By Alameda County Environmental Health at 4:19 pm, Jun 12, 2013

RECEIVED

June 5, 2013

Barbara Jakub, P.G. Alameda County Health Care Services Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

RE: Groundwater Monitoring Report - 2nd & 4th Quarters 2011

SITE: Sheaff's Garage

5930 College Avenue, Oakland, California ACHCSA Fuel Leak Case No. RO0000377 GGE Project 2014

Dear Ms. Jakub:

Upon my authorization, Golden Gate Environmental, Inc. has prepared a Groundwater Monitoring Report (Dated December 9, 2011) for the 2nd and 4th Quarter 2011 Semi-Annual well monitoring sand sampling events respectively conducted at the above-referenced property on June 9 and October 7, 2011. GGTR has uploaded an electronic copy of the document to the State Water Resources Control Board's GeoTracker Database System. Should you have any questions, please contact Mr. Brent Wheeler, Project Engineer of Golden Gate Environmental at (415) 512-1555 at your convenience.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document are true and correct to the best of my knowledge.

Respectfully Submitted,

TRUST Dr. Brian Sheaff William G. Sheaff TTE Trust

BECEINED INN 0 1 5013

Distribution: (1) Addressee

GROUNDWATER MONITORING REPORT 2nd & 4th Quarters 2011

Sheaff's Garage 5930 College Avenue Oakland, CA 94618

ACHCSA Fuel Leak Case No. RO0000377

Prepared For:

William G. Sheaff TTE Trust Dr. Brian R. Sheaff, D.D.S. 1945 Parkside Drive Concord, CA 94519

Prepared By:

Golden Gate Environmental, Inc. 3730 Mission Street San Francisco, California 94110

Project No. 2014

Sampling Dates: June 9 & October 7, 2011 Report Date: December 9, 2011 MARK YOUNGKIN No. 1380 CERTIFIED Brent Wheeler Project Manager Marl Joungkin Froject Manager

GROUNDWATER MONITORING REPORT 2nd & 4th Quarters 2011

Sheaff's Garage, 5930 College Avenue, Oakland, CA

TABLE OF CONTENTS

INTRODUCTION	1
SITE DESCRIPTION	1
PROJECT HISTORY	2
GROUNDWATER MONITORING & SAMPLING: JUNE 2011	4
RESULTS	5
CONCLUSIONS / RECOMMENDATIONS	8
REPORT DISTRIBUTION	8
LIMITATIONS	9

FIGURES

- 1. Site Location Map
- 2. Site Plan
- 3A. Groundwater Data Diagram June 2011
- 3B. Groundwater Data Diagram October 2011
- 4. TPH Gasoline in Groundwater, June & October 2011

TABLES

- 1. Historical Groundwater Levels & Hydrocarbon Analytical Results
- 2. Historical Groundwater VOC Analytical Results

ATTACHMENTS

- A Fluid-Level Monitoring Data Sheets (June & October 2011) Well Purging/Sampling Data Sheets (June & October 2011)
- B For Both June & October 2011 Events: Laboratory Certificates of Analysis
 Chain of Custody Records
 GeoTracker Upload Confirmation Sheets
 EPA On-Line Tools for Site Assessment Calculation Sheets
 CRA Groundwater Monitoring and Sampling Data - Table 1

Liquid Waste Manifest (November 10, 2011)

GROUNDWATER MONITORING REPORT 2nd & 4th Quarters 2011

Sheaff's Garage, 5930 College Avenue, Oakland, California

INTRODUCTION

Golden Gate Environmental, Inc. (GGE) presents the results of the 2nd Quarter and 4th Quarter 2011, groundwater monitoring and sampling events conducted respectively on June 9 and October 7, 2011, at 5930 College Avenue in Oakland, California (the Site). The Alameda County Health Care Services Agency (ACHCSA) has designated the Site as Fuel Leak Case No. RO000377. Figure 1 presents a *Site Location Map*. Figure 2 titled *Site Plan*, depicts the Site, adjacent properties, and associated features. Figure 3A titled *Groundwater Data Diagram June 2011* shows the groundwater flow direction for the June 9, 2011 event. Figure 3B titled *Groundwater Data Diagram October 2011* shows the groundwater flow direction for the groundwater illustrates the distribution of total petroleum hydrocarbons (TPH) as gasoline in groundwater sample analyses and fluid-level monitoring data at the Site. Table 2 provides a tabulated summary of sample analyses for Volatile Organic Compounds (VOCs).

Conestoga-Rovers & Associates (CRA; Emeryville, CA) and Gettler-Ryan, Inc. (GR; Dublin, CA) is currently conducting a separate groundwater investigation for the former Chevron Station #20-9339 located adjacent to the north side of the Site at 5940 College Avenue. Two groundwater monitoring wells (GR-MW1 & GR-MW2) are used to evaluate the hydrocarbon concentrations in groundwater at this property. In a letter dated September 1, 2008, the ACHCSA reviewed the case file and requested that additional characterization be performed and a conceptual site model be prepared for the former Chevron Station property.

Joint monitoring and sampling activities have been conducted on a quarterly basis since October 2000. Since the April 8, 2002 event, CRA / Gettler-Ryan has monitored and sampled each well on a biannual basis, performing their most recent 2nd & 4th Quarter 2011 monitoring and sampling events of GR-MW1 & GR-MW2 on April 14 and October 7, 2011. GGE was not authorized to perform the 2nd Quarter 2011 joint monitoring with CRA / Gettler-Ryan in April 2011. As of the First Quarter 2009 event, GGE has been contracted to perform the groundwater monitoring activities at the Site in lieu of Golden Gate Tank Removal, Inc. Figures 2 and 3 show the location of each CRA / Gettler-Ryan well relative to the monitor wells on the subject property. Attachment B includes a summary table provided by CRA titled *Groundwater Monitoring and Sampling Data* (Table 1), presenting results of the October 2010, April 2011 and October 2011 events.

SITE DESCRIPTION

The Site is located at 5930 College Avenue along the east side of College Avenue between Harwood Street and Chabot Road. The Site lies approximately 2.5 miles east of Interstate 80

and the San Francisco Bay. Figure 1 shows the general location of the Site. Stoddard Automotive (formerly Sheaff's Service Garage) currently occupies the Site for the service and repair of automobiles. No active fuel storage or distribution occurs at the Site. The Site is approximately 5,500 square feet in area with about 75% utilized by a covered warehouse/garage and 25% used as an exterior (uncovered) storage yard. The ground surface of the entire Site is paved with concrete. The elevation of the Site is approximately 195 feet above Mean Sea Level as shown on Figure 1. The Site is relatively flat lying with the topographic relief in the immediate vicinity of the Site generally directed toward the southwest. Regional topographic relief appears to be directed toward the west-southwest in the general direction of the San Francisco Bay.

PROJECT HISTORY

One 675-gallon gasoline Underground Storage Tank (UST) and one 340-gallon waste oil UST were located beneath the sidewalk at the southwest corner of the Site. Figure 2 depicts pertinent Site structures and adjacent properties. In August 1996, Golden Gate Tank Removal, Inc. (GGTR) removed two USTs and an associated fuel dispenser from the Site at the locations shown in Figure 2. The following table presents a summary of the tank designations, size, type of construction and contents:

Designation	Construction	Diameter (Feet)	Length (Feet)	Volume (Gallons)	Contents	
TANK 1 TANK 2	Steel Steel	4 4	7 3.5	675 340	Gasoline Waste Oil	

GGTR removed the residual fuel from the subsurface product piping (left in place), thoroughly flushed and drained the piping, and capped both ends. GGTR over-excavated the gasoline-contaminated soil surrounding the former UST location. The tank removal and over-excavation activities are documented in the GGTR document titled *Tank Removal Report* dated October 11, 1996.

Between May 1998 and October 1999, GGTR performed a preliminary subsurface soil boring investigation at the Site and subsequently installed three groundwater monitoring wells in the vicinity of the former UST cavity. Soil borings B1 to B3 were advanced immediately south, east, and west, respectively, of the former UST cavity. Following review and interpretation of all field and soil sample analytical data collected during these activities, additional soil borings B4 to B6 were then advanced at the Site to further assess the extent of contamination in soil and the potential impact to groundwater. The latter borings were converted to 2-inch-diameter groundwater monitoring wells MW-1 to MW-3. Figure 2 depicts the boring and monitoring well locations.

Based on the residual elevated concentrations of gasoline-range hydrocarbons measured in the groundwater samples collected during the April 2001 quarterly monitoring activities, the ACHCSA, in a letter dated July 9, 2001, requested a work plan to assess whether any additional contaminant sources may potentially exists onsite that may be contributing to the elevated hydrocarbon concentration in groundwater. GGTR submitted the work plan on December 19,

2001, which was subsequently approved by the ACHCSA in a letter dated January 3, 2002. In August, October, and November 2002, GGTR implemented the UST product line excavation / removal activities and installed soil borings B7 to B11. Figure 2 depicts the locations of these borings, as well as the location of the former product line and associated sample points. Details are presented in the GGTR document titled *Report of Additional Soil and Groundwater Investigation* dated June 10, 2003.

Based on review of the GGTR report, the ACHCSA in their letter dated September 8, 2003, requested a work plan addressing additional source and site characterization of contaminants in soil and groundwater at the Site. GGTR submitted the Work Plan for Additional Site Characterization on December 29, 2003, and it's Addendum on September 30, 2004, which were conditionally approved by the ACHCSA in letters dated June 3, 2004, and February 22, 2005. Between April and July 2005, GGTR advanced additional borings B12 to B24 to approximately 25 feet below grade surface (fbg) and Hydropunch borings HB-1 to HB-6 to approximately 15 fbg, and converted HB-2 to piezometer well PW-1. Figure 2 shows the location of each additional soil boring. Details of this investigation are presented in the GGTR document titled *Report of Additional Site Characterization and Groundwater Monitoring* dated August 29, 2006.

Between October 2003 and October 2009, GGTR conducted additional quarterly groundwater monitoring and sampling activities at the Site and submitted their associated Groundwater Monitoring Reports to the ACHCSA. GGTR was not contracted to conduct the third Quarter 2006, first Quarter 2008, and third Quarter 2009 groundwater monitoring events at the Site. The results of the October 2009 monitoring and sampling events are presented in the following sections.

Based on review of the conclusions and recommendations presented in the GGTR documents titled *Report of Additional Site Characterization* dated August 2006 and *Groundwater Monitoring Report* dated May 30, 2008, the ACHCSA on July 25, 2008, issued a letter requesting a work plan to implement the conditionally approved activities. The additional work activities are to include 1) vertical and horizontal delineation of dissolved contaminant plume(s), 2) resurveying the wellhead elevations of all existing Site wells and piezometer well, 3) further preferential pathway evaluation of the Harwood Creek conduit down gradient of the Site, 4) further characterization of the PCE-impacted groundwater in the vicinity of PW-1, and 5) updating the existing Site Conceptual Model with data acquired from the additional Site characterization activities. On June 1, 2009, GGTR submitted the *Soil and Water Investigation Work Plan & Site Conceptual Model* to the ACHCSA for review.

In a letter dated August 3, 2010, the ACHCSA requested an addendum to GGTR's June 2009 Work Plan to further assess the vapor intrusion pathway at the site or adjacent residential building, and provide a plan for soil vapor sampling. On October 29, 2010, GGTR submitted its *Work Plan Addendum for Soil Gas Sampling* to the ACHCSA for review. The ACHCSA approved the Addendum in a letter dated June 10, 2011. GGTR is currently awaiting contractual agreement with the responsible party to implement the approved work plan addendum.

GROUNDWATER MONITORING & SAMPLING: JUNE & OCT. 2011

The scope of work for the 2nd & 4th Quarters 2011 groundwater monitoring and sampling events includes the following:

- Monitoring, purging and sampling of monitor wells MW-1, MW-2, MW-3 and PW-1
- Laboratory analysis of groundwater samples
- Waste management
- Electronic data upload to GeoTracker Database System
- Data interpretation

Groundwater Monitoring and Sampling

On June 9 and October 7, 2011, GGE monitored and sampled wells MW-1, MW-2, MW-3 and PW-1. Prior to purging and sampling, GGE removed the well cover and locking compression cap from each well and allowed the groundwater in each well column to stabilize for approximately 20 minutes. GGE then measured and recorded the depth to product/groundwater using an electronic water level indicator. Fluid levels were measured relative to the north side of the top of each well casing to the nearest 0.01 foot.

GGE subsequently purged groundwater from the monitor wells using a peristaltic pump (average flow rate @ 0.13 to 0.22 gallon per minute), and simultaneously monitored and recorded the pH, temperature, and specific conductivity of the purged well water. GGE terminated well purging after evacuation of approximately three well casing volumes or three successive readings of each parameter varied by less than 0.1, 10%, and 3%, respectively. Well PW-1 dewatered completely prior to removing three casing volumes. GGE transferred the purge water directly to a 55-gallon, D.O.T.-approved steel drum.

After the groundwater in each well recharged sufficiently to allow sample collection, GGE recovered a groundwater sample using a peristaltic pump with dedicated tubing lowered just below the last measured groundwater level. The groundwater sample was collected from the discharge end of the dedicated tubing into pre-cleaned, laboratory-provided sample containers. The sample containers were sealed with Teflon caps and all volatile organic analysis (VOA) vials were inverted and checked to insure that no entrapped air was present. The samples were properly labeled and stored in a cooler chilled to approximately 4°C. Attachment A presents a copy of the Fluid-Level Monitoring Data Form and Well Purging/Sampling Data Sheets for each event.

Water Sample Analytical Methods

GGE submitted the groundwater samples under formal chain of custody command to Torrent Laboratory, Inc., a State-certified analytical laboratory (CA ELAP #1991) in Milpitas, California, for laboratory analysis of the following fuel constituents:

- Total Petroleum Hydrocarbons (TPH) as Gasoline by EPA Method SW8260B
- Benzene, Toluene, Ethylbenzene and Total Xylenes (BTEX) by EPA Method SW8260B

The groundwater sample collected from monitor well PW-1 was additionally analyzed for other VOCs (full list) by EPA Method SW8260B. Groundwater Samples collected during the October 2011 event were additionally analyzed for Methyl Tertiary Butyl Ether (MTBE) by EPA Method SW8260B. Torrent completed all volatile organic analyses within the 14-day required time limit for analysis. GGE directed Torrent to submit all analytical data in electronic deliverable format (EDF) in accordance with the State Water Resources Control Board's GeoTracker database system. Tables 1 and 2 present a summary of the analytical results for the 2nd & 4th Quarter 2011 sampling events as well as previous monitoring/sampling events at the Site. Attachment B includes a copy of the Laboratory Certificate of Analysis and associated Chain of Custody Record for each event.

Waste Management

The well purge and equipment wash and rinse water generated during the was transferred directly to a D.O.T.-approved, 55-gallon drum, appropriately labeled and sealed, and temporarily stored onsite in a secure area pending final disposal at a licensed facility. On November 9, 2011, Big Sky Environmental Solutions removed the drummed purge and wash/rinse water accumulated from the June 2011 event (@ 24 gallons) and October 2011 event (@ 21 gallons) and transported the Waste Liquid under Uniform Hazardous Waste Manifest No.007270079 to the US Ecology facility in Beatty, Nevada. Appendix B includes a copy of the liquid waste manifest.

GeoTracker Electronic Submittal

GGE directed Torrent to submit all analytical data in electronic deliverable format (EDF) via the Internet. GGE uploaded the analytical data as well as the Fluid-Level Monitoring Data (GEO_WELL) for each event to the State Water Resources Control Board's GeoTracker Database System. GGE also uploaded a copy of this report in Portable Data Format (PDF) to the GeoTracker Database. Attachment B includes a copy of each associated GeoTracker Upload Confirmation Sheet.

RESULTS

Groundwater Monitoring Results

For the June 2011 event, the groundwater elevations calculated relative to the top of well casing in wells MW-1, MW-3 and PW-1 ranged between 189.30 (MW-3) and 189.74 (PW-1) feet, as referenced to Mean Sea Level (MSL), and for the October 2011 event, the groundwater elevations in wells MW-1, MW-3 and PW-1 ranged between 186.62 (MW-3) and 187.38 (PW-1) feet . The groundwater elevation and coordinate data for each monitoring event was entered into the EPA On-Line Tools for Site Assessment Calculation, Hydraulic Gradient – Magnitude and Direction. This tool calculates gradient by a least-squares fitting of the data to a plane and used to calculate the approximate groundwater hydraulic gradient and flow direction across the Site. Figures 3A titled *Groundwater Data Diagram June 2011* depicts the groundwater flow direction for the June 2011 monitoring event, and Figure 3B titled *Groundwater Data Diagram October*

2011 depicts the groundwater flow direction for the October 2011 monitoring event. Figures 3A & 3B include a rose diagram presenting the historical groundwater flow direction and hydraulic gradient across the Site as calculated from groundwater elevations from three wells MW-1, MW-3, and PW-1 since April 2005. The EPA On-Line Tools for Site Assessment Calculation sheet for each event is included in Attachment B.

During the June 2011 monitoring event, the groundwater flow direction beneath the Site was estimated at South 4° West (184°) under a hydraulic gradient of approximately 0.0055 ft/ft, and for the October 2011 event, the groundwater flow direction beneath the Site was estimated at South 36° West (216°) under a hydraulic gradient of approximately 0.0063 ft/ft. The groundwater flow direction for the June and October 2011 events is consistent with historical data for the Site with general flow direction towards the south-southwest. For the 2nd Quarter 2011 event, groundwater elevations were measured in CRA / Gettler-Ryan wells on April 14, 2011, approximately 0.4 to 0.93 foot lower than that reported in onsite well MW-1. CRA / Gettler-Ryan groundwater elevations for the October 2011 event appear consistent with site monitor well gradient data.

Results of Groundwater Sampling and Laboratory Analysis

June 2011

Elevated concentrations of TPH as gasoline ranging between $3200 \mu g/l$ in well MW-3 and $53000 \mu g/l$ in well MW-1 were measured in groundwater samples collected during the June 2011 event. Elevated BTEX concentrations were measured in well MW-1 thru MW-3 during the June 2011 event, with maximum concentrations in MW-1 at 14000, 3000, 3800, and 16900 $\mu g/l$, respectively. The TPH as gasoline and BTEX concentrations measured in these wells continue to exceed applicable groundwater ESL values. Figure 4 titled *TPH Gasoline in Groundwater* presents an isoconcentration map for TPH as gasoline in groundwater for the June 2011 event. Table 1 presents a summary of the historical petroleum hydrocarbon analysis results for this event, with the associated laboratory analytical report included in Attachment B.

PCE was detected in the groundwater sample collected in well PW-1 at a concentration of 86 μ g/l exceeding its applicable ESL value of 5 μ g/l. The concentration of PCE in well PW-1 continues to fluctuate ranging between 25 μ g/l in October 2005 to 120 μ g/l in April 2009. TCE and Cis-1,2-DCE were measured in well PW-1 at concentrations of 0.85 and 1.4 μ g/l, significantly lower than respective concentrations measured in October 2010,and below applicable ESLs. In general, the detectable VOC concentrations measured in PW-1 (except for PCE) decreased since the October 2010 sampling event. Table 2 presents a summary of the historical groundwater VOC analysis results and the complete VOC laboratory report for well PW-1 is included in Attachment B.

October 2011

Elevated concentrations of TPH as gasoline ranging between 5400 μ g/l in well MW-3 and 50000 μ g/l in well MW-1 were measured in groundwater samples collected during the October 2011

event. Although generally lower than the June 2011 event, elevated BTEX concentrations were again measured in well MW-1 thru MW-3, with maximum concentrations again reported in MW-1 at 9200, 1500, 4200, and 13500 μ g/l, respectively. The TPH as gasoline and BTEX concentrations measured in these wells continue to exceed applicable groundwater ESL values. Figure 4 titled *TPH Gasoline in Groundwater* presents an isoconcentration map including data for TPH as gasoline in groundwater for the October 2011 event. Table 1 includes a summary of the historical petroleum hydrocarbon analysis results for this event, and the associated laboratory analytical report is included in Attachment B.

Since October 2009, MTBE and other fuel oxygenate concentrations have been insignificant or below lab detection limits in wells MW-2, MW-3 and PW-1. None of the monitoring well samples were analyzed for MTBE or other fuel oxygenates during the June and October 2011 events.

PCE was again detected in the groundwater sample collected in well PW-1 at a concentration of 76 μ g/l exceeding its applicable ESL value of 5 μ g/l. TCE and Cis-1,2-DCE were measured in well PW-1 at concentrations of 0.63 and 2 μ g/l, similar to those concentrations measured in June 2011. In general, the detectable VOC concentrations measured in well PW-1 (except for PCE) slightly decreased since the June 2011 sampling event. Table 2 includes a summary of the historical groundwater VOC analysis results for the October 2011 event, and the complete VOC laboratory report for well PW-1 is included in Attachment B.

CONCLUSIONS / RECOMMENDATIONS

Due to the elevated concentrations of TPH-G and BTEX remaining in monitor wells MW-1 to MW-3 and PW-1, GGE, recommends continuing the joint groundwater monitoring and sampling program with Conestoga-Rovers & Associates / Gettler-Ryan on a semi-annual basis. Again, sampling should be conducted during the 2nd & 4th Quarters, in which historical groundwater contaminant concentrations in MW-1 to MW-3 have generally been the highest, and to remain consistent with Conestoga-Rovers & Associates / Gettler-Ryan semi-annual monitoring schedule at 5940 College Avenue. The next joint monitoring and sampling event with Conestoga-Rovers & Associates / Gettler-Ryan semi-annual monitoring schedule at 5940 College Avenue. The next joint monitoring and sampling event with Conestoga-Rovers & Associates / Gettler-Ryan is tentatively scheduled at the Site in April 2012.

Groundwater samples will continue to be analyzed for TPH-G, BTEX by EPA Method 8260B, to include MTBE during the 4th Quarter 2011 events. Additionally, GGE recommends continuing analysis of the groundwater sample from PW-1 for VOCs (full list) by EPA Method 8260B to further monitor the elevated concentrations of PCE in groundwater in the vicinity of this well.

As per the ACHCSA's most recent directive letter dated June 10, 2011, a Soil & Water Investigation Report was due on September 12, 2011. To date, GGE/GGTR has not been authorized by the responsible party to implement the approved additional site investigation and reporting activities.

