavez Land Surveying. A site inspection during August 2006 revealed a sump pump pit located in the sunken courtyard of the Barclays Restaurant & Pub facility (current tenants of 5940 College Avenue). The sunken courtyard is approximately 3 feet below sidewalk grade and the sump pump pit is estimated at 2-3 feet below the courtyard grade. As depth to groundwater during April 2006 was measured at about 2-3 feet below grade, it appears the sump pump may be

artificially influencing groundwater elevations in the vicinity of the Gettler-Ryan monitoring well GR-MW1 during the wet weather monitoring events. Similarly, a sump pump may also exist at the new commercial development on the west side of College Avenue in the vicinity of GR-MW1.

FINDINGS OF ADDITIONAL INVESTIGATION

- The site is located on an alluvial plain alongside the northern tributary of Temescal Creek called Harwood Branch creek. Holocene-age alluvial fan and fluvial deposits occur at the site consisting of a layered and laterally-discontinuous sequence of fine-grained clayey sand and silty clay-clay with lenses of sand and gravel. The young alluvial-fluvial soils are generally loose with high porosity. Harder Pleistocene-age alluvial fan and fluvial deposits may underlie the site and Franciscan Complex bedrock is believed to exist at a relatively shallow depth below the site (<100 feet).
- The site occurs within the floodplain of Harwood Branch creek less than 200 feet from the open stream channel to the east. Harwood Branch flows along Chabot Road to the south of the site in a large underground box culvert. A large 90" Alameda County Flood Control conduit connected to Harwood Branch at its eastern and western ends occurs adjacent to the site along College Avenue. Base groundwater elevation at the site is believed to be the approximate flow line of Harwood Branch and associated 90" storm drain. Harwood Branch flow line is estimated to be at an elevation of about 180 feet MSL near the intersection of College Ave. and Chabot Road. Groundwater is unconfined at the site and elevations vary from 183.43 to 194.9 feet MSL (an 11.47 foot difference) depending on seasonal rainfall.
- Groundwater flow direction has been highly variable at the site presumably related to the proximity of Harwood Branch and associated 90" storm drain. The January and April 2006 flow directions were to the southwest at South 33° West and South 37° West with a gradient of 0.016-0.025 ft/ft. These flow directions represent wet weather and high groundwater conditions. The southwesterly flow is towards the Alameda County Flood Control District 90" storm conduit in College Avenue. Soil boring HB-5 located across College Avenue from the site in the down-gradient direction contained silty-clay soils. Although temporary casing was installed in this boring to a depth of 15 feet and allowed to recharge for several weeks, no groundwater was observed in this boring.
- During April 2006 (a very wet month for rainfall) the highest groundwater elevations measured at the site were recorded with groundwater depths ranging from 3.61 to 2.27 feet below grade. The groundwater elevation fluctuates over a known interval of 11.47 feet at the site producing a pronounced smear zone of petroleum soil contamination within the groundwater interface. Entrapped petroleum contamination (TPH gasoline at 100-2800 mg/Kg) is located in the vicinity of the former USTs at depths of 9-17 feet below grade based on the laboratory analysis of soil samples. Sheen of petroleum product is commonly observed in purge water from monitor wells in the vicinity of the former UST locations.
- Based on elevated concentrations of TPH-G, BTEX, MTBE and Naphthalene measured in MW-1 thru MW-3 during the January and April 2006 monitoring events, groundwater

in the vicinity of former gasoline and waste oil USTs remains significantly impacted by gasoline-range hydrocarbons above applicable regulatory agency action levels. A trend analysis of historical TPH as gasoline concentrations in monitor well MW-1 indicates that overall total petroleum hydrocarbon concentrations are steadily decreasing reflecting the significant source removal actions undertaken at the site. The trend line suggests that overall TPH as gasoline concentrations have decreased almost one-half from about 150,000 ug/l in October 1999 to about 80,000 ug/l in April 2006. The groundwater plume is apparently captured by the utility corridor along College Avenue and/or sump pump at the adjacent building(s) and ultimately the storm drain system / Harwood Branch conduit.

- Slightly elevated concentrations of TPH-G and benzene, as well as the chlorinated VOC tetrachloroethene (PCE) occur in the groundwater in the vicinity of piezometer PW-1. Five quarters of groundwater monitoring for PW-1 have revealed PCE concentrations ranging from 25 to 95 ug/l above the ESL screening level of 5 ug/l. Based on the southwesterly groundwater flow reported across the site during this event and the location of PW-1 situated general up-gradient of the former USTs, an additional offsite source may be contributing to the detectable hydrocarbons and PCE in PW-1. However, historical research indicates a residential neighborhood exists to the east of the site and no historical source of contamination is evident. No soil sampling for PCE has been performed in the subject courtyard where PW-1 is located. At this time, the source of PCE contamination in the groundwater of PW-1 is unknown and apparently unrelated to the former USTs.
- Concurrent groundwater monitoring of two Gettler-Ryan monitor wells (GR-MW1 & GR-MW2) is ongoing. These two monitor wells show lower groundwater elevations than onsite wells. A flow direction and gradient based on three points (GR-MW1, GR-MW2 and MW-1) shows a westerly flow (south 127 west) direction and steep groundwater gradient (0.04 ft/ft). During the April 2006 monitoring, well GR-MW2 revealed a TPH gasoline concentration of 180 ug/l and well GR-MW1 was non-detect for TPH as gasoline. Exploratory borings HB-3 and HB-4 located in the vicinity of wells GR-MW1 and GR-MW2 revealed high concentrations of TPH as gasoline in grab water samples of 13,000 and 14,000 ug/l.
- GGTR previously identified a utility corridor along the down-gradient margin of the site as a potential pathway for contaminant migration. The depth of utility lines within the corridor is reported at 12 fbg. The results of groundwater sampling / laboratory analysis of borings within College Avenue indicate that petroleum contaminated groundwater is present within the utility corridor along the northern margin of the site. Exploratory borings HB-3 and HB-4 located within the College Avenue corridor produced grab groundwater samples with significant TPH gasoline concentrations (13,000 & 14,000 ug/L). Apparently, the utility corridor along College Avenue is contaminated with TPH gasoline related to past activities at the former Chevron gasoline station and/or other historical gasoline stations in this area. The utility corridor contamination apparently commingles with the onsite TPH gasoline plume immediately west of the site.
- Based on the findings of the subsurface product pipeline removal / sampling activities
 and results of this investigation, shallow surface soil directly beneath the piping run,
 between the former UST cavity and associated fuel dispenser, has not been affected by

gasoline-range hydrocarbons. Three exploratory borings were drilled in the dispenser-piping run area during this investigation. Borings B20 and B24 encountered no significant TPH as gasoline contamination (<63 ppm). Boring B19 encountered soil contaminated with TPH as gasoline of 139 ppm at a depth of 15 feet below grade within the saturated zone. Low concentrations of gasoline hydrocarbons were discovered in soil beneath the former fuel dispenser in boring B7 to a depth of 16 fbg. Upon removal, the product piping to the dispenser was found in good condition and subsequently removed, and does not likely appear to be a potential or contributing source of the elevated gasoline hydrocarbons present in the groundwater at the site.

- Based on the laboratory analytical results of soil samples collected in the soil borings, it appears that only low level, gasoline-range hydrocarbons (i.e., TPH-G, benzene, and total xylenes), below respective Tier 1 RBSL, are present in the soil within the vadose-interface zone interval (less than 8.5 feet deep). No additional investigation or remedial action appears needed to address site soils less than 8 feet below grade. One soil sample (B21-8.5) analysis for total chromium was reported at a concentration of 74 ppm above the ESL of 58 ppm but within the range of Bay Area background chromium concentrations. However, a total of six soil samples have been analyzed at the site for total chromium with concentrations of 49, 34, 38, 74, 43 and 47 ppm. The mean total chromium concentration for these six samples is 47.5 ppm below the ESL of 58 ppm.
- Elevated concentrations of gasoline-range hydrocarbons were detected in the groundwater within the western half of the subject property and extending into the utility corridor beneath College Avenue. Significant concentrations of dissolved-phase TPH-G, benzene, toluene, ethylbenzene, total xylenes, and MTBE appear to extend laterally to the north and west (general down-gradient directions reported in the January and April 2006 measurements). Sheen of petroleum product is commonly observed on groundwater purge water from onsite wells accounting for the relatively high concentrations reported by laboratory analysis. Elevated levels of petroleum-related VOC such as Naphthalene in groundwater samples from exploratory borings and monitor wells are presumed to be associated with the TPH as gasoline contamination at the site. No significant free product phase is observed at the site. TPH as gasoline concentrations in groundwater to the south of the site is constrained by exploratory boring HB-6 with a grab water sample concentration of 45 ug/L.
- A shallow groundwater plume may extend beneath a portion of the adjacent building to the south of the site at 5916-5920 College Avenue. The results of grab groundwater sampling from borings B14 and HB-6 appear to constrain the plume to a small portion of the northwestern corner of the adjacent property. The adjacent building contains vehicle parking and a retail store (T-Mobile at 5916 College Ave.) on the ground floor. Residential apartments appear to be located on the second floor and above. It appears at this time that the potential for gasoline vapor intrusion, if any, impacting the residential living space in this building is low. The subject building overlies the gasoline plume along the western half of the building in the vicinity of the office and bathroom. The building contains an active vehicle repair facility in which petroleum vapors and exhaust is present as part of the work environment. The facility is reportedly well ventilated

during working hours. The potential for vapor intrusion, if any, to significantly impact workers in the vehicle repair shop appears to be low at this time.

RECOMMENDATIONS FOR FUTURE ACTION

Based upon the findings of additional investigation at the subject property, GGTR recommends the following additional actions:

- Groundwater monitoring and sampling of all site monitor wells / piezometer should be continued on a quarterly basis for the existing suite of laboratory analysis chemicals. The top-of-casing elevation for piezometer PW-1 should be professionally surveyed in relation to other site monitoring wells.
- Groundwater conditions have not been verified by an agency-approved groundwater monitoring well located to the south of the site along College Avenue. GGTR recommends the installation of an additional monitor well in the parking stripsidewalk of College Avenue adjacent to the location of exploratory boring HB-6 and near the adjacent building at 5916-5920 College Avenue. The purpose of the well is to verify groundwater conditions in the down-gradient direction to the southwest of the site. The monitor well would also be used to estimate impact to groundwater beneath the adjacent building at 5916-5920 College Avenue.
- Five quarters of groundwater monitoring have revealed PCE contamination of groundwater at the location of piezometer PW-1. The PCE appears unrelated to the UST investigation at the site and may be related to an off-site source of PCE contamination. GGTR recommends two additional hand augur soil borings in the vicinity of the storm drain within the concrete-paved rear courtyard of the subject property. The purpose of the borings is to investigate for PCE contamination of shallow soils within the courtyard as a potential source of PCE contamination. The soil sample collected from the boring would be analyzed for total petroleum hydrocarbons as gasoline and VOCs.
- GGTR recommends submitting a work plan to implement installation of the additional monitor well and two soil borings at the site. The results would be used to complete a Site Conceptual Model to assess all potential exposure pathways that may exist at the site and determine the risk, if any, to human health and the environment. Following completion of the Site Conceptual Model and review by the ACHCSA, GGTR recommends the preparation of a Corrective Action Plan and Feasibility Study for soil/groundwater abatement, if required by the ACHCSA.

GEOTRACKER AB2886 ELECTRONIC SUBMITTAL

Following receipt of all analytical data submitted by NSL and Entech in electronic deliverable format (EDF), GGTR uploaded the data to the State Water Resources Control Board's GeoTracker Database System (State Assembly Bill 2886). GGTR uploaded the analytical data as well as the Fluid-Level Monitoring Data (GEO_WELL), GGTR also uploaded all boring/well construction logs (GEO_BORE), a current site plan (GEO_MAP), and a copy of this report (GEO_REPORT) in Portable Data Format (PDF) to the GeoTracker Database. The table presented below presents the confirmation numbers for the subject GeoTracker submittals. EDF reports for Laboratory Report Nos. 05-0498 & 05-0540 were not submitted by NSL, and thus not uploaded to the GeoTracker database.

Geotracker Upload Confirmation

Submittal Title	Confirmation Number	Description			
EDF					
05-0642: Soil/GW Sample Analytical Data – B12 to B24	6308827102	Boring Soil/GW Sample Analytical Data			
05-0761: GW Sample Analytical Data – B14,B15,B17,B20	9815843820	Boring GW Sample Analytical Data			
44111: Soil Sample Analytical Data – B21 & B22	9902001202	Boring Soil Sample Analytical Data			
44112: Soil/GW Analytical Data – B21 & B23	6761783540	Boring Soil/GW Sample Analytical Data			
44322: GW Analytical Data – B23,HB-3,HB-4,HB-6	7190087258	Boring GW Sample Analytical Data			
47376: Analytical Data MW1-PW1 (01/13/06) 47376	1106026649	1 st Quarter 2006 GWM Analytical Data			
48991: GW Well Analytical Data – MW-1 to MW-3, PW-1	7678564190	2 nd Quarter 2006 GWM Analytical Data			
GEO_WELL					
Fluid Level Monitoring Data; MW1-PW1, 01/13/06	3202392399	1 st Quarter 2006 Well Fluid Level Data			
Fluid Level Monitoring Data; MW-1 to MW-3, PW-1 (04/14/06)	6986280679	2 nd Quarter 2006 Well Fluid Level Data			
OTHER					
GEO_BORE	Multiple (See Attachments)	Boring Logs B12 through B24, HB-1 to HB-6			
GEO_MAP	8517715275	Site Plan (August 2006)			
GE0_REPORT	See GeoTracker	This Report			

A copy of each associated GeoTracker AB2886 EDD Upload Confirmation Form is presented in Appendix E.

WASTE MANAGEMENT

Auger soil cuttings and excess sample soil not submitted for laboratory analysis generated during the installtion of PW-1 and other direct push soil borings were transferred to 55-gallon D.O.T.-approved steel drums and temporarily stored onsite in a secure area onsite. All drilling and sampling equipment wash and rinse water was contained in a separate drum, which remained onsite for future monitoring and/or investigation use. On August 8, 2005, GGTR transported the drummed soil cuttings (@ 1 ton) under Non-Hazardous Waste Manifest No. 74496 to Allied Waste's Class II Forward Landfill facility in Manteca, California. A copy of the solid waste manifest and associated weight ticket is included in Attachment E

The well purge water and equipment wash and rinse water generated during the January 13, 2006 monitoring event (approximately 35 gallons), as well as that generated during the previous monitoring/investigation events (75 gallons), was transferred to 55-gallon steel drums and stored onsite in a secure area. On January 19, 2006, Clearwater Environmental Management, Inc. pumped approximately 110 gallons of liquid waste from the drums and transported the Non RCRA Hazardous Waste Liquid under Uniform Waste Manifest No. 24773452 to the Alviso Independent Oil Facility in Alviso, California.

The well purge water and equipment wash and rinse water generated during the April 14, 2006 monitoring events (@ 45 gallons) was also transferred to a 55-gallon D.O.T.-approved steel drum and temporarily stored onsite. On May 11, 2006, Clearwater Environmental Management, Inc. pumped approximately 45 gallons of liquid waste from the drums and transported the Non RCRA Hazardous Waste Liquid under Uniform Waste Manifest No. 24976417 to the Alviso Independent Oil facility. A copy of the liquid waste manifests is included in Attachment E.

LIMITATIONS

It should be understood that all environmental assessments are inherently limited in that conclusions are drawn and recommendations developed from information obtained from limited research and visual observations. Subsurface conditions change significantly with distance and time and therefore may differ from the conditions implied by subsurface investigation. It must be noted that no investigation can absolutely rule out the existence of any hazardous or petroleum substances at a given site. Existing hazardous materials and contaminants can escape detection using these methods. The work performed in conjunction with this assessment and the data developed are intended as a description of available information at the dates and location given. GGTR professional services have been performed, with findings obtained and recommendations prepared in accordance with customary principles and practices in the field of environmental science, at the time of the assessment. This warranty is in lieu of all other warranties either expressed or implied.

GGTR is not responsible for the accuracy of information reported by others or the independent conclusions, opinions or recommendations made by others based on the field exploration presented in this report. The findings contained in this report are based upon information contained in previous reports of corrective action activities performed at the subject property and based upon site conditions as they existed at the time of the investigation, and are subject to change. The scope of services conducted in execution of this phase of investigation may not be appropriate to satisfy the needs of other users and any use or reuse of this document and any of its information presented herein is at the sole risk of said user. The figures, drawings and plates presented in this report are only for the purposes of environmental assessment and no other use is recommended. No other third party may rely on this report, figures or plates for any other purpose.

REPORT DISTRIBUTION

All reports that are prepared during the continuing work on this project will be submitted to:

Alameda County Health Care Services Agency Environmental Health Services, Environmental Protection (LOP) 1131 Harbor Bay Parkway, Suite 250

Alameda, CA 94502-6577

Attention: Mr. Don Hwang

(1 Electronic Copy via ACHCSA FTP) (1 Electronic Copy via GeoTracker)

William G Sheaff Trust c/o Mr. Brian Sheaff 1945 Parkside Drive Concord, California 94519

(1 Copy, Unbound)

CERTIFICATION

This report has been prepared in accordance with generally accepted environmental practices exercised by professional geologists, scientists, and engineers. No warranty, either expressed or implied, is made as to the professional advice presented herein. The findings conclusions, and recommendations contained in this report are based upon information contained in previous reports of corrective action activities performed at the subject property and based upon site conditions as they existed at the time of the investigation, and are subject to change.

The conclusions presented in this report are professional opinions based solely upon visual observations of the subject property and vicinity, and interpretation of available information as described in this report. The scope of services conducted in execution of this investigation may not be appropriate to satisfy the needs of other users and any use or reuse of this document and any of its information presented herein is at sole risk of said user.

Golden Gate Tank Removal, Inc.

1. Lik

Authored By:

Brent A. Wheeler Project Engineer

Reviewed By:

Registered Geologist, CEG

GEOLOGIS

REFERENCES

ACHCSA, January 3, 2002, Work Plan Approval Letter, 5930 College Avenue, Oakland, CA

Alameda County Health Care Services Agency, September 8, 2003, comment and directive letter

Alameda County Health Care Services Agency, June 3, 2004, comment and directive letter

California Division of Mines & Geology, 1990. Geologic Map of the San Francisco-San Jose Quadrangle, Wagner, D.L., Bortugno, E.J., and McJunkin, R.D.

California Regional Water Quality Control Board, San Francisco Bay Region. Application of Risk-Based Screening Levels and Decision Making to Sites With Impacted Soil and Groundwater; Volume 1: Summary Tier 1 Lookup Tables, Interim Final - December 2001.

California Regional Water Quality Control Board, San Francisco Bay Region. Municipal Supply Water Quality Objectives; California Department of Health Services, Primary Maximum Contaminant Levels for Organic Chemical Constituents.

California Regional Water Quality Control Board, San Francisco Bay Region, 1990. Tri-Regional Board Staff Recommendations for Preliminary Evaluation and Investigation of Underground Storage Tanks, August 10, 1990.

California Regional Water Quality Control Board, San Francisco Bay Region, 1995. Water Quality Control Plan, San Francisco Bay Region.

Geological Society of America, 1991. Munsell Rock Color Chart

GGTR, December 19, 2001. Work Plan for Additional Soil and Groundwater Investigation, 5930 College Avenue, Oakland, California, GGTR Project No. 7335

GGTR, June 10, 2003, Report of Additional Soil and Groundwater Investigation, 5930 College Avenue, Oakland, California. GGTR Project No. 7335

GGTR, December 29, 2003, Work Plan for Additional Site Characterization, 5930 College Avenue, Oakland, California. GGTR Project No. 7335

GGTR, September 20, 2004, Work Plan for Additional Site Characterization Addendum, 5930 College Avenue, Oakland, California. GGTR Project No. 7335

U.S. Geological Survey Misc. Field Studies MF-2342, 2000, Geologic Map and Map Database of the Oakland Metropolitan Area, Alameda, Contra Costa, and San Francisco Counties, California, by R.W. Graymer

A portion of Geologic Map and Map Database of the Oakland Metropolitan Area, Alameda, Contra Costa, and San Francisco Counties, California, 2000, by R.W. Graymer, U.S. Geological Survey Misc. Field Studies MF-2342; North to top; See report text for explanation of geologic units shown on map; Scale about 3 inches per mile.

GOLDEN GATE TANK REMOVAL, INC.

255 Shipley Street, San Francisco, CA 94107 Ph (415) 512-1555 Fx (415) 512-0964

GEOLOGIC MAP

Sheaff's Garage 5930 College Avenue, Oakland, California

GGTR Project No. 7335

Fn: 7335 Figure 3 Geologic Map ASC Aug 06.vsd

Drawn By: my/7-30-06

Figure 3

Portion of Guide to San Francisco Bay Area Creeks, Creek and Watershed Map of Oakland and Berkeley, rev. 2000, Janet M. Sowers, The Oakland Museum of California; North to left of map; Scale about 3 inches per mile.

GOLDEN GATE TANK REMOVAL, INC.

255 Shipley Street, San Francisco, CA 94107 Ph (415) 512-1555 Fx (415) 512-0964

REGIONAL MAP OF CREEKS & CONDUITS

Sheaff's Garage 5930 College Avenue, Oakland, California

GGTR Project No. 7335

Fn: 7335_Fig 5_ Creek Map_ASC_July 06.vsd

Drawn By: my/7-30-06

Figure 4

Portion of Alameda County plat maps showing location of subject property in relation to Harwood Branch and associated Harwood Creek storm conduits located both west and east of the site; North to top; Scale about 1" = 100 feet.

GOLDEN GATE TANK REMOVAL, INC.

255 Shipley Street, San Francisco, CA 94107 Ph (415) 512-1555 Fx (415) 512-0964

LOCAL MAP OF STORM CONDUITS

Sheaff's Garage 5930 College Avenue, Oakland, California

GGTR Project No. 7335

Fn: 7335 Fig 5 Creek Map ASC July 06.vsd

Drawn By: my/7-30-06

Figure 5

TPH Gasoline in Groundwater

Historical Groundwater Monitoring of Wells MW1-MW3

TABLE 1A
Results of Soil Sample Analysis for Petroleum Hydrocarbon Constituents
5930 College Avenue, Oakland, CA

					ygo / trona					
Sample	Sample	Sample	Sample	TPH-G	TRPH	TPH-D	TEPH	MTBE	Oxygenates	B/T/E/X
Location	ID	Depth	Date	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
		(fbg)					, c c,	, , ,	, , ,	
north end of T1 excavation	7189-T1-N	8	8/6/1996	6000.00						19/240/76/470
south end of T2 excavation	7189-T1-S	8		8100.00						16/240/72/530
center of T1 excavation	7189-T1-C-10	10		1200.00						9.1/68/10/79
center of T2 excavation	7189-T2-C	8		560.00	16000.00	ND				2.7/16/3.3/33
T1 Soil Stockpile	7189-SP1	-		ND		ND				ND/ND/ND/ND
T2 Soil Stockpile	7189-SP2			1.30	14000.00	ND				ND/ND/ND/0.020
over-excavated pit of T1 & T2	7189-OE-1	10.5	10/2/1996	14001.00	1700.00	ND				9.8/81/14/110 ¹
over-excavated pit of T1 & T2	7189-OE-2	10.5		8401.00	320.00	ND				3.3/51/12/91
over-excavated pit of T1 & T2	7189-OE-3	10.5		ND	21.00	ND				ND/0.01/ND/0.027
over-excavated pit of T1 & T2	7189-OE-4	10.5		4301.00	240.00	ND				0.93/18/4.6/41
over-excavated pit of T1 & T2	7189-OE-5	10.5		14001.00	1100.00	ND				2.2/40/14/1201
CRWQCB I	February 2005 ESL	- Residential	/Commercial	100.00	100.00	100.00	100.00	0.02	NC	0.04/2.9/3.3/2.3

TABLE 1A (Cont'd)

Results of Soil Sample Analysis for Petroleum Hydrocarbon Constituents
5930 College Avenue, Oakland, CA

Sample	Sample	Sample	Sample	TPH-G	TRPH	TPH-D	TEPH	MTBE	Oxygenates	B/T/E/X
Location	ID	*	•							
Location	ID	Depth	Date	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
		(fbg)								
B1	7335-B1-5	5	5/6/1998	ND			ND	ND<0.005		ND/ND/ND/ND
	7335-B1-9	9		75.00			53.00	0.06		0.07/0.04/0.53/1
B2	7335-B2-5	5		0.60			60.00	0.03		ND/ND/ND/ND
	7335-B2-9	9		2800.00			ND	ND<0.005		13/78/38/160
		_								
В3	7335-B3-6	6		ND			ND	ND<0.005		ND/ND/ND/ND
										0.710.610.712
	7335-B3-10	10		48.00			ND	ND<0.005		0.5/0.6/0.5/2
D4 (MUII)	7225 D.4.5	-		ND.			NID	ND -0.005		ND AID AID (0.00
B4 (MW1)	7335-B4-5	5		ND			ND	ND<0.005		ND/ND/ND/0.02
	7335-B4-9	9		200.00			ND	1.00		4/8/6/27
	/333-B4-9	9		280.00			ND	1.00		4/8/6/27
B5 (MW2)	7335-B5-3.0	3	Oct-99	ND			ND	ND<0.005		ND/ND/ND/ND
B3 (WW2)	/333- B 3-3.0	3	OC1-99	ND			ND	ND<0.003		ND/ND/ND/ND
	7335-B5-5.0	5		ND			ND	ND<0.005		ND/ND/ND/ND
	7555-15-5.0	3		ND			ND	110 10.003		ND/ND/ND/ND
	7335-B5-9.0	9		ND			ND	ND<0.005		ND/ND/ND/ND
	7555 B5 7.0	,		T\D			TUD	112 -0.003		TAB/TAB/TAB/TAB
	7335-B5-15.5	15.5		2.80			ND	ND<0.005		0.69/0.092/0.066/0.22
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
	7335-B5-20.0	20		ND			ND	ND<0.005	-	0.028/0.021/0.007/0.029
B6 (MW3)	7335-B6-5.0	5		ND			200.00	ND<0.005		ND/ND/ND/ND
	7335-B6-10.0	10		1.50			ND	ND<0.005		ND/ND/0.005/0.013
	7335-B6-15.0	15		ND			ND	0.03		ND/ND/ND/ND
	7335-B6-19.0	19		ND			ND	0.04		ND/ND/ND/ND
CRWQCB	February 2005 ESL	- Residential	/Commercial	100.00	100.00	100.00	100.00	0.02	NC	0.04/2.9/3.3/2.3
T. H. N. t. F										

TABLE 1A (Cont'd)
Results of Soil Sample Analysis for Petroleum Hydrocarbon Constituents
5930 College Avenue, Oakland, CA

Sample	Sample	Sample	Sample	TPH-G	TRPH	TPH-D	TEPH	MTBE	Oxygenates	B/T/E/X
Location	ID	Depth	Date	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
		(fbg)								
В7	7335-B7-8	8	10/30/2002	1.71				ND<0.005		0.005/ND<0.005/ND<0.005/
										ND<0.01
	7335-B7-13	13		20.10				ND<0.005		0.720/0.162/0.803/2.5
-	7335-B7-16	16		61.80				ND<0.02		0.762/2.37/1.4/6.34
-	7335-B7-20	20		1.97				ND<0.005		0.020/0.034/0.032/0.140
В8	7335-B8-12	12		0.61				ND<0.005		ND<0.005/ND<0.005/ND<0.
										005/ND<0.005
	7335-B8-16	16		14.00				ND<0.005		0.184/0.019/0.495/0.628
-	7335-B8-20	20		5.66				ND<0.005		0.037/0.136/0.105/0.461
В9	7335-B9-12	12		27.40				ND<0.005		0.097/0.027/0.171/0.161
-	7335-B9-15	15		47.50				ND<0.005		1.12/1.96/2.09/9.46
-	7335-B9-20	20		0.86				ND<0.005		ND<0.005/0.007/0.010/0.049
B10	7335-B10-11	11		81.80			ND	0.18		0.444/2.26/1.65/8.84
-	7335-B10-15	15		479.00			ND	ND<0.250		4.16/15.9/9.21
	7335-B10-17	17		7.44			ND	ND<0.005		0.036/0.075/0.079/0.442
B11	7335-B11-8	8		ND				ND<0.005		ND<0.005/ND<0.005/ND<0. 005/0.014
-	7335-B11-13	13		ND				ND<0.005		ND<0.005/ND<0.005/ND<0. 005/ND<0.01
CRWOCB I	February 2005 ESL	- Residential/	Commercial	100.00	100.00	100.00	100.00	0.02	NC	0.04/2.9/3.3/2.3

TABLE 1A (Cont'd)
Results of Soil Sample Analysis for Petroleum Hydrocarbon Constituents
5930 College Avenue, Oakland, CA

	Sample Sample Sample TPH-G TRPH TPH-D TEPH MTBE Oxygenates B/T/E/X											
Sample	Sample	Sample	Sample	TPH-G	TRPH	TPH-D	TEPH	MTBE	Oxygenates	B/T/E/X		
Location	ID	Depth	Date	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)		
		(fbg)										
B12	B12-7	7	4/30/2005	ND<0.5				ND<0.005		<0.005/0.006/<0.005/0.021		
	B12-10	10		0.62	ND<10		ND<50	ND<0.005	ND <u>≤</u> 0.5	<0.005/<0.005/<0.005/0.011		
	B12-15	15		79.50	ND<10		ND<50	0.03	ND <u>≤</u> 0.5	0.537/0.394/0.826/2.740		
	B12-20	20		2.73				0.12		0.016/0.035/0.045/0.208		
B16	B16-7.5	7.5		1.90				ND<0.005		<0.005/0.013/0.027/0.113		
	B16-9.5	9.5		ND<0.5				ND<0.005		<0.005/<0.005/0.009/0.037		
	B16-15	15		5.27				ND<0.005	ND <u>≤</u> 0.5	0.061/0.014/0.061/0.190		
	B16-25	25		ND<0.5	1			0.06	ND <u>≤</u> 0.5	<0.005/0.007/0.010/0.042		
B19	B19-7	7		ND<0.5				ND<0.005	ND <u>≤</u> 0.5	<0.005/<0.005/<0.005/<0.01		
	B19-10	10		0.99				0.02	ND <u>≤</u> 0.5	<0.005/<0.005/<0.005/<0.01		
	B19-15	15		139.00				ND<0.020	ND <u><</u> 2.0	0.841/0.995/4.290/12.00		
	B19-20	20		10.00				ND<0.005	ND <u>≤</u> 0.5	0.039/0.033/0.052/0.182		
	B19-24	24		8.15				ND<0.005	ND <u>≤</u> 0.5	0.094/0.163/0.091/0.341		
CRWQCB	February 2005 ESL	- Residential	/Commercial	100.00	100.00	100.00	100.00	0.02	NC	0.04/2.9/3.3/2.3		
T. 11. M F.												

TABLE 1A (Cont'd)
Results of Soil Sample Analysis for Petroleum Hydrocarbon Constituents
5930 College Avenue, Oakland, CA

	_	- 1	~ .			e, Oakiane				
Sample	Sample	Sample	Sample	TPH-G	TRPH	O&G	TEPH	MTBE	Oxygenates	B/T/E/X
Location	ID	Depth	Date	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
		(fbg)								
B20	B20-7	7		0.52				ND<0.005	ND <u>≤</u> 0.5	0.022/<0.005/0.014/0.023
	B20-15	15		63.60				ND<0.020	ND <u>≤</u> 0.5	0.395/0.491/0.961/2.750
	B20-20	20		3.97		-		0.09	ND <u>≤</u> 0.5	0.013/0.019/0.069/0.271
B21	B21-6.5	6.5	6/22/2005	ND<0.05				ND<0.005	ND<0.005 (EDB,EDC)	<0.005/<0.005/<0.005/<0.01 0
	B21-8.5	8.5		14.00		ND<25		ND<0.250		<0.250/<0.250/<0.250/<0.50 0
	B21-11.5	11.5		170.00				ND<5	ND<5 (EDB,EDC)	<5/<5/<5/13
	B21-14.5	14.5		970.00				ND<25	ND<25 (EDB,EDC)	<25/28/<25/100
	B21-19.5	19.5		6.90				ND<0.250	ND<0.25 (EDB,EDC)	<0.250/<0.250/<0.250/1.2
	B21-24.5	24.5		73.00				ND<0.250	ND<0.25 (EDB,EDC)	0.280/1.30/1.30/7.0
B22	B22-6.5	6.5		0.10				ND<0.005	(===,===;	<0.005/0.0052/<0.005/0.011
	B22-10	10		100.00		ND<25		ND<0.50	ND<25 (EDB,EDC)	<0.5/<0.680/<0.5/3.0
	B22-14.5	14.5		0.25				ND<0.005	ND<0.005 (EDB,EDC)	<0.005/<0.005/<0.005/<0.01 0
	B22-19.5	19.5		0.06				0.07	ND<0.005 (EDB,EDC)	<0.005/<0.005/<0.005/<0.01 0
	B22-24.5	24.5		0.07	1	-		0.09	ND<0.005 (EDB,EDC)	<0.005/<0.005/<0.005/<0.01 0
CRWQCB	February 2005 ESL	- Residential	/Commercial	100.00	100.00	100.00	100.00	0.02		0.04/2.9/3.3/2.3

TABLE 1A (Cont'd)
Results of Soil Sample Analysis for Petroleum Hydrocarbon Constituents
5930 College Avenue, Oakland, CA

Sample	Sample	Sample	Sample	TPH-G	TRPH	O&G	TEPH	MTBE		B/T/E/X
Location	ID	Depth	Date	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)		(mg/Kg)
		(fbg)								
B23	B23-6	6	6/22/2005	ND<0.05				ND<0.005		<0.005/<0.005/<0.005/<0.01
										0
	B23-10	10		300.00		230.00		ND<2.50		<2.5/<2.5/5.1/29
	B23-11.5	11.5		420.00				ND<5		<5.0/16.0/9.2/53
	B23-15	15		870.00				ND<2.50		<2.5/<2.5/19/76
	B23-17	17		910.00				ND<5		<5.0/28/20/110
	B23-19.5	19.5		0.06				ND<0.005		<0.005/<0.005/<0.005/<0.01
	B23-24.5	24.5		0.06				0.05		<0.005/<0.005/<0.005/<0.01 0
B24	B24-7	7	4/30/2005	3.75				ND<0.005	ND <u>≤</u> 0.5	0.006/0.009/0.048/0.203
	B24-10	10		1.29				0.07	ND <u>≤</u> 0.5	0.006/<0.005/0.015/0.066
	B24-15	15		31.10				ND<0.020	ND <u>≤</u> 0.5	0.341/0.112/0.490/0.789
	B24-22	22		27.30				0.08	ND <u>≤</u> 0.5	0.260/0.272/0.747/2.140
PW-1	PW1-4.5	4.5	4/5/2005	ND<0.5				ND<0.005	ND <u>≤</u> 0.5	<0.005/<0.005/<0.005/<0.01
	PW1-6	6		ND<0.5				ND<0.005	ND <u>≤</u> 0.5	<0.005/<0.005/<0.005/<0.01 0
	PW1-9	9		ND<0.5				ND<0.005	ND <u>≤</u> 0.5	<0.005/<0.005/<0.005/<0.01
	PW1-11.5	11.5		ND<0.5				ND<0.005	ND <u>≤</u> 0.5	<0.005/<0.005/<0.005/<0.01
	PW1-20	20		0.80				ND<0.005	ND <u>≤</u> 0.5	<0.005/<0.005/<0.005/<0.01
CRWQCB	February 2005 ESL	- Residential	/Commercial	100.00	100.00	100.00	100.00	0.02		0.04/2.9/3.3/2.3

TABLE 1A NOTES:

Soil samples not collected in B13-B15, B17, & B18

TPH-G = total petroleum hydrocarbons (TPH) as gasoline (EPA Method 8015M)

TRPH, TEPH = total recoverable, extractable petroleum hydrocarbons [SM 5520 E&F + EPA 1664 (Silica Gel Treated Hexane; B10 only)]

O&G = Oil & Grease (SM 5520 C)

B/T/E/X = benzene, toluene, ethylbenzene, total xylenes (EPA Method 8020)

MTBE = methyl tertiary-butyl ether (EPA Method 8020 or EPA Method 8260)

Fuel Oxygenates by EPA Method 8260B

fbg = feet below grade

mg/kg = milligrams per kilogram (parts per million)

-- = not analyzed for this constituent; ND = concentration below associated laboratory reporting limit

1 = confirmed by EPA Method 8260

CRWQCB/ESL = California Regional Water Quality Control Board's Interim Final - February 2005, Tier 1 Environmental Screening Level for soil

at a residential/commercial land use permitted site with groundwater that is a potential source of drinking water

TABLE 1B Results of Soil Sample Analysis for Volatile Organic Compounds 5930 College Avenue, Oakland, CA

									ege Arrenae, Ot							
Sample	Sample	Sample	Sample	IPB	n-PB	1,3,5-TMB	1,2,4-TMB	Sec-BB	n-BB	Napthalene	MIBK	TCE	MC	cis-1,2-DCE	Tri-CFM	PCE
Location	ID	Depth	Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
		(fbg)		41 /	41 /	41 /	41 /	41 /	41 /	41 /	41 /	41 /	41 /	41 /	41 /	41 /
north end of T1	7100 T1 N		0.15/4.00.5													
excavation	7189-T1-N	8	8/6/1996													
south end of T2 excavation	7189-T1-S	8														
center of T1	7189-T1-C-	10														
excavation	10															
center of T2 excavation	7189-T2-C	8		140	1100	2800	7500	200		ND<5	360	ND<5	ND<5	ND<5	ND<5	24
T1 Soil Stockpile	7189-SP1	NA														
T2 Soil Stockpile	7189-SP2	NA		ND<5	17	920	37	ND<5		ND<5	42	ND<5	ND<5	ND<5	ND<5	31
over-excavated pit of T1 & T2	7189-OE-1	10.5	10/2/1996													
over-excavated pit of T1 & T2	7189-OE-2	10.5														
over-excavated pit of T1 & T2	7189-OE-3	10.5														
over-excavated pit of T1 & T2	7189-OE-4	10.5														
over-excavated pit of T1 & T2	7189-OE-5	10.5														
CRWQC	CB February 20	005 ESL - Re	esidential	NC	NC	NC	NC	NC	NC	460	2800	260	77	190	NC	87
CRWQC	B February 20	05 ESL - Co	mmercial	NC	NC	NC	NC	NC	NC	1500	2800	460	77	190	NC	240
T. I.I. M. C.			,			•				,	,			,		

TABLE 1B (Cont.)
Results of Soil Sample Analysis for Volatile Organic Compounds
5930 College Avenue, Oakland, CA

Sample	Sample	Sample	Sample	IPB	n-PB	1,3,5-TMB	1,2,4-TMB	Sec-BB	n-BB	Napthalene	MIBK	TCE	MC	cis-1,2-DCE	Tri-CFM	PCE
Location	ID	Depth	Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
		(fbg)														
B10	7335-B10-11	11	10/30/2002	100	453	2630	832	ND<20	313	715	ND<200	ND<20	ND<1000	ND<20	ND<100	ND<20
B12	B12-10	10	4/30/2005	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<10	ND<50	ND<5	ND<50	ND<5	ND<25	ND<5
B12	B12-15	15	4/30/2005	134	416	788	617	78	331	819	ND<50	ND<5	ND<50	ND<5	ND<25	ND<5
B21	B21-8.5	9.5	6/22/2005	ND<250	ND<250	1100	870	ND<250	ND<250	ND<250	ND<2000	ND<250	ND<1200	ND<250	ND<250	ND<250
B22	B22-10	10	6/22/2005	ND<500	830	5100	4000	ND<500	720	640	ND<4000	ND<500	ND<4000	ND<500	ND<500	ND<500
B23	B23-10	10	6/22/2005	ND<2500	4400	4800	26000	ND<2500	3100	5000	ND<20000	ND<2500	ND<12000	ND<2500	ND<2500	ND<2500
CRWQ	CB February 20	005 ESL - Re	esidential	NC	NC	NC	NC	NC	NC	460	2800	260	77	190	NC	87
CRWQC	CB February 20	05 ESL - Co	mmercial	NC	NC	NC	NC	NC	NC	1500	2800	460	77	190	NC	240

TABLE NOTES:

ppb - parts per billion

NC - no criteria established for this chemical constituent

-- - not analyzed for this constituent

fbg - feet below grade surface

IPB- Isopropylbenzene

n-PB - n-Propylbenzene

1,3,5-TMB - 135 Trimethylbenzene

1,2,4-TMB - 1,2,4- Trimethylbenzene

Sec-BB - Sec-Butylbenzene

 $n\text{-}BB \ \text{-} \ n\text{-}Butylbenzene$

MIBK - Methyl Isobutal Ketone

TCE - Trichloroethene

MC - Methylene Chloride

cis-1,2-DCE - cis-1,2-Dichloroethene

Tri-CFM - Trichlorofluoromethane

PCE - Tetrachloroethene

All other soil boring samples not analyzed for VOCs

TABLE 1C Results of Soil Sample Analysis for LUFT-5 Metals 5930 College Avenue, Oakland, CA

Sample Location	Sample ID	Sample	Sample	Cd	Cr	Pb	Ni	Zn
		Depth (fbg)	Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
north end of T1 excavation	7189-T1-N	8	8/6/1996					
south end of T2 excavation	7189-T1-S	8						
center of T1 excavation	7189-T1-C-10	10						
center of T2 excavation	7189-T2-C	8		ND<2.0	49	48	68	210
T1 Soil Stockpile	7189-SP1	NA						
T2 Soil Stockpile	7189-SP2	NA		ND<2.0	34	79	32	130
over-excavated pit of T1 & T2	7189-OE-1	10.5						
over-excavated pit of T1 & T2	7189-OE-2	10.5						
over-excavated pit of T1 & T2	7189-OE-3	10.5						
over-excavated pit of T1 & T2	7189-OE-4	10.5						
over-excavated pit of T1 & T2	7189-OE-5	10.5		-				
CRWQC	B February 2005	ESL - Shallow	v Soil	1.7	58	150	150	600
CRWQ	CB February 200	5 ESL - Deep	Soil	7.4	58	750	1000	2500

TABLE 1C (Cont.) Results of Soil Sample Analysis for LUFT-5 Metals 5930 College Avenue, Oakland, CA

Sample Location	Sample	Sample	Sample	Cd	Cr	Pb	Ni	Zn
	Depth (fbg)	Depth	Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
B10	7335-B10-15	15	10/30/2002	ND<2.0	38.2	19.6	51.5	47.7
B21	B21-8.5	8.5	6/22/2005	ND<1.0	74	4.6	78	36
B22	B22-10	10	6/22/2005	ND<1.0	43	5.3	53	41
B23	B23-10	10	6/22/2005	ND<1.0	47	7.2	63	50
CRWQ	CB February 2005	ESL - Resident	tial	1.7	58	150	150	600
CRWQ	CB February 2005	ESL - Commer	cial	7.4	58	750	150	600

TABLE 1C NOTES:

Cd - Cadmium

Cr - Chromium

Pb - Lead

Ni - Nickel

Zn - Zinc

mg/kg - milligrams per kilogram; parts per million (ppm)

fbg - feet below grade

CRWQCB/ESL = California Regional Water Quality Control Board's Interim Final - February 2005, Tier 1 Environmental Screening Level for soil

at a residential/commercial land use permitted site with groundwater that is a potential source of drinking water

TABLE 2A
Historical Results of Grab Groundwater Hydrocarbon Sample Analysis
5930 College Avenue, Oakland, CA

Sample	Sample	Sample	Sample	TPH-G	TEPH	TPH-D	O&G	Oxygenates	MTBE	B/T/E/X
Location	ID	Depth	Date	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
		(fbg)								
B1	B1-GW	8.5	5/6/1998	31000	6000			ND<5	ND<5	2600 / 390 / 1600 / 4200
B2	B2-GW	6.5		200000	ND<5000	-		2500	2500	30000 / 49000 / 45000 / 21000
В3	B3-GW	6.5		1x10 ⁶	7000			18000	18000	17000 / 24000 / 20000 / 80000
В7	B7-W	16.4	10/30/2002	296000					1360	18400 / 21900 / 8310 / 33800
В8	B8-W	11.5		1480					35	386 / 9 / 74 / 81
В9	B9-W	16.95	11/1/2002	16100					879	1250 / 1380 / 820 / 3480
B10	B10-W	13.85		49400			ND<5000		2680	6600 / 9940 / 1610 / 7600
B12	B12-W		5/2/2005	934000			92000*	ND <u><</u> 500,000	ND<5000	64200 / 450000 / 550000 / 2697000
B14	B14-W		5/19/2005	ND<50				ND <u>≤</u> 50	2.2	ND<0.5 / 1.2 / 0.6 / 3.5
B15	B15-W			53				ND <u><</u> 50	ND<0.5	8.4 / ND<0.5 / ND<0.5 / ND<1.0
B16	B16-W		5/2/2005	154000				ND <u><</u> 5000	197	2510 / 3020 / 4300 / 20400
B17	B17-W		5/19/2005	ND<50				ND <u><</u> 50	ND<0.5	ND<0.5 / ND<0.5 / ND<0.5 / ND<1.0
	CRWQCB February 2005 ESL				100	100	100	NC	5	1.0 / 40 / 30 / 20

TABLE 2A (Cont.)

Historical Results of Grab Groundwater Hydrocarbon Sample Analysis

5930 College Avenue, Oakland, CA

Sample	Sample	Sample	Sample	TPH-G	TPH-D	TEPH	O&G	Oxygenates	MTBE	B/T/E/X
Location	ID	Depth	Date	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
		(fbg)								
B18	B18-W	6.4	4/14/2005	51				ND <u><</u> 50	ND<0.5	ND<0.5 / ND<0.5 / ND<0.5 / 1.8
B19	B19-W		5/2/2005	4600000				ND <u><</u> 5000	146	31100 / 70500 / 75600 / 228000
B20	B20-W		5/19/2005	60700				ND≤1000	394	6800 / 2600 / 1550 / 6520
B21	B21-W	15	6/22/2005	130000			5800000	ND≤1000 (EDB,EDC)		21000 / 24000 / 4500 / 23000
B23	B23-W	6.9	7/11/2005	21000	1800		9200	ND	880	2200 / 2600 / 450 / 3000
B24	B24-W	-	5/2/2005	3830000	-	-	-		ND<50	33200 / 46300 / 65500 / 175000
HB-1	HB-1-W	7.52	4/14/2005	173				ND <u><</u> 50	0.9	0.8 / ND<0.5 / 0.9 / 3.9
HB-3	HB-3-W	8.05	7/11/2005	13000				ND <u>≤</u> 2000	ND<20	690 / 21 / 1200 / 190
HB-4	HB-4-W	8.43		14000				ND <u><</u> 2000	ND<20	13 / ND<10 / 10 / ND<10
HB-6	HB-6-W	6.45		45				ND≤100	ND<1	ND<0.5
	CRWQCB Feb	oruary 2005 E	SL	100	100	100	100		5	1.0 / 40 / 30 / 20

TABLE 2B

Historical Results of Grab Groundwater Volatile Organic Compound Analysis
5930 College Avenue, Oakland, CA

Sample	Sample	Sample	Sample	IPB	n-PB	1,3,5-TMB	1,2,4-TMB	Sec-BB	n-BB	Napthalene	MIBK	TCE	MC	cis-1,2-DCE	Tri-CFM	PCE
Location	ID	Depth	Date	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
		(fbg)														
B10	B10-W	13.85	11/1/2002	74	230	1610	441	ND<50	ND<50	765	ND<500	ND<100	ND<5000	ND<50	ND<250	ND<50
B12	B12-W		5/2/2005	61200	236000	430000	1270000	28600	ND<10000	305000	ND<10000	ND<5000	ND<250000	ND<10000	ND<10000	ND<5000
B21	B21-W	15	6/22/2005	ND<1000	ND<5000	ND<5000	ND<5000	ND<5000	ND<5000	ND<5000	ND<20000	ND<500	ND<5000	ND<500	ND<500	ND<500
B23	B23-W	6.9	7/11/2005	ND<50	ND<250	ND<250	320	ND<250	ND<250	ND<250	ND<1000	ND<25	ND<250	ND<25	ND<25	ND<25
(CRWQCB Fel	oruary 2005 I	ESL	NC	NC	NC	NC	NC	NC	17	120	5	5	6	NC	5

TABLE NOTES:

ppb - parts per billion

NC - no criteria established for this chemical constituent

not analyzed for this constituent; parameter not measured

fbg - feet below grade surface

IPB- Isopropylbenzene

n-PB - n-Propylbenzene

1,3,5-TMB - 135 Trimethylbenzene

1,2,4-TMB - 1,2,4- Trimethylbenzene

Sec-BB - Sec-Butylbenzene

n-BB - n-Butylbenzene

MIBK - Methyl Isobutal Ketone

TCE - Trichloroethene

MC - Methylene Chloride

cis-1,2-DCE - cis-1,2-Dichloroethene

Tri-CFM - Trichlorofluoromethane

PCE - Tetrachloroethene

All other soil boring grab GW samples not analyzed for VOCs

CRWQCB/ESL = California Regional Water Quality Control Board's Interim Final - February 2005, Tier 1 Environmental Screening Level for groundwater that is a potential source of drinking water

TABLE 2C
Results of Grab Groundwater Sample Analysis for LUFT-5 Metals
5930 College Avenue, Oakland, CA

Sample	Sample	Sample	Sample	Cd	Cr	Pb	Ni	Zn
Location	ID	Depth (fbg)	Date	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
B10	B10-W	13.85	11/1/2002	ND<0.5	0.28	0.26	0.33	0.41
B12	B12-W		5/2/2005	17.4	9.51	106	30.7	100
B21	B21-W	15	6/22/2005	38	1400	75	1500	1900
B23	B23-W	6.9	7/11/2005	ND<2	ND<5	10	13	32
B23**	B23-W	6.9	7/11/2005	ND<2	ND<5	ND<5	11	30
C	RWQCB Fel	bruary 2005 ES	SL	1.1	50	2.5	8.2	81

TABLE 2C NOTES:

Cd - Cadmium

Cr - Chromium

Pb - Lead

Ni - Nickel

Zn - Zinc

mg/Kg - milligrams per Kilogram; parts per million (ppm)

fbg - feet below grade

** Results of dissolved sample (pre-filtered in field)

All other soil boring grab GW samples not analyzed for LUFT 5 Metals

CRWQCB/ESL = California Regional Water Quality Control Board's Interim Final - February 2005,

Tier 1 Environmental Screening Level for

groundwater that is a potential source of drinking water

TABLE 3A

Historical Results of Groundwater Sample Analysis & Fluid-Level Data 5930 College Avenue, Oakland, CA

MW-1

Well ID	Sample Date	Casing Elevation (MSL)	DTW (TOC)	Water Elevation (MSL)	Product Odor/ Sheen	TPH-G (ug/L)	TEPH (ug/L)	MTBE (ug/L)	BTEX (ug/L)
	6/1/1998	50.00 *	4.81	45.19	slight sheen	160000	ND	1900	28000 / 21000 / 3800 / 21000
	9/10/1998	50.00 *	7.5	42.5	odor	290000	ND	440	<50 / 25000 / 7100 / 32000
	10/7/1999	50.00 *	10.04	39.96	odor	85000	ND	1100	20000 / 13000 / 3800 / 17000
	1/26/2000	50.00 *	8.26	41.74	slight sheen	130000		470	25000 / 18000 / 4500 / 22000
	10/25/2000	50.00 *	10.1	39.9	odor	130000		1300	23000 / 12000 / 3900 / 18000
	2/2/2001	50.00 *	9.61	40.39	odor	128000		780	19000 / 11000 / 3800 / 18000
	4/25/2001	195.9	7.39	188.51	odor	120000		900	21000 / 13000 / 390 / 18000
	7/10/2001	195.9	9.72	186.18	odor	79000		660	15000 / 7800 / 3000 / 15000
	10/8/2001	195.9	10.88	185.02	sheen/ odor	112000		374	25300 / 11800 / 4280 / 20600
	1/7/2002	195.9	4.34	191.56	odor	96100		596	21100 / 13500 / 4160 / 21900
	4/8/2002	195.9	6.84	189.06	slight odor	111000		679	21200 / 13400 / 4230 / 21000
MW-1	7/9/2002	195.9	9.4	186.5	slight odor	110000		570	20300 / 13300 / 4060 / 19800
141 44 -1	10/23/2002	195.9	11.04	184.86	none	54100		1010 (1080)**	10800 / 3870 / 2320 / 9440
	10/15/2003	195.9	10.8	185.1	none	90700		724	17800 / 4740 / 3150 / 13900
	2/2/2004	195.9	7.35	188.55	none	108000		194	14200 / 7420 / 3450 / 19800
	4/23/2004	195.9	6.83	189.07	slight odor	49200		114	7910 / 1480 / 1810 / 10100
	7/19/2004	195.9	8.95	186.95	odor	63900		303	7260 /2270 / 2510 / 10100
	10/22/2004	195.9	10.15	185.75	None	80700		493 (296)**	13900 / 1670 / 3550 / 15200
	1/21/2005	195.9	5.45	190.45	odor	278000		271 (174)**	14700 / 25300 / 10800 / 73500
	4/14/2005	195.9	5.3	190.6	Odor /sheen	116000		366 (410)**	15100 / 7080 / 4220 / 20700
	7/26/2005	195.9	7.6	188.3	Odor	82000		ND<250	12000/4500/3300/14000
	10/14/2005	195.9	9.58	186.32	Odor/sheen	64000		ND<250	13000/5700/3400/16000
	1/13/2006	195.9	4.6	191.3	Odor/ sheen	49000	-	ND<250	12000/5300/3500/17000
	4/14/2006	195.9	3.08	192.82	Odor	51000		270	14000/5300/3500/17000
	(CRWQCB Febru	ary 2005 ESL			100	100	5	1.0 / 40 / 30 / 20

TABLE 3A (Cont.)

Historical Results of Groundwater Sample Analysis & Fluid-Level Data 5930 College Avenue, Oakland, CA

MW-2

Well ID	Sample Date	Casing Elevation (MSL)	DTW (TOC)	Water Elevation (MSL)	Product Odor/ Sheen	TPH-G (ug/L)	TEPH (ug/L)	MTBE (ug/L)	BTEX (ug/L)
	10/7/1999	51.42*	11.49	39.93	slight odor	18000	ND	490	3000 / 1700 / 1000 / 3900
	1/26/2000	51.42*	7.85	43.57	none	42000		560	9300 / 2200 / 2300 / 7700
	10/25/2000	51.42*	11.57	39.85	slight odor	31000		500	5500 / 370 / 1700 / 2600
	2/2/2001	51.42*	10.77	40.65	odor	36000		400	4300 / 530 / 1800 / 4500
	4/25/2001	197.28	8.52	188.76	odor	56000		460	6700 / 1700 / 2600 / 8200
	7/10/2001	197.28	11.05	186.23	odor	39000		180	6200 / 730 / 2300 / 6100
	10/8/2001	197.28	12.79	184.49	sheen odor	40700		6460	6310 / 399 / 2100 / 5320
	1/7/2002	197.28	4.92	192.36	odor	59600		366**	10300 / 3250 / 4180 / 14400
	4/8/2002	197.28	8.4	188.88	slight odor	66700		583**	10200 / 2670 / 3840 / 13200
	7/9/2002	197.28	10.55	186.73	slight odor	37100		303 (298)**	5340 / 890 / 2110 / 6920
	10/23/2002	197.28	13.85	183.43	none	13300		322 (360)**	2420 / 216 / 922 / 1470
MW-2	10/15/2003	197.28	12.38	184.9	none	11300		264 (322)**	2660 / 51 / 1180 / 1220
	2/2/2004	197.28	8.8	188.48	none	21700		168 (200)**	2130 / 51 / 1030 / 2060
	4/23/2004	197.28	8.4	188.88	Slight odor	30400		112 (203)**	3570 / 322 / 1620 / 4140
	7/19/2004	197.28	10.3	186.98	odor	28300		283 (373)**	2540 / 239 /1320 / 2300
	10/22/2004	197.28	10.25	187.03	Mod odor	13500		273 (229)**	1790 / 54 / 892 / 915
	1/21/2005	197.28	6.65	190.63	Mod odor	278000		161 (163)**	5980 / 1030 / 2890 / 9070
	4/14/2005	197.28	8.7	188.58	None	46100		155 (150)**	5170 / 787 / 2530 / 6010
	7/26/2005	197.28	8.95	188.33	Mod odor	41000		ND (ND)**	5600/550/2600/4600
	10/14/2005	197.28	10.92	186.36	Odor/ sheen	13000		130	2900/100/1300/1200
	1/13/2006	197.28	5.48	191.8	Odor	20000		ND<100	4900/490/2400/4200
	4/14/2006	197.28	3.61	193.67	Odor	21000		ND<100	4000/740/2300/5100
	(CRWQCB Febru	ary 2005 ESL			100	100	5	1.0 / 40 / 30 / 20

TABLE 3A (Cont.)

Historical Results of Groundwater Sample Analysis & Fluid-Level Data 5930 College Avenue, Oakland, CA

MW-3

Well ID	Sample Date	Casing Elevation (MSL)	DTW (TOC)	Water Elevation (MSL)	Product Odor/ Sheen	TPH-G (ug/L)	TEPH (ug/L)	MTBE (ug/L)	BTEX (ug/L)
	10/7/1999	49.39*	9.67	39.72	none	6600	ND	390	310 / 110 / 430 / 1000
	1/26/2000	49.39*	5.4	43.99	none	3300		40	110 / 8 / 100 / 32
	10/25/2000	49.39*	9.24	40.15	slight odor	4500		ND	100 / 2 / 120 / 130
	2/2/2001	49.39*	8.73	40.66	slight odor	2900		35	35 / 3 / 160 / 298
	4/25/2001	195.22	6.61	188.61	slight odor	8400		56	260 / 33 / 290 / 510
	7/10/2001	195.22	8.85	186.37	slight odor	12000		35	39 / 10 / 690 / 1600
	10/8/2001	195.22	9.75	185.47	sheen/ odor	4913		52	108 / 4 / 99 / 133
	1/7/2002	195.22	4.25	190.97	sheen/ odor	7260		81.7**	723 / 138 / 492 / 887
	4/8/2002	195.22	6.33	188.89	odor	11700		ND**	540 / 108 / 706 / 1710
	7/9/2002	195.22	8.56	186.66	odor	2320		28.3 (20)**	37.1 / 4.7 / 98.5 / 187
MW-3	10/23/2002	195.22	10.02	185.2	sheen/ odor	2830		ND (ND)**	46.8 / 4.7 / 43.6 / 65.5
	10/15/2003	195.22	9.8	185.42	sheen/ odor	3040		ND (ND)**	91.3 / 8.4 / 69.9 / 148
	2/2/2004	195.22	6.85	188.37	Sheen/ odor	5140		ND (ND)**	126 / 8.7 / 134 / 238
	4/23/2004	195.22	6.17	189.05	none	7210		ND (ND)**	227 / 39.5 / 448 / 879
	7/19/2004	195.22	8.25	186.97	Slight odor	9860		ND (ND)**	20.4 / 3.2 / 30.6 / 117
	10/22/2004	195.22	9.25	185.97	None	7420		96 (21)**	152 / 12.8 / 267 / 480
	1/21/2005	195.22	5.22	190	Slight odor	2420		ND (ND)**	111 / 11.4 / 139 / 265
	4/14/2005	195.22	6.64	188.58	Odor / sheen	5130		54 (41.4)**	357 / 19.4 / 287 / 510
	7/26/2005	195.22	6.9	188.32	none	9800		ND (21)**	200/23/220/360
	10/14/2005	195.22	8.83	186.39	Odor/ sheen	6100		ND	76/19/170/350
	1/13/2006	195.22	4.61	190.61	Odor	3900		24	380/17/230/300
	4/14/2006	195.22	3.41	191.81	Odor	5000		69	760/44/230/190
	(CRWQCB Febru	ary 2005 ESL		_	100	100	5	1.0 / 40 / 30 / 20

TABLE 3A (Cont.)

Historical Results of Groundwater Sample Analysis & Fluid-Level Data 5930 College Avenue, Oakland, CA

PW-1

Well ID	Sample Date	Casing Elevation (MSL)	DTW (TOC)	Water Elevation (MSL)	Product Odor/ Sheen	TPH-G (ug/L)	TEPH (ug/L)	MTBE (ug/L)	BTEX (ug/L)
	4/14/2005	197.17	6.4	190.77	none	3360		ND (ND**)	62.8 / 6.7 / 79.5/ 317
	7/26/2005	197.17	8.63	188.54	none	1300		ND (ND**)	22/ND/48/110
PW-1	10/14/2005	197.17	10.71	186.46	none	4300		ND	93/1.2/100/140
	1/13/2006	197.17	4.87	192.3	none	450		ND>2.0	10/ND/37/72
	4/14/2006	197.17	2.27	194.9	Odor	120		ND>2.0	2.3/ND<1.0/3.5/9.3
	(CRWQCB Febru	ary 2005 ESL			100	100	5	1.0 / 40 / 30 / 20

TABLE 3A NOTES:

TOC - top of well casing (north side)

DTW - depth to water relative to TOC

ug/L - micrograms per liter (equivalent to parts per billion)

TPH-G - Total Petroleum Hydrocarbons as Gasoline (SW8020F)

TEPH - Total Extractable Petroleum Hydrocarbons [EPA Methods 5030/8015M]

Total VOCs - Total Volatile Organic Compounds by EPA Method 8260

MTBE - Methyl Tertiary Butyl Ether (EPA Method 8260)

BTEX - Benzene / Toluene / Ethylbenzene / Total Xylenes (SW8020F)

MSL - Mean Sea Level; TB = Trip Blank (7335-TB)

ND - not detected above laboratory reporting limit

NC - no criteria established; NA – not applicable

-- - not analyzed for this constituent

fbg - feet below grade surface

* - Arbitrary datum point with assumed elevation of 50 feet used prior to MSL survey on April 26, 2001

** - Concentration confirmed by EPA Method 8260

CRWQCB/ESL = California Regional Water Quality Control Board's Interim Final - February 2005, Tier 1 Environmental Screening Level for groundwater that **is** a potential source of drinking water

TABLE 3B 2004 -2006 Groundwater Sampling Results for VOCs Sheaff's Garage, 5930 College Avenue, Oakland, CA

MW-1

Well ID	Sample Date	IPB	n-PB	1,3,5-TMB	1,2,4-	Sec-BB	n-BB	Acetone	Napthalene	MIBK	TCE	MC	cis-1,2-	Tri-	PCE
		(ug/L)	(ug/L)	(ug/L)	TMB	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	DCE	CFM	(ug/L)
					(ug/L)								(ug/L)	(ug/L)	
	2/2/2004	116	342	701	2690	ND<10	66	ND<100	992	47	ND<5	ND<50	ND<10	ND<10	ND<5
	4/23/2004	ND<100	180	417	1560	ND<100	ND<100	ND<100	559	ND<100	ND<10	1210	ND<100	ND<100	ND<50
	7/19/2004	89	239	507	1890	ND<20	ND<20	ND<200	801	ND<20	ND<10	ND<100	ND<20	ND<20	ND<10
	10/22/2004	ND<100	264	520	1990	ND<100	ND<100	ND<1000	700	ND<100	ND<50	ND<500	ND<100	ND<100	ND<50
MW-1	1/21/2005	ND<200	271	525	2080	ND<200	ND<200	ND<200	662	ND<200	ND<100	ND<5000	ND<200	ND<200	ND<100
141 44 -1	4/14/2005	141	437	882	3450	ND	ND	ND	1220	ND<100	ND<50	ND<2500	ND<100	ND<100	ND<50
	7/26/2005	ND<500	ND<2500	ND<2500	ND<2500	ND<2500	ND<2500	ND<10000	ND<2500	ND<10000	ND<250	ND<2500	ND<250	ND<250	ND<250
	10/14//05	ND<250	ND<1200	ND<1200	2700	ND<1200	ND<1200	ND<5000	ND<1200	ND<5000	ND<120	ND<5000	ND<120	ND<120	ND<120
	1/13/2006	ND<250	ND<1200	ND<1200	2100	ND<1200	ND<1200	ND<5000	ND<1200	ND<5000	ND<120	ND<5000	ND<120	ND<120	ND<120
	4/14/2006	ND<250	ND<1200	ND<1200	2400	ND<1200	ND<1200	ND<5000	ND<1200	ND<5000	ND<120	ND<5000	ND<120	ND<120	ND<120
CRW	VQCB ESL	NC	NC	NC	NC	NC	NC	1500	17	120	5	5	6	NC	5

MW-2

Well ID	Sample Date	IPB	n-PB	1,3,5-TMB	1,2,4-	Sec-BB	n-BB	Acetone	Napthalene	MIBK	TCE	MC	cis-1,2-	Tri-	PCE
		(ug/L)	(ug/L)	(ug/L)	TMB	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	DCE	CFM	(ug/L)
					(ug/L)								(ug/L)	(ug/L)	
	2/2/2004	73	186	306	1090	ND<10	66	ND<100	413	ND<10	ND<5	ND<50	ND<10	ND<10	ND<5
	4/23/2004	ND<100	215	469	1570	ND<100	ND<100	ND<100	568	ND<100	ND<5	ND<50	ND<100	ND<100	ND<50
	7/19/2004	73	173	316	1070	ND<10	74	ND<100	475	ND<10	ND<5	ND<50	ND<10	ND<10	ND<5
	10/22/2004	49	132	80	257	ND<10	44	ND<10	227	ND<10	ND<50	ND<50	ND<10	ND<10	ND<5
MW-2	1/21/2005	ND<100	239	371	1500	ND<100	ND<100	ND<1000	697	ND<100	ND<50	ND<2500	ND<100	ND<100	ND<50
14144-2	4/14/2005	139	293	445	2390	ND	71	ND	1490	ND<10	ND<5	ND<250	ND<10	ND<10	ND<5
	7/26/2005	ND<500	ND<2500	ND<2500	ND<2500	ND<2500	ND<2500	ND<10000	ND<2500	ND<10000	ND<250	ND<2500	ND<250	ND<250	ND<250
	10/14//05	ND<100	ND<500	ND<500	770	ND<500	ND<500	ND<2000	ND<500	ND<2000	ND<50	ND<2000	ND<50	ND<50	ND<50
	1/13/2006	ND<100	ND<500	ND<500	1200	ND<500	ND<500	ND<2000	ND<500	ND<2000	ND<50	ND<2000	ND<50	ND<50	ND<50
	4/14/2006	ND<100	ND<500	ND<500	1200	ND<500	ND<500	ND<2000	680	ND<2000	ND<50	ND<2000	ND<50	ND<50	ND<50
CRV	VQCB ESL	NC	NC	NC	NC	NC	NC	1500	17	120	5	5	6	NC	5

TABLE 3B (Cont.)

