#### **RECEIVED**

11:16 am, Dec 15, 2008

Alameda County
Environmental Health



December 12, 2008

William G. Sheaff TTE Trust Dr. Brian Sheaff 1945 Parkside Drive Concord, CA 94519

RE: Fourth Quarter 2008 Groundwater Monitoring Report

SITE: Former Sheaff's Garage

5930 College Avenue, Oakland, California ACHCSA Fuel Leak Case No. RO0000377

**GGTR Project 7335** 

Dear Dr. Sheaff:

Golden Gate Tank Removal, Inc. (GGTR) is pleased to submit the enclosed copy of the *Fourth Quarter 2008 Groundwater Monitoring Report*, which discusses the activities and findings of the continued quarterly groundwater monitoring and sampling conducted on October 21, 2008 at 5930 College Avenue in Oakland, California. GGTR uploaded an electronic copy of the report to the State Water Resources Control Board's GeoTracker Database System. An electronic copy has been submitted to the attention of Ms. Barbara Jakub via the Alameda County Environmental Cleanup Oversight Program's FTP site.

Should you have any questions, please contact us at your earliest convenience. In my absence from the office, I may be reached by cellular service at (415) 686-8846.

Sincerely,

Golden Gate Tank Removal, Inc.

H. Lall

Brent A. Wheeler Project Manager

Enclosure/1



## GROUNDWATER MONITORING REPORT

Sheaff's Garage 5930 College Avenue Oakland, CA 94618

ACHCSA Fuel Leak Case No. RO0000377

Prepared For:

William G. Sheaff TTE Trust Dr. Brian R. Sheaff, D.D.S. 1945 Parkside Drive Concord, CA 94519

GGTR Project No. 7335 Sampling Date October 21, 2008

Report Date: December 12, 2008

Brent Wheeler

Project Manager

1.11

Eugenio

No. 7696

## TABLE OF CONTENTS

| <u>INTRODUC</u>  | <u>TION</u>                                                           | 1  |
|------------------|-----------------------------------------------------------------------|----|
| SITE DESCI       | RIPTION                                                               | 1  |
| <b>GROUNDW</b>   | ATER SETTING & CONDITIONS                                             | 2  |
| PROJECT H        | <u>ISTORY</u>                                                         | 3  |
| <b>GROUNDW</b>   | ATER MONITORING & SAMPLING – October 2008                             | 5  |
| RESULTS          |                                                                       |    |
| CONCLUSIO        | ONS / RECOMMENDATIONS                                                 | 8  |
|                  | STRIBUTION                                                            |    |
| <b>LIMITATIO</b> | <u>NS</u>                                                             | 10 |
| TABLES           |                                                                       |    |
| 1.               | Historical Groundwater Levels & Hydrocarbon Analytical Results        | S  |
| 2.               | Historical Groundwater VOC Analytical Results                         |    |
| FIGURES          |                                                                       |    |
| 1.               | Site Location Map                                                     |    |
| 2.               | Site vicinity Map                                                     |    |
| 3.<br>4.         | Groundwater Potentiometric Map<br>Groundwater Analytical Data Diagram |    |
| 4.<br>5.         | Groundwater TPH-G Isoconcentration Map                                |    |
| 6.               | Groundwater Benzene IsoconcentrationMap                               |    |
| 7.               | Rose Diagram                                                          |    |
| APPENDIX         |                                                                       |    |
| Α                | Fluid-Level Monitoring Data Form                                      |    |
|                  | Well Purging/Sampling Data Sheets                                     |    |
| В                | Laboratory Certificates of Analysis                                   |    |
|                  | Chain of Custody Form                                                 |    |
|                  | GeoTracker Upload Confirmation Forms                                  |    |
|                  | Gettler –Ryan Summary Table                                           |    |

#### INTRODUCTION

This report presents the results and findings of the October 21, 2008 groundwater monitoring and sampling activities conducted by Golden Gate Tank Removal, Inc. (GGTR) at 5930 College Avenue in Oakland, California (the Site). The Alameda County Health Care Services Agency (ACHCSA) has designated the Site as Fuel Leak Case No. RO000377. Figure 1 shows the general location of the Site. Figure 2 depicts the Site, adjacent properties, and associated features. Figure 3 shows the groundwater flow direction and hydraulic gradient for this event. Figure 4 shows a summary of the groundwater sample analytical results for this event. Figures 5 and 6 depict the dissolved-phase gasoline and benzene isoconcentration map, respectively. Figure 7 depicts the historical groundwater flow direction and hydraulic gradient. Table 1 provides a tabulated summary of the laboratory results of historical groundwater sample analyses and fluid-level monitoring data at the Site. Table 2 provides a tabulated summary of sample analyses for Volatile Organic Compounds (VOCs).

Gettler-Ryan, Inc. (GR) of Dublin, California is currently conducting a separate groundwater investigation for the former Chevron Station #20-9339 located adjacent to the north side of the Site at 5940 College Avenue. Two groundwater monitoring wells (GR-MW1 & GR-MW2) are used to evaluate the hydrocarbon concentrations in groundwater at this site. In a letter dated September 1, 2008, the ACHCSA requested that additional site characterization be performed and that a conceptual site model be prepared for the former Chevron Station property, based on a recent subject case file review.

GGTR and GR have conducted joint monitoring and sampling activities at the associated sites on a quarterly basis since October 2000. Since the April 8, 2002 event, GR has monitored and sampled each well on a biannual basis. GR performed their most recent joint/biannual monitoring and sampling of GR-MW1 & GR-MW2 on October 15, 2008. Figures 2 and 3 show the location of each GR well relative to the Site. Appendix B includes GR groundwater monitoring data and analytical results summary table.

#### **SITE DESCRIPTION**

The Site is located at 5930 College Avenue, along the east side of College Avenue between Harwood Street and Chabot Road in Oakland, California. The Site lies approximately 2.5 miles east of Interstate 80 and the San Francisco Bay. Figure 1 shows the general location of the Site.

Stoddard Automotive (Former Sheaff's Service Garage) currently occupies the Site, for the service and repair of automobiles. No active fuel storage or distribution system operations currently take place at the Site. The Site is approximately 5,500 square feet in area with about 75% utilized by a covered warehouse/garage and 25% used as an exterior (uncovered) storage yard. The ground surface of the entire Site is paved with concrete. The elevation of the Site is approximately 195 feet above Mean Sea Level (MSL, Figure 1). Figure 2 depicts pertinent Site structures and adjacent properties.

The Site is relatively flat lying with the topographic relief in the immediate vicinity of the Site generally directed toward the southwest (Figure 1). Regional topographic relief appears to be directed toward the west-southwest in the general direction of the San Francisco Bay. One 675-gallon gasoline Underground Storage Tank (UST) and one 340-gallon waste oil UST were located beneath the sidewalk at the southwest corner of the Site (Figure 2). The tanks were removed by GGTR in August 1996. A brief discussion of the tank removal activities is presented herein.

#### **GROUNDWATER SETTING & CONDITIONS**

The regional groundwater flow in the vicinity of the Site is estimated to be towards the west-southwest in the direction of the San Francisco Bay and generally following the natural topographic relief of the area. The Site is in the East Bay Plain Groundwater Basin according to the San Francisco Bay Basin Water Quality Control Plan prepared by the California Regional Water Quality Control Board – Region 2 (CRWQCB, 1995). Groundwater in this basin is designated beneficial for municipal and domestic water supply and industrial process, service water, and agricultural water supply. Although no domestic water supply wells are located in the Site vicinity, the shallow groundwater beneath the Site is considered a potential drinking water source by local regulatory agencies.

The nearest surface water body is Harwood Branch (aka Claremont Creek) that is the northernmost tributary of Temescal Creek / watershed. Harwood Branch flows via an intermittent underground culvert and an open surface channel in the vicinity of the Site. Flow from Harwood Branch is diverted into two conduits on both sides of the Site. To the west along College Avenue, storm flow is directed within the Alameda County Flood Control District 90" RCP underground conduit. Harwood Branch flows within an open channel to the east of the Site. To the south along Chabot Avenue, Harwood Branch flows within an underground box culvert. The two drainage systems apparently join at the intersection of College and Chabot Avenues. Flow lines in conduits at this intersection are listed on the map with elevations of about 180 feet.

As discussed in the document "Report of Additional Site Characterization and Groundwater Monitoring. GGTR August 2006", historical groundwater flow directions and gradients have shown high variability at the Site with flow directions varying widely from eastward to westward. In general, the data suggests that groundwater flow direction varies from westerly towards the 90" conduit within College Avenue and south / easterly towards Harwood Branch. Groundwater elevations at the Site also show large seasonal variations. In well MW-1, the depth to groundwater has historically varied from 3.08 feet below Top of Casing (TOC) in wet weather conditions to 11.04 feet below TOC in dry weather conditions. Similarly, in well MW-2, the depth to groundwater has varied from 3.61 feet to 13.85 feet below TOC and in well MW-3 has varied from 3.41 feet to 10.02 feet below TOC. In well PW-1, the depth to groundwater has varied from 2.27 feet to 11.81 feet below TOC. The groundwater elevations at the Site have fluctuated from approximately 183.43 ft above MSL (MW-2; October 2002) to 194.4 ft above MSL (PW-

1; April 2006). The nearby drainage conduits appear to have flow lines below the elevation of the Site groundwater table. We surmise that groundwater flow at the Site is significantly influenced by the 90-inch RCP conduit / Harwood Branch drainage system as well as other subsurface utilities along College Avenue with inverts of 12 feet below grade.

### **PROJECT HISTORY**

In August 1996, GGTR removed two USTs and an associated fuel dispenser from the Site at the locations shown in Figure 2. The following table presents a summary of the tank designations, size, type of construction and contents:

| Designation | Construction | Diameter | Length | Volume    | Contents  |  |
|-------------|--------------|----------|--------|-----------|-----------|--|
|             |              | (Feet)   | (Feet) | (Gallons) |           |  |
| TANK 1      | Steel        | 4        | 7      | 675       | Gasoline  |  |
| TANK 2      | Steel        | 4        | 3.5    | 340       | Waste Oil |  |

GGTR removed the residual fuel from the subsurface product piping (left in place), thoroughly flushed and drained the piping, and capped both ends. GGTR over-excavated the gasoline-contaminated soil surrounding the former UST location. The tank removal and over-excavation activities are documented in the document entitled "Tank Removal Report, GGTR, October 11, 1996".

Between May 1998 and October 1999, as requested by the ACHCSA, GGTR performed a preliminary subsurface soil boring investigation at the Site and subsequently installed three groundwater monitoring wells in the vicinity of the former UST cavity. Soil borings B1 to B3 were advanced immediately south, east, and west, respectively, of the former UST cavity. Following review and interpretation of all field and soil sample analytical data collected during these activities, additional soil borings B4 to B6 were then advanced at the Site to further assess the extent of contamination in soil and the potential impact to groundwater. The latter borings were converted to 2-inch-diameter groundwater monitoring wells, MW-1 to MW-3. Figure 2 depicts the boring and monitoring well locations.

In collaboration with GR, which is conducting a separate groundwater investigation adjacent to the Site (5940 College Avenue; Former Chevron Station), GGTR has jointly monitored and sampled each well on a quarterly or semi-annual basis since April 2001. GR has most recently conducted groundwater monitoring and sampling activities at their site on October 15, 2008. Figure 2 shows the locations of the Site monitoring wells as well as GR monitoring wells.

Based on the residual elevated concentrations of gasoline-range hydrocarbons measured in the groundwater samples collected during the April 2001 quarterly monitoring activities, the ACHCSA, in a letter dated July 9, 2001, requested a work plan to assess whether any additional contaminant sources may potentially exist onsite that may be contributing to the elevated hydrocarbon concentration in groundwater. GGTR submitted the work plan on December 19, 2001, which was subsequently approved by the ACHCSA in a letter dated January 3, 2002. In August, October, and November 2002, GGTR implemented the UST product line excavation/removal activities and installed soil borings B7 to B11. Figure 2 depicts the locations of these borings, as well as the location of the former product line and associated sample points. Details are presented in the document entitled "Report of Additional Soil and Groundwater Investigation. GGTR, June 10, 2003".

Based on review of GGTR's June 2003 report, the ACHCSA, in their letter dated September 8, 2003 requested a work plan addressing additional source and site characterization of contaminants in soil and groundwater at the Site. GGTR submitted the Work Plan for Additional Site Characterization on December 29, 2003, and it's Addendum on September 30, 2004, which were conditionally approved by the ACHCSA in letters dated June 3, 2004, and February 22, 2005. Between April and July 2005, GGTR advanced additional borings B12 to B24 to approximately 25 feet below grade surface (fbg) and Hydropunch borings HB-1 to HB-6 to approximately 15 fbg, and converted HB-2 to piezometer well PW-1. Figure 2 shows the location of each additional soil boring. Details of this investigation are presented in the document entitled "Report of Additional Site Characterization and Groundwater Monitoring. GGTR, August 29, 2006".

Between October 2003 and April 2008, GGTR conducted additional quarterly groundwater monitoring and sampling activities at the Site and submitted their associated Groundwater Monitoring Reports to the ACHCSA. GGTR was not contracted to conduct the Third Quarter 2006 and the First Quarter 2008 groundwater monitoring events at the Site. The results of the July 2008 monitoring and sampling event are presented in the following sections.

Based on review of the conclusions and recommendations presented in the documents Report of Additional Site Characterization, GGTR August 2006 and Groundwater Monitoring Report, GGTR May 30, 2008, the ACHCSA, on July 25, 2008, issued a letter requesting a work plan to implement the conditionally approved activities. The additional work activities are to include 1) vertical and horizontal delineation of dissolved contaminant plume(s), 2) resurveying the wellhead elevations of all existing Site wells and piezometer well, 3) further preferential pathway evaluation of the Harwood Creek conduit down gradient of the Site, 4) further characterization of the PCE-impacted groundwater in the vicinity of PW-1, and 5) updating the existing Site Conceptual Model with data acquired from the additional Site characterization activities.

#### **GROUNDWATER MONITORING & SAMPLING – October 2008**

The scope of work for the Fourth Quarter 2008 groundwater monitoring and sampling event includes the following:

- Monitoring, purging and sampling of monitoring wells MW-1, MW-2, MW-3 and PW-1
- Groundwater sample laboratory analysis
- Waste management
- Electronic data upload to GeoTracker Database System
- Data interpretation

**Groundwater Monitoring and Sampling:** On October 21, 2008, GGTR monitored and sampled MW-1 to MW-3 and PW-1. Prior to purging and sampling, GGTR removed the well cover and locking compression cap from each well and allowed the groundwater in each well column to stabilize for approximately 20 minutes. GGTR then measured and recorded the depth to product/groundwater using an electronic water/oil interface meter. Fluid levels were measured relative to the north side of the top of each well casing to the nearest 0.01 foot.

GGTR subsequently purged groundwater from monitoring wells MW-1 to MW-3 and piezometer PW-1 using a peristaltic pump (average flow rate @ 300-350 milliliters per minute), and simultaneously monitored and recorded the pH, temperature, and specific conductivity of the purged well water. GGTR terminated well purging after three successive readings of each parameter varied by less than 0.1, 10%, and 3%, respectively. GGTR transferred the purge water directly to a 55-gallon, D.O.T.-approved steel drum. After the groundwater in each well recharged to approximately 80% of its original level, GGTR collected a groundwater sample using a peristaltic pump with dedicated tubing lowered just below the groundwater static level. The sample was immediately removed from the well and the groundwater was carefully decanted from the end of the tubing into pre-cleaned, laboratory-provided sample containers. All volatile organic analysis (VOA) vials were inverted and checked to insure that no entrapped air was present. The samples were sealed with Teflon caps, properly labeled, and stored in a cooler chilled to approximately 4°C. Appendix A includes copies of the Fluid-Level Monitoring Data Form and Well Purging/Sampling Data Sheets.

**Water Sample Analytical Methods:** GGTR submitted the groundwater samples under formal chain of custody command to Curtis & Tompkins Laboratories, which is a State-certified analytical laboratory (CA ELAP #01107), in Berkeley, California for laboratory analysis of the following fuel constituents:

- Total Petroleum Hydrocarbons as Gasoline (TPH-G) by EPA Method 8260
- Benzene, Toluene, Ethylbenzene and Total Xylenes (BTEX) by EPA Method 8021B
- Methyl Tertiary-Butyl Ether (MTBE) by EPA Method 8260
- Fuel Oxygenates by EPA Method 8260

The sample collected from PW-1 was additionally analyzed for other VOCs (full list) by EPA Method 8260B. Curtis & Tompkins completed all volatile organic analyses within the 14-day required time limit for analysis. GGTR directed Curtis & Tompkins to submit all analytical data in electronic deliverable format (EDF) in accordance with the State Water Resources Control Board's GeoTracker database system. Tables 1 and 2 present a summary of the analytical results for this event as well as previous monitoring events at the Site. Appendix B includes a copy of the Laboratory Certificate of Analysis and associated Chain of Custody Record.

**Waste Management:** The well purge and equipment wash and rinse water generated during the October 2008 monitoring event (@ 15 gallons) was transferred directly to a D.O.T.-approved, 55-gallon drum, appropriately labeled and sealed, and temporarily stored onsite in a secure area pending final disposal at a licensed facility.

GeoTracker Electronic Submittal: GGTR directed Curtis & Tompkins to submit all analytical data in electronic deliverable format (EDF) via the Internet. GGTR uploaded the analytical data as well as the Fluid-Level Monitoring Data (GEO\_WELL) to the State Water Resources Control Board's GeoTracker Database System. GGTR also uploaded a copy of this report in Portable Data Format (PDF) to the GeoTracker Database. Appendix B includes a copy of each associated GeoTracker Upload Confirmation Form.

#### RESULTS

**Groundwater Monitoring Results:** The groundwater elevations calculated relative to the top of well casing in MW-1 to MW-3 and PW-1 ranged between 184.10 (MW-3) and 184.27 (MW-1 and PW-1) feet, as referenced to MSL.

The groundwater elevations calculated in each well during this monitoring event were used to calculate the approximate groundwater hydraulic gradient and flow direction across the Site. Figure 3 depicts the groundwater potentiometric map showing the hydraulic gradient and groundwater flow direction data calculated for the October 21, 2008 monitoring event.

Figure 7 depicts a rose diagram including historical groundwater flow direction and hydraulic gradient across the Site. Based on Figure 7, the historic groundwater flow directions across the Site calculated during the October events since 2001, have fluctuated approximately 305° (measured clockwise from the north), ranging from N28°E (October 2003) to N27°W (October 2005). The associated hydraulic gradient magnitudes have fluctuated from 0.002 ft/ft (October, 2005 and 2006) to 0.032 ft/ft (October, 2002).