REPORT DISTRIBUTION

This report and future correspondence associated with GGE Project 2014 will be submitted to:

Alameda County Health Care Services AgencyEnvironmental Health ServicesEnvironmental Protection1131 Harbor Bay Parkway, Suite 250Alameda, CA 94502-6577Attention: Ms. Barbara Jakub(1Electronic Copy via ACHCSA FTP Site)

Dr. Brian R. Sheaff, D.D.S. 1945 Parkside Drive Concord, CA 94519

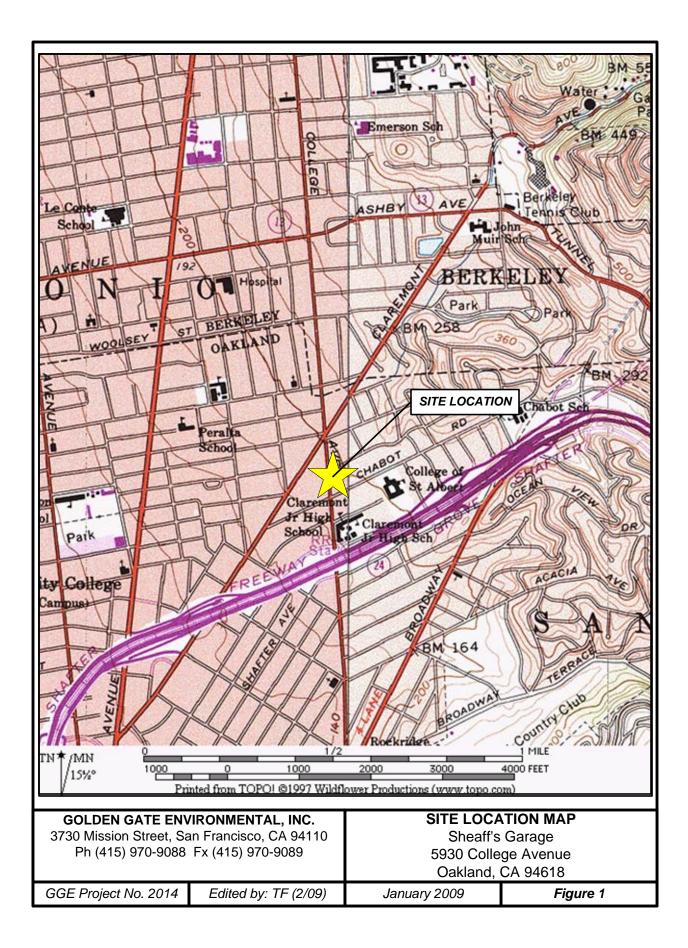
(1 Copy; Bound)

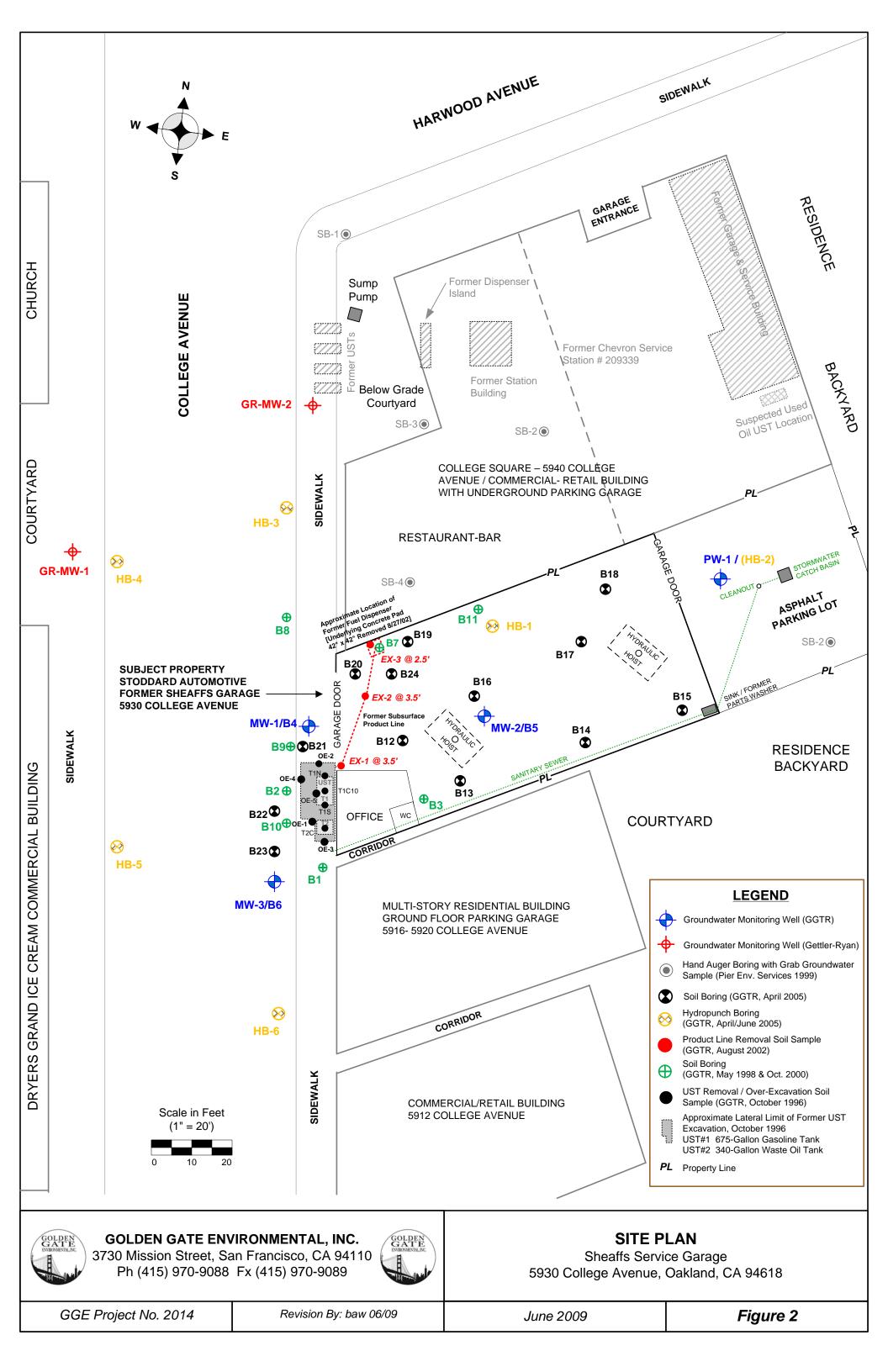
LIMITATIONS

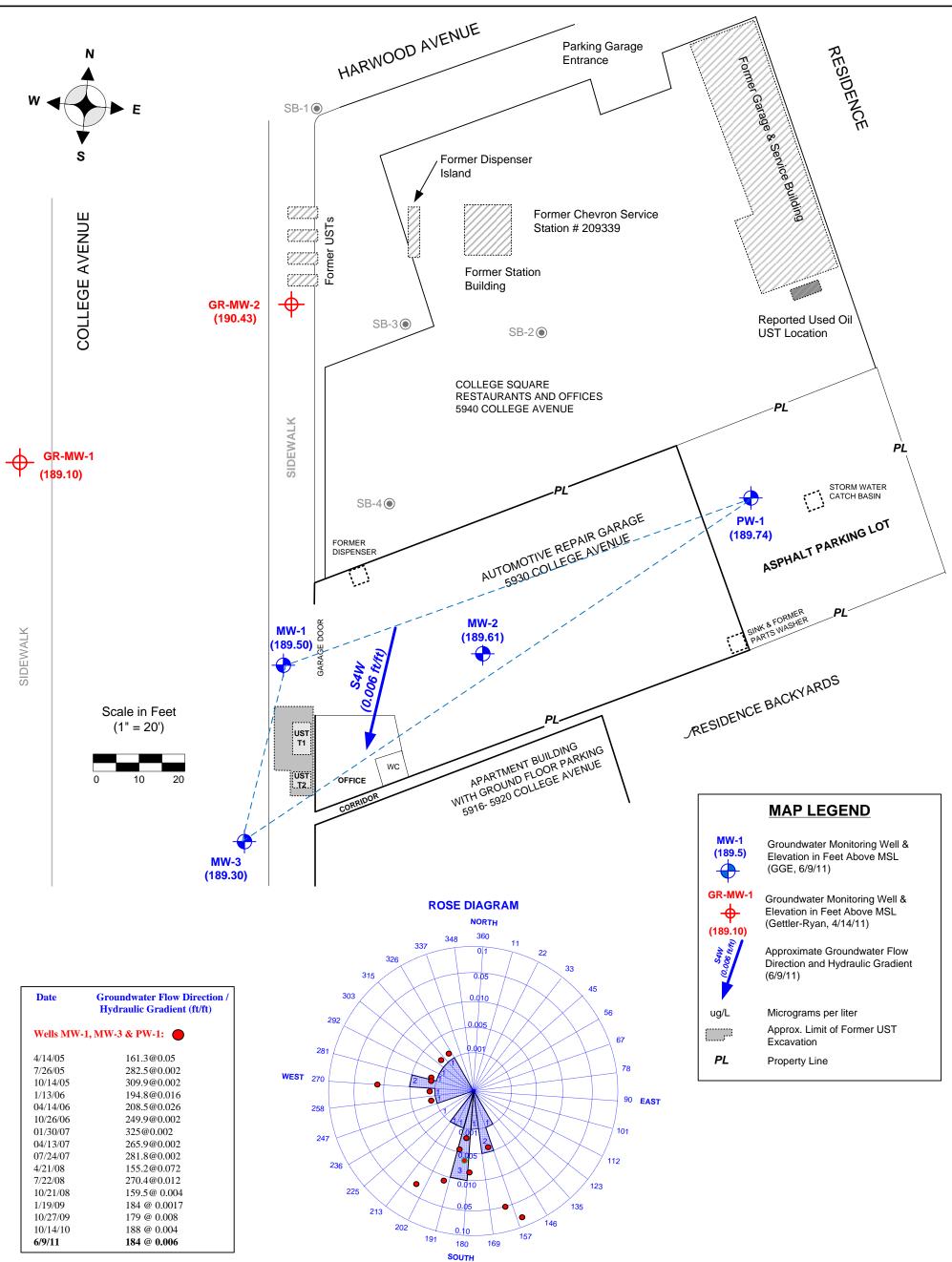
It should be understood that all environmental assessments are inherently limited in that conclusions are drawn and recommendations developed from information obtained from limited research and visual observations. Subsurface conditions change significantly with distance and time and may differ from the conditions implied by subsurface investigation. It must be noted that no investigation can absolutely rule out the existence of any hazardous materials at a given site. Existing hazardous materials and contaminants can escape detection using these methods. The work performed in conjunction with this assessment and the data developed are intended as a description of available information at the dates and location given.

GGE's professional services have been performed, with findings obtained and recommendations prepared in accordance with customary principles and practices in the field of environmental science, at the time of the assessment. This warranty is in lieu of all other warranties either expressed or implied. GGE is not responsible for the accuracy of information reported by others or the independent conclusions, opinions or recommendations made by others based on the field exploration presented in this report. The findings contained in this report are based upon information contained in previous reports of corrective action activities performed at the subject property and based upon site conditions, as they existed at the time of the investigation, and are subject to change. The scope of services conducted in execution of this phase of investigation may not be appropriate to satisfy the needs of other users and any use or reuse of this document and any of its information presented herein is at the sole risk of said user. No other party may rely on this report for any other purpose.

Golden Gate Environmental, Inc.


GROUNDWATER MONITORING REPORT 2nd & 4th Quarter 2011


Sheaff's Garage 5930 College Avenue Oakland, CA 94618


ACHCSA Fuel Leak Case No. RO0000377

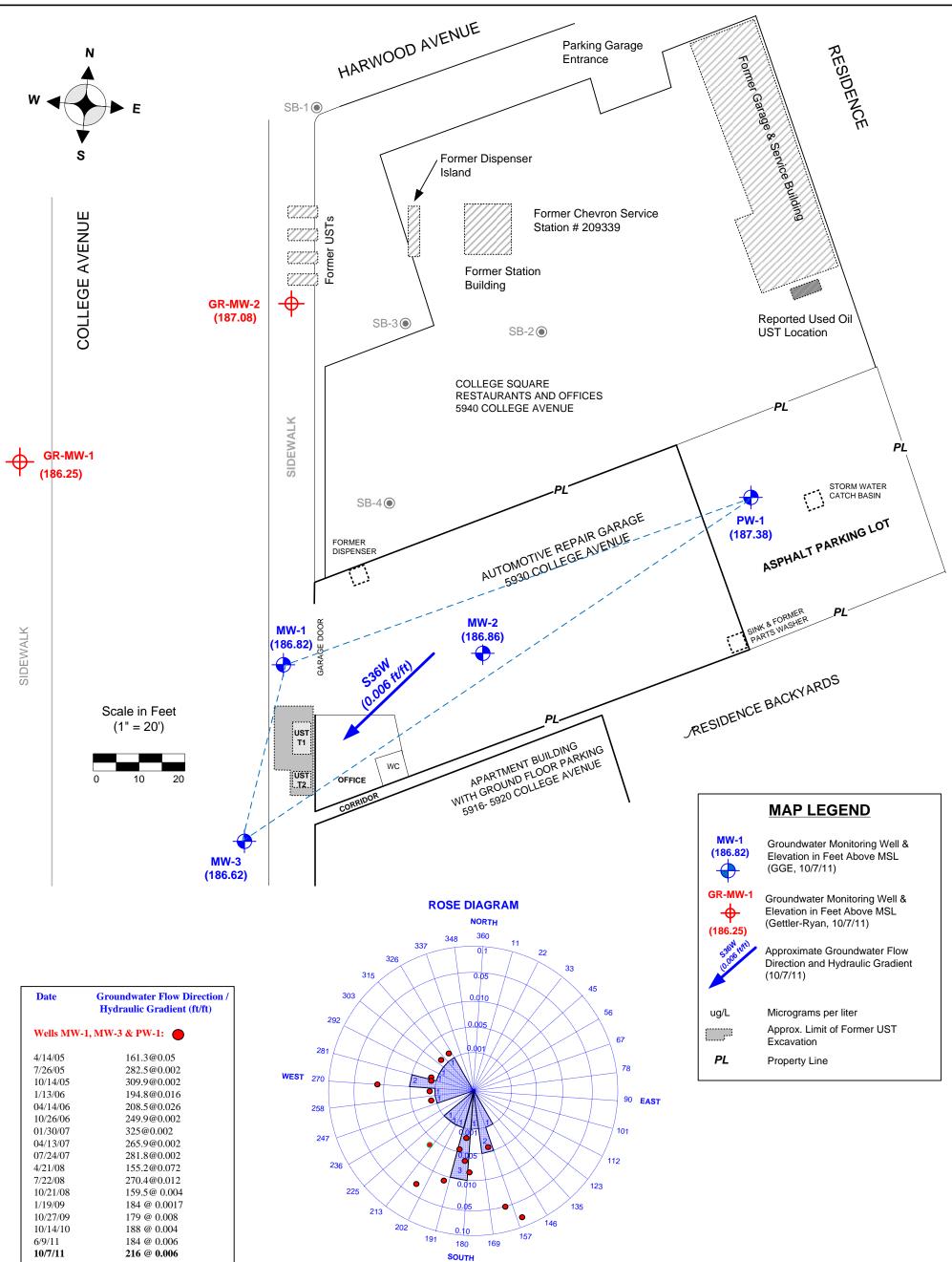
ATTACHMENT A

Fluid-Level Monitoring Data Sheet (June 2011) Well Purging/Sampling Data Sheets (June 2011) Fluid-Level Monitoring Data Sheet (October 2011) Well Purging/Sampling Data Sheets (October 2011)

10/26/06	249.9@0.002
01/30/07	325@0.002
04/13/07	265.9@0.002
07/24/07	281.8@0.002
4/21/08	155.2@0.072
7/22/08	270.4@0.012
10/21/08	159.5@ 0.004
1/19/09	184 @ 0.0017
10/27/09	179 @ 0.008
10/14/10	188 @ 0.004
6/9/11	184 @ 0.006

Rose diagram showing historic flow direction & gradient. Circles show recent data from three wells MW-1, MW-3 & PW-1 since April 14, 2005. Note non-linear scale for gradient to accommodate large variation in data. Bar graph shows number of values within each interval of flow direction for recent 2005-2011 data.

GOLDEN GATE ENVIRONMENTAL, INC. 3730 Mission Street, San Francisco, CA 94110 Phone (415) 970-9088 Fax (415) 970-9089


GROUNDWATER DATA DIAGRAM

June 2011 Sheaffs Service Garage 5930 College Avenue, Oakland, CA 94618

GGE Project No. 2014

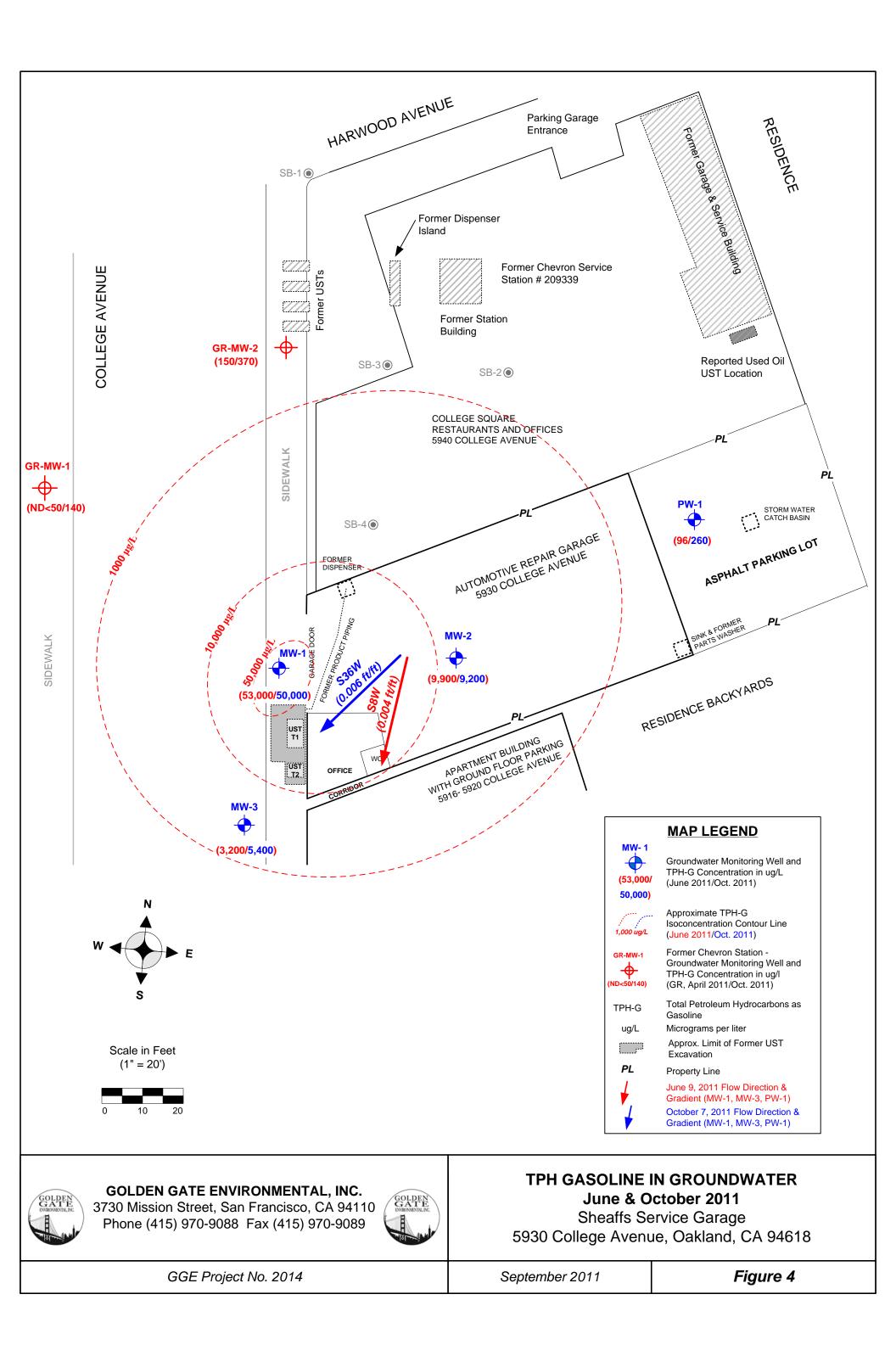
September 2011

Figure 3A

10/26/06	249.9@0.002
01/30/07	325@0.002
04/13/07	265.9@0.002
07/24/07	281.8@0.002
4/21/08	155.2@0.072
7/22/08	270.4@0.012
10/21/08	159.5@ 0.004
1/19/09	184 @ 0.0017
10/27/09	179 @ 0.008
10/14/10	188 @ 0.004
6/9/11	184 @ 0.006
10/7/11	216 @ 0.006

Rose diagram showing historic flow direction & gradient. Circles show recent data from three wells MW-1, MW-3 & PW-1 since April 14, 2005. Note non-linear scale for gradient to accommodate large variation in data. Bar graph shows number of values within each interval of flow direction for recent 2005-2011 data.

GOLDEN GATE ENVIRONMENTAL, INC. 3730 Mission Street, San Francisco, CA 94110 Phone (415) 970-9088 Fax (415) 970-9089


GROUNDWATER DATA DIAGRAM

October 2011

Sheaffs Service Garage 5930 College Avenue, Oakland, CA 94618

GGE Project No. 2014

September 2011

		Casing	Depth to			,	,				
Well ID	Sample Date	0	-		Product	TPH-G	MTBE	BTEX			
wen iD	Sample Date				Odor/ Sheen	(ug/L)	(ug/L)	(ug/L)			
	6/1/98		· · / /		slight sheen	160000	1900	28000 / 21000 / 3800 / 21000			
					<u> </u>						
							-				
								25000 / 15000 / 3800 / 17000			
					U			23000 / 12000 / 3900 / 12000			
	4/25/01	50.00						21000 / 13000 / 3800 / 18000			
								15000 / 7800 / 3000 / 15000			
								25300 / 11800 / 4280 / 20600			
								21100 / 13500 / 4160 / 21900			
		pip Dial Devalue Clevation Odor/ Sheen (ug/L) (ug/L) (ug/L) (1/98 50.00 * 4.81 45.19 slight sheen 160000 1900 28000/21000/380 (10/98 50.00 * 7.5 42.5 Odor 290000 440 -50/25000/7100 (10/98) 50.00 * 8.26 41.74 slight sheen 130000 470 25000/71000/380 (2500) 50.00 * 9.61 40.39 Odor 130000 13000 23000/1200/390 (2701 50.00 * 9.61 40.39 Odor 12000 780 19000/11000/380 (2801 7.39 188.51 Odor 79000 660 15000/780/300 10.88 185.02 Odor/sheen 112000 374 25300/11800/422 (1/2000 9.4 186.5 slight odor 111000 679 21200/13400/422 (1/2000 10.4 184.86 None 54100 1010(1080)** 11080/1570/23 10.88 185.1									
	7/9/02		Depth to GW (ft, TOC) Water Elevation (ft, MSL) Product Odor/Sheen TPH-G (ug/L) MTBE (ug/L) BTEX (ug/L) 4.81 45.19 slight sheen 160000 1900 28000/21000/380 7.5 42.5 Odor 290000 440 <50/2500/7100	20300 / 13300 / 4060 / 19800							
	10/23/02				Ŭ			10800 / 3870 / 2320 / 9440			
	10/15/03							17800 / 4740 / 3150 / 13900			
	2/2/04							14200 / 7420 / 3450 / 19800			
	4/23/04						-	7910 / 1480 / 1810 / 10100			
	7/19/04				Ŭ			7260 / 2270 / 2510 / 10100			
	10/22/04							13900 / 1670 / 3550 / 15200			
	1/21/05						· · · ·	14700 / 25300 / 10800 / 73500			
MW-1	4/14/05						· · · · ·	15100 / 7080 / 4220 / 20700			
	7/26/05							12000 / 4500 / 3300 / 14000			
	10/14/05	105.0	105.0	105.0	105.0						13000 / 5700 / 3400 / 16000
	1/13/06	195.9	4.6	191.3				12000 / 5300 / 3500 / 17000			
	4/14/06		3.08	192.82		51000		14000 / 5300 / 3500 / 17000			
	10/26/06			186.68			ND<250	12000 / 1600 / 3100 / 8600			
	1/30/07		9.6		Odor	39000		10000 / 2200 / 2900 / 10000			
	4/13/07							9100 / 2600 / 3100 / 11000			
	7/24/07		10.67		None	46000	240	10000 / 1200 / 3500 / 6200			
	4/21/08		7.24	188.66		50000	ND<100	7800 / 1500 / 3000 / 12000			
	7/22/08							8100 / 1500 / 2700 / 9800			
	10/21/08		11.63	184.27	Odor	15000		4900 / 430 / 1900 / 2260			
	1/19/09							8830/837/2160/3880			
	4/27/09							8500/2100/2300/11000			
	10/27/09							8300/1500/2600/7900			
	10/14/10	1	10.3	185.6	Clear/Odor	24000^{2}	220	8100/820/2200/4400			
	6/9/11							14000/3000/3800/16900			
	10/7/11							9200/1500/4200/13500			
	CRWOCB	ESL - Nov 2									
	Chingen	LUL - 1101 2	oor (neriseu	(111ay 2000)		100	5	1.0/ 40/ 30/ 20			