2004 -2006 Groundwater Sampling Results for VOCs Sheaff's Garage, 5930 College Avenue, Oakland, CA

MW-3

Well ID	Sample Date	IPB	n-PB	1,3,5-TMB	1,2,4-	Sec-BB	n-BB	Acetone	Napthalene	MIBK	TCE	MC	cis-1,2-	Tri-	PCE
		(ug/L)	(ug/L)	(ug/L)	TMB	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	DCE	CFM	(ug/L)
					(ug/L)								(ug/L)	(ug/L)	
	2/2/2004	23	83	22	68	ND<1	38	ND<10	33	ND<1	ND<0.5	ND<5	ND<1	ND<1	ND<0.5
	4/23/2004	29	82	60	337	ND<1	24	ND<1000	160	ND<1	ND<0.5	ND<5	ND<1	ND<1	ND<0.5
	7/19/2004	27	105	48	204	ND<1	34	ND<10	16	ND<1	ND<0.5	ND<5	ND<1	ND<1	ND<0.5
	10/22/2004	55	182	192	574	ND<10	42	ND<10	76	ND<10	ND<5	ND<50	ND<10	ND<10	ND<5
MW-3	1/21/2005	25	88	23	96	ND<1	15	ND<10	43	ND<1	ND<0.5	ND<25	ND<1	ND<1	ND<0.5
10100-3	4/14/2005	45	28	85	302	ND<10	28	ND<10	121	ND<1	ND<0.5	ND25	ND<1	ND<1	ND<0.5
	7/26/2005	ND<10	ND<50	120	250	ND<50	ND<50	ND<200	60	ND<200	ND<5	ND<50	ND<5	ND<5	ND<5
	10/14//05	ND<20	ND<100	ND<100	210	ND<100	ND<100	ND<400	ND<100	ND<400	ND<10	ND<400	ND<10	ND<10	ND<10
	1/13/2006	ND<10	120	ND<50	120	ND<50	ND<50	ND<200	ND<50	ND<200	ND<5	ND<200	ND<5	ND<5	ND<5
	4/14/2006	ND<20	170	ND<100	120	ND<100	ND<100	ND<400	100	ND<400	ND<10	ND<400	ND<10	ND<10	ND<10
CRV	VQCB ESL	NC	NC	NC	NC	NC	NC	1500	17	120	5	5	6	NC	5

PW-1

Well ID	Sample Date	IPB	n-PB	1,3,5-TMB	1,2,4-	Sec-BB	n-BB	Acetone	Napthalene	MIBK	TCE	MC	cis-1,2-	Tri-	PCE
		(ug/L)	(ug/L)	(ug/L)	TMB	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	DCE	CFM	(ug/L)
					(ug/L)								(ug/L)	(ug/L)	
	4/14/2005	11	22	110	100	ND,10	ND<10	ND<40	43	ND<1	3.3	ND<25	12	ND<1	84.9
	7/26/2005	7.3	17	37	100	ND<10	ND<10	ND<40	43	ND<40	ND<1	ND<10	7	1.5	48
PW-1	10/14//05	28	72	67	120	12	17	ND<40	43	ND<40	4.1	ND<40	29	ND<1	25
	1/13/2006	ND<20	ND<10	ND<10	37	ND<10	ND<10	ND<40	ND<10	ND<40	1.4	ND<40	5	ND<1	95
	4/14/2006	ND<2	ND<10	ND<10	ND<10	ND<10	ND<10	ND<40	ND<10	ND<40	1.1	ND<40	2.8	ND<1	68
CRW	WOCB ESL	NC	NC	NC	NC	NC	NC	1500	17	120	5	5	6	NC	5

TABLE 3B NOTES:

IPB = Isopropylbenzene

n-PB = n-Propylbenzene

1,3,5-TMB = 1,3,5-Trimethylbenzene

1,2,4-TMB = 1,2,4-Trimethylbenzene

sec-BB = sec-Butylbenzene

n-BB = n-Butylbenzene

MIBK = 4-Methyl-2-Pentanone

TCE = Trichloroethene

MC = Methylene Chloride

cis-1,2-DCE = cis-1,2-Dichloroethene

Tri-CFM = Trichloroflouromethane

PCE = Tetrachloroethene

ug/l = micrograms per liter

ND = Not detected above laboratory reporting limit

NC = No Criteria Listed

CRWQCB/ESL = California Regional Water Quality Control Board's Interim Final - February 2005, Tier 1 Environmental Screening Level for groundwater that is a potential source of drinking water

REPORT OF

ADDITIONAL SITE CHARACTERIZATION & GROUNDWATER MONITORING

5930 College Avenue, Oakland, California ACHCSA Site #RO0000377

APPENDIX A

PHOTOGRAPHS REGULATORY CORRESPONDENCE PERMITS

PHOTOGRAPHS OF SITE AND VICINITY

Photograph No. 1 - Street scene looking northward up College Avenue - subject (green building with large rollup door) and adjacent buildings on right. Newer commercial development across street on left. Storm drain - 96" diameter - flows down middle of street with uphill to left. USTs formerly located in sidewalk under tree.

Photograph No. 2 - View of subject building at 5930 College Avenue occupied by Stauder Automotive Service. Former USTs located in sidewalk under tree with dispenser to left inside rollup door. Monitoring well MW1 located in sidewalk at driveway.

Photograph No. 3 - View northward of College Avenue and subject property to right behind tree. Adjacent property at 5920 College Ave. to right with first floor parking-retail (T-Mobile store) and multi-family above. USTs in sidewalk under tree and monitoring well MW3 in street.

GOLDEN GATE TANK REMOVAL, INC.

255 Shipley Street, San Francisco, CA 94107 Ph (415) 512-1555 Fx (415) 512-0964

PHOTOGRAPHS PAGE 1

Sheaff's Garage 5930 College Avenue, Oakland, California

GGTR Project No. 7735

7335_Appx A_Photo Page 1.vsd

Figure By: my/08-06

Appendix A

PHOTOGRAPHS OF SITE AND VICINITY

Photograph No. 4 - College Avenue to right - subject (green building with large rollup door) . USTs formerly located in sidewalk under tree. Monitoring well MW1 in sidewalk. Former product piping trench to dispenser inside of rollup door to left.

Photograph No. 5 - Interior view of subject building at 5930 College Avenue occupied by Stauder Automotive Service. Monitoring well MW2 located in concrete floor at center of photograph.

Photograph No. 6 - Interior view of subject building at 5930 College Avenue occupied by Stauder Automotive Service. College Avenue beyond rollup doorway. View from doorway to rear storage yard.

GOLDEN GATE TANK REMOVAL, INC.

255 Shipley Street, San Francisco, CA 94107 Ph (415) 512-1555 Fx (415) 512-0964

PHOTOGRAPHS PAGE 2

Sheaff's Garage 5930 College Avenue, Oakland, California

GGTR Project No. 7735

7335_Appx A_Photo Page 2.vsd

Figure By: my/08-06

Appendix A

PHOTOGRAPHS OF SITE AND VICINITY

Photograph No. 7 - Subject property at 5930 College Avenue. View of rear concrete-paved storage yard. New piezometer PW1 visible at lower center of photo. Adjacent commercial building at 5940 College Avenue in background. Single-family residential neighborhood to right beyond wall and/or fence.

Photograph No. 8 - Interior view of subject building at 5930 College Avenue with rear storage yard beyond open doorway at rear of photograph. Concrete patch of product line excavation in foreground with former dispenser location at left of photograph.

Photograph No. 9 - View of adjacent commercial building at 5940 College Avenue occupied by Barclays Restaurant & Pub and commercial businesses. Former Chevron service station. Development is 3 feet below grade with sump pump pit located at left of picture beneath stairway. Gettler-Ryan well GR-MW1 in sidewalk near sump pump pit.

GOLDEN GATE TANK REMOVAL, INC.

255 Shipley Street, San Francisco, CA 94107 Ph (415) 512-1555 Fx (415) 512-0964

PHOTOGRAPHS PAGE 3

Sheaff's Garage 5930 College Avenue, Oakland, California

GGTR Project No. 7735

7335_Appx A_Photo Page 3.vsd

Figure By: my/08-06

Appendix A

ALAMEDA COUNTY

HEALTH CARE SERVICES

AGENCY

June 3, 2004

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

Brian Sheaff William Sheaff Trust 1945 Parkside Dr. Concord, CA 94519

Dear Mr. Sheaff:

Subject:

Fuel Leak Case No. RO0000377, Sheaff's Garage, 5930 College Avenue,

Oakland, CA

Alameda County Environmental Health (ACEH) staff has reviewed "Work Plan for Additional Site Characterization" dated December 29, 2003 by Golden Gate Tank Removal (GGTR). We request that you address the following technical comments and send us the technical reports requested below.

TECHNICAL COMMENTS

1) Site Characterization Proposal -

a) We do not agree with the proposed monitoring wells. We feel that it would be premature to install more monitoring wells without additional groundwater sampling to determine the location of the plume for optimal well locations.

b) Also, we feel that some proposed borings (HB-2, B19/MW4) may be too far and

not downgradient of the source areas.

c) For proposed soil borings not near the source areas (B14, B15, B17, B18, B20/MW5) it appears to be adequate to collect groundwater samples only. We request that your monitoring network be depth discrete, generally, screened intervals of 3 to 5 feet in length. Please include in the Work Plan Addendum.

d) The collection of groundwater samples from proposed borings B12 - B18 will not be depth discrete. Please propose a method to collect depth discrete samples.

2) Source Characterization Proposal -

a) Boring Sampling - Instead of collecting soil boring samples every 5 ft. as proposed, soil samples shall be collected at a minimum of every 5 ft., including at changes of lithology, at the soil/groundwater interface, and at areas of obvious contamination. Please include in the Work Plan Addendum.

- b) No soil borings were proposed by the dispenser where B7 was collected. The dispenser area needs to be delineated. Please propose soil borings in the Work Plan Addendum.
- c) The proposed 13 feet depths or 2 to 3 feet pass the first encountered groundwater appears to be inadequate for vertical delineation. The collection of groundwater samples at those depths may miss petroleum product entrapped below the water table. Minimum depths will usually be 25 30 feet. Please propose drilling borings to depths below the water table, which will account for entrapped petroleum product. Indicate how depths adequate for vertical delineation will be determined. Please provide the information requested in the Work Plan Addendum.
- 3) Preferential Pathway Survey Your consultant stated that the utilities may "potentially act as a pathway for on- and/or off-site migration of contaminant hydrocarbons." Please propose how this will be determined.
- 4) Groundwater Analyses Please include Ethanol by EPA Method 8260 for groundwater samples.

TECHNICAL REPORT REQUEST

Please submit the following technical reports to Alameda County Environmental Health (Attention: Don Hwang), according to the following schedule:

July 31, 2004 – 2nd Quarter 2004 Groundwater Monitoring Report August 6, 2004 - Work Plan Addendum 60 days after Work Plan approval - Soil and Water Investigation Report October 31, 2004 - 3rd Quarter 2004 Groundwater Monitoring Report January 31, 2005 - 4th Quarter 2004 Groundwater Monitoring Report April 30, 2005 - 1st Quarter 2005 Groundwater Monitoring Report

These reports are being requested pursuant to the Regional Water Quality Control Board's (Regional Board) authority under Section 13267 of the California Water Code. If you have any questions, please call me at (510) 567-6746.

Sincerely,

Don Hwang

Hazardous Materials Specialist

Local Oversight Program

c: Brent Wheeler, Golden Gate Tank Removal, 255 Shipley Street, San Francisco, CA 94107 Donna Drogos File

ALAMEDA COUNTY PUBLIC WORKS AGENCY WATER RESOURCES SECTION 399 ELMHURST ST. HAYWARD, CA. 94544-1395 PHONE (510) 670-6633 James Yoo FAX (510) 782-1939

PERMIT NO. W05-0385

WATER RESOURCES SECTION GROUNDWATER PROTECTION ORDINANCE MW#1-GENERAL CONDITIONS: MONITIORING WELL/PIEZOMETERS

- Prior to installation of any monitoring wells into any public right-of-ways, it shall be the applicants responsibilities to contact and
 coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required
 for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to
 the Cities or to Alameda County a Traffic Safety Plan for any lanc closures or detours planned. No work shall begin until all the
 permits and requirements have been approved or obtained.
- 2. The minimum surface scal thickness two inches of cement grout placed by tremie.
- 3. All monitoring wells shall have a minimum surface cement seal depth of five (5) feet or the maximum depth practicable or twenty (20) feet.
- 4. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.
- 5. Permitte, permittee's, contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statues regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on-or off site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.
- No changes in construction procedures or well type shall change, as described on this permit application. This permit
 may be voided if it contains incorrect information.
- 7. Drilling Permit(s) can be voided/ canceled only in writing. It is the applicants responsibilities to notify Alameda County Public Works Agency, Water Resources Section in writing for an extension or to cancel the drilling permit application. No drilling permit application(s) shall be extended beyond ninety (90) days from the original start date. Permit is valid from April 5 to May 5, 2005. Applicants may not cancel a drilling permit application after the completion date of the permit issued has passed.
- 8. Compliance with the above well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Including: permit number and site map.
- 9. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 10. Applicant shall contact George Bolton for a inspection time at 510-670-5594 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

03/23/2005 13:46

9166600924

OF

OPR-12-00 WED 03:19 PM ALAMEDA COUNTY PWA RM239

FAX NO. 5107821939

PAGE 82 P. 02

ALAMEDA COUNTY PUBLIC WORKS AGENCY

WATER RESOURCES SECTION

199 ELMHURST ST. HAYWARD CA. 94544-1395

PHONE (\$10) 476-5534 MARLON MAGADEA VERIFICANC CODE (\$10) 670-5783

FAX (\$10)787-1939 — JQ MCG YOU 510-6710-663 3

DRILLING PERMIT APPLICATION FOR OFFICE USE FOR APPLICANT TO COMPLETE PERMIT NUMBER LOCATION OF PROJECT WELL NUMBER 11.1.4000 APN _ ひるたいるとり PERMIT CONDITIONS Ciroled Permit Requirements Apply A. GENERAL ! A permit application should be submitted to as to SHEMIT arrive at the ACPWA office five days prior to Address 1945 ANK Phone proposed starting date. 2. submit to ACPWA within 60 days after completion of remitted work the original Department of Whier Resources- Well Completion Report Fax 4/5 5/2 - 5/2 - 1/5 5/ TONK 3. Permit is void if project not begun within 90 days of Name Cook of approved date Address ZES SILTELES B. WATER SUPPLY WELLS i. Minimum surface seal thickness is two inches of FORDET CO, CA Zin sement grout placed by wemic. 2. Minimum seal depth is 50 feet for municipal and TYPE OF PROJECT Georgehnical Investigation Industrial walls or 20 feet for domestic and irrigation Well Construction wells unless a lesser depth is specially approved. Ü General Cathodic Protection X. Contemination C. GROUNDWATER MONITORING WELLS \mathbb{C}^{1} Water Bupply Well Destruction INCLUDING PIEZOMETERS Menitoring). Minimum surface seal thickness is two meters of PROPOSED WATER SUPPLY WELL USE coment grout placed by wernie-Ü Replacement Domestic 2. Minimum seal depth for monitoring wells is the New Domostic 13 3 GEOTECHNICAL / CONTAINING CO Irrigation Municipal \Box Other_ () (nductria) Backfull born hole by membe with coment grout or coment grantsand mixture. Upper two-three feet replaced in kind DRILLING METHOD: AURET K E CATHODIC A in Rotury Mud Retury Other のうけんち ジョリトトコング ナ するがっけした Fill hole above anode zone with concrete placed by Berne. WELL DESTRUCTION DRILLER'S LICENSE NO 45516 See amached CAL CONDITIONS WELL PROJECTS MARKITALITA Orill Hale Dismorer Depth Casing Diameter Surface Soul Depth GEOTECHNICAL PROJECTS Maximum 25 n. Number of Borings 17. Hole Diameter 2 STIMATED STARTING DATE APPEL APPROVED EST ATED COMPLETION DATE MAY 5. I hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68 APPLICANT'S SIGNATURE. Rev.4-4-00 DEEL A. WINEELE (916) SLO- - - 3/3/

EXCAVATION PERMIT

CIVIL ENGINEERING

TO EXCAVATE IN STREETS OR OTHER SPECIFIED WORK

PAGE 2 of 2

Permit valid for 90 days from date of issuance.

PERMIT NUMBER	500593	SITE ADDRESS/LOCATION
X U S	5 0 <u>0</u> <u>5</u> <u>9</u> <u>3</u>	5930 COLLEGE AVENUE
APPROX. START DATE	APPROX. END DATE	24-HOUR EMERGENCY PHONE NUMBER
		(Permit not valid without 24-Hour number)
CONTRACTOR'S LICENSE # AND CI	_ASŚ	CITY BUSINESS TAX #
48 6	165	
ATTENTION:	102	
l - State law requires that the secured an inquiry identification.	ie contractor/owner call Underground	Service Alen (USA) two working days before excavating. This permit is not valid unless applicant has JSA telephone number is 1-800-642-2444. Underground Service Alen (USA) #
2- 48 hours prior t	o starting work, you MU	ST CALL (510) 238-3651 to schedule an inspection.
		n certificate is required (waived for approved slurry backfill).
OWNER/BUILDER		
alleged exemption. Any violation of Secti la sa an owner of the property, or my of Professions Code: The Contractor's Licer provided that such improvements are not is burden of proving that he did not build or la so owner of the property, am exemple performed prior to sale, (3) I have resident the property of the property of the property of the property, amexelusidoes not apply to an owner of property when	on 7031.5 by any applicant for a per employees with wages as their sole ceanse Law does not apply to an owner intended or offered for sale. If howe improve for the purpose of sale), it from the sale requirements of the al- ded in the residence for the 12 month beyear period. (Sec. 7044 Business ar- vely contracting with licensed contra- to builds or improves thereon, and w	(2000) of Division 3 of the Business and Professions Code, or that he is exempt therefrom and the basis for the mit subjects the applicant to a civil penalty of not more than \$500); compensation, will do the work, and the structure is not intended or offered for sale (Sec. 7044, Business of property who builds or improves thereon, and who does such work himself or through his own employed ver, the building or improvement is sold within one year of completion, the owner-builder will have the cover due to: (1) I am improving my principal place of residence or appurtenances thereto, (2) the work will sprior to completion of the work, and (4) I have not claimed exemption on this subdivision on more than the deprecation of the work, and (4) I have not claimed exemption on the contractor's License Law the contracts for such projects with a contractor(s) licensed pursuant to the Contractor's License law).
WORKER'S COMPENSATION		
		cate of Worker's Compensation Insurance, or a certified copy thereof (Sec. 3700, Labor Code).
Policy #	Company Name	
□ I certify that in the performance of the of California (not required for work valued	work for which this permit is issued, at one hundred dollars (\$100) or les	I shall not employ any person in any manner so as to become subject to the Worker's Compensation Laws
granted upon the express condition that the perform the obligations with respect to stree and employees, from and against any and a sustained or arising in the construction of the	permittee shall be responsible for all et maintenance. The permittee shall, ill suits, claims, or actions brought by the work performed under the permit of	should become subject to the Worker's Compensation provisions of the Labor Code, you must forthwith a six is issued pursuant to all provisions of Title 12 Chapter 12.12 of the Oakland Municipal Code. It is claims and liabilities arising out of work performed under the permit or arising out of permittee's failure to and by acceptance of the permit agrees to defend, indemnify, save and hold harmless the City, its officers any person for or on account of any bodily injuries, disease or illness or damage to persons and/or property or in consequence of permittee's failure to perform the obligations with respect to street maintenance. This y the Director of the Office of Planning and Building.
granted upon the express condition that the perform the obligations with respect to street and employees, from and against any and a sustained or arising in the construction of the permit is void 90 days from the date of issued in the permit and agree to its requirements, and agree to its requirements.	permittee shall be responsible for all at maintenance. The permittee shall, all suits, claims, or actions brought by the work performed under the permit cance unless an extension is granted by the work performed and the permit of the work performed under the permit of the work performed the work permitted the w	It is issued pursuant to an provisions of 19th 12 Chapter 12.12 of the Oakland Municipal Code. It is claims and liabilities arising out of work performed under the permit or arising out of permittee's failure to and by acceptance of the permit agrees to defend, indemnify, save and hold harmless the City, its officers any person for or on account of any bodily injuries, disease or illness or damage to persons and/or property or in consequence of permittee's failure to perform the obligations with respect to street maintenance. This y the Director of the Office of Planning and Building. The Business and Professions Code and my license is in full force and effect (if contractor), that I have read and correct under penalty of law.
granted upon the express condition that the perform the obligations with respect to street and employees, from and against any and a sustained or arising in the construction of the permit is void 90 days from the date of issue I hereby affirm that I am licensed under prothis permit and agree to its requirements, and agree to its requirements, and agree to its requirements.	permittee shall be responsible for all at maintenance. The permittee shall, all suits, claims, or actions brought by the work performed under the permit of ance unless an extension is granted by the work performed in the permit of ance unless an extension is granted by the work performed under the permit of ance unless an extension is granted by the work performed in the above information is true at the permit of the permittee shall, and the permittee shall	It is issued pursuant to an provisions of 19th 12 Chapter 12.12 of the Oakland Municipal Code. It is claims and liabilities arising out of work performed under the permit or arising out of permittee's failure to and by acceptance of the permit agrees to defend, indemnify, save and hold harmless the City, its officers any person for or on account of any bodily injuries, disease or illness or damage to persons and/or property or in consequence of permittee's failure to perform the obligations with respect to street maintenance. This y the Director of the Office of Planning and Building. The Business and Professions Code and my license is in full force and effect (if contractor), that I have read and correct under penalty of law.
granted upon the express condition that the perform the obligations with respect to street and employees, from and against any and a sustained or arising in the construction of the permit is void 90 days from the date of issues I hereby affirm that I am licensed under prothis permit and agree to its requirements, and agree to its requirements, and agree to its requirements. Signature of Pennishe DATE STREET LAST	permittee shall be responsible for all at maintenance. The permittee shall, all suits, claims, or actions brought by the work performed under the permit of ance unless an extension is granted by the permitter of the permit of the permitter of the permit of the permitter of the	It is issued pursuant to an provisions of 19th 12 Chapter 12.12 of the Oakland Municipal Code. It is claims and liabilities arising out of work performed under the permit or arising out of permittee's failure to and by acceptance of the permit agrees to defend, indemnify, save and hold harmless the City, its officers any person for or on account of any bodily injuries, disease or illness or damage to persons and/or property or in consequence of permittee's failure to perform the obligations with respect to street maintenance. This y the Director of the Office of Planning and Building. The Business and Professions Code and my license is in full force and effect (if contractor), that I have read and correct under penalty of law. Date HOLIDAY RESTRICTION? LIMITED OPERATION AREA?
granted upon the express condition that the perform the obligations with respect to stree and employees, from and against any and a sustained or arising in the construction of the permit is void 90 days from the date of issue I hereby affirm that I am licensed under prothis permit and agree to its requirements, and agree to its requirements, and agree to its requirements. Signature of Permittee Age.	permittee shall be responsible for all et maintenance. The permittee shall, et maintenance. The permittee shall, all suits, claims, or actions brought by the work performed under the permit of ance unless an extension is granted by the experimental of the permit of the permit of the work performed under the permit of ance unless an extension is granted by the permit of the perm	the sasted pursuant to an provisions of 19th 12 Chapter 12.12 of the Oakland Municipal Code. It is claims and liabilities arising out of work performed under the permit or arising out of permittee's failure to and by acceptance of the permit agrees to defend, indemnify, save and hold harmless the City, its officers any person for or on account of any bodily injuries, disease or illness or damage to persons and/or property or in consequence of permittee's failure to perform the obligations with respect to street maintenance. This y the Director of the Office of Planning and Building. The Business and Professions Code and my license is in full force and effect (if contractor), that I have read and correct under penalty of law. Date HOLIDAY RESTRICTION? LIMITED OPERATION AREA?

REPORT OF

ADDITIONAL SITE CHARACTERIZATION & GROUNDWATER MONITORING

5930 College Avenue, Oakland, California ACHCSA Site #RO0000377

APPENDIX B

FLUID-LEVEL MONITORING DATA FORM WELL PURGING/SAMPLING DATA SHEETS

Golden Gate Tank Removal, Inc.

FLUID-LEVEL MONITORING DATA

	Location:	950 0	ollege	Avenue	te: 1/13/06 ; Oaklanc	*
echnician;	O'B	ryan		Instrun	nent: KECK	Fluid Level Me
*	·)	4-				1
Boring/ Well	Depth to ³ Water (feet)	Depth to Product (feet)	Product Thickness (feet)	Total Well Depth	Clean-to-Dirty Order PH-O TPH-D, MIBE, BTEX,	Comments
a4	L , a	4,59	<u>, , , , , , , , , , , , , , , , , , , </u>	(feet)	OTHER) 4	
MW-1 MW-2	4.60 5,48	(15)	(0)	19.66	. 3	
Mw-3	4.61			18.91	2	
Pw-	4.27			17.79		
1	,					
			 			
Į.	•					
	A	•	****	<u> </u>		

		G	olden (Gate Tai	nk Remo	val, Inc	•	
WELL P	URGING/S	AMPLING 1	DATA					
	Number:				Date:	1/13/0	r _e	
Project /	Site Location	on:	5930	Colle	Date:	. Oal	cland	
Sampler	Technician	·	O'B	chav.			- 1 · · · · · · · · · · · · · · · · · ·	
WELL	I.D.: <u>Mw</u>	-1		_	TIME: _7.	335-M	wI/	1450
		EVENT:	SAI	MPLING	WELL	DEVELOR		
DEPTH DEPTH POC T	TO WATER TO BOTTO OWB	R: 4.						
Well Diameter 2-inch well 4-inch wellinch well				Casing Volume (gals.) Total Purge (gals.) ft.x 0.163 gal/ft =				
80 percen	t recharge le	vel: <u>5,5</u>		of Pump: De	_		ng Device:	Disp. Bailer
TIME	GALS. PURGED	TEMP (°C)	pH	COND.	ER PARAMI D.O.	ORP	ODOR/ SHEEN	NOTES/ OTHER
Baile		lon w/dis	o. Bailes		7.8 % 1.0 my/L			al Product
prio	T	Pump				AND THE RESIDENCE OF THE PROPERTY OF THE PROPE		6367
1320	7,75	17:0	7.0	167		Market Market Control	ador.	elen
1321	1.75	17.1	7.2	163		and the same of th	M	11
1522	2.75	173	7,2	159		A STATE OF THE STA	u	* *
1323		17.6	7.2	160			11	clear & Francy
1324			7,2	161			t,	11
1325	4.75	17.8	1	161				11

DTW 1 (post purge): 6.45
DTW 2 (sample): 4.68
Total Volume: 4.75 Gals. Time: 13:26
Time: 14:46 of well of well

BDocs/FForms/PS Data

Page 1 of 1

GGTR

Golden Gate Tank Removal, Inc.

WELL PU	JRGING/S.	AMPLING I	DATA			·		;					
Project N	umber: _ 7	335			Date:	1/13/6) (e						
Project Number: 1355 Date: 1/13/06 Project / Site Location: 5930 College Ave. Oakland													
Sampler/Technician: O'Gran													
WELL I.D.: <u>MW-2</u> SAMPLE I.D. & TIME: <u>7335-MW2/1435</u>													
EVENT:SAMPLINGWELL DEVELOPMENT													
DEPTH TO WATER: 5.48 DEPTH TO BOTTOM: 19.66 POC TOWB													
Well Diameter 2-inch well 4-inch well -inch well				ft.x 0.163 gal/ft =									
80 percent recharge level: Sampling Device:													
	GALS.	TEMP	GR	OUNDWAT	EŘ PARAM	ETERS							
TIME	PURGED	(°C)	pН	COND.	D.O.	ORP	ODOR/ SHEEN	NOTES/ OTHER					
1248	St.	erted	ump		7.5 %. .72ms/L	State of the state	Secretary and the second						
1249	1.25	17.9	7.1	184			ales						
1251	2,75	17.8	7.2	187			11						
1252	4	18.1	7.1	189			* *	volatile / bubbles					
1254	5	12,3	7.2	189			11	, ,					
1255	G	18.5	7.2	188			e e	()					
1256	7	18.5	7.3	189			11	11					
					/								
DTW 1 (post purge): 9.37 Time: 12.58 (in) out in / out of well DTW 2 (sample): 5.53 Time: 14.32 of well of well													
	Forms/PS Do		Pag	ge 1 of 1	Pre Pury	U	GG	TR					

		Go	lden G	ate Tan	k Remo	val, Inc.			
WELL PU	RGING/SA	MPLING D	ATA						
Project Nu	mber:	335	· · · · · · · · · · · · · · · · · · ·	· · · · · ·	Date: _	1/13/00	<u> </u>		
Project / S	ite Locatior	ı: <u>.</u>	5930	Colle	seAve	1/13/00 . Oak	Jand		
Sampler/T	echnician:		O'Br	nan					
WELL I.	D.: <u>MW</u> -		SAMI	LE I.D. &	TIME: <u>73</u>	335-N	W3,	11420	
		EVENT:	SAN	APLING _	WELL	DEVELOP	MENT		
	O WATER O BOTTO OWB		1						
Well Diamet 2-inch we 4-inch weinch we	er ell ell		f	t.x 0.163 gal/ t.x 0.652 gal/ t.x gal/	ft = (g ft = (z)	Volume als.) X X X	<u>3</u> = [Total Purge (gals.)	
80 percent	recharge lev	rel: <u>5,5</u>	Туре о	of Pump: D	c-60	Sampli	ng Device:	Disp. Bailer	-
	GALS.	TEMP	GRO	DUNDWAT	ER PARAMI	ETERS	ODOR/	NOTES/	
TIME	PURGED	(°C)	pН	COND.	D.O.	ORP	SHEEN	OTHER	İ
1225	Pump	Starte	d		1,24			<u>*</u>	
1226	1,25	16.0	7.2	166			The state of the s	clear	
1227	2.5	15,7	7.3	169					
1249	3,75	16.7	7.2	164	Pump s	topped @	8.25	Lowered it to	12
1232	Sta	ot Pu	AP.				oder		
1233	5	17.3	7,2	164			11		
1734	6,25	17.2	7.2	164			11		
1235	7	17.4	7,2	168			1)		
						*			
	(post purge) (sample): olume:	1172 5.51 Gals.	Time:			n Man	•		
	FForms/PS 1	4	P	age 1 of 1			GG	TR	

Golden Gate Tank Removal Inc.

		U	nuen C	iuie Iui	in Keme	vui, mi	·•			
WELL PU	RGING/SA	AMPLING D	ATA :							
Project Nu	mber: <u>7</u>	335		•	Date: _	1/13/0	<u> </u>			
Project / S	ite Location	n:	5930	Colle	Date: _	. Oa	Kland			
Sampler/T	Sampler/Technician: O'Bryan									
WELL I.	o.: <u>Pw</u>		SAMF	LE I.D. &	TIME: <u>7</u>	335-	DWI/	1400		
		EVENT:			WELL			•		
	O WATER O BOTTO WB		37 79							
Well Diamete	3	Water	Column		1 -	y Volume		Total Purge (gals.)		
2-inch we	11	12		t.x 0.163 gal/	ft = 2		(<u>3</u> =	ruige (gais.)		
4-inch we				t.x 0.652 gal/ t.x gal/		3		~		
80 percent	80 percent recharge level: 5.8 Type of Pump: DC-GO Sampling Device: Disp. Bailey									
			GRO	DUNDWAT	ER PARAM	ETERS				
TIME	GALS. PURGED	TEMP (°C)	pH	COND.	D.O.	ORP	ODOR/ SHEEN	NOTES/ OTHER		
11:47	Stev				16590 1.6 mil			\		
11.48	Sto	P 2a	allons	venoved	Reco	levlated	casina	volume		
11.48	12	17.1	7.12	170.7			cles =	Startagain		
1207	3	16.6	7.1	165				stoppedial 206		
1208	4	16.7	7.1	169				eleav		
1209	5	16.6	70	174				1.6		
1210	6	16.7	7,0	175				1 V ·		
1211	6.5	16.6	7.0	171			- Indiana de la constantia del constantia de la constantia de la constantia della constantia della constanti	t		
	*									
					***	,				
DTW 1 (1	oost purge):	5.98	Time: 12	14 (n out in	n / 👊 f well				
Total Vol	ume:	S Gals.			4.					
BDocs/F	Forms/PS D	ata	· Pag	ge 1 of 1	Pre-Purise		GG.	TR		

FLUID-LEVEL MONITORING DATA

Project Name: SHEAFFS CATAGE	Date: 4714 14 2006
Project/Site Location: 5930 CONEGE AVE	CAKUTOIDCA
Technician: K. ATKINSON	Method: EUCTRONIC

Boring/ Well	Depth to Water (feet)	Depth to Product (feet)	Product Thickness (feet)	Total Well Depth (feet)	Comments
PW-1	2.27			18.20	POS. PRESONE UPON OPONING,
Mw-1	3.08	-		14.64	THONG PERO ODAZ FROM
MW-Z	3.61			19.63	POS. PRESSURE MODEL OPENING, GTRONG TETRO OBOR FROM WELL
MW-3			_	18.93	TOS. PRESURE UPON OFONING, STRUME PETED ODOIZ FROM WELL

Measurements referenced to top of well casing. New 17th

Page ____ of ____

DYSERT ENVIRONMENTAL, INC. WELL PURGING / SAMPLING DATA

Dysert Environmental, Inc.

DATE: 4 / 14/00

PROJECT: SHEAFFS GARRIE PN 7335

SITE LOCATION: 5930 CONSEC AVE

CITY: OAKUTO				STATE:	· A				
		- N	<u>PURG</u>	E DEVICE					
<u>circle one</u> 12v	olt submers	ible pump	peristalti		bladder pu	mp disp	osable baile	er	
				ING DEVIC			- 41		
	bladder pur		peristaltic p	oump c	lisposable t	_	other		
casing diameter (i		<u>circle one</u>	0.75	$\frac{2}{2}$	4	6			
casing volumes (g	jallons)	<u>circle one</u>	0.02	(0.2)	0.7	1.52			
			<u>WEL</u>	<u>L DATA</u>			···		
SAMPLER/S: Y									
WELL NUMBER			W-1						
A. TOTAL WELL		Y							
	B. DEPTH TO WATER: 2-27 C. WATER HEIGHT (A-B): 1993								
D. WELL CASING									
E. CASING VOLU		Ν. Δ							
F. SINGLE CASE		CxE): ろ。	19			_ ,,			
G. CASE VOLUM		<u> </u>	.57						
H: 80% RECHAR			46						
11. 00 /0 1(201)/11	<u> </u>	<u>v - / · _ </u>		GE DATA					
START TIME: \	30O								
PUMP DEPTH:	17.20								
FINISH TIME:	13315								
	117,20		H. *** .						
· · · · · · · · · · · · · · · · · · ·	1	R	ECHARGE	/SAMPLE	TIME				
DEPTH TO WAT				TIME MEA		13360			
GREATER THAN	OR EQUA	L TO 80% F	RECHARGI	E LEVEL (H	l): circle c	ne (YES	NO		
SAMPLE TIME:	1336			DEPTH TO		2.27			
SAMPLE APPEA			MKY, P	500 CME	212, Suc	out Sis	MON		
TOTAL GALLON	S PURGED								
				D PARAME		1			
CASE VOL.	0	0.5	3.19 1	կ 1.5	6.57 2	7.5% 2.5	1.57 3	POST	
CASE VOL.		0.0	•	1.0					
Ph	10.74	6.43	6.48	6.42	6.46	6.49	6.47	4.4	
	W-7-1		Vi Cij						
TEMP in °C	17.1	16.2	16.3	16.1	16.3	14.7	16.)	15,9	
					- 1 0			201	
COND / SC	411	353	371	369	366	367	363	394	
	_		200		- 07	203	200	2.27	
DTW	3.05	3.25	2.90	3.00	2.97	2.97	295	207	
·		,	T 7	177	17.20		417.20	W.FIW	
Pump Depth	717.20	77.20	V17.20	17.20	117.00	n17.2)	~17.20	17.20	
Dumm Data	VISCON Jan	2100 1	indian li	1	1	recondens	Mar. In		
Pump Rate	I Com Mir	3 Googlan	- COMUM MI	1 spaceminin	MIMIMIN	Learning 12	*CML[MB	 	
	1	P	AGE \	OF 1					

DYSERT ENVIRONMENTAL, INC. WELL PURGING / SAMPLING DATA PROJECT: SHEATTS GATAGE PM 77335

Dysert Environmental, Inc.

SITE LOCATION: 5930 CONTEST AVE

DATE: 4/14/26

CITY: OANUA	ng			STATE: C	A				
				E DEVICE					
<u>circle one</u> 12v	oltsubmers	ible pump	peristalti SAMPLI	NG DEVICE		· ·	osable baile	r	
circle one	bladder pur	np	peristaltic p	oump d	lisposable b	ailer	other		
casing diameter (i	nches)	<u>circle one</u>	0.75	2	4	6			
casing volumes (g	allons)	<u>circle one</u>	0.02	0.2	0.7	1.52			
WELL DATA									
SAMPLER/S: KVA ASCUISON									
WELL NUMBER / FIELD POINT ID: MW^\ A. TOTAL WELL DEPTH: 闪ルゲ									
B. DEPTH TO WA									
C. WATER HEIGH									
D. WELL CASING									
E. CASING VOLU									
F. SINGLE CASE		CxE): 2.3	31						
G. CASE VOLUM									
H: 80% RECHAR	GE LEVEL	(F+B): 5	39						
			<u>PUR</u> (<u>GE DATA</u>					
START TIME: \(- ##						
PUMP DEPTH: ~1									
FINISH TIME: \(\(\)									
PUMP DEPTH: ✓	13.5V		ECHARCE	/CAMDIE	TIME				
DEPTH TO WAT	DEPTH TO WATER: 4.17 TIME MEASURED: 1.17								
GREATER THAN							NO		
SAMPLE TIME:	165			DEPTH TO		4.12			
SAMPLE APPEA	RANCE / O	DOR: Garat				5 645 03	UP /		
TOTAL GALLON			·		, , , , , , , , , , , , , , , , , , , ,				
			VELL FLUIL	PARAME	<u>TERS</u>				
		1.15 0.5	2.31	3.46	4.41	8.76	4,94		
CASE VOL.	0	0.5	11	1.5	2	2.5	3	POST	
Ph	6.95	692	6.87	Ce: 70	6.67	6.68	6.63	6.69	
TEMP in °C	No.2	15.4	16.4	No.6	Not	16.2	163	16.5	
COND / SC	1147	1125	1134	MI	1148	1147	1152	1149	
DTW	3.08	3.85	4.17	431	4:52	5.07	5.31	5,62	
Pump Depth	~13.5D	m13.50	M13.50	413,50	413,50	~13.50	~13.8D)		
Pump Rate			M40Dm/min	m Yill milme	Manylum		- Lasmilas		
	1 CONTINE	, , , , , , , , , , , , , , , , , , ,	1						
		ı	ı		1	i	1		

DYSERT ENVIRONMENTAL, INC. WELL PURGING / SAMPLING DATA

Dysert Environmental, Inc. DATE: 4 14/26

PROJECT: SIKMTS GARAGE PA 7335 SITE LOCATION: 5530 WEST AVE

CITY: OAKA	is a			STATE: ,	A					
			PURG	E DEVICE						
<u>circle one</u> 12	voit submers	sible pump	peristalti SAMPLI	c pump ING DEVICI	bladder pur	mp disp	osable baile	er		
circle one	bladder pur	mp	peristaltic p	oump ~e	isposable b	ailer	other			
casing diameter (inches)	<u>circle one</u>	0.75	\mathcal{Q}^{2}	4	6				
casing volumes (circle one	0.02	(0.2)	0.7	1.52				
WELL DATA										
SAMPLER/S:										
WELL NUMBER / FIELD POINT ID: MW-Z										
A. TOTAL WELL	DEPTH: 15	1.63								
B. DEPTH TO WATER: 3.61										
C. WATER HEIG		16.02								
D. WELL CASIN										
E. CASING VOL										
F. SINGLE CASE		(CxE): ろって	D							
G. CASE VOLUM										
H: 80% RECHAF										
11. 00 /0 112 01.11 11		<u>()- </u>		GE DATA						
START TIME:15	75									
	PUMP DEPTH: 15 TIME:									
PUMP DEPTH:										
TOWN DELTIN	4 (32)	F	RECHARGE	/SAMPLE	TIME					
DEPTH TO WAT	FR. CI				SURED: \	alD				
GREATER THAI	OR FOLIA	TO 80%	RECHARGE				NO			
SAMPLE TIME:	2-10-				WATER:					
SAMPLE APPEA	RANCE / O	DOR: A	CIART				2008-2 DE	5720 OSOR		
TOTAL GALLON			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	() 100 / 0 / 2	, ,	V = 10 / - 5 / 7		<i></i>		
TOTAL GALLOI	10 I ONOLL		VELL FLUI	D PARAME	TERS					
			3.20	ષ,જો	6.40	8,0	The			
CASE VOL.	0	ો હ∂ 0.5	1	1.5	2	2.5	3	POST		
CASE VOL.	 	0.0								
Ph	6.64	6.62	660	6.61	4.65	le leo	Culdo	6.71		
ГП	10.09	4.00								
TEMP in °C	17.2	17.3	17.3	17-1	17.5	17.6	17.7	17-8		
TEIMI III O	1176					1 1 2				
COND / SC	W37	1023	1014	1020	1014	1005	992	996		
CONDTGG	$\frac{1}{1}$	1000	0011	VC C	100	1000	(,,,,			
DTW	3.65	3.72	3,75	3.73	3560	3,79	3565	3.77		
	1 2007	7			2.20			, <u> </u>		
Pump Depth	18,S)	~18:50	218.20	718.50	218.00	~ 18.D)	~18.50			
1 dilip Deptil	1.0/20	1	10.30	10,00						
Pump Rate	run Lun Corr	75100 mlm	5 600 mfm	n Collingers	slas menter	1 -600m/min]			
r unip itate	Leginal Min	MANAMA	The second date	4 20011/1018	- GC JMC MI	- CONGMA				
		l .	1	1	1	1	1			
		1						1		
		1		l .			1	1		

DYSERT ENVIRONMENTAL, INC. WELL PURGING / SAMPLING DATA

Dysert Environmental, Inc.

DATE: ◄ (١૪) (૭৬)

PROJECT: GINGASES CASULAGE PA 7335 SITE LOCATION: 5730 CONEGE AC

CITY: OAKLA	(n)			STATE:	CA					
				E DEVICE						
circle one 124	olt submers	sible pump	peristalti		bladder pur	np disp	osable baile	r		
	الماري والمارية		peristaltic p	NG DEVICE	hisposable b	ailer	other			
	bladder pur	np <i>circle one</i>	0.75	outrip 50	iisposable t	6	Other			
casing diameter (i		circle one	0.73	6.2	0.7	1.52				
casing volumes (g	janoris <i>j</i>	<u>on old ond</u>		L DATA	• • • • • • • • • • • • • • • • • • • •					
SAMPLERIS: KAN ATKINSON										
WELL NUMBER	WELL NUMBER / FIELD POINT ID: WW 25									
A. TOTAL WELL										
B. DEPTH TO WA										
C. WATER HEIGI										
D. WELL CASING		R: 2								
E. CASING VOLU		(CvE), 2 ,								
F. SINGLE CASE						, ., 				
G. CASE VOLUM H: 80% RECHAR										
H. 60% RECHAN	GL LLVLL	(1 1D). (4.5		GE DATA						
START TIME: \2	59									
PUMP DEPTH: "										
	1511									
PUMP DEPTH:~										
RECHARGE / SAMPLE TIME \S\ \{										
DEPTH TO WAT	ER: 4,2	9		TIME MEA		A/FO	NO			
GREATER THAN			RECHARGE		i): circle o) WATER:		NO			
SAMPLE TIME:	151 DANCE (O						250 ODUS			
SAMPLE APPEA TOTAL GALLON			10 congn	1 m 5001	MENT, 5	DWN C) 1	SIN DINUIL			
TOTAL GALLON	3 FUNGLE		VELL FLUIL	D PARAME	TERS					
	1	1.55	3.10	4.65	6.20	7.75	5(32)			
CASE VOL.	0	0.5	1	1.5	2	2.5	5,3√ 3	POST		
			, 7,	1 71	4.83	Λ ¬ i	6.72	G-X		
Ph	6.52	4.64	4.71	4.71	4.00	4.71	4.72	995		
TEMP in °C	14.7	ve. 1	16.1	15:9	15.7	15,7	15.8	17.8		
COND / SC	648	65°1	437	474	677	679	679	450		
DTW	4.25	4.70	5.05	6.35	4.85	7.05	7.18	681		
Pump Depth	M3-97	417.53	~17.97	717.97	(P.F1~	~17.95	۳ ۱٦.٩ <i>٦</i>			
i dilip beptil	15-1-	1 1 1 1 7				1711				
Pump Rate	-60mlmin	~60m/mod	~ 400 mil mir	~ SOOm/m	1 500 m/m	45Wanfaa	4800m/m			
	L	<u> </u>	AGE 1	OF	J	L	1			

REPORT OF

ADDITIONAL SITE CHARACTERIZATION & GROUNDWATER MONITORING

5930 College Avenue, Oakland, California ACHCSA Site #RO0000377

APPENDIX C

LABORATORY ANALYTICAL REPORTS, CHAIN OF CUSTODY RECORDS GETTLER-RYAN MONITORING DATA & ANALYTICAL RESULTS

Case Narrative

Client:

Golden Gate Tank

Project:

5930 COLLEGE AVE.

Lab No:

05-0498

Date Received:

04/06/2005

Date reported:

04/12/2005

Six soil samples (sample 7335-SC2 is composite 4:1) were received for the analysis of gasoline by method 8015B, BTEX/MTBE by method 8021B, fuel oxygenates by GC/MS method 8260B and total lead by ICAP method 6010B (sample 05-0498-01 only). The QC/QA results passed all acceptance criteria except 1,1-dichloroethene by GC/MS (spiked sample 05-0498-03). The % recoveries for this compound were out of limits and substituted by LCS/LCSD results from the same batch.

Erin Cunniffe

Laboratory Director

CERTIFICATE OF ANALYSIS

Lab Number:

05-0498

Client:

Golden Gate Tank

Project:

5930 COLLEGE AVE

Date Reported: 04/14/2005

Gasoline, BTEX and MTBE by Methods 8015B/8021B

Lead by ICAP Method 6010B

Analyte	<u>Method Result</u>		Unit Date Sampled Date Analyz		
Sample: 05-0498-01 Client	ID: 7335-SC2		04/05/2005	SO	
Benzene	SW8020F	20	UG/KG	04/06/2005	
Ethylbenzene	SW8020F	148	UG/KG	04/06/2005	
Gasoline Range Organics	SW8020F	11500	UG/KG	04/06/2005	
Methyl-tert-butyl ether	SW8020F	ND<5	UG/KG	04/06/2005	
SUR-a,a,a-Trifluorotoluene	SW8020F	103	PERCENT	04/06/2005	
Toluene	SW8020F	21	UG/KG	04/06/2005	
Xylenes	SW8020F	391	UG/KG	04/06/2005	
Lead	SW6010B	6.5	MG/KG	04/12/2005	
	5W0010B	•••	110, 110	,,	
Sample: 05-0498-02 Client	ID: 7335-PW1-4		04/05/2005	SO	
Benzene					
Benzene Ethylbenzene	ID: 7335-PW1-4	1.5	04/05/2005	SO	
Benzene Ethylbenzene Gasoline Range Organics	ID: 7335-PW1-4 SW8020F	4.5 ND<5	04/05/2005 UG/KG	SO 04/06/2005	
Benzene Ethylbenzene	ID: 7335-PW1-4 SW8020F SW8020F	1.5 ND<5 ND<5	04/05/2005 UG/KG UG/KG	SO 04/06/2005 04/06/2005	
Benzene Ethylbenzene Gasoline Range Organics Methyl-tert-butyl ether SUR-a,a,a-Trifluorotoluene	ID: 7335-PW1-4 SW8020F SW8020F SW8020F SW8020F	1.5 ND<5 ND<5 ND<500	04/05/2005 UG/KG UG/KG UG/KG	SO 04/06/2005 04/06/2005 04/06/2005	
Benzene Ethylbenzene Gasoline Range Organics Methyl-tert-butyl ether	ID: 7335-PW1-4 SW8020F SW8020F SW8020F SW8020F	ND<5 ND<5 ND<5 ND<500 ND<5	04/05/2005 UG/KG UG/KG UG/KG UG/KG	SO 04/06/2005 04/06/2005 04/06/2005 04/06/2005	
Benzene Ethylbenzene Gasoline Range Organics Methyl-tert-butyl ether SUR-a,a,a-Trifluorotoluene	ID: 7335-PW1-4 SW8020F SW8020F SW8020F SW8020F SW8020F	ND<5 ND<5 ND<500 ND<5	04/05/2005 UG/KG UG/KG UG/KG UG/KG PERCENT	SO 04/06/2005 04/06/2005 04/06/2005 04/06/2005	

CERTIFICATE OF ANALYSIS

Lab Number:

05-0498

Client:

Analyte

Golden Gate Tank

Project:

5930 COLLEGE AVE

Date Reported: 04/14/2005

Gasoline, BTEX and MTBE by Methods 8015B/8021B

Method Result Unit Date Sampled Date Analyzed

Lead by ICAP Method 6010B

Sample: 05-0498-03 Cl	ient ID:	7335-PW1-6		04/05/2005	SO	
Benzene		SW8020F	ND<5	UG/KG	04/06/2005	_
Ethylbenzene		SW8020F	ND<5	UG/KG	04/06/2005	
Gasoline Range Organic	S	SW8020F	ND<500	UG/KG	04/06/2005	
Methyl-tert-butyl ethe	r	SW8020F	ND<5	UG/KG	04/06/2005	
SUR-a,a,a-Trifluorotol	uene	SW8020F	95	PERCENT	04/06/2005	
Toluene		SW8020F	ND<5	UG/KG	04/06/2005	
Xylenes		SW8020F	ND<10	UG/KG	04/06/2005	
Sample: 05-0498-04 Cl	ient ID:	7335-PW1-9		04/05/2005	SO	-
Benzene		SW8020F	ND<5	UG/KG	04/07/2005	_
Ethylbenzene		SW8020F	ND<5	UG/KG	04/07/2005	
Gasoline Range Organic	s	SW8020F	ND<500	UG/KG	04/07/2005	
Methyl-tert-butyl ethe	r	SW8020F	ND<5	UG/KG	04/07/2005	
SUR-a,a,a-Trifluorotol	uene	SW8020F	93	PERCENT	04/07/2005	
Toluene		SW8020F	ND<5	UG/KG	04/07/2005	
Xylenes		SW8020F	ND<10	UG/KG	04/07/2005	
Sample: 05-0498-05 Cl	ient ID:	7335-PW1-11	. 5	04/05/2005	SO	-
Benzene		SW8020F	ND<5	UG/KG	04/06/2005	-
Ethylbenzene		SW8020F	ND<5	UG/KG	04/06/2005	
Gasoline Range Organic	S	SW8020F	ND<500	UG/KG	04/06/2005	
Methyl-tert-butyl ethe:	r	SW8020F	ND<5	UG/KG	04/06/2005	
SUR-a,a,a-Trifluorotol	uene	SW8020F	100	PERCENT	04/06/2005	
					Page	2

CERTIFICATE OF ANALYSIS

Job Number: 05-0498

Client : Golden Gate Tank

Project : 5930 COLLEGE AVE

Date Sampled : 04/05/2005

Date Analyzed: 04/07/2005

Date Reported: 04/12/2005

Fuel Oxygenates by Method 8260B

Laboratory Number	05-0498-02	05-0498-03	05-0498-04	05-0498-05	05-0498-06
Client ID	7335-PW1-4.5	7335-PW1-6	7335-PW1-9	7335-PW1-11.	7335-PW1-20
Matrix	so	SO	so	so	SO
Analyte	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG
Methyl-tert-butyl ether	ND<5	ND<5	ND<5	ND<5	ND<5
Ethyl tert-butyl ether	ND<5	ND<5	ND<5	ND<5	ND<5
tert-Amyl methyl ether	ND<5	ND<5	ND<5	ND<5	ND<5
Di-isopropyl ether (DIPE)	ND<5	ND<5	ND<5	ND<5	ND<5
tert-Butyl alcohol	ND<250	ND<250	ND<250	ND<250	ND<250
1,2-Dichloroethane	ND<5	ND<5	ND<5	ND<5	ND<5
1,2-Dibromoethane	ND<5	ND<5	ND<5	ND<5	ND<5
Ethanol	ND<500	ND<500	ND<500	ND<500	ND<500
SUR-Dibromofluoromethane	97	98	94	99	98
SUR-Toluene-d8	105	107	107	108	109
SUR-4-Bromofluorobenzene	92	92	90	91	91
SUR-1,2-Dichloroethane-d4	113	116	113	116	118

CERTIFICATE OF ANALYSIS

Job Number: 05-0498

Client

Project

: Golden Gate Tank : 5930 COLLEGE AVE Date Sampled: 04/05/2005

Date Analyzed: 04/07/2005

Date Reported: 04/12/2005

Fuel Oxygenates by Method 8260B Quality Control/Quality Assurance Summary

Laboratory Number Client ID Matrix	05-0498 Blank SO	MS/MSD Recovery SO	RPD	Recovery Limit	RPD Limit
Analyte	Results UG/KG	%Recoveries			
Ethanol	ND<500				
Methyl-tert-butyl ether	ND<5				
Di-isopropyl ether (DIPE)	ND<5				
tert-Butyl alcohol	ND<250				
Ethyl tert-butyl ether	ND<5				
tert-Amyl methyl ether	ND<5				
1,2-Dichloroethane	ND<5				
1,2-Dibromoethane	ND<5				
1,1-Dichloroethene	ND<5	74/85	14	70-130	30
Benzene	ND<5	98/98	0	70-130	30
Trichloroethene	ND<5	88/89	1	70-130	30
Toluene	ND<5	124/112	10	70-130	30
Chlorobenzene	ND<10	106/113	6	70-130	30
SUR-Dibromofluoromethane	115	85/102	18	70-125	30
SUR-Toluene-d8	110	122/108	12	70-125	30
SUR-4-Bromofluorobenzene	108	91/95	4	70-125	30
SUR-1,2-Dichloroethane-d4	124	97/124	24	70-125	30

Reviewed and Approved

Erin Chnniste Laboratory Director

North State Labs

815 Dubuque Avenue • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

	SAMPLE RECEIPT CF				
Client Name: 6672	Ref/Job No: 05	0498		Date: 4/6/	105
Checked By: 「とく					
Matrix: Soil: <u></u> Water:	Other:				
If Received via Shipment (If dropped o	off in person this section	does not app	iy):		
Carrier Name:					
Shipping Container/Cooler In Good Co	ondition?	Υ	N		
Contact Cools Intact on Chinning Conta	inor?	Y	N	N/A	
Custody Seals Intact on Shipping Conta			19/6		
No. of coolers:	o. of coolers: Temperature of Coo				Y N
Custody Seals intact on sample contained	ers?	(Ý)	N	N/A	
Chain of Custody present?		8	N		
Chain of Custody Signatures & Date/Ti	me correct?	8	N]	
Chain of custody agrees with sample la	bels?	Ø	N		
Samples in proper containers?		<i>₽</i>	N		
Sample containers Intact?		<u>(v)</u>	N]	
Sufficient sample volume for indicated	tests?	Ŷ	N] .	
All Samples received within holding tin	nes?	Ø	N		
Temperature Blank present? Record Te	mp if present.	Ý	(D)	Temp:	
For water samples- VOAS have zero he	eadspace?	Y	N	(N/A)	
Samples received in bottles with prope	r preservative?	Y	N	(N/A)	
pH adjusted - Preservative used:	HNO3: HCI: Supplier:	H2SO4: Lot:	NaOH:_	_ ZnOAc:	
For water samples for the analysis of to	otal recoverable metals	not digested -	pH <2?	See attacl	ned sheet
Compating Action Decords			,		
Corrective Action Record: Client Contacted:	Date Contacted:		Person C	ontacted:	
Contacted by:	Regarding:				
Comments:					<u> </u>
Corrective Action:				-	

916 616 4126

05-6498

815 Dubuque Avenue, South San Francisco, CA 94080 Phone: (650) 266-4563 Fax: (650) 266-4560

Chain of Custody / Request for Analysis
Lab Job No.:_____Page _of_\

Client: Couper	C	D		5	. 1		T	•			т—	•
OHETE. COLDEN	SOATE 12	WKKENO		to: BREUT	NHE	ELER	Phone	: 415.	512-	555]	Turnaround Time
Mailing Address: 255	SHIPLE	y st	Billing				Fax:	5	T12·1	555		STD - 24
SF	C	/ 	1	SAME			email:	data	@ 995	r. con	Date:	4-5-5
							PO#	733	,500		Sampl	er: WHEELER WOLF
Project / Site Address 5930 COLLEGE OAKLAND C	E AVE	D: TO 60 d	102	Analys Requested	sis /o		4 (A)	/	<i>ി</i> .	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		EDF
Sample ID	Sample Type	Container No. / Type	Pres.	Sampling Date / Time	17 Hat	X WE	(日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本)		Tool of			PDF Field Point ID
7335-SC2	SoiL	4 / Bruss		4-5-05/ 1100								SCZ
7335 - PW1-4.5		1 BUT ACRYL	د	10945	/				~			PW1-4.5
7335-PW1-6		TUBE		10947					/			PW 1-6
7335-PW1-9				6950	/				/			PW 1-9
7335 - PWI - 11.5		1 5		0955	\(\tag{-1}							PW 1 - 11.5
7335-PW1-20	\perp	V	1	11010					/			PW1-20
								4				1 50 1
							4					
						1 9 m		¥.,			#\	
							<u> </u>					
				¥.)		,						
				<u> </u>			3		1			
	$-\Delta$			· ·			•					
	//	Ω										
Relinquished by:	RygA		Da	ite: 4/6/5 Time: 4	950	Receive	d by:		A «	KSCA	BS	Lab Comments/
Relinquished by:	11/	1	Da	ite: 4/6/65 Time:	ديا	Receive	d by:	···	20	<u> </u>		Hazards
Relinquished by:				ite: Time:	75	Receive	d by:					•
TERMS: NET 30 OAC				-								

Case Narrative

Client: Golden Gate Tank Removal

Project:

5930 College Ave., Oakland

Lab No:

05-0540

Date Received:

04/14/05

Date reported: 04/20/05

Two water samples were analyzed for gasoline by method 8015B, BTEX and MTBE by method 8021B, and fuel oxygenates by GC/MS method 8260B. No errors occurred during analysis. Results for QC/QA samples met all required criteria.

Erin Cynniffe/

Laboratory Director

CERTIFICATE OF ANALYSIS

Lab Number:

05-0540

Client:

Golden Gate Tank

Project:

5930 COLLEGE AVE

Date Reported: 04/20/2005

Analyte	Method Res	ult Un	<u>it Date Sampled</u>	<u>Date Analyze</u> d
Sample: 05-0540-01 Client	ID: HB-1-W		04/14/2005	W
Benzene	SW8020F	0.8	UG/L	04/14/2005
Ethylbenzene	SW8020F	0.9	UG/L	04/14/2005
Gasoline Range Organics	SW8020F	173	UG/L	04/14/2005
Methyl-tert-butyl ether	SW8020F	*0.9	UG/L	04/14/2005
SUR-a,a,a-Trifluorotoluene	SW8020F	96	PERCENT	04/14/2005
Toluene	SW8020F	ND<0.5	UG/L	04/14/2005
Xylenes	SW8020F	3.9	UG/L	04/14/2005
Sample: 05-0540-02 Client	ID: B18-W		04/14/2005	W
Benzene				04/14/2005
	SW8020F	ND<0.5	UG/L	04/14/2005
	SW8020F SW8020F	ND<0.5 ND<0.5	UG/L UG/L	04/14/2005
Ethylbenzene	SW8020F		•	
Ethylbenzene Gasoline Range Organics		ND<0.5	UG/L	04/14/2005
Ethylbenzene	SW8020F SW8020F	ND<0.5	UG/L UG/L	04/14/2005 04/14/2005 04/14/2005 04/14/2005
Ethylbenzene Gasoline Range Organics Methyl-tert-butyl ether	SW8020F SW8020F SW8020F	ND<0.5 51 ND<0.5	UG/L UG/L UG/L	04/14/2005 04/14/2005 04/14/2005

Page

CERTIFICATE OF ANALYSIS

Quality Control/Quality Assurance

Lab Number:

05-0540

Client:

Golden Gate Tank

Project:

5930 COLLEGE AVE

Date Reported: 04/20/2005

Gasoline, BTEX and MTBE by Methods 8015B/8021B

Analyte	Method Reporting Uni Limit		ng Unit	Blank	Avg MS/MSD Recovery	RPD
Gasoline Range Organics	SW8020F	50	UG/L	ND	77/88	13
Benzene	SW8020F	0.5	UG/L	ND	71/80	12
Toluene	SW8020F	0.5	UG/L	ND	73/82	12
Ethylbenzene	SW8020F	0.5	UG/L	ND	79/89	12
Xylenes	SW8020F	1.0	UG/L	ND	78/88	12
Methyl-tert-butyl ether	SW8020F	0.5	UG/L	ND	79/87	10
SUR-a,a,a-Trifluorotoluene	SW8020F		PERCEN	T 101	101/100	1

ELAP Certificate NO:1753

Reviewed and Approved

2 of 2 Page

CERTIFICATE OF ANALYSIS

Job Number: 05-0540

: Golden Gate Tank

Client : Gold Project : 5930

: 5930 COLLEGE AVE

Date Sampled : 04/14/2005

Date Analyzed: 04/14/2005 Date Reported: 04/20/2005

Fuel Oxygenates by Method 8260B

Laboratory Number	05-0540-01	05-0540-02
Client ID	HB-1-W	B18-W
Matrix	W	W
Analyte	UG/L	UG/L
Methyl-tert-butyl ether	0.9	ND<0.5
Ethyl tert-butyl ether	ND<1	ND<1
tert-Amyl methyl ether	ND<1	ND<1
Di-isopropyl ether (DIPE)	ND<0.5	ND<0.5
tert-Butyl alcohol	ND<10	ND<10
1,2-Dichloroethane	ND<1	ND<1
1,2-Dibromoethane	ND<0.5	ND<0.5
Ethanol	ND<50	ND<50
SUR-Dibromofluoromethane	99	101
SUR-Toluene-d8	107	110
SUR-4-Bromofluorobenzene	102	105
SUR-1,2-Dichloroethane-d4	97	103

CERTIFICATE OF ANALYSIS

Job Number: 05-0540

Client : Golden Gate Tank
Project : 5930 COLLEGE AVE

Date Sampled : 04/14/2005 Date Analyzed: 04/14/2005

Date Reported: 04/20/2005

Fuel Oxygenates by Method 8260B Quality Control/Quality Assurance Summary

Laboratory Number Client ID Matrix	05-0540 Blank W	MS/MSD Recovery W	RPD	Recovery Limit	RPD Limit
Analyte	Results UG/L	%Recoveries			
Ethanol	ND<50				
Methyl-tert-butyl ether	ND<0.5				
Di-isopropyl ether (DIPE)	ND<0.5				
tert-butyl Alcohol	ND<10				
Ethyl tert-butyl ether	ND<1				
tert-Amyl methyl ether	ND<1				
1,1-Dichloroethene	ND<0.5	109/105	4	70-130	30
Benzene	ND<0.5	126/129	2	70-130	30
Trichloroethene	ND<0.5	103/106	3	70-130	30
Toluene	ND<0.5	116/120	3	70-130	30
Chlorobenzene	ND<1	100/105	5	70-130	30
SUR-Dibromofluoromethane	95	91/94	.3	85-115	30
SUR-Toluene-d8	106	108/107	1	85~115	30
SUR-4-Bromofluorobenzene	105	102/102	0	85-115	30
SUR-1,2-Dichloroethane-d4	98	93/95	2	85-115	30

Reviewed and Approved

Erin Cunnifie

₹	SAMPLE RECEIPT CH			- 1/h: 0/-
Client Name: CSCR	Ref/Job No: 05-0	2540		Date: 4/2 14/65
Checked By: 1. Ca			•	•
Matrix: Soil: Water: 7	Other:			
If Received via Shipment (If dropped off	f in person this section	does not apply):	
Carrier Name:				
Shipping Container/Cooler In Good Con	dition?	Υ	N]
Custody Seals Intact on Shipping Contain	ner?	Y	N	N/A
No. of coolers:	Temperature of Cool	er:		In Range?: Y N
Custody Seals intact on sample container	rs?	Y	N	N/A
Chain of Custody present?		Ø	N]
Chain of Custody Signatures & Date/Tim	ne correct?		N]
Chain of custody agrees with sample lab	els?	P	N]
Samples in proper containers?		0	N]
Sample containers Intact?		Y	N	3 .
Sufficient sample volume for indicated t	ests?	Y	N	3
All Samples received within holding tim	es?	Y	N	コ
Temperature Blank present? Record Ter	np if present.	Y	N	Temp:
For water samples- VOAS have zero her	adspace?	Y	N	N/A
Samples received in bottles with proper	preservative?	YA	M	(N/A)
pH adjusted - Preservative used:	HNO3: HCl: Supplier:	H2SO4:1 Lot:	NaOH:_	ZnOAc:
For water samples for the analysis of to		not digested - p	oH <2?	See attached shee
				-
Corrective Action Record:			n	
Client Contacted:	Date Contacted:			ontacted:
Contacted by:	Regarding:			
Comments:				
Corrective Action:	`.			

North State Labs

815 Dubuque Avenue, South San Francisco, CA 94080 Phone: (650) 266-4563 Fax: (650) 266-4560

Chain d	of Custody	/ Request for	Analysiş
ab Jol	_	Page_	2_of_/

Client: CGTR	•		Report	to: B. WHIESE	LER		Phone:	45	5121	555			
Mailing Address:			Billing to	o:			Fax: 4	1551	Z 0°	4			
75-5 SHJ	PLEN S	5.		SAME			email:	Daral	3000	z. Con	Date:	414/05	
S.F., C	a office			_	•			7335			Sampler: BAW		
Project / Site Address	s / Global ID	TO60 Aure,	010	Analys Requested	is	ON A			2			EDF 🔀	
Sample ID	Sample Type	Container No. / Type	Pres.	Sampling Date / Time	R B	16 00	O X X X X	7 3 8		/-		/ Field Point ID	
HB-1-W	WATER	5-fort	HCR	1330	X	×	×	X				HB-1-W	
B18-W	1)	1)	"	1400	X	\times	X	X				B18-W	
										 <u>-</u>			
					+								
						 			 				
	<u> </u>						1	1					
		<u> </u>					+	+	1				
					+	<u> </u>		1/-	(\mathcal{T})	1			
	 	1\			1	1		\ 	4/-	1			
Relinquished by:	I /	flut		Date: 4/14/05Time:	1410	> Rece	ived by:		1	ا محال	AB5	Lab Comments/ Hazards	
Relinquished by: Relinquished by: Date: 4/14/05Time: 1410 Received by: Date: 4/14/05Time: 1415 Received by:						110000							
Relinquished by:				Date: Time	<u> </u>	Rece	eived by:						

North State Labs

815 Dubuque Avenue, South San Francisco, CA 94080 Phone: (650) 266-4563 Fax: (650) 266-4560

Chain of Custody / Request for Analysis Page of Lab Job No.:____

nt: < Report to:			o: B. WHITE	T.E.R		Phone: 4:5 5:7 15:55 Fax: 4:5 5:2 5:2						
Mailing Address:		Billing to	Blining to.			email: Damécara Car				7 . /		
SF. CA CANO							PO# 7335				Sampler:	
oject / Site Addre	ss / Global ID	ALIZ	en e	Analyst Requested		K				/		PDF A
Sample ID	Sample Type	Container No. / Type	Pres.	Sampling Date / Time				1.5 0	{		-	HB-1-W
4B - (- (~)	Carring	5-4-3N	Hee	/33¢	1 × 1	× ×		7			-	313-W
313-W	75		y ,	1400	×		77%					
			- C. C.									
	9	}			-							
			ļ						 			
						_		-		-	-	
						-	- 	-	1		1	
										_		
						-	_	1/		+	-	
					_	+	+	#	N_{\perp}			
		the		Date: 4/4/55fin	ne: /4 C	> Re	ceived by:	V	Z	* بيدٍ.	LART	Lab Comments Hazards
Relinquished by:	In Ale				me:	Re	ceived by: ceived by:					-

9166600924

Case Narrative

Client:

Golden Gate Tank

Project:

5930 College Ave.

Lab No:

05-0642

Date Received:

05/02/05

Date reported:

06/08/05

Twenty soil and four water samples were analyzed for gasoline, motor oil, and hydraulic oil by method 8015B (modified for motor oil and hydraulic oil/client's request), BTEX/MTBE by method 8021B, fuel oxygenates and VOCs by GC/MS method 8260B, n-hexane extractable material (HEM) by method 1664, and metals by ICP-MS method 200.8/6020. All QC/QA results were within acceptance limits except for the MS/MSD results for the motor oil and hydraulic oil analysis for sample 05-0642-06 (spiked non-client sample), and for the fuel oxygenates analysis for samples 05-0642-02 & -03 (spiked non-client sample); batches were accepted by and reported with the LCS/LCSD results for both analyses. The LCS/LCSD was used as quality control for the water analyses of gasoline, BTEX/MTBE, and HEM; not enough sample was supplied to analyze a MS/MSD.