During the October 2008 monitoring event, the groundwater flow direction beneath the Site was estimated at S30°E under an hydraulic gradient of approximately 0.007 ft/ft. This is the first time that the groundwater is flowing towards the east during the October events. Figure 3 depicts the groundwater potentiometric surface including the groundwater flow direction and hydraulic gradient.

Results of Groundwater Sampling and Laboratory Analysis: Elevated concentrations of TPH-G ranging between 2,900 and 15,000 ug/l, benzene ranging between 170 and 4,900 ug/l, which continue to exceed applicable groundwater ESL, were measured in groundwater samples collected from MW-1 through MW-3 during this event. Concentrations of MTBE were detected above its ESL in monitoring wells MW-1 and MW-2 at 110 ug/l and 65 ug/l, respectively. MTBE was detected below its ESL in well MW-3, which is a significant decreased from the July 2008 sampling event. Elevated concentrations of TPH-G (1,500 ug/l) and benzene (20 ug/l) remain in Piezometer Well PW-1, and have fluctuated since April 2005 between 120 and 4,300 ug/l, and 2.3 and 93 ug/l, respectively. The laboratory reported that the TPH-G in this well exhibit chromatographic pattern that does not resemble standard. This might be an indication that gasoline is degrading with time. Concentrations of MTBE were again detected in PW-1 below its ESL. Figure 4 depicts a summary of the TPH-G, benzene, and MTBE analytical data for the groundwater samples collected from both GGTR and GR wells during the fourth quarter 2008 sampling event. Figures 5 and 6 present the groundwater TPH-G and benzene isoconcentration maps, respectively.

Toluene was detected above its ESL in monitoring well MW-1 and below its ESL in MW-2, MW-3 and PW-1. Concentrations of toluene ranged from <0.5 ug/l in PW-1 to 430 ug/l in MW-1. Ethylbenzene was detected above its ESL in all monitoring wells. Concentrations of ethylbenzene ranged from 57 ug/l in PW-1 to 1,900 ug/l in MW-1. Total Xylenes were detected above their ESL in monitoring well MW-1, MW-2 and MW-3, and detected at the ESL in PW-1. Concentrations of Total Xylenes ranged from 20 ug/l in PW-1 to 2,260 ug/l in MW-1. Table 1 presents a summary of the historical hydrocarbons laboratory analytical results and the complete laboratory report is included in Appendix B.

Fuel Oxygenates were not detected or detected below the laboratory reporting limits in the groundwater samples collected from monitoring wells MW-1, MW-2 and MW-3. The groundwater sample collected from PW-1 was additionally analyzed for the full suite of VOC. Concentrations of Trichloroethene (TCE) and Tetrachloroethene (PCE) were detected above their respective ESL in PW-1 at 6.2 ug/l and 44 ug/l, respectively. The compounds cis-1,2-Dichloroethene (DCE) and Vinyl Chloride were slightly detected above their respective ESL in PW-1 at 56 ug/l and 0.6 ug/l, respectively. This is the first time that Vinyl Chloride has been detected in the groundwater beneath the Site. Naphthalene was detected in PW-1 below its ESL and the compound Methylene chloride not detected, however the laboratory reporting limit was higher than its ESL. Other VOC detected in PW-1 included Isopropylbenzene (17 ug/l), n-Propylbenzene (14 ug/l), 1,3,5-Trimethylbenzene (5 ug/l), 1,2,4-Trimethylbenzene (15 ug/l), sec-Butylbenzene (9.4 ug/l), and n-Butylbenzene (14 ug/l). Propylbenzene (15 ug/l) and tert-Butylbenzene (1 ug/l) were detected but are not included as part of Table 2. The ESL for these compounds has not yet been established. Table 2 presents a summary of the historical VOC laboratory analytical results and the complete laboratory report is included in Appendix B.

#### **CONCLUSIONS / RECOMMENDATIONS**

Due to the significant concentrations of TPH-G and Benzene remaining in MW-1 to MW-3 and PW-1, and the elevated concentrations of PCE in PW-1, GGTR recommends continuing the joint groundwater monitoring and sampling program with GR. The next quarterly event is scheduled at the Site in late January 2009. As requested in a letter submitted by the ACHCSA on July 25, 2008, groundwater samples will continue to be analyzed for TPH-G by EPA Method 8015M, and fuel oxygenates, including BTEX and MTBE by EPA Method 8260B. Additionally, to further monitor the concentrations of PCE in groundwater in the vicinity of PW-1, GGTR recommends continuing sampling this well on a bi-annual basis (second and fourth quarters) and analyzing the groundwater samples for VOCs (full list) by EPA 8260.

### **REPORT DISTRIBUTION**

A copy of this quarterly groundwater monitoring report will be submitted to the following site representatives:

Alameda County Health Care Services Agency Environmental Health Services Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Attention: Ms. Barbara Jakub (1Electronic Copy via ACHCSA FTP Site)

Dr. Brian R. Sheaff, D.D.S. 1945 Parkside Drive Concord, CA 94519

(1 Copy; Bound)

#### **LIMITATIONS**

This report has been prepared in accordance with generally accepted environmental practices exercised by professional geologists, scientists, and engineers. No warranty, either expressed or implied, is made as to the professional advice presented herein. The findings contained in this report are based upon information contained in previous reports of corrective action activities performed at the Site and based upon Site conditions, as they existed at the time of the investigation, and are subject to change.

The scope of services conducted in execution of this phase of investigation may not be appropriate to satisfy the needs of other users and any use or reuse of this document and any of its information presented herein is at the sole risk of said user.

Golden Gate Tank Removal, Inc.

TABLE 1
Historical Groundwater Levels & Hydrocarbon Analytical Results
5930 College Avenue, Oakland, CA

|         |             |                            |                             | 3730 Ct                         | llege Avenu            | e, Oakian       | u, CA          |                                         |                             |       |       |                            |        |      |        |              |                               |        |        |       |       |                           |
|---------|-------------|----------------------------|-----------------------------|---------------------------------|------------------------|-----------------|----------------|-----------------------------------------|-----------------------------|-------|-------|----------------------------|--------|------|--------|--------------|-------------------------------|--------|--------|-------|-------|---------------------------|
| Well ID | Sample Date | Casing Elevation (ft, MSL) | Depth to<br>GW<br>(ft, TOC) | Water<br>Elevation<br>(ft, MSL) | Product<br>Odor/ Sheen | TPH-G<br>(ug/L) | MTBE<br>(ug/L) | BTEX<br>(ug/L)                          |                             |       |       |                            |        |      |        |              |                               |        |        |       |       |                           |
|         | 6/1/98      | 50.00 *                    | 4.81                        | 45.19                           | slight sheen           | 160000          | 1900           | 28000 / 21000 / 3800 / 21000            |                             |       |       |                            |        |      |        |              |                               |        |        |       |       |                           |
|         | 9/10/98     | 50.00 *                    | 7.5                         | 42.5                            | Odor                   | 290000          | 440            | <50 / 25000 / 7100 / 32000              |                             |       |       |                            |        |      |        |              |                               |        |        |       |       |                           |
|         | 10/7/99     | 50.00 *                    | 10.04                       | 39.96                           | Odor                   | 85000           | 1100           | 20000 / 13000 / 3800 / 17000            |                             |       |       |                            |        |      |        |              |                               |        |        |       |       |                           |
|         | 1/26/00     | 50.00 *                    | 8.26                        | 41.74                           | slight sheen           | 130000          | 470            | 25000 / 18000 / 4500 / 22000            |                             |       |       |                            |        |      |        |              |                               |        |        |       |       |                           |
|         | 10/25/00    | 50.00 *                    | 10.1                        | 39.9                            | Odor                   | 130000          | 1300           | 23000 / 12000 / 3900 / 18000            |                             |       |       |                            |        |      |        |              |                               |        |        |       |       |                           |
|         | 2/2/01      | 50.00 *                    | 9.61                        | 40.39                           | Odor                   | 128000          | 780            | 19000 / 11000 / 3800 / 18000            |                             |       |       |                            |        |      |        |              |                               |        |        |       |       |                           |
|         | 4/25/01     |                            | 7.39                        | 188.51                          | Odor                   | 120000          | 900            | 21000 / 13000 / 390 / 18000             |                             |       |       |                            |        |      |        |              |                               |        |        |       |       |                           |
|         | 7/10/01     |                            | 9.72                        | 186.18                          | Odor                   | 79000           | 660            | 15000 / 7800 / 3000 / 15000             |                             |       |       |                            |        |      |        |              |                               |        |        |       |       |                           |
|         | 10/8/01     |                            | 10.88                       | 185.02                          | Odor/sheen             | 112000          | 374            | 25300 / 11800 / 4280 / 20600            |                             |       |       |                            |        |      |        |              |                               |        |        |       |       |                           |
|         | 1/7/02      |                            | 4.34                        | 191.56                          | Odor                   | 96100           | 596            | 21100 / 13500 / 4160 / 21900            |                             |       |       |                            |        |      |        |              |                               |        |        |       |       |                           |
|         | 4/8/02      |                            | 6.84                        | 189.06                          | slight odor            | 111000          | 679            | 21200 / 13400 / 4230 / 21000            |                             |       |       |                            |        |      |        |              |                               |        |        |       |       |                           |
|         | 7/9/02      |                            | 9.4                         | 186.5                           | slight odor            | 110000          | 570            | 20300 / 13300 / 4060 / 19800            |                             |       |       |                            |        |      |        |              |                               |        |        |       |       |                           |
|         | 10/23/02    |                            | 11.04                       | 184.86                          | None                   | 54100           | 1010 (1080)**  | 10800 / 3870 / 2320 / 9440              |                             |       |       |                            |        |      |        |              |                               |        |        |       |       |                           |
|         | 10/15/03    | 195 9                      | 10.8                        | 185.1                           | None                   | 90700           | 724            | 17800 / 4740 / 3150 / 13900             |                             |       |       |                            |        |      |        |              |                               |        |        |       |       |                           |
|         | 2/2/04      |                            | 195.9                       | 7.35                            | 188.55                 | None            | 108000         | 194                                     | 14200 / 7420 / 3450 / 19800 |       |       |                            |        |      |        |              |                               |        |        |       |       |                           |
| MW-1    | 4/23/04     |                            |                             | 195.9                           | 195.9                  | 195.9           | 6.83           | 189.07                                  | slight odor                 | 49200 | 114   | 7910 / 1480 / 1810 / 10100 |        |      |        |              |                               |        |        |       |       |                           |
|         | 7/19/04     |                            |                             |                                 |                        |                 | 195.9          | 195.9                                   | 195.9                       | 195.9 | 195.9 |                            |        |      |        |              | 8.95                          | 186.95 | Odor   | 63900 | 303   | 7260 /2270 / 2510 / 10100 |
|         | 10/22/04    |                            |                             |                                 |                        |                 |                |                                         |                             |       |       |                            |        |      |        |              | Ţ                             | 10.15  | 185.75 | None  | 80700 | 493 (296)**               |
|         | 1/21/05     |                            |                             |                                 |                        |                 |                |                                         |                             |       |       | 5.45                       | 190.45 | Odor | 278000 | 271 (174 )** | 14700 / 25300 / 10800 / 73500 |        |        |       |       |                           |
|         | 4/14/05     |                            | 5.3                         | 190.6                           | Odor /sheen            | 116000          | 366 (410 )**   | 15100 / 7080 / 4220 / 20700             |                             |       |       |                            |        |      |        |              |                               |        |        |       |       |                           |
|         | 7/26/05     |                            | 7.6                         | 188.3                           | Odor                   | 82000           | ND<250         | 12000 / 4500 / 3300 / 14000             |                             |       |       |                            |        |      |        |              |                               |        |        |       |       |                           |
|         | 10/14/05    |                            | 9.58                        | 186.32                          | Odor/sheen             | 64000           | ND<250         | 13000 / 5700 / 3400 / 16000             |                             |       |       |                            |        |      |        |              |                               |        |        |       |       |                           |
|         | 1/13/06     |                            | 4.6                         | 191.3                           | Odor/sheen             | 49000           | ND<250         | 12000 / 5300 / 3500 / 17000             |                             |       |       |                            |        |      |        |              |                               |        |        |       |       |                           |
|         | 4/14/06     |                            | 3.08                        | 192.82                          | Odor                   | 51000           | 270            | 14000 / 5300 / 3500 / 17000             |                             |       |       |                            |        |      |        |              |                               |        |        |       |       |                           |
|         | 10/26/06    |                            | 9.22                        | 186.68                          | Odor                   | 34000           | ND<250         | 12000 / 1600 / 3100 / 8600              |                             |       |       |                            |        |      |        |              |                               |        |        |       |       |                           |
|         | 1/30/07     |                            | 9.6                         | 186.3                           | Odor                   | 39000           | ND<200         | 10000 / 2200 / 2900 / 10000             |                             |       |       |                            |        |      |        |              |                               |        |        |       |       |                           |
|         | 4/13/07     |                            | 9.24                        | 186.66                          | NM                     | 52000           | 150            | 9100 / 2600 / 3100 / 11000              |                             |       |       |                            |        |      |        |              |                               |        |        |       |       |                           |
|         | 7/24/07     |                            | 10.67                       | 185.23                          | None                   | 46000           | 240            | 10000 / 1200 / 3500 / 6200              |                             |       |       |                            |        |      |        |              |                               |        |        |       |       |                           |
|         | 4/21/08     |                            | 7.24                        | 188.66                          | None                   | 50000           | ND<100         | 7800 / 1500 / 3000 / 12000              |                             |       |       |                            |        |      |        |              |                               |        |        |       |       |                           |
|         | 7/22/08     |                            | 9.71                        | 186.19                          | Odor                   | 60000           | 470 1          | 8100 / 1500 / 2700 / 9800               |                             |       |       |                            |        |      |        |              |                               |        |        |       |       |                           |
|         | 10/21/08    |                            | 11.63                       | 184.27                          | Odor                   | 15000           | 110            | 4900 / 430 / 1900 / 2260                |                             |       |       |                            |        |      |        |              |                               |        |        |       |       |                           |
|         |             | RWQCB ES                   |                             |                                 |                        | 100             | 5              | 1.0 / 40 / 30 / 20                      |                             |       |       |                            |        |      |        |              |                               |        |        |       |       |                           |
|         |             |                            |                             |                                 |                        |                 |                | _,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                             |       |       |                            |        |      |        |              |                               |        |        |       |       |                           |

TABLE 1 (Cont.)
Historical Groundwater Levels & Hydrocarbons Analytical Results
5930 College Avenue, Oakland, CA