 TABLE 1

 Historical Groundwater Levels & Hydrocarbon Analytical Results

 5930 College Avenue, Oakland, CA

Table Notes Following

		Casing	Denth to	Water			,	
Well ID	Sample Date	0	-		Product	TPH-G	MTBE	BTEX
wen iD	Sample Date				Odor/ Sheen	(ug/L)	(ug/L)	(ug/L)
	10/7/99	· · · · · · · · · · · · · · · · · · ·			slight/odor	18000	490	3000 / 1700 / 1000 / 3900
					U			9300 / 2200 / 2300 / 7700
								5500 / 370 / 1700 / 2600
					U			4300 / 530 / 1800 / 4500
		51.42						6700 / 1700 / 2600 / 8200
								6200 / 730 / 2300 / 6100
								6310 / 399 / 2100 / 5320
								10300 / 3250 / 4180 / 14400
								10200 / 2670 / 3840 / 13200
Well ID Sample Date (ft, MSL) Elevation (ft, MSL) Odor/ Sheen (ft, MSL) 10/7/99 51.42* 11.49 39.93 slight/odor 1/26/00 51.42* 7.85 43.57 None 10/25/00 51.42* 10.77 40.65 Odor/ Sheen 2/2/01 51.42* 10.77 40.65 Odor 4/25/01 8.52 188.76 Odor/ Sheen 10/8/01 11.05 186.23 Odor 11/7/02 8.4 188.23 Odor 4/20/01 11.05 186.73 Slight odor 10/23/02 10/5/03 8.4 188.88 Slight odor 10/22/04 1/21/05 8.4 188.48 None 8.4 188.58 None 8.6 18.6.98 Odor/sheen 10/12/05 10/14/05 197.28 10.92 186.36 Odor/sheen 1/13/06 1/13/06 1/13/06 19.8 191.8 Odor 10/22/08 10/21/08 19.24 <								
	Sample Date (ft, MSL) (ft, TOC) GW (ft, MSL) (ft, TOC) (ft, MSL) (ft, TOC) Elevation (ft, MSL) (ft, TOC) (ft, MSL) (ft, TOC) Product (ft, MSL) (ft, TOC) (ft, MSL) (ft, TOC) M1BL (g/L) (
			GW Elevation (ft, TOC) Product (tt, MSL) IPI-G Odor/Sheen (ug/L) MTBE (ug/L) BTEA (ug/L) BTEA (ug/L) 14.2* 11.49 39.93 slight/odor 18000 490 3000 / 1700 / 10 1.42* 11.57 39.85 slight/odor 31000 500 5500 / 370 / 17 1.42* 10.77 40.65 Odor 36000 400 4300 / 530 / 18 8.52 188.76 Odor 5600 460 6700 / 1700 / 20 11.05 186.23 Odor 39000 180 6200 / 730 / 23 12.79 184.49 Odor/sheen 40700 6460 6310 / 399 / 21 4.92 192.36 Odor 59600 366** 10300 / 3250 / 41 8.4 188.88 slight odor 67700 583** 1020 / 2670 / 33 10.55 186.73 slight odor 37100 303 (228)** 2420 / 216 / 92 12.38 184.49 None 11300 264 (322)** 2660 / 51 / 118 8.8					
							/	
					0			
MW-2								
								5600 / 550 / 2600 / 4600
		197.28						2900 / 100 / 1300 / 1200
								4900 / 490 / 2400 / 4200
								4000 / 740 / 2300 / 5100
								1400 / 51 / 840 / 500
								3200 / 150 / 2200 / 1800
								2000 / 85 / 1300 / 1100
								1300 / 41 / 710 / 270
								1800 / 100 / 1400 / 1300
								1900 / 98 / 1600 / 741
								700 / 20 / 370 / 52
	1/19/09		12.31	184.97	Odor	2500	90	167/8.49/114/50.3
	4/27/09		9.01	188.27	Odor/sheen	21000		1700/130/1100/1800
	10/27/09		10.52	186.76	Odor		ND<0.5***	510/19/330/160
	10/14/2010		11.56	185.72	None	3200 ²	35	460/16/230/110
	6/9/2011		7.67	189.61	Clear/Odor		NA	1900/75/1100/1013
	10/7/2011		10.42	186.86	Clear/Odor	9200 ⁴	ND<22	810/34/610/100
	CRWQCB	ESL - Nov 2	007 (Revised	May 2008)		100	5	1.0 / 40 / 30 / 20

TABLE 1 (Cont.)Historical Groundwater Levels & Hydrocarbon Analytical Results5930 College Avenue, Oakland, CA

Table Notes Following

		Casing	Depth to	Water	Product	TPH-G	MTBE	BTEX		
Well ID	Sample Date	Elevation	GW	Elevation	Odor/ Sheen	(ug/L)	(ug/L)	(ug/L)		
		(ft, MSL)	(ft, TOC)	(ft, MSL)						
	10/7/99	49.39*	9.67	39.72	None	6600	390	310 / 110 / 430 / 1000		
	1/26/00	49.39*	5.4	43.99	None	3300	40	110 / 8 / 100 / 32		
	10/25/00	49.39*	9.24	40.15	Slight odor	4500	ND	100 / 2 / 120 / 130		
	2/2/01	49.39*	8.73	40.66	Slight odor	2900	35	35 / 3 / 160 / 298		
	4/25/01		6.61	188.61	Slight odor	8400	56	260 / 33 / 290 / 510		
	7/10/01		8.85	186.37	Slight odor	12000	35	39 / 10 / 690 / 1600		
	10/8/01		9.75	185.47	Odor/sheen	4913	52	108 / 4 / 99 / 133		
	1/7/02		4.25	190.97	Odor/sheen	7260	81.7**	723 / 138 / 492 / 887		
	4/8/02		6.33	188.89	Odor	11700	ND**	540 / 108 / 706 / 1710		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Odor	2320	28.3 (20)**	37.1 / 4.7 / 98.5 / 187					
	10/23/02		10.02	185.2	Odor/sheen	2830	ND (ND)**	46.8 / 4.7 / 43.6 / 65.5		
	10/15/03		9.8	185.42	Odor/sheen	3040	ND (ND)**	91.3 / 8.4 / 69.9 / 148		
	2/2/04		6.85	188.37	Odor/sheen	5140	ND (ND)**	126 / 8.7 / 134 / 238		
	4/23/04		6.17	189.05	None	7210	ND (ND)**	227 / 39.5 / 448 / 879		
	7/19/04		8.25	186.97	Slight odor	9860	ND (ND)**	20.4 / 3.2 / 30.6 / 117		
	10/22/04		9.25		None	7420	96 (21)**	152 / 12.8 / 267 / 480		
	1/21/05		5.22	190	Slight odor	2420	ND (ND)**	111 / 11.4 / 139 / 265		
MW-3	4/14/05		6.64	188.58	Odor/sheen	5130	54 (41.4)**	357 / 19.4 / 287 / 510		
11111-5	7/26/05		6.9	188.32	None	9800	ND (21)**	200 / 23 / 220 / 360		
	10/14/05	195.22	8.83	186.39	Odor/sheen	6100	ND	76 / 19 / 170 / 350		
	1/13/06		1)5.22	1)5.22	175.22	4.61	190.61	Odor	3900	24
	4/14/06		3.41	191.81	Odor	5000	69	760 / 44 / 230 / 190		
	10/26/06		8.57	186.65	Odor	3100	17	120 /9.8 /55 / 54		
	1/30/07		8.83	186.39	Odor	4500	ND<10	90 /7.6 / 75 / 44		
	4/13/07		8.57	186.65	NM	2800	ND<5	55 / 4.9 / 19 / 6.1		
	7/24/07		9.98	185.24	None	4800	ND<5	140 / 8.3 / 66 / 22		
	4/21/08		9.3	185.92	None	4300	ND<5	200 / 11 / 30 / 14		
	7/22/08		9.05	186.17	None	2400	53 ¹	140 / 13 / 26 / 18.5		
	10/21/08		11.12	184.1	Slight Odor	2900	2.2	170 / 9.2 / 99 / 25.8		
	1/19/09		10.29	184.93	Odor	3600	ND<0.5	148/6.73/24.5/22.1		
	4/27/09		7.15	188.07	Odor/sheen	5800	8.8	370/12/82/84		
	10/27/09		8.96	186.26	Odor	4900 ²	ND<0.5***	130/8.5/89/130		
	10/14/2010		9.76	185.46	None	2700 ²	ND<4.4	270/11/290/399.2		
	6/9/2011		5.92	189.3	Clear/Odor	3200 ²	NA	220/ND<4.4/37/20		
	10/7/2011		8.6	186.62	None	5400 ²	ND<4.4	140/7.0/160/67		
	CRWQCB	ESL - Nov 2	007 (Revised	May 2008)		100	5	1.0 / 40 / 30 / 20		

TABLE 1 (Cont.)Historical Groundwater Levels & Hydrocarbon Analytical Results5930 College Avenue, Oakland, CA

Table Notes Following

Well ID	Sample Date	Casing Elevation (ft, MSL)	Depth to GW (ft, TOC)	Water Elevation (ft, MSL)	Product Odor/ Sheen	TPH-G (ug/L)	MTBE (ug/L)	BTEX (ug/L)
	4/14/05		6.4	190.77	None	3360	ND (ND**)	62.8 / 6.7 / 79.5/ 317
	7/26/05		8.63	188.54	None	1300	ND (ND**)	22 / ND / 48 / 110
	10/14/05		10.71	186.46	None	4300	ND	93 /1.2 / 100 / 140
	1/13/06		4.87	192.3	None	450	ND<2.0	10 / ND / 37 / 72
	4/14/06		2.27	194.9	Odor	120	ND<2.0	2.3 / ND<1.0 / 3.5 /9.3
	10/26/06		10.3	186.87	Odor	2800	ND<10	61 / ND<5.0 / 130 / 34
	1/30/07		10.8	186.37	Odor	1200	ND<2	22 / ND<1.0 / 100 / 200
	4/13/07		10.31	186.86	NM	510	ND<1	6 / ND<0.5 / 30 / 56
	7/24/07		11.81	185.36	None	3400	ND<5	63 / ND<2.5 / 180 / 5.6
PW-1	4/21/08	197.17	9.08	188.09	None	300	ND<1	3 / ND<0.5 / 16 / 26
1 ,, -1	7/22/08	177.17	9.83	187.34	None	710	3.1 1	9.3 / 1.2 1 / 49 / 67.86
	10/21/08		12.9	184.27	None	1500 ²	1	20 / ND<0.5 / 57 / 20
	1/19/09		12.11	185.06	Odor/sheen	1100 ²	ND<0.5	12.3/ND<0.5/30.8/9.20
	4/27/2009		8.69	188.48	None	360 ³	ND<0.5	2.7/ND<0.5/12/18
	10/27/2009		10.32	186.85	None	1100 ²	ND<0.5	12/ND<0.5/36/34
	10/14/2010		11.38	185.79	None	860 ³	ND<0.5	8.8/.55/44/44
	6/9/2011		7.43	189.74	None	96 ³	ND<0.5	ND<0.5/ND<0.5/3.1/2.5
	10/7/2011		9.79	187.38	None	260 ⁵	ND<0.5	ND<0.5/ND<0.5/5.9/4.5
	CRWQCB	ESL - Nov 2	007 (Revised	May 2008)		100	5	1.0 / 40 / 30 / 20

TABLE 1 (Cont.)Historical Groundwater Levels & Hydrocarbon Analytical Results5930 College Avenue, Oakland, CA

NOTES:

ft, MSL = feet Above Mean Sea Level

TOC = Top of Well Casing

GW = Depth to Groundwater in feet Below TOC

TPH-G = Total Petroleum Hydrocarbons as Gasoline

MTBE = Methyl Tertiary Butyl Ether

BTEX = Benzene / Toluene / Ethylbenzene / Total Xylenes

ug/L = micrograms per liter

ND = Not detected above laboratory reporting limit

¹ = Presence confirmed, but Relative Percentage Difference (RPD) between columns exceeds 40%

² = Sample exhibit chromatographic pattern that does not resemble standard; See laboratory report for additional information

³ = Although TPH-gas compounds are present, value is elevated due to discrete peak (PCE) within C5-C12 range quantified as gasoline

⁴ = Result is elevated due to contribution from heavy end hydrocarbons within C5-C12 range quantified as gasoline

⁵ = Result is elevated due to contribution from heavy end hydrocarbons and discrete peak of non-fuel compound within C5-C12 range quantified as gasoline

* = Arbitrary datum point with assumed elevation of 50 ft used prior to MSL survey on 4/25/01

** = Concentration confirmed by EPA Method 8260

** = Sample also analyzed for other Fuel oxygenates (EPA Method 8260); All results ND (See Lab Report)

CRWQCB/ESL = California Regional Water Quality Control Board's Interim Final - November 2007 (Revised May 2008), Tier 1 Environmental Screening Level for groundwater that IS a potential source of drinking water

TABLE 2
Historical Groundwater VOC Analytical Results in PW-1
5930 College Avenue, Oakland, CA

Well ID	Sample Date	IPB	n-PB	1,3,5-TMB	1,2,4-TMB	Sec-BB	n-BB	Naphthalene	TCE	MC	cis-1,2-DCE	Vinyl	PCE
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	Chloride	(ug/L)
												(ug/L)	
	4/14/05	11	22	110	100	ND,10	ND<10	43	3.3	ND<25	12	ND<0.5	84.9
	7/26/05	7.3	17	37	100	ND<10	ND<10	43	ND<1	ND<10	7	ND<1	48
	10/14//05	28	72	67	120	12	17	43	4.1	ND<40	29	ND<1	25
	1/13/06	ND<20	ND<10	ND<10	37	ND<10	ND<10	ND<10	1.4	ND<40	5	ND<1	95
	4/14/06	ND<2	ND<10	ND<10	ND<10	ND<10	ND<10	ND<10	1.1	ND<40	2.8	ND<1	68
	10/26/06	ND<10	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	6.2	ND<200	32	ND<5.0	26
	1/30/07	ND<2	23	31	120	ND<10	ND<10	18	ND<1	ND<40	11	ND<1	29
	4/13/07	2.4	6.1	7	30	ND<5	ND<5	6.8	0.84	ND<20	4.7	ND<0.5	64
PW-1	7/24/07	ND<5.0	60	ND<25	ND<25	ND<25	ND<25	ND<25	ND<2.5	ND<100	58	ND<2.5	50
	4/21/08	1.1	ND<5	ND<5	15	ND<5	ND<5	ND<5	0.88	ND<20	3.7	ND<0.5	91
	7/22/08	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	10/21/08	17	14	5	15	9.4	14	5.1	6.2	ND<10	56	0.6	44
	4/27/09	1.2	3.3	3.4	16	ND<0.5	ND<0.5	ND<1.0	1.4	ND<5.0	4	ND<0.5	120
	10/27/09	6	4.8	ND<0.5	15	ND<0.5	ND<0.5	ND<1.0	ND<0.5	ND<5.0	35	ND<0.5	78
	10/14/10	9.8	15	12	44	4.4	ND<0.5	4	5	ND<5.0	61	ND<0.5	35
	6/9/11	0.55	1.7	0.98	3.7	ND<0.5	ND<0.5	ND<1.0	0.85	ND<5.0	1.4	ND<0.5	86
	10/7/11	0.79	1.8	0.99	3.8	ND<0.5	0.68	1.2	0.63	ND<5.0	2	ND<0.5	76
CRW	QCB ESL	NC	NC	NC	NC	NC	NC	17	5	5	6	0.5	5

NOTES:

VOC = Volatile Organic Compounds

IPB = Isopropylbenzene

n-PB = n-Propylbenzene

1,3,5-TMB = 1,3,5-Trimethylbenzene

1,2,4-TMB = 1,2,4-Trimethylbenzene

- sec-BB = sec-Butylbenzene
- n-BB = n-Butylbenzene
- TCE = Trichloroethene
- MC = Methylene Chloride

cis-1,2-DCE = cis-1,2-Dichloroethene

PCE = Tetrachloroethene

ug/l = micrograms per liter

ND = Not detected above laboratory reporting limit

NC = No Criteria Listed

NA = Not Analyzed

CRWQCB/ESL = California Regional Water Quality Control Board's Interim Final - November 2007 (Revised May 2008), Tier 1 Environmental Screening Level for groundwater that IS a potential source of drinking water

GROUNDWATER MONITORING REPORT 2nd & 4th Quarter 2011

Sheaff's Garage 5930 College Avenue Oakland, CA 94618

ACHCSA Fuel Leak Case No. RO0000377

ATTACHMENT A

Fluid-Level Monitoring Data Sheet (June 2011) Well Purging/Sampling Data Sheets (June 2011) Fluid-Level Monitoring Data Sheet (October 2011) Well Purging/Sampling Data Sheets (October 2011)

Golden Gate Environmental, Inc.

FLUID-LEVEL MONITORING DATA

Project No:	2014	Date: 6/9/11
Project/Site Lo	cation: <u>5930</u>	College A1R
Technician:	LC	Instrument:

ORDIDE	Boring/ Well ID	Depth to Water (feet)	Depth to Product (feet)	Product Thickness (feet)	Total Well Depth (feet)	Comme	nts
4	MW-1	PE. J			14.00	No Odor	0520
3	MW-Z	7.67			2000	Nº Qgar	0420
2	MW-3				70.00	No Odor	a <i>d10</i>
l	PW-1	7,43 -	_	1	2000	no Odor	6080
			<u></u>				
							10
					· · · · · · · · · · · · · · · · · · ·		
]				
	*						
		ents reference		TOC (Grade.	Page	of

blden Gate Environmental, In

Well Purging Sampling Data Form

7014 Project #:

Date

Project/Site Address: Technician/Sampler:

		•				
Casing Diameter (Inches)	0.75	2	4	6	8	12
Casing Volume	0.02	0.17	0.66	1.5	2.6	5.81
(Gallons/Linear Foot)						

<u>Colleo</u>

Well No. Must

A. Total Well Depth	14.00	Ft. (TOC)
B. Depth to Groundwater (DTGW)	6.39	Ft. (TOC)
C. Water Height (A-B)	7.62	Ft.
D. Well Casing Diameter	6	In.
E. Casing Volume Constant	0,17	Gallons/Ft.
F. One (1) Casing Volume (CxE)	1.30	Gallons
G. Three (3) Casing Volumes (CxEx3)	3.90	Gallons
H. 80% Recharge Level [A-(0.80xC)]	7.9	Ft.
C , Y		_

Purge Event

DTGW: 6 39 DTGW: 6,54 Start Time: 125 Finish Time: \\-\> Purge Volume: 4.0 Purge Intake Depth: 13.0 Purge Rate (Gals./Min. Ml./Min.): 0 20 39 Purge Water Appearance: Clear no shear, odor

Water Quality Parameters:

Recharge Event Start Time: 11H2

Finish Time: 1150

DTGW: 5 DTGW: 7,43

Recharge Rate (Ft./Min.): O. 14 FPV

3 H) **Casing Volume (Gallons)** -0.5 Ö 1.5 NHO 1125 11B0 1134 1145 1,74 9,20 8.51 38 7.20 5 7,18 6.94 ノシノ 7.10 7.15 5.7.2 16.0 17.0 17.3 17.3 E. CPIJ 520 46.4 46.5 3018 ORP (mV) Summary Data: Notes: 0 Total Gallons Purged: \mathbf{M} Purge Rate (Gals./Min.): 20 apr erstah C Purge Device: Sampling Device: C Sample Intake Depth: Sample Collection Time: no steer, slight orby Sample Appearance: ear.

Drums Remaining Onsite:

Total Drum Volume (Gals.):

Page____of _____

blden Gate Environmental, In

Well Purging Sampling Data Form

Project #: 2014

Date

Project/Site Address: Technician/Sampler:

Casing Diameter (Inches)	0.75	2	4	6	8	12
Casing Volume	0.02	0.17	0.66	1.5	2.6	5.81
(Gallons/Linear Foot)						

Well No. MWD

A. Total Well Depth	20.00	Ft. (TOC)
B. Depth to Groundwater (DTGW)	7.67	Ft. (TOC)
C. Water Height (A-B)	12.33	Ft.
D. Well Casing Diameter	ð	In.
E. Casing Volume Constant	0,17	Gallons/Ft.
F. One (1) Casing Volume (CxE)	9.10	Gallons
G. Three (3) Casing Volumes (CxEx3)	6.30	Gallons
H. 80% Recharge Level [A-(0.80xC)]	10,114	Ft.
9.86		_

30 Colleon

Purge Event

Water Quality Parameters:

Start Time: $\{035\}$ DTGW: 767Finish Time! $\{04\}$ DTGW: 12.0Purge Volume: 630Purge Intake Depth: $\{5.0\}$ Purge Rate (Gals./Min. Ml./Min.): 0.22 SF Purge Water Appearance: (1em, 0dor, 100 show)

prstal.c

13.0

ここへ

lear

Recharge Event Start Time: NOH

Start Time: NOH	DTGW: 12.13
Finish Time: NOS	DTGW: 10,80
Recharge Rate (Ft./Min.):	·27FDM

Casing Volume (Gallons) 0.5 1054 102 4011 100 12,13 7.6 .5 11.46 5 SD 6.99 CO: 7 1.06 17,4 17.3 17.6 17.4 48.3 4 20.6 47. 26 0360 ORP (mV) **Summary Data:** Notes: Total Gallons Purged: 30 Purge Rate (Gals./Min.): map 66. Purge Device:

ふぐ

Sampling Device: Sample Intake Depth: Sample Collection Time: Sample Appearance:

Drums Remaining Onsite:

Total Drum Volume (Gals.):

hostoen

Page____ of ____

0201

Iden Gate Environmental, Inc Well Purging Sampling Data Form

530 Colley

Project #: 2014

Date

Project/Site Address: Technician/Sampler:

Casing Diameter (Inches)	0.75	2	4	6	8	12
Casing Volume	0.02	0.17	0.66	1.5	2.6	5.81
(Gallons/Linear Foot)						

Well No. <u>mw3</u>

A. Total Well Depth	20	Ft. (TOC)
B. Depth to Groundwater (DTGW)	5.92	Ft. (TOC)
C. Water Height (A-B)	14.08	Ft.
D. Well Casing Diameter	2	In.
E. Casing Volume Constant	O.N	- Gallons/Ft.
F. One (1) Casing Volume (CxE)	2,35	Gallons
G. Three (3) Casing Volumes (CxEx3)	7,19	Gallons
H. 80% Recharge Level [A-(0.80xC)]	8.74	Ft.
11.26		-

20

Purge Event

Start Time: 0935 DTGW: 5.97
Start Time: OS = DIGW: S-SS
Finish Time: 1012 DTGW: 13.16
Purge Volume: 7, 2
Purge Intake Depth: ()
Purge Rate (Gals./MinMl./Min.): 0,1998
Purge Water Appearance: (\ear od or no sheen
÷ ,

Recharge Event

Start Time: 1012	م∫ \ DTGW: ک
Finish Time: 1017	DTGW: しょう
Recharge Rate (Ft./Min.):	0.09 FPM

3

Water Qua	lity Parameters	: J	Ч с	چ asing Volume	(Gallons)		
	0	0.5	1.	1.5	2	2.5	
Time	0935	2HCO	0355	1005	1012		
DIGW	2.92	3.54	10.36	11.28	13.16		
diff and the	7.45	7.34	7.26	7.27	7,16	× c	
35(20)	15.8	15.7	15.8	157	159		
Cond.	57.2	52.5	49.1	46.6	W3.5		
DCI (mg/l)	\sim					•	
00(%)							

Summary Data:		Notes:
Total Gallons Purged:	Zizgal	
Purge Rate (Gals./Min.):	0,19 apr	
Purge Device:	Perstalic	
Sampling Device:	Perstalic	
Sample Intake Depth:	13.50	
Sample Collection Time:	1015	
Sample Appearance:	clear no short, roice	- 21

Drums Remaining Onsite: _____ Total Drum Volume (Gals.):

Page____ of ___

blden Gate Environmental, Inc

Well Purging Sampling Data Form

Project #: 20)

Date

Project/Site Ad Technician/San

ddress:	5230	College	
ampler:	20		

Casing Diameter (Inches)	0.75	2	4	6	8	12
Casing Volume	0.02	0.17	0.66	1.5	2.6	5.81
(Gallons/Linear Foot)						

Well No. PW

A. Total Well Depth	20.09	Ft. (TOC)
B. Depth to Groundwater (DTGW)	2.40	Ft. (TOC)
C. Water Height (A-B)	12.52	Ft.
D. Well Casing Diameter	2	In.
E. Casing Volume Constant	0.17	Gallons/Ft.
F. One (1) Casing Volume (CxE)	513	Gallons
G. Three (3) Casing Volumes (CxEx3)	4.30	Gallons
H. 80% Recharge Level [A-(0.80xC)]	3.34	Ft.
10.02		
Purgo Event		

Purge Event

Start Time: 0844	DTGW: ー、ソろ
Finish Time: 🔊	DTGW: S.S)
Purge Volume: 6.4 ~	
Purge Intake Depth: 5	C C
Purge Rate (Gals./MinMl	./Min.): 0, DS3 ~
Purge Water Appearance:	No adar no she

Recharge Event Start Time: 0917 Finish Time:

DTGW: 8 2-1 DTGW: 7, 5

Recharge Rate (Ft./Min.): 0, 13 Fpr

Water Quality Parameters:

Je	6. 4	-
5	Casing Volume (Gallons)	

0	- 0.5		-+5	2	2.5	3
Time 0844	9856	1000	0917			
DTGW 2.47	8.04	8.16	16.8			
M 8\$3	R 34	784	7.74			
T(°C) \6.6	16.4	163	16.3			
Cond. (30.)	88,4)	75.5	649			
BG (mg/l)						
00(%)						
QRP (mN)						
Summary Data:					Notes:	
Total Gallons Purged:	6.4					
Purge Rate (Gals./Min.):	- GOLIO	<u>`</u>				
Purge Device:	Postali	()				
Sampling Device:	Porstalic	·				
Sample Intake Depth:	8 OO					
Sample Collection Time:	-6 6 0	>				
Sample Appearance:	Ve ador	, No she	en clean	^		

Drums Remaining Onsite:

Total Drum Volume (Gals.):

Page____ of ____

Golden Gate Environmental, Inc.