Erin Cunniffe

Laboratory Director

CERTIFICATE OF ANALYSIS

Lab Number:

05-0642

Client:

Analyte

Golden Gate Tank

Project:

5930 COLLEGE AVE

Date Reported: 06/08/2005

Gasoline, BTEX and MTBE by Methods 8015B/8021B

Motor Oil and Hydraulic Range Organics by Method 8015B

Method Result Unit Date Sampled Date Analyzed

(Modified/client's request)

n-Hexane Extractable Material (HEM) by Method 1664

Metals by ICP-MS Method 6020

	10011001	<u> </u>	<u> </u>	· Dace Inlandace
Sample: 05-0642-01 Client I	D: B12-W		05/02/2005	W
Cadmium	E200.8	17.4	UG/L	05/27/2005
Chromium	E200.8	9.51	UG/L	05/27/2005
Lead	E200.8	106	UG/L	05/27/2005
Nickel	E200.8	30.7	UG/L	05/27/2005
Zinc	E200.8	100	UG/L	05/27/2005
Benzene	SW8020F	1,3900	UG/L	05/17/2005
Ethylbenzene	SW8020F	20800	UG/L	05/17/2005
Gasoline Range Organics	SW8020F	934000	UG/L	05/17/2005
Methyl-tert-butyl ether	SW8020F	*ND<5000	UG/L	05/17/2005
SUR-a,a,a-Trifluorotoluene	SW8020F	104	PERCENT	05/17/2005
Toluene	SW8020F	22300	UG/L	05/17/2005
Xylenes	SW8020F	86800	UG/L	05/17/2005
HEM	E1664	92	MG/L	05/03/2005
Hydraulic Oil	CATFH	186	MG/L	05/03/2005
Motor Oils	CATFH	ND<0.5	MG/L	05/03/2005
Sample: 05-0642-02 Client II	D: B16-W		05/02/2005	W
Benzene	SW8020F	2510	UG/L	05/17/2005
Ethylbenzene	SW8020F	4300	UG/L	05/17/2005
Gasoline Range Organics	SW8020F	154000	UG/L	05/17/2005
Methyl-tert-butyl ether	SW8020F	*ND<500	UG/L	05/17/2005
SUR-a,a,a-Trifluorotoluene	SW8020F	93	PERCENT	05/17/2005
Toluene	SW8020F	3020	UG/L	05/17/2005
*Conf by GC/MS method 8260B.**G	C/MC regult rer	orted	·	Page

^{*}Conf. by GC/MS method 8260B; **GC/MS result reported

CERTIFICATE OF ANALYSIS

Lab Number:

05-0642

Client:

Golden Gate Tank

Project:

5930 COLLEGE AVE

Date Reported: 06/08/2005

Gasoline, BTEX and MTBE by Methods 8015B/8021B

Motor Oil and Hydraulic Range Organics by Method 8015B

(Modified/client's request)

n-Hexane Extractable Material (HEM) by Method 1664

Metals by ICP-MS Method 6020

Analyte	Method Res	sult Uni	t Date Sampled	Date Analyzed
Sample: 05-0642-02 Client	ID: B16-W		05/02/2005	W
Xylenes	SW8020F	20400	UG/L	05/17/2005
Sample: 05-0642-03 Client	ID: B19-W		05/02/2005	W
Benzene	SW8020F	31100	UG/L	05/17/2005
Ethylbenzene	SW8020F	75600	UG/L	05/17/2005
Gasoline Range Organics	SW8020F	4600000	UG/L	05/17/2005
Methyl-tert-butyl ether	SW8020F	*ND<250	UG/L	05/17/2005
SUR-a,a,a-Trifluorotoluene	SW8020F	123	PERCENT	05/17/2005
Toluene	SW8020F	70500	UG/L	05/17/2005
Xylenes	SW8020F	228000	UG/L	05/17/2005
Sample: 05-0642-04 Client	ID: B24-W		05/02/2005	W
Benzene	SW8020F	33200	UG/L	05/17/2005
Ethylbenzene	SW8020F	65500	UG/L	05/17/2005
Gasoline Range Organics	SW8020F	3830000	UG/L	05/17/2005
Methyl-tert-butyl ether	SW8020F	*ND<50	UG/L	05/17/2005
SUR-a,a,a-Trifluorotoluene	SW8020F	125	PERCENT	05/17/2005
Toluene	SW8020F	46300	UG/L	05/17/2005
Xylenes	SW8020F	175000	UG/L	05/17/2005

O F CERTIFICATE ANALYSIS

Quality Control/Quality Assurance

Lab Number:

05-0642

Client:

Golden Gate Tank

Project:

5930 COLLEGE AVE

Date Reported: 06/08/2005

Gasoline, BTEX and MTBE by Methods 8015B/8021B

Motor Oil and Hydraulic Oil Range Organics by Method 8015B

(Modified/client's request)

n-Hexane Extractable Material (HEM) by Method 1664

Metals by ICP-MS Method 6020

Analyte	Method	Reportin Limit	g Unit	Blank	MS/MSD Recovery	RPD
HEM	E1664	5	MG/L	ND	91/88	3
Diesel Fuel #2	CATFH	0.05	MG/L	ND	109/111	2
Hydraulic Oil	CATFH	0.5	MG/L	ND	NA	NA
Motor Oils	CATFH	0.5	MG/L	ND	NA	NA
Gasoline Range Organics	SW8020F	50	UG/L	ND	126/117	7
Benzene	SW8020F	0.5	UG/L	ND	93/92	1
Toluene	SW8020F	0.5	UG/L	ND	94/93	1
Ethylbenzene	SW8020F	0.5	UG/L	ND	96/95	1
Xylenes	SW8020F	1.0	UG/L	ND	98/97	1
Methyl-tert-butyl ether	SW8020F	0.5	UG/L	ND	92/91	1
SUR-a,a,a-Trifluorotoluene	SW8020F		PERCENT	100	95/95	0
Cadmium	E200.8	0.10	UG/L	ND<0.10	100/101	1
Chromium	E200.8	0.50	UG/L	ND<0.50	100/102	2
Lead	E200.8	0.10	UG/L	ND<0.10	105/104	1
Nickel	E200.8	0.50	UG/L	ND<0.50	93/96	3
Zinc	E200.8	2.00	UG/L	ND<2.00	99/101	2

ELAP Certificate NO:1753 Reviewed and Approved

Erin Cunniffe, Laboratory Director

Page 3 of 3

CERTIFICATE OF ANALYSIS

Lab Number:

05-0642

Client:

Golden Gate Tank

Project:

5930 COLLEGE AVE

Date Reported: 06/08/2005

Analyte	Method	Result	Unit Date Sample	<u>d Date Analyzed</u>
Sample: 05-0642-05 Client	ID: B12-7		05/02/2005	SO
Benzene	SW8020F	ND<5	UG/KG	05/10/2005
Ethylbenzene	SW8020F	ND<5	UG/KG	05/10/2005
Gasoline Range Organics	SW8020F	ND<500	UG/KG	05/10/2005
Methyl-tert-butyl ether	SW8020F	*ND<5	UG/KG	05/10/2005
SUR-a,a,a-Trifluorotoluene	SW8020F	98	PERCENT	05/10/2005
Toluene	SW8020F	6	UG/KG	05/10/2005
Xylenes	SW8020F	21	UG/KG	05/10/2005
Sample: 05-0642-08 Client	ID: B12-20		04/30/2005	SO
Benzene	SW8020F	16	UG/KG	05/17/2005
Ethylbenzene	SW8020F	45	UG/KG	05/17/2005
Gasoline Range Organics	SW8020F	2730	UG/KG	05/17/2005
Methyl-tert-butyl ether	SW8020F	*123	UG/KG	05/17/2005
SUR-a,a,a-Trifluorotoluene	SW8020F	95	PERCENT	05/17/2005
Toluene	SW8020F	35	UG/KG	05/17/2005
Xylenes	SW8020F	208	UG/KG	05/17/2005
Sample: 05-0642-09 Client	ID: B16-7.5		04/30/2005	SO
Benzene	SW8020F	ND<5	UG/KG	05/17/2005
Ethylbenzene	SW8020F	27	UG/KG	05/17/2005
Gasoline Range Organics	SW8020F	1900	UG/KG	05/17/2005
Methyl-tert-butyl ether	SW8020F	*ND<5	UG/KG	05/17/2005
SUR-a,a,a-Trifluorotoluene	SW8020F	95	PERCENT	05/17/2005

Page

CERTIFICATE OF ANALYSIS

Lab Number:

05-0642

Client:

Golden Gate Tank

Project:

5930 COLLEGE AVE

Date Reported: 06/08/2005

Analyte	Method	Result	Unit Date Sample	<u>d Date Analyze</u> d
Sample: 05-0642-09 Client	ID: B16-7.5	·	04/30/2005	SO
Toluene	SW80201	7 13	UG/KG	05/17/2005
Xylenes	SW80201	F 113	UG/KG	05/17/2005
Sample: 05-0642-11 Client	ID: B16-15		04/30/2005	SO
Benzene	SW80201	F 61	UG/KG	05/11/2005
Ethylbenzene	SW80201	F 61	UG/KG	05/11/2005
Gasoline Range Organics	SW80201	5270	UG/KG	05/11/2005
Methyl-tert-butyl ether	SW80201	*ND<5	UG/KG	05/11/2005
SUR-a,a,a-Trifluorotoluene	SW8020E	100	PERCENT	05/11/2005
Toluene	SW80201	F 14	UG/KG	05/11/2005
Xylenes	SW80201	190	UG/KG	05/11/2005
Sample: 05-0642-15 Client	ID: B19-15		04/30/2005	SO
Benzene	SW8020E	841	UG/KG	05/17/2005
Ethylbenzene	SW8020E	4290	UG/KG	05/17/2005
Gasoline Range Organics	SW8020E	13900	O UG/KG	05/17/2005
Methyl-tert-butyl ether	SW8020E	*ND<2	O UG/KG	05/17/2005
SUR-a,a,a-Trifluorotoluene	SW8020E	7 111	PERCENT	05/17/2005
Toluene	SW8020E	995	UG/KG	05/17/2005
Xylenes	SW8020E	12000	UG/KG	05/17/2005

CERTIFICATE OF ANALYSIS

Lab Number:

05-0642

Client:

Golden Gate Tank

Project:

5930 COLLEGE AVE

Date Reported: 06/08/2005

Method 1	Result	Unit Date Sampled	<u>Date Analyze</u> d
ID: B19-20		04/30/2005	SO
SW8020F	39	UG/KG	05/11/2005
SW8020F	52	UG/KG	05/11/2005
SW8020F	10000	UG/KG	05/11/2005
SW8020F	ND<5	UG/KG	05/11/2005
SW8020F	104	PERCENT	05/11/2005
SW8020F	33	UG/KG	05/11/2005
SW8020F	182	UG/KG	05/11/2005
ID: B19-24		04/30/2005	SO
SW8020F	94	UG/KG	05/11/2005
SW8020F	91	UG/KG	05/11/2005
SW8020F	8150	UG/KG	05/11/2005
SW8020F	*ND<5	UG/KG	05/11/2005
SW8020F	110	PERCENT	05/11/2005
SW8020F	163	UG/KG	05/11/2005
SW8020F	341	UG/KG	05/11/2005
ID: B20-7		04/30/2005	SO
SW8020F	22	UG/KG	05/16/2005
SW8020F	14	UG/KG	05/16/2005
SW8020F	519	UG/KG	05/16/2005
SW8020F	ND<5	UG/KG	05/16/2005
SW8020F	96	PERCENT	05/16/2005
	ID: B19-20 SW8020F	ID: B19-20 SW8020F 39 SW8020F 10000 SW8020F ND<5 SW8020F 104 SW8020F 33 SW8020F 182 ID: B19-24 SW8020F 94 SW8020F 91 SW8020F 91 SW8020F *ND<5 SW8020F 110 SW8020F 163 SW8020F 163 SW8020F 341 ID: B20-7 SW8020F 22 SW8020F 14 SW8020F 519 SW8020F 519 SW8020F ND<5	ID: B19-20

^{*}Conf. by GC/MS method 8260B;**GC/MS result reported

CERTIFICATE OF ANALYSIS

Lab Number:

05-0642

Client:

Golden Gate Tank

Project:

5930 COLLEGE AVE

Date Reported: 06/08/2005

Analyte	Method	Result C	<u> Init Date Sampled</u>	<u>Date Analyze</u> d
Sample: 05-0642-18 Client	ID: B20-7		04/30/2005	SO
Toluene	SW8020F	ND<5	UG/KG	05/16/2005
Xylenes	SW8020F	23	UG/KG	05/16/2005
Sample: 05-0642-19 Client	ID: B20-15		04/30/2005	SO
Benzene	SW8020F	395	UG/KG	05/16/2005
Ethylbenzene	SW8020F	961	UG/KG	05/16/2005
Gasoline Range Organics	SW8020F	63600	UG/KG	05/16/2005
Methyl-tert-butyl ether	SW8020F	*ND<20	UG/KG	05/16/2005
SUR-a,a,a-Trifluorotoluene	SW8020F	107	PERCENT	05/16/2005
Toluene	SW8020F	491	UG/KG	05/16/2005
Xylenes	SW8020F	2750	UG/KG	05/16/2005
Sample: 05-0642-20 Client	ID: B20-20		04/30/2005	SO
Benzene	SW8020F	13	UG/KG	05/16/2005
Ethylbenzene	SW8020F	69	UG/KG	05/16/2005
Gasoline Range Organics	SW8020F	3970	UG/KG	05/16/2005
Methyl-tert-butyl ether	SW8020F	*40	UG/KG	05/16/2005
SUR-a,a,a-Trifluorotoluene	SW8020F	97	PERCENT	05/16/2005
Toluene	SW8020F	19	UG/KG	05/16/2005
Xylenes	SW8020F	271	UG/KG	05/16/2005

CERTIFICATE OF ANALYSIS

Lab Number:

05-0642

Client:

Golden Gate Tank

Project:

5930 COLLEGE AVE

Date Reported: 06/08/2005

Analyte	Method :	Result	Unit Date Sampled	Date Analyzed
Sample: 05-0642-21 Client	ID: B24-7		04/30/2005	so
Benzene	SW8020F	6	UG/KG	05/16/2005
Ethylbenzene	SW8020F	48	UG/KG	05/16/2005
Gasoline Range Organics	SW8020F	3750	UG/KG	05/16/2005
Methyl-tert-butyl ether	SW8020F	ND<5	UG/KG	05/16/2005
SUR-a,a,a-Trifluorotoluene	SW8020F	74	PERCENT	05/16/2005
Toluene	SW8020F	9	UG/KG	05/16/2005
Xylenes	SW8020F	203	UG/KG	05/16/2005
Sample: 05-0642-22 Client	ID: B24-10		04/30/2005	SO
Benzene	SW8020F	6	UG/KG	05/16/2005
Ethylbenzene	SW8020F	15	UG/KG	05/16/2005
Gasoline Range Organics	SW8020F	1290	UG/KG	05/16/2005
Methyl-tert-butyl ether	SW8020F	*38	UG/KG	05/16/2005
SUR-a,a,a-Trifluorotoluene	SW8020F	95	PERCENT	05/16/2005
Toluene	SW8020F	ND<5	UG/KG	05/16/2005
Xylenes	SW8020F	66	UG/KG	05/16/2005
Sample: 05-0642-24 Client	ID: B24-22		04/30/2005	SO
Benzene	SW8020F	260	UG/KG	05/16/2005
Ethylbenzene	SW8020F	747	UG/KG	05/16/2005
Gasoline Range Organics	SW8020F	27300	UG/KG	05/16/2005
Methyl-tert-butyl ether	SW8020F	* 93	UG/KG	05/16/2005
SUR-a,a,a-Trifluorotoluene	SW8020F	91	PERCENT	05/16/2005

Page

CERTIFICATE OF ANALYSIS

Lab Number:

05-0642

Client:

Golden Gate Tank

Project:

5930 COLLEGE AVE

Date Reported: 06/08/2005

Analyte		Method	Result	<u> Unit Date Sampled</u>	<u>Date Analyze</u> d
Sample: 05-0642-24	Client	ID: B24-22		04/30/2005	SO
Toluene		SW8020	F 272	UG/KG	05/16/2005
Xylenes		SW8020	F 2140	UG/KG	05/16/2005

ANALYSIS O F CERTIFICATE

Quality Control/Quality Assurance

Lab Number:

05-0642

Client:

Golden Gate Tank

Project:

5930 COLLEGE AVE

Date Reported: 06/08/2005

Gasoline, BTEX and MTBE by Methods 8015B/8021B

Analyte	Method	Reportin Limit	g Unit	Blank	MS/MSD Recovery	RPD
	GTTO CO C F		/	1.170	100/111	2
Gasoline Range (05/10/05)	SW8020F	500	UG/KG	ND	109/111	2
Benzene	SW8020F	5	UG/KG	ND	98/102	4
Toluene	SW8020F	5	UG/KG	ND	92/96	4
Ethylbenzene	SW8020F	5	UG/KG	ND	89/92	3
Xylenes	SW8020F	10	UG/KG	ND	89/92	3
Methyl-tert-butyl ether	SW8020F	5	UG/KG	ND	89/92	3
SUR-a,a,a-Trifluorotoluene	SW8020F		PERCEN'	r	102/103	1
Gasoline Range (05/16/05)	SW8020F	500	UG/KG	ND	92/91	1
Benzene	SW8020F	5	UG/KG	ND	88/92	4
Toluene	SW8020F	5	UG/KG	ND	90/94	4
Ethylbenzene	SW8020F	5	UG/KG	ND	89/92	3
Xylenes	SW8020F	10	UG/KG	ND	87/90	3
Methyl-tert-butyl ether	SW8020F	5	UG/KG	ND	91/94	3
SUR-a,a,a-Trifluorotoluene	SW8020F		PERCEN'	г 100	97/97	0

ELAP Certificate NO:1753 Reviewed and Approved

Page 7 of 7

CERTIFICATE OF ANALYSIS

Lab Number:

05-0642

Client:

Golden Gate Tank

Project:

5930 COLLEGE AVE

Date Reported: 06/08/2005

Gasoline, BTEX and MTBE by Methods 8015B/8021B

Motor Oil and Hydraulic Oil Range Organics by Method 8015B

(Modified/client's request)

n-Hexane Extractable Material (HEM) by Method 1664

Metals by ICP-MS Method 6020

Analyte	Method F	Result	<u>Unit Date Sampled</u>	<u>Date Analyze</u> d
Sample: 05-0642-06 Client 1	D: B12-10		05/02/2005	SO
Cadmium	SW6020	ND<0.5	MG/KG	05/04/2005
Chromium	SW6020	60.7	MG/KG	05/04/2005
Lead	SW6020	6.2	MG/KG	05/04/2005
Nickel	SW6020	63.7	MG/KG	05/04/2005
Zinc	SW6020	45.0	MG/KG	05/04/2005
Benzene	SW8020F	ND<5	UG/KG	05/12/2005
Ethylbenzene	SW8020F	ND<5	UG/KG	05/12/2005
Gasoline Range Organics	SW8020F	623	UG/KG	05/12/2005
Methyl-tert-butyl ether	SW8020F	ND<5	UG/KG	05/12/2005
SUR-a,a,a-Trifluorotoluene	SW8020F	105	PERCENT	05/12/2005
Toluene	SW8020F	ND<5	UG/KG	05/12/2005
Xylenes	SW8020F	11	UG/KG	05/12/2005
HEM	E1664	ND<50	MG/KG	05/03/2005
Hydraulic Oil	CATFH	ND<10	MG/KG	05/06/2005
Motor Oils	CATFH	ND<10	MG/KG	05/06/2005
Sample: 05-0642-07 Client I	D: B12-15		05/02/2005	SO
Cadmium	SW6020	ND<0.5	MG/KG	05/04/2005
Chromium	SW6020	38.2	MG/KG	05/04/2005
Lead	SW6020	6.3	MG/KG	05/04/2005
Nickel	SW6020	39.0	MG/KG	05/04/2005
Zinc	SW6020	42.7	MG/KG	05/04/2005
Benzene	SW8020F	537	UG/KG	05/12/2005
*Conf. by GC/MS method 8260B;**(GC/MS result :	reported		Page 1

CERTIFICATE OF ANALYSIS

Lab Number:

05-0642

Client:

Golden Gate Tank

Project:

5930 COLLEGE AVE

Date Reported: 06/08/2005

Gasoline, BTEX and MTBE by Methods 8015B/8021B

Motor Oil and Hydraulic Oil Range Organics by Method 8015B

(Modified/client's request)

n-Hexane Extractable Material (HEM) by Method 1664

Metals by ICP-MS Method 6020

Analyte	Method R	Result	Unit Date Sampled	<u>Date Analyze</u> d
Sample: 05-0642-07 Client	ID: B12-15		05/02/2005	SO
Ethylbenzene	SW8020F	826	UG/KG	05/12/2005
Gasoline Range Organics	SW8020F	79500	UG/KG	05/12/2005
Methyl-tert-butyl ether	SW8020F	**33	UG/KG	05/12/2005
SUR-a,a,a-Trifluorotoluene	SW8020F	107	PERCENT	05/12/2005
Toluene	SW8020F	394	UG/KG	05/12/2005
Xylenes	SW8020F	2740	UG/KG	05/12/2005
HEM	E1664	ND<50	MG/KG	05/03/2005
Hydraulic Oil	CATFH	ND<10	MG/KG	05/03/2005
Motor Oils	CATFH	ND<10	MG/KG	05/03/2005
Sample: 05-0642-10 Client	ID: B16-9.5		04/30/2005	SO
Benzene	SW8020F	ND<5	UG/KG	05/14/2005
Ethylbenzene	SW8020F	9	UG/KG	05/14/2005
Gasoline Range Organics	SW8020F	ND<500	UG/KG	05/14/2005
Methyl-tert-butyl ether	SW8020F	ND<5	UG/KG	05/14/2005
SUR-a,a,a-Trifluorotoluene	SW8020F	99	PERCENT	05/14/2005
Toluene	SW8020F	ND<5	UG/KG	05/14/2005
Xylenes	SW8020F	37	UG/KG	05/14/2005

CERTIFICATE OF ANALYSIS

Lab Number:

05-0642

Client:

Golden Gate Tank

Project:

Analyte

5930 COLLEGE AVE

Date Reported: 06/08/2005

Gasoline, BTEX and MTBE by Methods 8015B/8021B

Motor Oil and Hydraulic Oil Range Organics by Method 8015B

Result Unit Date Sampled Date Analyzed

(Modified/client's request)

n-Hexane Extractable Material (HEM) by Method 1664

Metals by ICP-MS Method 6020

Method

Allaryce	Mechod Kee	<u> </u>	TITE Date Dampied	Dace Allaryze
Sample: 05-0642-12 Client	ID: B16-25		04/30/2005	SO
Benzene	SW8020F	ND<5	UG/KG	05/14/2005
Ethylbenzene	SW8020F	10	UG/KG	05/14/2005
Gasoline Range Organics	SW8020F	ND<500	UG/KG	05/14/2005
Methyl-tert-butyl ether	SW8020F	*28	UG/KG	05/14/2005
SUR-a,a,a-Trifluorotoluene	SW8020F	98	PERCENT	05/14/2005
Toluene	SW8020F	7	UG/KG	05/14/2005
Xylenes	SW8020F	42	UG/KG	05/14/2005
Sample: 05-0642-13 Client	ID: B19-7		04/30/2005	SO
Benzene	SW8020F	ND<5	UG/KG	05/14/2005
Ethylbenzene	SW8020F	ND<5	UG/KG	05/14/2005
Gasoline Range Organics	SW8020F	ND<500	UG/KG	05/14/2005
Methyl-tert-butyl ether	SW8020F	ND<5	UG/KG	05/14/2005
SUR-a,a,a-Trifluorotoluene	SW8020F	98	PERCENT	05/14/2005
Toluene	SW8020F	ND<5	UG/KG	05/14/2005
Xylenes	SW8020F	ND<10	UG/KG	05/14/2005
Sample: 05-0642-14 Client	ID: B19-10		04/30/2005	SO
Benzene	SW8020F	ND<5	UG/KG	05/14/2005
Ethylbenzene	SW8020F	ND<5	UG/KG	05/14/2005
Gasoline Range Organics	SW8020F	994	UG/KG	05/14/2005
Methyl-tert-butyl ether	SW8020F	*7	UG/KG	05/14/2005
SUR-a,a,a-Trifluorotoluene	SW8020F	96	PERCENT	05/14/2005
				D - · ·

^{*}Conf. by GC/MS method 8260B; **GC/MS result reported

CERTIFICATE OF ANALYSIS

Lab Number:

05-0642

Client:

Golden Gate Tank

Project:

5930 COLLEGE AVE

Date Reported: 06/08/2005

Gasoline, BTEX and MTBE by Methods 8015B/8021B

Motor Oil and Hydraulic Oil Range Organics by Method 8015B

(Modified/client's request)

n-Hexane Extractable Material (HEM) by Method 1664

Metals by ICP-MS Method 6020

Analyte	N	<u> </u>	Result	Unit Date Sampled	Date Analyzed
Sample: 05-0642-14 Cli	lent II): B19-10		04/30/2005	SO
Toluene		SW80201	F ND<5	UG/KG	05/14/2005
Xylenes		SW80201	F ND<10	UG/KG	05/14/2005
Sample: 05-0642-23 Cli	ent II): B24-15		04/30/2005	SO
Benzene		SW80201	F 341	UG/KG	05/12/2005
Ethylbenzene		SW80201	F 490	UG/KG	05/12/2005
Gasoline Range Organics	3	SW80201	F 31100	UG/KG	05/12/2005
Methyl-tert-butyl ether	£	SW80201	F ND<20	UG/KG	05/12/2005
SUR-a,a,a-Trifluorotolu	iene	SW80201	F 120	PERCENT	05/12/2005
Toluene		SW80201	F 112	UG/KG	05/12/2005
Xylenes		SW80201	F 789	UG/KG	05/12/2005

CERTIFICATE OF ANALYSIS

Quality Control/Quality Assurance

Lab Number:

05-0642

Client:

Golden Gate Tank

Project:

5930 COLLEGE AVE

Date Reported: 06/08/2005

Analyte	Method	Reporting Limit	Unit	Blank	LCS/LCSD Recovery	RPD
HEM	E1664	50	MG/KG	ND	81/88	8
Diesel Fuel #2(05/03/05)	CATFH	1	MG/KG	ND	104/106	2
Hydraulic Oil	CATFH	10	MG/KG	ND	NA	NA
Motor Oils	CATFH	10	MG/KG	ND	NA	NA
Cadmium	SW6020	0.5	MG/KG	ND<0.5	100/100	0
Chromium	SW6020	0.5	MG/KG	ND<0.5	98/98	0
Lead	SW6020	0.5	MG/KG	ND<0.5	90/90	0
Nickel	SW6020	0.5	MG/KG	ND < 0.5	100/100	0
Zinc	SW6020	1.0	MG/KG	ND<1.0	110/112	2
Diesel Fuel #2(05/05/05)	CATFH	1	MG/KG	ND	90/106	16
Hydraulic Oil	CATFH	10	MG/KG	ND	NA	NA
Motor Oils	CATFH	10	MG/KG	ND	NA	NA
Gasoline Range (05/11/05)	SW8020F	500	MG/KG	ND	110/106	4
Benzene	SW8020F	5	MG/KG	ND	101/96	5
Toluene	SW8020F	5	MG/KG	ND	97/93	4
Ethylbenzene	SW8020F	5	MG/KG	ND	91/86	6
Xylenes	SW8020F	10	MG/KG	ND	88/85	3
Methyl-tert-butyl ether	SW8020F	5	MG/KG	ND	92/91	1
SUR-a, a, a-Trifluorotoluene	SW8020F		PERCENT		110/109	1
Gasoline Range (05/13/05)	SW8020F	500	UG/KG	ND	127/126	1
Benzene	SW8020F	5	UG/KG	ND	93/90	3
Toluene	SW8020F	5	UG/KG	ND	92/90	2
Ethylbenzene	SW8020F	5	UG/KG	ND	92/91	1
Xylenes	SW8020F	10	UG/KG	ND	91/91	0
Methyl-tert-butyl ether	SW8020F	5	UG/KG	ND	86/86	0
SUR-a, a, a-Trifluorotoluene	SW8020F		PERCENT	102	99/100	1

ELAP Certificate NO:1753 Reviewed and Approved

Erin Cunniffe, Laboratory Director

Page 5 of 5

CERTIFICATE OF ANALYSIS

Job Number: 05-0642

Client : Golden Gate Tank

Project : 5930 COLLEGE AVE

Date Sampled : 05/02/2005

Date Analyzed: 05/10/2005 Date Reported: 05/23/2005

Volatile Organics by GC/MS Method 8260B

Laboratory Number	05-0642-01
Client ID	B12-W
Matrix	W
Analyte	UG/L
Bromochloromethane	ND<10000
Dichlorodifluoromethane	ND<10000
Chloromethane	ND<10000
Vinyl chloride	ND<5000
Bromomethane	ND<10000
Chloroethane	ND<10000
Trichlorofluoromethane	ND<10000
1,1-Dichloroethene	ND<5000
Acetone	ND<10000
Methylene chloride	ND<250000
trans-1,2-Dichloroethene	ND<10000
Methyl-tert-butyl ether	ND<5000
1,1-Dichloroethane	ND<5000
2,2-Dichloropropane	ND<10000
cis-1,2-Dichloroethene	ND<10000
2-Butanone	ND<50000
Chloroform	ND<5000
Carbon tetrachloride	ND<5000
1,1-Dichloropropene	ND<10000
Benzene	64200
1,2-Dichloroethane	ND<10000
Trichloroethene	ND<5000
1,2-Dichloropropane	ND<10000
Dibromomethane	ND<10000
Bromodichloromethane	ND<10000
trans-1,3-Dichloropropene	ND<10000
4-Methyl-2-pentanone	ND<10000
Toluene	450000
cis-1,3-Dichloropropene	ND<10000
1,1,2-Trichloroethane	ND<10000
Tetrachloroethene	ND<5000
1,3-Dichloropropane	ND<10000
2-Hexanone	ND<10000
Dibromochloromethane	ND<10000
1,2-Dibromoethane	ND<5000

Comments:

CERTIFICATE OF ANALYSIS

Job Number: 05-0642

Client : Golden Gate Tank

Project : 5930 COLLEGE AVE

Date Sampled: 05/02/2005

Date Analyzed: 05/10/2005

Date Reported: 05/23/2005

Volatile Organics by GC/MS Method 8260B

Laboratory Number 05-0642-01 Client ID B12-W Matrix Analyte UG/L Chlorobenzene ND<10000 1,1,1,2-Tetrachloroethane ND<10000 Ethylbenzene 550000 Xylene, Isomers m & p 1870000 o-Xylene 827000 Styrene ND<10000 Bromoform ND<10000 Isopropylbenzene 61200 Bromobenzene ND<10000 1,1,2,2-Tetrachloroethane ND<10000 n-Propylbenzene 236000 2-Chlorotoluene ND<10000 4-Chlorotoluene ND<10000 1,3,5-Trimethylbenzene 430000 tert-Butylbenzene ND<10000 1,2,4-Trimethylbenzene 1270000 1,3-Dichlorobenzene ND<10000 1,4-Dichlorobenzene ND<10000 sec-Butylbenzene 28600 1,2-Dichlorobenzene ND<10000 n-Butylbenzene ND<10000 Naphthalene 305000 1,2,4-Trichlorobenzene ND<10000 Hexachlorobutadiene ND<10000 1,2,3-Trichlorobenzene ND<10000 1,2,3-Trichloropropane ND<10000 Acetonitrile ND<50000 Acrylonitrile ND<10000 Isobutanol ND<50000 1,1,1-Trichloroethane ND<10000 SUR-Dibromofluoromethane 92 SUR-Toluene-d8 95 SUR-4-Bromofluorobenzene 114 SUR-1, 2-Dichloroethane-d4 97

Comments:

CERTIFICATE OF ANALYSIS

Job Number: 05-0642

Client

Project

: Golden Gate Tank

: 5930 COLLEGE AVE

Date Sampled : 05/02/2005 Date Analyzed: 05/10/2005

Date Reported: 05/23/2005

Volatile Organics by GC/MS Method 8260B Quality Control/Quality Assurance Summary

Laboratory Number	05-0642	MS/MSD	RPD	Recovery	RPD
Client ID	Blank	Recovery		Limit	Limit
Matrix	W	W			
Analyte	Results UG/L	%Recoveries			
Bromochloromethane	ND<1				
Dichlorodifluoromethane	ND<1				
Chloromethane	ND<1				
Vinyl chloride	ND<0.5				
Bromomethane	ND<1				
Chloroethane	ND<1				
Trichlorofluoromethane	ND<1				
1,1-Dichloroethene	ND<0.5	89/84	6	70-130	30
Acetone	ND<10				
Methylene chloride	ND<25				
trans-1,2-Dichloroethene	ND<1				
Methyl-tert-butyl ether	ND<0.5	•			
1,1-Dichloroethane	ND<0.5				
2,2-Dichloropropane	ND<1				
cis-1,2-Dichloroethene	ND<1				
2-Butanone	ND<5				
Chloroform	ND<0.5				
Carbon tetrachloride	ND<0.5				
1,1-Dichloropropene	ND<1				
Benzene	ND<0.5	104/103	1	70-130	30
1,2-Dichloroethane	ND<1			, ,	
Trichloroethene	ND<0.5	115/113	2	70-130	30
1,2-Dichloropropane	ND<1	<i>,</i> - 	_	, ,	
Dibromomethane	ND<1				
Bromodichloromethane	ND<1				
trans-1,3-Dichloropropene	ND<1				
4-Methyl-2-pentanone	ND<1				
Toluene	ND<0.5	101/102	1	70-130	30
cis-1,3-Dichloropropene	ND<1	•			
1,1,2-Trichloroethane	ND<1				
Tetrachloroethene	ND<0.5				
1,3-Dichloropropane	ND<1				
2-Hexanone	ND<1				
Dibromochloromethane	ND<1				
1,2-Dibromoethane	ND<0.5				
Chlorobenzene	ND<1	95/100	5	70-130	30
1,1,1,2-Tetrachloroethane	ND<1	33/100	3	70-130	30
Ethylbenzene	ND<0.5				
Xylene, Isomers m & p	ND<0.5 ND<1				
o-Xylene	ND<1 ND<0.5				
Styrene	ND<0.5 ND<1				
DOJ ZONO	MDCT				

CERTIFICATE O F ANALYSIS

Job Number: 05-0642

: Golden Gate Tank

Project

Client

: 5930 COLLEGE AVE

Date Sampled : 05/02/2005

Date Analyzed: 05/10/2005

Date Reported: 05/23/2005

Volatile Organics by GC/MS Method 8260B Quality Control/Quality Assurance Summary

Laboratory Number	05-0642	MS/MSD	RPD	Recovery	RPD
Client ID	Blank	Recovery		Limit	Limit
Matrix	W	W			
Analyte	Results UG/L	%Recoveries			
Bromoform	ND<1				
Isopropylbenzene	ND<1				
Bromobenzene	ND<1				
1,1,2,2-Tetrachloroethane	ND<1				
n-Propylbenzene	ND<1				
2-Chlorotoluene	ND<1				
4-Chlorotoluene	ND<1				
1,3,5-Trimethylbenzene	ND<1				
tert-Butylbenzene	ND<1				
1,2,4-Trimethylbenzene	ND<1				
1,3-Dichlorobenzene	ND<1				
1,4-Dichlorobenzene	ND<1				
sec-Butylbenzene	ND<1				
1,2-Dichlorobenzene	ND<1				
n-Butylbenzene	ND<1				
Naphthalene	ND<1				
1,2,4-Trichlorobenzene	ND<1				
Hexachlorobutadiene	ND<1				
1,2,3-Trichlorobenzene	ND<1				
1,2,3-Trichloropropane	ND<1				
Acetonitrile	ND<5				
Acrylonitrile	ND<1				
Isobutanol	ND<5				
1,1,1-Trichloroethane	ND<1				
SUR-Dibromofluoromethane	112	101/100	1	85-115	30
SUR-Toluene-d8	101	101/101	0	85-115	30
SUR-4-Bromofluorobenzene	102	100/101	1	85-115	30
SUR-1,2-Dichloroethane-d4	108	102/107	5	85-115	30

Reviewed and Approved

Erin Cunniffe

Laboratory Director

CERTIFICATE OF ANALYSIS

Job Number: 05-0642

Client : Golden Gate Tank

Project : 5930 COLLEGE AVE Date Sampled : 05/02/2005

Date Analyzed: 05/10/2005

Date Reported: 05/23/2005

Fuel Oxygenates by Method 8260B

Laboratory Number

05-0642-01

Client ID

B12-W

Matrix

Analyte

UG/L

Methyl-tert-butyl ether

ND<5000

Ethyl tert-butyl ether

tert-Amyl methyl ether

ND<10000

ND<10000

Di-isopropyl ether (DIPE)

ND<5000

tert-Butyl alcohol

ND<100000

1,2-Dichloroethane

1,2-Dibromoethane

ND<10000

Ethanol

ND<5000

ND<500000

SUR-Dibromofluoromethane SUR-Toluene-d8

92

95

SUR-4-Bromofluorobenzene

114

SUR-1,2-Dichloroethane-d4

97

CERTIFICATE OF ANALYSIS

Job Number: 05-0642

Date Sampled : 05/02/2005

Client

Project

: Golden Gate Tank : 5930 COLLEGE AVE

Date Analyzed: 05/10/2005

Date Reported: 05/23/2005

Fuel Oxygenates by Method 8260B Quality Control/Quality Assurance Summary

Laboratory Number Client ID Matrix	05-0642 Blank W	MS/MSD Recovery W	RPD	Recovery Limit	RPD Limit
Analyte	Results UG/L	%Recoveries			
Ethanol Methyl-tert-butyl ether Di-isopropyl ether (DIPE) tert-butyl Alcohol Ethyl tert-butyl ether	ND<50 ND<0.5 ND<0.5 ND<10 ND<1				
tert-Amyl methyl ether 1,1-Dichloroethene 1,2-Dichloroethane Benzene	ND<1 ND<0.5 ND<1 ND<0.5	89/84	6	70-130 70-130	30
1,2-Dibromoethane Trichloroethene	ND<0.5 ND<0.5 ND<0.5	115/113	2	70-130	30
Toluene Chlorobenzene SUR-Dibromofluoromethane	ND<0.5 ND<1 112	101/102 95/100 101/100	1 5 1	70-130 70-130 85-115	30 30 30
SUR-Toluene-d8 SUR-4-Bromofluorobenzene SUR-1,2-Dichloroethane-d4	101 102 108	101/101 100/101 102/107	0	85-115 85-115 85-115	30 30 30
		/ ·	-		

Reviewed and Approved

Erin Cunniffe Laboratory Director

CERTIFICATE OF ANALYSIS

Job Number: 05-0642

Client : Golden Gate Tank
Project : 5930 COLLEGE AVE

Date Sampled : 05/02/2005

Date Analyzed: 05/10/2005 Date Reported: 05/23/2005

Laboratory Number	05-0642-01	05-0642-02	05-0642-03
Client ID	B12-W	B16-W	B19-W
Matrix	W	W	W
Analyte	UG/L	UG/L	UG/L
Methyl-tert-butyl ether	ND<5000	197	146
Ethyl tert-butyl ether	ND<10000	ND<100	ND<100
tert-Amyl methyl ether	ND<10000	ND<100	ND<100
Di-isopropyl ether (DIPE)	ND<5000	ND<50	ND<50
tert-Butyl alcohol	ND<100000	ND<1000	ND<1000
1,2-Dichloroethane	ND<10000	ND<100	ND<100
1,2-Dibromoethane	ND<5000	ND<50	ND<50
Ethanol	ND<500000	ND<5000	ND<5000
SUR-Dibromofluoromethane	92	103	92
SUR-Toluene-d8	95	100	97
SUR-4-Bromofluorobenzene	114	101	115
SUR-1,2-Dichloroethane-d4	97	103	112

CERTIFICATE OF ANALYSIS

Job Number: 05-0642

: Golden Gate Tank

Project

Client

: 5930 COLLEGE AVE

Date Sampled : 05/02/2005

Date Analyzed: 05/10/2005

Date Reported: 05/23/2005

Fuel Oxygenates by Method 8260B Quality Control/Quality Assurance Summary

Laboratory Number Client ID Matrix	05-0642 Blank W	LCS/LCSD Recovery W	RPD	Recovery Limit	RPD Limit
Analyte	Results UG/L	%Recoveries			
Ethanol Methyl-tert-butyl ether Di-isopropyl ether (DIPE) tert-butyl Alcohol Ethyl tert-butyl ether tert-Amyl methyl ether	ND<50 ND<0.5 ND<0.5 ND<110 ND<1 ND<1				
1,1-Dichloroethene 1,2-Dichloroethane	ND<0.5 ND<1	89/84	6	70-130	30
Benzene 1,2-Dibromoethane	ND<0.5 ND<0.5	104/103	1	70-130	30
Trichloroethene	ND<0.5	115/113	2	70-130	30
Toluene	ND<0.5	101/102	1	70-130	30
Chlorobenzene	ND<1	95/100	5	70-130	30
SUR-Dibromofluoromethane	112	101/100	1	85-115	30
SUR-Toluene-d8	101	101/101	0	85-115	30
SUR-4-Bromofluorobenzene	102	100/101	1	85-115	30
SUR-1,2-Dichloroethane-d4	108	102/107	5	85-115	30

Reviewed and Approved

Erin Cunniffe

Laboratory Director

CERTIFICATE OF ANALYSIS

Job Number: 05-0642

Client : Golden Gate Tank

Project : 5930 COLLEGE AVE

Date Sampled : 05/02/2005

Date Analyzed: 05/06/2005 Date Reported: 05/23/2005

Volatile Organics by GC/MS Method 8260B

Laboratory Number 05-0642-06	05-0642-07
Client ID B12-10	B12-15
Matrix SO	so
Analyte UG/KG	UG/KG
Bromochloromethane ND<25	ND<25
Dichlorodifluoromethane ND<25	ND<25
Chloromethane ND<50	ND<50
Vinyl chloride ND<25	ND<25
Bromomethane ND<25	ND<25
Chloroethane ND<25	ND<25
Trichlorofluoromethane ND<25	ND<25
1,1-Dichloroethene ND<5	ND<5
Acetone ND<250	ND<250
Methylene chloride ND<50	ND<50
trans-1,2-Dichloroethene ND<5	ND<5
Methyl-tert-butyl ether ND<5	33
1,1-Dichloroethane ND<5	ND<5
2,2-Dichloropropane ND<5	ND<5
cis-1,2-Dichloroethene ND<5	ND<5
2-Butanone ND<50	ND<50
Chloroform ND<5	ND<5
Carbon tetrachloride ND<5	ND<5
1,1-Dichloropropene ND<5	ND<5
Benzene ND<5	533
1,2-Dichloroethane ND<5	ND<5
Trichloroethene ND<5	ND<5
1,2-Dichloropropane ND<5	ND<5
Dibromomethane ND<5	ND<5
Bromodichloromethane ND<5	ND<5
trans-1,3-Dichloropropene ND<5	ND<5
4-Methyl-2-pentanone ND<50	ND<50
Toluene ND<5	718
cis-1,3-Dichloropropene ND<5	ND<5
1,1,2-Trichloroethane ND<5	ND<5
Tetrachloroethene ND<5	ND<5
1,3-Dichloropropane ND<5	ND<5
2-Hexanone ND<50	ND<50
Dibromochloromethane ND<5	ND<5
1,2-Dibromoethane ND<5	ND<5

Comments:

CERTIFICATE OF ANALYSIS

Job Number: 05-0642

Client : Golden Gate Tank
Project : 5930 COLLEGE AVE

Date Sampled : 05/02/2005

Date Analyzed: 05/06/2005 Date Reported: 05/23/2005

Volatile Organics by GC/MS Method 8260B

Laboratory Number	05-0642-06	05-0642-07
Client ID	B12-10	B12-15
Matrix	SO	SO
PACLIX	30	50
Analyte	UG/KG	UG/KG
Chlorobenzene	ND<10	ND<10
1,1,1,2-Tetrachloroethane	ND<5	ND<5
Ethylbenzene	ND<5	1010
Xylene, Isomers m & p	ND<10	831
o-Xylene	ND<5	1340
Styrene	ND<5	ND<5
Bromoform	ND<5	ND<5
Isopropylbenzene	ND<5	134
Bromobenzene	ND<5	ND<5
1,1,2,2-Tetrachloroethane	ND<5	ND<5
n-Propylbenzene	ND<5	416
2-Chlorotoluene	ND<5	ND<5
4-Chlorotoluene	ND<5	ND<5
1,3,5-Trimethylbenzene	ND<5	788
tert-Butylbenzene	ND<5	ND<5
1,2,4-Trimethylbenzene	ND<5	617
1,3-Dichlorobenzene	ND<5	ND<5
1,4-Dichlorobenzene	ND<5	ND<5
sec-Butylbenzene	ND<5	78
1,2-Dichlorobenzene	ND<5	ND<5
n-Butylbenzene	ND<5	331
Naphthalene	ND<10	819
1,2,4-Trichlorobenzene	ND<5	ND<5
Hexachlorobutadiene	ND<5	ND<5
1,2,3-Trichlorobenzene	ND<5	ND<5
1,2,3-Trichloropropane	ND<5	ND<5
Acetonitrile	ND<250	ND<250
Acrylonitrile	ND<250	ND<250
Isobutanol	ND<250	ND<250
1,1,1-Trichloroethane	ND<5	ND<5
SUR-Dibromofluoromethane	110	103
SUR-Toluene-d8	99	100
SUR-4-Bromofluorobenzene	99	100
SUR-1,2-Dichloroethane-d4	118	111

Comments:

CERTIFICATE OF ANALYSIS

Job Number: 05-0642

Client

: Golden Gate Tank

Project : 5930 COLLEGE AVE

Date Sampled : 05/02/2005

Date Analyzed: 05/06/2005

Date Reported: 05/23/2005

Volatile Organics by GC/MS Method 8260B Quality Control/Quality Assurance Summary

Laboratory Number	05-0642	MS/MSD	RPD	Recovery	RPD
Client ID	Blank	Recovery		Limit	Limit
Matrix	so	SO			
Analyte	Results UG/KG	%Recoveries			
Bromochloromethane	ND<25				
Dichlorodifluoromethane	ND<25				
Chloromethane	ND<50				
Vinyl chloride	N D<5				
Bromomethane	ND<25				
Chloroethane	ND<25				
Trichlorofluoromethane	ND<25				
1,1-Dichloroethene	ND<5	109/103	6	70-130	30
Acetone	ND<250				
Methylene chloride	ND<50				
trans-1,2-Dichloroethene	ND<5				
Methyl-tert-butyl ether	ND<5				
1,1-Dichloroethane	ND<5				
2,2-Dichloropropane	ND<5				
cis-1,2-Dichloroethene	ND<5				
2-Butanone	ND<50				
Chloroform	ND<5				
Carbon tetrachloride	ND<5				
1,1-Dichloropropene	ND<5				
Benzene	ND<5	100/103	3	70-130	30
1,2-Dichloroethane	ND<5				
Trichloroethene	ND<5	88/89	1	70-130	30
1,2-Dichloropropane	ND<5				
Dibromomethane	ND<5				
Bromodichloromethane	ND<5				
trans-1,3-Dichloropropene	ND<5				
4-Methyl-2-pentanone	ND<50				
Toluene	ND<5	96/100	4	70-130	30
cis-1,3-Dichloropropene	ND<5				
1,1,2-Trichloroethane	ND<5				
Tetrachloroethene	ND<5				
1,3-Dichloropropane	ND<5				
2-Hexanone	ND<50				
Dibromochloromethane	ND<5				
1,2-Dibromoethane	ND<5				
Chlorobenzene	ND<10	101/105	4	70-130	30
1,1,1,2-Tetrachloroethane	ND<5				
Ethylbenzene	ND<5				
Xylene, Isomers m & p	ND<10				
o-Xylene	ND<5				
Styrene	ND<5				
5 · · · · · · · · · · · · · · · · · · ·					

CERTIFICATE OF ANALYSIS

Job Number: 05-0642

: Golden Gate Tank

Project

Client

: 5930 COLLEGE AVE

Date Sampled : 05/02/2005

Date Analyzed: 05/06/2005

Date Reported: 05/23/2005

Volatile Organics by GC/MS Method 8260B Quality Control/Quality Assurance Summary

Laboratory Number	05-0642	MS/MSD	RPD	Recovery	RPD
Client ID	Blank	Recovery		Limit	Limit
Matrix	so	so			
Analyte	Results UG/KG	%Recoveries			
Bromoform	ND<5				
Isopropylbenzene	ND<5				
Bromobenzene	ND<5				
1,1,2,2-Tetrachloroethane	ND<5				
n-Propylbenzene	ND<5				
2-Chlorotoluene	ND<5				
4-Chlorotoluene	ND<5				
1,3,5-Trimethylbenzene	ND<5				
tert-Butylbenzene	ND<5				
1,2,4-Trimethylbenzene	ND<5				
1,3-Dichlorobenzene	ND<5				
1,4-Dichlorobenzene	ND<5				
sec-Butylbenzene	ND<5				
1,2-Dichlorobenzene	ND<5				
n-Butylbenzene	ND<5				
Naphthalene	ND<10				
1,2,4-Trichlorobenzene	ND<5				
Hexachlorobutadiene	ND<5				
1,2,3-Trichlorobenzene	ND<5				
1,2,3-Trichloropropane	ND<5				
Acetonitrile	ND<250				
Acrylonitrile	ND<250				
Isobutanol	ND<250				
1,1,1-Trichloroethane	ND<5				
SUR-Dibromofluoromethane	108	101/101	0	70-125	30
SUR-Toluene-d8	101	97/99	2	70-125	30
SUR-4-Bromofluorobenzene	96	96/99	3	70-125	30
SUR-1,2-Dichloroethane-d4	110	102/104	2	70-125	30

Reviewed and Approved

Laboratory Director

CERTIFICATE OF ANALYSIS

Job Number: 05-0642

Client : Golden Gate Tank

Project : 5930 COLLEGE AVE

Date Sampled : 05/02/2005

Date Analyzed: 05/06/2005 Date Reported: 05/23/2005

Laboratory Number	05-0642-06	05-0642-07	05-0642-11	05-0642-12	05-0642-13
Client ID	B12-10	B12-15	B16-15	B16-25	B19-7
Matrix	so	so	SO	SO	so
Analyte	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG
Methyl-tert-butyl ether	ND<5	33	ND<5	56	ND<5
Ethyl tert-butyl ether	ND<5	ND<5	ND<5	ND<5	ND<5
tert-Amyl methyl ether	ND<5	ND<5	ND<5	ND<5	ND<5
Di-isopropyl ether (DIPE)	ND<5	ND<5	ND<5	ND<5	ND<5
tert-Butyl alcohol	ND<250	ND<250	ND<250	ND<250	ND<250
1,2-Dichloroethane	ND<5	ND<5	ND<5	ND<5	ND<5
1,2-Dibromoethane	ND<5	ND<5	ND<5	ND<5	ND<5
Ethanol	ND<500	ND<500	N D<500	ND<500	ND<500
SUR-Dibromofluoromethane	110	103	104	106	107
SUR-Toluene-d8	99	100	101	100	98
SUR-4-Bromofluorobenzene	99	100	106	101	98
SUR-1,2-Dichloroethane-d4	118	111	115	117	116

CERTIFICATE OF ANALYSIS

Job Number: 05-0642

Client : Golden Gate Tank

Project : 5930 COLLEGE AVE

Date Sampled : 04/30/2005

Date Analyzed: 05/06/2005 Date Reported: 05/23/2005

Laboratory Number	05-0642-14	05-0642-15	05-0642-19	05-0642-20	05-0642-21
Client ID	B19-10	B19-15	B20-15	B20-20	B24-7
Matrix	so	SO	SO	so	so
Analyte	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG
Methyl-tert-butyl ether	23	ND<20	ND<20	91	ND<5
Ethyl tert-butyl ether	ND<5	ND<20	ND<20	ND<5	ND<5
tert-Amyl methyl ether	ND<5	ND<20	ND<20	ND<5	ND<5
Di-isopropyl ether (DIPE)	ND<5	ND<20	ND<20	ND<5	ND<5
tert-Butyl alcohol	ND<250	ND<1000	ND<1000	ND<250	ND<250
1,2-Dichloroethane	ND<5	ND<20	ND<20	ND<5	ND<5
1,2-Dibromoethane	ND<5	ND<20	ND<20	ND<5	ND<5
Ethanol	ND<500	ND<2000	ND<2000	ND<500	ND<500
SUR-Dibromofluoromethane	101 .	105	114	110	102
SUR-Toluene-d8	98	101	103	99	99
SUR-4-Bromofluorobenzene	97	101	100	98	97
SUR-1,2-Dichloroethane-d4	108	113	123	110	106

CERTIFICATE OF ANALYSIS

Job Number: 05-0642

Client : Golden Gate Tank

Project : 5930 COLLEGE AVE

Date Sampled : 04/30/2005

Date Analyzed: 05/07/2005 Date Reported: 05/23/2005

Laboratory Number	05-0642-22	05-0642-23	05-0642-24
Client ID	B24-10	B24-15	B24-22
Matrix	so	so	so
Analyte	UG/KG	UG/KG	UG/KG
Methyl-tert-butyl ether	66	ND<20	84
Ethyl tert-butyl ether	ND<5	ND<20	ND<20
tert-Amyl methyl ether	ND<5	ND<20	ND<20
Di-isopropyl ether (DIPE)	ND<5	ND<20	ND<20
tert-Butyl alcohol	ND<250	ND<1000	ND<1000
1,2-Dichloroethane	ND<5	ND<20	ND<20
1,2-Dibromoethane	ND<5	ND<20	ND<20
Ethanol	ND<500	ND<2000	ND<2000
SUR-Dibromofluoromethane	108	111	100
SUR-Toluene-d8	89	101	100
SUR-4-Bromofluorobenzene	96	102	101
SUR-1,2-Dichloroethane-d4	114	120	108

CERTIFICATE OF ANALYSIS

Job Number: 05-0642

: Golden Gate Tank

Project

Client

: 5930 COLLEGE AVE

Date Sampled : 04/30/2005

Date Analyzed: 05/07/2005

Date Reported: 05/23/2005

Fuel Oxygenates by Method 8260B Quality Control/Quality Assurance Summary

Laboratory Number Client ID Matrix	05-0642 Blank SO	MS/MSD Recovery SO	RPD	Recovery Limit	RPD Limit
Analyte	Results UG/KG	%Recoveries			
Ethanol	ND<500				
Methyl-tert-butyl ether	ND<5				
Di-isopropyl ether (DIPE)	ND<5				
tert-Butyl alcohol	ND<250				
Ethyl tert-butyl ether	ND<5				
tert-Amyl methyl ether	ND<5				
1,2-Dichloroethane	ND<5				
1,2-Dibromoethane	ND<5				
1,1-Dichloroethene	ND<5	109/103	6	70-130	30
Benzene	ND<5	100/103	3	70-130	30
Trichloroethene	ND<5	88/89	1	70-130	30
Toluene	ND<5	96/100	4	70-130	30
Chlorobenzene	ND<10	101/105	4	70-130	30
SUR-Dibromofluoromethane	108	101/101	0	70-125	30
SUR-Toluene-d8	101	97/99	2	70-125	30
SUR-4-Bromofluorobenzene	96	96/99	3	70-125	30
SUR-1,2-Dichloroethane-d4	110	102/104	2	70-125	30

Reviewed and Approved

Erin Cunniffe Laboratory Director

CERTIFICATE OF ANALYSIS

Job Number: 05-0642

Client

: Golden Gate Tank

Project : 5930 COLLEGE AVE

Date Sampled : 04/30/2005

Date Analyzed: 05/09/2005 Date Reported: 05/23/2005

Laboratory Number	05-0642-16	05-0642-17	05-0642-18
Client ID	B19-20	B19-24	B20-7
Matrix	so	SO	so
Analyte	UG/KG	UG/KG	UG/KG
Methyl-tert-butyl ether	ND<5	ND<5	ND<5
Ethyl tert-butyl ether	ND<5	ND<5	ND<5
tert-Amyl methyl ether	ND<5	ND<5	ND<5
Di-isopropyl ether (DIPE)	ND<5	ND<5	ND<5
tert-Butyl alcohol	ND<250	ND<250	ND<250
1,2-Dichloroethane	ND<5	ND<5	ND<5
1,2-Dibromoethane	ND<5	ND<5	ND<5
Ethanol	ND<500	ND<500	ND<500
SUR-Dibromofluoromethane	105	105	104
SUR-Toluene-d8	99	100	99
SUR-4-Bromofluorobenzene	102	105	100
SUR-1,2-Dichloroethane-d4	107	107	104

CERTIFICATE OF ANALYSIS

Job Number: 05-0642

: Golden Gate Tank

Project

Client

: 5930 COLLEGE AVE

Date Sampled : 04/30/2005

Date Analyzed: 05/09/2005

Date Reported: 05/23/2005

Fuel Oxygenates by Method 8260B Quality Control/Quality Assurance Summary

Laboratory Number Client ID Matrix	05-0642 Blank SO	MS/MSD Recovery SO	RPD	Recovery Limit	RPD Limit
Analyte	Results UG/KG	%Recoveries			
Ethanol	ND<500				
Methyl-tert-butyl ether	ND<5				
Di-isopropyl ether (DIPE)	ND<5				
tert-Butyl alcohol	ND<250				
Ethyl tert-butyl ether	ND<5				
tert-Amyl methyl ether	ND<5				
1,2-Dichloroethane	ND<5				
1,2-Dibromoethane	ND<5				
1,1-Dichloroethene	ND<5	114/118	3	70-130	30
Benzene	ND<5	106/109	3	70-130	30
Trichloroethene	ND<5	87/88	1	70-130	30
Toluene	ND<5	99/102	3	70-130	30
Chlorobenzene	ND<10	97/99	2	70-130	30
SUR-Dibromofluoromethane	100	109/108	1	70-125	30
SUR-Toluene-d8	99	97/96	1	70-125	30
SUR-4-Bromofluorobenzene	100	99/99	0	70-125	30
SUR-1,2-Dichloroethane-d4	103	110/109	1	70-125	30

Reviewed and Approved

Laboratory Director

	SAMPLE RECEIPT CHE				
lient Name: 66TR	Ref/Job No: 05-0	642	1	Date: 5.62	دی
Thecked By: TEK					
Matrix: Soil: 🛧 Water: 🗸	Other:				
f Received via Shipment (If dropped off	in person this section of	does not apply	y):		
	•	·			
Carrier Name:	dition?	<u>Y</u>	N		
				NI/A	
Custody Seals Intact on Shipping Contain	er?	Y	N	N/A	
No. of coolers:	Temperature of Coole	er:	· · · · · · · · · · · · · · · · · · ·	In Range?:	YN
Custody Seals intact on sample container	rs?	\bigcirc	N	N/A	
Chain of Custody present?		(N]	
	a correct?	(Ŷ)	N	٦	•
Chain of Custody Signatures & Date/Tim	le correct:			4 . →	
Chain of custody agrees with sample lab	els?	<u> </u>	N	_	
Samples in proper containers?		(N]	
		(Ŷ)	N	7	
Sample containers Intact?		<u> </u>	IN	_	
Sufficient sample volume for indicated t	ests?	Ø	N] .	
		(Y)	N	٦	
All Samples received within holding tim	4				
Temperature Blank present? Record Te	mp if present.	Y	(B)	Temp:	
For water samples- VOAS have zero he	adspace?	Ø	N	N/A	
		8	N	N/A	
Samples received in bottles with prope	HNO3: HCl:		NaOH:	ZnOAc:	
pH adjusted - Preservative used:	Supplier:	Lot:			
For water samples for the analysis of to	otal recoverable metals	not digested	- pH <2?	See atta	ched sheet
Corrective Action Record:		₹.	D		
Client Contacted:	Date Contacted:				
Contacted by:	Regarding:				
Comments:					
Compating Actions	••				

TERMS: NET 30 OAC

North State Labs

815 Dubuque Avenue, South San Francisco, CA 94080 Phone: (650) 266-4563 Fax: (650) 266-4560

Chain of Custody /	Request for Analysis
ab Job No.:	Page_ <u>l</u> of <u>_3</u>

ſ	Client: GGTR			Report to: brent wheeler			Phone: 415 512 .1555				Turnaround Time		
	Mailing Address: 255 SHIPLEY 5T			Billing to: 255 SHIPLEY 3F CA 94107				Fax: 415 512-0964 email: data@gatr.com				STD 24 HOUR Date: 4-30-05	
	OAKLAND				1 SF CA 94	107		PO#	73	35			r: Wort
	Project / Site Address 5930 COLLE	EGE AU	: T06001	102112	Analys Requested	,	STCX ANTBE	Chyle WATER		7	(A)	1 O 1	EDF PDF Field Point ID
ľ	Sample ID	Sample Type	Container No. / Type	Pres.	Sampling Date / Time	S, #47 S, 60	X & &	ं हैं।	/ - 30	萨	3 7		Field Point ID
,	B12-W	H20	5 VOAS 1 POLY 2 LITER	HC1 4°C	4.30.05/1720	X	X	X	*	*	X	X	B12-W
2	B16-W	4.0	4 VOA5	HCI	1 /1650	X	Х	X					B16 - W
3	B19-W	H20	5 VOAS	K	1710	X	*	メ			<u> </u>	<u> </u>	B19 - W
	B20 = W		_		_								
9	B24-W	H20	5 VOAS	1401	1720	X	<i>X</i>					ļ	B24-W
5 [B12-7	حاد	ACRYUC TUBE	4°C	/1610	X	7				 		B12-7
6	B12-10				1615	X	<u> </u>	X	1	<u> </u>	<u> </u>	<u> </u>	B12-10
7	B12-15				1623	×	*	X	X	X	<u> </u>	×	B12-15
8	B12-20				1625	X	1						B12-20
9	B16 - 7.5				1313	X	1 7						B16-7.5
10	B16-95				1320	X	X		ļ	<u> </u>	ļ		B16-9.5
4	1316-12				1324	H	PLD	ļ		<u> </u>		ļ	B16 - 12
17	1316-15		Y)		1335	1 X	X	17	 / -	/	/		B16-15
· 13	B16 - 18		/ \	\bigvee	1340		PLD.		$\perp \downarrow \angle$		1		B16-18
		Dwolf			772	1408				75	3	NSLA81	Lab Comments/ Hazards
	Relinquished by:)[] \		-	Date: 5-2-05 Time:	(530				26			4
	Relinquished by:				Date: Time:		Recei	ved by:					

815 Dubuque Avenue, South San Francisco, CA 94080 Phone: (650) 266-4563 Fax: (650) 266-4560

Chain of Custody	/ Request for Analysis
ab Job No.:	Page_ <u>2_</u> of <u>_3</u>

. [Client: 66TG	۷		Report	Report to: brew wheeler				Phone:	415-512	-1555	Turnaround Time	
	Mailing Address:			Billing to	Billing to:				Fax: 415-512-0964			5TD24	
	255 3 3F CA	9410	3 7 一	\rightarrow	341	NE-				date@ 2	40	Date:	4-30-05
	· .		,	-					PO#	7335		Sample	r: WOLF
	Project / Site Address 5930 COLLEG OAKLAND): T0600	210	12	Analysi Requested	is /	BIEX MIBE	F. ATE.		\$ \$ \range \range		EDF PDF
	Sample ID	Sample Type	Container No. / Type	Pres.		Sampling ate / Time	74 (8)	(A)	8	129/24			Field Point ID
	B16-22	مام	ACRYLIC TUBE	4°C	4.30	0.05/1340		DLD					B16-22
12	B16 - 25		1			1345	X	X	メ				B16-25
13	B19-7					1533	X	*	×				B19-7
14	B19 - 10					1537	X	*	×				B19-10
15	B19 - 15					1541	*	Х_	×		ļ		B19 - 15
۱Ç	B19 - 20					1545	X	X	X		<u> </u>		B19-20
17	B19 - 24					1555	*	X	Х				B19-24
	B20- 5.5				-	1400	1+0	LD					B20-5.5
18	B20 - 7					1405	1	7	X				B20-7
9	B20 - 15					NR	*	*	Х				B20-15
20	B2O - 20					NR	X	*	*				B20 - 20
	B2O - 22				ŕ	NR	HO	D)		320-22
2(B24-7		h/			1440	×	Х	メ				B24 - 7
12	B24 - 10	V/	<u>1/ V</u>		\	1444	×	X	<u> </u>	L/V_{-}			B24-10
	Relinquished by:	aleus Reus	<i>Y</i>	_. Da	ate.5/	2/5 Time/	410	Receiv	ed by: 、		<u></u>	SLAR	Lab Comments/ Hazards
	Relinquished by:	2/		Da	ate: S	5.2.05 Time:	1530	Receiv	ed by:	5 25			
	Relinquished by:		_ ~	Di	ate:	Time:		Receiv	ed by:				

05-0642

815 Dubuque Avenue, South San Francisco, CA 94080 Phone: (650) 266-4563 Fax: (650) 266-4560

Chain of Custody / Request for Analysis Lab Job No.: Page 3 of 3

Client: 66T/~		Report to: BRENT WHEELER			Phone	415-112	1555	Turnaround Time		
Mailing Address:		Billing				Fax: 5TD 24 H-				
255 SHIPLE SFC4 —	1	\perp	SAME		email:	date gate	-, cen_	Date:	4-30-05	
5, 5,			SME		PO#	7335			er: war	
Project / Site Address / Globa 5930 COLLEGE AND OAKLAND CA	IID: T0600	0102	Analys Requested	is (80%) # (40	(5) A A A A A A A A A A A A A A A A A A A				EDF PDF	
Sample ID Samp Type	e Container No. / Type	Pres.	Sampling Date / Time			(6.70) (6.70)			Field Point ID	
B24-13.5 Sol	ACRYLIC TUBE	4°C	4.3005/1499	HOLD					B24-13.5	
23 B24 - 15			1450	XX	X				B24 - 15	
B24 - 18			NR	HO40	·				B24 - 18	
7 B24 - 22 V	√	V	V 1515	XX	X				B24 - 22	
			·							
							7			
			×				/			
						-///				
Relinquished by:		ים	Late: <5/_/Time:/	Receiv	ed by:			ار وروز در	Lab Comments/	
Relinquished by: Relinquished by:			ate: ≤ 2.05 Time:			0	<u>as</u>	UTES	Hazards	
Relinquished by:			ate: Time:	Receiv						

24

North State Labs

815 Dubuque Avenue, South San Francisco, CA 94080 Phone: (650) 266-4563 Fax: (650) 266-4560

Chain of Custody / Request for Analysis
Lab Job No.: Page \ of \

Client: GGTR			Report	Report to: PRENT WHOGLER			Phone	415	- 512-	1555	Turnaround Time		
Mailing Address: 255 SHIPLEY STREET 3F CA			Billing	Billing to:			Fax: 415 - 512 - 0964			0964	31724HR		
DF CA	- TIPLEY S	TIGET	1	SAME				data		r.00m		5-19-05 er: Wor	
Project / Site Address 5930 Ca	LEGE	O: TOGO AVE	0 10 2 Pres.	Requested Sampling	sis / G	Brex	/ 3			/		EDF PDF Field Point ID	
Sample ID	Туре	No. / Type		Date / Time	1	10	TE 10	Pr	7_			Field Follit ID	
7335-B13-W	1/20	5 NAS	HCI/4°C			_	_	1					
7-335-B14-W		13/VOAS		5.19.05/0810		/	/	1				7335 - B14-W	
7335-BI5-W		5 NOAS	HCI	/0825		/	/					7335- B15.W	
7335-B7-W	1	5 /VOA5	HC	/0850		/	-					7335 - BI7-W	
7335-BLO-W	1	5 / WAS	HC1	1 /0905			~					7335-B20-W	
	1												
	/	20						/	//	2			
Relinquished by:	1 Skow		D	ate: 5/23/8 Time:	800 A	Receiv	red by:	1				Lab Comments/	
Relinquished by:	190	4 K	UAB) D	ate: 5/23/65 Time:	930	Receiv	ed by:	98	2	_		Hazards	
Relinquished by:			/	ate: Time:		Receiv	ved by:						

North State Labs

CA EL

815 Dubuque Avenue · South San Francisco, CA 94080 · (650) 266-4563 · FAX (650) 266-4560

	SAMPLE RECEIPT CH	HECKLIST		
Client Name: 66TR	Ref/Job No: 05-	6761		Date: 5-23-05
Checked By: The Checked By:				
Matrix: Soil: Water: 🗡	Other:	-		
If Received via Shipment (If dropped off	in person this section	does not app	iy):	
Carrier Name:				
Shipping Container/Cooler In Good Con	dition?	. Y	N]
Custody Seals Intact on Shipping Contain	er?	Y·	N	N/A
No. of coolers:	Temperature of Coc	oler:		In Range?: Y N
Custody Seals intact on sample container	s?	(Y)	N	N/A
Chain of Custody present?		Ŷ	N	
Chain of Custody Signatures & Date/Time	e correct?	Ø	N ·	
Chain of custody agrees with sample laborated	els?	Ø	N	
Samples in proper containers?		(9)	N	
Sample containers Intact?		(Ŷ).	N	
Sufficient sample volume for indicated te	ests?	(Ý)	N] .
All Samples received within holding time	25?	8	N	
Temperature Blank present? Record Tem	np if present.	Y	8	Temp:
For water samples- VOAS have zero hea	dspace?	(2)	N	AND the
Samples received in bottles with proper	preservative?	CX	N	(N/A EE
pH adjusted - Preservative used:	HNO3: HCl: Supplier:	H2SO4: Lot:	NaOH:_	_ ZnOAc:
For water samples for the analysis of tot	al recoverable metal	not digested	pH <2?	See attached sheet
Corrective Action Record: Client Contacted:	Date Contacted:		Person C	ontacted:
Contacted by:				
Comments:	regarding.			
Corrective Action:				

Case Narrative

Client:

Golden Gate Tank Removal

Project:

5930 COLLEGE AVE

Lab No:

05-0761

Date Received:

05/23/2005

Date reported:

06/07/2005

Four water samples were received under chain of custody control and analyzed for gasoline range organics by method 8015B, BTEX and MTBE by method 8021B and fuel oxygenates by GC/MS method 8260B. QC/QA results met acceptance criteria for all analyses except the MSD for TCE for the analysis of the fuel oxygenates on 05/24/05 (spiked sample 05-0761-03); the batch was accepted by and reported with the LCS/LCSD results for this compound. The LCS/LCSD results were reported for the analysis of gasoline/BTEX/MTBE on 05/24/05 (the sample analysis was a re-run).