|          |             | Casing    | Donth to       |           | nege Avenu  | .,                 | ., -        |                             |        |        |        |        |          |        |             |                       |             |                          |        |             |                           |
|----------|-------------|-----------|----------------|-----------|-------------|--------------------|-------------|-----------------------------|--------|--------|--------|--------|----------|--------|-------------|-----------------------|-------------|--------------------------|--------|-------------|---------------------------|
| Wall ID  | Camala Data | _         | Depth to<br>GW | Water     | Product     | TPH-G              | MTBE        | BTEX                        |        |        |        |        |          |        |             |                       |             |                          |        |             |                           |
| Well ID  | Sample Date | Elevation |                | Elevation | Odor/ Sheen | (ug/L)             | (ug/L)      | (ug/L)                      |        |        |        |        |          |        |             |                       |             |                          |        |             |                           |
|          | 10/5/00     | (ft, MSL) | (ft, TOC)      | (ft, MSL) | 41.4.4.4    |                    |             |                             |        |        |        |        |          |        |             |                       |             |                          |        |             |                           |
|          | 10/7/99     | 51.42*    | 11.49          | 39.93     | slight/odor | 18000              | 490         | 3000 / 1700 / 1000 / 3900   |        |        |        |        |          |        |             |                       |             |                          |        |             |                           |
|          | 1/26/00     | 51.42*    | 7.85           | 43.57     | None        | 42000              | 560         | 9300 / 2200 / 2300 / 7700   |        |        |        |        |          |        |             |                       |             |                          |        |             |                           |
|          | 10/25/00    | 51.42*    | 11.57          | 39.85     | slight/odor | 31000              | 500         | 5500 / 370 / 1700 / 2600    |        |        |        |        |          |        |             |                       |             |                          |        |             |                           |
|          | 2/2/01      | 51.42*    | 10.77          | 40.65     | Odor        | 36000              | 400         | 4300 / 530 / 1800 / 4500    |        |        |        |        |          |        |             |                       |             |                          |        |             |                           |
|          | 4/25/01     |           | 8.52           | 188.76    | Odor        | 56000              | 460         | 6700 / 1700 / 2600 / 8200   |        |        |        |        |          |        |             |                       |             |                          |        |             |                           |
|          | 7/10/01     |           | 11.05          | 186.23    | Odor        | 39000              | 180         | 6200 / 730 / 2300 / 6100    |        |        |        |        |          |        |             |                       |             |                          |        |             |                           |
|          | 10/8/01     |           | 12.79          | 184.49    | Odor/sheen  | 40700              | 6460        | 6310 / 399 / 2100 / 5320    |        |        |        |        |          |        |             |                       |             |                          |        |             |                           |
|          | 1/7/02      |           | 4.92           | 192.36    | Odor        | 59600              | 366**       | 10300 / 3250 / 4180 / 14400 |        |        |        |        |          |        |             |                       |             |                          |        |             |                           |
|          | 4/8/02      |           | 8.4            | 188.88    | slight odor | 66700              | 583**       | 10200 / 2670 / 3840 / 13200 |        |        |        |        |          |        |             |                       |             |                          |        |             |                           |
|          | 7/9/02      |           | 10.55          | 186.73    | slight odor | 37100              | 303 (298)** | 5340 / 890 / 2110 / 6920    |        |        |        |        |          |        |             |                       |             |                          |        |             |                           |
|          | 10/23/02    |           | 13.85          | 183.43    | None        | 13300              | 322 (360)** | 2420 / 216 / 922 / 1470     |        |        |        |        |          |        |             |                       |             |                          |        |             |                           |
|          | 10/15/03    |           | 12.38          | 184.9     | None        | 11300              | 264 (322)** | 2660 / 51 / 1180 / 1220     |        |        |        |        |          |        |             |                       |             |                          |        |             |                           |
|          | 2/2/04      | 1         | 8.8            | 188.48    | None        | 21700              | 168 (200)** | 2130 / 51 / 1030 / 2060     |        |        |        |        |          |        |             |                       |             |                          |        |             |                           |
|          | 4/23/04     | 1         | 8.4            | 188.88    | Slight odor | 30400              | 112 (203)** | 3570 / 322 / 1620 / 4140    |        |        |        |        |          |        |             |                       |             |                          |        |             |                           |
| MW-2     | 7/19/04     | 197.28    | 10.3           | 186.98    | Odor        | 28300              | 283 (373)** | 2540 / 239 /1320 / 2300     |        |        |        |        |          |        |             |                       |             |                          |        |             |                           |
|          | 10/22/04    |           | 197.28         | 197.28    | 197.28      | 197.28             | 197.28      | 197.28                      | 197.28 | 197.28 | 10.25  | 187.03 | Mod odor | 13500  | 273 (229)** | 1790 / 54 / 892 / 915 |             |                          |        |             |                           |
|          | 1/21/05     |           |                |           |             |                    |             |                             |        |        | 197.28 | 197.28 | 197.28   | 197.28 | 197.28      | 6.65                  | 190.63      | Mod odor                 | 278000 | 161 (163)** | 5980 / 1030 / 2890 / 9070 |
|          | 4/14/05     |           |                |           |             |                    |             |                             |        |        |        |        | 8.7      | 188.58 | None        | 46100                 | 155 (150)** | 5170 / 787 / 2530 / 6010 |        |             |                           |
|          | 7/26/05     | 1         | 8.95           | 188.33    | Mod odor    | 41000              | ND (ND)**   | 5600 / 550 / 2600 / 4600    |        |        |        |        |          |        |             |                       |             |                          |        |             |                           |
|          | 10/14/05    | 1         | 10.92          | 186.36    | Odor/sheen  | 13000              | 130         | 2900 / 100 / 1300 / 1200    |        |        |        |        |          |        |             |                       |             |                          |        |             |                           |
|          | 1/13/06     | 1         | 5.48           | 191.8     | Odor        | 20000              | ND<100      | 4900 / 490 / 2400 / 4200    |        |        |        |        |          |        |             |                       |             |                          |        |             |                           |
|          | 4/14/06     | 1         | 3.61           | 193.67    | Odor        | 21000              | ND<100      | 4000 / 740 / 2300 / 5100    |        |        |        |        |          |        |             |                       |             |                          |        |             |                           |
|          | 10/26/06    | 1         | 10.58          | 186.7     | Odor        | 8200               | 68          | 1400 / 51 / 840 / 500       |        |        |        |        |          |        |             |                       |             |                          |        |             |                           |
|          | 1/30/07     | 1         | 10.98          | 186.3     | Odor        | 17000              | 62          | 3200 / 150 / 2200 / 1800    |        |        |        |        |          |        |             |                       |             |                          |        |             |                           |
|          | 4/13/07     | 1         | 10.54          | 186.74    | NM          | 19000              | 57          | 2000 / 85 / 1300 / 1100     |        |        |        |        |          |        |             |                       |             |                          |        |             |                           |
|          | 7/24/07     | 1         | 12.04          | 185.24    | None        | 10000              | 84          | 1300 / 41 / 710 / 270       |        |        |        |        |          |        |             |                       |             |                          |        |             |                           |
|          | 4/21/08     | 1         | 8.01           | 189.27    | None        | 17000              | 48          | 1800 / 100 / 1400 / 1300    |        |        |        |        |          |        |             |                       |             |                          |        |             |                           |
|          | 7/22/08     |           | 11.12          | 186.16    | None        | 16000              | 100 1       | 1900 / 98 / 1600 / 741      |        |        |        |        |          |        |             |                       |             |                          |        |             |                           |
|          | 10/21/08    |           | 13.11          | 184.17    | Odor/sheen  | 4900               | 65          | 700 / 20 / 370 / 52         |        |        |        |        |          |        |             |                       |             |                          |        |             |                           |
|          | C           | RWQCB ES  | SL - Nov 200   | 100       | 5           | 1.0 / 40 / 30 / 20 |             |                             |        |        |        |        |          |        |             |                       |             |                          |        |             |                           |
| <b>-</b> | s Following |           |                |           |             |                    |             |                             |        |        |        |        |          |        |             |                       |             |                          |        |             |                           |

TABLE 1 (Cont.)
Historical Groundwater Levels & Hydrocarbons Analytical Results
5930 College Avenue, Oakland, CA

| Well ID | Sample Date | Casing<br>Elevation<br>(ft, MSL) | Depth to<br>GW<br>(ft, TOC) | Water<br>Elevation<br>(ft, MSL) | Product<br>Odor/ Sheen | TPH-G<br>(ug/L) | MTBE<br>(ug/L)  | BTEX<br>(ug/L)           |        |           |                         |        |        |        |        |        |      |      |             |                        |
|---------|-------------|----------------------------------|-----------------------------|---------------------------------|------------------------|-----------------|-----------------|--------------------------|--------|-----------|-------------------------|--------|--------|--------|--------|--------|------|------|-------------|------------------------|
|         | 10/7/99     | 49.39*                           | 9.67                        | 39.72                           | None                   | 6600            | 390             | 310 / 110 / 430 / 1000   |        |           |                         |        |        |        |        |        |      |      |             |                        |
|         | 1/26/00     | 49.39*                           | 5.4                         | 43.99                           | None                   | 3300            | 40              | 110 / 8 / 100 / 32       |        |           |                         |        |        |        |        |        |      |      |             |                        |
|         | 10/25/00    | 49.39*                           | 9.24                        | 40.15                           | Slight odor            | 4500            | ND              | 100 / 2 / 120 / 130      |        |           |                         |        |        |        |        |        |      |      |             |                        |
|         | 2/2/01      | 49.39*                           | 8.73                        | 40.66                           | Slight odor            | 2900            | 35              | 35 / 3 / 160 / 298       |        |           |                         |        |        |        |        |        |      |      |             |                        |
|         | 4/25/01     |                                  | 6.61                        | 188.61                          | Slight odor            | 8400            | 56              | 260 / 33 / 290 / 510     |        |           |                         |        |        |        |        |        |      |      |             |                        |
|         | 7/10/01     |                                  | 8.85                        | 186.37                          | Slight odor            | 12000           | 35              | 39 / 10 / 690 / 1600     |        |           |                         |        |        |        |        |        |      |      |             |                        |
|         | 10/8/01     |                                  | 9.75                        | 185.47                          | Odor/sheen             | 4913            | 52              | 108 / 4 / 99 / 133       |        |           |                         |        |        |        |        |        |      |      |             |                        |
|         | 1/7/02      |                                  | 4.25                        | 190.97                          | Odor/sheen             | 7260            | 81.7**          | 723 / 138 / 492 / 887    |        |           |                         |        |        |        |        |        |      |      |             |                        |
|         | 4/8/02      |                                  | 6.33                        | 188.89                          | Odor                   | 11700           | ND**            | 540 / 108 / 706 / 1710   |        |           |                         |        |        |        |        |        |      |      |             |                        |
|         | 7/9/02      |                                  | 8.56                        | 186.66                          | Odor                   | 2320            | 28.3 (20 )**    | 37.1 / 4.7 / 98.5 / 187  |        |           |                         |        |        |        |        |        |      |      |             |                        |
|         | 10/23/02    |                                  | 10.02                       | 185.2                           | Odor/sheen             | 2830            | ND (ND )**      | 46.8 / 4.7 / 43.6 / 65.5 |        |           |                         |        |        |        |        |        |      |      |             |                        |
|         | 10/15/03    |                                  | 9.8                         | 185.42                          | Odor/sheen             | 3040            | ND (ND )**      | 91.3 / 8.4 / 69.9 / 148  |        |           |                         |        |        |        |        |        |      |      |             |                        |
|         | 2/2/04      |                                  | 6.85                        | 188.37                          | Odor/sheen             | 5140            | ND (ND )**      | 126 / 8.7 / 134 / 238    |        |           |                         |        |        |        |        |        |      |      |             |                        |
|         | 4/23/04     | 195.22                           | 6.17                        | 189.05                          | None                   | 7210            | ND (ND )**      | 227 / 39.5 / 448 / 879   |        |           |                         |        |        |        |        |        |      |      |             |                        |
| MW-3    | 7/19/04     |                                  | 195.22                      | 195.22                          | 195.22                 | 8.25            | 186.97          | Slight odor              | 9860   | ND (ND)** | 20.4 / 3.2 / 30.6 / 117 |        |        |        |        |        |      |      |             |                        |
|         | 10/22/04    |                                  |                             |                                 |                        | 195.22          | 195.22          | 195.22                   | 195.22 | 195.22    | 195.22                  | 195.22 | 195.22 | 195.22 | 9.25   | 185.97 | None | 7420 | 96 (21 )**  | 152 / 12.8 / 267 / 480 |
|         | 1/21/05     |                                  |                             |                                 |                        |                 |                 |                          |        |           |                         |        |        |        | 195.22 | 195.22 | 5.22 | 190  | Slight odor | 2420                   |
|         | 4/14/05     |                                  | 6.64                        | 188.58                          | Odor/sheen             | 5130            | 54 (41.4 )**    | 357 / 19.4 / 287 / 510   |        |           |                         |        |        |        |        |        |      |      |             |                        |
|         | 7/26/05     |                                  | 6.9                         | 188.32                          | None                   | 9800            | ND (21)**       | 200 / 23 / 220 / 360     |        |           |                         |        |        |        |        |        |      |      |             |                        |
|         | 10/14/05    |                                  | 8.83                        | 186.39                          | Odor/sheen             | 6100            | ND              | 76 / 19 / 170 / 350      |        |           |                         |        |        |        |        |        |      |      |             |                        |
|         | 1/13/06     |                                  | 4.61                        | 190.61                          | Odor                   | 3900            | 24              | 380 / 17 / 230 / 300     |        |           |                         |        |        |        |        |        |      |      |             |                        |
|         | 4/14/06     |                                  | 3.41                        | 191.81                          | Odor                   | 5000            | 69              | 760 / 44 / 230 / 190     |        |           |                         |        |        |        |        |        |      |      |             |                        |
|         | 10/26/06    |                                  | 8.57                        | 186.65                          | Odor                   | 3100            | 17              | 120 /9.8 /55 / 54        |        |           |                         |        |        |        |        |        |      |      |             |                        |
|         | 1/30/07     |                                  | 8.83                        | 186.39                          | Odor                   | 4500            | ND<10           | 90 /7.6 / 75 / 44        |        |           |                         |        |        |        |        |        |      |      |             |                        |
|         | 4/13/07     |                                  | 8.57                        | 186.65                          | NM                     | 2800            | ND<5            | 55 / 4.9 / 19 / 6.1      |        |           |                         |        |        |        |        |        |      |      |             |                        |
|         | 7/24/07     |                                  | 9.98                        | 185.24                          | None                   | 4800            | ND<5            | 140 / 8.3 / 66 / 22      |        |           |                         |        |        |        |        |        |      |      |             |                        |
|         | 4/21/08     |                                  | 9.3                         | 185.92                          | None                   | 4300            | ND<5            | 200 / 11 / 30 / 14       |        |           |                         |        |        |        |        |        |      |      |             |                        |
|         | 7/22/08     |                                  | 9.05                        | 186.17                          | None                   | 2400            | 53 <sup>1</sup> | 140 / 13 / 26 / 18.5     |        |           |                         |        |        |        |        |        |      |      |             |                        |
|         | 10/21/08    |                                  | 11.12                       | 184.1                           | Slight Odor            | 2900            | 2.2             | 170 / 9.2 / 99 / 25.8    |        |           |                         |        |        |        |        |        |      |      |             |                        |
|         | C           | RWQCB ES                         | SL - Nov 200                | 7                               |                        | 100             | 5               | 1.0 / 40 / 30 / 20       |        |           |                         |        |        |        |        |        |      |      |             |                        |

### TABLE 1 (Cont.)

#### Historical Groundwater Levels & Hydrocarbons Analytical Results 5930 College Avenue, Oakland, CA

| Well ID | Sample Date | Casing<br>Elevation<br>(ft, MSL) | Depth to<br>GW<br>(ft, TOC) | Water<br>Elevation<br>(ft, MSL) | Product<br>Odor/ Sheen | TPH-G<br>(ug/L)   | MTBE<br>(ug/L)     | BTEX<br>(ug/L)           |
|---------|-------------|----------------------------------|-----------------------------|---------------------------------|------------------------|-------------------|--------------------|--------------------------|
|         | 4/14/05     |                                  | 6.4                         | 190.77                          | None                   | 3360              | ND (ND**)          | 62.8 / 6.7 / 79.5/ 317   |
|         | 7/26/05     |                                  | 8.63                        | 188.54                          | None                   | 1300              | ND (ND**)          | 22 / ND / 48 / 110       |
|         | 10/14/05    |                                  | 10.71                       | 186.46                          | None                   | 4300              | ND                 | 93 /1.2 / 100 / 140      |
|         | 1/13/06     |                                  | 4.87                        | 192.3                           | None                   | 450               | ND<2.0             | 10 / ND / 37 / 72        |
|         | 4/14/06     |                                  | 2.27                        | 194.9                           | Odor                   | 120               | ND<2.0             | 2.3 / ND<1.0 / 3.5 /9.3  |
|         | 10/26/06    | 105.15                           | 10.3                        | 186.87                          | Odor                   | 2800              | ND<10              | 61 / ND<5.0 / 130 / 34   |
| PW-1    | 1/30/07     | 197.17                           | 10.8                        | 186.37                          | Odor                   | 1200              | ND<2               | 22 / ND<1.0 / 100 / 200  |
|         | 4/13/07     |                                  | 10.31                       | 186.86                          | NM                     | 510               | ND<1               | 6 / ND<0.5 / 30 / 56     |
|         | 7/24/07     |                                  | 11.81                       | 185.36                          | None                   | 3400              | ND<5               | 63 / ND<2.5 / 180 / 5.6  |
|         | 4/21/08     |                                  | 9.08                        | 188.09                          | None                   | 300               | ND<1               | 3 / ND<0.5 / 16 / 26     |
|         | 7/22/08     | 1                                | 9.83                        | 187.34                          | None                   | 710               | 3.1 1              | 9.3 / 1.2 1 / 49 / 67.86 |
|         | 10/21/08    |                                  | 12.9                        | 184.27                          | None                   | 1500 <sup>2</sup> | 1                  | 20 / ND<0.5 / 57 / 20    |
|         | C           | RWQCB ES                         | SL - Nov 200                |                                 | 100                    | 5                 | 1.0 / 40 / 30 / 20 |                          |

#### NOTES:

ft, MSL = feet Above Mean Sea Level

TOC = Top of Well Casing

GW = Depth to Groundwater in feet Below TOC

TPH-G = Total Petroleum Hydrocarbons as Gasoline

MTBE = Methyl Tertiary Butyl Ether

BTEX = Benzene / Toluene / Ethylbenzene / Total Xylenes

ug/L = micrograms per liter

ND = Not detected above laboratory reporting limit

CRWQCB/ESL = California Regional Water Quality Control Board's Interim Final - November 2007, Tier 1 Environmental Screening Level for groundwater that **IS** a potential source of drinking water

<sup>&</sup>lt;sup>1</sup>= Presence confirmed, but Relative Percentage Difference (RPD) between columns exceeds 40%

<sup>&</sup>lt;sup>2</sup>= Sample exhibit chromatographic pattern that does not resemble standard

<sup>\* =</sup> Arbitrary datum point with assumed elevation of 50 ft used prior to MSL survey on 4/25/01

<sup>\*\* =</sup> Concentration confirmed by EPA Method 8260

TABLE 2
Historical Groundwater VOC Analytical Results
5930 College Avenue, Oakland, CA

| Well ID | Sample    | IPB    | n-PB    | 1,3,5-TMB | 1,2,4-TMB | Sec-BB  | n-BB    | Naphthalene | TCE    | MC      | cis-1,2- | Vinyl    | PCE    |
|---------|-----------|--------|---------|-----------|-----------|---------|---------|-------------|--------|---------|----------|----------|--------|
|         | Date      | (ug/L) | (ug/L)  | (ug/L)    | (ug/L)    | (ug/L)  | (ug/L)  | (ug/L)      | (ug/L) | (ug/L)  | DCE      | Chloride | (ug/L) |
|         |           |        |         |           |           |         |         |             |        |         | (ug/L)   | (ug/L)   |        |
|         | 2/2/04    | 116    | 342     | 701       | 2690      | ND<10   | 66      | 992         | ND<5   | ND<50   | ND<10    | ND<5     | ND<5   |
|         | 4/23/04   | ND<100 | 180     | 417       | 1560      | ND<100  | ND<100  | 559         | ND<10  | 1210    | ND<100   | ND<50    | ND<50  |
|         | 7/19/04   | 89     | 239     | 507       | 1890      | ND<20   | ND<20   | 801         | ND<10  | ND<100  | ND<20    | ND<10    | ND<10  |
|         | 10/22/04  | ND<100 | 264     | 520       | 1990      | ND<100  | ND<100  | 700         | ND<50  | ND<500  | ND<100   | ND<50    | ND<50  |
|         | 1/21/05   | ND<200 | 271     | 525       | 2080      | ND<200  | ND<200  | 662         | ND<100 | ND<5000 | ND<200   | ND<100   | ND<100 |
|         | 4/14/05   | 141    | 437     | 882       | 3450      | ND      | ND      | 1220        | ND<50  | ND<2500 | ND<100   | ND<50    | ND<50  |
|         | 7/26/05   | ND<500 | ND<2500 | ND<2500   | ND<2500   | ND<2500 | ND<2500 | ND<2500     | ND<250 | ND<2500 | ND<250   | ND<250   | ND<250 |
|         | 10/14//05 | ND<250 | ND<1200 | ND<1200   | 2700      | ND<1200 | ND<1200 | ND<1200     | ND<120 | ND<5000 | ND<120   | ND<120   | ND<120 |
| MW-1    | 1/13/06   | ND<250 | ND<1200 | ND<1200   | 2100      | ND<1200 | ND<1200 | ND<1200     | ND<120 | ND<5000 | ND<120   | ND<120   | ND<120 |
|         | 4/14/06   | ND<250 | ND<1200 | ND<1200   | 2400      | ND<1200 | ND<1200 | ND<1200     | ND<120 | ND<5000 | ND<120   | ND<120   | ND<120 |
|         | 10/26/06  | ND<250 | ND<1200 | ND<1200   | 2000      | ND<1200 | ND<1200 | ND<1200     | ND<120 | ND<5000 | ND<120   | ND<120   | ND<120 |
|         | 1/30/07   | ND<200 | ND<1000 | ND<1000   | 1700      | ND<1000 | ND<1000 | ND<1000     | ND<100 | ND<4000 | ND<100   | ND<100   | ND<100 |
|         | 4/13/07   | ND<100 | ND<500  | ND<500    | 1800      | ND<500  | ND<500  | 730         | ND<50  | ND<2000 | ND<50    | ND<50    | ND<50  |
|         | 7/24/07   | 1000   | ND<500  | ND<500    | 2200      | ND<500  | ND<500  | 790         | ND<50  | ND<2000 | ND<50    | ND<50    | ND<50  |
|         | 4/21/08   | ND<100 | ND<500  | ND<500    | 2100      | ND<500  | ND<500  | 810         | ND<50  | ND<2000 | ND<50    | ND<50    | ND<50  |
|         | 7/22/08   | NA     | NA      | NA        | NA        | NA      | NA      | NA          | NA     | NA      | NA       | NA       | NA     |
|         | 10/21/08  | NA     | NA      | NA        | NA        | NA      | NA      | NA          | NA     | NA      | NA       | NA       | NA     |
| CRWQ    | CB ESL    | NC     | NC      | NC        | NC        | NC      | NC      | 17          | 5      | 5       | 6        | 0.5      | 5      |