FLUID-LEVEL MONITORING DATA

Project No: 2014	Date: 10/7/11 Fr:
Project/Site Location: 55	30 College Are Oak
Technician: Donver	Instrument:

Somple	Boring/ Well ID	Depth to Water (feet)	Depth to Product (feet)	Product Thickness (feet)	Total Well Depth (feet)	Comments
4	MW-1	9.09			14.0	
3	MW-1 MW-Z	10.42			0.06	
r cd Yes	мш-з	8.60	<u> </u>	· · · · · · · · · · · · · · · · · · ·	20.0	
5 au	PW-1	3.73			20.0	
		·				
				-		
						· · · · · · · · · · · · · · · · · · ·
						· ·
	Measureme	ents reference	ed to:	ТОСС	Grade.	Page of

	\mathbf{i}	Golden Gate	Environme Sampling Da	· · ·		
Project #: 20' H		wenrurynny	Sumpning Du	Date	1/1/0/	
Project/Site Address: Technician/Sampler:	5530	D Col	lege	9 LA		
·						
Casing Diameter (Inches)	0.75		4	6	8	12
Casing Volume	0.02	0.17	0.66	1.5	2.6	5.81
(Gallons/Linear Foot)		1				
Well No. MM	-					
A. Total Well Depth		14.0	Ft. (TOC)			
B. Depth to Groundwater (D	DTGW)	808	Ft. (TOC)			
C. Water Height (A-B)		4.92	Ft.			
D. Well Casing Diameter		- Di-	In.			
E. Casing Volume Constant		DIT	Gallons/Ft.			
F. One (1) Casing Volume (1841	Gallons			
G. Three (3) Casing Volume		2.50-	Gallons			
H. 80% Recharge Level [A-	(0.80xC)]	10.06	_Ft.			
Purge Event	R.OH			Recharge Even		
Start Time: Q10	DTGW:30	-		Start Time: \02		DTGW: \\ 06
Finish Time:				Finish Time: \0	an hundred and	DTGW: 10.40
Purge Volume: 2				•		OB25 FPT
Purge Intake Depth: 13 C	5				,66 ,	
Purge Rate (Gals./MinMl.	/Min.): 0.1つ	Job				Y Y
Purge Water Appearance:	lear ro	ister 1	10000		Y	
Water Quality Parameters	1	2				
		Ca	ising Volume (Gallons)		
0	0.5	1	1,5	<u>_2</u>	2.5	3
Time 1010	1016	1031	103-1		<u> </u>	
DTGW SOF	035	0.36	1106			
рн 7.1 <u>></u> тес 17.4	714	7.14	7.14		<u> </u>	
rec) 17.4 Cond. 74.3	18.1	19.6 760	18.7			
DO (mg/l)	1 3,1		76.4			
DO (%)						
ORP (mV)					-	
Summary Data:			•		Notes:	•
Total Gallons Purged:			_			
Purge Rate (Gals./Min.):	0,177 9	\$ ~~	_			
Purge Device:	Perstal	1 6	_			
Sampling Device:	Persta	hi C	_			
Sample Intake Depth:	NIO A		_			
Sample Collection Time:	<u> </u>			affers,		
Sample Appearance:	CLEON	to Zgreen	-ro oder	1		
Drums Remaining Onsite:		Total Drum Vo	lume (Gals.):	<u></u>	_	

k

Page____ of ____

Golden Gate Environmental, Inc.

Well Purging Sampling Data Form

Project #: 2014

Date

Project/Site Address: Technician/Sampler:

Casing Diameter (Inches)	0.75	2	4	6	8	12
Casing Volume	0.02	0.17	0.66	1.5	2.6	5.81

Ft. (TOC) Ft. (TOC)

Gallons/Ft.

Gallons

Gallons

Ft.

In.

Ft.

5

Well No.

B. Depth to Groundwater (DTGW)

(Gallons/Linear Foot)

A. Total Well Depth

C. Water Height (A-B) D. Well Casing Diameter E. Casing Volume Constant F. One (1) Casing Volume (CxE) G. Three (3) Casing Volumes (CxEx3) H. 80% Recharge Level [A-(0.80xC)]

Start Time: S30 DTGW: 1035 Finish Time: D7 DTGW: 16,07 Purge Volume: 50 Purge Intake Depth: D.S Purge Rate (Gals./Min._Ml./Min.): 0.1567 Purge Water Appearance: Crox, of or nost

Recharge Event

Start Time: 000HFinish Time:015Recharge Rate (Ft./Min.): 135

DTGW:\6 DTGW: 14,5 0.114 pp~

	ty Parameters	. \	⇒ c	asing Volume	(Gallons)	\supset	
	0	0.5	1	1.5	2	2.5	3
Time	QEPO	250	0844	OFFO	2230	0004	
DTGW	25 OV	11.44	12.50	1436	1460	PO. 0/	
H	692	8.07	790	7.21	7.66	7.62	
Г (°С)	75	20	18.0	180	O.B	18.0	
Cond.	282	155,1	148.5	1325	1257	NNO -	
DO (mg/l)			·		1		
DO (%)			· · · ·				
ORP (mV)						j. A.	
Summary Da	ata:					Notes:	the second
Fotal Gallons	Purged:	5.0			-		
Purge Rate (O	Gals./Min.):	0,15		_			
Purge Device	: 5	Prestali	<				
Sampling De	vice:	Porstal	С. C				
Sample Intak	e Depth:	15.0					<u>.</u>
Sample Colle	ction Time:	0990				4 •	
Sample Appe	arance:	clear	ogol	-9 < y 662	\mathbf{X}	**.	

Page____ of ____

		Golden Gate Well Purging	Environme			
Project #: 2014		_		Date	10/7/11	
Project/Site Address: Technician/Sampler:	<u>2 Car</u>	ollege A	49			
Casing Diameter (Inches)	0.75	2	4	6	8	12
Casing Volume	0.02	0.17	0.66	1.5	2.6	5.81
(Gallons/Linear Foot)	0.02				2.0	
Well No. MW	3					
 A. Total Well Depth B. Depth to Groundwater (D C. Water Height (A-B) D. Well Casing Diameter E. Casing Volume Constant F. One (1) Casing Volume (0 G. Three (3) Casing Volume H. 80% Recharge Level [A-C 	CxE) es (CxEx3)	0.0 9.00 9.00 1.40 1.40 1.94 1.94 1.94 1.98	Ft. (TOC) Ft. (TOC) Ft. In. Gallons/Ft. Gallons Gallons Ft.			
Purge Event Start Time: O S Finish Time: O S Purge Volume: S Purge Intake Depth: O Purge Rate (Gals./MinMl./ Purge Water Appearance:	DTGW: S, S DTGW: 15 C			Recharge Even Start Time: Finish Time: Recharge Rate (36	FOJ'	DTGW: 15.06 DTGW: 14.70 072 FP-
Purge Water Appearance: Water Quality Parameters	l.		3	4	01	5.8
		<u>ک</u> ک	using Volume (Gallons)	/	
0	0.5	1	1.5	2	2.5	and the second second
Time 0722	0729	0736	0745	Onsy	<u> 0400</u>	2010
DTGW 9.57	9,55	10,72	11.35	13.20	14.06	BOG
pH 10.55	10.22	9,64	23-6	5.91	414	8.53
T(°C) \6.4	160	17.1	17,1		<u> 1.2</u>	17.1
Cond. 356	309	276	69.3	256	170.5	235
DO (mg/l)						
DO (%)						
ORP (mV)						
Summary Data:					Notes:	
Total Gallons Purged:	PZ					
Purge Rate (Gals./Min.):	0.126		-			
Purge Device:	Perstal	VT C	-			
Sampling Device:	Dante	<u></u>				
Sample Intake Depth:	Tersial					
	<u>15.6</u>					
Sample Collection Time:	-101 D					
Sample Appearance:	clear no	sheen,	hoodor			
Drums Remaining Onsite:		Total Drum Vo	lume (Gals.):		_	

Page____ of ____

19

. .

a

	\smile	Golden Gate		· · · · · · · · · · · · · · · · · · ·	~ `	
5 Mu	r	Well Purging	Sampling Dat		is / las	
Project #: AOV		_		Date	10/7/11	
S 1 4/01 A 11 5	Earn	Calla	4 -	01		
Project/Site Address:	555	<u>Cone</u>	2/6 / 01	15		
Fechnician/Sampler:	-200		<u> </u>			
an a						
Casing Diameter (Inches)	0.75	6-2-3	4	6	8	12
Casing Volume	0.02	0.17	0.66	1.5	2.6	5.81
Gallons/Linear Foot)		the second secon				
Well No. PW						
	-	~				
A. Total Well Depth		70	Ft. (TOC)			
B. Depth to Groundwater (D	TGW)	5.79	Ft. (TOC)			
C. Water Height (A-B)		10.21	Ft.			
D. Well Casing Diameter		2	In.			
E. Casing Volume Constant		0.17	Gallons/Ft.			
F. One (1) Casing Volume (CxE)	1.73	Gallons			
G. Three (3) Casing Volume		5.20	Gallons			
H. 80% Recharge Level [A-(NI. 8	- Ft.			
۳.) برای از این ا	(کت ا	<u></u>				
Purge Event				Recharge Eve		er î.
Start Time: 0925	DTGW: 🍽	210 Pres		Start Time: S		DTGW: 10 CY
Finish Time: 355	DTGW: VO.	A.		Finish Time: \	00c	DTGW: 10 CY
Purge Volume: 🛒 🗍	-			Recharge Rate	(Ft./Min.):	1.1 fpr
Purge Intake Depth: 👋 🖑	0				. 4	
Purge Rate (Gals./MinMl./ Purge Water Appearance: <	'Min.): 🔿 🔊	3 Spm		-	d	
Purge Water Appearance: <	- ar w					
	LIGOL (I I	
			<u> </u>			
		>	M	(callons)	52	
		>	Sing Volume (Gallons)	52	3
Water Quality Parameters	0.5	>	Sing Volume (1	1 Ó	2.5	3
Water Quality Parameters 0 Fime	0.5 0930	2 Ca	<u>ک</u> sing Volume (۱ 1.5 ا	0945	2.5	3
Water Quality Parameters 0 Fime 025 DTGW 2.55	0.5 0930 10.01	Ca 1 0935 10.33	3 ising Volume (1.5 0940 1040	2 0345 1062	2.5	3
Water Quality Parameters 0 Fime 0 DTGW 9.75 pH 7.55	0.5 0930	2 Ca	Sing Volume (1 1.5 0940 1040 7.37	2 0945 1062 7.34	2.5	3
0 Fime DTGW 0H 7 6	0.5 0930 1001 7.56	2 Са 10.33 7.40 17.5	3 ising Volume (1.5 0940 1040 7.37	2 0945 1062 7.34 17.34	2.5 0957 10,49 7,35 17,35	3
Water Quality Parameters 0 Fime OBS DTGW DTGW	0.5 0930 10.01	Ca 1 0935 10.33	Sing Volume (1 1.5 0940 1040 7.37	2 0945 1062 7.34	2.5	3
Water Quality Parameters 0 Time 0 DTGW 3.55 DTGW 3.55 PH 7.55 PH 7.55 P(°C) 16.6 Cond. 10.65 DO (mg/l)	0.5 0930 1001 7.56	2 Са 10.33 7.40 17.5	3 ising Volume (1.5 0940 1040 7.37	2 0945 1062 7.34 17.34	2.5 0957 10,49 7,35 17,35	3
0 Fine 0 DTGW 3 0H 7 7 6 6 6 Cond. 10 DO (mg/l) 00	0.5 0930 1001 7.56	2 Са 10.33 7.40 17.5	3 ising Volume (1.5 0940 1040 7.37	2 0945 1062 7.34 17.34	2.5 0957 10,49 7,35 17,35	3
0 Fime 0 DTGW 0H 7:55 F (°C) (6:6) Cond. 00 (mg/l) DO (%) OR.P (m1 ^V)	0.5 0930 1001 7.56	2 Са 10.33 7.40 17.5	3 ising Volume (1.5 0940 1040 7.37	2 0945 1062 7.34 17.34	2.5 09551 10.49 7.35 17.3 07.4	3
0 Fine 0	0.5 0930 1001 7.56	2 Са 10.33 7.40 17.5	3 ising Volume (1.5 0940 1040 7.37	2 0945 1062 7.34 17.34	2.5 0957 10,49 7,35 17,35	3
0 Fime OTGW OTGW OH OH OG	0.5 0930 1001 7.56	2 Са 10.33 7.40 17.5	3 ising Volume (1.5 0940 1040 7.37	2 0945 1062 7.34 17.34	2.5 09551 10.49 7.35 17.3 07.4	3
Water Quality Parameters 0 Fine DTGW 0 F(PC) Cond. 10 (mg/l) DO (mg/l) DO (%) DR.P (m ¹ /) Summary Data: Fotal Gallons Purged: Purge Rate (Gals./Min.):	0.5 0930 1001 7.56 16.5 96.6 5.2 0.193	Ca 1 0935 10.33 7.40 17.5 41.4	3 ising Volume (1.5 0940 1040 7.37	2 0945 1062 7.34 17.34	2.5 09551 10.49 7.35 17.3 07.4	3
0 Fime DTGW	0.5 0930 1001 7.56 16.9 96.6 5.2 0.193 Perstal	2 Са 10.33 7.40 17.5	3 ising Volume (1.5 0940 1040 7.37	2 0945 1062 7.34 17.34	2.5 09551 10.49 7.35 17.3 07.4	3
Water Quality Parameters 0 Time DTGW DTGW F (°C) Cond. DO (mg/l) DO (mg/l) DO (%) OR.P (mV) Summary Data: Total Gallons Purged: Purge Rate (Gals./Min.): Purge Device: Sampling Device:	0.5 0930 1001 7.56 16.9 96.6 5.2 0.193 Perstal	Ca 1 0935 10.33 7.40 17.5 41.4	3 ising Volume (1.5 0940 1040 7.37	2 0945 1062 7.34 17.34	2.5 09551 10.49 7.35 17.3 07.4	3
Water Quality Parameters 0 Fime DTGW pH 7.5 r (°C) Cond. DO (mg/l) DO (%) ORP (ml/) Summary Data: Total Gallons Purged: Purge Rate (Gals./Min.): Purge Device: Sampling Device: Sample Intake Depth:	0.5 0930 1001 7.56 16.9 96.6 5.2 0.193 Perstal	Ca 1 0935 10.33 7.40 17.5 41.4	3 ising Volume (1.5 0940 1040 7.37	2 0945 1062 7.34 17.34	2.5 09551 10.49 7.35 17.3 07.4	3
0 Time DTGW pH 7 fgo F (°C) Cond. 10 (mg/l) DO (mg/l) DO (%) OR.P (mV) Summary Data: Total Gallons Purged: Purge Rate (Gals./Min.): Purge Device: Sampling Device: Sample Intake Depth: Sample Collection Time:	0.5 0930 1001 7.56 16.2 96.6 0.193 Perstal Porstal 1.0	2 1 0935 10.33 7.40 17.5 41.4 41.4	$\frac{3}{1.5}$	2 0945 1062 7.34 17.34	2.5 09551 10.49 7.35 17.3 07.4	
Water Quality Parameters 0 Time DTGW pH 7.55 T (°C) Cond. DO (mg/l) DO (mg/l) DO (%) ORP (mV) Summary Data: Total Gallons Purged: Purge Rate (Gals./Min.): Purge Device: Sampling Device: Sample Intake Depth:	0.5 0930 1001 7.56 16.2 96.6 0.193 Perstal Porstal 1.0	Ca 1 0935 10.33 7.40 17.5 41.4	$\frac{3}{1.5}$	2 0945 1062 7.34 17.34	2.5 09551 10.49 7.35 17.3 07.4	3
0 Time DTGW PH 7 fgo F (°C) Cond. 10 (mg/l) DO (mg/l) DO (mg/l) DO (%) OR.P (mV) Summary Data: Total Gallons Purged: Purge Rate (Gals./Min.): Purge Device: Sampling Device: Sample Intake Depth: Sample Collection Time:	0.5 0930 1001 7.56 16.2 96.6 0.193 Perstal Porstal 1.0	2 1 0935 10.33 7.40 17.5 41.4 41.4	$\frac{3}{1.5}$	2 0945 1062 7.34 17.34	2.5 09551 10.49 7.35 17.3 07.4	
0 Time DTGW pH 7 fgg pH 7 fgg pH 7 fgg pO (mg/l) DO (mg/l) DO (%) OR.P (mV) Summary Data: Total Gallons Purged: Purge Rate (Gals./Min.): Purge Device: Sampling Device: Sample Intake Depth: Sample Collection Time:	0.5 0930 1001 7.56 16.2 96.6 0.193 Perstal Porstal 1.0	2 1 0935 10.33 7.40 17.5 41.4 41.4	3 sing Volume (1 1.5 0940 1040 7.37 17.8 734 734	2 0945 1062 7.34 17.34	2.5 09551 10.49 7.35 17.3 07.4	

-

Page____ of ___

GROUNDWATER MONITORING REPORT 2nd & 4th Quarter 2011

Sheaff's Garage 5930 College Avenue Oakland, CA 94618

ACHCSA Fuel Leak Case No. RO0000377

ATTACHMENT B

Following Provided For Both June & October 2011 Events:

Laboratory Certificates of Analysis Chain of Custody Record GeoTracker Upload Confirmation Sheets EPA On-Line Tools for Site Assessment Calculation Sheet

Conestoga-Rovers & Associates (CRA; Emeryville, CA): Groundwater Monitoring and Sampling Data - Table 1

Liquid Waste Manifest (November 10, 2011)

Golden Gate Ennvironmental 3730 Mission St San Francisco, California 94110 Tel: (415) 686-8846

RE: 5930 College Ave

Work Order No.: 1106145

Dear Brent Wheeler:

Torrent Laboratory, Inc. received 4 sample(s) on June 20, 2011 for the analyses presented in the following Report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

att Sa-

Patti Sandrock

June 27, 2011 Date

Date: 6/27/2011

Client: Golden Gate Ennvironmental Project: 5930 College Ave Work Order: 1106145

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Sample Result Summary

Report prepared for:	Brent Wheeler				Date F	Received: (06/20/11
	Golden Gate Ennvironmental				Date F	Reported:	06/27/11
MW-1						11	06145-001
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	PQL	<u>Results</u>	<u>Unit</u>
Benzene		SW8260B	220	74	110	14000	ug/L
Toluene		SW8260B	220	42	110	3000	ug/L
Ethyl Benzene		SW8260B	220	34	110	3800	ug/L
m,p-Xylene		SW8260B	220	44	220	12000	ug/L
o-Xylene		SW8260B	220	28	110	4900	ug/L
TPH(Gasoline)		8260TPH	220	4700	11000	53000	ug/L
MW-2						11	06145-002
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	PQL	<u>Results</u>	<u>Unit</u>
Benzene		SW8260B	44	15	22	1900	ug/L
Toluene		SW8260B	44	8.4	22	75	ug/L
Ethyl Benzene		SW8260B	44	6.8	22	1100	ug/L
m,p-Xylene		SW8260B	44	8.8	44	970	ug/L
o-Xylene		SW8260B	44	5.6	22	43	ug/L
TPH(Gasoline)		8260TPH	44	950	2200	9900	ug/L
MW-3						11	06145-003
Parameters:		<u>Analysis</u> <u>Method</u>	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
Benzene		SW8260B	8.8	2.9	4.4	220	ug/L
Ethyl Benzene		SW8260B	8.8	1.4	4.4	37	ug/L
m,p-Xylene		SW8260B	8.8	1.8	8.8	20	ug/L
TPH(Gasoline)		8260TPH	8.8	190	440	3200	ug/L

Sample Result Summary

Report prepared for:	Brent Wheeler Golden Gate Ennvironmental					Received: 0 Reported: 0	
Parameters:		<u>Analysis</u> Method	DF	MDL	PQL	Results	<u>Unit</u>
TPH(Gasoline)		8260TPH	1	22	50	96	ug/L
Trichlorofluoromethane		SW8260B	1	0.34	0.50	0.78	ug/L
cis-1,2-Dichloroethene		SW8260B	1	0.33	0.50	1.4	ug/L
Trichloroethylene		SW8260B	1	0.38	0.50	0.85	ug/L
Tetrachloroethylene		SW8260B	1	0.15	0.50	86	ug/L
Ethyl Benzene		SW8260B	1	0.15	0.50	3.1	ug/L
m,p-Xylene		SW8260B	1	0.20	1.0	2.5	ug/L
Isopropyl Benzene		SW8260B	1	0.28	0.50	0.55	ug/L
n-Propylbenzene		SW8260B	1	0.30	0.50	1.7	ug/L
1,3,5-Trimethylbenzene		SW8260B	1	0.20	0.50	0.98	ug/L
1,2,4-Trimethylbenzene		SW8260B	1	0.33	0.50	3.7	ug/L

Report prepared for:	Brent Wheeler Golden Gate Ennvii	ronmenta	al							eived: 06/2 orted: 06/2	• • • •
Client Sample ID:	MW-1				Lab Sa	mple ID:	11061	45-001A			
Project Name/Location:	5930 College A	ve			Sample	Matrix:	Groun	dwater			
Project Number:	GGE 2014										
Date/Time Sampled:	06/09/11 / 11:5	0									
Tag Number:	5930 College A	ve									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Benzene	SW8260B	NA	06/20/11	220	74	110	14000		ug/L	405579	NA
Toluene	SW8260B	NA	06/20/11	220	42	110	3000		ug/L	405579	NA
Ethyl Benzene	SW8260B	NA	06/20/11	220	34	110	3800		ug/L	405579	NA
m,p-Xylene	SW8260B	NA	06/20/11	220	44	220	12000		ug/L	405579	NA
o-Xylene	SW8260B	NA	06/20/11	220	28	110	4900		ug/L	405579	NA
(S) Dibromofluoromethane	SW8260B	NA	06/20/11	220	61.2	131	79.5		%	405579	NA
(S) Toluene-d8	SW8260B	NA	06/20/11	220	75.1	127	89.2		%	405579	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	06/20/11	220	64.1	120	101		%	405579	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	06/20/11	220	4700	11000	53000		ug/L	405579	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	06/20/11	220	34	114	54.4		%	405579	NA

Report prepared for:	Brent Wheeler Golden Gate Ennvir	onmenta	al							eived: 06/2 orted: 06/2	• • • •
Client Sample ID:	MW-2				Lab Sa	nple ID:	11061	45-002A			
Project Name/Location:	5930 College A	ve			Sample	Matrix:	Groun	dwater			
Project Number:	GGE 2014										
Date/Time Sampled:	06/09/11 / 11:15	5									
Tag Number:	5930 College A	ve									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Benzene	SW8260B	NA	06/20/11	44	15	22	1900		ug/L	405579	NA
Toluene	SW8260B	NA	06/20/11	44	8.4	22	75		ug/L	405579	NA
Ethyl Benzene	SW8260B	NA	06/20/11	44	6.8	22	1100		ug/L	405579	NA
m,p-Xylene	SW8260B	NA	06/20/11	44	8.8	44	970		ug/L	405579	NA
o-Xylene	SW8260B	NA	06/20/11	44	5.6	22	43		ug/L	405579	NA
(S) Dibromofluoromethane	SW8260B	NA	06/20/11	44	61.2	131	81.0		%	405579	NA
(S) Toluene-d8	SW8260B	NA	06/20/11	44	75.1	127	84.9		%	405579	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	06/20/11	44	64.1	120	112		%	405579	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	06/20/11	44	950	2200	9900		ug/L	405579	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	06/20/11	44	34	114	51.5		%	405579	NA

Report prepared for:	Brent Wheeler Golden Gate Ennvi	ironmenta	al							eived: 06/2 orted: 06/2	••••
Client Sample ID:	MW-3				Lab Sa	mple ID:	11061	45-003A			
Project Name/Location:	5930 College A	Ave			Sample	Matrix:	Groun	dwater			
Project Number:	GGE 2014										
Date/Time Sampled:	06/09/11 / 10:1	5									
Tag Number:	5930 College A	Ave									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Benzene	SW8260B	NA	06/20/11	8.8	2.9	4.4	220		ug/L	405579	NA
Toluene	SW8260B	NA	06/20/11	8.8	1.7	4.4	ND		ug/L	405579	NA
Ethyl Benzene	SW8260B	NA	06/20/11	8.8	1.4	4.4	37		ug/L	405579	NA
m,p-Xylene	SW8260B	NA	06/20/11	8.8	1.8	8.8	20		ug/L	405579	NA
o-Xylene	SW8260B	NA	06/20/11	8.8	1.1	4.4	ND		ug/L	405579	NA
(S) Dibromofluoromethane	SW8260B	NA	06/20/11	8.8	61.2	131	90.6		%	405579	NA
(S) Toluene-d8	SW8260B	NA	06/20/11	8.8	75.1	127	84.2		%	405579	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	06/20/11	8.8	64.1	120	113		%	405579	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	06/20/11	8.8	190	440	3200	х	ug/L	405579	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	06/20/11	8.8	34	114	88.7		%	405579	NA

NOTE: x - Does not match pattern of reference Gasoline standard. Reported TPH value includes significant contribution from non-target hydrocarbons in the C5-C12 range quantified as Gasoline (possibly some aged gasoline).