Erin Cunniffe

Laboratory Director

CERTIFICATE OF ANALYSIS

Lab Number:

05-0761

Client:

Golden Gate Tank

Project:

5930 COLLEGE AVE

Date Reported: 06/06/2005

Gasoline, BTEX and MTBE by Methods 8015B/8021B

Analyte	Method Resi	alt Unit	Date Sampled	Date Analyzed
Sample: 05-0761-01 Client 1	D: 7335-B14-W		05/19/2005	W
Benzene	SW8020F	ND<0.5	UG/L	05/23/2005
Ethylbenzene	SW8020F	0.6	UG/L	05/23/2005
Gasoline Range Organics	SW8020F	ND<50	UG/L	05/23/2005
Methyl-tert-butyl ether	SW8020F	*2.2	UG/L	05/23/2005
SUR-a,a,a-Trifluorotoluene	SW8020F	96	PERCENT	05/23/2005
Toluene	SW8020F	1.2	UG/L	05/23/2005
Xylenes	SW8020F	3.5	UG/L	05/23/2005
Sample: 05-0761-02 Client I	D: 7335-B15-W		05/19/2005	W
Benzene	SW8020F	8.4	UG/L	05/23/2005
Ethylbenzene	SW8020F	ND<0.5	UG/L	05/23/2005
Gasoline Range Organics	SW8020F	53	UG/L	05/23/2005
Methyl-tert-butyl ether	SW8020F	*ND<0.5	UG/L	05/23/2005
SUR-a,a,a-Trifluorotoluene	SW8020F	96	PERCENT	05/23/2005
Toluene	SW8020F	ND<0.5	UG/L	05/23/2005
Xylenes	SW8020F	ND<1.0	UG/L	05/23/2005
Sample: 05-0761-03 Client I	D: 7335-B17-W		05/19/2005	W
Benzene	SW8020F	ND<0.5	UG/L	05/23/2005
Ethylbenzene	SW8020F	ND<0.5	UG/L	05/23/2005
Gasoline Range Organics	SW8020F	ND<50	UG/L	05/23/2005
Methyl-tert-butyl ether	SW8020F	ND<0.5	UG/L	05/23/2005
SUR-a,a,a-Trifluorotoluene	SW8020F	98	PERCENT	05/23/2005
tConfirmed by CC/MC mathed 0260				Page 1

CERTIFICATE OF ANALYSIS

Lab Number: 05-0761

Client:

Golden Gate Tank

Project:

5930 COLLEGE AVE

Date Reported: 06/06/2005

Gasoline, BTEX and MTBE by Methods 8015B/8021B

Analyte		Me	thod	Result	Unit	Date	Sampled	Date	Analyzed
Sample: 05-0761-03	Client	ID:	7335-B1	7 – W		05/1	9/2005	W	
Toluene			SW8020F	ND<0	. 5	UG/L		05/	23/2005
Xylenes			SW8020F	ND<1	. 0	UG/L		05/	23/2005
Sample: 05-0761-04	Client	ID:	7335-B20	W – (05/1	9/2005	W	
Benzene			SW8020F	6800		UG/L		05/	24/2005
Ethylbenzene			SW8020F	1550		UG/L		05/	24/2005
Gasoline Range Organ	nics		SW8020F	6070	0	UG/L		05/	24/2005
Methyl-tert-butyl et	cher		SW8020F	*388		UG/L		05/	24/2005
SUR-a,a,a-Trifluorot	coluene		SW8020F	92		PERCE	ENT	05/	24/2005
Toluene			SW8020F	2600		UG/L		05/	24/2005
Xylenes			SW8020F	6520		UG/L		05/	24/2005

CERTIFICATE OF ANALYSIS

Quality Control/Quality Assurance

Lab Number:

05-0761

Client:

Golden Gate Tank

Project:

5930 COLLEGE AVE

Date Reported: 06/06/2005

Gasoline, BTEX and MTBE by Methods 8015B/8021B

Analyte	Method	Reportin Limit	g Unit	Blank	MS/MSD Recovery	RPD
Gasoline Range (05/23/05)	SW8020F	50	UG/L	ND	122/123	1
Benzene	SW8020F	0.5	UG/L	ND	93/95	2
Toluene	SW8020F	0.5	UG/L	ND	96/98	2
Ethylbenzene	SW8020F	0.5	UG/L	ND	97/99	2
Xylenes	SW8020F	1.0	UG/L	ND	97/99	2
Methyl-tert-butyl ether	SW8020F	0.5	UG/L	ND	92/95	3
SUR-a,a,a-Trifluorotoluene	SW8020F		PERCENT	99	98/98	0
Gasoline Range (05/24/05)	SW8020F	50	UG/L	ND	126/122	3
Benzene	SW8020F	0.5	UG/L	ND	96/94	2
Toluene	SW8020F	0.5	UG/L	ND	93/92	1
Ethylbenzene	SW8020F	0.5	UG/L	ND	93/92	1
Xylenes	SW8020F	1.0	UG/L	ND	95/94	1 .
Methyl-tert-butyl ether	SW8020F	0.5	UG/L	ND	94/90	4
SUR-a,a,a-Trifluorotoluene	SW8020F		PERCENT	97	95/95	0

ELAP Certificate NO:1753 Reviewed and Approved

Erin Cunniffe, Laboratory Director

CERTIFICATE OF ANALYSIS

Job Number: 05-0761

Client : Golden Gate Tank
Project : 5930 COLLEGE AVE

Date Sampled: 05/19/2005 Date Analyzed: 05/24/2005 Date Reported: 06/06/2005

Laboratory Number	05-0761-01	05-0761-02	05-0761-03
Client ID	7335-B14-W	7335-B15-W	7335-B17-W
Matrix	W	W	W
Analyte	UG/L	UG/L	UG/L
Methyl-tert-butyl ether	1.2	ND<0.5	ND<0.5
Ethyl tert-butyl ether	ND<1	ND<1	ND<1
tert-Amyl methyl ether	ND<1	ND<1	ND<1
Di-isopropyl ether (DIPE)	ND<0.5	ND<0.5	ND<0.5
tert-Butyl alcohol	ND<10	ND<10	ND<10
1,2-Dichloroethane	ND<1	ND<1	ND<1
1,2-Dibromoethane	ND<0.5	ND<0.5	ND<0.5
Ethanol	ND<50	ND<50	ND<50
SUR-Dibromofluoromethane	111	109	111
SUR-Toluene-d8	105	106	107
SUR-4-Bromofluorobenzene	105	107	109
SUR-1,2-Dichloroethane-d4	100	109	102

CERTIFICATE OF ANALYSIS

Job Number: 05-0761

Client : Golden Gate Tank

Project : 5930 COLLEGE AVE

Date Sampled: 05/19/2005

Date Analyzed: 05/24/2005

Date Reported: 06/06/2005

Fuel Oxygenates by Method 8260B Quality Control/Quality Assurance Summary

Laboratory Number	05-0761	MS/MSD	RPD	Recovery	RPD
Client ID	Blank	Recovery		Limit	Limit
Matrix	W	W		Dania C	DIMIC
Analyte	Results UG/L	%Recoveries			
Ethanol	ND<50				
Methyl-tert-butyl ether	ND<0.5				
Di-isopropyl ether (DIPE)	ND<0.5				
tert-butyl Alcohol	ND<10				
Ethyl tert-butyl ether	ND<1				
tert-Amyl methyl ether	ND<1				
1,1-Dichloroethene	ND<0.5	107/102	5	70-130	30
1,2-Dichloroethane	ND<1				30
Benzene	ND<0.5	106/109	3	70-130	30
1,2-Dibromoethane	ND<0.5				30
Trichloroethene	ND<0.5	125/125	0	70-130	30
Toluene	ND<0.5	104/109	5	70-130	30
Chlorobenzene	ND<1	100/105	5	70-130	30
SUR-Dibromofluoromethane	106	112/112	0	85-115	30
SUR-Toluene-d8	105	108/109	1	85-115	30
SUR-4-Bromofluorobenzene	106	108/109	1	85-115	30
SUR-1,2-Dichloroethane-d4	90	101/102	1	85-115	30

Reviewed and Approved

Erin Cunniffe
Laboratory Director

CERTIFICATE OF ANALYSIS

Job Number: 05-0761

Laboratory Number

Client : Golden Gate Tank
Project : 5930 COLLEGE AVE

Date Sampled: 05/19/2005 Date Analyzed: 05/27/2005 Date Reported: 06/06/2005

Fuel Oxygenates by Method 8260B

05-0761-04

7335-B20-W Client ID Matrix Analyte UG/L Methyl-tert-butyl ether 394 Ethyl tert-butyl ether ND<20 tert-Amyl methyl ether ND<20 Di-isopropyl ether (DIPE) ND<10 tert-Butyl alcohol ND<200 1,2-Dichloroethane ND<20 1,2-Dibromoethane ND<10 Ethanol ND<1000 SUR-Dibromofluoromethane SUR-Toluene-d8 97 SUR-4-Bromofluorobenzene 98 SUR-1,2-Dichloroethane-d4 108

CERTIFICATE OF ANALYSIS

Job Number: 05-0761

Client : Golden Gate Tank

Project : 5930 COLLEGE AVE

Date Sampled : 05/19/2005

Date Analyzed: 05/27/2005

Date Reported: 06/06/2005

Fuel Oxygenates by Method 8260B Quality Control/Quality Assurance Summary

	1								
Laboratory Number Client ID Matrix	05-0761 Blank W	MS/MSD Recovery W	RPD	Recovery Limit	RPD Limit				
Analyte	Results UG/L	%Recoveries							
Ethanol Methyl-tert-butyl ether Di-isopropyl ether (DIPE) tert-butyl Alcohol Ethyl tert-butyl ether tert-Amyl methyl ether	ND<50 ND<0.5 ND<0.5 ND<10 ND<1 ND<1								
1,1-Dichloroethene 1,2-Dichloroethane	ND<0.5 ND<1	101/82	21	70-130	30				
Benzene 1,2-Dibromoethane	ND<0.5 ND<0.5	91/97	6	70-130	30				
Trichloroethene Toluene	ND<0.5 ND<0.5	106/111	5	70-130	30				
Chlorobenzene	ND<1	96/101 105/110	5 5	70-130 70-130	30 30				
SUR-Dibromofluoromethane	86	97/100	3	85-115	30				
SUR-Toluene-d8	89	92/94	2	85-115	30				
SUR-4-Bromofluorobenzene	99	103/104	1	85-115	30				
SUR-1,2-Dichloroethane-d4	90	107/111	4	85-115	30				

Reviewed and Approved

Erin Cunniffe Laboratory Director

Entech Analytical Labs, Inc.

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Brent Wheeler Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107

Order Number: 44111 Date Received: 6/23/2005 7:29:00 PM

Project Name: 7335 Sheaff's Garage Project Number: T0600102112

Certificate of Analysis - Final Report

On June 23, 2005, samples were received under chain of custody for analysis. Entech analyzes samples "as received" unless otherwise noted. The following results are included:

Matrix

<u>Test</u>

Comments

Certificate ID: 44111 - 6/30/2005 3:54:58 PM

Solid

EPA 8260B - GC/MS Metals by ICP 6010B/200.7 TPH as Gasoline by GC/MS

Wet Chemistry

Entech Analytical Labs, Inc. is certified for environmental analyses by the State of California (#2346). If you have any questions regarding this report, please call us at 408-588-0200 ext. 225.

Sincerely,

Laurie Glantz-Murphy Laboratory Director

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project ID: 7335 Sheaff's Garage Date Received: 6/23/2005

Sample Collected by: client

Certificate of Analysis - Data Report

Lab #: 44111-001	Sample ID: B21 @6.5]	Matrix: Soli	d Sample 1	Sample Date: 6/22/2005 12:4		
EPA 5035A EPA 8260B Parameter	Result Qual	DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	8260Petroleum QC Batch	
Benzene	ND	1	5.0	μg/Kg	N/A	N/A	6/28/2005	SMS3050627	
Toluene	ND	1	5.0	μg/Kg	N/A	N/A	6/28/2005	SMS3050627	
Ethyl Benzene	ND	1	5.0	μg/Kg	N/A	N/A	6/28/2005	SMS3050627	
Ethyl Benzene		1	10		NI/A	NI/A	6/28/2005	SMS3050627	

Sumagata	Surrogate Recovery	Control Li	mits (%)				Analyzed by: Mfe	lix
1,2-Dibromoethane (EDB)	ND	1	5.0	μg/Kg	N/A	N/A	6/28/2005	SMS3050627
1,2-Dichloroethane	ND	i	5.0	μg/Kg	N/A		W. —	
, ,			5.0		NT/A	N/A	6/28/2005	SMS3050627
Methyl-t-butyl Ether	ND	1	5.0	μg/Kg	N/A	N/A	6/28/2005	SMS3050627
Xylenes, Total	ND	1	10	μg/Kg	N/A	N/A	6/28/2005	SMS3030027
Ethyl Belizelle		•			37/4	3.1/4	(120/2005	SMS3050627
Ethyl Benzene	ND	1	5.0	μg/Kg	N/A	N/A	6/28/2005	SMS3050627

Surrogate	Surrogate Recovery	Control Limits (%)	Analyzed by: Mfelix
4-Bromofluorobenzene	79.0	70 - 125	Reviewed by: MaiChiTu
Dibromofluoromethane	89.9	70 - 125	
Toluene-d8	82.1	70 - 125	

GC-MS								TPH as Ga	soline - GCMS
Parameter	Result (Qual	DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	ND		1	50	μg/Kg	N/A	N/A	6/28/2005	SMS3050627
Surrogate	Surrogate Recovery		Control	Limits (%)				Analyzed by: Mfeli	x
4-Bromofluorobenzene	79.0		70	- 125				Reviewed by: MaiC	ChiTu
Dibromofluoromethane	89.9		70	- 125					
Toluene-d8	82.1		70	- 125					

3334 Victor Court , Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project ID: 7335 Sheaff's Garage Date Received: 6/23/2005

Sample Collected by: client

Certificate of Analysis - Data Report

Lab #: 44111-002	Sample ID: B21 @ 8.5	;		I	Matrix: Soli	d Sample I	Date: 6/22/2005	12:45 PM
EPA 3050B EPA 6010B Parameter	Result Qual	DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	Metals QC Batch
Cadmium	ND	1	1.0	mg/Kg	6/28/2005	SM050628	6/29/2005	SM050628
Chromium	74	1	1.0	mg/Kg	6/28/2005	SM050628	6/29/2005	SM050628
Lead	4.6	1	1.0	mg/Kg	6/28/2005	SM050628	6/29/2005	SM050628
Nickel	78	1	1.0	mg/Kg	6/28/2005	SM050628	6/29/2005	SM050628
Zinc	36	1	2.0	mg/Kg	6/28/2005	SM050628	6/29/2005	SM050628

Analyzed by: Equeja Reviewed by: dqueja

GC-MS			D.D.		Daniel Charles	¥1	Duan Data	Prep Batch	TPH as Gas Analysis Date	oC Batch
Parameter	Result Qu	al	DF		Detection Limit	Units	Prep Date			
TPH as Gasoline	14000		50		2500	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Surrogate	Surrogate Recovery	Co	ntro	l Li	mits (%)			AV	Analyzed by: MTu	
4-Bromofluorobenzene	85.1		70	-	125				Reviewed by: BDha	balia
Dibromofluoromethane	84.7		70	-	125					
Toluene-d8	83.5		70	-	125					

SM 5520 C								0	il & Grease-IR
Parameter	Result	Qual	DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Oil and Grease, Total	ND		1	25	mg/Kg	6/24/2005	SINO050624	6/24/2005	SOGIR050624

Analyzed by: Jisiderio Reviewed by: rlazaro

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project ID: 7335 Sheaff's Garage Date Received: 6/23/2005

Sample Collected by: client

Certificate of Analysis - Data Report

Lab#: 44111-002 Sam	ple ID: B21 @ 8.5]	Matrix: Solid	Sample I	Date: 6/22/2005	12:45 PM
EPA 5035A EPA 8260B								EPA 8260B
Parameter	Result Qual	DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
1,1,1,2-Tetrachloroethane	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
1,1,1-Trichloroethane	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
1,1,2,2-Tetrachloroethane	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
1,1,2-Trichloroethane	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
1,1-Dichloroethane	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
1,1-Dichloroethene	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
1,1-Dichloropropene	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
1,2,3-Trichlorobenzene	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
1,2,3-Trichloropropane	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
1,2,4-Trichlorobenzene	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
1,2,4-Trimethylbenzene	870	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
1,2-Dibromo-3-Chloropropane	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
1,2-Dibromoethane (EDB)	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
1,2-Dichlorobenzene	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
1,2-Dichloroethane	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
1,2-Dichloropropane	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
1,3,5-Trimethylbenzene	1100	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
1.3-Dichlorobenzene	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
1,3-Dichloropropane	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
1,4-Dichlorobenzene	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
1,4-Dioxane	ND	50	10000	μg/Kg	N/A	N/A	6/29/2005	PMS050627
2,2-Dichloropropane	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
2-Butanone (MEK)	ND	50	2000	μg/Kg	N/A	N/A	6/29/2005	PMS050627
2-Chloroethyl-vinyl Ether	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
2-Chlorotoluene	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
2-Hexanone	ND	50	2000	μg/Kg	N/A	N/A	6/29/2005	PMS050627
4-Chlorotoluene	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
4-Methyl-2-Pentanone(MIBK)	ND	50	2000	μg/Kg	N/A	N/A	6/29/2005	PMS050627
	ND	50	5000	μg/kg	N/A	N/A	6/29/2005	PMS050627
Acetone	ND	50	2000	μg/kg	N/A	N/A	6/29/2005	PMS050627
Acetonitrile	ND ND	50	250	μg/kg	N/A	N/A	6/29/2005	PMS050627
Acrolein	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Acrylonitrile	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Benzene		50	250	μg/Kg μg/Kg	N/A	N/A	6/29/2005	PMS050627
Benzyl Chloride	ND	50	250	μg/Kg μg/Kg	N/A	N/A	6/29/2005	PMS050627
Bromobenzene	ND		250	μg/Kg μg/Kg	N/A	N/A	6/29/2005	PMS050627
Bromochloromethane	ND	50			N/A	N/A	6/29/2005	PMS050627
Bromodichloromethane	ND	50 50	250	μg/Kg	N/A N/A	N/A	6/29/2005	PMS050627
Bromoform	ND	50 50	250	μg/Kg		N/A N/A	6/29/2005	PMS050627
Bromomethane	ND	50	250	μg/Kg	N/A	N/A N/A	6/29/2005	PMS050627
Carbon Disulfide	ND	50	250	μg/Kg	N/A	N/A N/A	6/29/2005	PMS050627
Carbon Tetrachloride	ND	50	250	μg/Kg			6/29/2005	PMS050627
Chlorobenzene	ND	50	250	μg/Kg		N/A	6/29/2005	PMS050627
Chloroethane	ND	50	250	μg/Kg		N/A		PMS050627
Chloroform	ND	50	250	μg/Kg		N/A	6/29/2005	PMS050627 PMS050627
Chloromethane	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	1 W13030047

3334 Victor Court , Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project ID: 7335 Sheaff's Garage Date Received: 6/23/2005

Sample Collected by: client

Certificate of Analysis - Data Report

Lab#: 44111-002	Sample ID: B21 @ 8.5	;		1	Matrix: Soli	d Sample l	Date: 6/22/2005	12:45 PM
EPA 5035A EPA 8260B Parameter	Result Qual	DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	EPA 8260B QC Batch
cis-1.2-Dichloroethene	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
cis-1,3-Dichloropropene	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Cyclohexanone	ND	50	2000	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Dibromochloromethane	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Dibromomethane	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Dichlorodifluoromethane	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Diisopropyl Ether	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Ethyl Benzene	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Freon 113	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Hexachlorobutadiene	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Iodomethane	ND	50	2000	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Isopropanol	ND	50	5000	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Isopropylbenzene	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Methyl-t-butyl Ether	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Methylene Chloride	ND	50	1200	μg/Kg	N/A	N/A	6/29/2005	PMS050627
n-Butylbenzene	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
n-Propylbenzene	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Naphthalene	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
p-Isopropyltoluene	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Pentachloroethane	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
sec-Butylbenzene	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Styrene	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
tert-Amyl Methyl Ether	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
tert-Butanol (TBA)	ND	50	2000	μg/Kg	N/A	N/A	6/29/2005	PMS050627
tert-Butyl Ethyl Ether	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
tert-Butylbenzene	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Tetrachloroethene	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Tetrahydrofuran	ND	50	2000	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Toluene	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
trans-1,2-Dichloroethene	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
trans-1,3-Dichloropropene	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
trans-1,4-Dichloro-2-butene	ND	50	2000	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Trichloroethene	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Trichlorofluoromethane	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Vinyl Chloride	ND	50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Xylenes, Total	ND	50	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627

Surrogate	Surrogate Recovery	Control Limits (%				
4-Bromofluorobenzene	85.1	70	-	125		
Dibromofluoromethane	84.7	70	-	125		
Toluene-d8	83.5	70	-	125		

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project ID: 7335 Sheaff's Garage Date Received: 6/23/2005

Sample Collected by: client

Certificate of Analysis - Data Report

[.ah # •	44111-003	Sample ID:	B21 @	11.5
$\Box a v \pi$.	77111-00J	Sample 1D.	100	

Matrix:	Solid	Sample Date:	6/22/2005	12:50 PM
---------	-------	--------------	-----------	----------

EPA 5035A EPA 8260B								8260Petroleum
Parameter	Result (Qual DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	ND	1000	5000	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Toluene	ND	1000	5000	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Ethyl Benzene	ND	1000	5000	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Xylenes, Total	13000	1000	10000	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Methyl-t-butyl Ether	ND	1000		μg/Kg	N/A	N/A	6/29/2005	PMS050627
, ,	ND	1000		μg/Kg	N/A	N/A	6/29/2005	PMS050627
1,2-Dichloroethane 1,2-Dibromoethane (EDB)	ND	1000		μg/Kg	N/A	N/A	6/29/2005	PMS050627

 Surrogate
 Surrogate Recovery
 Control Limits (%)

 4-Bromofluorobenzene
 80.4
 70
 - 125

 Dibromofluoromethane
 86.1
 70
 - 125

 Toluene-d8
 84.7
 70
 - 125

GC-MS							TPH as Gasoline - GCMS	
Parameter	Result Q	ual DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	170000	1000	50000	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Surrogate	Surrogate Recovery	Control	Limits (%)				Analyzed by: MTu	
4-Bromofluorobenzene	80.4	70	- 125				Reviewed by: BDha	abalia
Dibromofluoromethane	86.1	70	- 125					
Toluene-d8	84.7	70	- 125					

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project ID: 7335 Sheaff's Garage Date Received: 6/23/2005

Sample Collected by: client

Certificate of Analysis - Data Report

Lab#.	44111-004	Sample ID:	B21 @ 14.5	
Lab #:	44111-004	Sample ID:	D21 (W, 14.3	

Matrix:	Solid	

Sample Date: 6/22/2005 12:50 PM

EPA 5035A EPA 8260B									8260Petroleum	
Parameter	Result	Qual	DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch	
Benzene	ND		5000	25000	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
Toluene	28000		5000	25000	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
Ethyl Benzene	ND		5000	25000	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
Xylenes, Total	100000		5000	50000	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
Methyl-t-butyl Ether	ND		5000	25000	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
1.2-Dichloroethane	ND		5000	25000	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
1,2-Dibromoethane (EDB)	ND		5000	25000	μg/Kg	N/A	N/A	6/29/2005	PMS050627	

SurrogateSurrogate RecoveryControl Limits (%)4-Bromofluorobenzene79.370-125Dibromofluoromethane89.170-125Toluene-d882.270-125

GC-MS							TPH as Gasoline - GCMS		
Parameter	Result C	Qual DF		Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	970000	5000		250000	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Surrogate	Surrogate Recovery	Contro	ol L	imits (%)				Analyzed by: MTu	
4-Bromofluorobenzene	79.3	70	-	125				Reviewed by: BDha	abalia
Dibromofluoromethane	89.1	70	-	125					
Toluene-d8	82.2	70	-	125					

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

12:55 PM

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project ID: 7335 Sheaff's Garage Date Received: 6/23/2005

Sample Collected by: client

Certificate of Analysis - Data Report

Lab #: 44111-005 Sample ID: B21 @ 19.5

Matrix:	Solid	Sample
---------	-------	--------

	sample ID: B21	(4) 13.10				8260Petroleum			
EPA 5035A EPA 8260B Parameter	Result	Qual	DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	ND		50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Toluene	ND		50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Ethyl Benzene	ND		50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Xvlenes, Total	1200		50	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627
•	ND		50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Methyl-t-butyl Ether	ND		50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
1,2-Dichloroethane 1,2-Dibromoethane (EDB)	ND ND		50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627

 Surrogate
 Surrogate Recovery
 Control Limits (%)

 4-Bromofluorobenzene
 79.4
 70
 - 125

 Dibromofluoromethane
 82.5
 70
 - 125

 Toluene-d8
 81.2
 70
 - 125

Analyzed by: MTu Reviewed by: BDhabalia

Date: 6/22/2005

GC-MS								TPH as Gasoline - GCMS	
Parameter	Result Q	ual	DF	Detection Li	mit Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	6900		50	2500	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Surrogate	Surrogate Recovery	(Control	Limits (%)		//		Analyzed by: MTu	
4-Bromofluorobenzene	79.4		70	- 125				Reviewed by: BDha	abalia
Dibromofluoromethane	82.5		70	- 125					
Toluene-d8	81.2		70	- 125					

3334 Victor Court , Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Analyzed by: MTu

Reviewed by: BDhabalia

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Toluene-d8

Project ID: 7335 Sheaff's Garage Date Received: 6/23/2005

Sample Collected by: client

Certificate of Analysis - Data Report

Sample Date: 6/22/2005 1:00 PM Matrix: Solid Lab #: 44111-006 Sample ID: B21 @ 24.5

EPA 5035A EPA 8260B									8260Petroleum
Parameter	Result	Qual	DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	280		50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Toluene	1300		50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
	1300		50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Ethyl Benzene	7000		50	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Xylenes, Total	ND		50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Methyl-t-butyl Ether			50	250	μg/Kg	N/A	N/A	6/29/2005	PMS050627
1,2-Dichloroethane	ND						N/A	6/29/2005	PMS050627
1,2-Dibromoethane (EDB)	ND		50	250	μg/Kg	N/A	IN/A	0/29/2003	1 1/15050027

Surrogate Recovery Control Limits (%) Surrogate 70 - 125 84.8 4-Bromofluorobenzene 70 125 86.7 Dibromofluoromethane 70 125 78.2 Toluene-d8

GC-MS								TPH as Gas	soline - GCMS
Parameter	Result Ou	ıal	DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	73000		50	2500	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Surrogate	Surrogate Recovery	Co	ntrol	Limits (%)				Analyzed by: MTu	
4-Bromofluorobenzene	84.8	,	70	- 125				Reviewed by: BDha	ıbalia
Dibromofluoromethane	86.7	,	70	- 125					
Toluene-d8	78.2		70	- 125					

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project ID: 7335 Sheaff's Garage Date Received: 6/23/2005

Sample Collected by: client

Certificate of Analysis - Data Report

Lab #: 44111-007	Sample ID:	B22 @ 6.5
------------------	------------	-----------

Matrix: Soli	d Sample	Date: 6/	22/200
--------------	----------	----------	--------

05 11:35 AM

EPA 5035A EPA 8260B									8260Petroleum
Parameter Parameter	Result	Oual	DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	ND		1	5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
Toluene	5.2		1	5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
Ethyl Benzene	ND		1	5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
Xylenes, Total	11		1	10	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
Methyl-t-butyl Ether	ND		1	5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
•	ND		1	5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
1,2-Dichloroethane 1,2-Dibromoethane (EDB)	ND		1	5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B

 Surrogate
 Surrogate Recovery
 Control Limits (%)

 4-Bromofluorobenzene
 84.4
 70
 - 125

 Dibromofluoromethane
 82.9
 70
 - 125

 Toluene-d8
 89.7
 70
 - 125

GC-MS								TPH as Gasoline - GCMS		
Parameter	Result Q	ual	DF	D	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	96		1		50	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
Surrogate	Surrogate Recovery	(Contro	l Lin	nits (%)				Analyzed by: MaiC	ChiTu
4-Bromofluorobenzene	84.4		70	-	125				Reviewed by: BDh	abalia
Dibromofluoromethane	82.9		70	-	125					
Toluene-d8	89.7		70	-	125					

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project ID: 7335 Sheaff's Garage Date Received: 6/23/2005

Sample Collected by: client

Certificate of Analysis - Data Report

Lab #: 44111-008	Sample ID: B22 @ 10			I	Matrix: Solid Sample Date: 6/22/2005				
EPA 3050B EPA 6010B Parameter	Result Qual	DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	Metals QC Batch	
Cadmium	ND	1	1.0	mg/Kg	6/28/2005	SM050628	6/29/2005	SM050628	
Chromium	43	1	1.0	mg/Kg	6/28/2005	SM050628	6/29/2005	SM050628	
Lead	5.3	1	1.0	mg/Kg	6/28/2005	SM050628	6/29/2005	SM050628	
Nickel	53	1	1.0	mg/Kg	6/28/2005	SM050628	6/29/2005	SM050628	
Zinc	41	1	2.0	mg/Kg	6/28/2005	SM050628	6/29/2005	SM050628	

Analyzed by: Equeja Reviewed by: dqueja

GC-MS							TPH as Ga	soline - GCMS
Parameter	Result Qua	d DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	100000	100	5000	μg/Kg	N/A	N/A	6/29/2005	PMS050627
Surrogate	Surrogate Recovery	Control	Limits (%)				Analyzed by: MTu	
4-Bromofluorobenzene	93.7	70	- 125				Reviewed by: BDh	abalia
Dibromofluoromethane	83.3	70	- 125					
Toluene-d8	82.8	70	- 125					
SM 5520 C							0	il & Grease-IR

SM 5520 C								0	il & Grease-IR	
Parameter	Result	Qual	DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch	
Oil and Grease, Total	ND		1	25	mg/Kg	6/24/2005	SINO050624	6/24/2005	SOGIR050624	

Analyzed by: Jisiderio Reviewed by: rlazaro

3334 Victor Court , Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project ID: 7335 Sheaff's Garage Date Received: 6/23/2005

Sample Collected by: client

Certificate of Analysis - Data Report

Lab#: 44111-008 Samp	ole ID: B22 @ 10)		N	Matrix: Solid	Sample I	Date: 6/22/2005	11:45 AM	
EPA 5035A EPA 8260B Parameter	Result Qua	DF	Detection Limit	Units Prep Date		Prep Batch	Analysis Date	EPA 8260B QC Batch	
1,1,1,2-Tetrachloroethane	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
1,1,1-Trichloroethane	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
1,1,2,2-Tetrachloroethane	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
1,1,2-Trichloroethane	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
1,1-Dichloroethane	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
1,1-Dichloroethene	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
1,1-Dichloropropene	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
1,2,3-Trichlorobenzene	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
1,2,3-Trichloropropane	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
1,2,4-Trichlorobenzene	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
1,2,4-Trimethylbenzene	4000	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
1,2-Dibromo-3-Chloropropane	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
1.2-Dibromoethane (EDB)	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
1,2-Dichlorobenzene	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
1,2-Dichloroethane	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
1,2-Dichloropropane	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
1.3.5-Trimethylbenzene	5100	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
1,3-Dichlorobenzene	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
1,3-Dichloropropane	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
1,4-Dichlorobenzene	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
1,4-Dioxane	ND	100	20000	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
2,2-Dichloropropane	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS05062	
2-Butanone (MEK)	ND	100	4000	μg/Kg	N/A	N/A	6/29/2005	PMS05062	
2-Chloroethyl-vinyl Ether	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS05062	
2-Chlorotoluene	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS05062	
2-Hexanone	ND	100	4000	μg/Kg	N/A	N/A	6/29/2005	PMS05062	
4-Chlorotoluene	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS05062	
4-Methyl-2-Pentanone(MIBK)	ND	100	4000	μg/Kg	N/A	N/A	6/29/2005	PMS05062	
Acetone	ND	100	10000	μg/kg	N/A	N/A	6/29/2005	PMS05062	
Acetonitrile	ND	100	4000	μg/kg	N/A	N/A	6/29/2005	PMS05062	
Acrolein	ND	100	500	μg/kg	N/A	N/A	6/29/2005	PMS05062	
Acrylonitrile	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS05062	
Benzene	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS05062	
Benzyl Chloride	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS05062	
Bromobenzene	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS05062	
Bromochloromethane	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS05062	
Bromodichloromethane	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS05062	
Bromoform	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS05062	
Bromomethane	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS05062	
Carbon Disulfide	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS05062	
Carbon Tetrachloride	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS05062	
Chlorobenzene	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS05062	
Chloroethane	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS05062	
Chloroform	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS05062	
Chloromethane	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS05062	

3334 Victor Court , Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project ID: 7335 Sheaff's Garage Date Received: 6/23/2005

Sample Collected by: client

Certificate of Analysis - Data Report

Lab #: 44111-008 Sample ID: B22 @ 10 Matrix: Solid Sample Date: 6/22/2005 11:45 AM

Lab #: 44111-008 San	#: 44111-008 Sample ID: B22 @ 10					u Sample I	vate. 0/22/2005		
EPA 5035A EPA 8260B Parameter	Result Q	ual DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	EPA 8260B QC Batch	
cis-1,2-Dichloroethene	ND ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
cis-1,3-Dichloropropene	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
Cyclohexanone	ND	100	4000	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
Dibromochloromethane	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
Dibromomethane	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
Dichlorodifluoromethane	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
Diisopropyl Ether	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
Ethyl Benzene	680	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
Freon 113	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
Hexachlorobutadiene	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
Iodomethane	ND	100	4000	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
Isopropanol	ND	100	10000	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
Isopropalioi Isopropylbenzene	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
Methyl-t-butyl Ether	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
Methylene Chloride	ND	100	2500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
n-Butylbenzene	720	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
n-Butytoenzene n-Propylbenzene	830	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
Naphthalene	640	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
•	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
p-Isopropyltoluene Pentachloroethane	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
sec-Butylbenzene	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
Styrene	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
tert-Amyl Methyl Ether	ND	100	4000	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
tert-Butanol (TBA) tert-Butyl Ethyl Ether	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
tert-Butyl Emyl Emel	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
Tetrachloroethene	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
Tetrahydrofuran	ND	100	4000	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
Toluene	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
	ND	100	500	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
trans-1,2-Dichloroethene	ND ND	100	500	μg/Kg μg/Kg	N/A	N/A	6/29/2005	PMS050627	
trans-1,3-Dichloropropene	ND ND	100	4000	μg/Kg	N/A	N/A	6/29/2005	PMS050627	
trans-1,4-Dichloro-2-butene	ND ND	100	500	μg/Kg μg/Kg	N/A	N/A	6/29/2005	PMS050627	
Trichloroethene	ND ND	100	500	μg/Kg μg/Kg	N/A	N/A	6/29/2005	PMS050627	
Trichlorofluoromethane	ND ND	100	500	μg/Kg μg/Kg	N/A	N/A	6/29/2005	PMS050627	
Vinyl Chloride		100	1000	μg/Kg μg/Kg	N/A	N/A	6/29/2005	PMS050627	
Xylenes, Total	3000	100	1000	μg/1\g		. 17.4.			

Surrogate	Surrogate Recovery	Contro	ol Li	mits (%)
4-Bromofluorobenzene	93.7	70	-	125
Dibromofluoromethane	83.3	70	-	125
Toluene-d8	82.8	70	-	125

3334 Victor Court , Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project ID: 7335 Sheaff's Garage Date Received: 6/23/2005

Sample Collected by: client

Certificate of Analysis - Data Report

Lab #: 44111-009 Sample ID: B22 @14.5 Matrix: Solid Sample Date: 6/22/2005 11:45 AM

EPA 5035A EPA 8260B									8260Petroleum
Parameter	Result	Qual	DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	ND		1	5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
Toluene	ND		1	5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
	ND		1	5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
Ethyl Benzene Verlagge Total	ND		1	10	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
Xylenes, Total	ND		1	5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
Methyl-t-butyl Ether	ND ND		1	5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
1,2-Dichloroethane 1,2-Dibromoethane (EDB)	ND ND		1	5.0	μg/Kg μg/Kg	N/A	N/A	6/29/2005	SMS3050628B

Surrogate	Surrogate Recovery	Cor	tro	l L	imits (%)	Analyzed by: MaiC
4-Bromofluorobenzene	85.2	7	0	-	125	Reviewed by: BDh
Dibromofluoromethane	86.3	7	0	-	125	
Toluene-d8	86.0	7	0	-	125	

GC-MS								TPH as Gasoline - GCMS		
Parameter	Result Q	ual	DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch	
TPH as Gasoline	250		1	50	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B	
Surrogate	Surrogate Recovery	Co	ontrol	Limits (%)				Analyzed by: MaiC	ChiTu	
4-Bromofluorobenzene	85.2		70 -	- 125				Reviewed by: BDl:	abalia	
Dibromofluoromethane	86.3		70 .	- 125						
Toluene-d8	86.0		70 -	- 125						

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project ID: 7335 Sheaff's Garage Date Received: 6/23/2005

Sample Collected by: client

Certificate of Analysis - Data Report

$\mathbf{D}av \pi$, $\mathbf{T}\mathbf{T}\mathbf{I}\mathbf{I}\mathbf{T}\mathbf{T}\mathbf{U}\mathbf{U}$	19.5	B22 @	ple ID:	Samp	44111-010	Lab#:
---	------	-------	---------	------	-----------	-------

Matrix:	Solid	Sample Date:	6/22/2005	12:00 PM
---------	-------	--------------	-----------	----------

EPA 5035A EPA 8260B								8260Petroleum
Parameter	Result (Qual D	F Detection	Limit Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	ND		5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
Toluene	ND		5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
Ethyl Benzene	ND		5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
Xylenes, Total	ND		10	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
Methyl-t-butyl Ether	72		5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
1.2-Dichloroethane	ND		5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
1,2-Dibromoethane (EDB)	ND		5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
Currogata	Surrogata Dagovary	Con	trol Limits (%)				Analyzed by: Mai	ChiTu

Surrogate	Surrogate Recovery	Contro	ı Lı	mus (70)	
4-Bromofluorobenzene	78.4	70	-	125	
Dibromofluoromethane	87.9	70	-	125	
Toluene-d8	82.4	70	-	125	

GC-MS								TPH as Ga	isoline - GCMS
Parameter	Result C	Qual DF	7]	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	59	1		50	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
Surrogate	Surrogate Recovery	Contr	rol Liı	mits (%)				Analyzed by: Mai	ChiTu
4-Bromofluorobenzene	78.4	70	-	125				Reviewed by: BDl	nabalia
Dibromofluoromethane	87.9	70	-	125					
Toluene-d8	82.4	70	-	125					

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project ID: 7335 Sheaff's Garage Date Received: 6/23/2005

Sample Collected by: client

Certificate of Analysis - Data Report

Lab #: 44111-011	Sample ID: B22 @ 24.5
------------------	-----------------------

Matrix:	Solid	Sample
---------	-------	--------

d Sample Date: 6/22/2005 12:10 I	N	1
---	---	---

EPA 5035A EPA 8260B									8260Petroleum
Parameter	Result	Qual	DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	ND		1	5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
Toluene	ND		1	5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
Ethyl Benzene	ND		1	5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
Xylenes, Total	ND		1	10	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
Methyl-t-butyl Ether	85		1	5.0	μg/kg	N/A	N/A	6/29/2005	SMS3050628B
, ,	ND		1	5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
1,2-Dichloroethane 1,2-Dibromoethane (EDB)	ND		1	5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B

 Surrogate
 Surrogate Recovery
 Control Limits (%)

 4-Bromofluorobenzene
 79.6
 70
 - 125

 Dibromofluoromethane
 86.6
 70
 - 125

 Toluene-d8
 83.6
 70
 - 125

GC-MS								TPH as Ga	soline - GCMS
Parameter	Result Qu	ıal Dl	7	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	70	1		50	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
Surrogate	Surrogate Recovery	Cont	rol I	imits (%)				Analyzed by: MaiC	ChiTu
4-Bromofluorobenzene	79.6	70	-	125				Reviewed by: BDI	abalia
Dibromofluoromethane	86.6	70	-	125					
Toluene-d8	83.6	70	-	125					

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank1 - Solid - EPA 8260B - EPA 8260B

QC Batch ID: PMS050627

Validated by: BDhabalia - 06/29/05

00	Datab	Analysis	Data
ŲС	Batch	Analysis	Date.

Parameter	Result	DF	PQLR	Units
1,1,1,2-Tetrachloroethane	ND	50	250	μg/Kg
1,1,1-Trichloroethane	ND	50	250	μg/Kg
1,1,2,2-Tetrachloroethane	ND	50	250	μg/Kg
1,1,2-Trichloroethane	ND	50	250	μg/Kg
1,1-Dichloroethane	ND	50	250	μg/Kg
1,1-Dichloroethene	ND	50	250	μg/Kg
1,1-Dichloropropene	ND	50	250	μg/Kg
1,2,3-Trichlorobenzene	ND	50	250	μg/Kg
1,2,3-Trichloropropane	ND	50	250	μg/Kg
1,2,4-Trichlorobenzene	ND	50	250	μg/Kg
1,2,4-Trimethylbenzene	ND	50	250	μg/Kg
1,2-Dibromo-3-Chloropropane	ND	50	250	μg/Kg
1,2-Dibromoethane (EDB)	ND	50	250	μg/Kg
1,2-Dichlorobenzene	ND	50	250	μg/Kg
1,2-Dichloroethane	ND	50	250	μg/Kg
1,2-Dichloropropane	ND	50	250	μg/Kg
1,3,5-Trimethylbenzene	ND	50	250	μg/Kg
1,3-Dichlorobenzene	ND	50	250	μg/Kg
1,3-Dichloropropane	ND	50	250	μg/Kg
1,4-Dichlorobenzene	ND	50	250	μg/Kg
1,4-Dioxane	ND	50	10000	μg/Kg
2,2-Dichloropropane	ND	50	250	μg/Kg
2-Butanone (MEK)	ND	50	2000	μg/Kg
2-Chloroethyl-vinyl Ether	ND	50	250	μg/Kg
2-Chlorotoluene	ND	50	250	μg/Kg
2-Hexanone	ND	50	2000	μg/Kg
4-Chlorotoluene	ND	50	250	μg/Kg
4-Methyl-2-Pentanone(MIBK)	ND	50	2000	μg/Kg
Acetone	ND	50	5000	μg/kg
Acetonie	ND	50	2000	μg/kg
Acrolein	ND	50	250	μg/kg
	ND	50	250	μg/Kg
Acrylonitrile	ND	50	250	μg/Kg
Benzene Benzel Chlorida	ND	50	250	μg/Kg
Benzyl Chloride Bromobenzene	ND	50	250	μg/Kg
Bromochloromethane	ND	50	250	μg/Kg
Bromodichloromethane	ND	50	250	μg/Kg
Bromoform	ND	50	250	μg/Kg
Bromomethane	ND	50	250	μg/Kg
Carbon Disulfide	ND	50	250	μg/Kg
Carbon Tetrachloride	ND	50	250	μg/Kg
Chlorobenzene	ND	50	250	μg/Kg
Chloroethane	ND	50	250	μg/Kg
Chloroform	ND	50	250	μg/Kg
Chloromethane	ND	50	250	μg/Kg
cis-1,2-Dichloroethene	ND	50	250	μg/Kg
cis-1,2-Dichloropropene	ND	50	250	μg/Kg
	ND	50	2000	μg/Kg
Cyclohexanone Dibromochloromethane	ND	50	250	μg/Kg
Dibromomethane	ND	50	250	μg/Kg
Dipromomentane	,			

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank1 - Solid - EPA 8260B - EPA 8260B

QC Batch ID: PMS050627

Validated by: BDhabalia - 06/29/05

QC Batch Analysis Date:	QC	Batch	Analysis	Date:
-------------------------	----	-------	----------	-------

Parameter	Result	DF	PQLR	Units
Dichlorodifluoromethane	ND	50	250	μg/Kg
Diisopropyl Ether	ND	50	250	μg/Kg
Ethyl Benzene	ND	50	250	μg/Kg
Freon 113	ND	50	250	μg/Kg
Hexachlorobutadiene	ND	50	250	μg/Kg
Iodomethane	ND	50	2000	μg/Kg
Isopropanol	ND	50	5000	μg/Kg
Isopropylbenzene	ND	50	250	μg/Kg
Methylene Chloride	ND	50	1200	μg/Kg
Methyl-t-butyl Ether	ND	50	250	μg/Kg
Naphthalene	ND	50	250	μg/Kg
n-Butylbenzene	ND	50	250	μg/Kg
n-Propylbenzene	ND	50	250	μg/Kg
Pentachloroethane	ND	50	250	μg/Kg
p-Isopropyltoluene	ND	50	250	μg/Kg
sec-Butylbenzene	ND	50	250	μg/Kg
Styrene	ND	50	250	μg/Kg
tert-Amyl Methyl Ether	ND	50	250	μg/Kg
tert-Butanol (TBA)	ND	50	2000	μg/Kg
tert-Butyl Ethyl Ether	ND	50	250	μg/Kg
tert-Butylbenzene	ND	50	250	μg/Kg
Tetrachloroethene	ND	50	250	μg/Kg
Tetrahydrofuran	ND	50	2000	μg/Kg
Toluene	ND	50	250	μg/Kg
trans-1,2-Dichloroethene	ND	50	250	μ g /Kg
trans-1,3-Dichloropropene	ND	50	250	μg/Kg
trans-1,4-Dichloro-2-butene	ND	50	2000	μg/Kg
Trichloroethene	ND	50	250	μg/Kg
Trichlorofluoromethane	ND	50	250	μg/Kg
Vinyl Chloride	ND	50	250	μg/Kg
Xylenes, Total	ND	50	500	μg/Kg

Surrogate for Blank	% Recovery	Cont	rol	Limit
4-Bromofluorobenzene	79.1	70	-	125
Dibromofluoromethane	86.2	70	-	125
Toluene-d8	84.2	70	-	125

3334 Victor Court , Santa Clara, CA 95054

Phone: (408) 588-0200 Fax: (408) 588-0201

Laboratory Control Sample / Duplicate - Solid - EPA 8260B - EPA 8260B

QC Batch ID: PMS050627

Reviewed by: BDhabalia - 06/29/05

QC Batch ID Analysis Date:

LCS1 Parameter	Method Blank	Snike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
1,1-Dichloroethene	<5.0	2000	2200	μg/Kg	110			70 - 135
Benzene	<5.0	2000	1990	μg/Kg	99.5			70 - 135
Chlorobenzene	<5.0	2000	2190	μg/Kg	110			70 - 135
Methyl-t-butyl Ether	<5.0	2000	1930	μg/Kg	96.5			70 - 135
Toluene	<5.0	2000	2220	μg/Kg	111			70 - 135
Trichloroethene	<5.0	2000	2160	μg/Kg	108			70 - 135
Surrogate	% Recovery C	ontrol Limits						
4-Bromofluorobenzene	88.3	70 - 125						
Dibromofluoromethane	86.7	70 - 125						
Toluene-d8	94.3	70 - 125						
LCSD1								
Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
1,1-Dichloroethene	<5.0	2000	2250	μg/Kg	112	2.2	30.0	70 - 135
•								70 405

LCSD1 Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
1,1-Dichloroethene	<5.0	2000	2250	μg/Kg	112	2.2	30.0	70 - 135
Benzene	<5.0	2000	1990	μg/Kg	99.5	0.0	30.0	70 - 135
Chlorobenzene	<5.0	2000	2010	μg/Kg	100	8.6	30.0	70 - 135
Methyl-t-butyl Ether	<5.0	2000	1980	μg/Kg	99.0	2.6	30.0	70 - 135
Toluene	<5.0	2000	1960	μg/Kg	98.0	12	30.0	70 - 135
Trichloroethene	<5.0	2000	2140	μg/Kg	107	0.93	30.0	70 - 135

Surrogate	% Recovery	Cont	rol	Limits
4-Bromofluorobenzene	82.5	70	-	125
Dibromofluoromethane	90.1	70	-	125
Toluene-d8	85.1	70	-	125

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Solid - EPA 6010B - Metals

QC/Prep Batch ID: SM050628

QC/Prep Date: 6/28/2005

Parameter	Result	DF	PQLR	Units
Cadmium	ND	1	1.0	mg/Kg
Chromium	ND	1	1.0	mg/Kg
Lead	ND	1	1.0	mg/Kg
Nickel	ND	1	1.0	mg/Kg
Zinc	ND	1	2.0	mg/Kg

Validated by: dqueja - 06/29/05

Fax: (408) 588-0201 3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200

Laboratory Control Sample / Duplicate - Solid - EPA 6010B - Metals

Reviewed by: dqueja - 06/29/05 QC/Prep Batch ID: SM050628

OC/Prep Date: 6/28/2005

QC/Prep Date: 6/28/2	2005							
LCS Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery			Recovery Limits
Antimony	<1.0	50	48.3	mg/Kg	96.6			75 - 125
Arsenic	<1.0	50	47.0	mg/Kg	94.0			75 - 125
Barium	<1.0	50	53.0	mg/Kg	106			75 - 125
Beryllium	<1.0	50	47.1	mg/Kg	94.1			75 - 125
Cadmium	<1.0	50	45.2	mg/Kg	90.5			75 - 125
Chromium	<1.0	50	48.2	mg/Kg	96.5			75 - 125
Cobalt	<1.0	50	49.4	mg/Kg	98.9			75 - 125
Copper	<1.0	50	48.2	mg/Kg	96.4			75 - 125
Lead	<1.0	50	48.3	mg/Kg	96.7			75 - 125
Molybdenum	<1.0	50	49.6	mg/Kg	99.2			75 - 125
Nickel	<1.0	50	47.5	mg/Kg	95.1			75 - 125
Selenium	<2.0	50	43.3	mg/Kg	86.7			75 - 125
Silver	<1.0	50	51.2	mg/Kg	102			75 - 125
Thallium	<2.0	50	42.3	mg/Kg	84.5			75 - 125
Vanadium	<1.0	50	48.3	mg/Kg	96.6			75 - 125
Zinc	<2.0	50	46.1	mg/Kg	92.1			75 - 125
LCSD								
LCSD Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
	Method Blank <1.0	Spike Amt	47.6	mg/Kg	95.1	1.5	25.0	75 - 125
Parameter		-	47.6 46.9	mg/Kg mg/Kg	95.1 93.8	1.5 0.21	25.0 25.0	75 - 125 75 - 125
Parameter Antimony	<1.0	50	47.6 46.9 52.4	mg/Kg mg/Kg mg/Kg	95.1 93.8 105	1.5 0.21 1.3	25.0 25.0 25.0	75 - 125 75 - 125 75 - 125
Parameter Antimony Arsenic	<1.0 <1.0	50 50	47.6 46.9 52.4 46.3	mg/Kg mg/Kg mg/Kg mg/Kg	95.1 93.8 105 92.6	1.5 0.21 1.3 1.6	25.0 25.0 25.0 25.0	75 - 125 75 - 125 75 - 125 75 - 125
Parameter Antimony Arsenic Barium	<1.0 <1.0 <1.0	50 50 50	47.6 46.9 52.4 46.3 44.9	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	95.1 93.8 105 92.6 89.7	1.5 0.21 1.3 1.6 0.80	25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125 75 - 125 75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium	<1.0 <1.0 <1.0 <1.0	50 50 50 50	47.6 46.9 52.4 46.3 44.9 47.9	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	95.1 93.8 105 92.6 89.7 95.8	1.5 0.21 1.3 1.6 0.80 0.71	25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium	<1.0 <1.0 <1.0 <1.0 <1.0	50 50 50 50 50	47.6 46.9 52.4 46.3 44.9 47.9 49.2	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	95.1 93.8 105 92.6 89.7 95.8 98.5	1.5 0.21 1.3 1.6 0.80 0.71 0.45	25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0	50 50 50 50 50 50	47.6 46.9 52.4 46.3 44.9 47.9 49.2 48.0	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	95.1 93.8 105 92.6 89.7 95.8 98.5 95.9	1.5 0.21 1.3 1.6 0.80 0.71 0.45 0.50	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	50 50 50 50 50 50 50	47.6 46.9 52.4 46.3 44.9 47.9 49.2 48.0 48.4	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	95.1 93.8 105 92.6 89.7 95.8 98.5 95.9	1.5 0.21 1.3 1.6 0.80 0.71 0.45 0.50	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	50 50 50 50 50 50 50 50 50	47.6 46.9 52.4 46.3 44.9 47.9 49.2 48.0 48.4 49.3	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	95.1 93.8 105 92.6 89.7 95.8 98.5 95.9 96.9	1.5 0.21 1.3 1.6 0.80 0.71 0.45 0.50 0.21 0.49	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	50 50 50 50 50 50 50 50 50 50	47.6 46.9 52.4 46.3 44.9 47.9 49.2 48.0 48.4 49.3 47.2	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	95.1 93.8 105 92.6 89.7 95.8 98.5 95.9 96.9 98.7 94.4	1.5 0.21 1.3 1.6 0.80 0.71 0.45 0.50 0.21 0.49 0.65	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	50 50 50 50 50 50 50 50 50 50	47.6 46.9 52.4 46.3 44.9 47.9 49.2 48.0 48.4 49.3 47.2 43.2	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	95.1 93.8 105 92.6 89.7 95.8 98.5 95.9 96.9 98.7 94.4	1.5 0.21 1.3 1.6 0.80 0.71 0.45 0.50 0.21 0.49 0.65 0.32	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	50 50 50 50 50 50 50 50 50 50 50	47.6 46.9 52.4 46.3 44.9 47.9 49.2 48.0 48.4 49.3 47.2 43.2 51.2	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	95.1 93.8 105 92.6 89.7 95.8 98.5 95.9 96.9 98.7 94.4 86.4 102	1.5 0.21 1.3 1.6 0.80 0.71 0.45 0.50 0.21 0.49 0.65 0.32 0.12	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	50 50 50 50 50 50 50 50 50 50 50	47.6 46.9 52.4 46.3 44.9 47.9 49.2 48.0 48.4 49.3 47.2 43.2 51.2 43.3	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	95.1 93.8 105 92.6 89.7 95.8 98.5 95.9 96.9 98.7 94.4 86.4 102 86.5	1.5 0.21 1.3 1.6 0.80 0.71 0.45 0.50 0.21 0.49 0.65 0.32 0.12 2.3	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	50 50 50 50 50 50 50 50 50 50 50	47.6 46.9 52.4 46.3 44.9 47.9 49.2 48.0 48.4 49.3 47.2 43.2 51.2	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	95.1 93.8 105 92.6 89.7 95.8 98.5 95.9 96.9 98.7 94.4 86.4 102	1.5 0.21 1.3 1.6 0.80 0.71 0.45 0.50 0.21 0.49 0.65 0.32 0.12	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Solid - EPA 8260B - 8260Petroleum

QC Batch ID: SMS3050627

Validated by: MaiChiTu - 06/28/05

Validated by: MaiChiTu - 06/28/05

QC Batch Analysis Date: 6/27/2005

Parameter	Result	DF	PQLR	Units
1,2-Dibromoethane (EDB)	ND	1	5.0	μg/Kg
1.2-Dichloroethane	ND	1	5.0	μg/Kg
Benzene	ND	1	5.0	μg/Kg
Ethyl Benzene	ND	1	5.0	μg/Kg
Methyl-t-butyl Ether	ND	1	5.0	μg/Kg
Toluene	ND	1	5.0	μg/Kg
Xylenes, Total	ND	1	10	μg/Kg

Surrogate for Blank	% Recovery	Cont	rol	Limits	
4-Bromofluorobenzene	79.2	70	-	125	
Dibromofluoromethane	87.3	70	-	125	
Toluene-d8	81.8	70	_	125	

Method Blank - Solid - GC-MS - TPH as Gasoline - GCMS

QC Batch ID: SMS3050627

ICH ID. 3W33030021

QC Batch Analysis Date: 6/27/2005

Parameter	Result	DF	PQLR	Units
TPH as Gasoline	ND	1	50	μg/Kg

Surrogate for Blank	% Recovery	Conti	rol	Limits
4-Bromofluorobenzene	79.2	70	-	125
Dibromofluoromethane	87.3	70	-	125
Toluene-d8	81.8	70	-	125

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Laboratory Control Sample / Duplicate - Solid - EPA 8260B - 8260Petroleum

QC Batch ID: SMS3050627

Reviewed by: MaiChiTu - 06/28/05

QC Batch ID Analysis Date: 6/27/2005

LCS								
Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery			Recovery Limits
1,1-Dichloroethene	<5.0	40	46.0	μg/Kg	115			70 - 135
Benzene	<5.0	40	40.7	μg/Kg	102			70 - 135
Chlorobenzene	<5.0	40	39.4	μg/Kg	98.5			70 - 135
Methyl-t-butyl Ether	<5.0	40	39.0	μg/Kg	97.5			70 - 135
Toluene	<5.0	40	38.2	μg/Kg	95.5			70 - 135
Trichloroethene	<5.0	40	45.8	μg/Kg	114			70 - 135
Surrogate	% Recovery C	ontrol Limits						
4-Bromofluorobenzene	79.4	70 - 125						
Dibromofluoromethane	89.2	70 - 125						
Toluene-d8	83.3	70 - 125						
LCSD								
Parameter	Method Blani	k Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
1,1-Dichloroethene	<5.0	40	47.5	μg/Kg	119	3.2	30.0	70 - 135
Benzene	<5.0	40	41.7	μg/Kg	104	2.4	30.0	70 - 135
Chlorobenzene	<5.0	40	42.7	μg/Kg	107	8.0	30.0	70 - 135
Methyl-t-butyl Ether	<5.0	40	39.7	μg/Kg	99.2	1.8	30.0	70 - 135
Toluene	<5.0	40	42.0	μg/Kg	105	9.5	30.0	70 - 135
Trichloroethene	<5.0	40	45.7	μg/Kg	114	0.22	30.0	70 - 135

% Recovery	Control Limits				
84.6	70	-	125		
89.5	70	-	125		
89.5	70	-	125		
	84.6 89.5	84.6 70 89.5 70	84.6 70 - 89.5 70 -		

Laboratory Control Sample / Duplicate - Solid - GC-MS - TPH as Gasoline - GCMS

QC Batch ID: SMS3050627

Reviewed by: MaiChiTu - 06/28/05

QC Batch ID Analysis Date: 6/27/2005

LCS Parameter TPH as Gasoline	Method B	lank Spike Amt 250	SpikeResult 222	Units μg/Kg	% Recovery 88.8			Recovery Limits 70 - 130
Surrogate 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8	% Recovery 91.3 89.4 97.1	Control Limits 70 - 125 70 - 125 70 - 125						
LCSD Parameter TPH as Gasoline	Method B <50	lank Spike Amt 250	SpikeResult 198	Units µg/Kg	% Recovery 79.2	RPD 11	RPD Limits 30.0	Recovery Limits 70 - 130
Surrogate 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8	% Recovery 93.3 90.9	Control Limits 70 - 125 70 - 125						

Phone: (408) 588-0200 Fax: (408) 588-0201 3334 Victor Court , Santa Clara, CA 95054

Method Blank - Solid - EPA 8260B - 8260Petroleum

QC Batch ID: SMS3050628B

Validated by: BDhabalia - 06/29/05

Validated by: BDhabalia - 06/29/05

QC Batch Analysis Date: 6/28/2005

Parameter	Result	DF	PQLR	Units
1.2-Dibromoethane (EDB)	ND	1	5.0	μg/Kg
1.2-Dichloroethane	ND	1	5.0	μg/Kg
Benzene	ND	1	5.0	μg/Kg
Ethyl Benzene	ND	1	5.0	μg/Kg
Methyl-t-butyl Ether	ND	1	5.0	μg/Kg
Toluene	ND	1	5.0	μg/Kg
Xylenes, Total	ND	1	10	μg/Kg

Surrogate for Blank	% Recovery	Control Limits			
4-Bromofluorobenzene	80.4	70	-	125	
Dibromofluoromethane	83.8	70	-	125	
Toluene-d8	83.2	70	-	125	

Method Blank - Solid - GC-MS - TPH as Gasoline - GCMS

QC Batch ID: SMS3050628B

QC Batch Analysis Date: 6/28/2005

Parameter	Result	DF	PQLR	Units
TPH as Gasoline	ND	1	50	μg/Kg

Surrogate for Blank	% Recovery	Cont	rol	Limits
4-Bromofluorobenzene	80.4	70	-	125
Dibromofluoromethane	83.8	70	-	125
Toluene-d8	83.2	70	-	125

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Laboratory Control Sample / Duplicate - Solid - EPA 8260B - 8260Petroleum

QC Batch ID: SMS3050628B Reviewed by: BDhabalia - 06/29/05

QC Batch ID Analysis Date: 6/28/2005

LCS					0.4			Danassami Limito
Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery			Recovery Limits
1,1-Dichloroethene	<5.0	40	44.1	μg/Kg	110			70 - 135
Benzene	<5.0	40	39.6	μg/Kg	99.0			70 - 135
Chlorobenzene	<5.0	40	39.4	μg/Kg	98.5			70 - 135
Methyl-t-butyl Ether	<5.0	40	37.0	μg/Kg	92.5			70 - 135
Toluene	<5.0	40	39.0	μg/Kg	97.5			70 - 135
Trichloroethene	<5.0	40	44.5	μg/Kg	111			70 - 135
Surrogate	% Recovery Co	ontrol Limits						
4-Bromofluorobenzene	82.6	0 - 125						
Dibromofluoromethane	88.3	0 - 125						
Toluene-d8	84.6	70 - 125						
LCSD								
Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
1,1-Dichloroethene	<5.0	40	43.2	μg/Kg	108	2.1	30.0	70 - 135
Benzene	<5.0	40	36.9	μg/Kg	92.2	7.1	30.0	70 - 135

Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
1,1-Dichloroethene	<5.0	40	43.2	μg/Kg	108	2.1	30.0	70 - 135
Benzene	<5.0	40	36.9	μg/Kg	92.2	7.1	30.0	70 - 135
Chlorobenzene	<5.0	40	36.6	μg/Kg	91.5	7.4	30.0	70 - 135
Methyl-t-butyl Ether	<5.0	40	36.6	μg/Kg	91.5	1.1	30.0	70 - 135
Toluene	<5.0	40	36.5	μg/Kg	91.2	6.6	30.0	70 - 135
Trichloroethene	<5.0	40	40.9	μg/Kg	102	8.4	30.0	70 - 135

Surrogate	% Recovery	Control Limits				
4-Bromofluorobenzene	80.9	70	-	125		
Dibromofluoromethane	91.1	70	-	125		
Toluene-d8	83	70	-	125		

Laboratory Control Sample / Duplicate - Solid - GC-MS - TPH as Gasoline - GCMS

QC Batch ID: SMS3050628B Reviewed by: BDhabalia - 06/29/05

QC Batch ID Analysis Date: 6/28/2005

LCS Parameter TPH as Gasoline	Method B <50	lank Spike Am 250	t SpikeResult 217	Units µg/Kg	% Recovery 86.8		Recovery Limits 70 - 130
Surrogate	% Recovery	Control Limits					
4-Bromofluorobenzene	88.2	70 - 125					
Dibromofluoromethane	88	70 - 125					
Toluene-d8	95.2	70 - 125					
LCSD						nn nnn i eite	D

Parameter	Method B	lank Spike Amt	SpikeResult	Units	% Recovery	RPD		Recovery Limits
TPH as Gasoline	<50	250	214	μg/Kg	85.6	1.4	30.0	70 - 130
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	93.6	70 - 125						
Dibromofluoromethane	90.7	70 - 125						
Toluene-d8	96.7	70 - 125						

3334 Victor Court , Santa Clara, CA 95054

Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Solid - SM 5520 C - Oil & Grease-IR

QC/Prep Batch ID: SINO050624

Validated by: rlazaro - 06/27/05

QC/Prep Date: 6/24/2005

Parameter Oil and Grease, Total Result ND

DF

PQLR 25

Units mg/Kg

3334 Victor Court , Santa Clara, CA 95054 Fax: (408) 588-0201 Phone: (408) 588-0200

Laboratory Control Sample / Duplicate - Solid - SM 5520 C - Oil & Grease-IR

Reviewed by: rlazaro - 06/27/05 QC/Prep Batch ID: SINO050624

QC/Prep Date: 6/24/2005

LCS

Recovery Limits % Recovery Method Blank Spike Amt SpikeResult Units Parameter

75 - 125 104 288 mg/Kg 280 Oil and Grease, Total <25

LCSD

RPD RPD Limits Recovery Limits Method Blank Spike Amt SpikeResult Units % Recovery **Parameter** 30.0 75 - 125 280 mg/Kg 101 3.0 279 Oil and Grease, Total <25

3334 Victor Court Santa Clara, CA 95054

June 2004

(408) 588-0200

(408) 588-0201 - Fax

Chain of Custody / Analysis Request

•		<u> </u>																	15:				
Attention to: BREWT WHI	EBLITIZ		z 1555		Purchase (ifferent		-				none:			
Company Name: GOLDEN GOTE TOOK	Removal	Fax No.: 415 51			Project No						Ì	mpany:							Q	uote No	o.: 		
Mailing Address:		Email Address:	SSTR. COL										dress:	(If Diffe	erent)				T.=		1=:		
City: Son FRANCISC	_	State:	Zip Code:	7	Project Lo	ocation > C	١:	i5G A	<u>-</u> ス										Si	tate:	Zip		
				\Box								Metho			GC M	ethoo	is	丄		Gene	eral	Chemistry	,
3700	Org. Code:	☐ Same Day	□ 3 Day						1		[] [] [] [] [] [] [] [] [] [] [] [] [] [7/ 7/ 3/		17						//	/		// 3/
Global ID:	2112	□ 4 Day □ 1	∑ 5 Day 0 Day		, o				73		Y 3/				[6] 		//	/ /	/ /	//			1
Order ID:		Samp	le		of Containers		/		17 19 19 8 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 3/5 7 3/3 7 3/3 7 3/3	7	12 00 0 V	/\\\ 2/;			//	//	/,	/,		₹ } }		
,	ध्यान			Matrix	No. of Cor	/5	809.78 XX	1 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			7. Est. 30. 13. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	7 5 5 5 5 5 5 5 5 5	2.	Set John Jan Jan Jan Jan Jan Jan Jan Jan Jan Ja		/,	/,	/,	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Seals Check		ke
Client ID / Field Point	Lab. No.	Date			<u>ž</u>	∠ \$	<u> </u>	15,3	1000)			2º / /	` / `	-	<u> </u>	-/		-/	4 Y	2 / 2		Remark	
821-8.5 B21-8.5	-001	6/22/05		5						\bot	+	×	4		 -	_	+	-				BIEX/LS/M	were.
	~ ೦೦೭		12:45	\bot		(X)		<u> X </u>				X		×	 		-	+	+	>	4		
1321-11.5	-003		12:50		<u></u>	L		X			4	X		-	\vdash			+			_		
821-145	-004		12:50	工		1		X	\perp	\bot		<u> </u>			 				+	_	+		
821-19.5	-005		12:55	\perp		1		1	\perp			×						_	_	_	+		
321-24.5	-006		13:00	Ĺ				X				X		-	<u> </u>			_	4	_	+		
822-6.5	. 007		11:35	\perp		6	_	X				×			 			+	+	-	_		
822-10	- 008		11:45	\int		(x)	1	X				<u> </u>		×				1		1>	×		
BZZ-14.5	-009		11:45	\int			7	X				×	i		\sqcup	_			\perp		4		
322-19.5	-010		12:00	丁				X		\bot		7	1					\bot					
822-245	-011	Y	12:10	义				X					1					\perp	\perp				
						\perp													\perp		-		
	6																						
Relinquished by:	Received by:	Date:	Time:	1	Spec	ial I	nst	ructi	ons	or C	Com	ımer	nts	_		_				Repor Repor	t	☐ Plating ☑ LUFT-	
Relinguished by:	Received by	Juan 6/2	3105 16H	<u>2</u>	Metals	3:			r	٦ ·	C	<u>බ</u> ~		C 'E	A TO	Ma '	An.					RCRA-	-8
Relinguished by:	Received by:	Dáte:	(ime:		Al, As, Ga, Ge	, Sb. , Hg.	Ba, E In, L	e, Bi, ا. Mo,	R, C	g/, Ce, <mark>>, K</mark> , S	رa, (i <u>i, A</u> g	بر, Cc <u>î, Na.</u>	s, Cs, S, Se	cu, F , Sr, 1	a, Te,	TI, S	чи, in, Ті,	(Źŋ)	V, \	W, Zr		CAM-	

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Brent Wheeler

Certificate ID: 44112 - 6/30/2005 5:09:43 PM

Golden Gate Tank Removal 255 Shipley Street

San Francisco, CA 94107

Order Number: 44112

Date Received: 6/23/2005 7:52:08 PM

Project Name: 7335 Sheaff's Garage Project Number: T0600102112

Certificate of Analysis - Final Report

On June 23, 2005, samples were received under chain of custody for analysis.