# TABLE 2 (Continued)

## Historical Groundwater VOC Analytical Results 5930 College Avenue, Oakland, CA

| Well ID | Sample    | IPB    | n-PB    | 1,3,5-TMB | 1,2,4-TMB | Sec-BB  | n-BB    | Naphthalene | TCE    | MC      | cis-1,2- | Vinyl    | PCE    |
|---------|-----------|--------|---------|-----------|-----------|---------|---------|-------------|--------|---------|----------|----------|--------|
|         | Date      | (ug/L) | (ug/L)  | (ug/L)    | (ug/L)    | (ug/L)  | (ug/L)  | (ug/L)      | (ug/L) | (ug/L)  | DCE      | Chloride | (ug/L) |
|         |           |        |         |           |           |         |         |             |        |         | (ug/L)   | (ug/L)   |        |
|         | 2/2/04    | 73     | 186     | 306       | 1090      | ND<10   | 66      | 413         | ND<5   | ND<50   | ND<10    | ND<5     | ND<5   |
|         | 4/23/04   | ND<100 | 215     | 469       | 1570      | ND<100  | ND<100  | 568         | ND<5   | ND<50   | ND<100   | ND<50    | ND<50  |
|         | 7/19/04   | 73     | 173     | 316       | 1070      | ND<10   | 74      | 475         | ND<5   | ND<50   | ND<10    | ND<5     | ND<5   |
|         | 10/22/04  | 49     | 132     | 80        | 257       | ND<10   | 44      | 227         | ND<50  | ND<50   | ND<10    | ND<5     | ND<5   |
|         | 1/21/05   | ND<100 | 239     | 371       | 1500      | ND<100  | ND<100  | 697         | ND<50  | ND<2500 | ND<100   | ND<50    | ND<50  |
|         | 4/14/05   | 139    | 293     | 445       | 2390      | ND      | 71      | 1490        | ND<5   | ND<250  | ND<10    | ND<5     | ND<5   |
|         | 7/26/05   | ND<500 | ND<2500 | ND<2500   | ND<2500   | ND<2500 | ND<2500 | ND<2500     | ND<250 | ND<2500 | ND<250   | ND<250   | ND<250 |
|         | 10/14//05 | ND<100 | ND<500  | ND<500    | 770       | ND<500  | ND<500  | ND<500      | ND<50  | ND<2000 | ND<50    | ND<50    | ND<50  |
| MW-2    | 1/13/06   | ND<100 | ND<500  | ND<500    | 1200      | ND<500  | ND<500  | ND<500      | ND<50  | ND<2000 | ND<50    | ND<50    | ND<50  |
|         | 4/14/06   | ND<100 | ND<500  | ND<500    | 1200      | ND<500  | ND<500  | 680         | ND<50  | ND<2000 | ND<50    | ND<50    | ND<50  |
|         | 10/26/06  | ND<25  | 180     | ND<120    | 320       | ND<120  | ND<120  | 210         | ND<12  | ND<500  | ND<12    | ND<12    | ND<12  |
|         | 1/30/07   | ND<50  | 360     | 250       | 1100      | ND<250  | ND<250  | 500         | ND<25  | ND<1000 | ND<25    | ND<25    | ND<25  |
|         | 4/13/07   | 73     | 180     | 140       | 680       | ND<100  | ND<100  | 450         | ND<10  | ND<400  | ND<10    | ND<10    | ND<10  |
|         | 7/24/07   | 110    | 130     | ND<100    | 140       | ND<100  | ND<100  | 200         | ND<10  | ND<400  | ND<10    | ND<10    | ND<10  |
|         | 4/21/08   | 78     | 230     | ND<100    | 440       | ND<100  | ND<100  | 450         | ND<10  | ND<400  | ND<10    | ND<10    | ND<10  |
|         | 7/22/08   | NA     | NA      | NA        | NA        | NA      | NA      | NA          | NA     | NA      | NA       | NA       | NA     |
|         | 10/21/08  | NA     | NA      | NA        | NA        | NA      | NA      | NA          | NA     | NA      | NA       | NA       | NA     |
| CRWQ    | CB ESL    | NC     | NC      | NC        | NC        | NC      | NC      | 17          | 5      | 5       | 6        | 0.5      | 5      |

## **TABLE 2 (Continued)**

## Historical Groundwater VOC Analytical Results 5930 College Avenue, Oakland, CA

| Well ID | Sample    | IPB    | n-PB   | 1,3,5-TMB | 1,2,4-TMB | Sec-BB | n-BB   | Naphthalene | TCE    | MC     | cis-1,2- | Vinyl    | PCE    |
|---------|-----------|--------|--------|-----------|-----------|--------|--------|-------------|--------|--------|----------|----------|--------|
|         | Date      | (ug/L) | (ug/L) | (ug/L)    | (ug/L)    | (ug/L) | (ug/L) | (ug/L)      | (ug/L) | (ug/L) | DCE      | Chloride | (ug/L) |
|         |           |        |        |           |           |        |        |             |        |        | (ug/L)   | (ug/L)   |        |
|         | 2/2/04    | 23     | 83     | 22        | 68        | ND<1   | 38     | 33          | ND<0.5 | ND<5   | ND<1     | ND<0.5   | ND<0.5 |
|         | 4/23/04   | 29     | 82     | 60        | 337       | ND<1   | 24     | 160         | ND<0.5 | ND<5   | ND<1     | ND<0.5   | ND<0.5 |
|         | 7/19/04   | 27     | 105    | 48        | 204       | ND<1   | 34     | 16          | ND<0.5 | ND<5   | ND<1     | ND<0.5   | ND<0.5 |
|         | 10/22/04  | 55     | 182    | 192       | 574       | ND<10  | 42     | 76          | ND<5   | ND<50  | ND<10    | ND<5     | ND<5   |
|         | 1/21/05   | 25     | 88     | 23        | 96        | ND<1   | 15     | 43          | ND<0.5 | ND<25  | ND<1     | ND<0.5   | ND<0.5 |
|         | 4/14/05   | 45     | 28     | 85        | 302       | ND<10  | 28     | 121         | ND<0.5 | ND25   | ND<1     | ND<0.5   | ND<0.5 |
|         | 7/26/05   | ND<10  | ND<50  | 120       | 250       | ND<50  | ND<50  | 60          | ND<5   | ND<50  | ND<5     | ND<5     | ND<5   |
|         | 10/14//05 | ND<20  | ND<100 | ND<100    | 210       | ND<100 | ND<100 | ND<100      | ND<10  | ND<400 | ND<10    | ND<10    | ND<10  |
| MW-3    | 1/13/06   | ND<10  | 120    | ND<50     | 120       | ND<50  | ND<50  | ND<50       | ND<5   | ND<200 | ND<5     | ND<5     | ND<5   |
|         | 4/14/06   | ND<20  | 170    | ND<100    | 120       | ND<100 | ND<100 | 100         | ND<10  | ND<400 | ND<10    | ND<10    | ND<10  |
|         | 10/26/06  | ND<10  | 82     | ND<50     | 62        | ND<50  | ND<50  | ND<50       | ND<5.0 | ND<200 | ND<5.0   | ND<5     | ND<5.0 |
|         | 1/30/07   | ND<10  | 94     | ND<50     | 63        | ND<50  | ND<50  | ND<50       | ND<5.0 | ND<200 | ND<5.0   | ND<5     | ND<5.0 |
|         | 4/13/07   | 25     | 68     | ND<25     | ND<25     | ND<25  | ND<25  | ND<25       | ND<2.5 | ND<100 | ND<2.5   | ND<2.5   | ND<2.5 |
|         | 7/27/07   | 12     | 36     | ND<25     | ND<25     | ND<25  | ND<25  | ND<25       | ND<2.5 | ND<100 | ND<2.5   | ND<2.5   | ND<2.5 |
|         | 4/21/08   | 25     | 73     | ND<25     | ND<25     | ND<25  | ND<25  | ND<25       | ND<2.5 | ND<100 | ND<2.5   | ND<2.5   | ND<2.5 |
|         | 7/22/08   | NA     | NA     | NA        | NA        | NA     | NA     | NA          | NA     | NA     | NA       | NA       | NA     |
|         | 10/21/08  | NA     | NA     | NA        | NA        | NA     | NA     | NA          | NA     | NA     | NA       | NA       | NA     |
| CRWQ    | CB ESL    | NC     | NC     | NC        | NC        | NC     | NC     | 17          | 5      | 5      | 6        | 0.5      | 5      |

**TABLE 2 (Continued)** 

### Historical Groundwater VOC Analytical Results 5930 College Avenue, Oakland, CA

| Well ID | Sample Date | IPB    | n-PB   | 1,3,5-TMB | 1,2,4-TMB | Sec-BB | n-BB   | Naphthalene | TCE    | MC     | cis-1,2-DCE | Vinyl    | PCE    |
|---------|-------------|--------|--------|-----------|-----------|--------|--------|-------------|--------|--------|-------------|----------|--------|
|         |             | (ug/L) | (ug/L) | (ug/L)    | (ug/L)    | (ug/L) | (ug/L) | (ug/L)      | (ug/L) | (ug/L) | (ug/L)      | Chloride | (ug/L) |
|         |             |        |        |           |           |        |        |             |        |        |             | (ug/L)   |        |
|         | 4/14/05     | 11     | 22     | 110       | 100       | ND,10  | ND<10  | 43          | 3.3    | ND<25  | 12          | ND<0.5   | 84.9   |
|         | 7/26/05     | 7.3    | 17     | 37        | 100       | ND<10  | ND<10  | 43          | ND<1   | ND<10  | 7           | ND<1     | 48     |
|         | 10/14//05   | 28     | 72     | 67        | 120       | 12     | 17     | 43          | 4.1    | ND<40  | 29          | ND<1     | 25     |
|         | 1/13/06     | ND<20  | ND<10  | ND<10     | 37        | ND<10  | ND<10  | ND<10       | 1.4    | ND<40  | 5           | ND<1     | 95     |
|         | 4/14/06     | ND<2   | ND<10  | ND<10     | ND<10     | ND<10  | ND<10  | ND<10       | 1.1    | ND<40  | 2.8         | ND<1     | 68     |
| PW-1    | 10/26/06    | ND<10  | ND<50  | ND<50     | ND<50     | ND<50  | ND<50  | ND<50       | 6.2    | ND<200 | 32          | ND<5.0   | 26     |
| 1 44-1  | 1/30/07     | ND<2   | 23     | 31        | 120       | ND<10  | ND<10  | 18          | ND<1   | ND<40  | 11          | ND<1     | 29     |
|         | 4/13/07     | 2.4    | 6.1    | 7         | 30        | ND<5   | ND<5   | 6.8         | 0.84   | ND<20  | 4.7         | ND<0.5   | 64     |
|         | 7/24/07     | ND<5.0 | 60     | ND<25     | ND<25     | ND<25  | ND<25  | ND<25       | ND<2.5 | ND<100 | 58          | ND<2.5   | 50     |
|         | 4/21/08     | 1.1    | ND<5   | ND<5      | 15        | ND<5   | ND<5   | ND<5        | 0.88   | ND<20  | 3.7         | ND<0.5   | 91     |
|         | 7/22/08     | NA     | NA     | NA        | NA        | NA     | NA     | NA          | NA     | NA     | NA          | NA       | NA     |
|         | 10/21/08    | 17     | 14     | 5         | 15        | 9.4    | 14     | 5.1         | 6.2    | ND<10  | 56          | 0.6      | 44     |
| CRW     | QCB ESL     | NC     | NC     | NC        | NC        | NC     | NC     | 17          | 5      | 5      | 6           | 0.5      | 5      |