Report prepared for:	Brent Wheeler Golden Gate Ennvi	ronmenta	al							eived: 06/2 orted: 06/2	
Client Sample ID:	PW-1				Lab Sa	mple ID:	1106 [,]	145-004A			
Project Name/Location:	5930 College A	ve				• Matrix:	Grour	ndwater			
Project Number:	GGE 2014										
Date/Time Sampled:	06/09/11 / 9:25										
Tag Number:	5930 College A	ve									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Dichlorodifluoromethane	SW8260B	NA	06/20/11	1	0.41	0.50	ND		ug/L	405579	NA
Chloromethane	SW8260B	NA	06/20/11	1	0.41	0.50	ND		ug/L	405579	NA
Vinyl Chloride	SW8260B	NA	06/20/11	1	0.37	0.50	ND		ug/L	405579	NA
Bromomethane	SW8260B	NA	06/20/11	1	0.37	0.50	ND		ug/L	405579	NA
Trichlorofluoromethane	SW8260B	NA	06/20/11	1	0.34	0.50	0.78		ug/L	405579	NA
1,1-Dichloroethene	SW8260B	NA	06/20/11	1	0.29	0.50	ND		ug/L	405579	NA
Freon 113	SW8260B	NA	06/20/11	1	0.38	0.50	ND		ug/L	405579	NA
Methylene Chloride	SW8260B	NA	06/20/11	1	0.18	5.0	ND		ug/L	405579	NA
trans-1,2-Dichloroethene	SW8260B	NA	06/20/11	1	0.31	0.50	ND		ug/L	405579	NA
MTBE	SW8260B	NA	06/20/11	1	0.38	0.50	ND		ug/L	405579	NA
tert-Butanol	SW8260B	NA	06/20/11	1	1.5	5.0	ND		ug/L	405579	NA
Diisopropyl ether (DIPE)	SW8260B	NA	06/20/11	1	0.36	0.50	ND		ug/L	405579	NA
1,1-Dichloroethane	SW8260B	NA	06/20/11	1	0.28	0.50	ND		ug/L	405579	NA
ETBE	SW8260B	NA	06/20/11	1	0.40	0.50	ND		ug/L	405579	NA
cis-1,2-Dichloroethene	SW8260B	NA	06/20/11	1	0.33	0.50	1.4		ug/L	405579	NA
2,2-Dichloropropane	SW8260B	NA	06/20/11	1	0.37	0.50	ND		ug/L	405579	NA
Bromochloromethane	SW8260B	NA	06/20/11	1	0.34	0.50	ND		ug/L	405579	NA
Chloroform Carbon Tetrachloride	SW8260B SW8260B	NA NA	06/20/11 06/20/11	1 1	0.29 0.26	0.50 0.50	ND ND		ug/L	405579 405579	NA NA
1,1,1-Trichloroethane	SW8260B	NA	06/20/11	1	0.20	0.50	ND		ug/L ug/L	405579	NA
1,1-Dichloropropene	SW8260B	NA	06/20/11	1	0.32	0.50	ND		ug/L	405579	NA
Benzene	SW8260B	NA	06/20/11	1	0.33	0.50	ND		ug/L	405579	NA
TAME	SW8260B	NA	06/20/11	1	0.32	0.50	ND		ug/L	405579	NA
1,2-Dichloroethane	SW8260B	NA	06/20/11	1	0.28	0.50	ND		ug/L	405579	NA
Trichloroethylene	SW8260B	NA	06/20/11	1	0.38	0.50	0.85		ug/L	405579	NA
Dibromomethane	SW8260B	NA	06/20/11	1	0.21	0.50	ND		ug/L	405579	NA
1,2-Dichloropropane	SW8260B	NA	06/20/11	1	0.37	0.50	ND		ug/L	405579	NA
Bromodichloromethane	SW8260B	NA	06/20/11	1	0.23	0.50	ND		ug/L	405579	NA
2-Chloroethyl vinyl ether	SW8260B	NA	06/20/11	1	0.91	2.0	ND		ug/L	405579	NA
cis-1,3-Dichloropropene	SW8260B	NA	06/20/11	1	0.30	0.50	ND		ug/L	405579	NA
Toluene	SW8260B	NA	06/20/11	1	0.19	0.50	ND		ug/L	405579	NA
Tetrachloroethylene	SW8260B	NA	06/20/11	1	0.15	0.50	86		ug/L	405579	NA
trans-1,3-Dichloropropene	SW8260B	NA	06/20/11	1	0.20	0.50	ND		ug/L	405579	NA
1,1,2-Trichloroethane	SW8260B	NA	06/20/11	1	0.20	0.50	ND		ug/L	405579	NA
Dibromochloromethane	SW8260B	NA	06/20/11	1	0.21	0.50	ND		ug/L	405579	NA
1,3-Dichloropropane	SW8260B	NA	06/20/11	1	0.18	0.50	ND		ug/L	405579	NA

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Report prepared for:	Brent Wheeler Golden Gate Ennvi	ronmenta	al							eived: 06/2 orted: 06/2	
Client Sample ID:	PW-1				Lab Sa	mple ID:	11061	45-004A			
Project Name/Location:	5930 College A	ve			Sample	Matrix:	Grour	ndwater			
Project Number:	GGE 2014										
Date/Time Sampled:	06/09/11 / 9:25										
Tag Number:	5930 College A	ve									
		_					_				-
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
1,2-Dibromoethane	SW8260B	NA	06/20/11	1	0.19	0.50	ND		ug/L	405579	NA
Chlorobenzene	SW8260B	NA	06/20/11	1	0.14	0.50	ND		ug/L	405579	NA
Ethyl Benzene	SW8260B	NA	06/20/11	1	0.15	0.50	3.1		ug/L	405579	NA
1,1,1,2-Tetrachloroethane	SW8260B	NA	06/20/11	1	0.10	0.50	ND		ug/L	405579	NA
m,p-Xylene	SW8260B	NA	06/20/11	1	0.20	1.0	2.5		ug/L	405579	NA
o-Xylene	SW8260B	NA	06/20/11	1	0.13	0.50	ND		ug/L	405579	NA
Styrene	SW8260B	NA	06/20/11	1	0.20	0.50	ND		ug/L	405579	NA
Bromoform	SW8260B	NA	06/20/11	1	0.45	1.0	ND		ug/L	405579	NA
Isopropyl Benzene	SW8260B	NA	06/20/11	1	0.28	0.50	0.55		ug/L	405579	NA
Bromobenzene	SW8260B	NA	06/20/11	1	0.39	0.50	ND		ug/L	405579	NA
1,1,2,2-Tetrachloroethane	SW8260B	NA	06/20/11	1	0.26	0.50	ND		ug/L	405579	NA
n-Propylbenzene	SW8260B	NA	06/20/11	1	0.30	0.50	1.7		ug/L	405579	NA
2-Chlorotoluene	SW8260B	NA	06/20/11	1	0.33	0.50	ND		ug/L	405579	NA
1,3,5-Trimethylbenzene	SW8260B	NA	06/20/11	1	0.20	0.50	0.98		ug/L	405579	NA
4-Chlorotoluene	SW8260B	NA	06/20/11	1	0.32	0.50	ND		ug/L	405579	NA
tert-Butylbenzene	SW8260B	NA	06/20/11	1	0.29	0.50	ND		ug/L	405579	NA
1,2,3-Trichloropropane	SW8260B	NA	06/20/11	1	0.59	1.0	ND		ug/L	405579	NA
1,2,4-Trimethylbenzene	SW8260B	NA	06/20/11	1	0.33	0.50	3.7		ug/L	405579	NA
sec-Butyl Benzene	SW8260B	NA	06/20/11	1	0.24	0.50	ND		ug/L	405579	NA
p-Isopropyltoluene	SW8260B	NA	06/20/11	1	0.25	0.50	ND		ug/L	405579	NA
1,3-Dichlorobenzene	SW8260B	NA	06/20/11	1	0.31	0.50	ND		ug/L	405579	NA
1,4-Dichlorobenzene	SW8260B	NA	06/20/11	1	0.37	0.50	ND		ug/L	405579	NA
n-Butylbenzene	SW8260B	NA	06/20/11	1	0.32	0.50	ND		ug/L	405579	NA
1,2-Dichlorobenzene	SW8260B	NA	06/20/11	1	0.39	0.50	ND		ug/L	405579	NA
1,2-Dibromo-3-Chloropropane	SW8260B	NA	06/20/11	1	0.45	1.0	ND		ug/L	405579	NA
Hexachlorobutadiene	SW8260B	NA	06/20/11	1	0.22	0.50	ND		ug/L	405579	NA
1,2,4-Trichlorobenzene	SW8260B	NA	06/20/11	1	0.48	1.0	ND		ug/L	405579	NA
Naphthalene	SW8260B	NA	06/20/11	1	0.57	1.0	ND		ug/L	405579	NA
1,2,3-Trichlorobenzene	SW8260B	NA	06/20/11	1	0.52	1.0	ND		ug/L	405579	NA
(S) Dibromofluoromethane	SW8260B	NA	06/20/11	1	61.2	131	88.6		%	405579	NA
(S) Toluene-d8	SW8260B	NA	06/20/11	1	75.1	127	88.1		%	405579	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	06/20/11	1	64.1	120	104		%	405579	NA

Report prepared for:	Brent Wheeler Golden Gate Ennvird	onmenta	al							eived: 06/2 orted: 06/2	
Client Sample ID:	PW-1					mple ID:	11061	45-004A			
Project Name/Location:	5930 College Av	/e			Sample	Matrix:	Groun	dwater			
Project Number:	GGE 2014										
Date/Time Sampled:	06/09/11 / 9:25										
Tag Number:	5930 College Av	/e									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	06/20/11	1	22	50	96	x	ug/L	405579	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	06/20/11	1	34	114	64.0		%	405579	NA
NOTE: x - Does not match	pattern of reference Gasol	ine stand	dard. Report	ed valu	ue is the re	esult of disc	rete peak (PC	E).			

MB Summary Report

Work Order:	1106145	Prep	Method:	5030	Prep	Date:	06/20/11	Prep Batch:	2969
Matrix:	Water	Analy		8260TPH	Anal	yzed Date:	06/20/11	Analytical	405579
Units:	ug/L	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
TPH(Gasoline) (S) 4-Bromofluoro	benzene	22	50	ND 89.9		I			
Work Order:	1106145	Prep	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Water	Analy	tical	SW8260B	Anal	yzed Date:	06/20/11	Analytical	405579
Units:	ug/L	Metho				-		Batch:	
Units.	uy/L								_
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Dichlorodifluorom	ethane	0.41	0.50	ND	•				
Chloromethane		0.41	0.50	ND					
Vinyl Chloride		0.37	0.50	ND					
Bromomethane		0.37	0.50	ND					
Trichlorofluorome	thane	0.34	0.50	ND					
1,1-Dichloroethen	e	0.29	0.50	ND					
Freon 113		0.38	0.50	ND					
Methylene Chloric	le	0.18	5.0	ND					
trans-1,2-Dichloro	ethene	0.31	0.50	ND					
MTBE		0.38	0.50	ND					
tert-Butanol		1.5	5.0	ND					
Diisopropyl ether	(DIPE)	0.36	0.50	ND					
1,1-Dichloroethan	е	0.28	0.50	ND					
ETBE		0.40	0.50	ND					
cis-1,2-Dichloroet		0.33	0.50	ND					
2,2-Dichloropropa		0.37	0.50	ND					
Bromochlorometh	ane	0.34	0.50	ND					
Chloroform		0.29	0.50	ND					
Carbon Tetrachlo		0.26	0.50	ND					
1,1,1-Trichloroeth		0.32	0.50	ND					
1,1-Dichloroprope	ene	0.40	0.50	ND					
Benzene		0.33	0.50	ND					
TAME	_	0.32	0.50	ND					
1,2-Dichloroethan	e	0.28	0.50	ND					
Trichloroethylene		0.38	0.50	ND					
Dibromomethane		0.21	0.50	ND					
1,2-Dichloropropa		0.37	0.50	ND					
Bromodichlorome 2-Chloroethyl viny		0.23	0.50	ND					
	n ether	0.91	2.0	ND					

ND

0.50

0.30

cis-1,3-Dichloropropene

MB Summary Report

Work Order: 1	106145	Prep I	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix: W	/ater	Analy		SW8260B	Anal	yzed Date:	06/20/11	Analytical	405579
Units: u	g/L	Metho	od:					Batch:	
					•				
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Toluene		0.19	0.50	ND					
Tetrachloroethylene		0.15	0.50	ND					
trans-1,3-Dichloroprope	ne	0.20	0.50	ND					
1,1,2-Trichloroethane		0.20	0.50	ND					
Dibromochloromethane		0.21	0.50	ND					
1,3-Dichloropropane		0.18	0.50	ND					
1,2-Dibromoethane		0.19	0.50	ND					
Chlorobenzene		0.14	0.50	ND					
Ethyl Benzene		0.15	0.50	ND					
1,1,1,2-Tetrachloroetha	ne	0.10	0.50	ND					
m,p-Xylene		0.20	1.0	ND					
o-Xylene		0.13	0.50	ND					
Styrene		0.20	0.50	ND					
Bromoform		0.45	1.0	ND					
Isopropyl Benzene		0.28	0.50	ND					
Bromobenzene		0.39	0.50	ND					
1,1,2,2-Tetrachloroetha	ne	0.26	0.50	ND					
n-Propylbenzene		0.30	0.50	ND					
2-Chlorotoluene		0.33	0.50	ND					
1,3,5-Trimethylbenzene		0.20	0.50	ND					
4-Chlorotoluene		0.32	0.50	ND					
tert-Butylbenzene		0.29	0.50	ND					
1,2,3-Trichloropropane		0.59	1.0	ND					
1,2,4-Trimethylbenzene		0.33	0.50	ND					
sec-Butyl Benzene		0.24	0.50	ND					
p-lsopropyltoluene		0.25	0.50	ND					
1,3-Dichlorobenzene		0.31	0.50	ND					
1,4-Dichlorobenzene		0.37	0.50	ND					
n-Butylbenzene		0.32	0.50	ND					
1,2-Dichlorobenzene		0.39	0.50	ND					
1,2-Dibromo-3-Chloropr	opane	0.45	1.0	ND					
Hexachlorobutadiene		0.22	0.50	ND					
1,2,4-Trichlorobenzene		0.48	1.0	ND					
Naphthalene		0.57	1.0	ND					
1,2,3-Trichlorobenzene		0.52	1.0	ND					
Ethanol		100	100	ND	TIC				
(S) Dibromofluorometha	ane			93.4					
(S) Toluene-d8				98.2					
(S) 4-Bromofluorobenze	ene			104					

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

LCS/LCSD Summary Report

				L03/1		ummary	Report	Raw value	es are used in	quality contro	ol assessme		
Work Order:	1106145		Prep Metho	bd: 5030		Prep Da	te:	06/20/11	Prep Ba	tch: 296	9		
Matrix:	Water		Analytical	8260	TPH	Analyze	d Date:	06/20/11	Analytic	al 405	579		
Units:	ug/L		Method:	Method:					Batch:				
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier		
TPH(Gasoline)		22	50	ND	227.27	118	115	2.58	52.4 - 127	30			
(S) 4-Bromofluor	robenzene			89.9	11.36	90.7	89.9		58.4 - 133				
Work Order:	1106145		Prep Metho	od: NA		Prep Da	te:	NA	Prep Batch: NA				
Matrix:	Water Analytical S\ Method:		SW82	260B	Analyze	d Date:	06/20/11	Analytic	al 405	579			
Units:	ug/L		wethod:						Batch:				
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier		
1,1-Dichloroethe	ene	0.29	0.50	ND	17.04	116	105	9.35	61.4 - 129	30	1		
Benzene		0.33	0.50	ND	17.04	101	88.4	13.8	66.9 - 140	30			
Trichloroethylen	e	0.38	0.50	ND	17.04	88.6	117	27.5	69.3 - 144	30			
									70 0 400	00			
Toluene		0.19	0.50	ND	17.04	97.9	104	5.98	76.6 - 123	30			
		0.19 0.14	0.50 0.50	ND ND	17.04 17.04	97.9 103	104 99.1	5.98 4.18	76.6 - 123 73.9 - 137	30 30			
Chlorobenzene	romethane												
Toluene Chlorobenzene (S) Dibromofluor (S) Toluene-d8	romethane			ND	17.04	103	99.1		73.9 - 137				

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - mg/L and mg/Kg (equivalent to PPM - parts per million in liquid and solid), ug/L and ug/Kg (equivalent to PPB - parts per billion in liquid and solid), ug/M3, mg.m3, ppbv and ppmv (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), ug/Wipe (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

B - Indicates when the anlayte is found in the associated method or preparation blank

D - Surrogate is not recoverable due to the necessary dilution of the sample

E - Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.

H- Indicates that the recommended holding time for the analyte or compound has been exceeded

J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative

NA - Not Analyzed

N/A - Not Applicable

NR - Not recoverable - a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added

R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts

S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case narrative

X -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards.

Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Sample Receipt Checklist

Client Name: Golden Gate Ennvironmental
Project Name: 5930 College Ave
Work Order No.: <u>1106145</u>

Date and Time Received: <u>6/20/2011</u> <u>16:30</u> Received By: <u>NG</u> Physically Logged By: <u>ps</u> Checklist Completed By: <u>pc</u> Carrier Name: <u>Hi-Speed Courier</u>

Chain of Custody (COC) Information

	<u></u>			
Chain of custody present?	Yes			
Chain of custody signed when relinquished and received?	Yes			
Chain of custody agrees with sample labels?	Yes			
Custody seals intact on sample bottles?	Not Present			
Sample Receip	ot Information			
Custody seals intact on shipping container/cooler?	Not Present			
Shipping Container/Cooler In Good Condition?	<u>Yes</u>			
Samples in proper container/bottle?	<u>Yes</u>			
Samples containers intact?	<u>Yes</u>			
Sufficient sample volume for indicated test?	<u>Yes</u>			
Sample Preservation and H	old Time (HT) Info	rmation		
All samples received within holding time?	<u>Yes</u>			
Container/Temp Blank temperature in compliance?	<u>No</u>	Temperature:	<u>9</u>	°C
Water-VOA vials have zero headspace?	Yes			
Water-pH acceptable upon receipt?	<u>N/A</u>			
pH Checked by:	pH Adjusted by:			

Sample received in coolr but no ice present. Refrigerated upon receipt.

Login Summary Report

Client ID:	TL5127	Golden Gate Ennvironmental	QC Level:	
Project Name:	5930 College A	ve	TAT Requested:	5+ day:0
Project # :	GGE 2014		Date Received:	6/20/2011
Report Due Date:	6/27/2011		Time Received:	16:30

Comments: 5 Day TAT!! 4 water samples rec'd! 3 for TPHG/BTEX, 1 for TPHG, full 8260B! Needs EDF! Report to Brent!

Work Order # : 1106145

WO Sample ID	<u>Client</u> Sample ID	<u>Collection</u> Date/Time	<u>Matrix</u>		<u>mple</u> <u>Test</u> Hold <u>On Hold</u>	<u>Requested</u> <u>Tests</u>	<u>Subbed</u>
1106145-001A	MW-1	06/09/11 11:50	Water	08/04/11		W_8260MBTEX W_GCMS-GRO	
Sample Note:	TPHg,BTEX for samples 00	01-003.					
1106145-002A	MW-2	06/09/11 11:15	Water	08/04/11		W_8260MBTEX W GCMS-GRO	
1106145-003A	MW-3	06/09/11 10:15	Water	08/04/11		W_8260MBTEX W GCMS-GRO	
1106145-004A	PW-1	06/09/11 9:25	Water	08/04/11		EDF W_8260Full W_GCMS-GRO	
Sample Note:	TPHG/BTEX for 001 - 003,	TPHG/full 8260 for	-004				

Π		1.12.20.00	air Fronta CA 95035				2114	INT			ICT	·^r	v					(
Ē	FORTENT	Phone: 4 FAX: 408	08.263.52 .263.8293 entlab.con	58 3	•N0	DTE: SH	CHA ADED A							ONLY •			ORK ORD	
Company Na	meEddoneal	eEnv				Loca	tion of S	ampling	:52	30	6)	la	40	NO	C	Dal	mals	1
Address:	~		Ť			Purp		Les l	2110	-	20	0	20	·m		- A	12.0.14	
City Sen	mancisco	State: C+	<u> </u>	Zip Code	DAIIC	Spec	cial Instru		TW -		5-6				060	5010	SIL	
Telephone:		AX:									12.			1=	<	olo	IN	
REPORT TO:		SAMPLE	R:		2	P.O.	#: 60	Fe				MAIL:		6.W	Atte	6		
TURNAROUN	D TIME:	SAM	IPLE TYPE		REPORT	FORMAT		1				5	-	6	she	plai	500	1,00
10 Work Day 7 Work Days 5 Work Days	2 Work Days 2 - 8	Hours	Storm Water Vaste Water Ground Water Soil	Air Other	EDF	1.5	1-5-K	J.		÷		•		-		F	ANALYS	
LAB ID	CLIENT'S SAMPLE I.D.	DATE		MATRIX	# OF CONT	CONT TYPE	THE	74		ź							REMARK	3
con m	W-1	uleoleo	1150	611	3	YOA	X		1							the offer of		
az m	W-2	Ň	MIS	5	7	. 5	X			1						かかない	春 一日	
az m	M-3	1	1015	4	5	51	$\left \right\rangle$									1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		
0047	w-1	`	0915	N	5	1	X	\geq		2 2								
5																1	άĥ.	
1. No. 1																ал. ал	di.	4 9 4 4 4
		-														19	1 Å .	
•																	-iq 	2
		_					+										1.4.7	
							+										1	-
Reinquishe	ed By: Print:	ang	Date C S Date:	<u> </u>	Time:	>	Receiv	ved By: ved By:	le		Print:		pate	Date:	20/	11	ime: 2:42 ime:	Bpn
2 Xe		post la year	66	20/11		<u>30p</u>				arg	NA	VIN 6			0-11		4:30	P.m
NOTE: Sample	Received in Good Condition? s are discarded by the I			arrists married in	unless othe	er arrange	<i>(</i>	d of Ship Is are m					{	Sample si	eals intac	Ξ,	res [] NC	
og In By:	nga Bashari, ar ana ani maring Kasaring	Date:		the Ann aread	Log In Revi	ewed By:					Da	ite:	-	-	-hall			

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

EDF

Submittal Type: Report Title: Report Type: Facility Global ID: Facility Name: File Name: Organization Name: Username: IP Address: Submittal Date/Time: Confirmation Number:

2Q11 Groundwater Sampling Results - June 2011 Monitoring Report - Semi-Annually T0600102112 SHEAFFS SERVICE GARAGE GGE 1106145 5930 College Ave EDF.zip Golden Gate Environmental, Inc. GGE 108.81.108.167 6/10/2013 8:55:19 AM 9516111254

VIEW QC REPORT

VIEW DETECTIONS REPORT

Copyright © 2013 State of California

GEOTRACKER ESI

UPLOADING A GEO_WELL FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: Report Title: Facility Global ID: Facility Name: File Name: Organization Name: Username: IP Address: Submittal Date/Time: Confirmation Number: GEO_WELL 2Q11 Groundwater Monitoring Results - June 2011 T0600102112 SHEAFFS SERVICE GARAGE GEO_WELL.zip Golden Gate Environmental, Inc. GGE 108.81.108.167 6/10/2013 9:01:02 AM 1942960619

Copyright © 2013 State of California

EPA On-line Tools for Site Assessment Calculation | Ecosystems Research Division | US ... Page 1 of 2

1 US Environmental

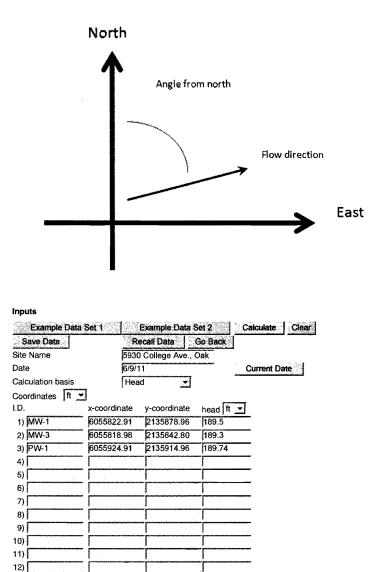
Ecosystems Research Division

EPA On-line Tools for Site Assessment Calculation

Hydraulic Gradient - Magnitude and Direction

Gradient Calculation from fitting a plane to as many as thirty points

 $a x_1 + b y_1 + c = h_1$ $a x_2 + b y_2 + c = h_2$ $a x_3 + b y_3 + c = h_3$... $a x_{30} + b y_{30} + c = h_{30}$


where $(\mathbf{x}_i, \mathbf{y}_i)$ are the coordinates of the well and hi is the head