Entech analyzes samples "as received" unless otherwise noted. The following results are included:

Matrix

<u>Test</u>

Comments

Liquid

EPA 8260B - GC/MS

Metals by ICP 6010B/200.7 TPH as Gasoline by GC/MS

Wet Chemistry

Solid

EPA 8260B - GC/MS

Metals by ICP 6010B/200.7 TPH as Gasoline by GC/MS

Wet Chemistry

Entech Analytical Labs, Inc. is certified for environmental analyses by the State of California (#2346). If you have any questions regarding this report, please call us at 408-588-0200 ext. 225.

Sincerely,

Laurie Glantz-Murphy Laboratory Director

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project ID: 7335 Sheaff's Garage Date Received: 6/23/2005

Sample Collected by: client

Certificate of Analysis - Data Report

Lab #: 44112-001	Sample ID: B23 - 6				Matrix: Solid	l Sample I	Sample Date: 6/22/2005		
EPA 5035A EPA 8260B Parameter	Result Qual	DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	8260Petroleum QC Batch	
Benzene	ND	1	5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B	
Toluene	ND	1	5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B	
Ethyl Benzene	ND	1	5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B	
Xylenes, Total	ND	1	10	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B	
Methyl-t-butyl Ether	ND	1	5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B	
1.2-Dichloroethane	ND	1	5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B	
1,2-Dibromoethane (EDB)	ND	1	5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B	

SurrogateSurrogate RecoveryControl Limits (%)4-Bromofluorobenzene79.970- 125Dibromofluoromethane88.470- 125Toluene-d882.670- 125

GC-MS								TPH as Ga	soline - GCMS
Parameter	Result Qu	ıal J)F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	ND		1	50	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
Surrogate	Surrogate Recovery	Coi	itrol	Limits (%)				Analyzed by: MaiC	ChiTu
4-Bromofluorobenzene	79.9	7	0	- 125				Reviewed by: BDh	abalia
Dibromofluoromethane	88.4	7	0	- 125					
Toluene-d8	82.6	7	0	- 125					

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project ID: 7335 Sheaff's Garage Date Received: 6/23/2005

Sample Collected by: client

Certificate of Analysis - Data Report

Lab#: 44112-002 Samp	b#: 44112-002 Sample ID: B23 - 10							Date: 6/22/2005	10:30 AM
EPA 5035A EPA 8260B Parameter	Result	Qual	DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	EPA 8260B QC Batch
1.1.1.2-Tetrachloroethane	ND	~	500	2500	μg/Kg	N/A	N/A	6/30/2005	
1,1,1-Trichloroethane	ND		500	2500	μg/Kg	N/A	N/A	6/30/2005	
1,1,2,2-Tetrachloroethane	ND		500	2500	μg/Kg	N/A	N/A	6/30/2005	
1.1.2-Trichloroethane	ND		500	2500	μg/Kg	N/A	N/A	6/30/2005	
1,1-Dichloroethane	ND		500	2500	μg/Kg	N/A	N/A	6/30/2005	
1.1-Dichloroethene	ND		500	2500	μg/Kg	N/A	N/A	6/30/2005	
1,1-Dichloropropene	ND		500	2500	μg/Kg	N/A	N/A	6/30/2005	
1,2,3-Trichlorobenzene	ND		500	2500	μg/Kg	N/A	N/A	6/30/2005	
1,2,3-Trichloropropane	ND		500	2500	μg/Kg	N/A	N/A	6/30/2005	
1,2,4-Trichlorobenzene	ND		500	2500	μg/Kg	N/A	N/A	6/30/2005	
	26000		500	2500	μg/Kg	N/A	N/A	6/30/2005	
1,2,4-Trimethylbenzene 1,2-Dibromo-3-Chloropropane	ND		500	2500	μg/Kg	N/A	N/A	6/30/2005	
1,2-Dibromo-3-Chloroptopane 1.2-Dibromoethane (EDB)	ND		500	2500	μg/Kg	N/A	N/A	6/30/2005	
	ND		500	2500	μg/Kg	N/A	N/A	6/30/2005	
1,2-Dichlorobenzene	ND		500	2500	μg/Kg μg/Kg	N/A	N/A	6/30/2005	
1,2-Dichloroethane	ND		500	2500	μg/Kg	N/A	N/A	6/30/2005	
1,2-Dichloropropane			500	2500	μg/Kg μg/Kg	N/A	N/A	6/30/2005	
1,3,5-Trimethylbenzene	4800		500	2500	μg/Kg μg/Kg	N/A	N/A	6/30/2005	
1,3-Dichlorobenzene	ND		500	2500	μg/Kg μg/Kg	N/A	N/A	6/30/2005	
1,3-Dichloropropane	ND		500	2500	μg/Kg μg/Kg	N/A	N/A	6/30/2005	
1,4-Dichlorobenzene	ND			100000		N/A	N/A	6/30/2005	
1,4-Dioxane	ND		500	2500	μg/Kg	N/A	N/A	6/30/2005	
2,2-Dichloropropane	ND		500		μg/Kg	N/A	N/A	6/30/2005	
2-Butanone (MEK)	ND		500	20000	μg/Kg	N/A	N/A	6/30/2005	
2-Chloroethyl-vinyl Ether	ND		500	2500	μg/Kg	N/A	N/A	6/30/2005	
2-Chlorotoluene	ND		500	2500	μg/Kg	N/A	N/A	6/30/2005	
2-Hexanone	ND		500	20000	μg/Kg	N/A	N/A	6/30/2005	
4-Chlorotoluene	ND		500	2500	μg/Kg			6/30/2005	
4-Methyl-2-Pentanone(MIBK)	ND		500	20000	μg/Kg	N/A	N/A	6/30/2005	
Acetone	ND		500	50000	μg/kg	N/A	N/A		
Acetonitrile	ND		500	20000	μg/kg	N/A	N/A	6/30/2005	
Acrolein	ND		500	2500	μg/kg	N/A	N/A	6/30/2005 6/30/2005	
Acrylonitrile	ND		500	2500	μg/Kg	N/A	N/A		
Benzene	ND		500	2500	μg/Kg	N/A	N/A	6/30/2005	
Benzyl Chloride	ND		500	2500	μg/Kg	N/A	N/A	6/30/2005	
Bromobenzene	ND		500	2500	μg/Kg	N/A	N/A	6/30/2005	
Bromochloromethane	ND		500	2500	μg/Kg	N/A	N/A	6/30/2005	
Bromodichloromethane	ND		500	2500	μg/Kg	N/A	N/A	6/30/2005	
Bromoform	ND		500	2500	μg/Kg	N/A	N/A	6/30/2005	
Bromomethane	ND		500	2500	μg/Kg	N/A	N/A	6/30/2005	
Carbon Disulfide	ND		500	2500	μg/Kg	N/A	N/A	6/30/2005	
Carbon Tetrachloride	ND		500	2500	μg/Kg	N/A	N/A	6/30/2005	
Chlorobenzene	ND		500	2500	μg/Kg	N/A	N/A	6/30/2005	
Chlorocthane	ND		500	2500	μg/Kg		N/A	6/30/2005	
Chloroform	ND		500	2500	μg/Kg	N/A	N/A	6/30/2005	
Chloromethane	ND		500	2500	μg/Kg	N/A	N/A	6/30/2005	

3334 Victor Court , Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project ID: 7335 Sheaff's Garage Date Received: 6/23/2005

Sample Collected by: client

Certificate of Analysis - Data Report

Lab#: 44112-002 S	Sample ID: B23 - 10			1	Matrix: Solid	Sample l	Date: 6/22/2005	10:30 AM
EPA 5035A EPA 8260B Parameter	Result Qual	DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	EPA 8260B QC Batch
cis-1,2-Dichloroethene	ND ND	500	2500	μg/Kg	N/A	N/A	6/30/2005	
cis-1,3-Dichloropropene	ND	500	2500	μg/Kg	N/A	N/A	6/30/2005	
Cyclohexanone	ND	500	20000	μg/Kg	N/A	N/A	6/30/2005	
Dibromochloromethane	ND	500	2500	μg/Kg	N/A	N/A	6/30/2005	
Dibromomethane	ND	500	2500	μg/Kg	N/A	N/A	6/30/2005	
Dichlorodifluoromethane	ND	500	2500	μg/Kg	N/A	N/A	6/30/2005	
Diisopropyl Ether	ND	500	2500	μg/Kg	N/A	N/A	6/30/2005	
Ethyl Benzene	5100	500	2500	μg/Kg	N/A	N/A	6/30/2005	
Freon 113	ND	500	2500	μg/Kg	N/A	N/A	6/30/2005	
Hexachlorobutadiene	ND	500	2500	μg/Kg	N/A	N/A	6/30/2005	
Iodomethane	ND	500	20000	μg/Kg	N/A	N/A	6/30/2005	
Isopropanol	ND	500	50000	μg/Kg	N/A	N/A	6/30/2005	
Isopropylbenzene	ND	500	2500	μg/Kg	N/A	N/A	6/30/2005	
Methyl-t-butyl Ether	ND	500	2500	μg/Kg	N/A	N/A	6/30/2005	
Methylene Chloride	ND	500	12000	μg/Kg	N/A	N/A	6/30/2005	
n-Butylbenzene	3100	500	2500	μg/Kg	N/A	N/A	6/30/2005	
n-Propylbenzene	4400	500	2500	μg/Kg	N/A	N/A	6/30/2005	
Naphthalene	5000	500	2500	μg/Kg	N/A	N/A	6/30/2005	
p-Isopropyltoluene	ND	500	2500	μg/Kg	N/A	N/A	6/30/2005	
Pentachloroethane	ND ND	500	2500	μg/Kg	N/A	N/A	6/30/2005	
sec-Butylbenzene	ND	500	2500	μg/Kg	N/A	N/A	6/30/2005	
•	ND	500	2500	μg/Kg	N/A	N/A	6/30/2005	
Styrene	ND	500	2500	μg/Kg	N/A	N/A	6/30/2005	
tert-Amyl Methyl Ether	ND	500	20000	μg/Kg	N/A	N/A	6/30/2005	
tert-Butanol (TBA)	ND ND	500	2500	μg/Kg	N/A	N/A	6/30/2005	
tert-Butyl Ethyl Ether	ND	500	2500	μg/Kg	N/A	N/A	6/30/2005	
tert-Butylbenzene	ND	500	2500	μg/Kg	N/A	N/A	6/30/2005	
Tetrachloroethene	ND	500	20000	μg/Kg	N/A	N/A	6/30/2005	
Tetrahydrofuran	ND ND	500	2500	μg/Kg	N/A	N/A	6/30/2005	
Toluene	ND ND	500	2500	μg/Kg	N/A	N/A	6/30/2005	
trans-1,2-Dichloroethene		500	2500	μg/Kg μg/Kg	N/A	N/A	6/30/2005	
trans-1,3-Dichloropropene	ND	500	20000	μg/Kg μg/Kg	N/A	N/A	6/30/2005	
trans-1,4-Dichloro-2-butene	ND		2500	μg/Kg μg/Kg	N/A	N/A	6/30/2005	
Trichloroethene	ND	500		μg/Kg μg/Kg	N/A N/A	N/A	6/30/2005	
Trichlorofluoromethane	ND	500	2500		N/A N/A	N/A	6/30/2005	
Vinyl Chloride	ND	500	2500	μg/Kg		N/A N/A	6/30/2005	
Xylenes, Total	29000	500	5000	μg/Kg	N/A	IN/A	0/30/2003	

Surrogate	Surrogate Recovery	Contro	l Li	mits (%)
4-Bromofluorobenzene	83.9	70	-	125
Dibromofluoromethane	88.1	70	-	125
Toluene-d8	83.6	70	-	125

3334 Victor Court , Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project ID: 7335 Sheaff's Garage Date Received: 6/23/2005

Sample Collected by: client

Certificate of Analysis - Data Report

Lab #: 44112-002	Sample ID: B23 - 10			Ī	Matrix: Solid	Sample 1	10:30 AM	
EPA 3050B EPA 6010B Parameter	Result Qual	DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	Metals QC Batch
Cadmium	ND	1	1.0	mg/Kg	6/28/2005	SM050628	6/29/2005	SM050628
Chromium	47	1	1.0	mg/Kg	6/28/2005	SM050628	6/29/2005	SM050628
Lead	7.2	1	1.0	mg/Kg	6/28/2005	SM050628	6/29/2005	SM050628
Nickel	63	1	1.0	mg/Kg	6/28/2005	SM050628	6/29/2005	SM050628
Zinc	50	1	2.0	mg/Kg	6/28/2005	SM050628	6/29/2005	SM050628
						200	Analyzed by. Equeja	

Reviewed by: dqueja

GC-MS							TPH as Gasol	ine - GCMS
Parameter	Result Qual	DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	300000	500	25000	μg/Kg	N/A	N/A	6/30/2005	
Surrogate	Surrogate Recovery	Control	Limits (%)				Analyzed by: MFelix	
4-Bromofluorobenzene	83.9	70	- 125				Reviewed by: BDhaba	lia
Dibromofluoromethane	88.1	70	- 125					
Toluene-d8	83.6	70	- 125					
SM 5520 C							Oil &	& Grease-IR

QC Batch **Prep Batch Analysis Date Prep Date** DF **Detection Limit** Units Result Qual Parameter SOGIR050624 SINO050624 6/24/2005 6/24/2005 230 25 mg/Kg Oil and Grease, Total

> Analyzed by: Jisiderio Reviewed by: rlazaro

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project ID: 7335 Sheaff's Garage Date Received: 6/23/2005

Sample Collected by: client

Certificate of Analysis - Data Report

Lab#:	44112-003	Sample ID:	B23 - 11.5
1.400 H.	44114-003	Sample ID.	D#3 - 11.5

Matrix:	Solid	Sample Date:	6/22/2005	10:30 AM

EPA 5035A EPA 8260B		,							8260Petroleum
Parameter	Result	Qual	DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	ND		1000	5000	μg/Kg	N/A	N/A	6/30/2005	PMS050627
Toluene	16000		1000	5000	μg/Kg	N/A	N/A	6/30/2005	PMS050627
Ethyl Benzene	9200		1000	5000	μg/Kg	N/A	N/A	6/30/2005	PMS050627
Xylenes, Total	53000		1000	10000	μg/Kg	N/A	N/A	6/30/2005	PMS050627
Methyl-t-butyl Ether	ND		1000	5000	μg/Kg	N/A	N/A	6/30/2005	PMS050627
1.2-Dichloroethane	ND		1000	5000	μg/Kg	N/A	N/A	6/30/2005	PMS050627
1,2-Dibromoethane (EDB)	ND		1000	5000	μg/Kg	N/A	N/A	6/30/2005	PMS050627

 Surrogate
 Surrogate Recovery
 Control Limits (%)

 4-Bromofluorobenzene
 82.4
 70
 - 125

 Dibromofluoromethane
 85.6
 70
 - 125

 Toluene-d8
 84.2
 70
 - 125

GC-MS									TPH as Gas	soline - GCMS
Parameter	Result	Qual	DF		Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	420000		1000		50000	μg/Kg	N/A	N/A	6/30/2005	PMS050627
Surrogate	Surrogate Recovery	(Contro	l Li	imits (%)				Analyzed by: MTu	
4-Bromofluorobenzene	82.4		70	-	125				Reviewed by: BDha	abalia
Dibromofluoromethane	85.6		70	-	125					
Toluene-d8	84.2		70	-	125					

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project ID: 7335 Sheaff's Garage Date Received: 6/23/2005

Sample Collected by: client

Certificate of Analysis - Data Report

Lab #: 44112-004	Sample ID:	B23 -	- 15
------------------	------------	-------	------

Matrix:	Solid	Sample Date:	6/22/2005	10:40 AM

EPA 5035A EPA 8260B								8260Petroleum
Parameter	Result Qua	l DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	ND	500	2500	μg/Kg	N/A	N/A	6/30/2005	
Toluene	ND	500	2500	μg/Kg	N/A	N/A	6/30/2005	
Ethyl Benzene	19000	500	2500	μg/Kg	N/A	N/A	6/30/2005	
Xylenes, Total	76000	500	5000	μg/Kg	N/A	N/A	6/30/2005	
Methyl-t-butyl Ether	ND	500	2500	μg/Kg	N/A	N/A	6/30/2005	
1.2-Dichloroethane	ND	500	2500	μg/Kg	N/A	N/A	6/30/2005	
1,2-Dibromoethane (EDB)	ND	500	2500	μg/Kg	N/A	N/A	6/30/2005	
			T : .: (0/)				Analyzed by Mfel	x

Surrogate	Surrogate Recovery	Control Limits (%)	
4-Bromofluorobenzene	82.5	70 - 125	
Dibromofluoromethane	83.3	70 - 125	
Toluene-d8	81.7	70 - 125	

GC-MS								TPH as Gasoline - GCMS	
Parameter .	Result Q	Qual	DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	870000		500	25000	μg/Kg	N/A	N/A	6/30/2005	
Surrogate	Surrogate Recovery	Со	Control Limits (%)					Analyzed by: Mfelix	
4-Bromofluorobenzene	82.5		70 -	. 125				Reviewed by: BDhab	oalia
Dibromofluoromethane	83.3		70	- 125					
Toluene-d8	81.7		70	125					

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project ID: 7335 Sheaff's Garage Date Received: 6/23/2005

Sample Collected by: client

Certificate of Analysis - Data Report

Lab #: 44112-005 Sample ID: B23 - 17

Matrix: Solid

Sample Date: 6/22/2005 10:45 AM

EPA 5035A EPA 8260B								8260Petroleum	
Parameter	Result C	Oual DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch	
Benzene	ND	100	5000	μg/Kg	N/A	N/A	6/30/2005	PMS050627	
Toluene	28000	100		μg/Kg	N/A	N/A	6/30/2005	PMS050627	
	20000	100		μg/Kg	N/A	N/A	6/30/2005	PMS050627	
Ethyl Benzene Xylenes, Total	110000	100		μg/Kg	N/A	N/A	6/30/2005	PMS050627	
•	ND	100		μg/Kg	N/A	N/A	6/30/2005	PMS050627	
Methyl-t-butyl Ether	ND	100		μg/Kg	N/A	N/A	6/30/2005	PMS050627	
1,2-Dichloroethane 1.2-Dibromoethane (EDB)	ND ND	100	-	μg/Kg	N/A	N/A	6/30/2005	PMS050627	

 Surrogate
 Surrogate Recovery
 Control Limits (%)

 4-Bromofluorobenzene
 98.7
 70
 - 125

 Dibromofluoromethane
 88.3
 70
 - 125

 Toluene-d8
 97.5
 70
 - 125

GC-MS							TPH as Gas	soline - GCMS
GC-MS Parameter	Result Q	Qual DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	910000	1000	50000	μg/Kg	N/A	N/A	6/30/2005	PMS050627
Surrogate	Surrogate Recovery	Control	Limits (%)				Analyzed by: MTu	
4-Bromofluorobenzene	98.7	70	- 125				Reviewed by: BDha	abalia
Dibromofluoromethane	88.3	70	- 125					
Toluene-d8	97.5	70	- 125					

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project ID: 7335 Sheaff's Garage Date Received: 6/23/2005

Sample Collected by: client

Certificate of Analysis - Data Report

Lab #: 44112-006 Sample ID: B23-19.5

Matrix: Solid S

Sample Date: 6/22/2005 10:45 AM

EPA 5035A EPA 8260B									8260Petroleum
Parameter	Result	Oual	DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	ND		1	5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
Toluene	ND		1	5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
	ND		1	5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
Ethyl Benzene	ND		1	10	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
Xylenes, Total	ND ND		1	5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
Methyl-t-butyl Ether	ND ND		1	5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
1,2-Dichloroethane 1,2-Dibromoethane (EDB)	ND ND		1	5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B

SurrogateSurrogate RecoveryControl Limits (%)4-Bromofluorobenzene82.570-125Dibromofluoromethane83.970-125Toluene-d885.970-125

CC MS									TPH as Ga	isoline - GCMS
GC-MS Parameter	Result Qu	ıal	DF	1	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	61		1		50	μg/Kg	N/A	N/A	6/29/2005	SMS3050628B
Surrogate	Surrogate Recovery	C	Control Limits (%)						Analyzed by: MaiC	ChiTu
4-Bromofluorobenzene	82.5		70	-	125				Reviewed by: BDl	nabalia
Dibromofluoromethane	83.9		70	-	125					
Toluene-d8	85.9		70	-	125					

3334 Victor Court , Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

10:50 AM

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project ID: 7335 Sheaff's Garage Date Received: 6/23/2005

Sample Collected by: client

Certificate of Analysis - Data Report

Lab #: 44112-007 Sample ID: B23-24.5 Matrix: Solid Sample Date: 6/22/2005

								8260Petroleum
Result	Oual	DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
		1	5.0	μg/Kg	N/A	N/A	6/29/2005	SMS3050629
		1	5.0	ug/Kg	N/A	N/A	6/29/2005	SMS3050629
		1			N/A	N/A	6/29/2005	SMS3050629
		1			N/A	N/A	6/29/2005	SMS3050629
		1				N/A	6/29/2005	SMS3050629
		1				N/A	6/29/2005	SMS3050629
		1					6/29/2005	SMS3050629
	Result ND ND ND ND S1 ND ND ND	ND ND ND ND ND 51	ND 1	ND 1 5.0 ND 1 5.0 ND 1 5.0 ND 1 10 51 1 5.0 ND 1 5.0	ND 1 5.0 μg/Kg ND 1 5.0 μg/Kg ND 1 5.0 μg/Kg ND 1 10 μg/Kg 51 1 5.0 μg/Kg ND 1 5.0 μg/Kg ND 1 5.0 μg/Kg	ND 1 5.0 μg/Kg N/A ND 1 10 μg/Kg N/A ND 1 10 μg/Kg N/A ND 1 5.0 μg/Kg N/A ND 1 5.0 μg/Kg N/A	ND 1 5.0 μg/Kg N/A N/A ND 1 5.0 μg/Kg N/A N/A ND 1 5.0 μg/Kg N/A N/A ND 1 10 μg/Kg N/A N/A 51 1 5.0 μg/Kg N/A N/A ND 1 5.0 μg/Kg N/A N/A ND 1 5.0 μg/Kg N/A N/A	Result Qual DF Detection Limit Units Prep Date Prep Batch Analysis Date ND 1 5.0 μg/Kg N/A N/A 6/29/2005 ND 1 5.0 μg/Kg N/A N/A 6/29/2005 ND 1 10 μg/Kg N/A N/A 6/29/2005 ND 1 10 μg/Kg N/A N/A 6/29/2005 51 1 5.0 μg/Kg N/A N/A 6/29/2005 ND 1 5.0 μg/Kg N/A N/A 6/29/2005

Surrogate	Surrogate Recovery	Cor	tro	l Li	mits (%)	Analyzed by: Mfelix
9	9 -	7	0	_	125	Reviewed by: BDhabalia
4-Bromofluorobenzene	81.0	,	U	-	123	
Dibromofluoromethane	88.3	7	0	-	125	
Toluene-d8	85.1	7	0	-	125	

CCMC							TPH as Ga	soline - GCMS
GC-MS Parameter	Result Q	ual DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	58	1	50	μg/Kg	N/A	N/A	6/29/2005	SMS3050629
Surrogate	Surrogate Recovery	Conti	ol Limits (%)				Analyzed by: Mfeli	x
4-Bromofluorobenzene	81.0	70	- 125				Reviewed by: BDh	abalia
Dibromofluoromethane	88.3	70	- 125					
Toluene-d8	85.1	70	- 125					

3334 Victor Court , Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project ID: 7335 Sheaff's Garage Date Received: 6/23/2005

Sample Collected by: client

Certificate of Analysis - Data Report

Lab #: 44112-008 Samp	ole ID: B21-W			N				
EPA 5030B EPA 8260B EPA 62	24 Result Qual	DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	EPA 8260B QC Batch
Parameter	ND	1000	500	μg/L	N/A	N/A	6/26/2005	WMS1050626
1,1,1,2-Tetrachloroethane	ND ND	1000	500	μg/L	N/A	N/A	6/26/2005	WMS1050626
1,1,1-Trichloroethane		1000	500	μg/L	N/A	N/A	6/26/2005	WMS1050626
1,1,2,2-Tetrachloroethane	ND	1000	500	μg/L μg/L	N/A	N/A	6/26/2005	WMS1050626
1,1,2-Trichloroethane	ND	1000	500	μg/L μg/L	N/A	N/A	6/26/2005	WMS1050626
1,1-Dichloroethane	ND		500	μg/L μg/L	N/A	N/A	6/26/2005	WMS1050626
1,1-Dichloroethene	ND	1000	500	μg/L μg/L	N/A	N/A	6/26/2005	WMS1050620
1,1-Dichloropropene	ND	1000			N/A	N/A	6/26/2005	WMS1050626
1,2,3-Trichlorobenzene	ND	1000	5000	μg/L α/I	N/A	N/A	6/26/2005	WMS1050626
1,2,3-Trichloropropane	ND	1000	500	μg/L	N/A	N/A	6/26/2005	WMS1050626
1,2,4-Trichlorobenzene	ND	1000	5000	μg/L		N/A	6/26/2005	WMS1050620
1,2,4-Trimethylbenzene	ND	1000	5000	μg/L	N/A	N/A	6/26/2005	WMS1050620
1,2-Dibromo-3-Chloropropane	ND	1000	5000	μg/L	N/A		6/26/2005	WMS1050626
1,2-Dibromoethane (EDB)	ND	1000	500	μg/L	N/A	N/A	6/26/2005	WMS1050626
1,2-Dichlorobenzene	ND	1000	500	μg/L	N/A	N/A	6/26/2005	WMS1050626
1,2-Dichloroethane	ND	1000	500	μg/L	N/A	N/A		WMS1050626
1,2-Dichloropropane	ND	1000	500	μg/L	N/A	N/A	6/26/2005	WMS1050626
1,3,5-Trimethylbenzene	ND	1000	5000	μg/L	N/A	N/A	6/26/2005	
1,3-Dichlorobenzene	ND	1000	500	μg/L	N/A	N/A	6/26/2005	WMS105062
1,3-Dichloropropane	ND	1000	500	μg/L	N/A	N/A	6/26/2005	WMS105062
1,4-Dichlorobenzene	ND	1000	500	μg/L	N/A	N/A	6/26/2005	WMS105062
1,4-Dioxane	ND	1000	50000	μg/L	N/A	N/A	6/26/2005	WMS105062
2,2-Dichloropropane	ND	1000	500	μg/L	N/A	N/A	6/26/2005	WMS105062
2-Butanone (MEK)	ND	1000	20000	μg/L	N/A	N/A	6/26/2005	WMS105062
2-Chloroethyl-vinyl Ether	ND	1000	5000	μg/L	N/A	N/A	6/26/2005	WMS105062
2-Chlorotoluene	ND	1000	5000	$\mu g/L$	N/A	N/A	6/26/2005	WMS105062
2-Hexanone	ND	1000	20000	$\mu g/L$	N/A	N/A	6/26/2005	WMS105062
4-Chlorotoluene	ND	1000	5000	μg/L	N/A	N/A	6/26/2005	WMS105062
4-Methyl-2-Pentanone(MIBK)	ND	1000	20000	μg/L	N/A	N/A	6/26/2005	WMS105062
Acetone	ND	1000	20000	μg/L	N/A	N/A	6/26/2005	WMS105062
Acetonitrile	ND	1000	5000	μg/L	N/A	N/A	6/26/2005	WMS105062
Acrolein	ND	1000	5000	μg/L	N/A	N/A	6/26/2005	WMS105062
	ND	1000	5000	μg/L	N/A	N/A	6/26/2005	WMS105062
Acrylonitrile	21000	1000	500	μg/L	N/A	N/A	6/26/2005	WMS105062
Benzene	ND	1000	5000	μg/L	N/A	N/A	6/26/2005	WMS105062
Benzyl Chloride	ND ND	1000	500	μg/L	N/A	N/A	6/26/2005	WMS105062
Bromobenzene		1000	500	μg/L	N/A	N/A	6/26/2005	WMS105062
Bromochloromethane	ND	1000	500	μg/L	N/A	N/A	6/26/2005	WMS105062
Bromodichloromethane	ND		500	μg/L	N/A	N/A	6/26/2005	WMS105062
Bromoform	ND	1000	500	μg/L μg/L	N/A	N/A	6/26/2005	WMS105062
Bromomethane	ND	1000			N/A	N/A	6/26/2005	WMS105062
Carbon Disulfide	ND	1000	500	μg/L		N/A	6/26/2005	WMS105062
Carbon Tetrachloride	ND	1000	500	μg/L	N/A	N/A	6/26/2005	WMS105062
Chlorobenzene	ND	1000	500	μg/L	N/A		6/26/2005	WMS105062
Chloroethane	ND	1000	500	μg/L	N/A	N/A	6/26/2005	WMS105062
Chloroform	ND	1000	500	μg/L	N/A	N/A		WMS10506
Chloromethane	ND	1000	500	μg/L	N/A	N/A	6/26/2005	W 1019 10300

3334 Victor Court , Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project ID: 7335 Sheaff's Garage Date Received: 6/23/2005

Sample Collected by: client

Certificate of Analysis - Data Report

Lab #: 44112-008 Sample ID: B21-W Matrix: Liquid Sample Date: 6/22/2005

Lab #: 44112-008	Sample ID: B21-W				viatrix. Eig	and Sample 1	yate. 0/22/2000	
EPA 5030B EPA 8260B		ıal DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	EPA 8260B QC Batch
Parameter	ND ND	1000	500	μg/L	N/A	N/A	6/26/2005	WMS1050626
cis-1,2-Dichloroethene	ND ND	1000	500	μg/L	N/A	N/A	6/26/2005	WMS1050626
cis-1,3-Dichloropropene	ND	1000	20000	μg/L	N/A	N/A	6/26/2005	WMS1050626
Cyclohexanone	ND ND	1000	500	μg/L	N/A	N/A	6/26/2005	WMS1050626
Dibromochloromethane	ND ND	1000	500	μg/L	N/A	N/A	6/26/2005	WMS1050626
Dibromomethane	ND ND	1000	500	μg/L	N/A	N/A	6/26/2005	WMS1050626
Dichlorodifluoromethane	ND ND	1000	5000	μg/L	N/A	N/A	6/26/2005	WMS1050626
Diisopropyl Ether	ND 4500	1000	500	μg/L	N/A	N/A	6/26/2005	WMS1050626
Ethyl Benzene		1000	5000	μg/L	N/A	N/A	6/26/2005	WMS1050626
Freon 113	ND	1000	5000	μg/L	N/A	N/A	6/26/2005	WMS1050626
Hexachlorobutadiene	ND	1000	1000	μg/L μg/L	N/A	N/A	6/26/2005	WMS1050626
Iodomethane	ND	1000	20000	μg/L μg/L	N/A	N/A	6/26/2005	WMS1050626
Isopropanol	ND		1000	μg/L μg/L	N/A	N/A	6/26/2005	WMS1050626
Isopropylbenzene	ND	1000	1000	μg/L μg/L	N/A	N/A	6/26/2005	WMS1050626
Methyl-t-butyl Ether	ND	1000	5000	μg/L μg/L	N/A	N/A	6/26/2005	WMS1050626
Methylene Chloride	ND	1000	5000	μg/L μg/L	N/A	N/A	6/26/2005	WMS1050626
n-Butylbenzene	ND	1000		μg/L μg/L	N/A	N/A	6/26/2005	WMS1050626
n-Propylbenzene	ND	1000	5000 5000	μg/L μg/L	N/A	N/A	6/26/2005	WMS1050626
Naphthalene	ND	1000		μg/L μg/L	N/A	N/A	6/26/2005	WMS1050626
p-Isopropyltoluene	ND	1000	5000		N/A	N/A	6/26/2005	WMS1050626
Pentachloroethane	ND	1000	500	μg/L	N/A	N/A	6/26/2005	WMS1050626
sec-Butylbenzene	ND	1000	5000	μg/L	N/A	N/A	6/26/2005	WMS1050626
Styrene	ND	1000	500	μg/L	N/A N/A	N/A	6/26/2005	WMS1050626
tert-Amyl Methyl Ether	ND	1000	5000	μg/L	N/A	N/A	6/26/2005	WMS1050626
tert-Butanol (TBA)	ND	1000	10000	μg/L		N/A	6/26/2005	WMS1050626
tert-Butyl Ethyl Ether	ND	1000	5000	μg/L	N/A	N/A N/A	6/26/2005	WMS1050626
tert-Butylbenzene	ND	1000	5000	μg/L	N/A		6/26/2005	WMS1050626
Tetrachloroethene	ND	1000	500	μg/L	N/A	N/A N/A	6/26/2005	WMS1050626
Tetrahydrofuran	ND	1000	20000	μg/L	N/A		6/26/2005	WMS1050626
Toluene	24000	1000	500	μg/L	N/A	N/A		WMS1050626
trans-1,2-Dichloroethene	ND	1000	500	μg/L	N/A	N/A	6/26/2005	WMS1050626
trans-1,3-Dichloropropene	ND	1000	500	μg/L	N/A	N/A	6/26/2005	
trans-1,4-Dichloro-2-butene	e ND	1000	1000	μg/L	N/A	N/A	6/26/2005	WMS1050626
Trichloroethene	ND	1000	500	μg/L	N/A	N/A	6/26/2005	WMS1050626 WMS1050626
Trichlorofluoromethane	ND	1000	500	μg/L	N/A	N/A	6/26/2005	
Vinyl Acetate	ND	1000	5000	μg/L	N/A	N/A	6/26/2005	WMS1050626
Vinyl Chloride	ND	1000	500	μg/L	N/A	N/A	6/26/2005	WMS1050626
Xylenes, Total	23000	1000	500	μg/L	N/A	N/A	6/26/2005	WMS1050626

Surrogate	Surrogate Recovery	Contro	l Li	mits (%)
4-Bromofluorobenzene	95.8	70	-	125
Dibromofluoromethane	98.6	70	-	125
Toluene-d8	100	70	-	125

Analyzed by: XBian Reviewed by: MaiChiTu

3334 Victor Court , Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project ID: 7335 Sheaff's Garage Date Received: 6/23/2005

Sample Collected by: client

Certificate of Analysis - Data Report

Lab #: 44112-008	Sample ID: B21-W	Matrix: Liquid	Sample Date: 6/22/2005
------------------	------------------	----------------	-------------------------------

DDA 412.2								0	il & Grease-IR
EPA 413.2	Result	Oual	DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Parameter Oil and Grease, Total	5800	Quii	200	1000	mg/L	6/27/2005	WOGIR050627	6/27/2005	WOGIR050627
On and Orease, Total							100	A 1 J. J. L Timid	

Analyzed by: Jisiderio
Reviewed by: RLAZARO

EPA 3005A EPA	A 6010B EPA 200.7									Metals
Parameter	4 0010B E1A 200.7	Result	Qual	DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Cadmium		0.038		1	0.0020	mg/L	6/24/2005	WM050624	6/28/2005	WM050624
Chromium		1.4		1	0.0050	mg/L	6/24/2005	WM050624	6/28/2005	WM050624
Lead		0.75		1	0.0050	mg/L	6/24/2005	WM050624	6/28/2005	WM050624
Nickel		1.5		1	0.0050	mg/L	6/24/2005	WM050624	6/28/2005	WM050624
		1.9		1	0.010	mg/L	6/24/2005	WM050624	6/28/2005	WM050624
Zinc		1.7			3.3.0	8-				

Analyzed by: Equeja Reviewed by: dqueja

EPA 5030B GC-MS								TPH as Gas	oline - GC-MS
Parameter	Result	Qual	DF	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	130000		1000	25000	μg/L	N/A	N/A	6/26/2005	WMS1050626

irri as Gasonne	150000		
Surrogate	Surrogate Recovery	Control Limits (%)	Analyzed by: XBian
4-Bromofluorobenzene	102	70 - 125	Reviewed by: MaiChiTu
Dibromofluoromethane	90.1	70 - 125	
Toluene-d8	97.8	70 - 125	

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Laboratory Control Sample / Duplicate - Liquid - EPA 6010B - Metals

QC/Prep Batch ID: WM050624

Reviewed by: dqueja - 06/24/05

QC/Prep Date: 6/24/2005

LCS								
Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery			Recovery Limits
Antimony	< 0.010	0.50	0.546	mg/L	109			75 - 125
Arsenic	< 0.010	0.50	0.568	mg/L	114			75 - 125
Barium	<0.0050	0.50	0.554	mg/L	111			75 - 125
Beryllium	<0.0050	0.50	0.537	mg/L	107			75 - 125
Cadmium	<0.0020	0.50	0.520	mg/L	104			75 - 125
Chromium	<0.0050	0.50	0.510	mg/L	102			75 - 125
Cobalt	<0.0050	0.50	0.525	mg/L	105			75 - 125
Copper	<0.0050	0.50	0.503	mg/L	101			75 - 125
Lead	<0.0050	0.50	0.518	mg/L	104			75 - 125
Molybdenum	<0.0050	0.50	0.518	mg/L	104			75 - 125
Nickel	<0.0050	0.50	0.512	mg/L	102			75 - 125
Selenium	<0.020	0.50	0.549	mg/L	110			75 - 125
Silver	<0.0050	0.50	0.567	mg/L	113			75 - 125
Thallium	<0.020	0.50	0.473	mg/L	94.6			75 - 125
Tin	<0.050	1.0	0.936	mg/L	93.6			75 - 125
Titanium	< 0.0020	0.50	0.510	mg/L	102			75 - 125
Vanadium	< 0.050	0.50	0.513	mg/L	103			75 - 125
Zinc	<0.010	0.50	0.561	mg/L	112			75 - 125
LCSD Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
Parameter	Method Blank			Units mg/L	% Recovery	RPD 0.73	RPD Limits 25.0	Recovery Limits 75 - 125
Parameter Antimony	<0.010	0.50	0.550		•			
Parameter Antimony Arsenic	<0.010 <0.010	0.50 0.50		mg/L	110	0.73	25.0	75 - 125
Parameter Antimony Arsenic Barium	<0.010 <0.010 <0.0050	0.50 0.50 0.50	0.550 0.576	mg/L mg/L	110 115	0.73 1.4	25.0 25.0	75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium	<0.010 <0.010 <0.0050 <0.0050	0.50 0.50 0.50 0.50	0.550 0.576 0.551	mg/L mg/L mg/L	110 115 110	0.73 1.4 0.54	25.0 25.0 25.0	75 - 125 75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium	<0.010 <0.010 <0.0050 <0.0050 <0.0020	0.50 0.50 0.50	0.550 0.576 0.551 0.533	mg/L mg/L mg/L mg/L	110 115 110 107	0.73 1.4 0.54 0.75	25.0 25.0 25.0 25.0	75 - 125 75 - 125 75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium	<0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50	0.550 0.576 0.551 0.533 0.515	mg/L mg/L mg/L mg/L mg/L	110 115 110 107 103	0.73 1.4 0.54 0.75 0.97	25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125 75 - 125 75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt	<0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50	0.550 0.576 0.551 0.533 0.515 0.506	mg/L mg/L mg/L mg/L mg/L mg/L	110 115 110 107 103 101	0.73 1.4 0.54 0.75 0.97 0.79	25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper	<0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.550 0.576 0.551 0.533 0.515 0.506 0.518 0.499	mg/L mg/L mg/L mg/L mg/L mg/L	110 115 110 107 103 101	0.73 1.4 0.54 0.75 0.97 0.79 1.3	25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead	<0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.550 0.576 0.551 0.533 0.515 0.506 0.518	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	110 115 110 107 103 101 104 99.8	0.73 1.4 0.54 0.75 0.97 0.79 1.3 0.80	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum	<0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.550 0.576 0.551 0.533 0.515 0.506 0.518 0.499 0.511	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	110 115 110 107 103 101 104 99.8 102	0.73 1.4 0.54 0.75 0.97 0.79 1.3 0.80 1.4	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel	<0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.550 0.576 0.551 0.533 0.515 0.506 0.518 0.499 0.511	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	110 115 110 107 103 101 104 99.8 102	0.73 1.4 0.54 0.75 0.97 0.79 1.3 0.80 1.4 1.2	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium	<0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.550 0.576 0.551 0.533 0.515 0.506 0.518 0.499 0.511 0.512	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	110 115 110 107 103 101 104 99.8 102 102	0.73 1.4 0.54 0.75 0.97 0.79 1.3 0.80 1.4 1.2	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver	<0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.550 0.576 0.551 0.533 0.515 0.506 0.518 0.499 0.511 0.512 0.506 0.532	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	110 115 110 107 103 101 104 99.8 102 102 101 106	0.73 1.4 0.54 0.75 0.97 0.79 1.3 0.80 1.4 1.2 1.2	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium	<0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.550 0.576 0.551 0.533 0.515 0.506 0.518 0.499 0.511 0.512 0.506 0.532 0.559	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	110 115 110 107 103 101 104 99.8 102 102 101 106 112	0.73 1.4 0.54 0.75 0.97 0.79 1.3 0.80 1.4 1.2 1.2 3.1	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium Tin	<0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0020 <0.0020	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.550 0.576 0.551 0.533 0.515 0.506 0.518 0.499 0.511 0.512 0.506 0.532 0.559	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	110 115 110 107 103 101 104 99.8 102 102 101 106 112 95.0	0.73 1.4 0.54 0.75 0.97 0.79 1.3 0.80 1.4 1.2 1.2 3.1 1.4 0.42	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium Tin Titanium	<0.010 <0.010 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.550 0.576 0.551 0.533 0.515 0.506 0.518 0.499 0.511 0.512 0.506 0.532 0.559 0.475	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	110 115 110 107 103 101 104 99.8 102 102 101 106 112 95.0 90.8	0.73 1.4 0.54 0.75 0.97 0.79 1.3 0.80 1.4 1.2 1.2 3.1 1.4 0.42 3.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium Tin	<0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.550 0.576 0.551 0.533 0.515 0.506 0.518 0.499 0.511 0.512 0.506 0.532 0.559 0.475 0.908 0.506	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	110 115 110 107 103 101 104 99.8 102 102 101 106 112 95.0 90.8 101	0.73 1.4 0.54 0.75 0.97 0.79 1.3 0.80 1.4 1.2 1.2 3.1 1.4 0.42 3.0 0.79	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Matrix Spike / Matrix Spike Duplicate - Liquid - EPA 6010B - Metals

QC/Prep Batch ID: WM050624

Reviewed by: dqueja - 06/29/05

QC/Prep Date: 6/24/2005

MS	Sample Spik	ed: 44118-	005				
	Sample Result	Spike Amount	Spike Result	Units	Analysis Date	% Recovery	Recovery Limits
Parameter	ND	0.50	0.560	mg/L	6/24/2005	112	75 - 120
Antimony Arsenic	ND	0.50	0.567	mg/L	6/24/2005	113	75 - 120
Barium	0.0350	0.50	0.560	mg/L	6/24/2005	105	75 - 120
Beryllium	ND	0.50	0.534	mg/L	6/24/2005	107	75 - 120
Cadmium	0.00500	0.50	0.526	mg/L	6/24/2005	104	75 - 120
Chromium	ND	0.50	0.508	mg/L	6/24/2005	102	75 - 120
Cobalt	0.00500	0.50	0.517	mg/L	6/24/2005	102	75 - 120
Copper	1.22	0.50	1.72	mg/L	6/24/2005	99.8	75 - 120
Lead	0.383	0.50	0.892	mg/L	6/24/2005	102	75 - 120
Molybdenum	0.0120	0.50	0.529	mg/L	6/24/2005	103	75 - 120
Nickel	0.0210	0.50	0.519	mg/L	6/24/2005	99.6	75 - 120
Selenium	ND	0.50	0.582	mg/L	6/24/2005	116	75 - 120
Silver	ND	0.50	0.556	mg/L	6/24/2005	111	75 - 120
Thallium	0.0160	0.50	0.478	mg/L	6/24/2005	92.4	75 - 120
Vanadium	ND	0.50	0.523	mg/L	6/24/2005	105	75 - 120
Zinc	53.6	0.50	53.0	mg/L	6/24/2005	-124	75 - 120

MSD Sample Spiked: 44118-005

MISD	oumpio opiii								_
Development	Sample Result	Spike Amount	Spike Result	Units	Analysis Date	% Recovery	RPD	RPD Limits	Recovery Limits
Parameter	ND	0.50	0.556	mg/L	6/24/2005	111	0.72	25.0	75 - 120
Antimony		0.50	0.567	mg/L	6/24/2005	113	0.0	25.0	75 - 120
Arsenic	ND				6/24/2005	108	2.8	25.0	75 - 120
Barium	0.0350	0.50	0.575	mg/L		107	0.19	25.0	75 - 120
Beryllium	ND	0.50	0.533	mg/L	6/24/2005			25.0	75 - 120
Cadmium	0.00500	0.50	0.520	mg/L	6/24/2005	103	1.2		
Chromium	ND	0.50	0.502	mg/L	6/24/2005	100	1.2	25.0	75 - 120
Cobalt	0.00500	0.50	0.509	mg/L	6/24/2005	101	1.6	25.0	75 - 120
Copper	1.22	0.50	1.65	mg/L	6/24/2005	86.4	14	25.0	75 - 120
• •	0.383	0.50	0.860	mg/L	6/24/2005	95.4	6.5	25.0	75 - 120
Lead Molybdenum	0.0120	0.50	0.530	mg/L	6/24/2005	104	0.19	25.0	75 - 120
Nickel	0.0210	0.50	0.515	mg/L	6/24/2005	98.8	0.81	25.0	75 - 120
Selenium	ND	0.50	0.589	mg/L	6/24/2005	118	1.2	25.0	75 - 120
	ND	0.50	0.569	mg/L	6/24/2005	114	2.3	25.0	75 - 120
Silver	0.0160	0.50	0.471	mg/L	6/24/2005	91.0	1.5	25.0	75 - 120
Thallium	ND	0.50	0.517	mg/L	6/24/2005	103	1.2	25.0	75 - 120
Vanadium		0.50	52.6	mg/L	6/24/2005	-200	-47	25.0	75 - 120
Zinc	53.6	0.00			3,2 .,2000				

^{***}No recovery of the MS/MSD for zinc. Sample concentration is 4 times greater than spike added.

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Laboratory Control Sample / Duplicate - Solid - EPA 6010B - Metals

QC/Prep Batch ID: SM050628

Reviewed by: dqueja - 06/29/05

QC/Prep Date: 6/28/2005

	/2005							
LCS Parameter	Method Blank			Units	% Recovery			Recovery Limits 75 - 125
Antimony	<1.0	50	48.3	mg/Kg	96.6			75 - 125 75 - 125
Arsenic	<1.0	50	47.0	mg/Kg	94.0			75 - 125 75 - 125
Barium	<1.0	50	53.0	mg/Kg	106			75 - 125 75 - 125
Beryllium	<1.0	50	47.1	mg/Kg	94.1			
Cadmium	<1.0	50	45.2	mg/Kg	90.5			75 - 125
Chromium	<1.0	50	48.2	mg/Kg	96.5			75 - 125
Cobalt	<1.0	50	49.4	mg/Kg	98.9			75 - 125
Copper	<1.0	50	48.2	mg/Kg	96.4			75 - 125
Lead	<1.0	50	48.3	mg/Kg	96.7			75 - 125
Molybdenum	<1.0	50	49.6	mg/Kg	99.2			75 - 125
Nickel	<1.0	50	47.5	mg/Kg	95.1			75 - 125
Selenium	<2.0	50	43.3	mg/Kg	86.7			75 - 125
Silver	<1.0	50	51.2	mg/Kg	102			75 - 125
Thallium	<2.0	50	42.3	mg/Kg	84.5			75 - 125
Vanadium	<1.0	50	48.3	mg/Kg	96.6			75 - 125
	.0.0	EO	46.1	mg/Kg	92.1			75 - 125
Zinc	<2.0	50	40.1	mg/Ng	02.1			
Zinc							ppp 11: 14:	
	<2.0 Method Blank	Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
LCSD	Method Blank <1.0	Spike Amt	SpikeResult 47.6	Units mg/Kg	% Recovery 95.1	1.5	25.0	Recovery Limits 75 - 125
LCSD Parameter	Method Blank	Spike Amt 50 50	SpikeResult 47.6 46.9	Units mg/Kg mg/Kg	% Recovery 95.1 93.8	1.5 0.21	25.0 25.0	Recovery Limits 75 - 125 75 - 125
LCSD Parameter Antimony	Method Blank <1.0 <1.0 <1.0	Spike Amt 50 50 50	SpikeResult 47.6 46.9 52.4	Units mg/Kg mg/Kg mg/Kg	% Recovery 95.1 93.8 105	1.5 0.21 1.3	25.0 25.0 25.0	Recovery Limits 75 - 125 75 - 125 75 - 125
LCSD Parameter Antimony Arsenic	Method Blank <1.0 <1.0	Spike Amt 50 50	SpikeResult 47.6 46.9 52.4 46.3	Units mg/Kg mg/Kg mg/Kg	% Recovery 95.1 93.8 105 92.6	1.5 0.21 1.3 1.6	25.0 25.0 25.0 25.0	Recovery Limits 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125
LCSD Parameter Antimony Arsenic Barium	Method Blank <1.0 <1.0 <1.0	Spike Amt 50 50 50	SpikeResult 47.6 46.9 52.4 46.3 44.9	Units mg/Kg mg/Kg mg/Kg mg/Kg	% Recovery 95.1 93.8 105 92.6 89.7	1.5 0.21 1.3 1.6 0.80	25.0 25.0 25.0 25.0 25.0	Recovery Limits 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125
LCSD Parameter Antimony Arsenic Barium Beryllium	Method Blank <1.0 <1.0 <1.0 <1.0 <1.0	Spike Amt 50 50 50 50	SpikeResult 47.6 46.9 52.4 46.3	Units mg/Kg mg/Kg mg/Kg	% Recovery 95.1 93.8 105 92.6 89.7 95.8	1.5 0.21 1.3 1.6 0.80 0.71	25.0 25.0 25.0 25.0 25.0 25.0	Recovery Limits 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125
LCSD Parameter Antimony Arsenic Barium Beryllium Cadmium	Method Blank <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	Spike Amt 50 50 50 50 50 50	SpikeResult 47.6 46.9 52.4 46.3 44.9	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	% Recovery 95.1 93.8 105 92.6 89.7 95.8 98.5	1.5 0.21 1.3 1.6 0.80 0.71 0.45	25.0 25.0 25.0 25.0 25.0 25.0 25.0	Recovery Limits 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125
LCSD Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium	Method Blank <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	Spike Amt 50 50 50 50 50 50 50	SpikeResult 47.6 46.9 52.4 46.3 44.9 47.9	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	% Recovery 95.1 93.8 105 92.6 89.7 95.8 98.5 95.9	1.5 0.21 1.3 1.6 0.80 0.71 0.45 0.50	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	Recovery Limits 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125
LCSD Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt	Method Blank <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	Spike Amt 50 50 50 50 50 50 50 50	SpikeResult 47.6 46.9 52.4 46.3 44.9 47.9 49.2	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	% Recovery 95.1 93.8 105 92.6 89.7 95.8 98.5 95.9 96.9	1.5 0.21 1.3 1.6 0.80 0.71 0.45	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	Recovery Limits 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125
LCSD Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper	Method Blank <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	Spike Amt 50 50 50 50 50 50 50 50 50	SpikeResult 47.6 46.9 52.4 46.3 44.9 47.9 49.2 48.0	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	% Recovery 95.1 93.8 105 92.6 89.7 95.8 98.5 95.9 96.9 98.7	1.5 0.21 1.3 1.6 0.80 0.71 0.45 0.50 0.21 0.49	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	Recovery Limits 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125
LCSD Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead	Method Blank <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	Spike Amt 50 50 50 50 50 50 50 50 50 50	SpikeResult 47.6 46.9 52.4 46.3 44.9 47.9 49.2 48.0 48.4 49.3 47.2	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	% Recovery 95.1 93.8 105 92.6 89.7 95.8 98.5 95.9 96.9 98.7 94.4	1.5 0.21 1.3 1.6 0.80 0.71 0.45 0.50 0.21 0.49 0.65	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	Recovery Limits 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125
LCSD Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum	Method Blank <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	50 50 50 50 50 50 50 50 50 50 50 50 50	SpikeResult 47.6 46.9 52.4 46.3 44.9 47.9 49.2 48.0 48.4 49.3	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	% Recovery 95.1 93.8 105 92.6 89.7 95.8 98.5 95.9 96.9 98.7 94.4 86.4	1.5 0.21 1.3 1.6 0.80 0.71 0.45 0.50 0.21 0.49 0.65 0.32	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	Recovery Limits 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125
LCSD Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel	Method Blank <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	50 50 50 50 50 50 50 50 50 50 50 50 50 5	SpikeResult 47.6 46.9 52.4 46.3 44.9 47.9 49.2 48.0 48.4 49.3 47.2	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	% Recovery 95.1 93.8 105 92.6 89.7 95.8 98.5 95.9 96.9 98.7 94.4 86.4 102	1.5 0.21 1.3 1.6 0.80 0.71 0.45 0.50 0.21 0.49 0.65 0.32 0.12	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	Recovery Limits 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125
LCSD Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium	Method Blank <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	50 50 50 50 50 50 50 50 50 50 50 50 50 5	SpikeResult 47.6 46.9 52.4 46.3 44.9 47.9 49.2 48.0 48.4 49.3 47.2 43.2	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	% Recovery 95.1 93.8 105 92.6 89.7 95.8 98.5 95.9 96.9 98.7 94.4 86.4	1.5 0.21 1.3 1.6 0.80 0.71 0.45 0.50 0.21 0.49 0.65 0.32 0.12 2.3	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	Recovery Limits 75 - 125
LCSD Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver	Method Blank <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	5pike Amt 50 50 50 50 50 50 50 50 50 50 50 50 50	SpikeResult 47.6 46.9 52.4 46.3 44.9 47.9 49.2 48.0 48.4 49.3 47.2 43.2 51.2	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	% Recovery 95.1 93.8 105 92.6 89.7 95.8 98.5 95.9 96.9 98.7 94.4 86.4 102	1.5 0.21 1.3 1.6 0.80 0.71 0.45 0.50 0.21 0.49 0.65 0.32 0.12	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	Recovery Limits 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125

3334 Victor Court , Santa Clara, CA 95054

Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Solid - EPA 8260B - 8260Petroleum

QC Batch ID: SMS3050628B

Validated by: BDhabalia - 06/29/05

Validated by: BDhabalia - 06/29/05

QC Batch Analysis Date: 6/28/2005

Parameter	Result	DF	PQLR	Units
1,2-Dibromoethane (EDB)	ND	1	5.0	μg/Kg
1.2-Dichloroethane	ND	1	5.0	μg/Kg
Benzene	ND	1	5.0	μg/Kg
Ethyl Benzene	ND	1	5.0	μg/Kg
Methyl-t-butyl Ether	ND	1	5.0	μg/Kg
Toluene	ND	1	5.0	μg/Kg
	ND	1	10	μg/Kg
Xylenes, Total	ND	•		

Surrogate for Blank	% Recovery	Cont	rol	Limits
4-Bromofluorobenzene	80.4	70	-	125
Dibromofluoromethane	83.8	70	-	125
Toluene-d8	83.2	70	-	125

Method Blank - Solid - GC-MS - TPH as Gasoline - GCMS

QC Batch ID: SMS3050628B

QC Batch Analysis Date: 6/28/2005

Parameter	Result	DF	PQLR	Units
TPH as Gasoline	ND	1	50	μg/Kg

Surrogate for Blank	% Recovery	Cont	rol	Limits
4-Bromofluorobenzene	80.4	70	-	125
Dibromofluoromethane	83.8	70	-	125
Toluene-d8	83.2	70	-	125

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Laboratory Control Sample / Duplicate - Solid - EPA 8260B - 8260Petroleum

QC Batch ID: SMS3050628B

Reviewed by: BDhabalia - 06/29/05

QC Batch ID Analysis Date: 6/28/2005

LCS Parameter	Method Blan	ık Spike Amt	SpikeResult	Units	% Recovery			Recovery Limits
1,1-Dichloroethene	<5.0	40	44.1	μg/Kg	110			70 - 135
Benzene	<5.0	40	39.6	μg/Kg	99.0			70 - 135
Chlorobenzene	<5.0	40	39.4	μg/Kg	98.5			70 - 135
Methyl-t-butyl Ether	<5.0	40	37.0	μg/Kg	92.5			70 - 135
Toluene	<5.0	40	39.0	μg/Kg	97.5			70 - 135
Trichloroethene	<5.0	40	44.5	μg/Kg	111			70 - 135
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	82.6	70 - 125						
Dibromofluoromethane	88.3	70 - 125						
Toluene-d8	84.6	70 - 125						
LCSD								
Parameter	Method Blan	nk Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
1,1-Dichloroethene	<5.0	40	43.2	μg/Kg	108	2.1	30.0	70 - 135
Benzene	<5.0	40	36.9	μg/Kg	92.2	7.1	30.0	70 - 135
Chlorobenzene	<5.0	40	36.6	μg/Kg	91.5	7.4	30.0	70 - 135
Methyl-t-butyl Ether	<5.0	40	36.6	μg/Kg	91.5	1.1	30.0	70 - 135
Toluene	<5.0	40	36.5	μg/Kg	91.2	6.6	30.0	70 - 135
Trichloroethene	<5.0	40	40.9	μg/Kg	102	8.4	30.0	70 - 135
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	80.9	70 - 125						

Laboratory Control Sample / Duplicate - Solid - GC-MS - TPH as Gasoline - GCMS

70 - 125

70 - 125

QC Batch ID: SMS3050628B

Reviewed by: BDhabalia - 06/29/05

QC Batch ID Analysis Date: 6/28/2005

91.1

83

Dibromofluoromethane

Toluene-d8

LCS Parameter TPH as Gasoline	Method B <50	lank Spike Amt 250	SpikeResult 217	Units µg/Kg	% Recovery 86.8			Recovery Limits 70 - 130
Surrogate 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8	% Recovery 88.2 88 95.2	Control Limits 70 - 125 70 - 125 70 - 125						
LCSD Parameter			SpikoBosult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
TPH as Gasoline	Method B <50	lank Spike Amt 250	214	μg/Kg	85.6	1.4	30.0	70 - 130

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Solid - EPA 8260B - 8260Petroleum

QC Batch ID: SMS3050629

Validated by: BDhabalia - 06/30/05

QC Batch Analysis Date: 6/29/2005

Parameter	Result	DF	PQLR	Units
1,2-Dibromoethane (EDB)	ND	1	5.0	μg/Kg
1.2-Dichloroethane	ND	1	5.0	μg/Kg
Benzene	ND	1	5.0	μg/Kg
Ethyl Benzene	ND	1	5.0	μg/Kg
Methyl-t-butyl Ether	ND	1	5.0	μg/Kg
Toluene	ND	1	5.0	μg/Kg
Xylenes, Total	ND	1	10	μg/Kg

Surrogate for Blank	% Recovery	Control Limits			
4-Bromofluorobenzene	80.5	70	-	125	
Dibromofluoromethane	87.1	70	-	125	
Toluene-d8	82.1	70	_	125	

Method Blank - Solid - GC-MS - TPH as Gasoline - GCMS

QC Batch ID: SMS3050629

Validated by: BDhabalia - 06/30/05

QC Batch Analysis Date: 6/29/2005

Parameter	Result	DF	PQLR	Units
TPH as Gasoline	ND	1	50	μg/Kg

Surrogate for Blank	% Recovery	Cont	rol	Limits	S
4-Bromofluorobenzene	80.5	70		125	
Dibromofluoromethane	87.1	70	-	125	
Toluene-d8	82.1	70	-	125	

Fax: (408) 588-0201 3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200

Laboratory Control Sample / Duplicate - Solid - EPA 8260B - 8260Petroleum

Reviewed by: BDhabalia - 06/30/05 QC Batch ID: SMS3050629

QC Batch ID Analysis Date: 6/29/2005

LCS Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery			Recovery Limits
1.1-Dichloroethene	<5.0	40	43.6	μg/Kg	109			70 - 135
Benzene	<5.0	40	40.2	μg/Kg	100			70 - 135
Chlorobenzene	<5.0	40	41.0	μg/Kg	102			70 - 135
Methyl-t-butyl Ether	<5.0	40	37.1	μg/Kg	92.8			70 - 135
Toluene	<5.0	40	40.0	μg/Kg	100			70 - 135
Trichloroethene	<5.0	40	44.7	μg/Kg	112			70 - 135
Surrogate	% Recovery C	ontrol Limits						
4-Bromofluorobenzene	86.7	70 - 125						
Dibromofluoromethane	89	70 - 125						
Toluene-d8	87	70 - 125						
LCSD								
Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
1,1-Dichloroethene	<5.0	40	44.8	μg/Kg	112	2.7	30.0	70 - 135
Benzene	<5.0	40	38.6	μg/Kg	96.5	4.1	30.0	70 - 135
Chlorobenzene	<5.0	40	39.0	μg/Kg	97.5	5.0	30.0	70 - 135
Methyl-t-butyl Ether	<5.0	40	38.3	μg/Kg	95.8	3.2	30.0	70 - 135

39.1

43.4

40 <5.0 Trichloroethene **Control Limits** % Recovery Surrogate 70 - 125 82.4 4-Bromofluorobenzene 70 - 125 93.3 Dibromofluoromethane 86.4 70 - 125 Toluene-d8

<5.0

Methyl-t-butyl Ether

Toluene

Laboratory Control Sample / Duplicate - Solid - GC-MS - TPH as Gasoline - GCMS

40

Reviewed by: BDhabalia - 06/30/05 QC Batch ID: SMS3050629

μg/Kg

μg/Kg

QC Batch ID Analysis Date: 6/29/2005

LCS Parameter TPH as Gasoline	Method B <50	lank Spike Amt 250	SpikeResult 209	Units µg/Kg	% Recovery 83.6			Recovery Limits 70 - 130
Surrogate 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8	% Recovery 87.9 87.8 94.6	Control Limits 70 - 125 70 - 125 70 - 125						
LCSD Parameter	Mathad D	lank Caiko Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
TPH as Gasoline	viethod	250	212	μg/Kg	84.8	1.4	30.0	70 - 130
					•			70 - 130
TPH as Gasoline	<50	250			•			70 - 130
TPH as Gasoline Surrogate	<50 % Recovery	250 Control Limits			•			70 - 130

70 - 135

70 - 135

2.3

3.0

97.8

108

30.0

30.0

Fax: (408) 588-0201 3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200

Laboratory Control Sample / Duplicate - Solid - SM 5520 C - Oil & Grease-IR

Reviewed by: rlazaro - 06/27/05 QC/Prep Batch ID: SINO050624

QC/Prep Date: 6/24/2005

LCS

Recovery Limits % Recovery Method Blank Spike Amt SpikeResult Units Parameter

75 - 125 <25 280 288 mg/Kg 104 Oil and Grease, Total

LCSD

RPD Limits Recovery Limits RPD % Recovery Method Blank Spike Amt SpikeResult Units Parameter 75 - 125 30.0 3.0 280 279 mg/Kg 101 <25 Oil and Grease, Total

Phone: (408) 588-0200 Fax: (408) 588-0201 3334 Victor Court , Santa Clara, CA 95054

Laboratory Control Sample / Duplicate - Liquid - EPA 413.2 - Oil & Grease-IR

Reviewed by: RLAZARO - 06/27/05 QC/Prep Batch ID: WOGIR050627

QC/Prep Date: 6/27/2005

LCS

Recovery Limits Method Blank Spike Amt SpikeResult Units % Recovery Parameter

75 - 125 55 54.3 mg/L 98.4 <5.0 Oil and Grease, Total

LCSD

% Recovery RPD RPD Limits Recovery Limits Method Blank Spike Amt SpikeResult Units Parameter

75 - 125 25.0 56.1 mg/L 102 3.2 55 < 5.0 Oil and Grease, Total

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Liquid - EPA 8260B - EPA 8260B