## **TABLE 2 (Continued)**

# Historical Groundwater VOC Analytical Results 5930 College Avenue, Oakland, CA

#### NOTES:

VOC = Volatile Organic Compounds

IPB = Isopropylbenzene

n-PB = n-Propylbenzene

1,3,5-TMB = 1,3,5-Trimethylbenzene

1,2,4-TMB = 1,2,4-Trimethylbenzene

sec-BB = sec-Butylbenzene

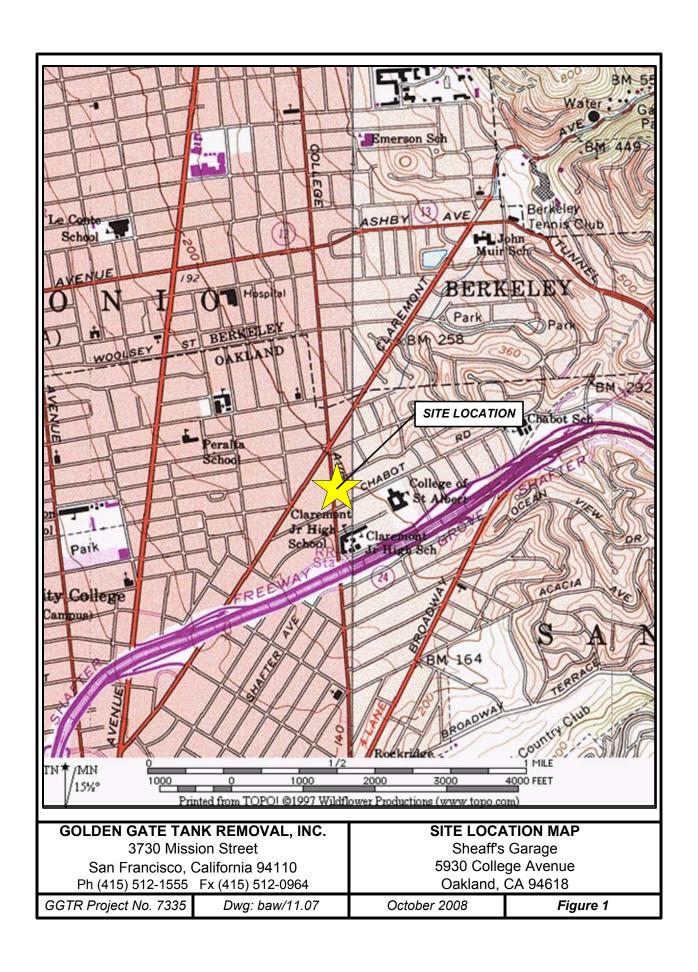
n-BB = n-Butylbenzene

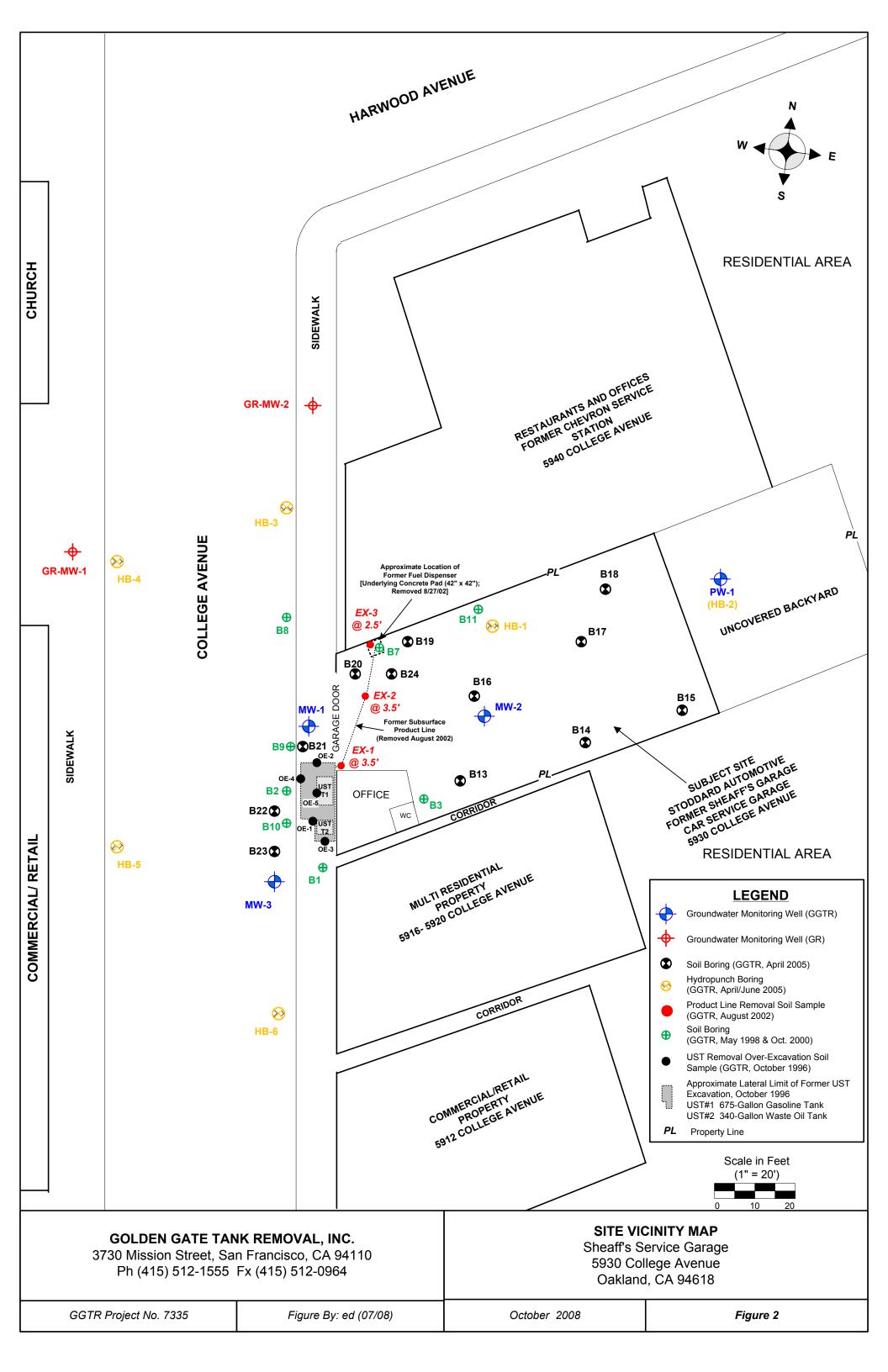
TCE = Trichloroethene

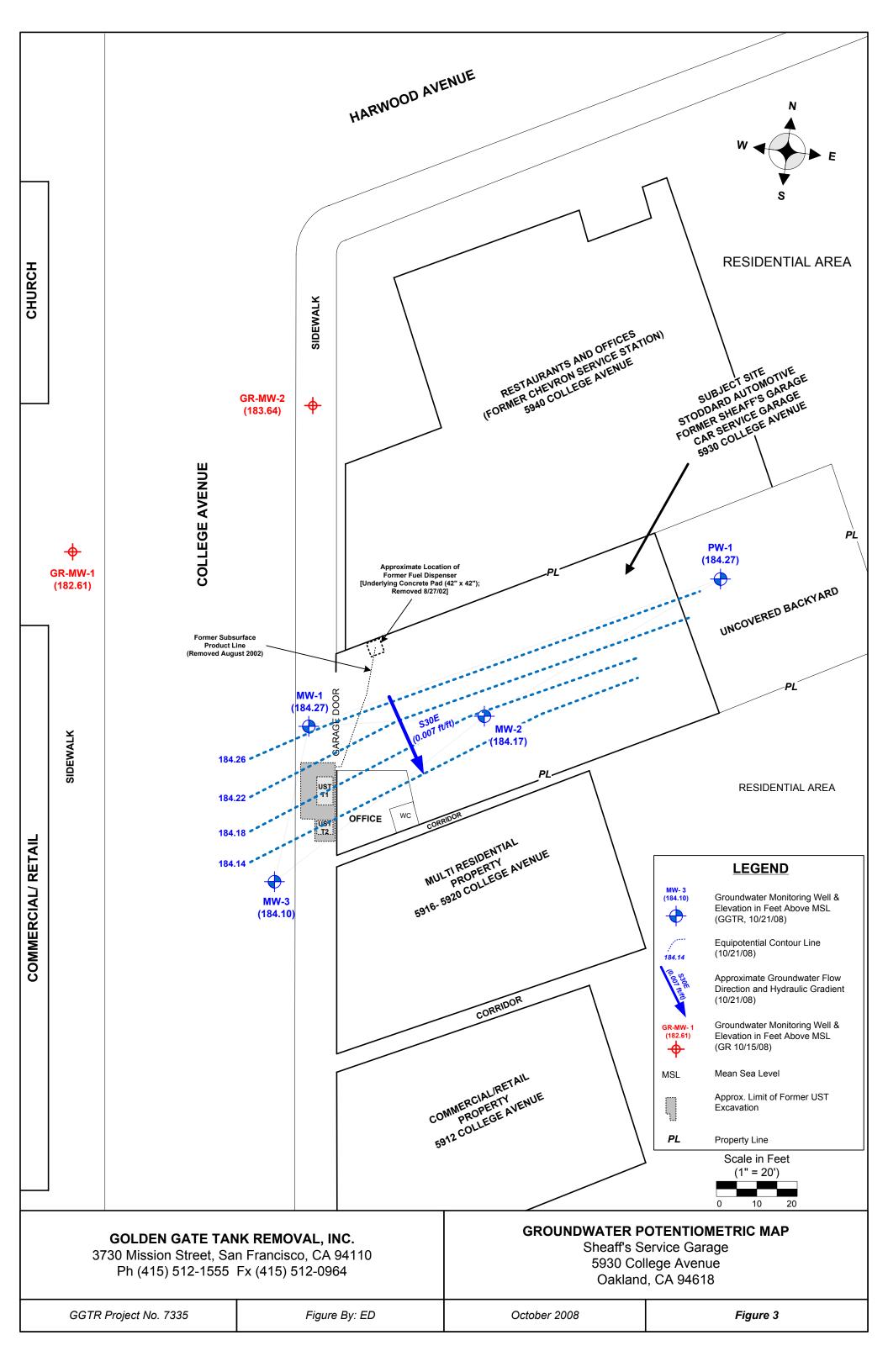
MC = Methylene Chloride

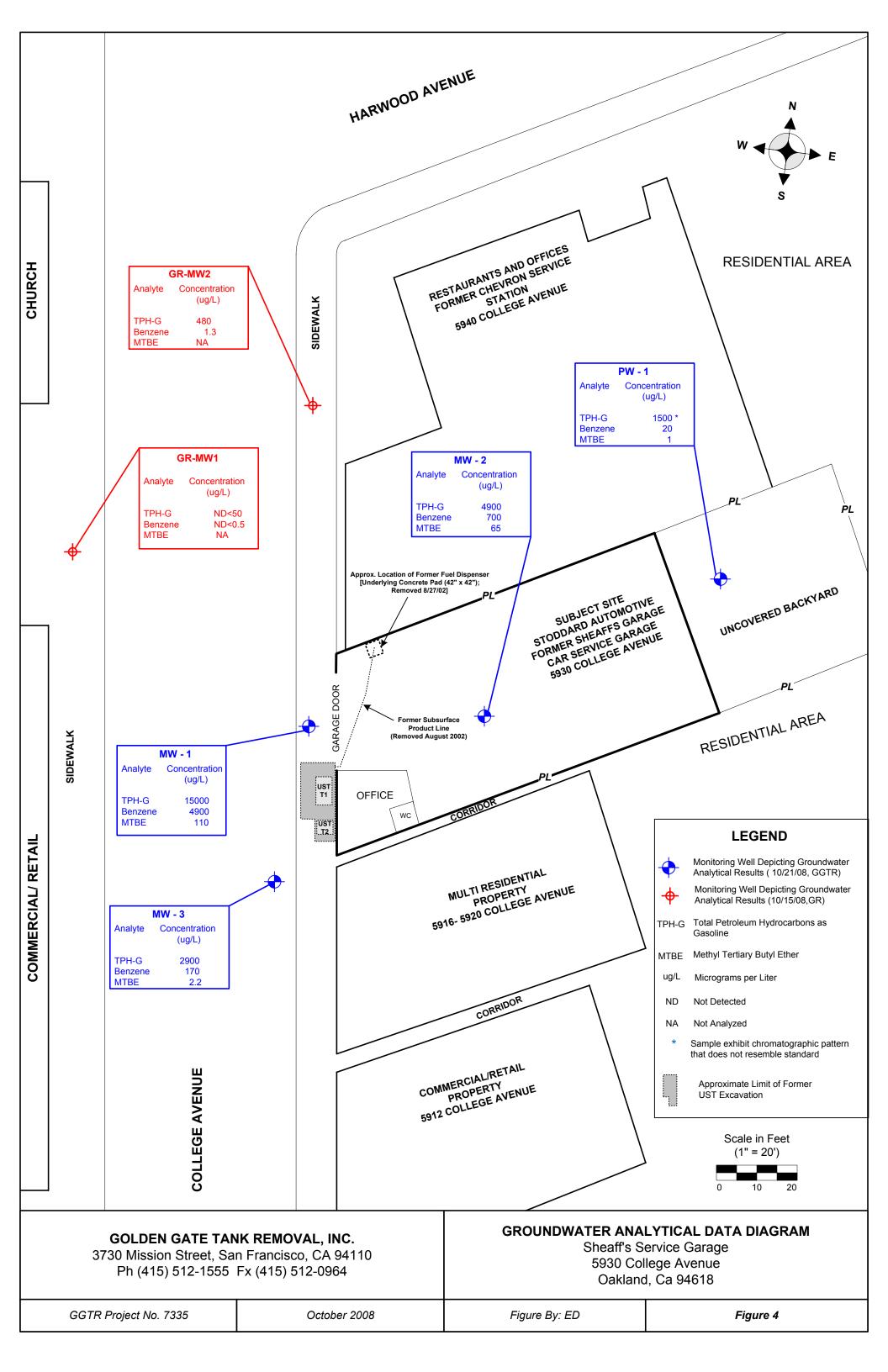
cis-1,2-DCE = cis-1,2-Dichloroethene

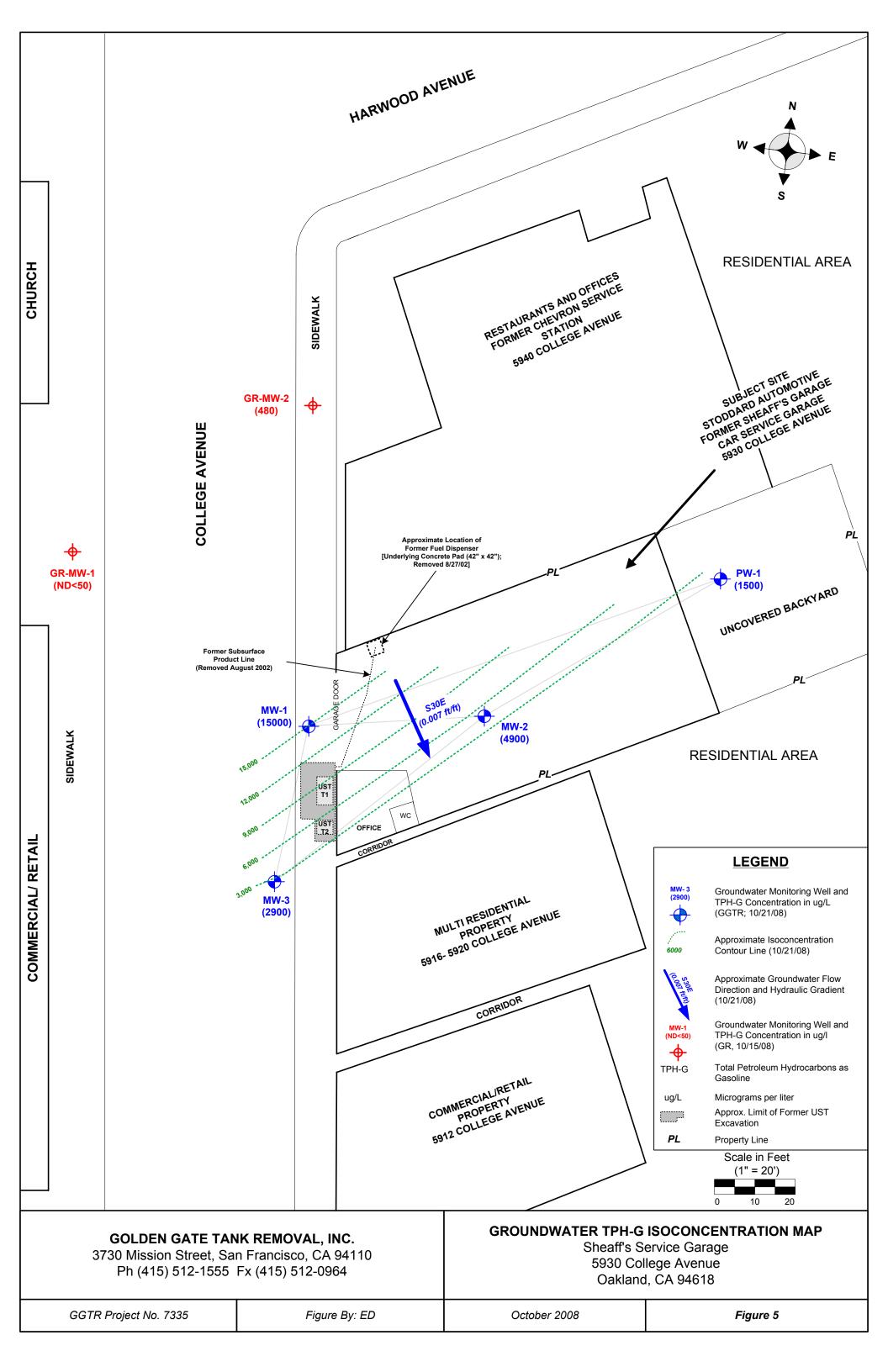
PCE = Tetrachloroethene

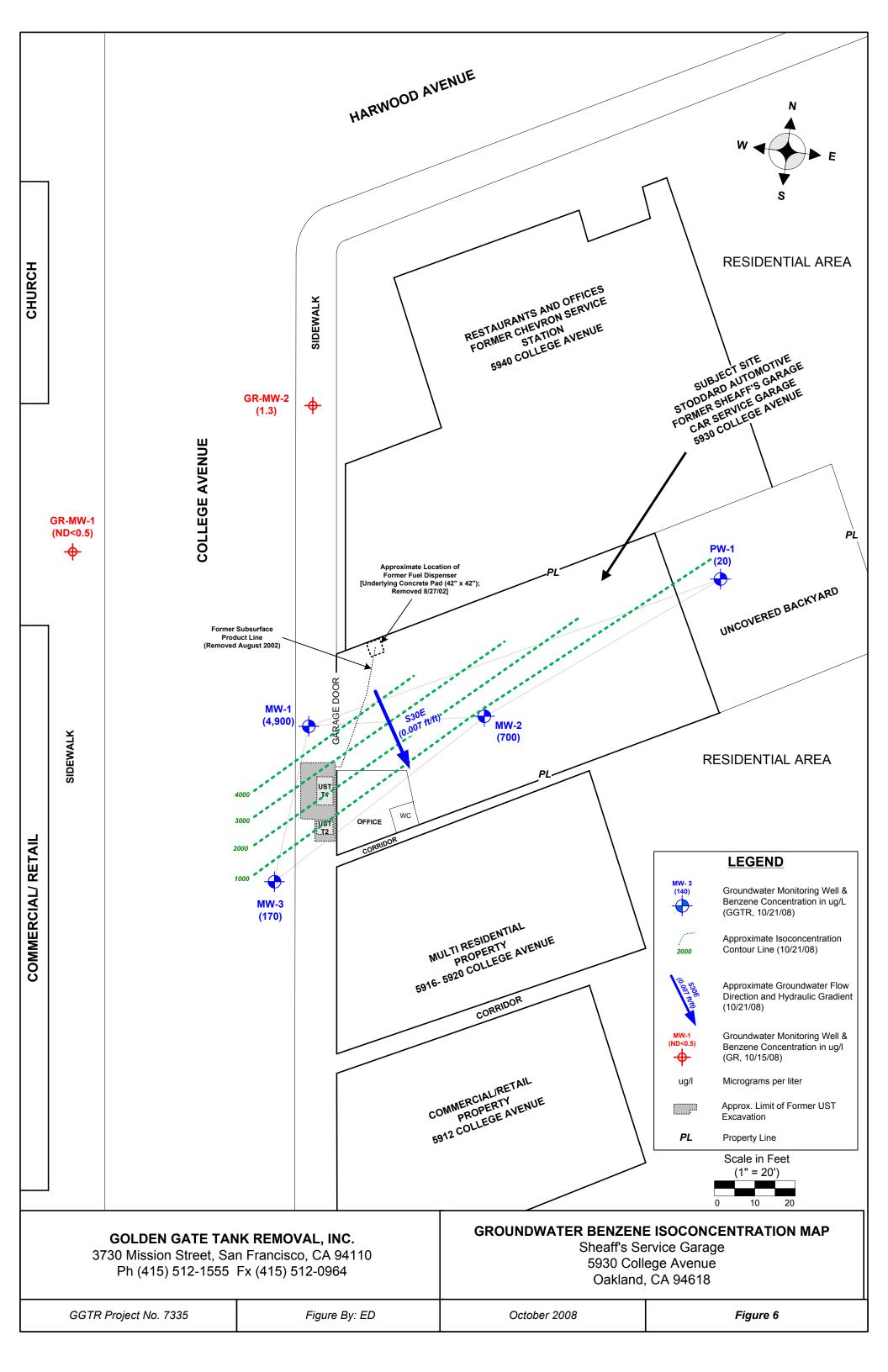

ug/l = micrograms per liter

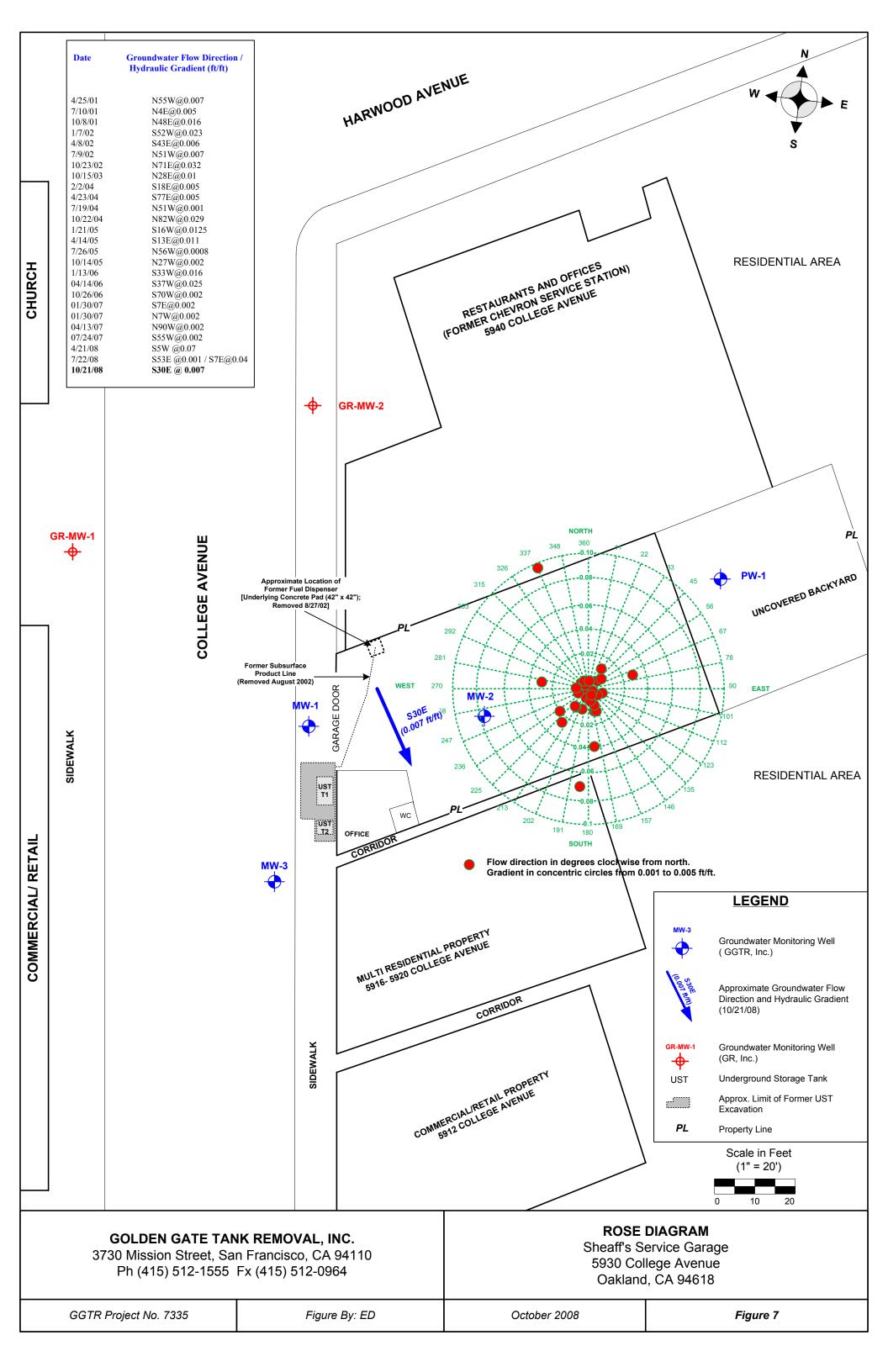

ND = Not detected above laboratory reporting limit


NC = No Criteria Listed


NA = Not Analyzed


CRWQCB/ESL = California Regional Water Quality Control Board's Interim Final - November 2007, Tier 1 Environmental Screening Level for groundwater that **IS** a potential source of drinking water