 $i = 1, 2, 3, \dots, 30$

13) 14)

The coefficients a, b, and c are calculated by a least-squares fitting of the the data to a plane

The gradient is calculated from the square root of (a² + b²) and the angle from the arctangent of a/b or b/a depending on the quadrant

15)	1		[
16)		[
17)	[[
18)	ſ	[[
19)	Γ	[[
20)	[Γ	Г <u> </u>
21)		Γ	[
22)	l		
23)	<u> </u>	ſ	[
24)	ſ.	[
25)	ſ.	ſ	
26)	[
27)	[[<u> </u>
28)	Γ	[[
29)	[[[
30)	1	[<u> </u>
Results			
Number of Points Us	ed in Calculation	n	3
Max. Difference Betw	ween Head Valu	es	0.1341
Gradient Magnitude	(i)		0.005501
Flow direction as dep	grees from North	n (positive y axis)184.3
Coefficient of Detern			1.00

WCMS

Last updated on Thursday, August 11, 2011

http://www.epa.gov/athens/learn2model/part-two/onsite/gradient4plus-ns.html

Golden Gate Ennvironmental 3730 Mission St San Francisco, California 94110 Tel: (415) 686-8846 RE: 5930 College Ave., Oakland

Work Order No.: 1110044

Dear Brent Wheeler:

Torrent Laboratory, Inc. received 4 sample(s) on October 07, 2011 for the analyses presented in the following Report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

att Sa-

Patti Sandrock

October 14, 2011 Date

Date: 10/14/2011

Client: Golden Gate Ennvironmental Project: 5930 College Ave., Oakland Work Order: 1110044

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Sample Result Summary

Report prepared for:	Brent Wheeler				Date I	Received: 1	0/07/11
	Golden Gate Ennvironmental				Date I	Reported: 1	0/14/11
MW-1						11	10044-001
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	PQL	<u>Results</u>	<u>Unit</u>
MTBE		SW8260B	110	41	55	89	ug/L
Benzene		SW8260B	110	37	55	9200	ug/L
Toluene		SW8260B	110	21	55	1500	ug/L
Ethyl Benzene		SW8260B	110	17	55	4200	ug/L
m,p-Xylene		SW8260B	110	22	110	10000	ug/L
o-Xylene		SW8260B	110	14	55	3500	ug/L
TPH(Gasoline)		8260TPH	110	2400	5500	50000	ug/L
MW-2						11	10044-002
Parameters:		<u>Analysis</u> <u>Method</u>	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
Benzene		SW8260B	44	15	22	810	ug/L
Toluene		SW8260B	44	8.4	22	34	ug/L
Ethyl Benzene		SW8260B	44	6.8	22	610	ug/L
m,p-Xylene		SW8260B	44	8.8	44	100	ug/L
TPH(Gasoline)		8260TPH	44	950	2200	9200	ug/L
MW-3						11	10044-003
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	PQL	<u>Results</u>	<u>Unit</u>
Benzene		SW8260B	8.8	2.9	4.4	140	ug/L
Toluene		SW8260B	8.8	1.7	4.4	7.0	ug/L
Ethyl Benzene		SW8260B	8.8	1.4	4.4	160	ug/L
m,p-Xylene		SW8260B	8.8	1.8	8.8	67	ug/L
TPH(Gasoline)		8260TPH	8.8	190	440	5400	ug/L

Sample Result Summary

Report prepared for:	Brent Wheeler				Date I	Received: 1	0/07/11
	Golden Gate Ennvironmental				Date F	Reported: 1	0/14/11
PW-1						111	10044-004
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	PQL	<u>Results</u>	<u>Unit</u>
TPH(Gasoline)		8260TPH	1	22	50	260	ug/L
cis-1,2-Dichloroethene		SW8260B	1	0.33	0.50	2.0	ug/L
Benzene		SW8260B	1	0.33	0.50	0.56	ug/L
Trichloroethylene		SW8260B	1	0.38	0.50	0.63	ug/L
Tetrachloroethylene		SW8260B	1	0.15	0.50	76	ug/L
Ethyl Benzene		SW8260B	1	0.15	0.50	5.9	ug/L
m,p-Xylene		SW8260B	1	0.20	1.0	4.5	ug/L
Isopropyl Benzene		SW8260B	1	0.28	0.50	0.79	ug/L
n-Propylbenzene		SW8260B	1	0.30	0.50	1.8	ug/L
1,3,5-Trimethylbenzene		SW8260B	1	0.20	0.50	0.99	ug/L
1,2,4-Trimethylbenzene		SW8260B	1	0.33	0.50	3.8	ug/L
n-Butylbenzene		SW8260B	1	0.32	0.50	0.68	ug/L
Naphthalene		SW8260B	1	0.57	1.0	1.2	ug/L

Report prepared for:	Brent Wheeler Golden Gate Ennvi	ironmenta	al							eived: 10/0 orted: 10/1	
Client Sample ID:	MW-1				Lab Sa	mple ID:	11100	044-001A			
Project Name/Location:	5930 College A	Ave., Oakla	and		Sample	Matrix:	Grour	ndwater			
Project Number:											
Date/Time Sampled:	10/07/11 / 10:4	10									
Tag Number:	5930 College A	Ave.,Oakla	nd								
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
МТВЕ	SW8260B	NA	10/07/11	110	41	55	89		ug/L	406971	NA
Benzene	SW8260B	NA	10/07/11	110	37	55	9200		ug/L	406971	NA
Toluene	SW8260B	NA	10/07/11	110	21	55	1500		ug/L	406971	NA
Ethyl Benzene	SW8260B	NA	10/07/11	110	17	55	4200		ug/L	406971	NA
m,p-Xylene	SW8260B	NA	10/07/11	110	22	110	10000		ug/L	406971	NA
o-Xylene	SW8260B	NA	10/07/11	110	14	55	3500		ug/L	406971	NA
(S) Dibromofluoromethane	SW8260B	NA	10/07/11	110	61.2	131	103		%	406971	NA
(S) Toluene-d8	SW8260B	NA	10/07/11	110	75.1	127	116		%	406971	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	10/07/11	110	64.1	120	92.8		%	406971	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	10/07/11	110	2400	5500	50000	х	ug/L	406971	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	10/07/11	110	41.5	125	101		%	406971	NA

NOTE: x - Does not match reference Gasoline standard. Reported value is the result of discrete peaks and contribution from heavy hydrocarbons in range of C5-C12 quantified as gasoline (possibly aged gasoline).

Report prepared for:	Brent Wheeler Golden Gate Ennvi	ironmenta	al							eived: 10/0 orted: 10/1	
Client Sample ID: Project Name/Location: Project Number:	MW-2 5930 College A	Ave., Oakla	and			mple ID: Matrix:		44-002A dwater			
Date/Time Sampled:	10/07/11 / 9:20)									
Tag Number:	5930 College A	Ave.,Oakla	nd								
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
МТВЕ	SW8260B	NA	10/07/11	44	17	22	ND	1	ug/L	406971	NA
Benzene	SW8260B	NA	10/07/11	44	15	22	810		ug/L	406971	NA
Toluene	SW8260B	NA	10/07/11	44	8.4	22	34		ug/L	406971	NA
Ethyl Benzene	SW8260B	NA	10/07/11	44	6.8	22	610		ug/L	406971	NA
m,p-Xylene	SW8260B	NA	10/07/11	44	8.8	44	100		ug/L	406971	NA
o-Xylene	SW8260B	NA	10/07/11	44	5.6	22	ND		ug/L	406971	NA
(S) Dibromofluoromethane	SW8260B	NA	10/07/11	44	61.2	131	105		%	406971	NA
(S) Toluene-d8	SW8260B	NA	10/07/11	44	75.1	127	116		%	406971	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	10/07/11	44	64.1	120	94.8		%	406971	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	10/07/11	44	950	2200	9200	1	ug/L	406971	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	10/07/11	44	41.5	125	101		%	406971	NA

DTE: Result is elevated due to contribution from heavy end hydrocarbons in the C5-C12 range quantified as Gasoline.

Report prepared for:	Brent Wheeler Golden Gate Ennv	ironmenta	al							eived: 10/0 orted: 10/1	
Client Sample ID: Project Name/Location:	MW-3 5930 College /	Vvo Ookk	and			mple ID: Matrix:		044-003A ndwater			
Project Number:	5950 College /	NE., Oakia	anu		Sample		Gioui	luwalei			
Date/Time Sampled:	10/07/11 / 8:15										
Tag Number:	5930 College A		nd								
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	10/07/11	8.8	3.3	4.4	ND		ug/L	406971	NA
Benzene	SW8260B	NA	10/07/11	8.8	2.9	4.4	140		ug/L	406971	NA
Toluene	SW8260B	NA	10/07/11	8.8	1.7	4.4	7.0		ug/L	406971	NA
Ethyl Benzene	SW8260B	NA	10/07/11	8.8	1.4	4.4	160		ug/L	406971	NA
m,p-Xylene	SW8260B	NA	10/07/11	8.8	1.8	8.8	67		ug/L	406971	NA
o-Xylene	SW8260B	NA	10/07/11	8.8	1.1	4.4	ND		ug/L	406971	NA
(S) Dibromofluoromethane	SW8260B	NA	10/07/11	8.8	61.2	131	108		%	406971	NA
(S) Toluene-d8	SW8260B	NA	10/07/11	8.8	75.1	127	117		%	406971	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	10/07/11	8.8	64.1	120	96.5		%	406971	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	10/07/11	8.8	190	440	5400		ug/L	406971	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	10/07/11	8.8	41.5	125	106		%	406971	NA

DTE: Result is elevated due to contribution from heavy end hydrocarbons in the C5-C12 range quantified as Gasoline.