QC Batch ID: WMS1050626 Validated by: MaiChiTu - 06/27/05

QC Batch Analysis Date: 6/26/2005

1,1,1,2-Tetrachloroethane	Parameter	Result	DF	PQLR	Units
1.1.1-Trichioroethane ND 1 0.50 µg/L 1.1.2-Trichioroethane ND 1 0.50 µg/L 1.1.2-Trichioroethane ND 1 0.50 µg/L 1.1-Dichioroethane ND 1 0.50 µg/L 1.1-Dichioropropene ND 1 0.50 µg/L 1.2.3-Trichioropropene ND 1 5.0 µg/L 1.2.3-Trichioropropene ND 1 5.0 µg/L 1.2.3-Trichioropropene ND 1 5.0 µg/L 1.2.4-Trimetrylbenzene ND 1 5.0 µg/L 1.2-Hirmon-3-Chloropropane ND 1 5.0 µg/L 1.2-Dichiorobenzene ND 1 0.50 µg/L 1.2-Dichiorobenzene ND 1 0.50 µg/L 1.2-Dichioropropane ND 1 0.50 µg/L 1.2-Dichioropropane ND 1 0.50 µg/L 1.3-Dichioropropane ND 1		ND	1	0.50	μg/L
1,1,2,2-Tetrachloroethane		ND	1	0.50	μg/L
1,1.2-Trichloroethane	• •	ND	1	0.50	μg/L
1,1-Dichloroethane		ND	1	0.50	μg/L
1,1-Dichloroethene		ND	1	0.50	μg/L
1,1-Dichloropropene	•	ND	1	0.50	μg/L
1,2,3-Trichloropropane	·	ND	1	0.50	μg/L
1,2,3-Trichloropropane		ND	1	5.0	μg/L
1,2,4-Trichlorobenzene ND 1 5.0 µg/L 1,2,4-Trimethylbenzene ND 1 5.0 µg/L 1,2-Dibromoethane (EDB) ND 1 0.50 µg/L 1,2-Dichlorobenzene ND 1 0.50 µg/L 1,2-Dichloroptropane ND 1 0.50 µg/L 1,2-Dichloroptropane ND 1 0.50 µg/L 1,3-Dichloroptropane ND 1 0.50 µg/L 1,3-Dichloroptopane ND 1 0.50 µg/L 1,3-Dichloroptopane ND 1 0.50 µg/L 1,4-Dichloroptopane ND 1 0.50 µg/L 1,4-Dichloroptopane ND 1 0.50 µg/L 2,-Dichloroptopane ND 1 0.50 µg/L 2,-Dichloroptopane ND 1 0.50 µg/L 2,-Dichloroptyl-vinyl Ether ND 1 0.50 µg/L 2-Chlorotoluene ND 1		ND	1	0.50	μg/L
1,2,4-Trimethylbenzene		ND	1	5.0	μg/L
1,2-Dibromo-3-Chloropropane	• •	ND	1	5.0	μg/L
1,2-Dibromoethane (EDB)		ND	1	5.0	μg/L
1,2-Dichlorobenzene		ND	1	0.50	μg/L
1,2-Dichloroethane		ND	1	0.50	μg/L
1,2-Dichloropropane		ND	1	0.50	μg/L
1,3,5-Trimethylbenzene		ND	1	0.50	μg/L
1,3-Dichloropropane ND 1 0.50 µg/L 1,3-Dichloropropane ND 1 0.50 µg/L 1,4-Dichlorobenzene ND 1 0.50 µg/L 1,4-Dioxane ND 1 0.50 µg/L 2,2-Dichloropropane ND 1 0.50 µg/L 2,2-Dichloropropane ND 1 0.50 µg/L 2-Butanone (MEK) ND 1 2.0 µg/L 2-Chlorotoluene ND 1 5.0 µg/L 2-Hexanone ND 1 2.0 µg/L 4-Chlorotoluene ND 1 5.0 µg/L 4-Methyl-2-Pentanone (MIBK) ND 1 5.0 µg/L Actoric ND 1 5.0 µg/L		ND	1	5.0	μg/L
1,3-Dichloropropane ND 1 0.50 µg/L 1,4-Dichlorobenzene ND 1 0.50 µg/L 1,4-Dioxane ND 1 50 µg/L 2,2-Dichloropropane ND 1 0.50 µg/L 2-Butanone (MEK) ND 1 20 µg/L 2-Chlorotolurene ND 1 5.0 µg/L 2-Chlorotoluene ND 1 5.0 µg/L 4-Chlorotoluene ND 1 5.0 µg/L Ac		ND	1	0.50	μg/L
1,4-Dichlorobenzene ND 1 0.50 µg/L 1,4-Dioxane ND 1 50 µg/L 2,2-Dichloropropane ND 1 0.50 µg/L 2-Butanone (MEK) ND 1 20 µg/L 2-Chlorotolupe ND 1 5.0 µg/L 2-Chlorotolupe ND 1 5.0 µg/L 2-Hexanone ND 1 5.0 µg/L 4-Chlorotolupe ND 1 5.0 µg/L 4-Methyl-2-Pentanone (MIBK) ND 1 20 µg/L 4-Methyl-2-Pentanone (MIBK) ND 1 20 µg/L Acetonie ND 1 20 µg/L Acetone ND 1 5.0 µg/L Acrolein ND 1 5.0 µg/L Acrolein ND 1 5.0 µg/L Acrolein ND 1 5.0 µg/L Benzyl Chloride <t< td=""><td></td><td>ND</td><td>1</td><td>0.50</td><td>μg/L</td></t<>		ND	1	0.50	μg/L
1,4-Dioxane		ND	1	0.50	μg/L
2,2-Dichloropropane		ND	1	50	μg/L
2-Butanone (MEK) 2-Chloroethyl-vinyl Ether 2-Chlorotoluene ND 1 5.0 µg/L 2-Chlorotoluene ND 1 5.0 µg/L 2-Hexanone ND 1 5.0 µg/L 2-Hexanone ND 1 5.0 µg/L 4-Chlorotoluene ND 1 5.0 µg/L 4-Chlorotoluene ND 1 5.0 µg/L 4-Chlorotoluene ND 1 5.0 µg/L Acetone ND 1 20 µg/L Acetone ND 1 5.0 µg/L Acetone ND 1 5.0 µg/L Acrolein ND 1 5.0 µg/L Acrolein ND 1 5.0 µg/L Acrolein ND 1 5.0 µg/L Benzene ND 1 5.0 µg/L Benzene ND 1 0.50 µg/L Bromobenzene ND 1 0.50 µg/L Bromochloromethane ND 1 0.50 µg/L Bromochloromethane ND 1 0.50 µg/L Bromoform ND 1 0.50 µg/L Carbon Disulfide ND 1 0.50 µg/L Carbon Tetrachloride ND 1 0.50 µg/L Chlorobenzene ND 1 0.50 µg/L Chlorothane ND 1 0.50 µg/L	•	ND	1	0.50	μg/L
2-Chloroethyl-vinyl Ether ND 1 5.0 µg/L 2-Chlorotoluene ND 1 5.0 µg/L 2-Hexanone ND 1 20 µg/L 4-Chlorotoluene ND 1 5.0 µg/L 4-Methyl-2-Pentanone(MIBK) ND 1 20 µg/L Acetone ND 1 20 µg/L Acetoner ND 1 5.0 µg/L Acetonitrile ND 1 5.0 µg/L Acetonitrile ND 1 5.0 µg/L Acrylonitrile ND 1 5.0 µg/L Acrylonitrile ND 1 5.0 µg/L Benzene ND 1 0.50 µg/L Benzene ND 1 0.50 µg/L Bromochloromethane ND 1 0.50 µg/L Bromochloromethane ND 1 0.50 µg/L Carbon Tetrachloride		ND	1	20	μg/L
2-Chlorotoluene ND 1 5.0 µg/L 2-Hexanone ND 1 20 µg/L 4-Chlorotoluene ND 1 5.0 µg/L 4-Methyl-2-Pentanone(MIBK) ND 1 20 µg/L Acetone ND 1 20 µg/L Acetone ND 1 5.0 µg/L Acetone ND 1 5.0 µg/L Acetonitrile ND 1 5.0 µg/L Acrylonitrile ND 1 5.0 µg/L Benzene ND 1 0.50 µg/L Benzene ND 1 0.50 µg/L Beromobenzene ND 1 0.50 µg/L Bromochloromethane ND 1 0.50 µg/L Bromodichloromethane ND 1 0.50 µg/L Bromodichloromethane ND 1 0.50 µg/L Carbon Tetrachloride		ND	1	5.0	μg/L
2-Hexanone		ND	1	5.0	μg/L
4-Chlorotoluene ND 1 5.0 µg/L 4-Methyl-2-Pentanone(MIBK) ND 1 20 µg/L Acetone ND 1 20 µg/L Acetonitrile ND 1 5.0 µg/L Acrylonitrile ND 1 5.0 µg/L Acrylonitrile ND 1 5.0 µg/L Benzene ND 1 0.50 µg/L Benzene ND 1 0.50 µg/L Bromobenzene ND 1 0.50 µg/L Bromobenzene ND 1 0.50 µg/L Bromochloromethane ND 1 0.50 µg/L Bromoform ND 1 0.50 µg/L Bromoform ND 1 0.50 µg/L Bromoform ND 1 0.50 µg/L Carbon Disulfide ND 1 0.50 µg/L Carbon Tetrachloride ND		ND	1	20	μg/L
4-Methyl-2-Pentanone (MIBK) ND 1 20 µg/L Acetone ND 1 20 µg/L Acetonitrile ND 1 5.0 µg/L Acrolein ND 1 5.0 µg/L Acrylonitrile ND 1 5.0 µg/L Benzene ND 1 0.50 µg/L Benzyl Chloride ND 1 0.50 µg/L Bromobenzene ND 1 0.50 µg/L Bromochloromethane ND 1 0.50 µg/L Bromodichloromethane ND 1 0.50 µg/L Bromoform ND 1 0.50 µg/L Bromomethane ND 1 0.50 µg/L Carbon Disulfide ND 1 0.50 µg/L Carbon Tetrachloride ND 1 0.50 µg/L Chlorobenzene ND 1 0.50 µg/L Chloroform		ND	1	5.0	
Acetone ND 1 20 µg/L Acetonitrile ND 1 5.0 µg/L Acrolein ND 1 5.0 µg/L Acrylonitrile ND 1 5.0 µg/L Benzene ND 1 0.50 µg/L Benzyl Chloride ND 1 0.50 µg/L Bromobenzene ND 1 0.50 µg/L Bromochloromethane ND 1 0.50 µg/L Bromodichloromethane ND 1 0.50 µg/L Bromoform ND 1 0.50 µg/L Bromomethane ND 1 0.50 µg/L Carbon Disulfide ND 1 0.50 µg/L Carbon Tetrachloride ND 1 0.50 µg/L Chlorobenzene ND 1 0.50 µg/L Chloroform ND 1 0.50 µg/L Chloromethane ND <td></td> <td>ND</td> <td>1</td> <td>20</td> <td>μg/L</td>		ND	1	20	μg/L
Acetonitrile ND 1 5.0 µg/L Acrolein ND 1 5.0 µg/L Acrylonitrile ND 1 5.0 µg/L Benzene ND 1 0.50 µg/L Benzyl Chloride ND 1 0.50 µg/L Bromobenzene ND 1 0.50 µg/L Bromochloromethane ND 1 0.50 µg/L Bromodichloromethane ND 1 0.50 µg/L Bromoform ND 1 0.50 µg/L Bromomethane ND 1 0.50 µg/L Carbon Disulfide ND 1 0.50 µg/L Carbon Tetrachloride ND 1 0.50 µg/L Chlorobenzene ND 1 0.50 µg/L Chloroform ND 1 0.50 µg/L Chloromethane ND 1 0.50 µg/L Cis-1,2-Dichloroethene	-	ND	1	20	μg/L
Actorient ND 1 5.0 µg/L Benzene ND 1 0.50 µg/L Benzyl Chloride ND 1 5.0 µg/L Bromobenzene ND 1 0.50 µg/L Bromodichloromethane ND 1 0.50 µg/L Bromodichloromethane ND 1 0.50 µg/L Bromoform ND 1 0.50 µg/L Bromomethane ND 1 0.50 µg/L Carbon Disulfide ND 1 0.50 µg/L Carbon Tetrachloride ND 1 0.50 µg/L Chlorobenzene ND 1 0.50 µg/L Chloroform ND 1 0.50 µg/L Chloroform ND 1 0.50 µg/L Chloromethane ND 1 0.50 µg/L cis-1,2-Dichloroethene ND 1 0.50 µg/L Cyclohexanone <td>Acetonitrile</td> <td>ND</td> <td>1</td> <td>5.0</td> <td>μg/L</td>	Acetonitrile	ND	1	5.0	μg/L
Benzene ND	Acrolein	ND	1		
Benzyl Chloride	Acrylonitrîle	ND	1	5.0	
Bromobenzene ND 1 0.50 µg/L Bromochloromethane ND 1 0.50 µg/L Bromodichloromethane ND 1 0.50 µg/L Bromoform ND 1 0.50 µg/L Bromomethane ND 1 0.50 µg/L Bromomethane ND 1 0.50 µg/L Carbon Disulfide ND 1 0.50 µg/L Carbon Tetrachloride ND 1 0.50 µg/L Chlorobenzene ND 1 0.50 µg/L Chloroethane ND 1 0.50 µg/L Chloromethane ND 1 0.50 µg/L cis-1,2-Dichloroethene ND 1 0.50 µg/L cis-1,3-Dichloropropene ND 1 0.50 µg/L Cyclohexanone ND 1 0.50 µg/L Dibromochloromethane ND 1 0.50 µg/L	Benzene	ND	1		
Bromobenzene ND 1 0.50 µg/L Bromochloromethane ND 1 0.50 µg/L Bromodichloromethane ND 1 0.50 µg/L Bromoform ND 1 0.50 µg/L Bromomethane ND 1 0.50 µg/L Carbon Disulfide ND 1 0.50 µg/L Carbon Tetrachloride ND 1 0.50 µg/L Chlorobenzene ND 1 0.50 µg/L Chloroethane ND 1 0.50 µg/L Chloroform ND 1 0.50 µg/L Chloromethane ND 1 0.50 µg/L cis-1,2-Dichloropropene ND 1 0.50 µg/L cyclohexanone ND 1 0.50 µg/L Dibromochloromethane ND 1 0.50 µg/L	Benzyl Chloride	ND	1		
Bromodichloromethane ND 1 0.50 µg/L Bromoform ND 1 0.50 µg/L Bromomethane ND 1 0.50 µg/L Carbon Disulfide ND 1 0.50 µg/L Carbon Tetrachloride ND 1 0.50 µg/L Chlorobenzene ND 1 0.50 µg/L Chloroethane ND 1 0.50 µg/L Chloroform ND 1 0.50 µg/L Chloromethane ND 1 0.50 µg/L cis-1,2-Dichloroethene ND 1 0.50 µg/L cis-1,3-Dichloropropene ND 1 0.50 µg/L Cyclohexanone ND 1 0.50 µg/L Dibromochloromethane ND 1 0.50 µg/L	Bromobenzene	ND	1		
Bromoform ND 1 0.50 µg/L Bromomethane ND 1 0.50 µg/L Carbon Disulfide ND 1 0.50 µg/L Carbon Tetrachloride ND 1 0.50 µg/L Chlorobenzene ND 1 0.50 µg/L Chloroethane ND 1 0.50 µg/L Chloroform ND 1 0.50 µg/L Chloromethane ND 1 0.50 µg/L cis-1,2-Dichloroethene ND 1 0.50 µg/L cis-1,3-Dichloropropene ND 1 0.50 µg/L Cyclohexanone ND 1 0.50 µg/L Dibromochloromethane ND 1 0.50 µg/L	Bromochloromethane	ND	1		
Bromomethane ND 1 0.50 μg/L Carbon Disulfide ND 1 0.50 μg/L Carbon Tetrachloride ND 1 0.50 μg/L Chlorobenzene ND 1 0.50 μg/L Chloroethane ND 1 0.50 μg/L Chloroform ND 1 0.50 μg/L Chloromethane ND 1 0.50 μg/L cis-1,2-Dichloroethene ND 1 0.50 μg/L cis-1,3-Dichloropropene ND 1 0.50 μg/L Cyclohexanone ND 1 0.50 μg/L Dibromochloromethane ND 1 0.50 μg/L	Bromodichloromethane				
Bromontenance ND 1 0.50 µg/L Carbon Tetrachloride ND 1 0.50 µg/L Chlorobenzene ND 1 0.50 µg/L Chloroethane ND 1 0.50 µg/L Chloroform ND 1 0.50 µg/L Chloromethane ND 1 0.50 µg/L cis-1,2-Dichloroethene ND 1 0.50 µg/L cis-1,3-Dichloropropene ND 1 0.50 µg/L Cyclohexanone ND 1 0.50 µg/L Dibromochloromethane ND 1 0.50 µg/L	Bromoform	ND	1		
Carbon Tetrachloride ND 1 0.50 µg/L Chlorobenzene ND 1 0.50 µg/L Chloroethane ND 1 0.50 µg/L Chloroform ND 1 0.50 µg/L Chloromethane ND 1 0.50 µg/L cis-1,2-Dichloroethene ND 1 0.50 µg/L cis-1,3-Dichloropropene ND 1 0.50 µg/L Cyclohexanone ND 1 20 µg/L Dibromochloromethane ND 1 0.50 µg/L	Bromomethane	ND	1		
Carbon retractionide ND 1 0.50 µg/L Chlorobenzene ND 1 0.50 µg/L Chloroform ND 1 0.50 µg/L Chloromethane ND 1 0.50 µg/L cis-1,2-Dichloroethene ND 1 0.50 µg/L cis-1,3-Dichloropropene ND 1 0.50 µg/L Cyclohexanone ND 1 20 µg/L Dibromochloromethane ND 1 0.50 µg/L	Carbon Disulfide	ND	1		
Chlorobehzene ND 1 0.50 μg/L Chloroform ND 1 0.50 μg/L Chloromethane ND 1 0.50 μg/L cis-1,2-Dichloroethene ND 1 0.50 μg/L cis-1,3-Dichloropropene ND 1 0.50 μg/L Cyclohexanone ND 1 20 μg/L Dibromochloromethane ND 1 0.50 μg/L	Carbon Tetrachloride	ND	1		
Chlorofethane ND 1 0.50 μg/L Chloromethane ND 1 0.50 μg/L cis-1,2-Dichloroethene ND 1 0.50 μg/L cis-1,3-Dichloropropene ND 1 0.50 μg/L Cyclohexanone ND 1 20 μg/L Dibromochloromethane ND 1 0.50 μg/L	Chlorobenzene	ND			
Chloromethane ND 1 0.50 μg/L cis-1,2-Dichloroethene ND 1 0.50 μg/L cis-1,3-Dichloropropene ND 1 0.50 μg/L Cyclohexanone ND 1 20 μg/L Dibromochloromethane ND 1 0.50 μg/L	Chloroethane				
Cincionnethate ND 1 0.50 µg/L cis-1,2-Dichloroptopene ND 1 0.50 µg/L cis-1,3-Dichloropropene ND 1 20 µg/L Cyclohexanone ND 1 0.50 µg/L Dibromochloromethane ND 1 0.50 µg/L	Chloroform				
Cis-1,2-Diction of enterior ND 1 0.50 µg/L cis-1,3-Dichloropropene ND 1 20 µg/L Cyclohexanone ND 1 0.50 µg/L Dibromochloromethane ND 1 0.50 µg/L	Chloromethane				
Cyclohexanone ND 1 20 µg/L Dibromochloromethane ND 1 0.50 µg/L	cis-1,2-Dichloroethene				
Dibromochloromethane ND 1 0.50 µg/L	cis-1,3-Dichloropropene				
Diplomochiormetriane	Cyclohexanone				
Dibromomethane ND 1 0.50 μg/L	Dibromochloromethane				
	Dibromomethane	ND	1	0.50	µg/L

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Liquid - EPA 8260B - EPA 8260B

QC Batch ID: WMS1050626 Validated by: MaiChiTu - 06/27/05

QC Batch Analysis Date: 6/26/2005

Parameter	Result	DF	PQLR	Units
Dichlorodifluoromethane	ND	1	0.50	μg/L
Diisopropyl Ether	ND	1	5.0	μg/L
Ethyl Benzene	ND	1	0.50	μg/L
Freon 113	ND	1	5.0	μg/L
Hexachlorobutadiene	ND	1	5.0	μg/L
Iodomethane	ND	1	1.0	μg/L
Isopropanol	ND	1	20	μg/L
Isopropylbenzene	ND	1	1.0	μg/L
Methylene Chloride	ND	1	5.0	μg/L
Methyl-t-butyl Ether	ND	1	1.0	μg/L
Naphthalene	ND	1	5.0	μg/L
n-Butylbenzene	ND	1	5.0	μg/L
n-Propylbenzene	ND	1	5.0	μg/L
Pentachloroethane	ND	1	0.50	μg/L
p-Isopropyltoluene	ND	1	5.0	μg/L
sec-Butylbenzene	ND	1	5.0	μg/L
Styrene	ND	1	0.50	μg/L
tert-Amyl Methyl Ether	ND	1	5.0	μg/L
tert-Butanol (TBA)	ND	1	10	μg/L
tert-Butyl Ethyl Ether	ND	1	5.0	μg/L
tert-Butylbenzene	ND	1	5.0	μg/L
Tetrachloroethene	ND	1	0.50	μg/L
Tetrahydrofuran	ND	1	20	μg/L
Toluene	ND	1	0.50	μg/L
trans-1,2-Dichloroethene	ND	1	0.50	μg/L
trans-1,3-Dichloropropene	ND	1	0.50	μg/L
trans-1,4-Dichloro-2-butene	ND	1	1.0	μg/L
Trichloroethene	ND	1	0.50	μg/L
Trichlorofluoromethane	ND	1	0.50	μg/L
Vinyl Acetate	ND	1	5.0	μg/L
Vinyl Chloride	ND	1	0.50	μg/L
Xylenes, Total	ND	1	0.50	µg/L

Surrogate for Blank	% Recovery	Cont	rol	Limit
4-Bromofluorobenzene	95.8	70	-	125
Dibromofluoromethane	103	70	-	125
Toluene-d8	103	70	-	125

Method Blank - Liquid - GC-MS - TPH as Gasoline - GC-MS

QC Batch ID: WMS1050626 Validated by: MaiChiTu - 06/27/05

QC Batch Analysis Date: 6/26/2005

Parameter TPH as Gasoline			Result ND	DF 1	PQLR 25	Units μg/L
Surrogate for Blank	% Recovery	Control Limits				
4-Bromofluorobenzene	102	70 - 125				
Dibromofluoromethane	93.9	70 - 125				
Toluene-d8	101	70 - 125				

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Laboratory Control Sample / Duplicate - Liquid - EPA 8260B - EPA 8260B

QC Batch ID: WMS1050626 Reviewed by: MaiChiTu - 06/27/05

QC Batch ID Analysis Date: 6/26/2005

LCS	Mothod Blan	r Snika Amt	SpikeResult	Units	% Recovery	Recovery Limits
Parameter					93.0	70 - 130
1,1-Dichloroethene	<0.50	20	18.6	μg/L		
Benzene	< 0.50	20	20.2	μg/L	101	70 - 130
Chlorobenzene	<0.50	20	19.3	μg/L	96.5	70 - 130
Methyl-t-butyl Ether	<1.0	20	22.0	μg/L	110	70 - 130
Toluene	< 0.50	20	19.2	μg/L	96.0	70 - 130
Trichloroethene	<0.50	20	18.2	μg/L	91.0	70 - 130
Surrogate	% Recovery	Control Limits				
4-Bromofluorobenzene	97.9	70 - 125				
Dibromofluoromethane	102	70 - 125				
Toluene-d8	97.9	70 - 125				

LCSD

Parameter 1,1-Dichloroethene	Method Blank <0.50	20	21.2	Units µg/L	% Recovery 106 113	RPD 13 11	25.0 25.0	70 - 130 70 - 130
Benzene Chlorobenzene	<0.50 <0.50	20 20	22.6 21.9	μg/L μg/L	110	13	25.0	70 - 130
Methyl-t-butyl Ether Toluene	<1.0 <0.50	20 20	25.1 21.5	μg/L μg/L	126 108	13 11	25.0 25.0	70 - 130 70 - 130
Trichloroethene	<0.50	20	20.6	μg/L	103	12	25.0	70 - 130

Surrogate	% Recovery	Control Limit						
4-Bromofluorobenzene	98	70	-	125				
Dibromofluoromethane	104	70	-	125				
Toluene-d8	96.9	70	-	125				

Laboratory Control Sample / Duplicate - Liquid - GC-MS - TPH as Gasoline - GC-MS

70 - 125

70 - 125

92.3

103

QC Batch ID: WMS1050626 Reviewed by: MaiChiTu - 06/27/05

QC Batch ID Analysis Date: 6/26/2005

Dibromofluoromethane

Toluene-d8

LCS Parameter TPH as Gasoline	Method B <25	lank Spike Amt 120	SpikeResult 160	Units μg/L	% Recovery 128			Recovery Limits 65 - 135
Surrogate 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8	% Recovery 105 94.8 102	Control Limits 70 - 125 70 - 125 70 - 125						
LCSD Parameter TPH as Gasoline	Method B <25	lank Spike Amt 120	SpikeResult 148	Units μg/L	% Recovery 118	RPD 7.8	RPD Limits 25.0	Recovery Limits 65 - 135
Surrogate 4-Bromofluorobenzene	% Recovery 105	Control Limits 70 - 125						

Entech Analytical Labs, Inc. 3334 Victor Court (408) 588-0200

June 2004

Chain of Custody / Analysis Request

Santa Clara, CA 95	054 (408	3) 588-0201 -	Fax															てのドム
Attention to: BREW WHEES	لتح	Phone No.: 45 572	1555	Purc	chase Order	No.:			Invo	ice to: ((If Differ	ent)				Pho	one:	
Company Name:	K Remanl	Fax No.: 415 51 2	0964	Proj	ect No.:	3 3 <	<u> </u>		Com	pany:						Qui	iote No.:	
Mailing Address:			LATR. COM	Proj	ect Name:	户分	60	720C	Billin	ng Addre	ess: (If I	Differer	nt)					
City: FRAJCES	~	State:	Zip Code: 94107	Proj	ect Location	n: م <u>مد</u> و ه	なモ	A.	City	:						Sta	ate:	Zip:
									C/MS M		5	G	C Meth	ods			Genera	al Chemistry
Sampler: Field	Org. Code:	Turn Ar □ Same Da □ 2 Day						/ * /			J. J				//	//	//	
Global ID:	117_	☐ 4 Day	X 5 Day 10 Day		v	/		2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /		1					//	//	//	
Order ID: 44/1	12	Samp	ole		of Containers							# 1 mg	3		//	//		
Client ID / Field Point	Lab. No.	Date	Time X		No. of Co		2.50 M BE L 124 B S S S S S S S S S S S S S S S S S S			25 7 7 188 25 141 15 141 15 141 15 15 15 15 15 15 15 15 15 15 15 15 15	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Remarks
B23 -4	-001	6/22/05	10:25 5				×			X								
BZ3 -10	1002	1	10:30	1	(\times)	,				X		X					X	
BZ3-11.5	- 003		10:30	\top			र			X								
323-15	-0011		10:40				X			メ								
1323-17	-005		10:45			;	X			X								
523-19.5	1006		15:45				X			人								
B23-245	-007		10:50	1			X			X								
821 -W	-008	*	a)	9	2 X		<u> </u>			火.		×					×	
						1												
						<u> </u>												
					·									<u> </u>				
				\perp						<u> </u>				1	_			
	0 0					ليل				┵				<u> </u>			<u>ــــــــــــــــــــــــــــــــــــ</u>	
Relinquished by:	Received by:	Date:	Time: YYY	SI	pecial I	nstru	ction	s or	Comn	nent	5						eport eport	D Plating LUFT-5
CYN.	Course	un 6/23)	55 16HS		etals:			1					<u>/</u>				(.	RCRA-8
Relinquished by:	Received by:	Date:	Time:	Al,	, As, Sb,	Ba, Be,	Bi, B,	ල්) Ce	, Ca,C	, Co, (Cs, Cu	, Fe, (5 b), Mg	, Mn,				☐ PPM-13
<u>'</u>				Ga	a, Ge, Hg,	ln, Li,	Mo. (N),	P, K,	Si, Ag,	Na, S,	Se, S	r, Ta,	Te, Tl,	Sn, Ti	,(Zp), `	<u>V, W</u>	√, Zr	☐ CAM-17

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Brent Wheeler Lab Certificate Number: 44322

Golden Gate Tank Removal Issued: 08/30/2006

255 Shipley Street

San Francisco, CA 94107

Project Number: T0600102112

Project Name: 7335 Sheaff's Garage Global ID: T0600102112

Project Location: 5930 College Ave/Oakland,CA

Certificate of Analysis-Revision

Note: This is a revision of the original report issued on July 11,2005 for the addition of ethanol results to sample 44322-001.

On July 11, 2005, samples were received under chain of custody for analysis.

Entech analyzes samples "as received" unless otherwise noted. The following results are included:

<u>Matrix</u> <u>Test</u> <u>Comments</u>

Liquid Electronic Deliverables for Geotracker

Oil & Grease: EPA 413.2

Dissolved Metals by ICP: EPA 3010A / EPA 6010B for Groundwater and Water - EPA 200.7 for

Wastewater

ICP Metals: EPA 3010A / EPA 6010B for Groundwater and Water - EPA 200.7 for Wastewater

TPH-Extractable: EPA 3510C / EPA 8015B

VOCs: EPA 5030C / EPA 8260B for Groundwater and Water - EPA 624 for Wastewater

VOCs: EPA 8260B TPH-Purgeable: GC/MS

Entech Analytical Labs, Inc. is certified for environmental analyses by the State of California (#2346). If you have any questions regarding this report, please call us at 408-588-0200 ext. 225.

Sincerely,

Erin Cunniffe

Operations Manager

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107

Attn: Brent Wheeler

Project Location: 5930 College Ave/Oakland,CA
GlobalID: T0600102112

Certificate of Analysis - Data Report

Samples Received: 07/11/2005
Sample Collected by: client

Lab #: 44322-001 **Sample ID: B23-W Matrix:** Liquid **Sample Date:** 7/11/2005 10:15 AM

Project Name: 7335 Sheaff's Garage

VOCs: EPA 5030C / EPA 8260B f	or Groundwater and	Groundwater and Water - EPA 624 for Wastewater							
Parameter	Result Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch	
1,1,1,2-Tetrachloroethane	ND	50	25	μg/L	N/A	N/A	7/12/2005	WMS2050712	
1,1,1-Trichloroethane	ND	50	25	\mug/L	N/A	N/A	7/12/2005	WMS2050712	
1,1,2,2-Tetrachloroethane	ND	50	25	\mug/L	N/A	N/A	7/12/2005	WMS2050712	
1,1,2-Trichloroethane	ND	50	25	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712	
1,1-Dichloroethane	ND	50	25	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712	
1,1-Dichloroethene	ND	50	25	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712	
1,1-Dichloropropene	ND	50	25	\mug/L	N/A	N/A	7/12/2005	WMS2050712	
1,2,3-Trichlorobenzene	ND	50	250	\mug/L	N/A	N/A	7/12/2005	WMS2050712	
1,2,3-Trichloropropane	ND	50	25	\mug/L	N/A	N/A	7/12/2005	WMS2050712	
1,2,4-Trichlorobenzene	ND	50	250	\mug/L	N/A	N/A	7/12/2005	WMS2050712	
1,2,4-Trimethylbenzene	320	50	250	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712	
1,2-Dibromo-3-Chloropropane	ND	50	250	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712	
1,2-Dibromoethane (EDB)	ND	50	25	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712	
1,2-Dichlorobenzene	ND	50	25	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712	
1,2-Dichloroethane	ND	50	25	\mug/L	N/A	N/A	7/12/2005	WMS2050712	
1,2-Dichloropropane	ND	50	25	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712	
1,3,5-Trimethylbenzene	ND	50	250	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712	
1,3-Dichlorobenzene	ND	50	25	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712	
1,3-Dichloropropane	ND	50	25	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712	
1,4-Dichlorobenzene	ND	50	25	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712	
1,4-Dioxane	ND	50	2500	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712	
2,2-Dichloropropane	ND	50	25	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712	
2-Butanone (MEK)	ND	50	1000	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712	
2-Chloroethyl-vinyl Ether	ND	50	250	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712	
2-Chlorotoluene	ND	50	250	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712	
2-Hexanone	ND	50	1000	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712	
4-Chlorotoluene	ND	50	250	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712	
4-Methyl-2-Pentanone(MIBK)	ND	50	1000	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712	
Acetone	ND	50	1000	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712	
Acetonitrile	ND	50	250	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712	
Acrolein	ND	50	250	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712	
Acrylonitrile	ND	50	250	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712	
Benzene	2200	50	25	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712	
Benzyl Chloride	ND	50	250	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712	
Bromobenzene	ND	50	25	\mug/L	N/A	N/A	7/12/2005	WMS2050712	
Bromochloromethane	ND	50	25	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712	
Bromodichloromethane	ND	50	25	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712	
Bromoform	ND	50	25	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712	
Bromomethane	ND	50	25	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712	
Carbon Disulfide	ND	50	25	μg/L	N/A	N/A	7/12/2005	WMS2050712	
Carbon Tetrachloride	ND	50	25	μg/L	N/A	N/A	7/12/2005	WMS2050712	
Chlorobenzene	ND	50	25	μg/L	N/A	N/A	7/12/2005	WMS2050712	
Chloroethane	ND	50	25	μg/L	N/A	N/A	7/12/2005	WMS2050712	
Chloroform	ND	50	25	μg/L	N/A	N/A	7/12/2005	WMS2050712	
Chloromethane	ND	50	25	μg/L	N/A	N/A	7/12/2005	WMS2050712	

Detection Limit = Detection Limit for Reporting.

ND = Not Detected at or above the Detection Limit.

D/P-F = Dilution and/or Prep Factor includes sample volume adjustments.

Qual = Data Qualifier

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project Name: 7335 Sheaff's Garage

Project Location: 5930 College Ave/Oakland,CA

GlobalID: T0600102112

Certificate of Analysis - Data Report

Samples Received: 07/11/2005 Sample Collected by: client

Sample ID: B23-W **Lab #:** 44322-001 Matrix: Liquid Sample Date: 7/11/2005 10:15 AM

VOCs: EPA 5030C / EPA 8260B	for Groundwater and	Water -	EPA 624 for Waste	water				
Parameter	Result Qua	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
cis-1,2-Dichloroethene	ND	50	25	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712
cis-1,3-Dichloropropene	ND	50	25	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712
Cyclohexanone	ND	50	1000	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712
Dibromochloromethane	ND	50	25	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712
Dibromomethane	ND	50	25	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712
Dichlorodifluoromethane	ND	50	25	\mug/L	N/A	N/A	7/12/2005	WMS2050712
Diisopropyl Ether	ND	50	250	\mug/L	N/A	N/A	7/12/2005	WMS2050712
Ethyl Benzene	450	50	25	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712
Freon 113	ND	50	250	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712
Hexachlorobutadiene	ND	50	250	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712
Iodomethane	ND	50	250	$\mu g/L$	N/A	N/A	7/12/2005	WMS2050712
Isopropanol	ND	50	1000	μg/L	N/A	N/A	7/12/2005	WMS2050712
Isopropylbenzene	ND	50	50	μg/L	N/A	N/A	7/12/2005	WMS2050712
Methyl-t-butyl Ether	880	50	50	μg/L	N/A	N/A	7/12/2005	WMS2050712
Methylene Chloride	ND	50	250	μg/L	N/A	N/A	7/12/2005	WMS2050712
n-Butylbenzene	ND	50	250	μg/L	N/A	N/A	7/12/2005	WMS2050712
n-Propylbenzene	ND	50	250	μg/L	N/A	N/A	7/12/2005	WMS2050712
Naphthalene	ND	50	250	μg/L	N/A	N/A	7/12/2005	WMS2050712
p-Isopropyltoluene	ND	50	250	μg/L	N/A	N/A	7/12/2005	WMS2050712
Pentachloroethane	ND	50	25	μg/L	N/A	N/A	7/12/2005	WMS2050712
sec-Butylbenzene	ND	50	250	μg/L	N/A	N/A	7/12/2005	WMS2050712
Styrene	ND	50	25	μg/L	N/A	N/A	7/12/2005	WMS2050712
tert-Amyl Methyl Ether	ND	50	250	μg/L	N/A	N/A	7/12/2005	WMS2050712
tert-Butanol (TBA)	ND	50	500	μg/L	N/A	N/A	7/12/2005	WMS2050712
tert-Butyl Ethyl Ether	ND	50	250	μg/L	N/A	N/A	7/12/2005	WMS2050712
tert-Butylbenzene	ND	50	250	μg/L	N/A	N/A	7/12/2005	WMS2050712
Tetrachloroethene	ND	50	25	μg/L	N/A	N/A	7/12/2005	WMS2050712
Tetrahydrofuran	ND	50	1000	μg/L	N/A	N/A	7/12/2005	WMS2050712
Toluene	2600	50	25	μg/L	N/A	N/A	7/12/2005	WMS2050712
trans-1,2-Dichloroethene	ND	50	25	μg/L	N/A	N/A	7/12/2005	WMS2050712
trans-1,3-Dichloropropene	ND	50	25	μg/L	N/A	N/A	7/12/2005	WMS2050712
trans-1,4-Dichloro-2-butene	ND	50	50	μg/L	N/A	N/A	7/12/2005	WMS2050712
Trichloroethene	ND	50	25	μg/L	N/A	N/A	7/12/2005	WMS2050712
Trichlorofluoromethane	ND	50	25	μg/L	N/A	N/A	7/12/2005	WMS2050712
Vinyl Acetate	ND	50	250	μg/L	N/A	N/A	7/12/2005	WMS2050712
Vinyl Chloride	ND	50	25	μg/L	N/A	N/A	7/12/2005	WMS2050712
Xylenes, Total	3000	50	25	μg/L	N/A	N/A	7/12/2005	WMS2050712
Ethanol	ND	50	5000	μg/L	N/A	N/A	7/12/2005	WMS2050712

Surrogate	Surrogate Recovery	Contro	l Li	mits (%)
4-Bromofluorobenzene	118	60	-	130
Dibromofluoromethane	115	60	-	130
Toluene-d8	110	60	-	130

Analyzed by: TAF Reviewed by: bdhabalia

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107

Attn: Brent Wheeler

Project Name: 7335 Sheaff's Garage

Project Location: 5930 College Ave/Oakland,CA

GlobalID: T0600102112

Certificate of Analysis - Data Report

Samples Received: 07/11/2005 Sample Collected by: client

Lab #: 44322-001	Sample ID: B23-W	Matrix: Liquid	Sample Date: 7/11/2005	10:15 AM
240 // 1 1322 001	bumple 1D. Die II	Tracini Eigala	buildie Dute. //11/2005	10.15 1111

ICP Metals: EPA 3010A /	ICP Metals: EPA 3010A / EPA 6010B for Groundwater and Water - EPA 200.7 for Wastewater									
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch	
Cadmium	ND		1.0	0.0020	mg/L	7/12/2005	WM050712	7/12/2005	WM050712	
Chromium	ND		1.0	0.0050	mg/L	7/12/2005	WM050712	7/12/2005	WM050712	
Lead	0.010		1.0	0.0050	mg/L	7/12/2005	WM050712	7/12/2005	WM050712	
Nickel	0.013		1.0	0.0050	mg/L	7/12/2005	WM050712	7/12/2005	WM050712	
Zinc	0.032		1.0	0.010	mg/L	7/12/2005	WM050712	7/12/2005	WM050712	

Analyzed by: Equeja Reviewed by: dqueja

Dissolved Metals by ICP: EPA 3010A / EPA 6010B for Groundwater and Water - EPA 200.7 for Wastewater

Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Cadmium	ND		1.0	0.0020	mg/L	7/13/2005	WM050713	7/14/2005	WM050713
Chromium	ND		1.0	0.0050	mg/L	7/13/2005	WM050713	7/14/2005	WM050713
Lead	ND		1.0	0.0050	mg/L	7/13/2005	WM050713	7/14/2005	WM050713
Nickel	0.011		1.0	0.0050	mg/L	7/13/2005	WM050713	7/14/2005	WM050713
Zinc	0.030		1.0	0.010	mg/L	7/13/2005	WM050713	7/14/2005	WM050713
Sample was filtered and preserved in the lab upon receipt.									

Analyzed by: Equeja Reviewed by: dqueja

Oil & Grease: EPA 413.2

Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Oil and Grease, Total	9.2		1.0	5.0	mg/L	7/12/2005	WOGIR050712	7/12/2005	WOGIR050712
Sample was preserved in H2SO4.									

Analyzed by: Jisiderio Reviewed by: RLAZARO

TPH-Purgeable: GC/MS

Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	21000		50	1200	$\mu g \! / L$	N/A	N/A	7/12/2005	WMS2050712
Surrogate	Surrogate Recovery		Control 1	Limits (%)				Analyzed by: TAF	
4-Bromofluorobenzene	109		60 -	130				Reviewed by: bdha	balia
Dibromofluoromethane	102		60 -	130					
Toluene-d8	96.1		60 -	130					

TPH-Extractable: EPA 3510C / EPA 8015B

Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Diesel	1800		1.0	67	$\mu g/L$	7/12/2005	DW050712	7/13/2005	DW050712
Higher boiling gasoline comp	ounds mixed wi	th Diesel	(C8-C36	i).					
TPH as Motor Oil	ND		1.0	270	$\mu g/L$	7/12/2005	DW050712	7/13/2005	DW050712
TPH as Kerosene	ND		1.0	67	$\mu g/L$	7/12/2005	DW050712	7/13/2005	DW050712
TPH as Mineral Spirits (Stoddard)	ND		1.0	67	$\mu g/L$	7/12/2005	DW050712	7/13/2005	DW050712
Surrogate Sur	rogate Recover	y (Control I	Limits (%)				Analyzed by: JH	

o-Terphenyl 63.6 - 133

ND = Not Detected at or above the Detection Limit.

Qual = Data Qualifier

Reviewed by: dba

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project Name: 7335 Sheaff's Garage

Project Location: 5930 College Ave/Oakland,CA

Reviewed by: bdhabalia

Reviewed by: bdhabalia

GlobalID: T0600102112

Certificate of Analysis - Data Report

Samples Received: 07/11/2005 Sample Collected by: client

Lab #: 44322-002	Sample ID: HB-3-W	Matrix: Liquid Sample Date: 7/11/2005	8:00 AM
-------------------------	-------------------	---------------------------------------	---------

VOCs: EPA 8260B			_				_	_
Parameter	Result	Qual D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	690	20	10	μg/L	N/A	N/A	7/13/2005	WMS2050713
Toluene	21	20	10	$\mu g/L$	N/A	N/A	7/13/2005	WMS2050713
Ethyl Benzene	1200	20	10	\mug/L	N/A	N/A	7/13/2005	WMS2050713
Xylenes, Total	190	20	10	$\mu g/L$	N/A	N/A	7/13/2005	WMS2050713
Methyl-t-butyl Ether	ND	20	20	$\mu g/L$	N/A	N/A	7/13/2005	WMS2050713
tert-Butyl Ethyl Ether	ND	20	100	$\mu g/L$	N/A	N/A	7/13/2005	WMS2050713
tert-Butanol (TBA)	ND	20	200	$\mu g/L$	N/A	N/A	7/13/2005	WMS2050713
Diisopropyl Ether	ND	20	100	$\mu g/L$	N/A	N/A	7/13/2005	WMS2050713
tert-Amyl Methyl Ether	ND	20	100	$\mu g/L$	N/A	N/A	7/13/2005	WMS2050713
1,2-Dichloroethane	ND	20	10	μg/L	N/A	N/A	7/13/2005	WMS2050713
1,2-Dibromoethane (EDB)	ND	20	10	μg/L	N/A	N/A	7/13/2005	WMS2050713
Ethanol	ND	20	2000	$\mu g/L$	N/A	N/A	7/13/2005	WMS2050713
Surrogate	Surrogate Recovery	Contro	l Limits (%)				Analyzed by: TAF	

Surrogate	Surrogate Recovery	Control Limits (%)	
4-Bromofluorobenzene	114	60 - 130	
Dibromofluoromethane	109	60 - 130	
Toluene-d8	116	60 - 130	

TPH-Purgeable: GC/MS

Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	13000		20	500	μg/L	N/A	N/A	7/13/2005	WMS2050713
Surrogate	Surrogate Recovery	y	Control l	Limits (%)				Analyzed by: TAF	

8	•			,
4-Bromofluorobenzene	106	60	-	130
Dibromofluoromethane	96.4	60	-	130
Toluene-d8	101	60	-	130

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project Name: 7335 Sheaff's Garage

Project Location: 5930 College Ave/Oakland,CA

GlobalID: T0600102112

Certificate of Analysis - Data Report

Samples Received: 07/11/2005 Sample Collected by: client

Lab #: 44322-003	Sample ID: HB-4-W	Matrix: Liquid	Sample Date: 7/11/2005	8:30 AM

VOCs: EPA 8260B								
Parameter	Result	Qual D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	13	20	10	$\mu g/L$	N/A	N/A	7/14/2005	WMS2050714
Toluene	ND	20	10	$\mu g/L$	N/A	N/A	7/14/2005	WMS2050714
Ethyl Benzene	10	20	10	$\mu g/L$	N/A	N/A	7/14/2005	WMS2050714
Xylenes, Total	ND	20	10	$\mu g/L$	N/A	N/A	7/14/2005	WMS2050714
Methyl-t-butyl Ether	ND	20	20	$\mu g/L$	N/A	N/A	7/14/2005	WMS2050714
tert-Butyl Ethyl Ether	ND	20	100	$\mu g/L$	N/A	N/A	7/14/2005	WMS2050714
tert-Butanol (TBA)	ND	20	200	$\mu g/L$	N/A	N/A	7/14/2005	WMS2050714
Diisopropyl Ether	ND	20	100	$\mu g/L$	N/A	N/A	7/14/2005	WMS2050714
tert-Amyl Methyl Ether	ND	20	100	$\mu g/L$	N/A	N/A	7/14/2005	WMS2050714
1,2-Dichloroethane	ND	20	10	$\mu g/L$	N/A	N/A	7/14/2005	WMS2050714
1,2-Dibromoethane (EDB)	ND	20	10	$\mu g/L$	N/A	N/A	7/14/2005	WMS2050714
Ethanol	ND	20	2000	$\mu g/L$	N/A	N/A	7/14/2005	WMS2050714
Surrogate	Surrogate Recovery	Control	Limits (%)				Analyzed by: TAF	
4-Bromofluorobenzene	115	60	- 130				Reviewed by: bdha	balia

Surrogate	Surrogate Recovery	Control Limits (%)	
4-Bromofluorobenzene	115	60 - 130	
Dibromofluoromethane	110	60 - 130	
Toluene-d8	113	60 - 130	

TPH-Purgeable: GC/MS

Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	14000		20	500	μg/L	N/A	N/A	7/14/2005	WMS2050714
Surrogate	Surrogate Recovery	7	Control	Limits (%)				Analyzed by: TAF	
4-Bromofluorobenzene	104		60	- 130				Reviewed by: bdha	balia
Dibromofluoromethane	97.8		60	- 130					
Toluene-d8	98.7		60	- 130					

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project Name: 7335 Sheaff's Garage

Project Location: 5930 College Ave/Oakland,CA

GlobalID: T0600102112

Certificate of Analysis - Data Report

Samples Received: 07/11/2005 Sample Collected by: client

Lab #: 44322-004	Sample ID: HB-6-W	Matrix: Liquid	Sample Date: 7/11/2005	9:00 AM

VOCs: EPA 8260B								
Parameter	Result Qua	al D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	ND	1.0	0.50	$\mu g/L$	N/A	N/A	7/13/2005	WMS2050713
Toluene	ND	1.0	0.50	$\mu g/L$	N/A	N/A	7/13/2005	WMS2050713
Ethyl Benzene	ND	1.0	0.50	$\mu g/L$	N/A	N/A	7/13/2005	WMS2050713
Xylenes, Total	ND	1.0	0.50	$\mu g/L$	N/A	N/A	7/13/2005	WMS2050713
Methyl-t-butyl Ether	ND	1.0	1.0	$\mu g/L$	N/A	N/A	7/13/2005	WMS2050713
tert-Butyl Ethyl Ether	ND	1.0	5.0	$\mu g/L$	N/A	N/A	7/13/2005	WMS2050713
tert-Butanol (TBA)	ND	1.0	10	$\mu g/L$	N/A	N/A	7/13/2005	WMS2050713
Diisopropyl Ether	ND	1.0	5.0	$\mu g/L$	N/A	N/A	7/13/2005	WMS2050713
tert-Amyl Methyl Ether	ND	1.0	5.0	$\mu g/L$	N/A	N/A	7/13/2005	WMS2050713
1,2-Dichloroethane	ND	1.0	0.50	$\mu g/L$	N/A	N/A	7/13/2005	WMS2050713
1,2-Dibromoethane (EDB)	ND	1.0	0.50	$\mu g/L$	N/A	N/A	7/13/2005	WMS2050713
Ethanol	ND	1.0	100	\mug/L	N/A	N/A	7/13/2005	WMS2050713
Surrogate	Surrogate Recovery	Control	Limits (%)				Analyzed by: TAF	
4-Bromofluorobenzene	114	60	- 130				Reviewed by: bdha	balia
Dibromofluoromethane	106	60	- 130					
Toluene-d8	115	60	- 130					

TPH-Pu	raeable	CC/MS
IPM-PU	rgeable:	GC/MS

1PH-Purgeable: GC/MS									
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	45		1.0	25	μg/L	N/A	N/A	7/13/2005	WMS2050713
Surrogate	Surrogate Recovery	,	Control	Limits (%)				Analyzed by: TAF	
4-Bromofluorobenzene	105		60 -	130				Reviewed by: bdha	balia
Dibromofluoromethane	94.2		60 -	130					
Toluene-d8	100		60 -	130					

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Liquid - VOCs: EPA 5030C / EPA 8260B for Groundwater and Water - EPA 624 for

Wastewater

QC Batch ID: WMS2050712 Validated by: bdhabalia - 07/15/05

QC Batch Analysis Date: 7/12/2005

Parameter	Result	DF	PQLR	Units
1,1,1,2-Tetrachloroethane	ND	1	0.50	μg/L
1,1,1-Trichloroethane	ND	1	0.50	μg/L
1,1,2,2-Tetrachloroethane	ND	1	0.50	μg/L
1,1,2-Trichloroethane	ND	1	0.50	μg/L
1,1-Dichloroethane	ND	1	0.50	μg/L
1,1-Dichloroethene	ND	1	0.50	μg/L
1,1-Dichloropropene	ND	1	0.50	μg/L
1,2,3-Trichlorobenzene	ND	1	5.0	μg/L
1,2,3-Trichloropropane	ND	1	0.50	μg/L
1,2,4-Trichlorobenzene	ND	1	5.0	μg/L
1,2,4-Trimethylbenzene	ND	1	5.0	μg/L
1,2-Dibromo-3-Chloropropane	ND	1	5.0	μg/L
1,2-Dibromoethane (EDB)	ND	1	0.50	μg/L
1,2-Dichlorobenzene	ND	1	0.50	μg/L
1,2-Dichloroethane	ND	1	0.50	μg/L
1,2-Dichloropropane	ND	1	0.50	μg/L
1,3,5-Trimethylbenzene	ND	1	5.0	μg/L
1,3-Dichlorobenzene	ND	1	0.50	μg/L
1,3-Dichloropropane	ND	1	0.50	μg/L
1,4-Dichlorobenzene	ND	1	0.50	μg/L
1,4-Dioxane	ND	1	50	μg/L
2,2-Dichloropropane	ND	1	0.50	μg/L
2-Butanone (MEK)	ND	1	20	μg/L
2-Chloroethyl-vinyl Ether	ND	1	5.0	μg/L
2-Chlorotoluene	ND	1	5.0	μg/L
2-Hexanone	ND	1	20	μg/L
4-Chlorotoluene	ND	1	5.0	μg/L
4-Methyl-2-Pentanone(MIBK)	ND	1	20	μg/L
Acetone	ND	1	20	μg/L
Acetonitrile	ND	1	5.0	μg/L
Acrolein	ND	1	5.0	μg/L
Acrylonitrile	ND	1	5.0	μg/L
Benzene	ND	1	0.50	μg/L
Benzyl Chloride	ND	1	5.0	μg/L
Bromobenzene	ND	1	0.50	μg/L
Bromochloromethane	ND	1	0.50	μg/L
Bromodichloromethane	ND	1	0.50	μg/L
Bromoform	ND	1	0.50	μg/L
Bromomethane	ND	1	0.50	μg/L
Carbon Disulfide	ND	1	0.50	μg/L
Carbon Tetrachloride	ND	1	0.50	μg/L
Chlorobenzene	ND	1	0.50	μg/L
Chloroethane	ND	1	0.50	μg/L
Chloroform	ND	1	0.50	μg/L
Chloromethane	ND	1	0.50	μg/L
cis-1,2-Dichloroethene	ND	1	0.50	μg/L
cis-1,3-Dichloropropene	ND	1	0.50	μg/L
Cyclohexanone	ND	1	20	μg/L
Dibromochloromethane	ND	1	0.50	μg/L

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Liquid - VOCs: EPA 5030C / EPA 8260B for Groundwater and Water - EPA 624 for

Wastewater

QC Batch ID: WMS2050712 Validated by: bdhabalia - 07/15/05

QC Batch Analysis Date: 7/12/2005

Parameter	Result	DF	PQLR	Units
Dibromomethane	ND	1	0.50	μg/L
Dichlorodifluoromethane	ND	1	0.50	μg/L
Diisopropyl Ether	ND	1	5.0	μg/L
Ethyl Benzene	ND	1	0.50	μg/L
Freon 113	ND	1	5.0	μg/L
Hexachlorobutadiene	ND	1	5.0	μg/L
Iodomethane	ND	1	5.0	μg/L
Isopropanol	ND	1	20	μg/L
Isopropylbenzene	ND	1	1.0	μg/L
Methylene Chloride	ND	1	5.0	μg/L
Methyl-t-butyl Ether	ND	1	1.0	μg/L
Naphthalene	ND	1	5.0	μg/L
n-Butylbenzene	ND	1	5.0	μg/L
n-Propylbenzene	ND	1	5.0	μg/L
Pentachloroethane	ND	1	0.50	μg/L
p-Isopropyltoluene	ND	1	5.0	μg/L
sec-Butylbenzene	ND	1	5.0	μg/L
Styrene	ND	1	0.50	μg/L
tert-Amyl Methyl Ether	ND	1	5.0	μg/L
tert-Butanol (TBA)	ND	1	10	μg/L
tert-Butyl Ethyl Ether	ND	1	5.0	μg/L
tert-Butylbenzene	ND	1	5.0	μg/L
Tetrachloroethene	ND	1	0.50	μg/L
Tetrahydrofuran	ND	1	20	μg/L
Toluene	ND	1	0.50	μg/L
trans-1,2-Dichloroethene	ND	1	0.50	μg/L
trans-1,3-Dichloropropene	ND	1	0.50	μg/L
trans-1,4-Dichloro-2-butene	ND	1	1.0	μg/L
Trichloroethene	ND	1	0.50	μg/L
Trichlorofluoromethane	ND	1	0.50	μg/L
Vinyl Acetate	ND	1	5.0	μg/L
Vinyl Chloride	ND	1	0.50	μg/L
Xylenes, Total	ND	1	0.50	μg/L

Surrogate for Blank	% Recovery	Control Limit				
4-Bromofluorobenzene	112	70	-	125		
Dibromofluoromethane	108	70	-	125		
Toluene-d8	111	70	_	125		

Method Blank - Liquid - TPH-Purgeable: GC/MS

QC Batch ID: WMS2050712 Validated by: bdhabalia - 07/15/05

QC Batch Analysis Date: 7/12/2005

Parameter TPH as Gasoline			Result ND	DF 1	PQLR 25	Units μg/L
Surrogate for Blank	% Recovery	Control Limits				
4-Bromofluorobenzene	104	60 - 130				
Dibromofluoromethane	95.4	60 - 130				
Toluene-d8	96.6	60 - 130				

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

LCS / LCSD - Liquid - VOCs: EPA 5030C / EPA 8260B for Groundwater and Water - EPA 624 for

Wastewater

QC Batch ID: WMS2050712 Reviewed by: bdhabalia - 07/15/05

QC Batch ID Analysis Date: 7/12/2005

ı	•	•	C
L	·		J

Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery	Recovery Limits
1,1-Dichloroethene	< 0.50	20	18.7	μg/L	93.4	70 - 130
Benzene	< 0.50	20	19.9	μg/L	99.4	70 - 130
Chlorobenzene	<0.50	20	18.5	μg/L	92.7	70 - 130
Methyl-t-butyl Ether	<1.0	20	19.8	μg/L	98.8	70 - 130
Toluene	<0.50	20	19.0	μg/L	95.0	70 - 130
Trichloroethene	<0.50	20	19.9	μg/L	99.5	70 - 130
Surrogate	% Recovery Co	ontrol Limits				
4-Bromofluorobenzene	112.0	60 - 130				
Dibromofluoromethane	109.0	50 - 130				

LCSD

Toluene-d8

Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
1,1-Dichloroethene	< 0.50	20	17.6	μg/L	88.2	5.7	25.0	70 - 130
Benzene	< 0.50	20	18.9	μg/L	94.5	5.0	25.0	70 - 130
Chlorobenzene	<0.50	20	17.6	μg/L	88.2	5.0	25.0	70 - 130
Methyl-t-butyl Ether	<1.0	20	18.3	μg/L	91.5	7.7	25.0	70 - 130
Toluene	<0.50	20	18.2	μg/L	90.9	4.4	25.0	70 - 130
Trichloroethene	< 0.50	20	19.0	μg/L	95.0	4.7	25.0	70 - 130

Surrogate	% Recovery	Conti	rol	Limits
4-Bromofluorobenzene	110.0	60	-	130
Dibromofluoromethane	109.0	60	-	130
Toluene-d8	110.0	60	-	130

LCS / LCSD - Liquid - TPH-Purgeable: GC/MS

109.0

60 - 130

QC Batch ID: WMS2050712 Reviewed by: bdhabalia - 07/15/05

QC Batch ID Analysis Date: 7/12/2005

LCS

Parameter	Method BI	ank Spike Amt	SpikeResult	Units	% Recovery	Recovery Limits
TPH as Gasoline	<25	250	278	μg/L	111	65 - 135
Surrogate	% Recovery	Control Limits				
4-Bromofluorobenzene	106.0	60 - 130				
Dibromofluoromethane	97.7	60 - 130				
Toluene-d8	96.6	60 - 130				

LCSD

Parameter	Method Bla	ink Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits	
TPH as Gasoline	<25	250	281	μg/L	113	1.3	25.0	65 - 135	
Surrogate	% Recovery	Control Limits							
4-Bromofluorobenzene	104.0	60 - 130							
Dibromofluoromethane	97.5	60 - 130							
Toluene-d8	96.6	60 - 130							

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Liquid - VOCs: EPA 8260B

QC Batch ID: WMS2050713 Validated by: bdhabalia - 07/15/05

QC Batch Analysis Date: 7/13/2005

Parameter	Result	DF	PQLR	Units
1,2-Dibromoethane (EDB)	ND	1	0.50	μg/L
1,2-Dichloroethane	ND	1	0.50	μg/L
Benzene	ND	1	0.50	μg/L
Diisopropyl Ether	ND	1	5.0	μg/L
Ethanol	ND	1	100	μg/L
Ethyl Benzene	ND	1	0.50	μg/L
Methyl-t-butyl Ether	ND	1	1.0	μg/L
tert-Amyl Methyl Ether	ND	1	5.0	μg/L
tert-Butanol (TBA)	ND	1	10	μg/L
tert-Butyl Ethyl Ether	ND	1	5.0	μg/L
Toluene	ND	1	0.50	μg/L
Xylenes, Total	ND	1	0.50	μg/L

Surrogate for Blank	% Recovery	Cont	rol	Limits
4-Bromofluorobenzene	117	60	-	130
Dibromofluoromethane	109	60	-	130
Toluene-d8	115	60	_	130

Method Blank - Liquid - TPH-Purgeable: GC/MS

QC Batch ID: WMS2050713 Validated by: bdhabalia - 07/15/05

QC Batch Analysis Date: 7/13/2005

Surrogate for Blank	% Recovery	Cont	rol	Limits	3
4-Bromofluorobenzene	108	60	-	130	
Dibromofluoromethane	96.4	60	-	130	
Toluene-d8	100	60	_	130	

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

LCS / LCSD - Liquid - VOCs: EPA 8260B

QC Batch ID: WMS2050713 Reviewed by: bdhabalia - 07/15/05

QC Batch ID Analysis Date: 7/13/2005

	\sim
ᆫ	CO.