### **APPENDIX A**

# FLUID - LEVEL MONITORING DATA FORM WELL PURGING / SAMPLING DATA SHEETS

# Golden Gate Tank Removal, Inc.

## FLUID-LEVEL MONITORING DATA

| Project No:     | <u> </u>                    | 335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                            | Date                    | : _ 101  | 21/08                           |
|-----------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------|----------|---------------------------------|
| Project/Site    | I ocation:                  | FORNER S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Collep                         | ocaps<br>De Aus.        | -00      | kland                           |
| Technician:     | :                           | D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <i>F</i>                       | Instrume                | nt: Wete | 121/08<br>klad<br>n level meter |
|                 |                             | e de la companya de l |                                |                         |          |                                 |
| Boring/<br>Well | Depth to<br>Water<br>(feet) | Depth to<br>Product<br>(feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Product<br>Thickness<br>(feet) | Total Well Depth (feet) |          | Comments                        |
| Pw-1            | 12.90                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | מא                             | 20.00                   | 0800     | Lols of Silt                    |
| Mw-1            | 11.63                       | ИŊ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NO                             | 14.70                   | 0819     | Strong Header<br>No shelly      |
| Mw-2            | 13.11                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                             | 19.80                   | 0806     | Stroup HEODOR<br>Shely          |
| Mw-3            | 11.12                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                             | 19.00                   | 0803     | suplit Header<br>No show        |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                         |          |                                 |
|                 | ;                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                         |          |                                 |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                         |          |                                 |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                         |          |                                 |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                         |          |                                 |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                         |          |                                 |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                         |          |                                 |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                         |          |                                 |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                         |          |                                 |

Page \_\_

Measurements referenced to: \_\_\_\_TOC \_\_

# Golden Gate Tank Removal, Inc.

WELL PURGING/SAMPLING DATA

Project Number: 7335

Project / Site Location: 1930 College Aus. Oakland - CA

FORMER Sheaff's Gorage

Sampler/Technician: C.D.

Casing/Borehole Diameter (inches) 0.75/1.75 (2)8 4/8 4/10 6/10 6/12

Casing/Borehole Volumes (gallons/foot) 0.02/0.13 (0.2/0.9 0.7/1.2 0.7/1.6 1.5/2.2 1.5/3.1

| Casing/Borenole Diameter (Inches)                                                                                           | 0.73/1.73     | 2/3                                    | 970                                                                  | 0.7/1.6                                                 | 1.7/2.2                | 1.5/2.1      |
|-----------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------|------------------------|--------------|
| Casing/Borehole Volumes (gallons/foot)                                                                                      | 0.02/0.13     | 0.2/0.9                                | 0.7/1.2                                                              | 0.7/1.6                                                 | 1.5/2.2                | 1.5/3.1      |
|                                                                                                                             |               |                                        | · · · · · · · · · · · · · · · · · · ·                                |                                                         |                        |              |
| Well No. Pw-1                                                                                                               |               | Well No.                               | Mu-                                                                  |                                                         |                        |              |
| A. Total Well Depth B. Depth To Water C. Water Height (A-B)                                                                 |               | A. Total W<br>B. Depth T<br>C. Water F |                                                                      | 3)                                                      | 14.70<br>11.63<br>3.07 | Ft.          |
| D. Well Casing Diameter 2                                                                                                   | In.           | D. Well Ca                             | asing Diam                                                           | eter                                                    | 7                      | In.          |
| E. Casing Volume Constant                                                                                                   |               |                                        | Volume Co                                                            |                                                         |                        |              |
| (from above table) 0.2                                                                                                      |               |                                        | ove table)                                                           |                                                         | 0.2                    |              |
| F. Three (3) Casing or                                                                                                      | -             |                                        | 3) Casing or                                                         | r                                                       |                        |              |
| Borehole Volumes (CxEx3) 4.3                                                                                                | Gals          |                                        | e Volumes                                                            |                                                         | 1.8                    | Gals.        |
| G. 80% Recharge Level                                                                                                       | . 0413.       |                                        | echarge Lev                                                          | •                                                       |                        |              |
|                                                                                                                             | 7 E+          | [B+(Ex                                 | _                                                                    |                                                         | 12.24                  | Ft           |
| [B+(ExC)]                                                                                                                   | -1 (.         | [D (LA                                 | .0)                                                                  |                                                         | <u> </u>               | 1 6.         |
| Purge Event #1 Start Time: 0907 Finish Time: 0957 Purge Volume: 7 pls Recharge #1 Depth to Water: 16.50 Time Measured: 0955 | 16.45         | F<br>P<br><u>Recharge</u><br>D         | tart Time:<br>inish Time:<br>urge Volun<br># <i>1</i><br>Depth to Wa | 12:30<br>i 12:45<br>ne: 1,59<br>uter: 13.7<br>red: 12:1 | Ls<br>7                |              |
| Purge Event #2 Start Time: Finish Time: Purge Volume:  Recharge #2 Depth to Water: Time Measured:                           |               | F<br>P<br><u>Recharge</u><br>D         | tart Time:<br>inish Time:<br>urge Volun                              | ne:<br>nter:                                            |                        |              |
| Well Fluid Parameters:                                                                                                      |               | Well Fluid                             | d Paramet                                                            | ers:                                                    |                        |              |
| (Casing or Borehole Volum                                                                                                   | nes)          |                                        |                                                                      | ng or Boreh                                             | ole Volum              | ies)         |
|                                                                                                                             | 2.5 3         | (                                      | 0 1 1                                                                | 1.5                                                     |                        | <u>5</u> 1 3 |
| Time 0907 0930 0942 0954 -                                                                                                  | _   _         | Time 12                                | 30 12 36                                                             | 12:391                                                  | 244 124                | (1 <u>1</u>  |
| DH 6.38 6.51 6.52 6.52                                                                                                      | $\mathcal{A}$ | pH 6.4                                 | 8 19.20                                                              | 6.506                                                   |                        |              |
| T(°C) 17.8 17.5 17.5                                                                                                        |               | T(°C) 19                               | 4 19.4                                                               | 119.3                                                   | 9.3 19.                |              |
| Cond. 412 471 470 471                                                                                                       |               | Cond. 60                               | 5 604                                                                | 6166                                                    | 22 62                  | 4            |
| DO                                                                                                                          |               | DO                                     |                                                                      | -                                                       |                        | ,            |
| ORP                                                                                                                         |               | ORP                                    | _ /                                                                  |                                                         |                        |              |
| Summary Data:                                                                                                               |               | Summary                                |                                                                      |                                                         |                        |              |
| Total Gallons Purged:                                                                                                       | , 1           |                                        | ons Purged                                                           |                                                         |                        |              |
| Purge Rate (ml/min.): 300                                                                                                   | ods of        |                                        | e (ml/min.)                                                          |                                                         |                        |              |
| Purge device: Potistaltic                                                                                                   | ilt.          | Purge dev                              | ice: Perio                                                           | Halfic                                                  |                        |              |
| Sampling Device: Porstollic                                                                                                 |               |                                        |                                                                      | enshall.                                                |                        |              |
| Sample Collection Time: 10:00                                                                                               | .مد ( ل       |                                        |                                                                      | ime: 13 \ 0                                             |                        | ه را         |
| Sample Appearance: Brown No odn  Drums Remaining Onsite: Tota                                                               | Mo shorty     |                                        |                                                                      | Clean. Stm                                              |                        | dus, sheen   |
| Drums Remaining Onsite: Total                                                                                               | ıı Volume: _  | 1 1 Gals                               | . (Snow Lo                                                           | cation on Si                                            | uerian)                |              |
| 1 Empt                                                                                                                      | 4             |                                        |                                                                      |                                                         |                        |              |
| 1                                                                                                                           | •             |                                        |                                                                      |                                                         |                        |              |

Ü

0.6

# Golden Gate Tank Removal, Inc.

# WELL PURGING/SAMPLING DATA

| Casing/Borehole Volumes (gallons/foot) 0.02/0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>62</b> /0.9   0.7/1.2   0.7/1.6   1.5/2.2   1.5/3.1                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **************************************                                                                                                                                                                                                                                                   |
| Well No. Mw-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Well No. Mw-3                                                                                                                                                                                                                                                                            |
| A. Total Well Depth B. Depth To Water C. Water Height (A-B) D. Well Casing Diameter E. Casing Volume Constant (from above table) F. Three (3) Casing or Borehole Volumes (CxEx3) G. 80% Recharge Level [B+(ExC)]  Ft.(toc)  13.11 Ft.  6.69 Ft.  10.  2 In.  6.29 Ft.  Gals.  14.41 Ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A. Total Well Depth B. Depth To Water C. Water Height (A-B) D. Well Casing Diameter E. Casing Volume Constant (from above table) F. Three (3) Casing or Borehole Volumes (CxEx3) G. 80% Recharge Level [B+(ExC)]  11.12 Ft. 7.88 Ft. 7 In. 9.2 14.7 Gals.                                |
| Purge Event #1  Start Time: 11:15  Finish Time: 11:34  Purge Volume: 2.6 pts  Recharge #1  Depth to Water: 17.60 -717.50  Time Measured: 11:35 -711:36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Purge Event #1  Start Time: 10:23  Finish Time: 10:43  Purge Volume: 3 \$\mathcal{I} \text{S} \text{Recharge #1}  Depth to Water: 14.40  Time Measured: 10:41                                                                                                                            |
| Purge Event #2 Start Time: Finish Time: Purge Volume:  Recharge #2 Depth to Water: Time Measured:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Purge Event #2  Start Time: Finish Time: Purge Volume:  Recharge #2  Depth to Water: Time Measured:                                                                                                                                                                                      |
| Well Fluid Parameters:  (Casing or Borehole Volumes)  1.5  Time 11:15   1.24   1.5  PH 6.46   6.45   6.44   6.44   6.44    T (°C)   18.5   18.8   18.8   18.8   18.8    Cond. 8 03   791   788   785    DO  ORP  Summary Data:  Total Gallons Purged: 2.6   6.5  Purge Rate (ml/min.): 3.50  Purge device: Parafield of the control of the contr | Well Fluid Parameters:  (Casing or Borehole Volumes)  Time 10:23   10:33   15:5   2   10:43   pH 6.57   6.70   6.71   18.9   T(°C) 18.5   18.9   18.8   18.9   Cond. 425   421   420   DO ORP  Summary Data: Total Gallons Purged: 3 Purge Rate (ml/min.): 350 Purge device: Pers feltic |
| Sampling Device: Perishellic Sample Collection Time: 11: 50 Sample Appearance: Clear Stroughtcoder Show                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sampling Device: Peristoffic Sample Collection Time: 11:00 Sample Appearance: Clear. HC odur. No stun  Transfer Action on Site Plan)                                                                                                                                                     |

### **APPENDIX B**

## LABORATORY CERTIFICATES OF ANALYSIS CHAIN OF CUSTODY RECORD GEOTRACKER UPLOAD CONFIRMATION FORMS GETTLER -RYAN SUMMARY TABLE



## Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

# Laboratory Job Number 207099 ANALYTICAL REPORT

Golden Gate Tank Removal

3730 Mission Street

San Francisco, CA 94110

Project : 7335

Location : Former Sheaff's Garage

Level : II

| Sample ID | <u>Lab ID</u> |
|-----------|---------------|
| PW-1      | 207099-001    |
| MW-1      | 207099-002    |
| MW-2      | 207099-003    |
| MW-3      | 207099-004    |

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Project Manager

Date: <u>11/04/2008</u>

Signature:

Senior Program Manager

Date: <u>11/04/2008</u>

NELAP # 01107CA

Page 1 of \_\_\_\_



#### CASE NARRATIVE

Laboratory number: 207099

Client: Golden Gate Tank Removal

Project: 7335

Location: Former Sheaff's Garage

Request Date: 10/22/08 Samples Received: 10/22/08

This data package contains sample and QC results for four water samples, requested for the above referenced project on 10/22/08. The samples were received cold and intact.

#### Volatile Organics by GC/MS (EPA 8260B):

High surrogate recoveries were observed for bromofluorobenzene in a number of samples; no associated target analytes were detected in the sample. No other analytical problems were encountered.



|           | Curtis & Tompkins Labo   | oratories Anal | Lytical Report         |
|-----------|--------------------------|----------------|------------------------|
| Lab #:    | 207099                   | Location:      | Former Sheaff's Garage |
| Client:   | Golden Gate Tank Removal | Prep:          | EPA 5030B              |
| Project#: | 7335                     | Analysis:      | EPA 8260B              |
| Field ID: | PW-1                     | Batch#:        | 144273                 |
| Lab ID:   | 207099-001               | Sampled:       | 10/21/08               |
| Matrix:   | Water                    | Received:      | 10/22/08               |
| Units:    | ug/L                     | Analyzed:      | 10/30/08               |
| Diln Fac: | 1.000                    | -              |                        |

| 3 3                                                 | D         | 7.7        |  |
|-----------------------------------------------------|-----------|------------|--|
| Analyte                                             | Result    | RL         |  |
| Gasoline C7-C12                                     | 1,500 Y   | 50         |  |
| Freon 12                                            | ND        | 1.0        |  |
| Chloromethane                                       | ND        | 1.0        |  |
| Vinyl Chloride                                      | 0.6       | 0.5        |  |
| Bromomethane                                        | ND        | 1.0        |  |
| Chloroethane                                        | ND        | 1.0        |  |
| Trichlorofluoromethane                              | ND        | 1.0        |  |
| Acetone                                             | ND        | 10         |  |
| Freon 113                                           | ND        | 2.0        |  |
| 1,1-Dichloroethene                                  | ND        | 0.5        |  |
| Methylene Chloride                                  | ND        | 10         |  |
| Carbon Disulfide                                    | ND        | 0.5        |  |
| MTBE                                                | 1.0       | 0.5        |  |
| trans-1,2-Dichloroethene                            | ND        | 0.5        |  |
| Vinyl Acetate                                       | ND        | 10         |  |
| 1,1-Dichloroethane                                  | ND        | 0.5        |  |
| 2-Butanone                                          | ND        | 10         |  |
| cis-1,2-Dichloroethene                              | 56        | 0.5        |  |
| 2,2-Dichloropropane                                 | ND        | 0.5        |  |
| Chloroform                                          | ND        | 0.5<br>0.5 |  |
| Bromochloromethane                                  | ND        |            |  |
| 1,1,1-Trichloroethane                               | ND        | 0.5        |  |
| 1,1-Dichloropropene                                 | ND        | 0.5<br>0.5 |  |
| Carbon Tetrachloride                                | ND        |            |  |
| 1,2-Dichloroethane                                  | ND        | 0.5        |  |
| Benzene                                             | 20<br>6.2 | 0.5<br>0.5 |  |
| Trichloroethene                                     |           |            |  |
| 1,2-Dichloropropane                                 | ND        | 0.5        |  |
| Bromodichloromethane                                | ND        | 0.5        |  |
| Dibromomethane                                      | ND        | 0.5        |  |
| 4-Methyl-2-Pentanone                                | ND        | 10<br>0.5  |  |
| cis-1,3-Dichloropropene Toluene                     | ND<br>ND  | 0.5        |  |
| trans-1,3-Dichloropropene                           |           | 0.5        |  |
| 1,1,2-Trichloroethane                               | ND<br>ND  | 0.5        |  |
| 2-Hexanone                                          | ND        | 10         |  |
| 1,3-Dichloropropane                                 | ND        | 0.5        |  |
| Tetrachloroethene                                   | ND 44     | 0.5        |  |
| Dibromochloromethane                                | ND        | 0.5        |  |
| 1,2-Dibromoethane                                   | ND<br>ND  | 0.5        |  |
| Chlorobenzene                                       | ND<br>ND  | 0.5        |  |
| 1,1,1,2-Tetrachloroethane                           | ND        | 0.5        |  |
|                                                     | 57        | 0.5        |  |
| Ethylbenzene<br>m n-Yylonog                         | 20        | 0.5        |  |
| m,p-Xylenes<br>o-Xylene                             | ND        | 0.5        |  |
| Styrene                                             | ND        | 0.5        |  |
| Bromoform                                           | ND        | 1.0        |  |
| Isopropylbenzene                                    | 17        | 0.5        |  |
| 1,1,2,2-Tetrachloroethane                           | ND        | 0.5        |  |
| 1,1,2,2-retrachioroethane<br>1,2,3-Trichloropropane | ND        | 0.5        |  |
| Propylbenzene                                       | עא<br>15  | 0.5        |  |
| Bromobenzene                                        | ND        | 0.5        |  |
| 1,3,5-Trimethylbenzene                              | 5.0       | 0.5        |  |
| T, J, J-II THECHY IDENZERS                          | 5.0       | 0.3        |  |

Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit



|           | Curtis & Tompkins Labo   | oratories Anal |                        |
|-----------|--------------------------|----------------|------------------------|
| Lab #:    | 207099                   | Location:      | Former Sheaff's Garage |
| Client:   | Golden Gate Tank Removal | Prep:          | EPA 5030B              |
| Project#: | 7335                     | Analysis:      | EPA 8260B              |
| Field ID: | PW-1                     | Batch#:        | 144273                 |
| Lab ID:   | 207099-001               | Sampled:       | 10/21/08               |
| Matrix:   | Water                    | Received:      | 10/22/08               |
| Units:    | ug/L                     | Analyzed:      | 10/30/08               |
| Diln Fac: | 1.000                    | -              |                        |

| Analyte                     | Result | RL  |  |
|-----------------------------|--------|-----|--|
| 2-Chlorotoluene             | ND     | 0.5 |  |
| 4-Chlorotoluene             | ND     | 0.5 |  |
| tert-Butylbenzene           | 1.0    | 0.5 |  |
| 1,2,4-Trimethylbenzene      | 15     | 0.5 |  |
| sec-Butylbenzene            | 9.4    | 0.5 |  |
| para-Isopropyl Toluene      | ND     | 0.5 |  |
| 1,3-Dichlorobenzene         | ND     | 0.5 |  |
| 1,4-Dichlorobenzene         | ND     | 0.5 |  |
| n-Butylbenzene              | 14     | 0.5 |  |
| 1,2-Dichlorobenzene         | ND     | 0.5 |  |
| 1,2-Dibromo-3-Chloropropane | ND     | 2.0 |  |
| 1,2,4-Trichlorobenzene      | ND     | 0.5 |  |
| Hexachlorobutadiene         | ND     | 2.0 |  |
| Naphthalene                 | 5.1    | 2.0 |  |
| 1,2,3-Trichlorobenzene      | ND     | 0.5 |  |

| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| Dibromofluoromethane  | 107  | 80-125 |
| 1,2-Dichloroethane-d4 | 116  | 80-137 |
| Toluene-d8            | 99   | 80-120 |
| Bromofluorobenzene    | 115  | 80-122 |

Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit



|                                | Curtis & Tompkins Labo                     | oratories Anal                    | lytical Report                                   |
|--------------------------------|--------------------------------------------|-----------------------------------|--------------------------------------------------|
| Lab #:<br>Client:<br>Project#: | 207099<br>Golden Gate Tank Removal<br>7335 | Location:<br>Prep:<br>Analysis:   | Former Sheaff's Garage<br>EPA 5030B<br>EPA 8260B |
| Type: Lab ID: Matrix: Units:   | BLANK<br>QC467908<br>Water<br>ug/L         | Diln Fac:<br>Batch#:<br>Analyzed: | 1.000<br>144273<br>10/30/08                      |

| Analyte                   | Result | RL  |
|---------------------------|--------|-----|
| Gasoline C7-C12           | ND     | 50  |
| Freon 12                  | ND     | 1.0 |
| Chloromethane             | ND     | 1.0 |
| Vinyl Chloride            | ND     | 0.5 |
| Bromomethane              | ND     | 1.0 |
| Chloroethane              | ND     | 1.0 |
| Trichlorofluoromethane    | ND     | 1.0 |
| Acetone                   | ND     | 10  |
| Freon 113                 | ND     | 2.0 |
| 1,1-Dichloroethene        | ND     | 0.5 |
| Methylene Chloride        | ND     | 10  |
| Carbon Disulfide          | ND     | 0.5 |
| MTBE                      | ND     | 0.5 |
| trans-1,2-Dichloroethene  | ND     | 0.5 |
| Vinyl Acetate             | ND     | 10  |
| 1,1-Dichloroethane        | ND     | 0.5 |
| 2-Butanone                | ND     | 10  |
| cis-1,2-Dichloroethene    | ND     | 0.5 |
| 2,2-Dichloropropane       | ND     | 0.5 |
| Chloroform                | ND     | 0.5 |
| Bromochloromethane        | ND     | 0.5 |
| 1,1,1-Trichloroethane     | ND     | 0.5 |
| 1,1-Dichloropropene       | ND     | 0.5 |
| Carbon Tetrachloride      | ND     | 0.5 |
| 1,2-Dichloroethane        | ND     | 0.5 |
| Benzene                   | ND     | 0.5 |
| Trichloroethene           | ND     | 0.5 |
| 1,2-Dichloropropane       | ND     | 0.5 |
| Bromodichloromethane      | ND     | 0.5 |
| Dibromomethane            | ND     | 0.5 |
| 4-Methyl-2-Pentanone      | ND     | 10  |
| cis-1,3-Dichloropropene   | ND     | 0.5 |
| Toluene                   | ND     | 0.5 |
| trans-1,3-Dichloropropene | ND     | 0.5 |
| 1,1,2-Trichloroethane     | ND     | 0.5 |
| 2-Hexanone                | ND     | 10  |
| 1,3-Dichloropropane       | ND     | 0.5 |
| Tetrachloroethene         | ND     | 0.5 |
| Dibromochloromethane      | ND     | 0.5 |
| 1,2-Dibromoethane         | ND     | 0.5 |
| Chlorobenzene             | ND     | 0.5 |
| 1,1,1,2-Tetrachloroethane | ND     | 0.5 |
| Ethylbenzene              | ND     | 0.5 |
| m,p-Xylenes               | ND     | 0.5 |
| o-Xylene                  | ND     | 0.5 |
| Styrene                   | ND     | 0.5 |
| Bromoform                 | ND     | 1.0 |
| Isopropylbenzene          | ND     | 0.5 |
| 1,1,2,2-Tetrachloroethane | ND     | 0.5 |
| 1,2,3-Trichloropropane    | ND     | 0.5 |
| Propylbenzene             | ND     | 0.5 |
| Bromobenzene              | ND     | 0.5 |
| 1,3,5-Trimethylbenzene    | ND     | 0.5 |

<sup>\*=</sup> Value outside of QC limits; see narrative ND= Not Detected RL= Reporting Limit Page 1 of 2



|                   | Curtis & Tompkins Labo             | oratories Anal     | ytical Report                       |
|-------------------|------------------------------------|--------------------|-------------------------------------|
| Lab #:<br>Client: | 207099<br>Golden Gate Tank Removal | Location:<br>Prep: | Former Sheaff's Garage<br>EPA 5030B |
| Project#:         | 7335                               | Analysis:          | EPA 8260B                           |
| Type:<br>Lab ID:  | BLANK                              | Diln Fac:          | 1.000                               |
|                   | QC467908                           | Batch#:            | 144273                              |
| Matrix:<br>Units: | Water<br>ug/L                      | Analyzed:          | 10/30/08                            |

| Analyte                     | Result | RL  |
|-----------------------------|--------|-----|
| 2-Chlorotoluene             | ND     | 0.5 |
| 4-Chlorotoluene             | ND     | 0.5 |
| tert-Butylbenzene           | ND     | 0.5 |
| 1,2,4-Trimethylbenzene      | ND     | 0.5 |
| sec-Butylbenzene            | ND     | 0.5 |
| para-Isopropyl Toluene      | ND     | 0.5 |
| 1,3-Dichlorobenzene         | ND     | 0.5 |
| 1,4-Dichlorobenzene         | ND     | 0.5 |
| n-Butylbenzene              | ND     | 0.5 |
| 1,2-Dichlorobenzene         | ND     | 0.5 |
| 1,2-Dibromo-3-Chloropropane | ND     | 2.0 |
| 1,2,4-Trichlorobenzene      | ND     | 0.5 |
| Hexachlorobutadiene         | ND     | 2.0 |
| Naphthalene                 | ND     | 2.0 |
| 1,2,3-Trichlorobenzene      | ND     | 0.5 |

| Surrogate             | %REC  | Limits |
|-----------------------|-------|--------|
| Dibromofluoromethane  | 105   | 80-125 |
| 1,2-Dichloroethane-d4 | 120   | 80-137 |
| Toluene-d8            | 101   | 80-120 |
| Bromofluorobenzene    | 133 * | 80-122 |

<sup>\*=</sup> Value outside of QC limits; see narrative ND= Not Detected RL= Reporting Limit Page 2 of 2



|                  | Curtis & Tompkins Labo   | oratories Anal | lytical Report         |
|------------------|--------------------------|----------------|------------------------|
| Lab #:           | 207099                   | Location:      | Former Sheaff's Garage |
| Client:          | Golden Gate Tank Removal | Prep:          | EPA 5030B              |
| Project#:        | 7335                     | Analysis:      | EPA 8260B              |
| Type:<br>Lab ID: | BLANK                    | Diln Fac:      | 1.000                  |
| Lab ID:          | QC467909                 | Batch#:        | 144273                 |
| Matrix:          | Water                    | Analyzed:      | 10/30/08               |
| Units:           | ug/L                     | _              |                        |

| Analyte                   | Result | RL  |
|---------------------------|--------|-----|
| Gasoline C7-C12           | ND     | 50  |
| Freon 12                  | ND     | 1.0 |
| Chloromethane             | ND     | 1.0 |
| Vinyl Chloride            | ND     | 0.5 |
| Bromomethane              | ND     | 1.0 |
| Chloroethane              | ND     | 1.0 |
| Trichlorofluoromethane    | ND     | 1.0 |
| Acetone                   | ND     | 10  |
| Freon 113                 | ND     | 2.0 |
| 1,1-Dichloroethene        | ND     | 0.5 |
| Methylene Chloride        | ND     | 10  |
| Carbon Disulfide          | ND     | 0.5 |
| MTBE                      | ND     | 0.5 |
| trans-1,2-Dichloroethene  | ND     | 0.5 |
| Vinyl Acetate             | ND     | 10  |
| 1,1-Dichloroethane        | ND     | 0.5 |
| 2-Butanone                | ND     | 10  |
| cis-1,2-Dichloroethene    | ND     | 0.5 |
| 2,2-Dichloropropane       | ND     | 0.5 |
| Chloroform                | ND     | 0.5 |
| Bromochloromethane        | ND     | 0.5 |
| 1,1,1-Trichloroethane     | ND     | 0.5 |
| 1,1-Dichloropropene       | ND     | 0.5 |
| Carbon Tetrachloride      | ND     | 0.5 |
| 1,2-Dichloroethane        | ND     | 0.5 |
| Benzene                   | ND     | 0.5 |
| Trichloroethene           | ND     | 0.5 |
| 1,2-Dichloropropane       | ND     | 0.5 |
| Bromodichloromethane      | ND     | 0.5 |
| Dibromomethane            | ND     | 0.5 |
| 4-Methyl-2-Pentanone      | ND     | 10  |
| cis-1,3-Dichloropropene   | ND     | 0.5 |
| Toluene                   | ND     | 0.5 |
| trans-1,3-Dichloropropene | ND     | 0.5 |
| 1,1,2-Trichloroethane     | ND     | 0.5 |
| 2-Hexanone                | ND     | 10  |
| 1,3-Dichloropropane       | ND     | 0.5 |
| Tetrachloroethene         | ND     | 0.5 |
| Dibromochloromethane      | ND     | 0.5 |
| 1,2-Dibromoethane         | ND     | 0.5 |
| Chlorobenzene             | ND     | 0.5 |
| 1,1,1,2-Tetrachloroethane | ND     | 0.5 |
| Ethylbenzene              | ND     | 0.5 |
| m,p-Xylenes               | ND     | 0.5 |
| o-Xylene                  | ND     | 0.5 |
| Styrene                   | ND     | 0.5 |
| Bromoform                 | ND     | 1.0 |
| Isopropylbenzene          | ND     | 0.5 |
| 1,1,2,2-Tetrachloroethane | ND     | 0.5 |
| 1,2,3-Trichloropropane    | ND     | 0.5 |
| Propylbenzene             | ND     | 0.5 |
| Bromobenzene              | ND     | 0.5 |
| 1,3,5-Trimethylbenzene    | ND     | 0.5 |

<sup>\*=</sup> Value outside of QC limits; see narrative ND= Not Detected RL= Reporting Limit Page 1 of 2



| Curtis & Tompkins Laboratories Analytical Report |                          |           |                        |  |  |  |
|--------------------------------------------------|--------------------------|-----------|------------------------|--|--|--|
| Lab #:                                           | 207099                   | Location: | Former Sheaff's Garage |  |  |  |
| Client:                                          | Golden Gate Tank Removal | Prep:     | EPA 5030B              |  |  |  |
| Project#:                                        | 7335                     | Analysis: | EPA 8260B              |  |  |  |
| Type:                                            | BLANK                    | Diln Fac: | 1.000                  |  |  |  |
| Type:<br>Lab ID:                                 | QC467909                 | Batch#:   | 144273                 |  |  |  |
| Matrix:                                          | Water                    | Analyzed: | 10/30/08               |  |  |  |
| Units:                                           | ug/L                     |           |                        |  |  |  |

| Analyte                     | Result | RL  |
|-----------------------------|--------|-----|
| 2-Chlorotoluene             | ND     | 0.5 |
| 4-Chlorotoluene             | ND     | 0.5 |
| tert-Butylbenzene           | ND     | 0.5 |
| 1,2,4-Trimethylbenzene      | ND     | 0.5 |
| sec-Butylbenzene            | ND     | 0.5 |
| para-Isopropyl Toluene      | ND     | 0.5 |
| 1,3-Dichlorobenzene         | ND     | 0.5 |
| 1,4-Dichlorobenzene         | ND     | 0.5 |
| n-Butylbenzene              | ND     | 0.5 |
| 1,2-Dichlorobenzene         | ND     | 0.5 |
| 1,2-Dibromo-3-Chloropropane | ND     | 2.0 |
| 1,2,4-Trichlorobenzene      | ND     | 0.5 |
| Hexachlorobutadiene         | ND     | 2.0 |
| Naphthalene                 | ND     | 2.0 |
| 1,2,3-Trichlorobenzene      | ND     | 0.5 |

| Surrogate %R              | EC | Limits |
|---------------------------|----|--------|
| Dibromofluoromethane 104  | ;  | 80-125 |
| 1,2-Dichloroethane-d4 118 |    | 80-137 |
| Toluene-d8 101            |    | 80-120 |
| Bromofluorobenzene 133    | *  | 80-122 |

<sup>\*=</sup> Value outside of QC limits; see narrative ND= Not Detected RL= Reporting Limit Page 2 of 2



|           | Curtis & Tompkins Labo   | oratories Anal | Lytical Report         |
|-----------|--------------------------|----------------|------------------------|
| Lab #:    | 207099                   | Location:      | Former Sheaff's Garage |
| Client:   | Golden Gate Tank Removal | Prep:          | EPA 5030B              |
| Project#: | 7335                     | Analysis:      | EPA 8260B              |
| Matrix:   | Water                    | Batch#:        | 144273                 |
| Units:    | ug/L                     | Analyzed:      | 10/30/08               |
| Diln Fac: | 1.000                    |                |                        |

Type: BS Lab ID: QC467910

| Analyte            | Spiked | Result | %REC | Limits |
|--------------------|--------|--------|------|--------|
| 1,1-Dichloroethene | 25.00  | 23.09  | 92   | 73-133 |
| Benzene            | 25.00  | 20.87  | 83   | 80-120 |
| Trichloroethene    | 25.00  | 21.85  | 87   | 80-120 |
| Toluene            | 25.00  | 21.50  | 86   | 80-120 |
| Chlorobenzene      | 25.00  | 21.00  | 84   | 80-120 |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 107  | 80-125 |  |
| 1,2-Dichloroethane-d4 | 119  | 80-137 |  |
| Toluene-d8            | 101  | 80-120 |  |
| Bromofluorobenzene    | 119  | 80-122 |  |

| Analyte            | Spiked | Result | %REC | Limits | RPD | Lim |
|--------------------|--------|--------|------|--------|-----|-----|
| 1,1-Dichloroethene | 25.00  | 23.09  | 92   | 73-133 | 0   | 20  |
| Benzene            | 25.00  | 21.56  | 86   | 80-120 | 3   | 20  |
| Trichloroethene    | 25.00  | 22.04  | 88   | 80-120 | 1   | 20  |
| Toluene            | 25.00  | 22.12  | 88   | 80-120 | 3   | 20  |
| Chlorobenzene      | 25.00  | 21.54  | 86   | 80-120 | 2   | 20  |

| Surrogate             | %REC | Limits |  |  |
|-----------------------|------|--------|--|--|
| Dibromofluoromethane  | 106  | 80-125 |  |  |
| 1,2-Dichloroethane-d4 | 118  | 80-137 |  |  |
| Toluene-d8            | 101  | 80-120 |  |  |
| Bromofluorobenzene    | 117  | 80-122 |  |  |



|           | Curtis & Tompkins Labo   | oratories Anal | lytical Report         |
|-----------|--------------------------|----------------|------------------------|
| Lab #:    | 207099                   | Location:      | Former Sheaff's Garage |
| Client:   | Golden Gate Tank Removal | Prep:          | EPA 5030B              |
| Project#: | 7335                     | Analysis:      | EPA 8260B              |
| Matrix:   | Water                    | Batch#:        | 144273                 |
| Units:    | ug/L                     | Analyzed:      | 10/30/08               |
| Diln Fac: | 1.000                    |                |                        |