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Client Sample ID: PW-1 Lab Sample ID: 1110044-004A Project Name/Location: 6930 College Ave., Oakland Sample Matrix: Groundwater Project Name/Location: 5930 College Ave., Oakland Sample Matrix: Groundwater Parameters: Mathod Prep Date DF MDL POL Results Lab Unit Analyzical Prep Dichlorodfluoromethane SW8260B NA 1007/11 0.41 0.50 ND ug/L 406971 N Unit Chorodfluoromethane SW8260B NA 1007/11 1 0.41 0.50 ND ug/L 406971 N Bromomethane SW8260B NA 1007/11 1 0.37 0.50 ND ug/L 406971 N Trichlorofluoromethane SW8260B NA 1007/11 1 0.37 0.50 ND ug/L 406971 N Trichlorofluoromethane SW8260B NA 1007/11 1 0.38 0.50 ND	Report prepared for:	Brent Wheeler Golden Gate Ennvi	ronment	al							eived: 10/0 orted: 10/1	
Project Name/ Project Number: 5930 College Ave. Oskland Sample Matrix: Groundwater Project Number: 1007/11 / 10.05 5930 College Ave. Oskland Sample Matrix: Groundwater Parameters: Method Prose Date Date No Lab. Lab. Multiple Ave. Oskland Dichlorodfluoromethane SW8260B NA 1007/11 1 0.41 0.50 ND ugl. 406971 N Simomethane SW8260B NA 1007/11 1 0.41 0.50 ND ugl. 406971 N Simomethane SW8260B NA 1007/11 1 0.37 0.50 ND ugl. 406971 N Simomethane SW8260B NA 1007/11 1 0.34 0.50 ND ugl. 406971 N Tichlorodfluoromethane SW8260B NA 1007/11 1 0.38 0.50 ND ugl. 406971 N Higholysee SW8260B NA <	Client Sample ID:	PW-1				Lab Sa	mple ID:	11100		-		
Date Time Samplet: Teg Number: 10/07/11 / 10:05 530 College Ave., Oakland Parameters: Analysis Prep Date Date nalyzed DF MDL PCL Results Lab Duchlorodilluoromethane Unit Analytical Batch Breach Batch Dichlorodilluoromethane SW0260B NA 10/07/11 1 0.41 0.50 ND ugl. 406971 N Smoomethane SW0260B NA 10/07/11 1 0.41 0.50 ND ugl. 406971 N Trichlorodiluoromethane SW0260B NA 10/07/11 1 0.37 0.50 ND ugl. 406971 N Trichlorodiluoromethane SW0260B NA 10/07/11 1 0.38 0.50 ND ugl. 406971 N Trichlorodiluoromethane SW0260B NA 10/07/11 0.38 0.50 ND ugl. 406971 N Trichlorodiluoromethane SW0260B NA 10/07/11 0.38 0.50 ND ugl. <th>•</th> <th>5930 College A</th> <th>ve., Oakl</th> <th>and</th> <th></th> <th></th> <th>•</th> <th>Grou</th> <th>ndwater</th> <th></th> <th></th> <th></th>	•	5930 College A	ve., Oakl	and			•	Grou	ndwater			
Tag Number: 5930 College Ave., Oakland Parameters: Analysis Method Prep Date Date Date Analyze Dr Analyze Date Date Date Dr Analyze Prep Analyze Date Date Dr Analyze Prep Analyze Date Date Dr Analyze Prep Analyze Results Lab Qualifie Unit Analyzis Pre Bato Dichlorodfluoromethane SW8260B NA 1007/11 1 0.41 0.50 ND u.gt. 406971 N Bromomethane SW8260B NA 1007/11 1 0.37 0.50 ND u.gt. 406971 N Trichlorofluoromethane SW8260B NA 1007/11 1 0.38 0.50 ND u.gt. 406971 N Trichlorofluoromethane SW8260B NA 1007/11 1 0.38 0.50 ND u.gt. 406971 N Trabiologibaropy distr SW8260B NA 1007/11 1 0.38 0.50 ND u.gt. 406971 N	Project Number:	°,	-			•						
Parameters: Analysis Prop Date Date Analyzed DF MDL PQL Results Lab Qualifier Unit Analysical Bate Prop Bate Dichlorodifluoromethane SW8260B NA 10/07/11 1 0.41 0.50 ND ug/L 406971 N Viryl Chloride SW8260B NA 10/07/11 1 0.41 0.50 ND ug/L 406971 N Bromomethane SW8260B NA 10/07/11 1 0.37 0.50 ND ug/L 406971 N Trichlorothuoromethane SW8260B NA 10/07/11 0.33 0.50 ND ug/L 406971 N Trichlorothene SW8260B NA 10/07/11 0.33 0.50 ND ug/L 406971 N Methylene Chloride SW8260B NA 10/07/11 0.33 0.50 ND ug/L 406971 N Methylene SW8260B NA 10/07/11 1	Date/Time Sampled:	10/07/11 / 10:0	5									
Parameters: Method Date Analyzed Image: Constraint of the second	Tag Number:	5930 College A	Ave.,Oakla	and								
Chloromethane SW8260B NA 10/07/11 1 0.41 0.50 ND ug/L 406971 N Vinyl Choirde SW8260B NA 10/07/11 1 0.37 0.50 ND ug/L 406971 N Bromomethane SW8260B NA 10/07/11 1 0.34 0.50 ND ug/L 406971 N Trichlorofluoromethane SW8260B NA 10/07/11 1 0.34 0.50 ND ug/L 406971 N Trichlorofluoromethane SW8260B NA 10/07/11 1 0.18 5.0 ND ug/L 406971 N Methylene Chloride SW8260B NA 10/07/11 1 0.38 0.50 ND ug/L 406971 N Itert-Butanol SW8260B NA 10/07/11 1 0.36 0.50 ND ug/L 406971 N Itert-Butanol SW8260B NA 10/07/11 1 <t< th=""><th>Parameters:</th><th>-</th><th></th><th></th><th>DF</th><th>MDL</th><th>PQL</th><th>Results</th><th></th><th>Unit</th><th>-</th><th>Prep Batch</th></t<>	Parameters:	-			DF	MDL	PQL	Results		Unit	-	Prep Batch
Vinyl Chloride SW8260B NA 10/07/11 1 0.37 0.50 ND ug/L 406971 N Bromomethane SW8260B NA 10/07/11 1 0.37 0.50 ND ug/L 406971 N Trichloroflucomethane SW8260B NA 10/07/11 1 0.38 0.50 ND ug/L 406971 N Freon 113 SW8260B NA 10/07/11 1 0.38 0.50 ND ug/L 406971 N trans-1,2-Dichloroethene SW8260B NA 10/07/11 1 0.31 0.50 ND ug/L 406971 N trans-1,2-Dichloroethene SW8260B NA 10/07/11 1 0.36 0.50 ND ug/L 406971 N trans-1,2-Dichloroethane SW8260B NA 10/07/11 1 0.36 0.50 ND ug/L 406971 N trans-1,2-Dichloroethane SW8260B NA 10/07/11	Dichlorodifluoromethane	SW8260B	NA	10/07/11	1	0.41	0.50	ND		ug/L	406971	NA
Vinyl Chloride SW8260B NA 1007/11 1 0.37 0.50 ND ug/L 406971 N Bromomethane SW8260B NA 10077/11 1 0.37 0.50 ND ug/L 406971 N Irchloroflucromethane SW8260B NA 10077/11 1 0.38 0.50 ND ug/L 406971 N Freen 113 SW8260B NA 10077/11 1 0.38 0.50 ND ug/L 406971 N rans-12-Dichloroethene SW8260B NA 10077/11 1 0.31 0.50 ND ug/L 406971 N vertButanol SW8260B NA 10077/11 1 0.36 0.50 ND ug/L 406971 N J1-Dichloroethene SW8260B NA 10077/11 1 0.36 0.50 ND ug/L 406971 N J1, -Dichloroethene SW8260B NA 10077/11 1 <td< td=""><td>Chloromethane</td><td>SW8260B</td><td>NA</td><td>10/07/11</td><td>1</td><td>0.41</td><td>0.50</td><td>ND</td><td></td><td>0</td><td>406971</td><td>NA</td></td<>	Chloromethane	SW8260B	NA	10/07/11	1	0.41	0.50	ND		0	406971	NA
Bromomethane SW8260B NA 10/07/11 1 0.37 0.50 ND ug/L 406971 N Trichlorodluoromethane SW8260B NA 10/07/11 1 0.34 0.50 ND ug/L 406971 N Freen 113 SW8260B NA 10/07/11 1 0.38 0.50 ND ug/L 406971 N Methylene Chloride SW8260B NA 10/07/11 1 0.38 0.50 ND ug/L 406971 N Marsh 12-Dichloroethene SW8260B NA 10/07/11 1 0.38 0.50 ND ug/L 406971 N Disopropyl ether (DIPE) SW8260B NA 10/07/11 1 0.36 0.50 ND ug/L 406971 N 1,1-Dichloroethane SW8260B NA 10/07/11 1 0.28 0.50 ND ug/L 406971 N 2,2-Dichloroethane SW8260B NA 10/07/11 <td< td=""><td>Vinyl Chloride</td><td>SW8260B</td><td>NA</td><td>10/07/11</td><td>1</td><td>0.37</td><td>0.50</td><td>ND</td><td></td><td>-</td><td>406971</td><td>NA</td></td<>	Vinyl Chloride	SW8260B	NA	10/07/11	1	0.37	0.50	ND		-	406971	NA
Trichlorofluoromethane SW8260B NA 10/07/11 1 0.34 0.50 ND ug/L 406971 N 1,1-Dichlorosthene SW8260B NA 10/07/11 1 0.29 0.50 ND ug/L 406971 N Methylene Chloride SW8260B NA 10/07/11 1 0.38 0.50 ND ug/L 406971 N Mathylene Chloride SW8260B NA 10/07/11 1 0.38 0.50 ND ug/L 406971 N MTBE SW8260B NA 10/07/11 1 0.38 0.50 ND ug/L 406971 N Disopropyl ether (DIPE) SW8260B NA 10/07/11 1 0.36 0.50 ND ug/L 406971 N 1,1-Dichloroethane SW8260B NA 10/07/11 1 0.33 0.50 ND ug/L 406971 N 2,2-Dichloropropane SW8260B NA 10/07/11 1<		SW8260B	NA	10/07/11	1	0.37		ND		-	406971	NA
Freen 113 SW8260B NA 10/07/11 1 0.38 0.50 ND ug/L 406971 N Methylene Chloride SW8260B NA 10/07/11 1 0.18 5.0 ND ug/L 406971 N trans-1,2-Dichloroethene SW8260B NA 10/07/11 1 0.31 0.50 ND ug/L 406971 N Trans-1,2-Dichloroethene SW8260B NA 10/07/11 1 0.38 0.50 ND ug/L 406971 N Diisopropyl ether (DIPE) SW8260B NA 10/07/11 1 0.36 0.50 ND ug/L 406971 N 1.1-Dichloroethane SW8260B NA 10/07/11 1 0.37 0.50 ND ug/L 406971 N Strancohloromethane SW8260B NA 10/07/11 1 0.37 0.50 ND ug/L 406971 N Chloroform SW8260B NA 10/07/11 <	Trichlorofluoromethane	SW8260B	NA	10/07/11	1	0.34	0.50	ND		-	406971	NA
Freen 113 SW8260B NA 10/07/11 1 0.38 0.50 ND ug/L 406971 N Methylene Chloride SW8260B NA 10/07/11 1 0.31 0.50 ND ug/L 406971 N MTBE SW8260B NA 10/07/11 1 0.31 0.50 ND ug/L 406971 N Disopropyl ether (DIPE) SW8260B NA 10/07/11 1 0.36 0.50 ND ug/L 406971 N 1.1-Dichloredhane SW8260B NA 10/07/11 1 0.36 0.50 ND ug/L 406971 N Cis1.2-Dichloroethane SW8260B NA 10/07/11 1 0.36 0.50 ND ug/L 406971 N Stronorbhoromethane SW8260B NA 10/07/11 1 0.37 0.50 ND ug/L 406971 N Carbon Tetrachidride SW8260B NA 10/07/11 1	1,1-Dichloroethene	SW8260B	NA	10/07/11	1	0.29	0.50	ND		-	406971	NA
trans-1,2-Dichloroethene SW8260B NA 10/07/11 1 0.31 0.50 ND ug/L 406971 N MTBE SW8260B NA 10/07/11 1 0.38 0.50 ND ug/L 406971 N Disporppylether (DIPE) SW8260B NA 10/07/11 1 0.56 ND ug/L 406971 N 1,1-Dichloroethane SW8260B NA 10/07/11 1 0.48 0.50 ND ug/L 406971 N cis-1,2-Dichloroethane SW8260B NA 10/07/11 1 0.48 0.50 ND ug/L 406971 N 2,-Dichloroethane SW8260B NA 10/07/11 1 0.33 0.50 ND ug/L 406971 N 2,-Dichloroptopane SW8260B NA 10/07/11 1 0.33 0.50 ND ug/L 406971 N Carbon Tetrachloride SW8260B NA 10/07/11 1 0.32 0.50 ND ug/L 406971 N 1,1-Dichloroptopan	Freon 113	SW8260B	NA	10/07/11	1	0.38	0.50	ND		ug/L	406971	NA
MTBE SW8260B NA 10/07/11 1 0.38 0.50 ND ug/L 406971 N Diisopropyl ether (DIPE) SW8260B NA 10/07/11 1 1.5 5.0 ND ug/L 406971 N Diisopropyl ether (DIPE) SW8260B NA 10/07/11 1 0.36 0.50 ND ug/L 406971 N L1-Dichloroethane SW8260B NA 10/07/11 1 0.40 0.50 ND ug/L 406971 N ETBE SW8260B NA 10/07/11 1 0.33 0.50 ND ug/L 406971 N Scholoroethane SW8260B NA 10/07/11 1 0.37 0.50 ND ug/L 406971 N Scholoromethane SW8260B NA 10/07/11 1 0.32 0.50 ND ug/L 406971 N Carbon Tetrachloride SW8260B NA 10/07/11 1 0.32 0.50 ND ug/L 406971 N 1,1,1-Dichloroethane <td>Methylene Chloride</td> <td>SW8260B</td> <td>NA</td> <td>10/07/11</td> <td>1</td> <td>0.18</td> <td>5.0</td> <td>ND</td> <td></td> <td>ug/L</td> <td>406971</td> <td>NA</td>	Methylene Chloride	SW8260B	NA	10/07/11	1	0.18	5.0	ND		ug/L	406971	NA
tert-Butanol SW8260B NA 10/07/11 1 1.5 5.0 ND ug/L 406971 N Diisopropyl ether (DIPE) SW8260B NA 10/07/11 1 0.36 0.50 ND ug/L 406971 N 1,1-Dichloroethane SW8260B NA 10/07/11 1 0.36 0.50 ND ug/L 406971 N cis-1,2-Dichloroethane SW8260B NA 10/07/11 1 0.33 0.50 ND ug/L 406971 N 2,2-Dichloroethane SW8260B NA 10/07/11 1 0.37 0.50 ND ug/L 406971 N Schor Tetrachloride SW8260B NA 10/07/11 1 0.34 0.50 ND ug/L 406971 N Carbor Tetrachloride SW8260B NA 10/07/11 1 0.32 0.50 ND ug/L 406971 N 1,1-Dichloroethane SW8260B NA 10/07/11	trans-1,2-Dichloroethene	SW8260B	NA	10/07/11	1	0.31	0.50	ND		ug/L	406971	NA
Disopropyl ether (DIPE) SW8260B NA 10/07/11 1 0.36 0.50 ND ug/L 406971 N 1,1-Dichloroethane SW8260B NA 10/07/11 1 0.40 0.50 ND ug/L 406971 N ETBE SW8260B NA 10/07/11 1 0.40 0.50 ND ug/L 406971 N cis-1,2-Dichloroethane SW8260B NA 10/07/11 1 0.33 0.50 ND ug/L 406971 N 2,-Dichloropropane SW8260B NA 10/07/11 1 0.37 0.50 ND ug/L 406971 N Carbon Tetrachloride SW8260B NA 10/07/11 1 0.26 0.50 ND ug/L 406971 N 1,1-Dichloroethane SW8260B NA 10/07/11 1 0.32 0.50 ND ug/L 406971 N 1,1-Dichloroethane SW8260B NA 10/07/11 1	MTBE	SW8260B	NA	10/07/11	1	0.38	0.50	ND		ug/L	406971	NA
1,1-Dichloroethane SW8260B NA 10/07/11 1 0.28 0.50 ND ug/L 406971 N ETBE SW8260B NA 10/07/11 1 0.40 0.50 ND ug/L 406971 N cis-1,2-Dichloroethene SW8260B NA 10/07/11 1 0.33 0.50 2.0 ug/L 406971 N Scis-1,2-Dichloroethene SW8260B NA 10/07/11 1 0.33 0.50 ND ug/L 406971 N Bromochloromethane SW8260B NA 10/07/11 1 0.34 0.50 ND ug/L 406971 N Carbon Tetrachloride SW8260B NA 10/07/11 1 0.22 0.50 ND ug/L 406971 N 1,1,1-Trichloroethane SW8260B NA 10/07/11 1 0.32 0.50 ND ug/L 406971 N 1,1,2-Dichloroethane SW8260B NA 10/07/11 1 0.33 0.50 ND ug/L 406971 N	tert-Butanol	SW8260B	NA	10/07/11	1	1.5	5.0	ND		ug/L	406971	NA
ETBE SW8260B NA 10/07/11 1 0.40 0.50 ND ug/L 406971 N cis-1,2-Dichloroethene SW8260B NA 10/07/11 1 0.33 0.50 2.0 ug/L 406971 N 2,2-Dichloropropane SW8260B NA 10/07/11 1 0.37 0.50 ND ug/L 406971 N Bromochloromethane SW8260B NA 10/07/11 1 0.34 0.50 ND ug/L 406971 N Chloroform SW8260B NA 10/07/11 1 0.26 0.50 ND ug/L 406971 N 1,1-1:richloroethane SW8260B NA 10/07/11 1 0.26 0.50 ND ug/L 406971 N 1,1-Dichloroptopene SW8260B NA 10/07/11 1 0.32 0.50 ND ug/L 406971 N 1,2-Dichloroethane SW8260B NA 10/07/11 1	Diisopropyl ether (DIPE)	SW8260B	NA	10/07/11	1	0.36	0.50	ND		ug/L	406971	NA
cis-1,2-Dichloroethene SW8260B NA 10/07/11 1 0.33 0.50 2.0 ug/L 406971 N 2,2-Dichloropropane SW8260B NA 10/07/11 1 0.37 0.50 ND ug/L 406971 N Bromochloromethane SW8260B NA 10/07/11 1 0.34 0.50 ND ug/L 406971 N Chloroform SW8260B NA 10/07/11 1 0.34 0.50 ND ug/L 406971 N Carbon Tetrachloride SW8260B NA 10/07/11 1 0.29 0.50 ND ug/L 406971 N 1,1-1.Trichloroethane SW8260B NA 10/07/11 1 0.32 0.50 ND ug/L 406971 N 1,1-Dichloroethane SW8260B NA 10/07/11 1 0.33 0.50 ND ug/L 406971 N 1,2-Dichloroethane SW8260B NA 10/07/11	1,1-Dichloroethane	SW8260B	NA	10/07/11	1	0.28	0.50	ND		ug/L	406971	NA
2,2-Dichloropropane SW8260B NA 10/07/11 1 0.37 0.50 ND ug/L 406971 N Bromochloromethane SW8260B NA 10/07/11 1 0.34 0.50 ND ug/L 406971 N Chloroform SW8260B NA 10/07/11 1 0.29 0.50 ND ug/L 406971 N Carbon Tetrachloride SW8260B NA 10/07/11 1 0.22 0.50 ND ug/L 406971 N 1,1,1-Trichloroethane SW8260B NA 10/07/11 1 0.32 0.50 ND ug/L 406971 N Benzene SW8260B NA 10/07/11 1 0.32 0.50 ND ug/L 406971 N 1,2-Dichloroethane SW8260B NA 10/07/11 1 0.32 0.50 ND ug/L 406971 N 1,2-Dichloroethane SW8260B NA 10/07/11 1	ETBE	SW8260B	NA	10/07/11	1	0.40	0.50	ND		ug/L	406971	NA
Bromochloromethane SW8260B NA 10/07/11 1 0.34 0.50 ND ug/L 406971 N Chloroform SW8260B NA 10/07/11 1 0.29 0.50 ND ug/L 406971 N Carbon Tetrachloride SW8260B NA 10/07/11 1 0.26 0.50 ND ug/L 406971 N 1,1-Trichloroethane SW8260B NA 10/07/11 1 0.32 0.50 ND ug/L 406971 N 1,1-Dichloroptopene SW8260B NA 10/07/11 1 0.33 0.50 ND ug/L 406971 N AME SW8260B NA 10/07/11 1 0.33 0.50 ND ug/L 406971 N 1,2-Dichloroethane SW8260B NA 10/07/11 1 0.32 0.50 ND ug/L 406971 N 1,2-Dichloroethane SW8260B NA 10/07/11 1 <t< td=""><td>cis-1,2-Dichloroethene</td><td>SW8260B</td><td>NA</td><td>10/07/11</td><td>1</td><td>0.33</td><td>0.50</td><td>2.0</td><td></td><td>ug/L</td><td>406971</td><td>NA</td></t<>	cis-1,2-Dichloroethene	SW8260B	NA	10/07/11	1	0.33	0.50	2.0		ug/L	406971	NA
Chloroform SW8260B NA 10/07/11 1 0.29 0.50 ND ug/L 406971 N Carbon Tetrachloride SW8260B NA 10/07/11 1 0.26 0.50 ND ug/L 406971 N L1,1-Trichloroethane SW8260B NA 10/07/11 1 0.32 0.50 ND ug/L 406971 N L1,1-Dichloropropene SW8260B NA 10/07/11 1 0.32 0.50 ND ug/L 406971 N Benzene SW8260B NA 10/07/11 1 0.33 0.50 ND ug/L 406971 N TAME SW8260B NA 10/07/11 1 0.32 0.50 ND ug/L 406971 N 1,2-Dichloroethane SW8260B NA 10/07/11 1 0.38 0.50 ND ug/L 406971 N 1,2-Dichloroethane SW8260B NA 10/07/11 1 0.23 </td <td>2,2-Dichloropropane</td> <td>SW8260B</td> <td>NA</td> <td>10/07/11</td> <td>1</td> <td>0.37</td> <td>0.50</td> <td>ND</td> <td></td> <td>ug/L</td> <td>406971</td> <td>NA</td>	2,2-Dichloropropane	SW8260B	NA	10/07/11	1	0.37	0.50	ND		ug/L	406971	NA
Carbon TetrachlorideSW8260BNA10/07/1110.260.50NDug/L406971N1,1,1-TrichloroethaneSW8260BNA10/07/1110.320.50NDug/L406971N1,1-DichloropropeneSW8260BNA10/07/1110.330.50NDug/L406971NBenzeneSW8260BNA10/07/1110.330.500.56ug/L406971NTAMESW8260BNA10/07/1110.320.50NDug/L406971N1,2-DichloroethaneSW8260BNA10/07/1110.280.50NDug/L406971N1,2-DichloroethaneSW8260BNA10/07/1110.380.500.63ug/L406971NDibromomethaneSW8260BNA10/07/1110.370.50NDug/L406971N1,2-DichloroethaneSW8260BNA10/07/1110.210.50NDug/L406971N1,2-DichloropropaneSW8260BNA10/07/1110.230.50NDug/L406971N1,2-DichloropropaneSW8260BNA10/07/1110.200.50NDug/L406971N1,2-DichloropropeneSW8260BNA10/07/1110.150.50NDug/L406971N1,2-DichloropropeneSW8260BNA10/07/11 <td>Bromochloromethane</td> <td>SW8260B</td> <td>NA</td> <td>10/07/11</td> <td>1</td> <td>0.34</td> <td>0.50</td> <td>ND</td> <td></td> <td>ug/L</td> <td>406971</td> <td>NA</td>	Bromochloromethane	SW8260B	NA	10/07/11	1	0.34	0.50	ND		ug/L	406971	NA
1,1,1-TrichloroethaneSW8260BNA10/07/1110.320.50NDug/L406971N1,1-DichloropropeneSW8260BNA10/07/1110.400.50NDug/L406971NBenzeneSW8260BNA10/07/1110.330.500.56ug/L406971NTAMESW8260BNA10/07/1110.320.50NDug/L406971N1,2-DichloroethaneSW8260BNA10/07/1110.280.50NDug/L406971N1,2-DichloroethaneSW8260BNA10/07/1110.280.50NDug/L406971N1,2-DichloroethaneSW8260BNA10/07/1110.370.50NDug/L406971N1,2-DichloropropaneSW8260BNA10/07/1110.370.50NDug/L406971N1,2-DichloropropaneSW8260BNA10/07/1110.370.50NDug/L406971N1,2-DichloropropaneSW8260BNA10/07/1110.300.50NDug/L406971N1,2-DichloropropeneSW8260BNA10/07/1110.300.50NDug/L406971N1,2-DichloropropeneSW8260BNA10/07/1110.150.50NDug/L406971N1,1,2-TichloropropeneSW8260BNA10/07/1	Chloroform	SW8260B	NA	10/07/11	1	0.29	0.50			ug/L	406971	NA
1.1-DichloropropeneSW8260BNA10/07/1110.400.50NDug/L406971NBenzeneSW8260BNA10/07/1110.330.500.56ug/L406971NTAMESW8260BNA10/07/1110.320.50NDug/L406971N1,2-DichloroethaneSW8260BNA10/07/1110.280.50NDug/L406971N1,2-DichloroethaneSW8260BNA10/07/1110.280.50NDug/L406971N1,2-DichloroethaneSW8260BNA10/07/1110.330.50NDug/L406971NDibromomethaneSW8260BNA10/07/1110.210.50NDug/L406971N1,2-DichloropropaneSW8260BNA10/07/1110.370.50NDug/L406971N1,2-DichloropropaneSW8260BNA10/07/1110.300.50NDug/L406971N1,2-DichloropropeneSW8260BNA10/07/1110.300.50NDug/L406971N10ueneSW8260BNA10/07/1110.150.50NDug/L406971N1,1,2-TrichloroethaneSW8260BNA10/07/1110.200.50NDug/L406971N1,3-DichloropropaneSW8260BNA10/07/111	Carbon Tetrachloride	SW8260B	NA	10/07/11	1	0.26	0.50			ug/L	406971	NA
BenzeneSW8260BNA10/07/1110.330.500.56ug/L406971NTAMESW8260BNA10/07/1110.320.50NDug/L406971N1,2-DichloroethaneSW8260BNA10/07/1110.280.50NDug/L406971NTrichloroethyleneSW8260BNA10/07/1110.280.50NDug/L406971NDibromomethaneSW8260BNA10/07/1110.210.50NDug/L406971NJ.2-DichloropropaneSW8260BNA10/07/1110.230.50NDug/L406971NBromodichloromethaneSW8260BNA10/07/1110.230.50NDug/L406971NTolueneSW8260BNA10/07/1110.300.50NDug/L406971NTetrachloroethyleneSW8260BNA10/07/1110.190.50NDug/L406971NTolueneSW8260BNA10/07/1110.150.5076ug/L406971Ntrans-1,3-DichloropropeneSW8260BNA10/07/1110.200.50NDug/L406971N1,1,2-TrichloroethaneSW8260BNA10/07/1110.200.50NDug/L406971N1,3-DichloropropaneSW8260BNA10/07/1110.20	1,1,1-Trichloroethane	SW8260B	NA	10/07/11	1	0.32	0.50	ND		-	406971	NA
TAMESW8260BNA10/07/1110.320.50NDug/L406971N1,2-DichloroethaneSW8260BNA10/07/1110.320.50NDug/L406971NTrichloroethyleneSW8260BNA10/07/1110.380.500.63ug/L406971NDibromomethaneSW8260BNA10/07/1110.210.50NDug/L406971NJ.2-DichloropropaneSW8260BNA10/07/1110.230.50NDug/L406971NBromodichloromethaneSW8260BNA10/07/1110.230.50NDug/L406971NCis-1,3-DichloropropeneSW8260BNA10/07/1110.300.50NDug/L406971NTolueneSW8260BNA10/07/1110.150.50NDug/L406971NTetrachloroethyleneSW8260BNA10/07/1110.150.50NDug/L406971NTetrachloroethyleneSW8260BNA10/07/1110.150.50NDug/L406971N1,1,2-TrichloroethaneSW8260BNA10/07/1110.200.50NDug/L406971N1,3-DichloropropaneSW8260BNA10/07/1110.200.50NDug/L406971N1,3-DichloropropaneSW8260BNA10/07/11<	1,1-Dichloropropene		NA		1	0.40	0.50	ND		-	406971	NA
1,2-DichloroethaneSW8260BNA10/07/1110.280.50NDug/L406971NTrichloroethyleneSW8260BNA10/07/1110.380.500.63ug/L406971NDibromomethaneSW8260BNA10/07/1110.210.50NDug/L406971N1,2-DichloropropaneSW8260BNA10/07/1110.370.50NDug/L406971NBromodichloromethaneSW8260BNA10/07/1110.230.50NDug/L406971Ncis-1,3-DichloropropeneSW8260BNA10/07/1110.300.50NDug/L406971NTolueneSW8260BNA10/07/1110.190.50NDug/L406971Ntrans-1,3-DichloropropeneSW8260BNA10/07/1110.150.5076ug/L406971Ntrans-1,3-DichloropropeneSW8260BNA10/07/1110.200.50NDug/L406971Ntrans-1,3-DichloropropeneSW8260BNA10/07/1110.200.50NDug/L406971N1,1,2-TrichloroethaneSW8260BNA10/07/1110.200.50NDug/L406971NDibromochloromethaneSW8260BNA10/07/1110.200.50NDug/L406971N1,3-DichloropropaneSW					1					-		NA
TrichloroethyleneSW8260BNA10/07/1110.380.500.63ug/L406971NDibromomethaneSW8260BNA10/07/1110.210.50NDug/L406971N1,2-DichloropropaneSW8260BNA10/07/1110.370.50NDug/L406971NBromodichloromethaneSW8260BNA10/07/1110.230.50NDug/L406971Ncis-1,3-DichloropropeneSW8260BNA10/07/1110.300.50NDug/L406971NTolueneSW8260BNA10/07/1110.190.50NDug/L406971NTetrachloroethyleneSW8260BNA10/07/1110.150.5076ug/L406971N1,1,2-TrichloroethaneSW8260BNA10/07/1110.200.50NDug/L406971N1,3-DichloropropeneSW8260BNA10/07/1110.200.50NDug/L406971N1,1,2-TrichloroethaneSW8260BNA10/07/1110.200.50NDug/L406971N1,3-DichloropropaneSW8260BNA10/07/1110.200.50NDug/L406971N1,3-DichloropropaneSW8260BNA10/07/1110.210.50NDug/L406971N1,3-DichloropropaneSW8260BNA										-		NA
Dibromomethane SW8260B NA 10/07/11 1 0.21 0.50 ND ug/L 406971 N 1,2-Dichloropropane SW8260B NA 10/07/11 1 0.37 0.50 ND ug/L 406971 N Bromodichloromethane SW8260B NA 10/07/11 1 0.23 0.50 ND ug/L 406971 N Cis-1,3-Dichloropropene SW8260B NA 10/07/11 1 0.23 0.50 ND ug/L 406971 N Toluene SW8260B NA 10/07/11 1 0.30 0.50 ND ug/L 406971 N Tetrachloroethylene SW8260B NA 10/07/11 1 0.19 0.50 ND ug/L 406971 N trans-1,3-Dichloropropene SW8260B NA 10/07/11 1 0.15 0.50 ND ug/L 406971 N 1,1,2-Trichloroethane SW8260B NA 10/07/11	,									-		NA
1,2-DichloropropaneSW8260BNA10/07/1110.370.50NDug/L406971NBromodichloromethaneSW8260BNA10/07/1110.230.50NDug/L406971Ncis-1,3-DichloropropeneSW8260BNA10/07/1110.300.50NDug/L406971NTolueneSW8260BNA10/07/1110.190.50NDug/L406971NTetrachloroethyleneSW8260BNA10/07/1110.150.5076ug/L406971Ntrans-1,3-DichloropropeneSW8260BNA10/07/1110.200.50NDug/L406971Ntrans-1,3-DichloropropeneSW8260BNA10/07/1110.200.50NDug/L406971N1,1,2-TrichloroethaneSW8260BNA10/07/1110.200.50NDug/L406971NDibromochloromethaneSW8260BNA10/07/1110.200.50NDug/L406971N1,3-DichloropropaneSW8260BNA10/07/1110.210.50NDug/L406971N												NA
Bromodichloromethane SW8260B NA 10/07/11 1 0.23 0.50 ND ug/L 406971 N cis-1,3-Dichloropropene SW8260B NA 10/07/11 1 0.30 0.50 ND ug/L 406971 N Toluene SW8260B NA 10/07/11 1 0.19 0.50 ND ug/L 406971 N Tetrachloroethylene SW8260B NA 10/07/11 1 0.15 0.50 ND ug/L 406971 N trans-1,3-Dichloropropene SW8260B NA 10/07/11 1 0.15 0.50 76 ug/L 406971 N trans-1,3-Dichloropropene SW8260B NA 10/07/11 1 0.20 0.50 ND ug/L 406971 N 1,1,2-Trichloroethane SW8260B NA 10/07/11 1 0.20 0.50 ND ug/L 406971 N Dibromochloromethane SW8260B NA 10/07/11					-					-		NA
Cis-1,3-DichloropropeneSW8260BNA10/07/1110.300.50NDug/L406971NTolueneSW8260BNA10/07/1110.190.50NDug/L406971NTetrachloroethyleneSW8260BNA10/07/1110.150.5076ug/L406971Ntrans-1,3-DichloropropeneSW8260BNA10/07/1110.200.50NDug/L406971N1,1,2-TrichloroethaneSW8260BNA10/07/1110.200.50NDug/L406971NDibromochloromethaneSW8260BNA10/07/1110.210.50NDug/L406971N1,3-DichloropropaneSW8260BNA10/07/1110.210.50NDug/L406971N												NA
Toluene SW8260B NA 10/07/11 1 0.19 0.50 ND ug/L 406971 N Tetrachloroethylene SW8260B NA 10/07/11 1 0.15 0.50 76 ug/L 406971 N trans-1,3-Dichloropropene SW8260B NA 10/07/11 1 0.20 0.50 ND ug/L 406971 N 1,1,2-Trichloroethane SW8260B NA 10/07/11 1 0.20 0.50 ND ug/L 406971 N Dibromochloromethane SW8260B NA 10/07/11 1 0.20 0.50 ND ug/L 406971 N 1,3-Dichloropropane SW8260B NA 10/07/11 1 0.21 0.50 ND ug/L 406971 N 1,3-Dichloropropane SW8260B NA 10/07/11 1 0.18 0.50 ND ug/L 406971 N												NA
Tetrachloroethylene SW8260B NA 10/07/11 1 0.15 0.50 76 ug/L 406971 N trans-1,3-Dichloropropene SW8260B NA 10/07/11 1 0.20 0.50 ND ug/L 406971 N 1,1,2-Trichloropropene SW8260B NA 10/07/11 1 0.20 0.50 ND ug/L 406971 N Dibromochloromethane SW8260B NA 10/07/11 1 0.20 0.50 ND ug/L 406971 N 1,3-Dichloropropane SW8260B NA 10/07/11 1 0.21 0.50 ND ug/L 406971 N 1,3-Dichloropropane SW8260B NA 10/07/11 1 0.18 0.50 ND ug/L 406971 N												NA
trans-1,3-DichloropropeneSW8260BNA10/07/1110.200.50NDug/L406971N1,1,2-TrichloroethaneSW8260BNA10/07/1110.200.50NDug/L406971NDibromochloromethaneSW8260BNA10/07/1110.210.50NDug/L406971N1,3-DichloropropaneSW8260BNA10/07/1110.180.50NDug/L406971N												NA
1,1,2-TrichloroethaneSW8260BNA10/07/1110.200.50NDug/L406971NDibromochloromethaneSW8260BNA10/07/1110.210.50NDug/L406971N1,3-DichloropropaneSW8260BNA10/07/1110.180.50NDug/L406971N	•									-		NA
Dibromochloromethane SW8260B NA 10/07/11 1 0.21 0.50 ND ug/L 406971 N 1,3-Dichloropropane SW8260B NA 10/07/11 1 0.18 0.50 ND ug/L 406971 N												NA
1,3-Dichloropropane SW8260B NA 10/07/11 1 0.18 0.50 ND ug/L 406971 N										-		NA
												NA
יו,2-Dipromoetnane Sw8260B NA 10/07/11 1 0.19 0.50 ND ug/L 406971 N										-		NA
	1,2-Dibromoethane	SW8260B	NA	10/07/11	1	0.19	0.50	ND		ug/L	406971	NA

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Report prepared for:	Brent Wheeler Golden Gate Ennvi	ronmenta	al							eived: 10/0 orted: 10/1	
Client Sample ID:	PW-1				Lab Sa	mple ID:	11100)44-004A			
Project Name/Location:	5930 College A	ve., Oakl	and			Matrix:		ndwater			
Project Number:	Ũ										
Date/Time Sampled:	10/07/11 / 10:0	5									
Tag Number:	5930 College A	ve.,Oakla	ind								
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Chlorobenzene	SW8260B	NA	10/07/11	1	0.14	0.50	ND		ug/L	406971	NA
Ethyl Benzene	SW8260B	NA	10/07/11	1	0.15	0.50	5.9		ug/L	406971	NA
1,1,1,2-Tetrachloroethane	SW8260B	NA	10/07/11	1	0.10	0.50	ND		ug/L	406971	NA
m,p-Xylene	SW8260B	NA	10/07/11	1	0.20	1.0	4.5		ug/L	406971	NA
o-Xylene	SW8260B	NA	10/07/11	1	0.13	0.50	ND		ug/L	406971	NA
Styrene	SW8260B	NA	10/07/11	1	0.20	0.50	ND		ug/L	406971	NA
Bromoform	SW8260B	NA	10/07/11	1	0.45	1.0	ND		ug/L	406971	NA
Isopropyl Benzene	SW8260B	NA	10/07/11	1	0.28	0.50	0.79		ug/L	406971	NA
Bromobenzene	SW8260B	NA	10/07/11	1	0.39	0.50	ND		ug/L	406971	NA
1,1,2,2-Tetrachloroethane	SW8260B	NA	10/07/11	1	0.26	0.50	ND		ug/L	406971	NA
n-Propylbenzene	SW8260B	NA	10/07/11	1	0.30	0.50	1.8		ug/L	406971	NA
2-Chlorotoluene	SW8260B	NA	10/07/11	1	0.33	0.50	ND		ug/L	406971	NA
1,3,5-Trimethylbenzene	SW8260B	NA	10/07/11	1	0.20	0.50	0.99		ug/L	406971	NA
4-Chlorotoluene	SW8260B	NA	10/07/11	1	0.32	0.50	ND		ug/L	406971	NA
tert-Butylbenzene	SW8260B	NA	10/07/11	1	0.29	0.50	ND		ug/L	406971	NA
1,2,3-Trichloropropane	SW8260B	NA	10/07/11	1	0.59	1.0	ND		ug/L	406971	NA
1,2,4-Trimethylbenzene	SW8260B	NA	10/07/11	1	0.33	0.50	3.8		ug/L	406971	NA
sec-Butyl Benzene	SW8260B	NA	10/07/11	1	0.24	0.50	ND		ug/L	406971	NA
p-lsopropyltoluene	SW8260B	NA	10/07/11	1	0.25	0.50	ND		ug/L	406971	NA
1,3-Dichlorobenzene	SW8260B	NA	10/07/11	1	0.31	0.50	ND		ug/L	406971	NA
1,4-Dichlorobenzene	SW8260B	NA	10/07/11	1	0.37	0.50	ND		ug/L	406971	NA
n-Butylbenzene	SW8260B	NA	10/07/11	1	0.32	0.50	0.68		ug/L	406971	NA
1,2-Dichlorobenzene	SW8260B	NA	10/07/11	1	0.39	0.50	ND		ug/L	406971	NA
1,2-Dibromo-3-Chloropropane	SW8260B	NA	10/07/11	1	0.45	1.0	ND		ug/L	406971	NA
Hexachlorobutadiene	SW8260B	NA	10/07/11	1	0.22	0.50	ND		ug/L	406971	NA
1,2,4-Trichlorobenzene	SW8260B	NA	10/07/11	1	0.48	1.0	ND		ug/L	406971	NA
Naphthalene	SW8260B	NA	10/07/11	1	0.57	1.0	1.2		ug/L	406971	NA
1,2,3-Trichlorobenzene	SW8260B	NA	10/07/11	1	0.52	1.0	ND		ug/L	406971	NA
(S) Dibromofluoromethane	SW8260B	NA	10/07/11	1	61.2	131	111		%	406971	NA
(S) Toluene-d8	SW8260B	NA	10/07/11	1	75.1	127	116		%	406971	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	10/07/11	1	64.1	120	97.5		%	406971	NA