Parameter	Method Blani	Spike Amt	SpikeResult	Units	% Recovery	Recovery Limits
1,1-Dichloroethene	< 0.50	20	16.9	μg/L	84.6	70 - 130
Benzene	< 0.50	20	18.3	μg/L	91.5	70 - 130
Chlorobenzene	< 0.50	20	17.7	μg/L	88.6	70 - 130
Methyl-t-butyl Ether	<1.0	20	17.1	μg/L	85.7	70 - 130
Toluene	< 0.50	20	18.5	μg/L	92.6	70 - 130
Trichloroethene	< 0.50	20	18.6	μg/L	93.1	70 - 130
Surrogate	% Recovery	ontrol Limits				
4-Bromofluorobenzene	113.0	60 - 130				
Dibromofluoromethane	106.0	60 - 130				
Toluene-d8	114.0	60 - 130				

LCSD

Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
1,1-Dichloroethene	< 0.50	20	17.5	μg/L	87.3	3.2	25.0	70 - 130
Benzene	< 0.50	20	19.4	μg/L	97.0	5.8	25.0	70 - 130
Chlorobenzene	< 0.50	20	18.6	μg/L	93.0	4.9	25.0	70 - 130
Methyl-t-butyl Ether	<1.0	20	18.7	μg/L	93.3	8.5	25.0	70 - 130
Toluene	< 0.50	20	19.5	μg/L	97.4	5.1	25.0	70 - 130
Trichloroethene	< 0.50	20	19.6	μg/L	97.8	4.9	25.0	70 - 130

Surrogate	% Recovery	Cont	rol	Limits
4-Bromofluorobenzene	113.0	60	-	130
Dibromofluoromethane	106.0	60	-	130
Toluene-d8	114.0	60	-	130

LCS / LCSD - Liquid - TPH-Purgeable: GC/MS

QC Batch ID: WMS2050713 Reviewed by: bdhabalia - 07/15/05

QC Batch ID Analysis Date: 7/13/2005

LCS

Parameter	Method B	lank Spike Amt	SpikeResult	Units	% Recovery	Recovery Limits
TPH as Gasoline	<25	250	278	μg/L	111	65 - 135
Surrogate	% Recovery	Control Limits				
4-Bromofluorobenzene	107.0	60 - 130				
Dibromofluoromethane	96.1	60 - 130				
Toluene-d8	100.0	60 - 130				

LCSD

Parameter	Method B	lank Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
TPH as Gasoline	<25	250	285	μg/L	114	2.6	25.0	65 - 135
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	107.0	60 - 130						
Dibromofluoromethane	96.5	60 - 130						
Toluene-d8	100.0	60 - 130						

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Liquid - VOCs: EPA 8260B

QC Batch ID: WMS2050714 Validated by: bdhabalia - 07/15/05

QC Batch Analysis Date: 7/14/2005

Parameter	Result	DF	PQLR	Units
1,2-Dibromoethane (EDB)	ND	1	0.50	μg/L
1,2-Dichloroethane	ND	1	0.50	μg/L
Benzene	ND	1	0.50	μg/L
Diisopropyl Ether	ND	1	5.0	μg/L
Ethanol	ND	1	100	μg/L
Ethyl Benzene	ND	1	0.50	μg/L
Methyl-t-butyl Ether	ND	1	1.0	μg/L
tert-Amyl Methyl Ether	ND	1	5.0	μg/L
tert-Butanol (TBA)	ND	1	10	μg/L
tert-Butyl Ethyl Ether	ND	1	5.0	μg/L
Toluene	ND	1	0.50	μg/L
Xylenes, Total	ND	1	0.50	μg/L

Surrogate for Blank	% Recovery	Control Limits			
4-Bromofluorobenzene	113	60	-	130	
Dibromofluoromethane	110	60	-	130	
Toluene-d8	114	60	_	130	

Method Blank - Liquid - TPH-Purgeable: GC/MS

QC Batch ID: WMS2050714 Validated by: bdhabalia - 07/15/05

QC Batch Analysis Date: 7/14/2005

Surrogate for Blank	% Recovery	Control Limits			
4-Bromofluorobenzene	105	60	-	130	
Dibromofluoromethane	97.0	60	-	130	
Toluene-d8	99.4	60	-	130	

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

LCS / LCSD - Liquid - VOCs: EPA 8260B

QC Batch ID: WMS2050714 Reviewed by: bdhabalia - 07/15/05

QC Batch ID Analysis Date: 7/14/2005

i	CC
ı	_63

Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery	Recovery Limits
1,1-Dichloroethene	< 0.50	20	18.0	μg/L	90.0	70 - 130
Benzene	< 0.50	20	18.1	μg/L	90.7	70 - 130
Chlorobenzene	< 0.50	20	17.9	μg/L	89.3	70 - 130
Methyl-t-butyl Ether	<1.0	20	20.2	μg/L	101	70 - 130
Toluene	< 0.50	20	19.1	μg/L	95.7	70 - 130
Trichloroethene	< 0.50	20	18.5	μg/L	92.7	70 - 130
Surrogate	% Recovery C	ontrol Limits				
4-Bromofluorobenzene	113.0	60 - 130				
Dibromofluoromethane	116.0	60 - 130				

LCSD

Toluene-d8

Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
1,1-Dichloroethene	< 0.50	20	18.3	μg/L	91.6	1.8	25.0	70 - 130
Benzene	< 0.50	20	19.2	μg/L	96.2	5.9	25.0	70 - 130
Chlorobenzene	< 0.50	20	19.2	μg/L	96.0	7.2	25.0	70 - 130
Methyl-t-butyl Ether	<1.0	20	20.6	μg/L	103	2.0	25.0	70 - 130
Toluene	< 0.50	20	19.6	μg/L	97.8	2.2	25.0	70 - 130
Trichloroethene	< 0.50	20	19.7	µg/L	98.6	6.1	25.0	70 - 130

Surrogate	% Recovery	Cont	rol	Limits
4-Bromofluorobenzene	113.0	60	-	130
Dibromofluoromethane	111.0	60	-	130
Toluene-d8	112.0	60	-	130

LCS / LCSD - Liquid - TPH-Purgeable: GC/MS

112.0

60 - 130

QC Batch ID: WMS2050714 Reviewed by: bdhabalia - 07/15/05

QC Batch ID Analysis Date: 7/14/2005

LCS

Parameter	Method Bl	lank Spike Am	t SpikeResult	Units	% Recovery	Recovery Limits
TPH as Gasoline	<25	250	239	μg/L	95.5	65 - 135
Surrogate	% Recovery	Control Limits				
4-Bromofluorobenzene	105.0	60 - 130				
Dibromofluoromethane	99.8	60 - 130				
Toluene-d8	101.0	60 - 130				

LCSD

Parameter	Method BI	ank Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
TPH as Gasoline	<25	250	236	μg/L	94.4	1.2	25.0	65 - 135
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	105.0	60 - 130						
Dibromofluoromethane	96.9	60 - 130						
Toluene-d8	98.8	60 - 130						

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

LCS / LCSD - Liquid - ICP Metals: EPA 3010A / EPA 6010B for Groundwater and Water - EPA 200.7 for

Wastewater

QC Batch ID: WM050712 Reviewed by: Dqueja - 07/12/05

QC/Prep Date: 7/12/2005

LCS					a. =				
Parameter	Method Blank	•	•	Units	% Recovery			Recovery Limits	
Antimony	<0.010	0.50	0.584	mg/L	117			75 - 125	
Arsenic	<0.010	0.50	0.558	mg/L	112		75 - 125		
Barium	<0.0050	0.50	0.622	mg/L	124		75 - 125		
Beryllium	<0.0050	0.50	0.528	mg/L	106			75 - 125	
Cadmium	<0.0020	0.50	0.521	mg/L	104			75 - 125	
Chromium	< 0.0050	0.50	0.523	mg/L	105			75 - 125	
Cobalt	< 0.0050	0.50	0.538	mg/L	108			75 - 125	
Copper	< 0.0050	0.50	0.521	mg/L	104			75 - 125	
Lead	<0.0050	0.50	0.537	mg/L	107			75 - 125	
Molybdenum	< 0.0050	0.50	0.541	mg/L	108			75 - 125	
Nickel	< 0.0050	0.50	0.528	mg/L	106			75 - 125	
Selenium	< 0.020	0.50	0.552	mg/L	110			75 - 125	
Silver	< 0.0050	0.50	0.610	mg/L	122			75 - 125	
Thallium	< 0.020	0.50	0.514	mg/L	103			75 - 125	
Tin	< 0.050	1.0	1.15	mg/L	115			75 - 125	
Titanium	< 0.0020	0.50	0.525	mg/L	105			75 - 125	
Vanadium	< 0.0050	0.50	0.523	mg/L	105			75 - 125	
Zinc	< 0.010	0.50	0.552	mg/L	110			75 - 125	
LCSD									
Parameter	Method Blank	•	•	Units	% Recovery	RPD	RPD Limits	Recovery Limits	
Parameter Antimony	<0.010	0.50	0.569	mg/L	114	2.6	25.0	75 - 125	
Parameter Antimony Arsenic	<0.010 <0.010	0.50 0.50	0.569 0.552		114 110	2.6 1.1	25.0 25.0	75 - 125 75 - 125	
Parameter Antimony	<0.010	0.50 0.50 0.50	0.569 0.552 0.597	mg/L	114 110 119	2.6	25.0 25.0 25.0	75 - 125 75 - 125 75 - 125	
Parameter Antimony Arsenic	<0.010 <0.010	0.50 0.50	0.569 0.552	mg/L mg/L	114 110	2.6 1.1	25.0 25.0	75 - 125 75 - 125	
Parameter Antimony Arsenic Barium	<0.010 <0.010 <0.0050	0.50 0.50 0.50	0.569 0.552 0.597	mg/L mg/L mg/L	114 110 119	2.6 1.1 4.1	25.0 25.0 25.0	75 - 125 75 - 125 75 - 125	
Parameter Antimony Arsenic Barium Beryllium	<0.010 <0.010 <0.0050 <0.0050	0.50 0.50 0.50 0.50	0.569 0.552 0.597 0.525	mg/L mg/L mg/L mg/L	114 110 119 105	2.6 1.1 4.1 0.57	25.0 25.0 25.0 25.0	75 - 125 75 - 125 75 - 125 75 - 125	
Parameter Antimony Arsenic Barium Beryllium Cadmium	<0.010 <0.010 <0.0050 <0.0050 <0.0020	0.50 0.50 0.50 0.50 0.50	0.569 0.552 0.597 0.525 0.513	mg/L mg/L mg/L mg/L mg/L	114 110 119 105 103	2.6 1.1 4.1 0.57 1.5	25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125 75 - 125 75 - 125 75 - 125	
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium	<0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50	0.569 0.552 0.597 0.525 0.513 0.516	mg/L mg/L mg/L mg/L mg/L	114 110 119 105 103 103	2.6 1.1 4.1 0.57 1.5 1.3	25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125	
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt	<0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.569 0.552 0.597 0.525 0.513 0.516 0.530	mg/L mg/L mg/L mg/L mg/L mg/L	114 110 119 105 103 103 106	2.6 1.1 4.1 0.57 1.5 1.3	25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125	
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper	<0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.569 0.552 0.597 0.525 0.513 0.516 0.530 0.510	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	114 110 119 105 103 103 106 102	2.6 1.1 4.1 0.57 1.5 1.3 1.5 2.1	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125	
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead	<0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.569 0.552 0.597 0.525 0.513 0.516 0.530 0.510 0.531	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	114 110 119 105 103 103 106 102 106	2.6 1.1 4.1 0.57 1.5 1.3 1.5 2.1	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125	
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum	<0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.569 0.552 0.597 0.525 0.513 0.516 0.530 0.510 0.531 0.536	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	114 110 119 105 103 103 106 102 106 107	2.6 1.1 4.1 0.57 1.5 1.3 1.5 2.1 1.1	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125	
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel	<0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.569 0.552 0.597 0.525 0.513 0.516 0.530 0.510 0.531 0.536 0.521	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	114 110 119 105 103 103 106 102 106 107 104	2.6 1.1 4.1 0.57 1.5 1.3 1.5 2.1 1.1 0.93 1.3	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125	
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium	<0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.569 0.552 0.597 0.525 0.513 0.516 0.530 0.510 0.531 0.536 0.521 0.543	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	114 110 119 105 103 103 106 102 106 107 104 109	2.6 1.1 4.1 0.57 1.5 1.3 1.5 2.1 1.1 0.93 1.3 1.6	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125	
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver	<0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.569 0.552 0.597 0.525 0.513 0.516 0.530 0.510 0.531 0.536 0.521 0.543 0.585	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	114 110 119 105 103 103 106 102 106 107 104 109 117	2.6 1.1 4.1 0.57 1.5 1.3 1.5 2.1 1.1 0.93 1.3 1.6 4.1	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125	
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium	<0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0020 <0.0020	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.569 0.552 0.597 0.525 0.513 0.516 0.530 0.510 0.531 0.536 0.521 0.543 0.585 0.512	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	114 110 119 105 103 103 106 102 106 107 104 109 117	2.6 1.1 4.1 0.57 1.5 1.3 1.5 2.1 1.1 0.93 1.3 1.6 4.1	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125	
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium	<0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.569 0.552 0.597 0.525 0.513 0.516 0.530 0.510 0.531 0.536 0.521 0.543 0.585 0.512 1.13	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	114 110 119 105 103 103 106 102 106 107 104 109 117 102 113	2.6 1.1 4.1 0.57 1.5 1.3 1.5 2.1 1.1 0.93 1.3 1.6 4.1 0.39 1.4	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125	

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

LCS / LCSD - Liquid - Dissolved Metals by ICP: EPA 3010A / EPA 6010B for Groundwater and Water -

EPA 200.7 for Wastewater

QC Batch ID: WM050713 Reviewed by: dqueja - 07/14/05

QC/Prep Date: 7/13/2005

LCS Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery			Recovery Limits
Antimony	< 0.010	0.50	0.532	mg/L	106			75 - 125
Arsenic	< 0.010	0.50	0.538	mg/L	108			75 - 125
Barium	< 0.0050	0.50	0.551	mg/L	110			75 - 125
Beryllium	< 0.0050	0.50	0.507	mg/L	101			75 - 125
Cadmium	< 0.0020	0.50	0.506	mg/L	101			75 - 125
Chromium	< 0.0050	0.50	0.502	mg/L	100			75 - 125
Cobalt	< 0.0050	0.50	0.520	mg/L	104			75 - 125
Copper	< 0.0050	0.50	0.497	mg/L	99.4			75 - 125
Iron	< 0.050	0.50	0.523	mg/L	105			75 - 125
Lead	< 0.0050	0.50	0.518	mg/L	104			75 - 125
Molybdenum	< 0.0050	0.50	0.516	mg/L	103			75 - 125
Nickel	< 0.0050	0.50	0.509	mg/L	102			75 - 125
Selenium	< 0.020	0.50	0.544	mg/L	109			75 - 125
Silver	< 0.0050	0.50	0.573	mg/L	115			75 - 125
Thallium	< 0.020	0.50	0.504	mg/L	101			75 - 125
Tin	< 0.050	1.0	0.999	mg/L	99.9			75 - 125
Titanium	< 0.0020	0.50	0.504	mg/L	101			75 - 125
Vanadium	< 0.0050	0.50	0.499	mg/L	99.8			75 - 125
Zinc	< 0.010	0.50	0.536	mg/L	107			75 - 125
LCSD								
LCSD Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
	Method Blank <0.010	Spike Amt	SpikeResult 0.542	Units mg/L	% Recovery	RPD 1.9	RPD Limits 25.0	Recovery Limits 75 - 125
Parameter		-	•		-			•
Parameter Antimony	<0.010	0.50	0.542	mg/L	108	1.9	25.0	75 - 125
Parameter Antimony Arsenic	<0.010 <0.010	0.50 0.50	0.542 0.545	mg/L mg/L	108 109	1.9 1.3	25.0 25.0	75 - 125 75 - 125
Parameter Antimony Arsenic Barium	<0.010 <0.010 <0.0050	0.50 0.50 0.50	0.542 0.545 0.561	mg/L mg/L mg/L	108 109 112	1.9 1.3 1.8	25.0 25.0 25.0	75 - 125 75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium	<0.010 <0.010 <0.0050 <0.0050	0.50 0.50 0.50 0.50	0.542 0.545 0.561 0.506	mg/L mg/L mg/L mg/L	108 109 112 101	1.9 1.3 1.8 0.20	25.0 25.0 25.0 25.0	75 - 125 75 - 125 75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium	<0.010 <0.010 <0.0050 <0.0050 <0.0020	0.50 0.50 0.50 0.50 0.50	0.542 0.545 0.561 0.506 0.510	mg/L mg/L mg/L mg/L mg/L	108 109 112 101 102	1.9 1.3 1.8 0.20 0.79	25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125 75 - 125 75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium	<0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50	0.542 0.545 0.561 0.506 0.510	mg/L mg/L mg/L mg/L mg/L	108 109 112 101 102 102	1.9 1.3 1.8 0.20 0.79 1.6	25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt	<0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.542 0.545 0.561 0.506 0.510 0.510 0.524	mg/L mg/L mg/L mg/L mg/L mg/L	108 109 112 101 102 102 105	1.9 1.3 1.8 0.20 0.79 1.6 0.77	25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper	<0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.542 0.545 0.561 0.506 0.510 0.510 0.524 0.503	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	108 109 112 101 102 102 105 101	1.9 1.3 1.8 0.20 0.79 1.6 0.77 1.2	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper	<0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.542 0.545 0.561 0.506 0.510 0.510 0.524 0.503 0.528	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	108 109 112 101 102 102 105 101 106	1.9 1.3 1.8 0.20 0.79 1.6 0.77 1.2	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Iron Lead	<0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.542 0.545 0.561 0.506 0.510 0.510 0.524 0.503 0.528 0.526	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	108 109 112 101 102 102 105 101 106 105	1.9 1.3 1.8 0.20 0.79 1.6 0.77 1.2 0.95 1.5	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Iron Lead Molybdenum	<0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.542 0.545 0.561 0.506 0.510 0.510 0.524 0.503 0.528 0.526 0.524	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	108 109 112 101 102 102 105 101 106 105	1.9 1.3 1.8 0.20 0.79 1.6 0.77 1.2 0.95 1.5	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Iron Lead Molybdenum Nickel	<0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.542 0.545 0.561 0.506 0.510 0.510 0.524 0.503 0.528 0.526 0.524 0.515	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	108 109 112 101 102 102 105 101 106 105 105	1.9 1.3 1.8 0.20 0.79 1.6 0.77 1.2 0.95 1.5 1.5	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Iron Lead Molybdenum Nickel Selenium	<0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.542 0.545 0.561 0.506 0.510 0.510 0.524 0.503 0.528 0.526 0.524 0.515 0.546	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	108 109 112 101 102 102 105 101 106 105 105 103 109	1.9 1.3 1.8 0.20 0.79 1.6 0.77 1.2 0.95 1.5 1.5 1.2	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Iron Lead Molybdenum Nickel Selenium Silver	<0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.542 0.545 0.561 0.506 0.510 0.510 0.524 0.503 0.528 0.526 0.524 0.515 0.546 0.582	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	108 109 112 101 102 102 105 101 106 105 105 103 109 116	1.9 1.3 1.8 0.20 0.79 1.6 0.77 1.2 0.95 1.5 1.5 1.2 0.37	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Iron Lead Molybdenum Nickel Selenium Silver Thallium	<0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0020 <0.0020	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.542 0.545 0.561 0.506 0.510 0.510 0.524 0.503 0.528 0.526 0.524 0.515 0.546 0.582 0.510	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	108 109 112 101 102 102 105 101 106 105 105 107 108 109 116 102	1.9 1.3 1.8 0.20 0.79 1.6 0.77 1.2 0.95 1.5 1.5 1.5 1.6 0.37	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Iron Lead Molybdenum Nickel Selenium Silver Thallium Tin	<0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.542 0.545 0.561 0.506 0.510 0.510 0.524 0.503 0.528 0.526 0.524 0.515 0.546 0.582 0.510 1.01	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	108 109 112 101 102 102 105 101 106 105 103 109 116 102 101	1.9 1.3 1.8 0.20 0.79 1.6 0.77 1.2 0.95 1.5 1.5 1.2 0.37 1.6 1.2	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

LCS / LCSD - Liquid - Oil & Grease: EPA 413.2

QC Batch ID: WOGIR050712 Reviewed by: RLAZARO - 07/12/05

QC/Prep Date: 7/12/2005

LCS

ParameterMethod BlankSpike AmtSpikeResultUnits% RecoveryRecovery LimitsOil and Grease, Total<5.0</td>5554.2mg/L98.275 - 125

LCSD

ParameterMethod BlankSpike AmtSpikeResultUnits% RecoveryRPDRPD LimitsRecovery LimitsOil and Grease, Total<5.0</td>5556.3mg/L1023.875 - 125

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Liquid - TPH-Extractable: EPA 3510C / EPA 8015B

QC/Prep Batch ID: DW050712 Validated by: dba - 07/13/05

QC/Prep Date: 7/12/2005

Parameter	Result	DF	PQLR	Units
TPH as Diesel	ND	1	67	μg/L
TPH as Kerosene	ND	1	67	μg/L
TPH as Mineral Spirits (Stoddard)	ND	1	67	μg/L
TPH as Motor Oil	ND	1	270	μg/L

Surrogate for Blank % Recovery Control Limits o-Terphenyl 120 22 - 133

LCS / LCSD - Liquid - TPH-Extractable: EPA 3510C / EPA 8015B

QC Batch ID: DW050712 Reviewed by: dba - 07/13/05

QC/Prep Date: 7/12/2005

LCS

Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery	Recovery Limits
TPH as Diesel	<50	1000	932	μg/L	93.2	40 - 138
TPH as Motor Oil	<200	1000	1200	μg/L	120	40 - 138

Surrogate% RecoveryControl Limitso-Terphenyl110.022 - 133

LCSD

Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits	
TPH as Diesel	<50	1000	950	μg/L	95.0	2.0	25.0	40 - 138	
TPH as Motor Oil	<200	1000	1160	μg/L	116	3.6	25.0	40 - 138	

Surrogate% RecoveryControl Limitso-Terphenyl107.022 - 133

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Brent Wheeler Lab Certificate Number: 48991

Golden Gate Tank Removal Issued: 04/21/2006

255 Shipley Street

San Francisco, CA 94107

Project Number: T0600102112

Project Name: 7335 Sheaff's Garage Global ID: T0600102112

Project Location: 5930 College Ave/Oakland,CA

Certificate of Analysis - Final Report

On April 17, 2006, samples were received under chain of custody for analysis.

Entech analyzes samples "as received" unless otherwise noted. The following results are included:

Matrix Test Comments

Liquid Electronic Deliverables

Ci

EPA 8260B for Groundwater and Water - EPA 624 for

Wastewater

TPH as Gasoline by GC/MS

Entech Analytical Labs, Inc. is certified for environmental analyses by the State of California (#2346). If you have any questions regarding this report, please call us at 408-588-0200 ext. 225.

Sincerely,

Erin Cunniffe

Operations Manager

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project Name: 7335 Sheaff's Garage

Project Location: 5930 College Ave/Oakland,CA

GlobalID: T0600102112

Certificate of Analysis - Data Report

Samples Received: 04/17/2006 Sample Collected by: client

Lab #: 48991-001	Sample ID: MW-1	Matrix: Liquid Sample Date: 4/14/2006	4.45 PM
Lab π . τ 0//1-001	Sample ID. MIW-I	Matrix. Liquid Sample Date. 4/14/2000	T.TJ 1 W1

EPA 5030C - EPA 8260B for Grou	ındwater and Wa	ter - EPA 6	24 for Wastewater					
Parameter	Result (Qual D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
1,1,1,2-Tetrachloroethane	ND	250	120	μg/L	N/A	N/A	4/20/2006	WM1060420
1,1,1-Trichloroethane	ND	250	120	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
1,1,2,2-Tetrachloroethane	ND	250	120	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
1,1,2-Trichloroethane	ND	250	120	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
1,1-Dichloroethane	ND	250	120	μg/L	N/A	N/A	4/20/2006	WM1060420
1,1-Dichloroethene	ND	250	120	μg/L	N/A	N/A	4/20/2006	WM1060420
1,1-Dichloropropene	ND	250	120	μg/L	N/A	N/A	4/20/2006	WM1060420
1,2,3-Trichlorobenzene	ND	250	1200	μg/L	N/A	N/A	4/20/2006	WM1060420
1,2,3-Trichloropropane	ND	250	120	μg/L	N/A	N/A	4/20/2006	WM1060420
1,2,4-Trichlorobenzene	ND	250	1200	μg/L	N/A	N/A	4/20/2006	WM1060420
1,2,4-Trimethylbenzene	2400	250	1200	μg/L	N/A	N/A	4/20/2006	WM1060420
1,2-Dibromo-3-Chloropropane	ND	250	1200	μg/L	N/A	N/A	4/20/2006	WM1060420
1,2-Dibromoethane (EDB)	ND	250	120	μg/L	N/A	N/A	4/20/2006	WM1060420
1,2-Dichlorobenzene	ND	250	120	μg/L	N/A	N/A	4/20/2006	WM1060420
1,2-Dichloroethane	ND	250	120	μg/L	N/A	N/A	4/20/2006	WM1060420
1,2-Dichloropropane	ND	250	120	μg/L	N/A	N/A	4/20/2006	WM1060420
1,3,5-Trimethylbenzene	ND	250	1200	μg/L	N/A	N/A	4/20/2006	WM1060420
1,3-Dichlorobenzene	ND	250	120	μg/L	N/A	N/A	4/20/2006	WM1060420
1,3-Dichloropropane	ND	250	120	μg/L	N/A	N/A	4/20/2006	WM1060420
1,4-Dichlorobenzene	ND	250	120	μg/L	N/A	N/A	4/20/2006	WM1060420
1,4-Dioxane	ND	250	12000	μg/L	N/A	N/A	4/20/2006	WM1060420
2,2-Dichloropropane	ND	250	120	μg/L	N/A	N/A	4/20/2006	WM1060420
2-Butanone (MEK)	ND	250	5000	μg/L	N/A	N/A	4/20/2006	WM1060420
2-Chloroethyl-vinyl Ether	ND	250	1200	μg/L	N/A	N/A	4/20/2006	WM1060420
2-Chlorotoluene	ND	250	1200	μg/L	N/A	N/A	4/20/2006	WM1060420
2-Hexanone	ND	250	5000	μg/L	N/A	N/A	4/20/2006	WM1060420
4-Chlorotoluene	ND	250	1200	μg/L	N/A	N/A	4/20/2006	WM1060420
4-Methyl-2-Pentanone(MIBK)	ND	250	5000	μg/L	N/A	N/A	4/20/2006	WM1060420
Acetone	ND	250	5000	μg/L	N/A	N/A	4/20/2006	WM1060420
Acetonitrile	ND	250	1200	μg/L μg/L	N/A	N/A	4/20/2006	WM1060420
Acrolein	ND	250	1200	μg/L μg/L	N/A	N/A	4/20/2006	WM1060420
Acrylonitrile	ND	250	1200	μg/L μg/L	N/A	N/A	4/20/2006	WM1060420
Benzene	14000	250	120	μg/L μg/L	N/A	N/A	4/20/2006	WM1060420
Benzyl Chloride	ND	250	1200	μg/L μg/L	N/A	N/A	4/20/2006	WM1060420
Bromobenzene	ND	250	120	μg/L μg/L	N/A	N/A	4/20/2006	WM1060420
Bromochloromethane	ND	250	120	μg/L μg/L	N/A	N/A	4/20/2006	WM1060420
Bromodichloromethane	ND	250	120		N/A	N/A	4/20/2006	WM1060420
Bromoform	ND ND	250	120	μg/L μg/L	N/A	N/A	4/20/2006	WM1060420 WM1060420
Bromomethane	ND ND	250	120		N/A N/A	N/A N/A	4/20/2006	WM1060420 WM1060420
Carbon Disulfide	ND ND	250	120	μg/L	N/A N/A	N/A N/A	4/20/2006	WM1060420 WM1060420
Carbon Disumde Carbon Tetrachloride	ND ND	250		μg/L			4/20/2006	
	ND ND	250	120	μg/L	N/A	N/A		WM1060420 WM1060420
Chlorosthana			120	μg/L	N/A	N/A	4/20/2006	
Chloroethane	ND ND	250	120	μg/L	N/A	N/A	4/20/2006	WM1060420
Chloroform	ND	250	120	μg/L	N/A	N/A	4/20/2006	WM1060420
Chloromethane	ND	250	120	μg/L	N/A	N/A	4/20/2006	WM1060420

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project Name: 7335 Sheaff's Garage

Project Location: 5930 College Ave/Oakland,CA

GlobalID: T0600102112

Certificate of Analysis - Data Report

Samples Received: 04/17/2006 Sample Collected by: client

Lab #: 48991-001 **Sample ID: MW-1 Matrix:** Liquid **Sample Date:** 4/14/2006 4:45 PM

EPA 5030C - EPA 8260B for Gro	oundwater and Water -	EPA 624	4 for Wastewater					
Parameter	Result Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
cis-1,2-Dichloroethene	ND	250	120	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
cis-1,3-Dichloropropene	ND	250	120	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Cyclohexanone	ND	250	5000	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Dibromochloromethane	ND	250	120	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Dibromomethane	ND	250	120	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Dichlorodifluoromethane	ND	250	120	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Diisopropyl Ether	ND	250	1200	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Ethyl Benzene	3500	250	120	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Freon 113	ND	250	1200	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Hexachlorobutadiene	ND	250	1200	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Iodomethane	ND	250	250	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Isopropanol	ND	250	5000	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Isopropylbenzene	ND	250	250	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Methyl-t-butyl Ether	270	250	250	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Methylene Chloride	ND	250	5000	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
n-Butylbenzene	ND	250	1200	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
n-Propylbenzene	ND	250	1200	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Naphthalene	ND	250	1200	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
p-Isopropyltoluene	ND	250	1200	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Pentachloroethane	ND	250	120	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
sec-Butylbenzene	ND	250	1200	μg/L	N/A	N/A	4/20/2006	WM1060420
Styrene	ND	250	120	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
tert-Amyl Methyl Ether	ND	250	1200	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
tert-Butanol (TBA)	ND	250	2500	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
tert-Butyl Ethyl Ether	ND	250	1200	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
tert-Butylbenzene	ND	250	1200	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Tetrachloroethene	ND	250	120	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Tetrahydrofuran	ND	250	5000	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Γoluene	5300	250	120	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
rans-1,2-Dichloroethene	ND	250	120	μg/L	N/A	N/A	4/20/2006	WM1060420
rans-1,3-Dichloropropene	ND	250	120	μg/L	N/A	N/A	4/20/2006	WM1060420
rans-1,4-Dichloro-2-butene	ND	250	250	μg/L	N/A	N/A	4/20/2006	WM1060420
Trichloroethene	ND	250	120	μg/L	N/A	N/A	4/20/2006	WM1060420
Trichlorofluoromethane	ND	250	120	μg/L	N/A	N/A	4/20/2006	WM1060420
Vinyl Acetate	ND	250	1200	μg/L	N/A	N/A	4/20/2006	WM1060420
Vinyl Chloride	ND	250	120	μg/L	N/A	N/A	4/20/2006	WM1060420
Xylenes, Total	17000	250	120	μg/L	N/A	N/A	4/20/2006	WM1060420

Surrogate	Surrogate Recovery	Contro	ol Li	mits (%	6)
4-Bromofluorobenzene	95.2	60	-	130	
Dibromofluoromethane	101	60	-	130	
Toluene-d8	94.3	60	_	130	

Analyzed by: XBian Reviewed by: dba

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107

Attn: Brent Wheeler

Project Name: 7335 Sheaff's Garage

Project Location: 5930 College Ave/Oakland,CA

GlobalID: T0600102112

Certificate of Analysis - Data Report

Samples Received: 04/17/2006 Sample Collected by: client

Lab #: 48991-001 **Sample ID: MW-1 Matrix:** Liquid **Sample Date:** 4/14/2006 4:45 PM

EPA 5030C - TPH as Gasol	CPA 5030C - TPH as Gasoline by GC/MS											
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch			
TPH as Gasoline	51000		250	6200	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420			
Surrogate	Surrogate Recovery		Control	Limits (%)			Analyzed by: XBian					
4-Bromofluorobenzene	89.7		60 -	- 130				Reviewed by: dba				
Dibromofluoromethane	91.3		60 -	130								
Toluene-d8	89.8		60 -	130								

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project Name: 7335 Sheaff's Garage

Project Location: 5930 College Ave/Oakland,CA

GlobalID: T0600102112

Certificate of Analysis - Data Report

Samples Received: 04/17/2006 Sample Collected by: client

Lah# • 48991-002	Sample ID: MW-2	Matrix: Liquid Sample Date: 4/14/2006	1·10 PM
Lab π . $\pm 0001 \pm 002$	Sample 1D. WIW-2	Matrix. Liquid Sample Date. 7/17/2000 -	F. 1 O 1 1VI

EPA 5030C - EPA 8260B for Grou				TT. *4	D D. 4	D D. 4-1	A I 1 - D - 4	OCP 41
Parameter	Result Qua		Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
1,1,1,2-Tetrachloroethane	ND	100	50	μg/L	N/A	N/A	4/20/2006	WM1060420
1,1,1-Trichloroethane	ND	100	50	μg/L	N/A	N/A	4/20/2006	WM1060420
1,1,2,2-Tetrachloroethane	ND	100	50	μg/L	N/A	N/A	4/20/2006	WM1060420
1,1,2-Trichloroethane	ND	100	50	μg/L	N/A	N/A	4/20/2006	WM1060420
1,1-Dichloroethane	ND	100	50	μg/L	N/A	N/A	4/20/2006	WM1060420
1,1-Dichloroethene	ND	100	50	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
1,1-Dichloropropene	ND	100	50	μg/L	N/A	N/A	4/20/2006	WM1060420
1,2,3-Trichlorobenzene	ND	100	500	μg/L	N/A	N/A	4/20/2006	WM1060420
1,2,3-Trichloropropane	ND	100	50	μg/L	N/A	N/A	4/20/2006	WM1060420
1,2,4-Trichlorobenzene	ND	100	500	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
1,2,4-Trimethylbenzene	1200	100	500	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
1,2-Dibromo-3-Chloropropane	ND	100	500	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
1,2-Dibromoethane (EDB)	ND	100	50	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
1,2-Dichlorobenzene	ND	100	50	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
1,2-Dichloroethane	ND	100	50	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
1,2-Dichloropropane	ND	100	50	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
1,3,5-Trimethylbenzene	ND	100	500	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
1,3-Dichlorobenzene	ND	100	50	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
1,3-Dichloropropane	ND	100	50	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
1,4-Dichlorobenzene	ND	100	50	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
1,4-Dioxane	ND	100	5000	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
2,2-Dichloropropane	ND	100	50	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
2-Butanone (MEK)	ND	100	2000	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
2-Chloroethyl-vinyl Ether	ND	100	500	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
2-Chlorotoluene	ND	100	500	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
2-Hexanone	ND	100	2000	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
4-Chlorotoluene	ND	100	500	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
4-Methyl-2-Pentanone(MIBK)	ND	100	2000	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Acetone	ND	100	2000	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Acetonitrile	ND	100	500	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Acrolein	ND	100	500	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Acrylonitrile	ND	100	500	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Benzene	4000	100	50	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Benzyl Chloride	ND	100	500	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Bromobenzene	ND	100	50	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Bromochloromethane	ND	100	50	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Bromodichloromethane	ND	100	50	μg/L	N/A	N/A	4/20/2006	WM1060420
Bromoform	ND	100	50	μg/L	N/A	N/A	4/20/2006	WM1060420
Bromomethane	ND	100	50	μg/L	N/A	N/A	4/20/2006	WM1060420
Carbon Disulfide	ND	100	50	μg/L	N/A	N/A	4/20/2006	WM1060420
Carbon Tetrachloride	ND	100	50	μg/L	N/A	N/A	4/20/2006	WM1060420
Chlorobenzene	ND	100	50	μg/L	N/A	N/A	4/20/2006	WM1060420
Chloroethane	ND	100	50	μg/L	N/A	N/A	4/20/2006	WM1060420
Chloroform	ND	100	50	μg/L	N/A	N/A	4/20/2006	WM1060420
Chloromethane	ND	100	50	μg/L	N/A	N/A	4/20/2006	WM1060420

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project Name: 7335 Sheaff's Garage

Project Location: 5930 College Ave/Oakland,CA

GlobalID: T0600102112

Certificate of Analysis - Data Report

Samples Received: 04/17/2006 Sample Collected by: client

Lab #: 48991-002 **Sample ID: MW-2 Matrix:** Liquid **Sample Date:** 4/14/2006 4:10 PM

EPA 5030C - EPA 8260B for Gro			4 for Wastewater					
Parameter	Result Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
cis-1,2-Dichloroethene	ND	100	50	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
cis-1,3-Dichloropropene	ND	100	50	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Cyclohexanone	ND	100	2000	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Dibromochloromethane	ND	100	50	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Dibromomethane	ND	100	50	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Dichlorodifluoromethane	ND	100	50	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Diisopropyl Ether	ND	100	500	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Ethyl Benzene	2300	100	50	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Freon 113	ND	100	500	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Hexachlorobutadiene	ND	100	500	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Iodomethane	ND	100	100	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Isopropanol	ND	100	2000	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Isopropylbenzene	ND	100	100	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Methyl-t-butyl Ether	ND	100	100	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Methylene Chloride	ND	100	2000	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
n-Butylbenzene	ND	100	500	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
n-Propylbenzene	ND	100	500	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Naphthalene	680	100	500	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
p-Isopropyltoluene	ND	100	500	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Pentachloroethane	ND	100	50	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
sec-Butylbenzene	ND	100	500	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Styrene	ND	100	50	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
tert-Amyl Methyl Ether	ND	100	500	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
tert-Butanol (TBA)	ND	100	1000	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
tert-Butyl Ethyl Ether	ND	100	500	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
tert-Butylbenzene	ND	100	500	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Tetrachloroethene	ND	100	50	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Tetrahydrofuran	ND	100	2000	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Toluene	740	100	50	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
trans-1,2-Dichloroethene	ND	100	50	μg/L	N/A	N/A	4/20/2006	WM1060420
rans-1,3-Dichloropropene	ND	100	50	μg/L	N/A	N/A	4/20/2006	WM1060420
rans-1,4-Dichloro-2-butene	ND	100	100	μg/L	N/A	N/A	4/20/2006	WM1060420
Trichloroethene	ND	100	50	μg/L	N/A	N/A	4/20/2006	WM1060420
Trichlorofluoromethane	ND	100	50	μg/L	N/A	N/A	4/20/2006	WM1060420
Vinyl Acetate	ND	100	500	μg/L	N/A	N/A	4/20/2006	WM1060420
Vinyl Chloride	ND	100	50	μg/L	N/A	N/A	4/20/2006	WM1060420
Xylenes, Total	5100	100	50	μg/L	N/A	N/A	4/20/2006	WM1060420

Surrogate	Surrogate Recovery	Contro	ol Li	mits (%	6)
4-Bromofluorobenzene	93.5	60	-	130	
Dibromofluoromethane	101	60	-	130	
Toluene-d8	91.5	60	-	130	

Analyzed by: XBian Reviewed by: dba

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107

Project Location: 5930 College Ave/Oakland,CA Attn: Brent Wheeler

GlobalID: T0600102112

Certificate of Analysis - Data Report

Samples Received: 04/17/2006 Sample Collected by: client

Project Name: 7335 Sheaff's Garage

Lab #: 48991-002 Sample ID: MW-2 Matrix: Liquid Sample Date: 4/14/2006 4:10 PM

EPA 5030C - TPH as Gasol	ine by GC/MS								
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	21000		100	2500	μg/L	N/A	N/A	4/20/2006	WM1060420
Surrogate	Surrogate Recovery	,	Control	Limits (%)				Analyzed by: XBia	n
4-Bromofluorobenzene	88.1		60	- 130				Reviewed by: dba	
Dibromofluoromethane	91.3		60	- 130					
Toluene-d8	87.1		60 -	- 130					

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107

Certificate of Analysis - Data Report

Attn: Brent Wheeler

Project Name: 7335 Sheaff's Garage

Project Location: 5930 College Ave/Oakland,CA

GlobalID: T0600102112

Samples Received: 04/17/2006 Sample Collected by: client

Lab #: 48991-003 Sample ID: MW-3 Matrix: Liquid Sample Date: 4/14/2006 3:18 PM

EPA 5030C - EPA 8260B for Grou				TT. *4	D	D D . 4 . I	Amalant Did	OCP 41
Parameter	Result Qua		Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
1,1,1,2-Tetrachloroethane	ND	20	10	μg/L	N/A	N/A	4/20/2006	WM1060420
1,1,1-Trichloroethane	ND	20	10	μg/L	N/A	N/A	4/20/2006	WM1060420
1,1,2,2-Tetrachloroethane	ND	20	10	μg/L	N/A	N/A	4/20/2006	WM1060420
1,1,2-Trichloroethane	ND	20	10	μg/L	N/A	N/A	4/20/2006	WM1060420
1,1-Dichloroethane	ND	20	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
1,1-Dichloroethene	ND	20	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
1,1-Dichloropropene	ND	20	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
1,2,3-Trichlorobenzene	ND	20	100	μg/L	N/A	N/A	4/20/2006	WM1060420
1,2,3-Trichloropropane	ND	20	10	μg/L	N/A	N/A	4/20/2006	WM1060420
1,2,4-Trichlorobenzene	ND	20	100	μg/L	N/A	N/A	4/20/2006	WM1060420
1,2,4-Trimethylbenzene	120	20	100	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
1,2-Dibromo-3-Chloropropane	ND	20	100	μg/L	N/A	N/A	4/20/2006	WM1060420
1,2-Dibromoethane (EDB)	ND	20	10	μg/L	N/A	N/A	4/20/2006	WM1060420
1,2-Dichlorobenzene	ND	20	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
1,2-Dichloroethane	ND	20	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
1,2-Dichloropropane	ND	20	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
1,3,5-Trimethylbenzene	ND	20	100	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
1,3-Dichlorobenzene	ND	20	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
1,3-Dichloropropane	ND	20	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
1,4-Dichlorobenzene	ND	20	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
1,4-Dioxane	ND	20	1000	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
2,2-Dichloropropane	ND	20	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
2-Butanone (MEK)	ND	20	400	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
2-Chloroethyl-vinyl Ether	ND	20	100	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
2-Chlorotoluene	ND	20	100	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
2-Hexanone	ND	20	400	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
4-Chlorotoluene	ND	20	100	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
4-Methyl-2-Pentanone(MIBK)	ND	20	400	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Acetone	ND	20	400	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Acetonitrile	ND	20	100	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Acrolein	ND	20	100	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Acrylonitrile	ND	20	100	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Benzene	760	20	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Benzyl Chloride	ND	20	100	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Bromobenzene	ND	20	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Bromochloromethane	ND	20	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Bromodichloromethane	ND	20	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Bromoform	ND	20	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Bromomethane	ND	20	10	μg/L	N/A	N/A	4/20/2006	WM1060420
Carbon Disulfide	ND	20	10	μg/L	N/A	N/A	4/20/2006	WM1060420
Carbon Tetrachloride	ND	20	10	μg/L	N/A	N/A	4/20/2006	WM1060420
Chlorobenzene	ND	20	10	μg/L	N/A	N/A	4/20/2006	WM1060420
Chloroethane	ND	20	10	μg/L	N/A	N/A	4/20/2006	WM1060420
Chloroform	ND	20	10	μg/L	N/A	N/A	4/20/2006	WM1060420
Chloromethane	ND	20	10	μg/L	N/A	N/A	4/20/2006	WM1060420

Detection Limit = Detection Limit for Reporting.

ND = Not Detected at or above the Detection Limit.

D/P-F = Dilution and/or Prep Factor includes sample volume adjustments.

Qual = Data Qualifier

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project Name: 7335 Sheaff's Garage

Project Location: 5930 College Ave/Oakland,CA

GlobalID: T0600102112

Certificate of Analysis - Data Report

Samples Received: 04/17/2006 Sample Collected by: client

Lab #: 48991-003 **Sample ID: MW-3 Matrix:** Liquid **Sample Date:** 4/14/2006 3:18 PM

EPA 5030C - EPA 8260B for Gro	oundwater and Water	- EPA 624	4 for Wastewater					
Parameter	Result Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
cis-1,2-Dichloroethene	ND	20	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
cis-1,3-Dichloropropene	ND	20	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Cyclohexanone	ND	20	400	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Dibromochloromethane	ND	20	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Dibromomethane	ND	20	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Dichlorodifluoromethane	ND	20	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Diisopropyl Ether	ND	20	100	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Ethyl Benzene	230	20	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Freon 113	ND	20	100	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Hexachlorobutadiene	ND	20	100	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Iodomethane	ND	20	20	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Isopropanol	ND	20	400	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Isopropylbenzene	ND	20	20	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Methyl-t-butyl Ether	69	20	20	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Methylene Chloride	ND	20	400	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
n-Butylbenzene	ND	20	100	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
n-Propylbenzene	170	20	100	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Naphthalene	100	20	100	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
p-Isopropyltoluene	ND	20	100	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Pentachloroethane	ND	20	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
sec-Butylbenzene	ND	20	100	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Styrene	ND	20	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
tert-Amyl Methyl Ether	ND	20	100	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
tert-Butanol (TBA)	ND	20	200	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
tert-Butyl Ethyl Ether	ND	20	100	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
tert-Butylbenzene	ND	20	100	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Tetrachloroethene	ND	20	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Tetrahydrofuran	ND	20	400	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Toluene	44	20	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
trans-1,2-Dichloroethene	ND	20	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
trans-1,3-Dichloropropene	ND	20	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
trans-1,4-Dichloro-2-butene	ND	20	20	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Trichloroethene	ND	20	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Trichlorofluoromethane	ND	20	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Vinyl Acetate	ND	20	100	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Vinyl Chloride	ND	20	10	μg/L	N/A	N/A	4/20/2006	WM1060420
Xylenes, Total	190	20	10	μg/L	N/A	N/A	4/20/2006	WM1060420

Surrogate	Surrogate Recovery	Contro	l Li	mits (%)
4-Bromofluorobenzene	96.6	60	-	130
Dibromofluoromethane	102	60	-	130
Toluene-d8	93.5	60	-	130

Analyzed by: XBian

Reviewed by: dba

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107

Project Location: 5930 College Ave/Oakland,CA Attn: Brent Wheeler

GlobalID: T0600102112

Certificate of Analysis - Data Report

Samples Received: 04/17/2006 Sample Collected by: client

Project Name: 7335 Sheaff's Garage

Lab #: 48991-003 Sample ID: MW-3 Matrix: Liquid Sample Date: 4/14/2006 3:18 PM

EPA 5030C - TPH as Gasol	line by GC/MS								
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	5000		20	500	μg/L	N/A	N/A	4/20/2006	WM1060420
Surrogate	Surrogate Recovery	,	Control	Limits (%)				Analyzed by: XBia	n
4-Bromofluorobenzene	91.0		60	- 130				Reviewed by: dba	
Dibromofluoromethane	92.6		60	- 130					
Toluene-d8	89.0		60 -	- 130					

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project Name: 7335 Sheaff's Garage

Project Location: 5930 College Ave/Oakland,CA

GlobalID: T0600102112

Certificate of Analysis - Data Report

Samples Received: 04/17/2006 Sample Collected by: client

Lab #: 48991-004	Sample ID: PW-1	Matrix: Liquid Sample Date: 4/14/2006	1:36 PM

EPA 5030C - EPA 8260B for Grou Parameter	Result Qu		Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
							-	
1,1,1,2-Tetrachloroethane	ND	2.0	1.0	μg/L	N/A	N/A	4/20/2006	WM1060420
1,1,1-Trichloroethane	ND	2.0	1.0	μg/L	N/A	N/A	4/20/2006	WM1060420
1,1,2,2-Tetrachloroethane	ND	2.0	1.0	μg/L	N/A	N/A	4/20/2006	WM1060420
1,1,2-Trichloroethane	ND	2.0	1.0	μg/L	N/A	N/A	4/20/2006	WM1060420
1,1-Dichloroethane	ND	2.0	1.0	μg/L	N/A	N/A	4/20/2006	WM1060420
1,1-Dichloroethene	ND	2.0	1.0	μg/L	N/A	N/A	4/20/2006	WM1060420
1,1-Dichloropropene	ND	2.0	1.0	μg/L	N/A	N/A	4/20/2006	WM1060420
1,2,3-Trichlorobenzene	ND	2.0	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
1,2,3-Trichloropropane	ND	2.0	1.0	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
1,2,4-Trichlorobenzene	ND	2.0	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
1,2,4-Trimethylbenzene	ND	2.0	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
1,2-Dibromo-3-Chloropropane	ND	2.0	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
1,2-Dibromoethane (EDB)	ND	2.0	1.0	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
,2-Dichlorobenzene	ND	2.0	1.0	μg/L	N/A	N/A	4/20/2006	WM1060420
,2-Dichloroethane	ND	2.0	1.0	μg/L	N/A	N/A	4/20/2006	WM1060420
,2-Dichloropropane	ND	2.0	1.0	μg/L	N/A	N/A	4/20/2006	WM1060420
,3,5-Trimethylbenzene	ND	2.0	10	μg/L	N/A	N/A	4/20/2006	WM1060420
,3-Dichlorobenzene	ND	2.0	1.0	μg/L	N/A	N/A	4/20/2006	WM1060420
,3-Dichloropropane	ND	2.0	1.0	μg/L	N/A	N/A	4/20/2006	WM1060420
,4-Dichlorobenzene	ND	2.0	1.0	μg/L μg/L	N/A	N/A	4/20/2006	WM1060420
,4-Dioxane	ND	2.0	100		N/A	N/A	4/20/2006	WM1060420
	ND ND	2.0	1.0	μg/L		N/A N/A	4/20/2006	
2,2-Dichloropropane				μg/L	N/A			WM1060420
2-Butanone (MEK)	ND	2.0	40	μg/L	N/A	N/A	4/20/2006	WM1060420
2-Chloroethyl-vinyl Ether	ND	2.0	10	μg/L	N/A	N/A	4/20/2006	WM1060420
2-Chlorotoluene	ND	2.0	10	μg/L	N/A	N/A	4/20/2006	WM1060420
2-Hexanone	ND	2.0	40	μg/L	N/A	N/A	4/20/2006	WM1060420
l-Chlorotoluene	ND	2.0	10	μg/L	N/A	N/A	4/20/2006	WM1060420
4-Methyl-2-Pentanone(MIBK)	ND	2.0	40	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Acetone	ND	2.0	40	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Acetonitrile	ND	2.0	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Acrolein	ND	2.0	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Acrylonitrile	ND	2.0	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Benzene	2.3	2.0	1.0	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Benzyl Chloride	ND	2.0	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Bromobenzene	ND	2.0	1.0	μg/L	N/A	N/A	4/20/2006	WM1060420
Bromochloromethane	ND	2.0	1.0	μg/L	N/A	N/A	4/20/2006	WM1060420
Bromodichloromethane	ND	2.0	1.0	μg/L	N/A	N/A	4/20/2006	WM1060420
Bromoform	ND	2.0	1.0	μg/L	N/A	N/A	4/20/2006	WM1060420
Bromomethane	ND	2.0	1.0	μg/L	N/A	N/A	4/20/2006	WM1060420
Carbon Disulfide	ND	2.0	1.0	μg/L μg/L	N/A	N/A	4/20/2006	WM1060420
Carbon Tetrachloride	ND ND	2.0	1.0		N/A	N/A N/A	4/20/2006	WM1060420
				μg/L				
Chlorobenzene	ND	2.0	1.0	μg/L	N/A	N/A	4/20/2006	WM1060420
Chloroethane	ND	2.0	1.0	μg/L	N/A	N/A	4/20/2006	WM1060420
Chloroform	ND	2.0	1.0	μg/L	N/A	N/A	4/20/2006	WM1060420
Chloromethane	ND	2.0	1.0	μg/L	N/A	N/A	4/20/2006	WM106042

Detection Limit = Detection Limit for Reporting.

ND = Not Detected at or above the Detection Limit.

D/P-F = Dilution and/or Prep Factor includes sample volume adjustments.

 $Qual = Data\ Qualifier$

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project Location: 5930 College Ave/

Project Location: 5930 College Ave/Oakland,CA

GlobalID: T0600102112

Certificate of Analysis - Data Report

Samples Received: 04/17/2006 Sample Collected by: client

Lab #: 48991-004 **Sample ID: PW-1 Matrix:** Liquid **Sample Date:** 4/14/2006 1:36 PM

EPA 5030C - EPA 8260B for Gro			l for Wastewater					
Parameter	Result Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
cis-1,2-Dichloroethene	2.8	2.0	1.0	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
cis-1,3-Dichloropropene	ND	2.0	1.0	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Cyclohexanone	ND	2.0	40	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Dibromochloromethane	ND	2.0	1.0	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Dibromomethane	ND	2.0	1.0	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Dichlorodifluoromethane	ND	2.0	1.0	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Diisopropyl Ether	ND	2.0	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Ethyl Benzene	3.5	2.0	1.0	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Freon 113	ND	2.0	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Hexachlorobutadiene	ND	2.0	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Iodomethane	ND	2.0	2.0	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Isopropanol	ND	2.0	40	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Isopropylbenzene	ND	2.0	2.0	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Methyl-t-butyl Ether	ND	2.0	2.0	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Methylene Chloride	ND	2.0	40	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
n-Butylbenzene	ND	2.0	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
n-Propylbenzene	ND	2.0	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Naphthalene	ND	2.0	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
p-Isopropyltoluene	ND	2.0	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Pentachloroethane	ND	2.0	1.0	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
sec-Butylbenzene	ND	2.0	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Styrene	ND	2.0	1.0	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
tert-Amyl Methyl Ether	ND	2.0	10	μg/L	N/A	N/A	4/20/2006	WM1060420
tert-Butanol (TBA)	ND	2.0	20	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
tert-Butyl Ethyl Ether	ND	2.0	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
tert-Butylbenzene	ND	2.0	10	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Tetrachloroethene	68	2.0	1.0	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Tetrahydrofuran	ND	2.0	40	μg/L	N/A	N/A	4/20/2006	WM1060420
Toluene	ND	2.0	1.0	μg/L	N/A	N/A	4/20/2006	WM1060420
trans-1,2-Dichloroethene	ND	2.0	1.0	μg/L	N/A	N/A	4/20/2006	WM1060420
trans-1,3-Dichloropropene	ND	2.0	1.0	μg/L	N/A	N/A	4/20/2006	WM1060420
trans-1,4-Dichloro-2-butene	ND	2.0	2.0	μg/L	N/A	N/A	4/20/2006	WM1060420
Trichloroethene	1.1	2.0	1.0	$\mu g/L$	N/A	N/A	4/20/2006	WM1060420
Trichlorofluoromethane	ND	2.0	1.0	μg/L	N/A	N/A	4/20/2006	WM1060420
Vinyl Acetate	ND	2.0	10	μg/L	N/A	N/A	4/20/2006	WM1060420
Vinyl Chloride	ND	2.0	1.0	μg/L	N/A	N/A	4/20/2006	WM1060420
Xylenes, Total	9.3	2.0	1.0	μg/L	N/A	N/A	4/20/2006	WM1060420

Surrogate	Surrogate Recovery	Control Limits (%)		
4-Bromofluorobenzene	95.9	60	-	130
Dibromofluoromethane	103	60	-	130
Toluene-d8	95.4	60	-	130

Analyzed by: XBian Reviewed by: dba

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107

Attn: Brent Wheeler

Project Name: 7335 Sheaff's Garage

Project Location: 5930 College Ave/Oakland,CA

GlobalID: T0600102112

Certificate of Analysis - Data Report

Samples Received: 04/17/2006 Sample Collected by: client

Lab #: 48991-004 **Sample ID: PW-1 Matrix:** Liquid **Sample Date:** 4/14/2006 1:36 PM

EPA 5030C - TPH as Gasol	line by GC/MS								
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	120		2.0	50	μg/L	N/A	N/A	4/20/2006	WM1060420
Surrogate	Surrogate Recovery		Control	Limits (%)				Analyzed by: XBia	n
4-Bromofluorobenzene	90.4		60 -	- 130				Reviewed by: dba	
Dibromofluoromethane	92.9		60 -	- 130					
Toluene-d8	90.9		60 -	- 130					

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Liquid - TPH as Gasoline by GC/MS

QC Batch ID: WM1060420 Validated by: dba - 04/21/06

QC Batch Analysis Date: 4/20/2006

Parameter	Result	DF	PQLR	Units
TPH as Gasoline	ND	1	25	μg/L

Surrogate for Blank	% Recovery	Control Limits			
4-Bromofluorobenzene	96.9	60	-	130	
Dibromofluoromethane	97.4	60	-	130	
Toluene-d8	84.0	60	-	130	

LCS / LCSD - Liquid - TPH as Gasoline by GC/MS

QC Batch ID: WM1060420 Reviewed by: dba - 04/21/06

QC Batch ID Analysis Date: 4/20/2006

LCS

Parameter	Method B	lank Spike Amt	SpikeResult	Units	% Recovery	Recovery Limits
TPH as Gasoline	<25	120	147	μg/L	117	65 - 135
Surrogate	% Recovery	Control Limits				
4-Bromofluorobenzene	91.1	60 - 130				
Dibromofluoromethane	92.0	60 - 130				
Toluene-d8	90.8	60 - 130				

LCSD

Parameter	Method B	ank Spike Amt	SpikeResuit	Units	% Recovery	RPD	RPD LIMITS	Recovery Limits
TPH as Gasoline	<25	120	145	μg/L	116	1.2	25.0	65 - 135
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	90.8	60 - 130						
Dibromofluoromethane	92.0	60 - 130						
Toluene-d8	91.8	60 - 130						

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Liquid - EPA 8260B for Groundwater and Water - EPA 624 for Wastewater

QC Batch ID: WM1060420 Validated by: dba - 04/21/06

QC Batch Analysis Date: 4/20/2006

QO Baton Analysis Bate. 4/20/2000				
Parameter	Result	DF	PQLR	Units
1,1,1,2-Tetrachloroethane	ND	1	0.50	μg/L
1,1,1-Trichloroethane	ND	1	0.50	μg/L
1,1,2,2-Tetrachloroethane	ND	1	0.50	μg/L
1,1,2-Trichloroethane	ND	1	0.50	μg/L
1,1-Dichloroethane	ND	1	0.50	μg/L
1,1-Dichloroethene	ND	1	0.50	μg/L
1,1-Dichloropropene	ND	1	0.50	μg/L
1,2,3-Trichlorobenzene	ND	1	5.0	μg/L
1,2,3-Trichloropropane	ND	1	0.50	μg/L
1,2,4-Trichlorobenzene	ND	1	5.0	μg/L
1,2,4-Trimethylbenzene	ND	1	5.0	μg/L
1,2-Dibromo-3-Chloropropane	ND	1	5.0	μg/L
1,2-Dibromoethane (EDB)	ND	1	0.50	μg/L
1,2-Dichlorobenzene	ND	1	0.50	μg/L
1,2-Dichloroethane	ND	1	0.50	μg/L
1,2-Dichloropropane	ND	1	0.50	μg/L
1,3,5-Trimethylbenzene	ND	1	5.0	μg/L
1,3-Dichlorobenzene	ND	1	0.50	μg/L
1,3-Dichloropropane	ND	1	0.50	μg/L
1,4-Dichlorobenzene	ND	1	0.50	μg/L
1,4-Dioxane	ND	1	50	μg/L
2,2-Dichloropropane	ND	1	0.50	μg/L
2-Butanone (MEK)	ND	1	20	μg/L
2-Chloroethyl-vinyl Ether	ND	1	5.0	μg/L
2-Chlorotoluene	ND	1	5.0	μg/L
2-Hexanone	ND	1	20	μg/L
4-Chlorotoluene	ND	1	5.0	μg/L
4-Methyl-2-Pentanone(MIBK)	ND	1	20	μg/L
Acetone	ND	1	20	μg/L
Acetonitrile	ND	1	5.0	μg/L
Acrolein	ND	1	5.0	μg/L
Acrylonitrile	ND	1	5.0	μg/L
Benzene	ND	1	0.50	μg/L
Benzyl Chloride	ND	1	5.0	μg/L
Bromobenzene	ND	1	0.50	μg/L
Bromochloromethane	ND	1	0.50	μg/L
Bromodichloromethane	ND	1	0.50	μg/L
Bromoform	ND	1	0.50	μg/L
Bromomethane	ND	1	0.50	μg/L
Carbon Disulfide	ND	1	0.50	μg/L
Carbon Tetrachloride	ND	1	0.50	μg/L
Chlorobenzene	ND	1	0.50	μg/L
Chloroethane	ND	1	0.50	μg/L
Chloroform	ND	1	0.50	μg/L
Chloromethane	ND	1	0.50	μg/L
cis-1,2-Dichloroethene	ND	1	0.50	μg/L
cis-1,3-Dichloropropene	ND	1	0.50	μg/L
Cyclohexanone	ND	1	20	μg/L
Dibromochloromethane	ND	1	0.50	μg/L
Dibromomethane	ND	1	0.50	μg/L
		•	2.00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Liquid - EPA 8260B for Groundwater and Water - EPA 624 for Wastewater

QC Batch ID: WM1060420 Validated by: dba - 04/21/06

QC Batch Analysis Date: 4/20/2006

Parameter	Result	DF	PQLR	Units
Dichlorodifluoromethane	ND	1	0.50	μg/L
Diisopropyl Ether	ND	1	5.0	μg/L
Ethyl Benzene	ND	1	0.50	μg/L
Freon 113	ND	1	5.0	μg/L
Hexachlorobutadiene	ND	1	5.0	μg/L
Iodomethane	ND	1	1.0	μg/L
Isopropanol	ND	1	20	μg/L
Isopropylbenzene	ND	1	1.0	μg/L
Methylene Chloride	ND	1	20	μg/L
Methyl-t-butyl Ether	ND	1	1.0	μg/L
Naphthalene	ND	1	5.0	μg/L
n-Butylbenzene	ND	1	5.0	μg/L
n-Propylbenzene	ND	1	5.0	μg/L
Pentachloroethane	ND	1	0.50	μg/L
p-Isopropyltoluene	ND	1	5.0	μg/L
sec-Butylbenzene	ND	1	5.0	μg/L
Styrene	ND	1	0.50	μg/L
tert-Amyl Methyl Ether	ND	1	5.0	μg/L
tert-Butanol (TBA)	ND	1	10	μg/L
tert-Butyl Ethyl Ether	ND	1	5.0	μg/L
tert-Butylbenzene	ND	1	5.0	μg/L
Tetrachloroethene	ND	1	0.50	μg/L
Tetrahydrofuran	ND	1	20	μg/L
Toluene	ND	1	0.50	μg/L
trans-1,2-Dichloroethene	ND	1	0.50	μg/L
trans-1,3-Dichloropropene	ND	1	0.50	μg/L
trans-1,4-Dichloro-2-butene	ND	1	1.0	μg/L
Trichloroethene	ND	1	0.50	μg/L
Trichlorofluoromethane	ND	1	0.50	μg/L
Vinyl Acetate	ND	1	5.0	μg/L
Vinyl Chloride	ND	1	0.50	μg/L
Xylenes, Total	ND	1	0.50	μg/L

Surrogate for Blank	% Recovery	Cont	rol	Limit
4-Bromofluorobenzene	103	70	-	125
Dibromofluoromethane	108	70	-	125
Toluene-d8	88.2	70	-	125

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

LCS / LCSD - Liquid - EPA 8260B for Groundwater and Water - EPA 624 for Wastewater

QC Batch ID: WM1060420 Reviewed by: dba - 04/21/06

QC Batch ID Analysis Date: 4/20/2006

LCS	
-----	--

Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery	Recovery Limits
1,1-Dichloroethene	< 0.50	20	18.6	μg/L	93.0	70 - 130
Benzene	< 0.50	20	21.2	μg/L	106	70 - 130
Chlorobenzene	< 0.50	20	21.3	μg/L	106	70 - 130
Toluene	< 0.50	20	20.4	μg/L	102	70 - 130
Trichloroethene	<0.50	20	21.3	μg/L	106	70 - 130
Surrogate	% Recovery Co	ontrol Limits				
4-Bromofluorobenzene	95.7	50 - 130				
Dibromofluoromethane	104.0	50 - 130				
Toluene-d8	91.8	50 - 130				

LCSD

Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
1,1-Dichloroethene	<0.50	20	16.5	μg/L	82.5	12	25.0	70 - 130
Benzene	<0.50	20	18.9	μg/L	94.5	11	25.0	70 - 130
Chlorobenzene	<0.50	20	19.3	μg/L	96.5	9.9	25.0	70 - 130
Toluene	<0.50	20	18.4	μg/L	92.0	10	25.0	70 - 130
Trichloroethene	< 0.50	20	19.0	μg/L	95.0	11	25.0	70 - 130

Surrogate	% Recovery	Control Limits
4-Bromofluorobenzene	96.1	60 - 130
Dibromofluoromethane	102.0	60 - 130
Toluene-d8	93.3	60 - 130

Entech Analytical Labs, Inc. Chain of Custody / Analysis Request 3334 Victor Court (408) 588-0200 Santa Clara, CA 95054 **ELAP No. 2346** (408) 588-0201 - Fax Purchase Order No.: Invoice to: (If Different) Attention to: Phone No.: **# 7335** BRENT WHELEZ Project No. / Name: Company: Company Name: GGIR #7335/SHAFTS GARAGE Billing Address: (If Different) Email Address: Mailing Address: cataleggtr, com Project Location: 5930 COLLEGE AVE. CAKLAND Entech Order ID: 5 **Turn Around Time** Circle Applicable □ Same Day ☐ 1 Day 2 Day ☐ 3 Dav **EDF** □ 5 Day 4 Day TO600102112 🗓 10 Day Sample Information No. of Containers Sampler KLAN ATKINSON Remarks Entech Instructions Lab. Time Date No. Field Point Client ID DDI 3 X MW-1 X 002 MW-Z MW-3 X PW-1 GW Relinguished by Lab Use: Al, As, Sb, Ba, Be, Bi, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mn, Hg, Mo, Ni, K, Si, Ag, Na, Se, Tl, Sn, Ti, Zn, V Metals: ■ PPM-13 ☐ CAM-17 RCRA-8 ☐ LUFT-5 Plating If any N's, Explain: Lab Use: Temperature: __ Shipment Method: ___ Samples: Iced Y/N Appropriate Containers/Preservatives: Y/N Custody Seals? Y/N Seperate Receipt Log Y/N Headspace? Y/N Labels match CoC? Y/N

Table 1
Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station #209339 5940 College Avenue Oakland, California

WELL ID/	TOC*	DTW	GWE	TPH-G	В	T	E	X	MTBE
DATE	(ft.)	(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MW-1									
01/03/01	196.91	12.75	184.16	930^{1}	2.9	6.9	2.7	7.6	$14/<2.0^3$
04/25/01	196.91	9.23	187.68	210^{4}	2.0	1.5	2.0	3.3	$5.3 < 2.0^3$
07/09/01	196.91	11.86	185.05	290^{5}	1.8	2.0	2.5	0.96	<2.5
06/08/00	196.91	13.49	183.42	200	< 0.50	< 0.50	< 0.50	<1.5	<2.5
01/13/02	196.91	7.33	189.58	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
04/08/02	196.91	7.45	189.46	670	< 0.50	< 2.0	<1.0	5.6	<2.5
10/15/02	196.91	13.68	183.23	260	0.62	0.82	< 0.50	<1.5	
04/15/03	196.91	6.82	190.09	1,700	1.3	< 5.0	< 2.0	< 5.0	
10/31/03	196.91	13.72	183.19	150	< 2.0	0.7	< 2.0	< 5.0	
04/23/04	196.91	9.02	187.89	< 50	< 0.5	< 0.5	< 0.5	<1.5	
10/22/04	196.91	11.50	185.41	63	< 0.5	< 0.5	< 0.5	<1.5	
04/14/05	196.91	7.11	189.80	< 50	< 0.5	< 0.5	< 0.5	<1.5	
10/14/05	196.91	11.90	185.01	160	< 0.5	< 0.5	0.6	< 5.0	
04/14/06	196.91	6.95	189.96	< 50	< 0.5	< 0.5	< 0.5	<1.5	
MW-2									
01/03/01	197.35	12.48	184.87	$2,100^2$	110	11	63	25	$83/2.2^3$
04/25/01	197.35	8.90	188.45	$1,700^4$	150	12	30	15	$150/<2.0^3$
07/09/01	197.35	11.44	185.91	$2,500^5$	200	21	55	26	< 50
04/08/02	197.35	13.37	183.98	4,200	87	2.8	29	9.8	<2.5
01/13/02	197.35	6.55	190.80	410	20	2.9	<2.5	4.4	$27/<2.0^3$
04/08/02	197.35	8.37	188.98	4,000	70	1.7	17	17	< 2.5
10/15/02	197.35	13.00	184.35	3,100	41	2.2	16	< 6.0	
04/15/03	197.35	7.58	189.77	2,400	37	< 2.5	12	<7.5	
10/31/03	197.35	13.02	184.33	2,300	12	3.4	4.8	<7.5	
04/23/04	197.35	8.38	188.97	960	8.9	1.0	2.4	<1.5	
10/22/04	197.35	11.41	185.94	2,200	24	< 2.5	4.1	<10	
04/14/05	197.35	6.69	190.66	640	2.1	< 2.0	< 2.0	7.5	
10/14/05	197.35	11.14	186.21	1,200	6.9	< 2.5	<2.5	<7.5	
04/14/06	197.35	6.54	190.81	180	< 0.5	<0.5	<0.5	< 5.0	

Table 1
Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station #209339 5940 College Avenue Oakland, California

WELL ID/	TOC*	DTW	GWE	TPH-G	В	T	${f E}$	X	MTBE
DATE	(ft.)	(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
TRIP BLANK									
ΓB-LB									
01/03/01				< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 2.5
04/25/01				< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 2.5
07/09/01				< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 2.5
QA									
0/08/01				< 50	< 0.50	< 0.50	< 0.50	<1.5	< 2.5
01/13/02				< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 2.5
04/08/02				< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
0/15/02				< 50	< 0.50	< 0.50	< 0.50	<1.5	
4/15/03				< 50	< 0.5	< 0.5	< 0.5	<1.5	
0/31/03				< 50	< 0.5	< 0.5	< 0.5	<1.5	
04/23/04				< 50	< 0.5	< 0.5	< 0.5	<1.5	
0/22/04				< 50	< 0.5	< 0.5	< 0.5	<1.5	
04/14/05				< 50	< 0.5	< 0.5	< 0.5	<1.5	
0/14/05				< 50	< 0.5	< 0.5	< 0.5	<1.5	
04/14/06				< 50	< 0.5	< 0.5	< 0.5	<1.5	

Table 1

Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station #209339 5940 College Avenue Oakland, California

EXPLANATIONS:

TOC = Top of Casing TPH-G = Total Petroleum Hydrocarbons as Gasoline MTBE = Methyl tertiary butyl ether

(ft.) = Feet B = Benzene (ppb) = Parts per billion

DTW = Depth to Water T = Toluene --= Not Measured/Not Analyzed GWE = Groundwater Elevation E = Ethylbenzene QA = Quality Assurance/Trip Blank

(msl) = Mean sea level X = Xylenes

⁵ Laboratory report indicates gasoline C6-C12 + unidentified hydrocarbons C6-C12.

^{*} TOC elevations were surveyed on December 27, 2000, by Virgil Chavez Land Surveying. The benchmark used for the survey was a City of Oakland benchmark being a cut square in the top of curb, at the curb return at the northeast corner of College Avenue and Miles Avenue, (Benchmark Elev. = 179.075 feet, msl).

Laboratory report indicates unidentified hydrocarbons C6-C12.

² Laboratory report indicates gasoline C6-C12.

MTBE by EPA Method 8260.

Laboratory report indicates gasoline C6-C12 + unidentified hydrocarbons < C6.

REPORT OF

ADDITIONAL SITE CHARACTERIZATION & GROUNDWATER MONITORING

5930 College Avenue, Oakland, California ACHCSA Site #RO0000377

APPENDIX D

SOIL BORING LOGS GROUNDWATER GRADIENT CALCULATION SHEETS

Description		LOG OF BORING B23								
Moist, dark yellowish brown (10YR 5/4) clayey SILT with race fine-grained sand. Moist, moderate to dark yellowish brown (10 YR 5/4 4/2) clayey SILT with coarse-grained sand (10 YR 5/4 4/2) clayey SILT with fine-to-coarse grained sand Moist, moderate to dark yellowish brown (10 YR 5/4) slity CLAY Moist, moderate to dark yellowish brown (10 YR 5/4) slity CLAY Moist, moderate to dark yellowish brown (10 YR 5/4) slity CLAY Moist, dark yellowish brown (10 YR 5/4) slity CLAY with hydrocarbon oddr ML Wet, light olive gray (5Y 5/2) clayey SILT Wet, light olive gray (5Y 5/2) clayey SILT Wet, light olive gray (5Y 5/2) clayey SILT Wet, light olive gray (5Y 5/2) slity CLAY with coarse-grained sand and rock fragments; slight hydrocarbon odor ML Wet, light olive gray (5Y 5/2), slity CLAY with coarse-grained sand and rock fragments; slight hydrocarbon odor MI Wet, light olive gray (5Y 5/2), slity CLAY with coarse-grained sand and rock fragments; slight hydrocarbon odor MI Wet, light olive gray (5Y 5/2), slity CLAY with coarse-grained sand and rock fragments; slight hydrocarbon odor MI Wet, light olive gray (5Y 5/2), slity CLAY with coarse-grained sand and rock fragments; slight hydrocarbon odor Total Boring Depth = 25 fbg Page 1 of 1 Legend/Notes: fbg = feet below grade; toc = top of well casing pm = parts per million; NR = no sample recovery MILLING CONTRACTOR: Gregg Drilling & Testing DRILLING CONTRACT			Time	Vapor	Soil	Description Boring Backfill Detail				
ML MSist, and yellowish brown (10YR 5/4) clayey SILT with frace fine-grained sand. MIL MIL MIL MIST, moderate to dark yellowish brown (10YR 5/4) silty CLAY Moist, moderate to dark yellowish brown (10YR 5/4) silty CLAY Moist, moderate to dark yellowish brown (10YR 5/4) silty CLAY Moist, moderate to dark yellowish brown (10YR 5/4, 4/2) clayey SILT with fine-to-coarse grained sand MIL MIL MIL MIST, moderate to dark yellowish brown (10YR 5/4) silty CLAY Moist to wet, dark yellowish brown (10YR 5/4) silty CLAY with hydrocarbon odor MIL Wet, light olive gray (5Y 5/2) clayey SILT Wet, light olive gray (5Y 5/2) clayey SILT Wet, light olive gray (5Y 5/2) silty CLAY with coarse-grained sand and rock fragments; slight hydrocarbon odor MIL MIL MIST, moderate yellowish brown (10YR 5/4), with some rock fragments; slight hydrocarbon odor MIST, slight		1				Asphalt (3") over Concrete (3") Concrete				
10	_ 1 	Hand			ML	clayey SILT with trace fine-grained sand.				
## Moist, moderate to dark yellowish brown (10 YR 5/4, 4/2) clayey SILT with fine-to-coarse grained sand ### Moist to wet, dark yellowish brown (10 YR 5/4) silty CLAY with hydrocarbon oddr. ### Moist to wet, dark yellowish brown (10 YR 5/4) silty CLAY with hydrocarbon oddr. ### Met, light olive gray (5Y 5/2) clayey SILT with coarse-grained sand and rock fragments; slight hydrocarbon odor. ### Wet, light olive gray (5Y 5/2), silty CLAY with oarse-grained sand and rock fragments; slight hydrocarbon odor. ### Wet, light olive gray (5Y 5/2), silty CLAY with coarse-grained sand and rock fragments; slight hydrocarbon odor. ### Wet, light olive gray (5Y 5/2), silty CLAY with coarse-grained sand and rock fragments; slight hydrocarbon odor. ### Wet, light olive gray (5Y 5/2), silty CLAY with oarse-grained sand and rock fragments; slight hydrocarbon odor. ### Wet, light olive gray (5Y 5/2), silty CLAY with oarse-grained sand and rock fragments; slight hydrocarbon odor. ### Wet, light olive gray (5Y 5/2), silty CLAY with oarse-grained sand and rock fragments; slight hydrocarbon odor. ### Wet, light olive gray (5Y 5/2), silty CLAY with oarse-grained sand and rock fragments; slight hydrocarbon odor. ### Wet, light olive gray (5Y 5/2), silty CLAY with oarse-grained sand and rock fragments; slight hydrocarbon odor. ### Wet, light olive gray (5Y 5/2), slayey SILT with fine-grained sand and rock fragments (0.25"-1"); slight hydrocarbon odor. ### Wet, light olive gray (5Y 5/2), slayey SILT with fine-grained sand and rock fragments (0.25"-1"); slight hydrocarbon odor. ### Wet, light olive gray (5Y 5/2), slayey SILT with fine-grained sand and rock fragments (0.25"-1"); slight hydrocarbon odor. ### Wet, light olive gray (5Y 5/2), slayey SILT with fine-grained sand and rock fragments (0.25"-1"); slight hydrocarbon odor. ### Wet, light olive gray (5Y 5/2), slayey SILT with fine-grained sand and rock fragments (0.25"-1"); slight hydrocarbon odor. ### Wet, light olive gray (5Y 5/2), slayey SILT with fine-grained sand	 _5					(10 YR 5/4 4/2) clayey SILT with coarsegrained sand				
10			1025	0	CL	silty CLAY				
Moist to wet, dark yellowish brown (10/YR 5/4) silty CLAY with hydrocarbon odor ML Wet, light olive gray (5Y 5/2), silty CLAY with coarse-grained sand and rock fragments; slight hydrocarbon odor Wet, light olive gray (5Y 5/2), silty CLAY with coarse-grained sand and rock fragments; slight hydrocarbon odor NL Wet, light olive gray (5Y 5/2), silty CLAY with coarse-grained sand and rock fragments; slight hydrocarbon odor NL Wet, light olive gray (5Y 5/2), silty CLAY with coarse-grained sand and rock fragments; slight hydrocarbon odor NL Wet, light olive gray (5Y 5/2), silty CLAY with coarse-grained sand and rock fragments; slight hydrocarbon odor NL Wet, light olive gray (5Y 5/2), silty CLAY with coarse-grained sand and rock fragments; slight hydrocarbon odor NL Wet, light olive gray (5Y 5/2), silty CLAY with coarse-grained sand and rock fragments; slight hydrocarbon odor NL Wet, light olive gray (5Y 5/2), silty CLAY with coarse-grained sand and rock fragments; slight hydrocarbon odor NL Wet, light olive gray (5Y 5/2), silty CLAY with coarse-grained sand and rock fragments; slight hydrocarbon odor NL Wet, light olive gray (5Y 5/2), silty CLAY with coarse-grained sand and rock fragments; slight hydrocarbon odor NL Wet, light olive gray (5Y 5/2), silty CLAY with coarse-grained sand and rock fragments; slight hydrocarbon odor NL Wet, light olive gray (5Y 5/2), silty CLAY with hydrocarbon odor NL Wet, light olive gray (5Y 5/2), silty CLAY with coarse-grained sand and rock fragments; slight hydrocarbon odor NL Wet, light olive gray (5Y 5/2), silty CLAY with coarse-grained sand and rock fragments; slight hydrocarbon odor NL Wet, light olive gray (5Y 5/2), silty CLAY with coarse-grained sand and rock fragments; slight hydrocarbon odor NL Wet, light olive gray (5Y 5/2), silty CLAY with coarse-grained sand and rock fragments; slight hydrocarbon odor NL Wet, light olive gray (5Y 5/2), silty CLAY with coarse-grained sand and rock fragments; slight hydrocarbon odor NL Wet, light olive gray (5Y 5/2), silty C	 10	7335		0	ML	(10 YR 5/4, 4/2) clayey SILT with fine-to-coarse grained sand Portland Type I-II				
ML Wet, light olive gray (5Y 5/2) clayey SILT			1030			Moist to wet, dark yellowish brown (0.5'-25')				
Wet, light olive gray (5Y 5/2), silty CLAY with coarse-grained sand and rock fragments; slight hydrocarbon odor 7335 B23-17 NR 0 CL ② 18.5 fbg, same; change in color to moderate yellowish brown (10YR 5/4), with some rock fragments (0.25"-1"); slight hydrocarbon odor ML 7335 B23-19.5 NR NR NR NR NR MI Moist to wet, moderate yellowish brown (10YR 5/4) mottled with dark yellowish orange (10YR 6/6) clayey SILT with fine-grained sand; no hydrocarbon odor Total Boring Depth = 25 fbg BORING NUMBER: B23 LOCATION: 5930 College Avenue Oakland, CA PROJECT NO: 7335 DRILLING CONTRACTOR: Gregg Drilling & Testing DRILLING GONTRACTOR: Gregg Drilling & Testing DRILLING METHOD: DPT DRILLING DATE: June 22, 2005			1040	0	CF					
with coarse-grained sand and rock fragments; slight hydrocarbon odor 7335 B23-17 NR 0 20 7335 B23-17 NR 0 218.5 fbg, same; change in color to moderate yellowish brown (10YR 5/4), with some rock fragments (0.25"-1"); slight hydrocarbon odor ML 7335 B23-19.5 NR		$\setminus / $			ML	Wet, light olive gray (5Y 5/2) clayey SILT				
BORING NUMBER: B23 LOCATION: 5930 College Avenue Oakland, CA PROJECT NO: 7335 DRILLING CONTRACTOR: Gregg Drilling & Testing DRILLING DATE: June 22, 2005 MIL	 15 		1045	0		with coarse-grained sand and rock				
hydrocarbon odor Moist to wet, moderate yellowish brown (10YR 5/4) mottled with dark yellowish orange (10YR 6/6) clayey SILT with finegrained sand; no hydrocarbon odor BORING NUMBER: B23 LOCATION: 5930 College Avenue Oakland, CA PROJECT NO: 7335 DRILLING CONTRACTOR: Gregg Drilling & Testing DRILLING METHOD: DPT DRILLING DATE: June 22, 2005 Noist to wet, moderate yellowish brown (10YR 5/4) mottled with dark yellowish orange (10YR 6/6) clayey SILT with finegrained sand; no hydrocarbon odor Page 1 of 1 Page 1 of			NR	0	C.L					
ML (10YR 5/4) mottled with dark yellowish orange (10YR 6/6) clayey SILT with fine-grained sand; no hydrocarbon odor Total Boring Depth = 25 fbg BORING NUMBER: B23 LOCATION: 5930 College Avenue Oakland, CA PROJECT NO: 7335 DRILLING CONTRACTOR: Gregg Drilling & Testing DRILLING METHOD: DPT DRILLING DATE: June 22, 2005 ML (10YR 5/4) mottled with dark yellowish orange (10YR 6/6) clayey SILT with fine-grained sand; no hydrocarbon odor Legend/Notes: fbg = feet below grade; toc = top of well casing ppm = parts per million; NR = no sample recovery □ = sample interval □ = sample retained	_ 20 		1050	0						
BORING NUMBER: B23 LOCATION: 5930 College Avenue Oakland, CA PROJECT NO: 7335 DRILLING CONTRACTOR: Gregg Drilling & Testing DRILLING METHOD: DPT DRILLING DATE: June 22, 2005 Total Boring Depth = 25 fbg Legend/Notes: fbg = feet below grade; toc = top of well casing ppm = parts per million; NR = no sample recovery Solution Page 1 of 1	 _ 25		NR	NR	ML	(10YR 5/4) mottled with dark yellowish orange (10YR 6/6) clayey SILT with fine-				
BORING NUMBER: B23 LOCATION: 5930 College Avenue Oakland, CA PROJECT NO: 7335 DRILLING CONTRACTOR: Gregg Drilling & Testing DRILLING METHOD: DPT DRILLING DATE: June 22, 2005 DRILLING NUMBER: B23 fbg = feet below grade; toc = top of well casing ppm = parts per million; NR = no sample recovery □ = sample interval □ = sample retained						Total Boring Depth = 25 fbg				
DRILLING CONTRACTOR: Gregg Drilling & Testing DRILLING METHOD: DPT DRILLING DATE: June 22, 2005 □ = sample interval □ = sample retained	LOCATI	ON: 5930 Co Oakland,	llege Ave	enue		fbg = feet below grade; toc = top of well casing				
Logged By: G. Wolf Checked By: B. Wheeler Golden Gate Tank Removal. Inc.	DRILLIN DRILLIN	DRILLING CONTRACTOR: Gregg Drilling & Testing DRILLING METHOD: DPT		ng & Tes						
	Logged I	By: G. Wolf	Checked I	By: B. Whe	eler	Golden Gate Tank Removal, Inc.				

Home

Preview

How To

Icons

Developers

What's New

Site Map

U.S. Environmental Protection Agency

EPA On-line Tools for Site Assessment Calculation

Recent Additions

EPA Home > > Ecosystems Research > Modeling Subsurface Petroleum Hydrocarbon Transport > OnSite on-line calculators > Gradient and Direction from Four or More Points

Gradient and Direction from Four or More Points - January 13, 2006

Module Home Objectives Table of Contents Previous < Next >

Hydraulic Gradient

Gradient Calculation from fitting a plane to as many as fifteen points

$$a x_1 + b y_1 + c = h_1$$

 $a x_2 + b y_2 + c = h_2$
 $a x_3 + b y_3 + c = h_3$
...
 $a x_{15} + b y_{15} + c = h_{15}$

where (x_i, y_i) are the coordinates of the well and h_i is the head

i = 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 The coefficients a, b, and c are calculated by a least-squares fitting of the the

The gradient is calculated from the square root of $(a^2 + b^2)$ and the angle from the arctangent of a/b or b/a depending on the quadrant

data to a plane

Site Name Sheaff's Garage

Date January 13, 2006

Current Date

Calculation basis Head

•	Coordinates	ft 🚌	
I.D.	x-coordinate	y-coordinate	head ft
MW1	65	51	191.3
MW2	111	46	191.8
MW3	63	8	190.61
PW1	164	88	192.6

The second control of	The committee of Committee of the commit		
THE CONTROL OF THE CO	egreenment man are made made to	The state of the sum of the second states of the se	extrements some the second
V - 4 · · · (0 · 4 · · · · · · · · · · · · · · · · ·	A No. School of the World Williams Communication Communica	for our to the same and additional test and the same	
6.92 - Ollow Philip Schroller Legister Here	*** ** ** ** ** ** ** ** ** ** ** ** **	11 40000 111 10 0 1 0 0 0 0 0 0 0 0 0 0	
AND STATE OF	and the second control of the second control	Compared to a management of the second secon	vector vector and representation
	1 To A Mar and some 1 Managed 1 on 100 Malphall Ma care constant among	A second to a second se	
	November of Delay	ta lilaadin Oaladatian	4
	Number of Poin	ts Used in Calculation	4
	M. D'66		
		Johnson Hood Values	
	Max. Difference i	Between Head Values	0.6066
		Between Head Values Gradient Magnitude (i)	0.6066
Elever d'annul	C	Gradient Magnitude (i)	0.01624
Flow direct	C		
Flow direct	tion as degrees from	Gradient Magnitude (i) North (positive y axis)	0.01624
Flow direct	tion as degrees from	Gradient Magnitude (i)	0.01624
Flow direct	tion as degrees from	Gradient Magnitude (i) North (positive y axis)	0.01624
Flow direct	tion as degrees from	Gradient Magnitude (i) North (positive y axis)	0.01624
Flow direct	tion as degrees from	Gradient Magnitude (i) North (positive y axis) of Determination (R ²)	0.01624 212.9 0.981
Flow direct	tion as degrees from	Gradient Magnitude (i) North (positive y axis) of Determination (R ²)	0.01624
	tion as degrees from Coefficient	Gradient Magnitude (i) North (positive y axis) of Determination (R ²) Previou	0.01624 212.9 0.981
	tion as degrees from Coefficient	Gradient Magnitude (i) North (positive y axis) of Determination (R ²)	0.01624 212.9 0.981
	tion as degrees from Coefficient	Gradient Magnitude (i) North (positive y axis) of Determination (R ²) Previou	0.01624 212.9 0.981
	tion as degrees from Coefficient	Gradient Magnitude (i) North (positive y axis) of Determination (R ²) Previou	0.01624 212.9 0.981
	tion as degrees from Coefficient	Gradient Magnitude (i) North (positive y axis) of Determination (R ²) Previou	0.01624 212.9 0.981
Home Gloss	tion as degrees from Coefficient ary Notation L	Gradient Magnitude (i) North (positive y axis) of Determination (R ²) Previou	0.01624 212.9 0.981 us Top ^ No
Home Glossa Page author: Jim V	tion as degrees from Coefficient ary Notation L	Gradient Magnitude (i) North (positive y axis) of Determination (R ²) Previous inks References	0.01624 212.9 0.981 us Top ^ No
Home Glossa Page author: Jim V	tion as degrees from Coefficient ary Notation L	Gradient Magnitude (i) North (positive y axis) of Determination (R ²) Previou	0.01624 212.9 0.981 us Top ^ No
Home Glossa Page author: Jim V	tion as degrees from Coefficient ary Notation L	Gradient Magnitude (i) North (positive y axis) of Determination (R ²) Previous inks References	0.01624 212.9 0.981 us Top ^ No
Home Glossa Page author: Jim V	tion as degrees from Coefficient ary Notation L	Gradient Magnitude (i) North (positive y axis) of Determination (R ²) Previous inks References	0.01624 212.9 0.981 us Top ^ No

EPA On-line Tools for Site Assessment Calculations--Gradient and Direction from Four ... Page 2 of 2

EPA On-line Tools for Site Assessment Calculations--Gradient and Direction from Three ... Page 1 of 2

April 14, 2006 Gettler-Ryan

Home Preview

How To

Developers

What's New

Site Map

U.S. Environmental Protection Agency

EPA On-line Tools for Site Assessment Calculation

Recent Additions | Contact Us | Print Version

Ͽ.

EPA Home > > Ecosystems Research > Modeling Subsurface Petroleum Hydrocarbon Transport > OnSite on-line calculators > Gradient and Direction from Three Points

Gradient and Direction from Three Points

Module Home Objectives Table of Contents Previous < Next >

Hydraulic Gradient

Gradient Calculation from fitting a plane to three points

$$a x_1 + b y_1 + c = h_1$$

 $a x_2 + b y_2 + c = h_2$

$$a x_3 + b y_3 + c = h_3$$

where (x_i, y_i) are the coordinates of the well and h_i is the head

$$i = 1,2,3$$

The gradient is calculated from the square root of $(a^2 + b^2)$ and the angle from the arctangent of a/b or b/a depending on the quadrant

Example Data Set 1	Calculate CI	ear
Save Data	Recall Data	Go Back

Site Name Sheaff's Garage

Date April 14, 2006

Current Date

Calculation basis Head

Coordinates ft

	x-coordinate	y-coordinate	head ft
GR-MWI	4	86	189.96
GR-MWZ	60	121	190.81
MWI	65	51	192.82

Gradient Magnitude (i) 0.04129

Degrees from North (+ y axis) 309.8

Previous Top Next

Home Preview

How To

icons

Developers

What's New

Site Map

U.S. Environmental Protection Agency ine Tools for Site Assessment

EPA On-line Tools for Site Assessment Calculation

Recent Additions

EPA Home > > Ecosystems Research > Modeling Subsurface Petroleum Hydrocarbon Transport > OnSite on-line calculators > Gradient and Direction from Four or More Points

Gradient and Direction from Four or More Points - April 14, 2006

Module Home Objectives Table of Contents Previous < Next >

Hydraulic Gradient

Gradient Calculation from fitting a plane to as many as fifteen points

$$a x_1 + b y_1 + c = h_1$$

 $a x_2 + b y_2 + c = h_2$
 $a x_3 + b y_3 + c = h_3$
...
 $a x_{15} + b y_{15} + c = h_{15}$

where (x_i, y_i) are the coordinates of the well and h_i is the head

i = 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 The coefficients a, b, and c are calculated by a least-squares fitting of the the data to a plane

The gradient is calculated from the square root of $(a^2 + b^2)$ and the angle from the arctangent of a/b or b/a depending on the quadrant

Site Name Sheaff's Garage

Date 8/3/2006

Calculation basis Head — April 14, 2006

Coordinates ft

Current Date

	000,4,,,,	7. C.	
I.D.	x-coordinate	y-coordinate	head ft
MW1	65	51	192.82
MW2	111	46	193.67
MW3	63	8	191.81
PW1	164	88	194.9

THE BOOK OF STREET	on the second of the			
	ve 11 - M.	The second secon		CONTROL OF STREET THE STREET STREET SERVICE
week at the contract of the co				
	W 2 M200 II	page-special distribution of the special speci		
		•		
		Number of Points I	Jsed in Calculation	4
		Max. Difference Bet	ween Head Values	0.9418
		Gra	dient Magnitude (i)	0.02465
Flov	w direction	as degrees from No	rth (positive y axis)	217.3
		Coefficient of	Determination (R ²)	0.980
			Previous	s Top^ Ne>
Home I	Glossary	Notation Link	s I References I	Calculators
nonic	Olossary	Notation Link	is Neitherlands	Calculators
			STREET, THE PARTY OF THE PARTY	
		ver, of U.S. EPA, Of		
Athe	ns Georgia	who last modified th	nis content on: July 2	27, 2005

EPA On-line Tools for Site Assessment Calculations--Gradient and Direction from Four ... Page 2 of 2

REPORT OF

ADDITIONAL SITE CHARACTERIZATION & GROUNDWATER MONITORING

5930 College Avenue, Oakland, California ACHCSA Site #RO0000377

APPENDIX E

GEOTRACKER EDD UPLOAD CONFIRMATION FORMS WASTE MANIFESTS

Main Menu | View/Add Facilities | Upload EDD | Check EDD

Your EDF file has been successfully uploaded!

Confirmation Number: 6308827102

Date/Time of Submittal: 8/28/2006 11:38:46 AM

Facility Global ID: T0600102112

Facility Name: SHEAFFS SERVICE GARAGE

Submittal Title: 05-0642:Soil/GW Sample Analytical Data - B12 to B24

Submittal Type: Soil & Water Investigation Report

Click here to view the detections report for this upload.

SHEAFFS SERVICE GARAGE

5930 COLLEGE AVE OAKLAND, CA 94618 Regional Board - Case #: 01-2296

SAN FRANCISCO BAY RWQCB (REGION 2)

Local Agency (lead agency) - Case #: 514

ALAMEDA COUNTY LOP - (AG)

CONF#

6308827102

TITLE 05-0642:Soil/GW Sample Analytical Data - B12 to B24 QUARTER Q2 2005

STATUS

SUBMITTED BY Brent Wheeler SUBMIT DATE 8/28/2006

PENDING REVIEW

SAMPLE DETECTIONS REPORT

FIELD POINTS SAMPLED

FIELD POINTS WITH DETECTIONS

FIELD POINTS WITH WATER SAMPLE DETECTIONS ABOVE MCL

SAMPLE MATRIX TYPES

SOIL, WATER

METHOD QA/QC REPORT

METHODS USED

8260FA,CATFH,E1664,E200.8,SW6020,SW8020F,SW8260B

TESTED FOR REQUIRED ANALYTES? LAB NOTE DATA QUALIFIERS

91

5

5

5

QA/QC FOR 8021/8260 SERIES SAMPLES

LECUNICAL DOLDING TIME VIOLATIONS	
METHOD HOLDING TIME VIOLATIONS	49
LAB BLANK DETECTIONS ABOVE REPORTING DETECTION LIMIT	0
LAB BLANK DETECTIONS	0
DO ALL BATCHES WITH THE 8021/8260 SERIES INCLUDE THE FOLLOWING?	
- LAB METHOD BLANK	Υ
- MATRIX SPIKE	N
- MATRIX SPIKE DUPLICATE	N
- BLANK SPIKE	N
- SURROGATE SPIKE - NON-STANDARD SURROGATE USED	Υ

WATER SAMPLES EOR 2021/2260 SERIES

WATER SAMPLES FOR 602 1/0200 SLIVIES	
MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-135%	Υ
MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) RPD LESS THAN 30%	Υ
SURROGATE SPIKES % RECOVERY BETWEEN 85-115%	N
BLANK SPIKE / BLANK SPIKE DUPLICATES % RECOVERY BETWEEN 70-130%	Υ

SOIL SAMPLES FOR 80	21/8260 SERIES		v
MATRIX SPIKE / MATRIX SPI	KE DUPLICATE(S) % RECOVERY BE	TWEEN 65-135%	Y
MATRIX SPIKE / MATRIX SPI	KE DUPLICATE(S) RPD LESS THAN	30%	Y
SURROGATE SPIKES % RECO			Υ
SIANIZ COTVE / BLANIZ SOTVE	DUPLICATES % RECOVERY BETWE	EEN 70-130%	n/a
			IC ~ DEDNI
	COLLECTED	DETECTION	IS > REPDL
FIELD QC SAMPLES			IS > REPDL
FIELD QC SAMPLES SAMPLE	COLLECTED		IS > REPDL 0 0

Main Menu | View/Add Facilities | Upload EDD | Check EDD

Your EDF file has been successfully uploaded!

Confirmation Number: 8585478603

Date/Time of Submittal: 8/30/2006 11:07:55 AM

Facility Global ID: T0600102112

Facility Name: SHEAFFS SERVICE GARAGE

Submittal Title: 05-0761:GW Sample Analytical Data - B14,B15,B17,B20

Submittal Type: Soil & Water Investigation Report

Click here to view the detections report for this upload.

SHEAFFS SERVICE GARAGE 5930 COLLEGE AVE OAKLAND, CA 94618	Regional Board - Case #: 01-2296 SAN FRANCISCO BAY RWQCB Local Agency (lead agency) - Case ALAMEDA COUNTY LOP - (AG)	: #: <u>514</u>
SUBMITTED BY SUB	nple Analytical Data - B14,B15,B17,B20 MIT DATE STATUS D/2006 PENDING REVIEW	
# FIELD POINTS SAMPLED # FIELD POINTS WITH DETECTIONS # FIELD POINTS WITH WATER SAMP SAMPLE MATRIX TYPES		4 3 1 WATER
METHOD QA/QC REPORT METHODS USED TESTED FOR REQUIRED ANALYTES? LAB NOTE DATA QUALIFIERS		8260FA,SW8020F Y Y
QA/QC FOR 8021/8260 S TECHNICAL HOLDING TIME VIOLATION		0
METHOD HOLDING TIME VIOLATION		0
LAB BLANK DETECTIONS ABOVE REP	ORTING DETECTION LIMIT	0
LAB BLANK DETECTIONS DO ALL BATCHES WITH THE 8021/82	260 SERIES INCLUDE THE FOLLOWING?	0
- LAB METHOD BLANK		Y
- MATRIX SPIKE		N N
- MATRIX SPIKE DUPLICATE - BLANK SPIKE		N N
- SURROGATE SPIKE - NON-STAN	DARD SURROGATE USED	Y
WATER SAMPLES FOR 8021/	8260 SERIES	
MATRIX SPIKE / MATRIX SPIKE DUPI	ICATE(S) % RECOVERY BETWEEN 65-135%	Y
MATRIX SPIKE / MATRIX SPIKE DUPI		Y
SURROGATE SPIKES % RECOVERY B	CATES % RECOVERY BETWEEN 70-130%	Y
DLAIN SPIKE / DLAIN SPIKE DUPLIC	AILS WILCOVER! BEIWEEN 70 130 W	,

SOIL SAMPLES FOR 80	21/8260 SERIES	/EEN 65 12506	n/a
IATRIX SPIKE / MATRIX SPI	KE DUPLICATE(S) % RECOVERY BETW	VEEN 03-13370	n/a
	KE DUPLICATE(S) RPD LESS THAN 30	%	n/a
SURROGATE SPIKES % RECO	VERY BETWEEN 70-125%		n/a n/a
LANK SPIKE / BLANK SPIKE	DUPLICATES % RECOVERY BETWEEN	1 /0-130%	11/4

IELD QC SAMPLES	COLLECTED	DETECTIONS >	> REPDL
FIELD QC SAMPLES SAMPLE			> REPDL
TELD QC SAMPLES	COLLECTED		> REPDL

Main Menu | View/Add Facilities | Upload EDD | Check EDD

Your EDF file has been successfully uploaded!

Confirmation Number: 9902001202

Date/Time of Submittal: 8/28/2006 12:16:13 PM

Facility Global ID: T0600102112

Facility Name: SHEAFFS SERVICE GARAGE

Submittal Title: 44111: Soil Sample Analytical Data ¿B21 & B22

Submittal Type: Soil & Water Investigation Report

Click here to view the detections report for this upload.

SHEAFFS SERVICE GARAGE

5930 COLLEGE AVE OAKLAND, CA 94618

Regional Board - Case #: 01-2296

SAN FRANCISCO BAY RWQCB (REGION 2)

Local Agency (lead agency) - Case #: 514 ALAMEDA COUNTY LOP - (AG)

CONF# 9902001202

44111: Soil Sample Analytical Data ¿B21 & B22

QUARTER Q2 2005

SUBMITTED BY

SUBMIT DATE

STATUS

Brent Wheeler 8/28/2006 PENDING REVIEW

SAMPLE DETECTIONS REPORT

FIELD POINTS SAMPLED

2 2

FIELD POINTS WITH DETECTIONS

2

FIELD POINTS WITH WATER SAMPLE DETECTIONS ABOVE MCL SAMPLE MATRIX TYPES

SOIL

METHOD QA/QC REPORT

METHODS USED

8260TPH,A5520C,SW6010B,SW8260B

TESTED FOR REQUIRED ANALYTES? MISSING PARAMETERS NOT TESTED:

- SW8260B REQUIRES EDB TO BE TESTED LAB NOTE DATA QUALIFIERS

N

QA/QC FOR 8021/8260 SERIES SAMPLES

TECHNICAL HOLDING TIME VIOLATIONS METHOD HOLDING TIME VIOLATIONS LAB BLANK DETECTIONS ABOVE REPORTING DETECTION LIMIT

LAB BLANK DETECTIONS

DO ALL BATCHES WITH THE 8021/8260 SERIES INCLUDE THE FOLLOWING? - LAB METHOD BLANK

Υ Ν

- MATRIX SPIKE

- SURROGATE SPIKE

- BLANK SPIKE

- MATRIX SPIKE DUPLICATE

Ν Υ Υ

WATER SAMPLES FOR 8021/8260 SERIES

MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-135% MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) RPD LESS THAN 30% SURROGATE SPIKES % RECOVERY BETWEEN 85-115%

n/a n/a

n/a

BLANK SPIKE / BLANK SPI	KE DUPLICATES % RECOVERY BI	EIMEEN VO-130 W	n/a
SOIL SAMPLES FOR	8021/8260 SERIES		- 10
MATRIX SPIKE / MATRIX S	PIKE DUPLICATE(S) % RECOVER	RY BETWEEN 65-135%	n/a
MATRIX SPIKE / MATRIX S	PIKE DUPLICATE(S) RPD LESS T	HAN 30%	n/a
OURDOCATE CRIVEC OF DE	COVERY BETWEEN 70-125%		Y
SURRUGATE SPIKES % RE	COVERT DETRIBUTE		
SURKOGATE SPIKES % RE BLANK SPIKE / BLANK SPI	KE DUPLICATES % RECOVERY B	ETWEEN 70-130%	Υ
BLANK SPIKE / BLANK SPI	KE DUPLICATES % RECOVERY B	ETWEEN 70-130%	Υ
SURROGATE SPIKES % RE BLANK SPIKE / BLANK SPI FIELD QC SAMPLES	KE DUPLICATES % RECOVERY B		Y
BLANK SPIKE / BLANK SPI	COLLECTED	DETECTIONS	Y > REPDL
blank spike / blank spi FIELD QC SAMPLES	KE DUPLICATES % RECOVERY B		Y > REPDL
BLANK SPIKE / BLANK SPI FIELD QC SAMPLES SAMPLE	KE DUPLICATES % RECOVERY B COLLECTED		Y > REPDL

Main Menu | View/Add Facilities | Upload EDD | Check EDD

Your EDF file has been successfully uploaded!

Confirmation Number: 6761783540

Date/Time of Submittal: 8/28/2006 12:19:32 PM

Facility Global ID: T0600102112

Facility Name: SHEAFFS SERVICE GARAGE

Submittal Title: 44112: Soil/GW Analytical Data ¿B21 & B23

Submittal Type: Soil & Water Investigation Report

Click here to view the detections report for this upload.

SHEAFFS SERVICE GARAGE

5930 COLLEGE AVE OAKLAND, CA 94618 Regional Board - Case #: 01-2296

SAN FRANCISCO BAY RWQCB (REGION 2)

Local Agency (lead agency) - Case #: 514

ALAMEDA COUNTY LOP - (AG)

CONF# 6761783540

44112: Soil/GW Analytical Data ¿B21 & B23

QUARTER Q2 2005

SUBMITTED BY

SUBMIT DATE

STATUS

Brent Wheeler

8/28/2006

PENDING REVIEW

SAMPLE DETECTIONS REPORT

FIELD POINTS SAMPLED

FIELD POINTS WITH DETECTIONS

2 2

FIELD POINTS WITH WATER SAMPLE DETECTIONS ABOVE MCL SAMPLE MATRIX TYPES

SOIL, WATER

METHOD QA/QC REPORT

METHODS USED

8260TPH,A5520C,E413.2,SW6010B,SW8260B

TESTED FOR REQUIRED ANALYTES?

MISSING PARAMETERS NOT TESTED: - SW8260B REQUIRES EDB TO BE TESTED

LAB NOTE DATA QUALIFIERS

Ν

0

0

0

0

QA/QC FOR 8021/8260 SERIES SAMPLES

TECHNICAL HOLDING TIME VIOLATIONS METHOD HOLDING TIME VIOLATIONS LAB BLANK DETECTIONS ABOVE REPORTING DETECTION LIMIT LAB BLANK DETECTIONS

DO ALL BATCHES WITH THE 8021/8260 SERIES INCLUDE THE FOLLOWING?

- LAB METHOD BLANK - MATRIX SPIKE

Υ N N

- MATRIX SPIKE DUPLICATE - BLANK SPIKE - SURROGATE SPIKE

Υ

WATER SAMPLES FOR 8021/8260 SERIES

MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-135% n/a MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) RPD LESS THAN 30% n/a SURROGATE SPIKES % RECOVERY BETWEEN 85-115%

BLANK SPIKE / BLANK SPI	KE DUPLICATES % RECOVERY B	BETWEEN 70-130%	Y
SOIL SAMPLES FOR	8021/8260 SERIES	DV DETWEEN 65 1250/	n/a
MATRIX SPIKE / MATRIX S	PIKE DUPLICATE(S) % RECOVE	KA BEIMEEN 00-1004	n/a
MATRIX SPIKE / MATRIX S	SPIKE DUPLICATE(S) RPD LESS	IHAN 30%	11/4 Y
CLIDDOCATE SDIVES % RE	COVERY BETWEEN 70-125%		•
31 ANK SPIKE / BLANK SPI	KE DUPLICATES % RECOVERY E	BETWEEN 70-130%	Υ
BLANK SPIKE / BLANK SPI	KE DUPLICATES % RECOVERY E	BETWEEN 70-130%	Y
BLANK SPIKE / BLANK SPI	KE DUPLICATES % RECOVERY E		Υ
BLANK SPIKE / BLANK SPI	COLLECTED	BETWEEN 70-130% DETECTIONS >	Y REPDL
BLANK SPIKE / BLANK SPI FIELD QC SAMPLES	KE DUPLICATES % RECOVERY E		Y REPDL
BLANK SPIKE / BLANK SPI FIELD QC SAMPLES SAMPLE	KE DUPLICATES % RECOVERY E COLLECTED		Y REPDL

Main Menu | View/Add Facilities | Upload EDD | Check EDD

Your EDF file has been successfully uploaded!

Confirmation Number: 9815843820

Date/Time of Submittal: 8/30/2006 11:30:19 AM

Facility Global ID: T0600102112

Facility Name: SHEAFFS SERVICE GARAGE

Submittal Title: 44322: GW Analytical Data ¿B23,HB-3,HB-4,HB-6

Submittal Type: Soil & Water Investigation Report

Click here to view the detections report for this upload.

SHEAFFS SERVICE GARAGE

5930 COLLEGE AVE OAKLAND, CA 94618

Regional Board - Case #: 01-2296

SAN FRANCISCO BAY RWQCB (REGION 2) Local Agency (lead agency) - Case #: 514

ALAMEDA COUNTY LOP - (AG)

CONF#

9815843820

44322: GW Analytical Data ¿B23,HB-3,HB-4,HB-6 SUBMIT DATE **STATUS**

QUARTER Q3 2005

SUBMITTED BY

Brent Wheeler

8/30/2006

PENDING REVIEW

SAMPLE DETECTIONS REPORT

- # FIELD POINTS SAMPLED
- # FIELD POINTS WITH DETECTIONS
- # FIELD POINTS WITH WATER SAMPLE DETECTIONS ABOVE MCL

SAMPLE MATRIX TYPES

WATER

4

3

METHOD QA/QC REPORT

METHODS USED TESTED FOR REQUIRED ANALYTES? 8260TPH,CATPH-D,E413.2,SW6010B,SW8260B

MISSING PARAMETERS NOT TESTED:

- CATPH-D REQUIRES TPHC28C40 TO BE TESTED
- CATPH-D REQUIRES TPHC10C28 TO BE TESTED
- SW8260B REQUIRES EDB TO BE TESTED

LAB NOTE DATA QUALIFIERS

Ν

0

0

0

1

Υ

QA/QC FOR 8021/8260 SERIES SAMPLES

TECHNICAL HOLDING TIME VIOLATIONS METHOD HOLDING TIME VIOLATIONS LAB BLANK DETECTIONS ABOVE REPORTING DETECTION LIMIT

LAB BLANK DETECTIONS DO ALL BATCHES WITH THE 8021/8260 SERIES INCLUDE THE FOLLOWING?

- LAB METHOD BLANK

- MATRIX SPIKE

- MATRIX SPIKE DUPLICATE

- BLANK SPIKE - SURROGATE SPIKE Ν Ν Υ

WATER SAMPLES FOR 8021/8260 SERIES

MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-135%

n/a

MAIKIX SPIKE / MAIKIX SP	PIKE DUPLICATE(S) RPD LESS THA	N 30%	n/a
SURROGATE SPIKES % REC	COVERY BETWEEN 85-115%		N
BLANK SPIKE / BLANK SPIK	E DUPLICATES % RECOVERY BET	WEEN 70-130%	Υ
SOIL SAMPLES FOR 8	021/8260 SERIES		
MATRIX SPIKE / MATRIX SP	PIKE DUPLICATE(S) % RECOVERY	BETWEEN 65-135%	n/a
MATRIX SPIKE / MATRIX SP	IKE DUPLICATE(S) RPD LESS THA	N 30%	n/a
THE PROPERTY OF		5070	
	COVERY BETWEEN 70-125%	55 70	n/a
SURROGATE SPIKES % REC			•
SURROGATE SPIKES % REC	COVERY BETWEEN 70-125%		n/a
SURROGATE SPIKES % REC BLANK SPIKE / BLANK SPIK	COVERY BETWEEN 70-125%		n/a n/a
SURROGATE SPIKES % REC BLANK SPIKE / BLANK SPIK FIELD QC SAMPLES	COVERY BETWEEN 70-125% E DUPLICATES % RECOVERY BET	WEEN 70-130%	n/a n/a
SURROGATE SPIKES % REC BLANK SPIKE / BLANK SPIK FIELD QC SAMPLES SAMPLE	COVERY BETWEEN 70-125% E DUPLICATES % RECOVERY BET COLLECTED	WEEN 70-130%	n/a n/a

Main Menu | View/Add Facilities | Upload EDD | Check EDD

Your EDF file has been successfully uploaded!

Confirmation Number: 7678564190

Date/Time of Submittal: 8/28/2006 12:26:21 PM

Facility Global ID: T0600102112

Facility Name: SHEAFFS SERVICE GARAGE

Submittal Title: 48991: GW Well Analytical Data ¿MW-1 to MW-3, PW-1

Submittal Type: GW Monitoring Report

Click here to view the detections report for this upload.

CHCK HEIE ID VIEW the detection of				
SHEAFFS SERVICE GARAGE 5930 COLLEGE AVE OAKLAND, CA 94618	Regional Board - Case #: 01-2296 SAN FRANCISCO BAY RWQCB (I Local Agency (lead agency) - Case (I ALAMEDA COUNTY LOP - (AG)	REGION 2) #: 514		
SUBMITTED BY	ell Analytical Data ¿MW-1 to MW-3, PW-1 UBMIT DATE STATUS 1/28/2006 PENDING REVIEW	QUARTER Q2 2006		
SAMPLE DETECTIONS REP # FIELD POINTS SAMPLED # FIELD POINTS WITH DETECTION # FIELD POINTS WITH WATER SAMPLE MATRIX TYPES	NS	4 4 4 WATER		
METHOD QA/QC REPOR METHODS USED TESTED FOR REQUIRED ANALYTES MISSING PARAMETERS NOT TE - SW8260B REQUIRES EDB TO LAB NOTE DATA QUALIFIERS	82 S? STED:	260TPH,SW8260B N N		
QA/QC FOR 8021/8260 TECHNICAL HOLDING TIME VIOLA METHOD HOLDING TIME VIOLATIC LAB BLANK DETECTIONS ABOVE R LAB BLANK DETECTIONS DO ALL BATCHES WITH THE 8021 - LAB METHOD BLANK - MATRIX SPIKE - MATRIX SPIKE DUPLICATE - BLANK SPIKE - SURROGATE SPIKE	TIONS ONS	0 0 0 0 Y N N Y		
WATER SAMPLES FOR 802 MATRIX SPIKE / MATRIX SPIKE DI MATRIX SPIKE / MATRIX SPIKE DI SURROGATE SPIKES % RECOVER	UPLICATE(S) % RECOVERY BETWEEN 65-135% UPLICATE(S) RPD LESS THAN 30%	n/a n/a Y		

BLANK SPIKE / BLANK SPIKE D	UPLICATES % RECOVERY BETWEEN 70-130%	Y
SOIL SAMPLES FOR 802	1/8260 SERIES	5% n/a
MATRIX SPIKE / MATRIX SPIKE	DUPLICATE(S) % RECOVERY BETWEEN 65-13	n/a
MATRIX SPIKE / MATRIX SPIKE	DUPLICATE(S) RPD LESS THAN 30%	n/a
SURROGATE SPIKES % RECOV	UPLICATES % RECOVERY BETWEEN 70-130%	n/a
FIELD QC SAMPLES SAMPLE	COLLECTED	DETECTIONS > REPDL

Main Menu | View/Add Facilities | Upload EDD | Check EDD

Your EDF file has been successfully uploaded!

Confirmation Number: 1106026649

Date/Time of Submittal: 2/14/2006 11:02:49 AM

Facility Global ID: T0600102112

Facility Name: SHEAFFS SERVICE GARAGE

Submittal Title: Analytical Data MW1-PW1 (01/13/06) 47376

Submittal Type: GW Monitoring Report

Click here to view the detections report for this upload.

Regional Board - Case #: 01-2296 SHEAFFS SERVICE GARAGE

5930 COLLEGE AVE OAKLAND, CA 94618

SAN FRANCISCO BAY RWQCB (REGION 2) Local Agency (lead agency) - Case #: 514 ALAMEDA COUNTY LOP - (AG)

CONF# 1106026649 TITLE

Analytical Data MW1-PW1 (01/13/06) 47376

QUARTER Q1 2006

SUBMITTED BY **Brent Wheeler** SUBMIT DATE 2/14/2006

STATUS PENDING REVIEW

SAMPLE DETECTIONS REPORT

FIELD POINTS SAMPLED # FIELD POINTS WITH DETECTIONS # FIELD POINTS WITH WATER SAMPLE DETECTIONS ABOVE MCL SAMPLE MATRIX TYPES

WATER

N

METHOD QA/QC REPORT

METHODS USED TESTED FOR REQUIRED ANALYTES? MISSING PARAMETERS NOT TESTED: 8260TPH,SW8260B

- SW8260B REQUIRES EDB TO BE TESTED

LAB NOTE DATA QUALIFIERS

QA/QC FOR 8021/8260 SERIES SAMPLES

TECHNICAL HOLDING TIME VIOLATIONS 0 METHOD HOLDING TIME VIOLATIONS LAB BLANK DETECTIONS ABOVE REPORTING DETECTION LIMIT 0 Ω LAB BLANK DETECTIONS DO ALL BATCHES WITH THE 8021/8260 SERIES INCLUDE THE FOLLOWING? Y - LAB METHOD BLANK Ν - MATRIX SPIKE N - MATRIX SPIKE DUPLICATE - BLANK SPIKE - SURROGATE SPIKE

WATER SAMPLES FOR 8021/8260 SERIES

MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-135% n/a MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) RPD LESS THAN 30% n/a SURROGATE SPIKES % RECOVERY BETWEEN 85-115%

10 4 -- 94---- Falda-040992CCTD

BLANK SPIKE / BLANK SPIKE	DUPLICATES % RECOVERY	BETWEEN 70-130%	Y
SOIL SAMPLES FOR 80 MATRIX SPIKE / MATRIX SPI MATRIX SPIKE / MATRIX SPI SURROGATE SPIKES % RECO BLANK SPIKE / BLANK SPIKE	KE DUPLICATE(S) % RECOVE KE DUPLICATE(S) RPD LESS		n/a n/a n/a n/a
FIELD QC SAMPLES SAMPLE QCTB SAMPLES QCEB SAMPLES QCAB SAMPLES	<u>COLLECTED</u> N N N	DETECTIONS > 0 0 0	> REPDL

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_WELL FILE

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Title:

fluid level monitoring data; MW1- PW1,

01/13/2006

Submittal Date/Time: 2/14/2006 10:50:34 AM

Confirmation

3202392399

Number:

Back to Main Menu

Logged in as GGTR (AUTH_RP)

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_WELL FILE

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Title:

Fluid-Level Monitoring Data MW-1to MW-3, PW-1

(4/14/06)

Submittal Date/Time: 8/28/2006 1:02:57 PM

Confirmation

6986280679

Number:

Back to Main Menu

Logged in as GGTR (AUTH_RP)

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_BORE FILE

YOUR IMAGE UPLOAD WAS SUCCESSFUL!

Facility Name:

SHEAFFS SERVICE

GARAGE

Global ID:

T0600102112

Field Pt Name:

B12

Submittal Type:

GEO_BORE

Submittal Date/Time: 8/28/2006 3:12:24 PM

Confirmation

9801623284

Number:

Click here to view the image.

Back to Main Menu

Logged in as GGTR (AUTH_RP)

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_BORE FILE

YOUR IMAGE UPLOAD WAS SUCCESSFUL!

Facility Name:

SHEAFFS SERVICE

GARAGE

Global ID:

T0600102112

Field Pt Name:

B13

Submittal Type:

GEO_BORE

Submittal Date/Time: 8/28/2006 3:14:11 PM

Confirmation

1527586221

Number:

Click here to view the image.

Back to Main Menu

Logged in as GGTR (AUTH_RP)

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_BORE FILE

YOUR IMAGE UPLOAD WAS SUCCESSFUL!

Facility Name:

SHEAFFS SERVICE

GARAGE

Global ID:

T0600102112

Field Pt Name:

B14

Submittal Type:

GEO_BORE

Submittal Date/Time: 8/28/2006 3:13:08 PM

Confirmation

4225768864

Number:

Click here to view the image.

Back to Main Menu

Logged in as GGTR (AUTH RP)

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_BORE FILE

YOUR IMAGE UPLOAD WAS SUCCESSFUL!

Facility Name:

SHEAFFS SERVICE

GARAGE

Global ID:

T0600102112

Field Pt Name:

B15

Submittal Type:

GEO BORE

Submittal Date/Time: 8/28/2006 3:16:37 PM

Confirmation

1562193155

Number:

Click here to view the image.

Back to Main Menu

Logged in as GGTR (AUTH_RP)

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO BORE FILE

YOUR IMAGE UPLOAD WAS SUCCESSFUL!

Facility Name:

SHEAFFS SERVICE

GARAGE

Global ID:

T0600102112

Field Pt Name:

B16

Submittal Type:

GEO BORE

Submittal Date/Time: 8/28/2006 3:16:58 PM

Confirmation

1432494938

Number:

Click here to view the image.

Back to Main Menu

Logged in as GGTR (AUTH_RP)

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_BORE FILE

YOUR IMAGE UPLOAD WAS SUCCESSFUL!

Facility Name:

SHEAFFS SERVICE

GARAGE

Global ID:

T0600102112

Field Pt Name:

B17

Submittal Type:

GEO_BORE

Submittal Date/Time: 8/28/2006 3:17:21 PM

Confirmation

4715228021

Number:

Click here to view the image.

Back to Main Menu

Logged in as GGTR (AUTH_RP)

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_BORE FILE

YOUR IMAGE UPLOAD WAS SUCCESSFUL!

Facility Name:

SHEAFFS SERVICE

GARAGE

Global ID:

T0600102112

Field Pt Name:

B18

Submittal Type:

GEO_BORE

Submittal Date/Time: 8/28/2006 3:18:06 PM

Confirmation

6886991202

Number:

Click here to view the image.

Back to Main Menu

Logged in as GGTR (AUTH_RP)

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO BORE FILE

YOUR IMAGE UPLOAD WAS SUCCESSFUL!

Facility Name:

Global ID:

SHEAFFS SERVICE

GARAGE

T0600102112

Field Pt Name:

B19

Submittal Type:

GEO_BORE

Submittal Date/Time: 8/28/2006 3:22:29 PM

Confirmation

6242780387

Number:

Click here to view the image.

Back to Main Menu

Logged in as GGTR (AUTH_RP)

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_BORE FILE

YOUR IMAGE UPLOAD WAS SUCCESSFUL!

Facility Name:

SHEAFFS SERVICE

GARAGE

Global ID:

T0600102112

Field Pt Name:

B20

Submittal Type:

GEO_BORE

Submittal Date/Time: 8/28/2006 3:22:58 PM

Confirmation

5859023869

Number:

Click here to view the image.

Back to Main Menu

Logged in as GGTR (AUTH_RP)

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO BORE FILE

YOUR IMAGE UPLOAD WAS SUCCESSFUL!

Facility Name:

SHEAFFS SERVICE

GARAGE

Global ID:

T0600102112

Field Pt Name:

B21

Submittal Type:

GEO_BORE

Submittal Date/Time: 8/28/2006 3:23:53 PM

Confirmation

1088407754

Number:

Click here to view the image.

Back to Main Menu

Logged in as GGTR (AUTH_RP)

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_BORE FILE

YOUR IMAGE UPLOAD WAS SUCCESSFUL!

Facility Name:

SHEAFFS SERVICE

GARAGE

Global ID:

T0600102112

Field Pt Name:

B22

Submittal Type:

GEO_BORE

Submittal Date/Time: 8/28/2006 3:24:14 PM

Confirmation

6744032144

Number:

Click here to view the image.

Back to Main Menu

Logged in as GGTR (AUTH_RP)

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_BORE FILE

YOUR IMAGE UPLOAD WAS SUCCESSFUL!

Facility Name:

SHEAFFS SERVICE

GARAGE

Global ID:

T0600102112

Field Pt Name:

B23

Submittal Type:

GEO_BORE

Submittal Date/Time: 8/28/2006 3:24:36 PM

Confirmation

4389524698

Click here to view the image.

Number:

Back to Main Menu

Logged in as GGTR (AUTH_RP)

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_BORE FILE

YOUR IMAGE UPLOAD WAS SUCCESSFUL!

Facility Name:

SHEAFFS SERVICE

GARAGE

Global ID:

T0600102112

Field Pt Name:

B24

Submittal Type:

GEO BORE

Submittal Date/Time: 8/28/2006 3:25:33 PM

Confirmation

4699966251

Number:

Click here to view the image.

Back to Main Menu

Logged in as GGTR (AUTH_RP)

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_BORE FILE

YOUR IMAGE UPLOAD WAS SUCCESSFUL!

Facility Name:

SHEAFFS SERVICE

GARAGE

Global ID:

T0600102112

Field Pt Name:

PW-1

Submittal Type:

GEO_BORE

Submittal Date/Time: 8/28/2006 3:26:33 PM

Confirmation

5250028848

Number:

Click here to view the image.

Back to Main Menu

Logged in as GGTR (AUTH_RP)

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_BORE FILE

YOUR IMAGE UPLOAD WAS SUCCESSFUL!

Facility Name:

SHEAFFS SERVICE

GARAGE

Global ID:

T0600102112

Field Pt Name:

HB-1

Submittal Type:

GEO_BORE

Submittal Date/Time: 8/29/2006 8:12:55 AM

Confirmation

1857665836

Number:

Click here to view the image.

Back to Main Menu

Logged in as GGTR (AUTH_RP)

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_BORE FILE

YOUR IMAGE UPLOAD WAS SUCCESSFUL!

Facility Name:

SHEAFFS SERVICE

GARAGE

Global ID:

T0600102112

Field Pt Name:

HB-3

Submittal Type:

GEO_BORE

Submittal Date/Time: 8/29/2006 8:13:26 AM

Confirmation

8701736271

Number:

Click here to view the image.

Back to Main Menu

Logged in as GGTR (AUTH_RP)

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO BORE FILE

YOUR IMAGE UPLOAD WAS SUCCESSFUL!

Facility Name:

SHEAFFS SERVICE

GARAGE

Global ID:

T0600102112

Field Pt Name:

HB-4

Submittal Type:

GEO BORE

Submittal Date/Time: 8/29/2006 8:13:48 AM

Confirmation

4372633218

Number:

Click here to view the image.

Back to Main Menu

Logged in as GGTR (AUTH_RP)

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_BORE FILE

YOUR IMAGE UPLOAD WAS SUCCESSFUL!

Facility Name:

SHEAFFS SERVICE

GARAGE

Global ID:

T0600102112

Field Pt Name:

HB-5

Submittal Type:

GEO_BORE

Submittal Date/Time: 8/29/2006 8:14:15 AM

Confirmation

7913526773

Number:

Click here to view the image.

Back to Main Menu

Logged in as GGTR (AUTH_RP)

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO BORE FILE

YOUR IMAGE UPLOAD WAS SUCCESSFUL!

Facility Name:

SHEAFFS SERVICE

GARAGE

Global ID:

T0600102112

Field Pt Name:

HB-6

Submittal Type:

GEO BORE

Submittal Date/Time: 8/29/2006 8:14:40 AM

Confirmation

1414015054

Number:

Click here to view the image.

Back to Main Menu

Logged in as GGTR (AUTH_RP)

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO MAP FILE

YOUR IMAGE UPLOAD WAS SUCCESSFUL!

Facility Name:

SHEAFFS SERVICE

GARAGE

Global ID:

T0600102112

Submittal Type:

GEO MAP

Submittal Date/Time: 8/29/2006 8:16:11 AM

Confirmation

8517715275

Number:

Click here to view the image.

Back to Main Menu

Logged in as GGTR (AUTH_RP)

Sanitary Landfill

901 Bailey Road Pittsburg, CA 94565 Phone (925) 458-9800 Fax (925) 458-9891 S. tary Landfill

12310 San Mateo Road Half Moon Bay, CA 94019° Phone (650) 726-1819 Fax (650) 726-9183

■ Newby Island Sanitary L dfill

1601 Dixon Landing Road Milpitas, CA 95035 Phone (408) 945-2800 Fax (408) 262-2871

✓ Forward Landfill 9999 S. Austin Road

Manteca, CA 95336 Phone (209) 982-4298 Fax (209) 982-1009

NON-HAZARDOUS WA	SIE MANIFESI
GENERATOR William G. Sheaff Trust	WASTE ACCEPTANCE NO.
MAILING ADDRESS 1945 Packside Prive	5675 -
CITY, STATE, ZIP	REQUIRED PERSONAL PROTECTIVE EQUIPMENT
PHONE 925-689-3450	ØGLOVES □ GOGGLES □ RESPIRATOR □ HARD HAT
CONTACT PERSON	SPECIAL HANDLING PROCEDURES.
SIGNATURE OF AUTHORIZED AGENT / TITLE DATE	SPECIAL HANDLING PROCEDURES:
200 BEHARD OF OWNER 8-8-05	
GENERATOR'S CERTIFICATION: I hereby certify that the above named material is not a hazardous waste as defined by 40 CFR Part 261 or title 22 of the California code of regulations, has been properly described, classified and packaged, and is in proper condition for transportation a cording to applicable regulations; AND, If the waste is a treatment residue of a previously restricted hazardous waste subject to the Land Disposal Restrictions, I certify and warrant that the waste has been treated in accordance with the requirements of 40 CFR Part 268 and is no longer a hazardous waste as defined by	RECEIVING FACILITY
40 CFR Part 261.	
WASTE TYPE:	
☑ DISPOSAL ☐ SLUDGE ☐ CONSTRUCTION ☐ WOOD ☐ DEBRIS ☐ OTHER ☐ SPECIAL WASTE	46.
GENERATING FACILITY	
5930 College Ave 7335	. ,
TRANSPORTER	NOTES: VEHICLE LICENSE NUMBER TRUCK NUMBER
Golden Gate Jank Krmaval	7/010>7 107
ADDRESS Shaper	7001657 107
CITY, STATE, ZIP	
PHONE TIGACISCO CA 94107	FAID DUIAD DOTTOM DUIAD TO MORE
HIS-512-1666	END DUMP BOTTOM DUMP TRANSFER
SIGNATURE OF AUTHORIZED AGENT OR DRIVER DATE	ROLL-OFF(S) FLAT-BED VAN DRUMS
* felia malibrate 8-8.5	
	CUBIC YARDS
I hereby certify that the above named material has been	
accepted and to the best of my knowledge the foregoing	DISPOSAL METHOD: (TO BE COMPLETED BY LANDFILL)
is true and accurate.	
1 110	DISPOSE OTHER
REMARKS // //	SOIL
FACILITY TICKET NUMBER	CONSTRUCTION DEBRIS
	NON-FRIABLE ASBESTOS
SIGNATURE OF AUTHORIZED AGENT DATE	□ WOOD
*	□ ASH
- // /	□ SPECIAL OTHER

9999 South Austin Road/WEIGHING LOCATION

Manteca, CA 95336

Landfill: (209) 982-4298 / WEIGHING LOCATION Resource Recovery: (209) 982-4936 P.O. Box 6336 Stockton, CA 95206 Main Office: (209) 466-4482 Fax: (209) 465-0631

O05675
GOLDEN GATE TANK REMOVAL
BRENT WHEELER
255 SHIPLEY STREET
SAN FRANCISCO, CA 94107
CONTRACT: 5675#

SITE - nCt	ET .		GRID	
01 5167	61			
	SCALE O	PERATOR	en serial de la	yey. ≤aas
NANCY PONC	E			
DATE IN			TIME IN	
8 AUGUST 2	005):58 AM		
DATE OU	T. San St.	1	ME OUT	para sa
8 AUGUST 2	005	0:29 AM		
VEHICLE		F	OLL OFF	1.0
GOLDENG107				
E REFERENCE	A Francisco	ORIGIN		
	OAKLAN	ID /		
· · · · · · · · · · · · · · · · · · ·		- 8		

QO GROSS WEIGHT TARE WEIGHT

8,820.00 LB 6,840.00 LB

TIGROION IR O 99 TN

INBOUND - SCALE TICKET

	What is a great war do not be a de-	المهلا المنظينيل الاما لمناه عا عما لما تنه الاسلام	الأفاة السائباء			
OTY U	NIT	DESCRIPTION	Company of the second second	RATE EX	TENSION D	v toru
A CONTRACTOR OF THE CONTRACTOR			273 4 5 1 2 5 1 2 5 1	1101L I-A	I LANSIUM 12	X TOTAL
그렇게 걸었다. 그 그 그렇게 내가 되다		그림 그 그렇게 하면 하는 것이 나를 하고 있을까?			그리고 그리고 생물을 하는데 그리는 것이 없다.	가는 그 계약에는 뭐 된다면 가지다.
1.00 L	D 29 [06	👣 🖫 내용한 소리를 보고 있다.	항의 회의 6월 78 6명 (4년) 10 .			마스 마스를 하는 기계를 가입하는 것
					일본 교회에 되어져 하면 가지만	어느 어느 이 나는 그 그 그 그는 물을 보는 것 같다.
0.99 7	N 43 LOR	ECORD TONS SOIL				이 시간에 그는 왜 중요 그 그는
		thair inite antr				
1.00 - 1	n I () F	WVIRONMENTAL FE	∓		그리는 그리 얼마하나한 때문에 걸	
		ANTIONISTRACULT I TI			되었다. 그 아이를 하다 다니?	이 생활하다 하는 사람들이 모르는 그래?
[Const.] 40, 항화보통 회원 레크린 함께		기념이 말라가 되지만 하라고 됐다고 됐다.			그림 그림에 들어가 돼요? 이 나를	- 10 · 10 · 10 · 10 · 10 · 10 · 10 · 10
기가 하는 사람들은 아니라 내가 다른다.	나는 나를 하다 살아 있는 것 같아.					마음의 교통 등 이 마음을 하는 것이다.
하는 이 살림을 보고 하다 수 생활에 불렀을 다		네 그 그 학교 생생님 그렇게 된 사람 바이다. 없었다				
그 그리고 아내는 사람이 나는 생활들이다.		그 그림을 하는 사람이 어디로 감독하는 바라를 하				
		문의 문문은 배경 전 그리다 반경점 나타지다	그렇다 하다 되게 되다.			
그 계획은 하고, 말라고 말은 기계에 되었다.		합니다 강점하다 하는 경험 사람이 바람이 하나였다.		or to the larger of the party of	하고 아이들 모모양을 보았다.	
그 가장 그들의 얼마 하는데 하는데 나를 다						
		지하는 동안시다 하다 가게 하시하다 했다.				이 그 내가 됐습니다 이 경기를
	14 SALES SASTING 18	oral Paris and a state of the contraction of the co	THE REST TO SERVICE AND A SERVICE	**************************************		41. (41. 4 1. 31. 31. 31. 31. 31. 31. 31. 31. 31. 3
	화장 때 없었다고 보고 하셨다고?	이 생기들이 아름답답다고 하시고 하다고 있습니다.				
	And the first of t	그렇게 하는 그는 사람들이 가는 그를 가게 하는 것 같아.	医多种溶剂 医静脉丛 电多线 医多氏试验			

GRID

MANIFEST7#496

. MET AMOUNT

TENDERED

CHANGE

GHECK NO.

DRIVER'S SIGNATURE

2. linnallows

1	roved OMB No. 2050-0039 [Expires 9-30-99] nt or type. Form designed for use on elite [12-pitch] iter.							Sa	t of Toxic Substan cramento, Califor
- 1	UNIFORM HAZARDOUS WASTE MANIFEST		Manifest Doc		,	2. Pa			in the shaded area ed by Federal law
ŀ	3. Generator's Name and Mailing Address	alabilati	/				1		
	BRIAN SHEAF			'	A. State N	Aanifest Do	cument N	lumber 🤈	47734
-	C/O BRIAN SHEAFF 1945 PARKSIDE DR			ļ.	State C	enerator's	iD.		TIIO
		4519		1	. Sidle C	1 1 1	11.	1 1 [1 1 1 1
T	5. Transporter 1 Company Name 6	5. US EPA ID Number			C. State 1	ransporter'	s ID [Rese	erved.]	
				-		orter's Pho			
-		AROOOO	<u> </u>	1 1				(510)476	5-1740
	7. Horisporter 2 Company Name	3. US EPA ID Number		Ľ	E. State 1	ransporter'	s ID <u>[Rese</u>	erved.]	
						orter's Pho			
		D. US EPA ID Number			G. State	Facility's ID		1 ()	4 1 1 4
	ALVISO INDEPENDENT OIL 5002 ARCHER STREET			-	H Facilii	y's Phone			
		Z A L 0 0 0 1	6[1[7]	1		476-1740	,		
	11. US DOT Description (including Proper Shipping Name, Hazard Clas		1	2. Cont		13.	[otal	14. Unit	
1	a.			ło.	Туре	Qua	ntity	Wt/Vol	1. Waste Numbe State
	(OIL & WATER) NON RORA HAZARDOUS WASTE	LIQUID		1					273
3 E	*		o r	1	TT	201	1/10	G	EPA/Other
N	b.								State
E R						١			EPA/Other
A	C.					111	$\perp \perp$	ļ	
T O									State
R					ı		1 1		EPA/Other
	d.					+			State
l									EPA/Other
l						<u> </u>	11	<u> </u>	
l	J. Additional Descriptions for Materials Listed Above				K. Hand	lling Codes	for Was	tes Listed Abo	ove
	14A.,				0.	•			
					c.			d.	
	15. Special Handling Instructions and Additional Information				L			<u></u>	· · · · · · · · · · · · · · · · · · ·
	WEAR PPE, EMERGENCY CONTACT: KIRK HAYW COLLEGE AVE OAKLAND, CA	VARD 510-476-1740 E	RG # 171	GOLD	EN GA	TE TANI	JOBA	7335 _, St	TE: 5930
ı	16. GENERATOR'S CERTIFICATION: I hereby declare that the contents	s of this consignment are fully	and accurate	ly descr	ibed abov	re by proper	shipping	name and a	re classified, pack
	marked, and labeled, and are in all respects in proper condition	for transport by highway acc	ording to ap	plicable	internatio	nal and na	tional go	vernment reg	ulations.
١	If I am a large quantity generator, I certify that I have a program	n in place to reduce the volu	me and toxi	city of w	aste gene	erated to th	e degree	I have deter	mined to be econ
	If I am a large quantity generator, I certify that I have a program practicable and that I have selected the practicable method of tre and the environment; OR, if I am a small quantity generator, I have a variable to me and that I can afford.	eatment, storage, or disposal ave made a good faith effor	currently avi	ailable t my was	o me which te genero	ch minimize ution and se	s the pre elect the l	esent and tutu best waste m	ire threat to huma anagement methol
	Printed/Jyped Name	Signature/W.	!					1 44	onth Day
		77811	4		ν.			Ö	
\ \ \	1 Show ODIAN	1 1 1 1 1 1 1							<u> </u>
▼ TR	17. Transporter 1 Acknowledgement of Receipt of Materials	JAN 1	7					M	ionth Day
TRANS	17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name	Signature	in a	A S	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			شر ا	
TRANSPO	17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name MIKK STONE	Signature	ile,	st.	Len	*	· · · · ·	<u> </u>	
TRANSPORTE	17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name	Signature	ile,	ste	re	-			
TRANSPORTER	17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name		ike,	ste	Lin				11/19
F	17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name 19. Discrepancy Indication Space		ike,	st.	- Land				11/19
F A C	17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name 19. Discrepancy Indication Space		ilie)	ste.	in he was				11/19
FA	17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name 19. Discrepancy Indication Space	Signature			in the state of th	-			11/19
FAC	17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name 19. Discrepancy Indication Space	Signature			d in Item	19.		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	11/19

UNIFORM HAZARDOUS	ator's US EPA ID No.	Nañifest Docume	nt No.	2. Page 1	Information in the shaded area
	. 0 0 0 0 0 3 1 6 5	7614		7 01	is not required by Federal law
BRIAN SHEAF C/O BRIAN SHEAFF 1945 PARKSIDE DR		<u> </u>		Manifest Document !	^{Number} 249764
CONCORD 4. Generator's Phone (925 689-3450	94519		B. State	Generator's ID	
5. Transporter 1 Company Name	6. US EPA ID Number	4.1.	C. State	Transporter's ID [Res	erved.]
CLEARWATER ENVIRONMENTAL	[C,A,R,0,0,0,0,0	7,0,1,	D. Trans	porter's Phone	(510)476-1740
7. Transporter 2 Company Name	8. US EPA ID Number		E. State	Transporter's ID <u>[Res</u>	
	1.1.1.1.1.1	1 1		oorter's Phone	
9. Designated Facility Name and Site Address	10. US EPA ID Number		20,200,000	Facility's ID	
ALVISO INDEPENDENT OIL 5002 ARCHER STREET			1	11111	1111111
ALVISO CA 9500	2 C A L 0 0 0 1 6	11741		ly's Phone 476-1740	
11. US DOT Description (including Proper Shipping Name, He	azard Class, and ID Number}		ntainers	13. Total	14. Unit
C.		No.	Туре	Quantity	Wt/Vol 1. Waste Number State
(OIL & WATER) NON RCRA HAZARDOUS	WASTE LIQUID	001	TT		G RANGHer
b.		971	* †	8001417	State
				1	
c .					EPA/Other
			128		State
					EPA/Other
d.	1				State
	4 W.				EPA/Other
J. Additional Descriptions for Materials Listed Above			K. Handl	ing Codes for Waste	Listed Above
MA.,			° 91		b.
		100 PM	C.		d.
15. Special Handling Instructions and Additional Information			V		
WEAR PPE, EMERGENCY CONTACT: KIRK COLLEGE AVE OAKLAND, CA	HAYWARD 510-476-1740 ERG	# 171 GOLI	EN GAT	ETANK JOB# 1	335 SITE: 5930
1/ OFNEDATORS CONTRACTORS					
 GENERATOR'S CERTIFICATION: I hereby declare that the marked, and labeled, and are in all respects in proper co 	contents of this consignment are fully and indition for transport by highway accordi	accurately descr ng to applicable	ibed above l internationa	by proper shipping no ol and national gover	ame and are classified, packed, nment regulations.
If I am a large quantity generator, I certify that I have a practicable and that I have selected the practicable method and the environment OP if I am a small prestite the processing of the service of	program in place to reduce the volume	and toxicity of w	aste genera	ted to the degree I h	ave determined to be economic
practicable and that I have selected the practicable method	od of treatment, storage, or disposal curricular, I have made a good faith effort to a	ently available to ninimize my was #	me which te generatio	minimizes the preser on and select the bes	t and future threat to human he waste management method the
available to me and that I can afford.	- 1 1 1				
available to me and that I can afford. Printed/Typed Name	Signaturé ///	<u> </u>	.3.		Month Day
available to me and that I can afford. Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name	Signature Signature				Month Day
available to me and that I can afford. Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of Materials	SignSture				0 5 1 1 0
available to me and that I can afford. Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of Materials					Month Day
Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name	SignSture				0 5 1 1 0
Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name	SignSture		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0 5 1 1 0
available to me and that I can afford. Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name 19. Discrepancy Indication Space	Signature Signature		2		0 5 1 1 0
available to me and that I can afford. Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name	Signature Signature	except as noted	2	1	0 5 1 1 C

DO NOT WRITE BELOW THIS LINE.

24976417 IN CASE OF EMERGENCY OR SPILL, CALL THE NATIONAL RESPONSE CENTER 1-800-424-8802: WITHIN CALIFORNIA, CALL 1-809-852-7550