Report prepared for:	Brent Wheeler Golden Gate Ennvi	ironment	al						te Rece te Repo		,	
Client Sample ID: PW-1 Project Name/Location: 5930 College Ave., Oakland Project Number: Frage Ave., Oakland						Lab Sample ID:111004Sample Matrix:Ground						
Date/Time Sampled:												
Tag Number:	5930 College A	Ave.,Oakla	and									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analyt Bato		Prep Batch
TPH(Gasoline)	8260TPH	NA	10/07/11	1	22	50	260		ug/L	4069	971	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	10/07/11	1	41.5	125	105		%	4069	971	NA
NOTE: Result is elevated of Gasoline.	due to contribution from h	eavy end	hydrocarbon	s and	discrete p	eak of non	-fuel compoun	d in the C5	-C12 ran	ige quar	ntified	as

MB Summary Report

					, in the second s	spon				
Work Order:	1110044	Prep	Method:	5030	Prep	Date:	10/07/11	Prep Batch:	3816	
Matrix:	Water	Analy		8260TPH	Anal	yzed Date:	10/07/11	Analytical	406971	
Units:	ug/L	Metho						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier					
TPH(Gasoline) (S) 4-Bromofluoro	obenzene	22	50	ND 92.0		I				
Work Order:	1110044	Prep	Method:	NA	Prep	Date:	NA	Prep Batch:	NA	
Matrix: Units:	Water ug/L	Analy Metho		SW8260B	Anal	yzed Date:	10/07/11	Analytical Batch:	406971	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier					
Dichlorodifluorom	ethane	0.41	0.50	ND	•					
Chloromethane		0.41	0.50	ND						
Vinyl Chloride		0.37	0.50	ND						
Bromomethane		0.37	0.50	ND						
Trichlorofluorome	thane	0.34	0.50	ND						
1,1-Dichloroether	ne	0.29	0.50	ND						
Freon 113		0.38	0.50	ND						
Methylene Chlorid	de	0.18	5.0	ND						
trans-1,2-Dichloro	bethene	0.31	0.50	ND						
MTBE		0.38	0.50	ND						
tert-Butanol		1.5	5.0	ND						
Diisopropyl ether		0.36	0.50	ND						
1,1-Dichloroethar	ne	0.28	0.50	ND						
ETBE		0.40	0.50	ND						
cis-1,2-Dichloroet		0.33	0.50	ND						
2,2-Dichloropropa		0.37	0.50	ND						
Bromochlorometh	nane	0.34	0.50	ND						
Chloroform	24.	0.29	0.50	ND						
Carbon Tetrachlo		0.26	0.50	ND						
1,1,1-Trichloroeth		0.32	0.50	ND						
1,1-Dichloroprope	ene	0.40	0.50	ND						
Benzene		0.33	0.50							
TAME		0.32	0.50							
1,2-Dichloroethar		0.28	0.50							
Trichloroethylene Dibromomethane	0.38 0.21	0.50 0.50	ND ND							
			0.50 0.50	ND						
1,2-Dichloropropa Bromodichlorome		0.37 0.23	0.50	ND						
cis-1,3-Dichloropi		0.23	0.50	ND						
	opene	0.30	0.50							

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Toluene

0.19

0.50

ND

MB Summary Report

Work Order:	1110044	Prep	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Water	Analy		SW8260B	Anal	yzed Date:	10/07/11	Analytical	406971
Units:	ug/L	Metho	od:					Batch:	
	5								
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Tetrachloroethyle	ne	0.15	0.50	ND					
trans-1,3-Dichloro	propene	0.20	0.50	ND					
1,1,2-Trichloroeth	ane	0.20	0.50	ND					
Dibromochlorome	ethane	0.21	0.50	ND					
1,3-Dichloropropa	ane	0.18	0.50	ND					
1,2-Dibromoethar	ne	0.19	0.50	ND					
Chlorobenzene		0.14	0.50	ND					
Ethyl Benzene		0.15	0.50	ND					
1,1,1,2-Tetrachlor	roethane	0.10	0.50	ND					
m,p-Xylene		0.20	1.0	ND					
o-Xylene		0.13	0.50	ND					
Styrene		0.20	0.50	ND					
Bromoform		0.45	1.0	ND					
Isopropyl Benzen	е	0.28	0.50	ND					
Bromobenzene		0.39	0.50	ND					
1,1,2,2-Tetrachlor	roethane	0.26	0.50	ND					
n-Propylbenzene		0.30	0.50	ND					
2-Chlorotoluene		0.33	0.50	ND					
1,3,5-Trimethylbe	enzene	0.20	0.50	ND					
4-Chlorotoluene		0.32	0.50	ND					
tert-Butylbenzene	•	0.29	0.50	ND					
1,2,3-Trichloropro		0.59	1.0	ND					
1,2,4-Trimethylbe		0.33	0.50	ND					
sec-Butyl Benzen		0.24	0.50	ND					
p-Isopropyltoluen		0.25	0.50	ND					
1,3-Dichlorobenzo		0.31	0.50	ND					
1,4-Dichlorobenzo		0.37	0.50	ND					
n-Butylbenzene		0.32	0.50	ND					
1,2-Dichlorobenzo	ene	0.39	0.50	ND					
1,2-Dibromo-3-Ch		0.45	1.0	ND					
Hexachlorobutadi		0.22	0.50	ND					
1,2,4-Trichlorobei		0.48	1.0	ND					
Naphthalene		0.57	1.0	ND					
1,2,3-Trichlorobei	nzene	0.52	1.0	ND					
Ethanol	20110	100	100	ND	TIC				
(S) Dibromofluoro	methane	100	100	102	110				
(S) Toluene-d8				120					
(S) 4-Bromofluoro	henzene			90.9					

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

LCS/LCSD Summary Report

				L00/1		unnary	Report	Raw value	es are used in	quality contro	ol assessme		
Work Order:	1110044		Prep Method: 5030			Prep Dat	te:	10/07/11	Prep Bat	t ch: 381	6		
Matrix:	Water		Analytical	8260	TPH	Analyze	d Date:	10/07/11	Analytical 406971				
Units:	ug/L		Method:						Batch:				
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier		
TPH(Gasoline)		22	50	ND	227.27	85.8	86.6	0.899	52.4 - 127	30			
(S) 4-Bromofluor	robenzene			92.0	11.36	95.5	85.1		41.5 - 125				
Work Order: 1110044			Prep Metho	od: NA		Prep Dat	te:	NA	Prep Bat	tch: NA			
Matrix:			Analyzed	d Date:	10/07/11	Analytic	al 406	971					
Units:	ug/L		Method:						Batch:				
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier		
1,1-Dichloroethe	ene	0.29	0.50	ND	17.04	93.1	90.1	3.53	61.4 - 129	30	1		
Benzene		0.33	0.50	ND	17.04	74.7	75.4	1.17	66.9 - 140	30			
Trichloroethylen		0.00	0.50	ND	17.04	104	102	2.28	69.3 - 144	30			
inence coury ion	e	0.38	0.50	ND	17.04	104							
	e	0.38 0.19	0.50 0.50	ND	17.04	104	101	4.32	76.6 - 123	30			
Toluene	e				-	-	-	4.32 3.04	76.6 - 123 73.9 - 137	30 30			
Toluene Chlorobenzene		0.19	0.50	ND	17.04	106	101						
Toluene Chlorobenzene (S) Dibromofluor (S) Toluene-d8		0.19	0.50	ND ND	17.04 17.04	106 105	101 102		73.9 - 137				

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - mg/L and mg/Kg (equivalent to PPM - parts per million in liquid and solid), ug/L and ug/Kg (equivalent to PPB - parts per billion in liquid and solid), ug/M3, mg.m3, ppbv and ppmv (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), ug/Wipe (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

B - Indicates when the anlayte is found in the associated method or preparation blank

D - Surrogate is not recoverable due to the necessary dilution of the sample

E - Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.

H- Indicates that the recommended holding time for the analyte or compound has been exceeded

J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative

NA - Not Analyzed

N/A - Not Applicable

NR - Not recoverable - a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added

R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts

S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case narrative

X -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards.

Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Sample Receipt Checklist

Client Name: Golden Gate Ennvironmental	Date and Time Received: <u>10/7/2011</u> 13:15
Project Name: 5930 College Ave., Oakland	Received By: <u>NG</u>
Work Order No.: <u>1110044</u>	Physically Logged By: <u>NG</u>
	Checklist Completed By: NG
	Carrier Name: First Courier
Chain of Custody	(COC) Information
Chain of custody present?	Yes
Chain of custody signed when relinquished and received?	Yes
Chain of custody agrees with sample labels?	Yes
Custody seals intact on sample bottles?	Not Present
Sample Recei	pt Information
Custody seals intact on shipping container/cooler?	Not Present
Shipping Container/Cooler In Good Condition?	Yes
Samples in proper container/bottle?	Yes
Samples containers intact?	Yes
Sufficient sample volume for indicated test?	Yes
Sample Preservation and I	Hold Time (HT) Information
All samples received within holding time?	Yes
Container/Temp Blank temperature in compliance?	Yes Temperature: <u>8</u> °C
Water-VOA vials have zero headspace?	Yes
Water-pH acceptable upon receipt?	<u>N/A</u>
pH Checked by:	pH Adjusted by:

All samples present and correct. Samples received in a cooler with ice.

Login Summary Report

Client ID:	TL5127	Golden Gate Ennvironme	ental		QC Level:		
Project Name:	5930 College A	ve., Oakland			TAT Request	ed: 5+ day:0	
Project # :					Date Receive	ed: 10/7/2011	
Report Due Date:	10/14/2011				Time Receive	ed: 13:15	
Comments:							
Work Order # :	1110044						
WO Sample ID	<u>Client</u> Sample ID	<u>Collection</u> Date/Time			nple <u>Test</u> Hold <u>On Hold</u>	<u>Requested</u> <u>Tests</u>	<u>Subbed</u>
1110044-001A	MW-1	10/07/11 10:4	0 Water	11/21/11		EDF W_GCMS-GRO W_8260MBTEX	
Sample Note:	MBTEX for 001-0	003, full 826o for 004					
1110044-002A	MW-2	10/07/11 9:20	Water	11/21/11		W_GCMS-GRO W_8260MBTEX	
1110044-003A	MW-3	10/07/11 8:15	Water	11/21/11		W_GCMS-GRO	
1110044-004A	PW-1	10/07/11 10:0	5 Water	11/21/11		W_8260MBTEX	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

W_8260Full

Torrent	483 Sinclair Frontag Milpitas, CA 95035 Phone: 408.263.529 FAX: 408.263.8293	58 RESE	18/18/16/16/17	ACCOUNTS OF THE OWNER	120110000		i saise	25.000	NEWSCOLOUP	٥D١			LAB WORK ORDER NO
LABORATORY, INC.	www.torrentlab.com		• NO	3. 6			N. BACKLER	「意い」が			SEONLY		1110044
Company Name: Golden Gate Envir	ronmental, Inc.									ue, Oakla			
Address: 3730 Mission Street		7:- 0- 1-	0.4110							er Monito			
	tate: CA	Zip Code:	94110	Specia	al Instru	ictions /	Comm	ents: (Flobal 1	D: 10600)102112. I	field Poi	nt ID=Sample ID
Telephone: 415-970-9088 FAX: 415-970-9089 REPORT TO: Brent Wheeler SAMPLER: John Carver P.O. #: GGE 2014 EMAIL: b.wheeler@ggtr.com													
EPORT TO: Brent Wheeler					1				E	MAIL: D.	wheeler@	ggtr.con	n
URNAROUND TIME: 10 Work Days 3 Work Days Noon - N 7 Work Days 2 Work Days 2 - 8 Hou 5 Work Days 1 Work Day 0 Other	Waste Water	Air Other	CC Leve	el IV	TPH-G (8260)	BTEX/MTBE(8260)	VOCs (Full List)				,		ANALYSIS REQUESTED
AB ID CLIENT'S SAMPLE I.D.	DATE / TIME SAMPLED	MATRIX	# OF CONT	CONT TYPE	TP	вт	VO						REMARKS
OLA MW-1	100711/ 1040	GW	3	Voa	1	1	×.						
02A MW-2	100711/ 0820	GW	3	Voa	1	1						-	
03 A MW-3	100711/ 0815	GW	3	Voa	1	1							
94A PW-1	100711/ 1005	GW	3	Voa	1		1						
													p. 8 part
						1							ferring
													Chill wa
													Jours
	1								1				а.
	¢.												<u>n</u>
Relinquished By: Print: Philosubel John Relinquished By: Print:	Date: Date: Date:	\	Time: 1045 Time:)	Je	red By:	<u>(</u>		Print:	intor varin	Date i	-17	Time: 12:70
Joiryth	tong 10/7	,		R.m.	12452372747	NECATION CERT	had	nor		·	1000	7-11	13:15
	Yes NO Si oratory 30 days from dat	e of receipt	ce? DYes unless other Log In Review	arrange		d of Ship is are ma	_	Fing	Dat	<u>ошті о</u> 9 е:	Sample	seals inta Pag	

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

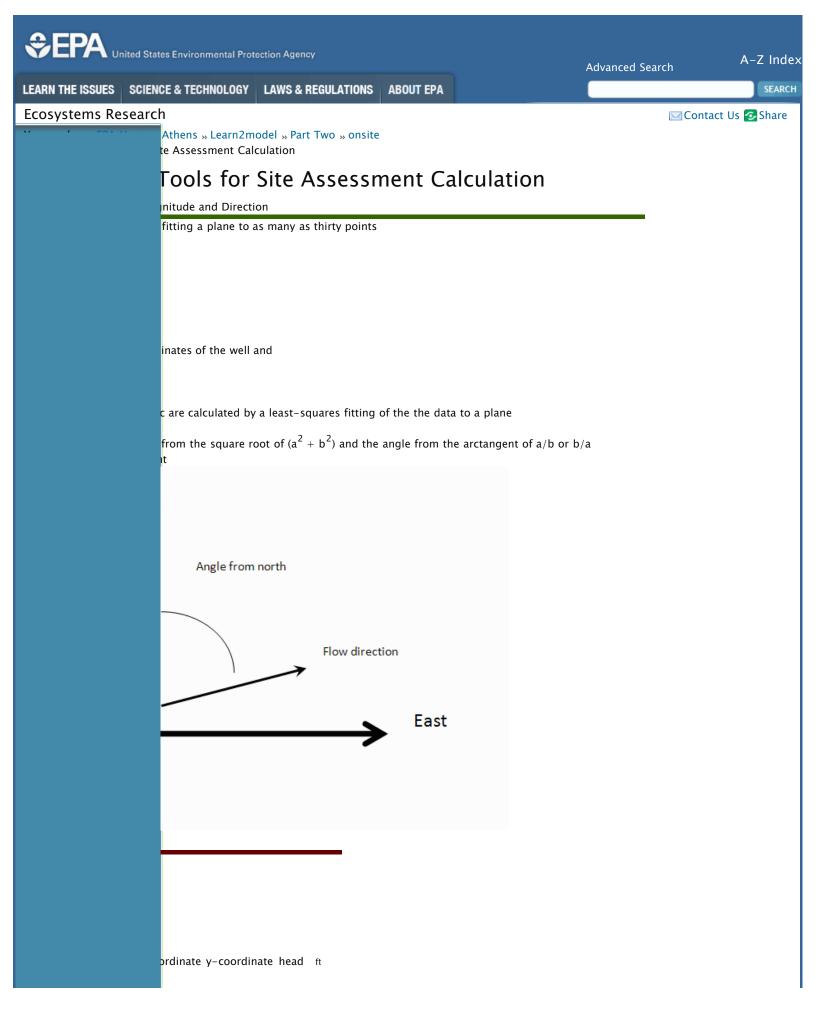
Submittal Type:	EDF
Report Title:	2Q11 Groundwater Sampling Results - October 2011
Report Type:	Monitoring Report - Semi-Annually
Facility Global ID:	T0600102112
Facility Name:	SHEAFFS SERVICE GARAGE
File Name:	GGE 1110044 5930 College Ave EDF.zip
Organization Name:	Golden Gate Environmental, Inc.
Username:	GGE
IP Address:	108.81.108.167
Submittal Date/Time:	6/10/2013 8:59:33 AM
Confirmation Number:	3707782804

VIEW QC REPORT

VIEW DETECTIONS REPORT

Copyright © 2013 State of California

GEOTRACKER ESI


UPLOADING A GEO_WELL FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: Report Title: Facility Global ID: Facility Name: File Name: Organization Name: Username: IP Address: Submittal Date/Time: Confirmation Number: GEO_WELL 2Q11 Groundwater Monitoring Results - October 2011 T0600102112 SHEAFFS SERVICE GARAGE GEO_WELL.zip Golden Gate Environmental, Inc. GGE 108.81.108.167 6/10/2013 9:02:13 AM 4996067106

Copyright © 2013 State of California

Calculation lead Values

from North (positive y axis) on (R²) systems Research Web editor to ask a question, provide feedback, or report a problem.

Ecosystems Research Home

About Ecosystems Research

Visitor Information

Publications

Research Area

Staff

EPA Home | Privacy and Security Notice | Contact Us WCMS Last updated on Wednesday, November 30, 2011 News by E-mail EPA Mobile

News Feeds

TABLE 1

GROUNDWATER MONITORING AND SAMPLING DATA CHEVRON SERVICE STATION 20-9339 5940 COLLEGE AVENUE OAKLAND, CALIFORNIA

					HYDROCARBONS	PRIMARY VOCS					
Location	Date	тос	DTW	GWE	ТРН-GRO	В	Т	E	X		
	Units	ft	ft	ft-amsl	μg/L	µg/L	µg∕L	µg/L	µg∕L		
MW-1	10/14/2010	196.91	13.25	183.66	<50	<0.5	<0.5	<0.5	<1.5		
MW-1	04/14/2011	196.91	7.81	189.10	<50	<0.5	< 0.5	<0.5	<1.5		
MW-1	10/07/2011	196.91	10.66	186.25	140	<0.5	<0.5	<2.0	2.0		
MW-2	10/14/2010	197.35	12.15	185.20	480	1.3	<2.0	<2.0	7.1		
MW-2	04/14/2011	197.35	6.92	190.43	150	<0.5	<0.5	<0.5	<5.0		
MW-2	10/07/2011	197.35	10.27	187.08	370	0.7	<0.5	0.8	5.0		
QA	10/14/2010	-	-	-	<50	<0.5	<0.5	<0.5	<1.5		
QA	04/14/2011	-	-	-	<50	<0.5	<0.5	<0.5	<1.5		
QA	10/07/2011	-	-	-	<50	<0.5	<0.5	<0.5	<1.5		

Abbreviations and Notes:

TOC = Top of Casing

DTW = Depth to Water

GWE = Groundwater elevation

(ft-amsl) = Feet Above Mean sea level

ft = Feet

 μ g/L = Micrograms per Liter

TPH-GRO = Total Petroleum Hydrocarbons - Gasoline Range Organics

VOCS = Volatile Organic Compounds

B = Benzene

T = Toluene

TABLE 1

GROUNDWATER MONITORING AND SAMPLING DATA CHEVRON SERVICE STATION 20-9339 5940 COLLEGE AVENUE OAKLAND, CALIFORNIA

E = Ethylbenzene

X = Xylene

*

-- = Not available / not applicable

<x = Not detected above laboratory method detection limit</pre>

TOC elevations were surveyed on December 27, 2000, by Virgil Chavez Land Surveying.

The benchmark used for the survey was the City of Oakland benchmark being

a cut square in the top of curb, at the curb return at the northeast corner of

College Avenue and Miles Avenue (Benchmark Elev. 179.075 feet msl).

Plea	ase pi		ned for use on elite (12-pitch) typewriter.)						Approved.	OMB No. 2	2050-0039
Î		IFORM HAZARDOUS VASTE MANIFEST	1. Generator ID Number CAL 000 308 093	2. Page 1 of 1	3. Emergency Response 800-479			Tracking Nul 727(9 J .	JK
		enerator's Name and Mailing William G Sheaff Trus 1945 Parkside Dr Concord CA 94519 erator's Phone:		G 	Generator's Site Address 5930 Col Oakland		n mailing addre:	ss)			
	_	ansporter 1 Company Name Big Sky Environmenta	· ·				U.S. EPA ID I	Number 100 346 010	`		
		ansporter 2 Company Name)				U.S. EPA ID I		/		
	8. D	ENV Environmental esignated Facility Name and US Ecology		<u>,</u> ,, .			U.S. EPA ID I	R 000 17 Number	9 382		
		Highway 95, 11 Mil Beatty, NV 89003	es South of Beatty	N	VD 048 9	46 016					
	Faci	lity's Phone:	775-553-2203								
	9a. HM		n (including Proper Shipping Name, Hazard Class, ID Numb ny))	er,	10. Contai No.	ners Type	11. Total Quantity	12. Unit Wt./Vol.	13. \	Vaste Code:	6
GENERATOR -	X	UN JOOL LIN	rironmentaly Hazardous Substance, N.O.S 1 Trace Organics)	9, PG III	001	dM	45	G	D018	343	o that an a state survey as
- GENEI		2.					- wc				
		3.									Concernance and Concernance and
		4.	······						****	1	
		Special Handling Instructions Wear PPE, ERG 152,	s and Additional Information Emergency Contact: Jeff Rhodes, 510 541	l- 2128 . (9B(X:	55				4. 4.	
	15.	marked and labeled/placan Exporter, I certify that the c	R'S CERTIFICATION: I hereby declare that the contents of ded, and are in all respects in proper condition for transport a ontents of this consignment conform to the terms of the attac mization statement identified in 40 CFR 262.27(a) (if I am a 1	according to applica ched EPA Acknowie	able international and nati	onal govemme	intal regulations			.,	
	Gen	erator's/Offeror's Printed/Typ	bed Name	Signa				-, -, - <i>1</i> 2. <u></u>		th Day	
*	16. 1	nternational Shipments	Import to U.S.	Export from U.						110	
R INT'L		nsporter signature (for expor Fransporter Acknowledgment	ts only):		Date leavi	•	1 .				
TRANSPORTER	Tran	sporter 1 Printed/Typed Nar sporter 2 Printed/Typed Nar	Ipm Clark	Signa	WIL	Ch	\langle		Mon 1 Mon	19	· Year 11/ Year
1	18. [Discrepancy		1						I	1
	18a,	Discrepancy Indication Spa	ce Quantity Type		Residue Manifest Reference	Number	Partial Rej	ection	[Full Reje	ection
ACILITY		Alternate Facility (or Genera	ator)				U.S. EPA ID N	Number			
DESIGNATED FACILITY	18c.	lity's Phone: Signature of Alternate Facili	··· /			-	1		Mo	nth Day	Year
DESIC	19.† 1.	Hazardous Waste Report Ma	anagement Method Codes (i.e., codes for hazardous waste to 2.	reatment, disposal, 3.	and recycling systems).		4.]
	_	Designated Facility Owner or ted/Typed Name	Poperator: Certification of receipt of hazardous materials con	vered by the manife Signa		n 18a			Mor	ith Day	Year
EP4	For	n 8700-22 (Rev. 3-05) P	revious editions are obsolete.				0.05070				
		- ,		וט	ESIGNATED FA		U DESTIN		3 I A I E (UINEV)

· ,