Type: BS Lab ID: QC467912

| Analyte         | Spiked | Result | %REC | Limits |
|-----------------|--------|--------|------|--------|
| Gasoline C7-C12 | 800.0  | 740.0  | 93   | 70-130 |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 104  | 80-125 |  |
| 1,2-Dichloroethane-d4 | 118  | 80-137 |  |
| Toluene-d8            | 99   | 80-120 |  |
| Bromofluorobenzene    | 119  | 80-122 |  |

| Analyte         | Spiked | Result | %REC | Limits | RPD | Lim |
|-----------------|--------|--------|------|--------|-----|-----|
| Gasoline C7-C12 | 800.0  | 690.5  | 86   | 70-130 | 7   | 20  |

| Surrogate %F              | REC | Limits |
|---------------------------|-----|--------|
| Dibromofluoromethane 106  | 6   | 80-125 |
| 1,2-Dichloroethane-d4 119 | 9   | 80-137 |
| Toluene-d8 100            | 0   | 80-120 |
| Bromofluorobenzene 122    | 2   | 80-122 |



| Gasoline by GC/MS |                          |           |                        |  |  |  |
|-------------------|--------------------------|-----------|------------------------|--|--|--|
| Lab #:            | 207099                   | Location: | Former Sheaff's Garage |  |  |  |
| Client:           | Golden Gate Tank Removal | Prep:     | EPA 5030B              |  |  |  |
| Project#:         | 7335                     | Analysis: | EPA 8260B              |  |  |  |
| Field ID:         | MW-1                     | Units:    | ug/L                   |  |  |  |
| Lab ID:           | 207099-002               | Sampled:  | 10/21/08               |  |  |  |
| Matrix:           | Water                    | Received: | 10/22/08               |  |  |  |

| Analyte                       | Result | RL    | Diln Fac | Batch# Analyzed |
|-------------------------------|--------|-------|----------|-----------------|
| Gasoline C7-C12               | 15,000 | 2,000 | 40.00    | 144221 10/30/08 |
| tert-Butyl Alcohol (TBA)      | ND     | 400   | 40.00    | 144221 10/30/08 |
| Isopropyl Ether (DIPE)        | ND     | 20    | 40.00    | 144221 10/30/08 |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 20    | 40.00    | 144221 10/30/08 |
| Methyl tert-Amyl Ether (TAME) | ND     | 20    | 40.00    | 144221 10/30/08 |
| MTBE                          | 110    | 20    | 40.00    | 144221 10/30/08 |
| 1,2-Dichloroethane            | ND     | 20    | 40.00    | 144221 10/30/08 |
| Benzene                       | 4,900  | 50    | 100.0    | 144273 10/31/08 |
| Toluene                       | 430    | 20    | 40.00    | 144221 10/30/08 |
| 1,2-Dibromoethane             | ND     | 20    | 40.00    | 144221 10/30/08 |
| Ethylbenzene                  | 1,900  | 20    | 40.00    | 144221 10/30/08 |
| m,p-Xylenes                   | 1,900  | 20    | 40.00    | 144221 10/30/08 |
| o-Xylene                      | 360    | 20    | 40.00    | 144221 10/30/08 |

| Surrogate             | %REC  | Limits | Diln Fac | Batch# Analyzed |
|-----------------------|-------|--------|----------|-----------------|
| Dibromofluoromethane  | 107   | 80-125 | 40.00    | 144221 10/30/08 |
| 1,2-Dichloroethane-d4 | 115   | 80-137 | 40.00    | 144221 10/30/08 |
| Toluene-d8            | 101   | 80-120 | 40.00    | 144221 10/30/08 |
| Bromofluorobenzene    | 126 * | 80-122 | 40.00    | 144221 10/30/08 |

RL= Reporting Limit

Page 1 of 1

<sup>\*=</sup> Value outside of QC limits; see narrative

ND= Not Detected



| Gasoline by GC/MS |                          |           |                        |  |  |  |
|-------------------|--------------------------|-----------|------------------------|--|--|--|
| Lab #:            | 207099                   | Location: | Former Sheaff's Garage |  |  |  |
| Client:           | Golden Gate Tank Removal | Prep:     | EPA 5030B              |  |  |  |
| Project#:         | 7335                     | Analysis: | EPA 8260B              |  |  |  |
| Field ID:         | MW-2                     | Diln Fac: | 12.50                  |  |  |  |
| Lab ID:           | 207099-003               | Sampled:  | 10/21/08               |  |  |  |
| Matrix:           | Water                    | Received: | 10/22/08               |  |  |  |
| Units:            | ug/L                     |           |                        |  |  |  |

| Analyte                       | Result | RL  | Batch# Analyzed |
|-------------------------------|--------|-----|-----------------|
| Gasoline C7-C12               | 4,900  | 630 | 144273 10/31/08 |
| tert-Butyl Alcohol (TBA)      | ND     | 130 | 144318 11/01/08 |
| Isopropyl Ether (DIPE)        | ND     | 6.3 | 144273 10/31/08 |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 6.3 | 144273 10/31/08 |
| Methyl tert-Amyl Ether (TAME) | ND     | 6.3 | 144273 10/31/08 |
| MTBE                          | 65     | 6.3 | 144273 10/31/08 |
| 1,2-Dichloroethane            | ND     | 6.3 | 144273 10/31/08 |
| Benzene                       | 700    | 6.3 | 144273 10/31/08 |
| Toluene                       | 20     | 6.3 | 144273 10/31/08 |
| 1,2-Dibromoethane             | ND     | 6.3 | 144273 10/31/08 |
| Ethylbenzene                  | 370    | 6.3 | 144273 10/31/08 |
| m,p-Xylenes                   | 52     | 6.3 | 144273 10/31/08 |
| o-Xylene                      | ND     | 6.3 | 144273 10/31/08 |

| Surrogate             | %REC | Limits | Batch# | Analyzed |
|-----------------------|------|--------|--------|----------|
| Dibromofluoromethane  | 104  | 80-125 | 144273 | 10/31/08 |
| 1,2-Dichloroethane-d4 | 114  | 80-137 | 144273 | 10/31/08 |
| Toluene-d8            | 100  | 80-120 | 144273 | 10/31/08 |
| Bromofluorobenzene    | 121  | 80-122 | 144273 | 10/31/08 |

Page 1 of 1 6.0



| Gasoline by GC/MS |                          |           |                        |  |  |  |
|-------------------|--------------------------|-----------|------------------------|--|--|--|
| Lab #:            | 207099                   | Location: | Former Sheaff's Garage |  |  |  |
| Client:           | Golden Gate Tank Removal | Prep:     | EPA 5030B              |  |  |  |
| Project#:         | 7335                     | Analysis: | EPA 8260B              |  |  |  |
| Field ID:         | MW-3                     | Batch#:   | 144273                 |  |  |  |
| Lab ID:           | 207099-004               | Sampled:  | 10/21/08               |  |  |  |
| Matrix:           | Water                    | Received: | 10/22/08               |  |  |  |
| Units:            | ug/L                     | Analyzed: | 10/31/08               |  |  |  |
| Diln Fac:         | 2.500                    |           |                        |  |  |  |

| Analyte                       | Result | RL  |
|-------------------------------|--------|-----|
| Gasoline C7-C12               | 2,900  | 130 |
| tert-Butyl Alcohol (TBA)      | ND     | 25  |
| Isopropyl Ether (DIPE)        | ND     | 1.3 |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 1.3 |
| Methyl tert-Amyl Ether (TAME) | ND     | 1.3 |
| MTBE                          | 2.2    | 1.3 |
| 1,2-Dichloroethane            | ND     | 1.3 |
| Benzene                       | 170    | 1.3 |
| Toluene                       | 9.2    | 1.3 |
| 1,2-Dibromoethane             | ND     | 1.3 |
| Ethylbenzene                  | 99     | 1.3 |
| m,p-Xylenes                   | 24     | 1.3 |
| o-Xylene                      | 1.8    | 1.3 |

| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| Dibromofluoromethane  | 105  | 80-125 |
| 1,2-Dichloroethane-d4 | 114  | 80-137 |
| Toluene-d8            | 101  | 80-120 |
| Bromofluorobenzene    | 110  | 80-122 |

Page 1 of 1 7.0



| Gasoline by GC/MS |                          |           |                        |  |  |  |  |
|-------------------|--------------------------|-----------|------------------------|--|--|--|--|
| Lab #:            | 207099                   | Location: | Former Sheaff's Garage |  |  |  |  |
| Client:           | Golden Gate Tank Removal | Prep:     | EPA 5030B              |  |  |  |  |
| Project#:         | 7335                     | Analysis: | EPA 8260B              |  |  |  |  |
| Type:             | BLANK                    | Diln Fac: | 1.000                  |  |  |  |  |
| Lab ID:           | QC467649                 | Batch#:   | 144221                 |  |  |  |  |
| Matrix:           | Water                    | Analyzed: | 10/29/08               |  |  |  |  |
| Units:            | ug/L                     |           |                        |  |  |  |  |

| Analyte                       | Result | RL   |  |
|-------------------------------|--------|------|--|
| Gasoline C7-C12               | ND     | 50   |  |
| tert-Butyl Alcohol (TBA)      | ND     | 10   |  |
| Isopropyl Ether (DIPE)        | ND     | 0.50 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 0.50 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 0.50 |  |
| MTBE                          | ND     | 0.50 |  |
| 1,2-Dichloroethane            | ND     | 0.50 |  |
| Benzene                       | ND     | 0.50 |  |
| Toluene                       | ND     | 0.50 |  |
| 1,2-Dibromoethane             | ND     | 0.50 |  |
| Ethylbenzene                  | ND     | 0.50 |  |
| m,p-Xylenes                   | ND     | 0.50 |  |
| o-Xylene                      | ND     | 0.50 |  |

| Surrogate             | %REC  | Limits |
|-----------------------|-------|--------|
| Dibromofluoromethane  | 104   | 80-125 |
| 1,2-Dichloroethane-d4 | 116   | 80-137 |
| Toluene-d8            | 99    | 80-120 |
| Bromofluorobenzene    | 134 * | 80-122 |

ND= Not Detected

RL= Reporting Limit

<sup>\*=</sup> Value outside of QC limits; see narrative



|                                | Gasolir                                    | ne by GC/MS                     |                                                  |
|--------------------------------|--------------------------------------------|---------------------------------|--------------------------------------------------|
| Lab #:<br>Client:<br>Project#: | 207099<br>Golden Gate Tank Removal<br>7335 | Location:<br>Prep:<br>Analysis: | Former Sheaff's Garage<br>EPA 5030B<br>EPA 8260B |
| Matrix:<br>Units:<br>Diln Fac: | Water<br>ug/L<br>1.000                     | Batch#:<br>Analyzed:            | 144221<br>10/29/08                               |

Type: BS Lab ID: QC467650

| Analyte                       | Spiked | Result | %REC | Limits |
|-------------------------------|--------|--------|------|--------|
| tert-Butyl Alcohol (TBA)      | 125.0  | 139.3  | 111  | 59-152 |
| Isopropyl Ether (DIPE)        | 25.00  | 22.04  | 88   | 67-126 |
| Ethyl tert-Butyl Ether (ETBE) | 25.00  | 24.96  | 100  | 69-127 |
| Methyl tert-Amyl Ether (TAME) | 25.00  | 23.16  | 93   | 80-122 |
| MTBE                          | 25.00  | 22.47  | 90   | 70-125 |
| 1,2-Dichloroethane            | 25.00  | 26.56  | 106  | 78-132 |
| Benzene                       | 25.00  | 23.25  | 93   | 80-120 |
| Toluene                       | 25.00  | 23.89  | 96   | 80-120 |
| 1,2-Dibromoethane             | 25.00  | 22.89  | 92   | 80-120 |
| Ethylbenzene                  | 25.00  | 24.90  | 100  | 80-122 |
| m,p-Xylenes                   | 50.00  | 49.34  | 99   | 80-126 |
| o-Xylene                      | 25.00  | 23.88  | 96   | 80-120 |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 105  | 80-125 |  |
| 1,2-Dichloroethane-d4 | 117  | 80-137 |  |
| Toluene-d8            | 99   | 80-120 |  |
| Bromofluorobenzene    | 115  | 80-122 |  |

| Analyte                       | Spiked | Result | %REC | Limits | RPD | Lim |
|-------------------------------|--------|--------|------|--------|-----|-----|
| tert-Butyl Alcohol (TBA)      | 125.0  | 133.5  | 107  | 59-152 | 4   | 20  |
| Isopropyl Ether (DIPE)        | 25.00  | 21.32  | 85   | 67-126 | 3   | 20  |
| Ethyl tert-Butyl Ether (ETBE) | 25.00  | 24.13  | 97   | 69-127 | 3   | 20  |
| Methyl tert-Amyl Ether (TAME) | 25.00  | 23.13  | 93   | 80-122 | 0   | 20  |
| MTBE                          | 25.00  | 22.00  | 88   | 70-125 | 2   | 20  |
| 1,2-Dichloroethane            | 25.00  | 26.22  | 105  | 78-132 | 1   | 20  |
| Benzene                       | 25.00  | 22.59  | 90   | 80-120 | 3   | 20  |
| Toluene                       | 25.00  | 23.31  | 93   | 80-120 | 2   | 20  |
| 1,2-Dibromoethane             | 25.00  | 23.01  | 92   | 80-120 | 1   | 20  |
| Ethylbenzene                  | 25.00  | 24.82  | 99   | 80-122 | 0   | 20  |
| m,p-Xylenes                   | 50.00  | 49.07  | 98   | 80-126 | 1   | 20  |
| o-Xylene                      | 25.00  | 23.42  | 94   | 80-120 | 2   | 20  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 104  | 80-125 |  |
| 1,2-Dichloroethane-d4 | 117  | 80-137 |  |
| Toluene-d8            | 100  | 80-120 |  |
| Bromofluorobenzene    | 114  | 80-122 |  |



|           | Gasolir                  | ne by GC/MS |                        |
|-----------|--------------------------|-------------|------------------------|
| Lab #:    | 207099                   | Location:   | Former Sheaff's Garage |
| Client:   | Golden Gate Tank Removal | Prep:       | EPA 5030B              |
| Project#: | 7335                     | Analysis:   | EPA 8260B              |
| Matrix:   | Water                    | Batch#:     | 144221                 |
| Units:    | ug/L                     | Analyzed:   | 10/29/08               |
| Diln Fac: | 1.000                    |             |                        |

Type: BS Lab ID: QC467652

| Analyte         | Spiked | Result | %REC | Limits |
|-----------------|--------|--------|------|--------|
| Gasoline C7-C12 | 700.0  | 602.5  | 86   | 80-120 |

| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| Dibromofluoromethane  | 105  | 80-125 |
| 1,2-Dichloroethane-d4 | 119  | 80-137 |
| Toluene-d8            | 100  | 80-120 |
| Bromofluorobenzene    | 121  | 80-122 |

| Analyte         | Spiked | Result | %REC | Limits | RPD | Lim |
|-----------------|--------|--------|------|--------|-----|-----|
| Gasoline C7-C12 | 700.0  | 595.6  | 85   | 80-120 | 1   | 20  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 105  | 80-125 |  |
| 1,2-Dichloroethane-d4 | 117  | 80-137 |  |
| Toluene-d8            | 98   | 80-120 |  |
| Bromofluorobenzene    | 118  | 80-122 |  |



|           | Gasolir                  | ne by GC/MS |                        |
|-----------|--------------------------|-------------|------------------------|
| Lab #:    | 207099                   | Location:   | Former Sheaff's Garage |
| Client:   | Golden Gate Tank Removal | Prep:       | EPA 5030B              |
| Project#: | 7335                     | Analysis:   | EPA 8260B              |
| Type:     | BLANK                    | Diln Fac:   | 1.000                  |
| Lab ID:   | QC467909                 | Batch#:     | 144273                 |
| Matrix:   | Water                    | Analyzed:   | 10/30/08               |
| Units:    | ug/L                     |             |                        |

| Analyte                       | Result | RL   |  |
|-------------------------------|--------|------|--|
| Gasoline C7-C12               | ND     | 50   |  |
| tert-Butyl Alcohol (TBA)      | ND     | 10   |  |
| Isopropyl Ether (DIPE)        | ND     | 0.50 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 0.50 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 0.50 |  |
| MTBE                          | ND     | 0.50 |  |
| 1,2-Dichloroethane            | ND     | 0.50 |  |
| Benzene                       | ND     | 0.50 |  |
| Toluene                       | ND     | 0.50 |  |
| 1,2-Dibromoethane             | ND     | 0.50 |  |
| Ethylbenzene                  | ND     | 0.50 |  |
| m,p-Xylenes                   | ND     | 0.50 |  |
| o-Xylene                      | ND     | 0.50 |  |

| Surrogate             | %REC  | Limits |
|-----------------------|-------|--------|
| Dibromofluoromethane  | 104   | 80-125 |
| 1,2-Dichloroethane-d4 | 118   | 80-137 |
| Toluene-d8            | 101   | 80-120 |
| Bromofluorobenzene    | 133 * | 80-122 |

RL= Reporting Limit

<sup>\*=</sup> Value outside of QC limits; see narrative

ND= Not Detected



|                                | Gasolin                                    | ne by GC/MS                     |                                                  |
|--------------------------------|--------------------------------------------|---------------------------------|--------------------------------------------------|
| Lab #:<br>Client:<br>Project#: | 207099<br>Golden Gate Tank Removal<br>7335 | Location:<br>Prep:<br>Analysis: | Former Sheaff's Garage<br>EPA 5030B<br>EPA 8260B |
| Matrix:<br>Units:<br>Diln Fac: | Water<br>ug/L<br>1.000                     | Batch#:<br>Analyzed:            | 144273<br>10/30/08                               |

Type: BS Lab ID: QC467910

| Analyte                       | Spiked | Result | %REC | Limits |
|-------------------------------|--------|--------|------|--------|
| tert-Butyl Alcohol (TBA)      | 125.0  | 102.8  | 82   | 59-152 |
| Isopropyl Ether (DIPE)        | 25.00  | 19.55  | 78   | 67-126 |
| Ethyl tert-Butyl Ether (ETBE) | 25.00  | 21.81  | 87   | 69-127 |
| Methyl tert-Amyl Ether (TAME) | 25.00  | 20.58  | 82   | 80-122 |
| MTBE                          | 25.00  | 19.16  | 77   | 70-125 |
| 1,2-Dichloroethane            | 25.00  | 24.01  | 96   | 78-132 |
| Benzene                       | 25.00  | 20.87  | 83   | 80-120 |
| Toluene                       | 25.00  | 21.50  | 86   | 80-120 |
| 1,2-Dibromoethane             | 25.00  | 20.46  | 82   | 80-120 |
| Ethylbenzene                  | 25.00  | 22.63  | 91   | 80-122 |
| m,p-Xylenes                   | 50.00  | 44.30  | 89   | 80-126 |
| o-Xylene                      | 25.00  | 21.34  | 85   | 80-120 |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 107  | 80-125 |  |
| 1,2-Dichloroethane-d4 | 119  | 80-137 |  |
| Toluene-d8            | 101  | 80-120 |  |
| Bromofluorobenzene    | 119  | 80-122 |  |

| Analyte                       | Spiked | Result | %REC | Limits | RPD | Lim |
|-------------------------------|--------|--------|------|--------|-----|-----|
| tert-Butyl Alcohol (TBA)      | 125.0  | 102.8  | 82   | 59-152 | 0   | 20  |
| Isopropyl Ether (DIPE)        | 25.00  | 20.29  | 81   | 67-126 | 4   | 20  |
| Ethyl tert-Butyl Ether (ETBE) | 25.00  | 22.82  | 91   | 69-127 | 5   | 20  |
| Methyl tert-Amyl Ether (TAME) | 25.00  | 21.97  | 88   | 80-122 | 7   | 20  |
| MTBE                          | 25.00  | 20.42  | 82   | 70-125 | 6   | 20  |
| 1,2-Dichloroethane            | 25.00  | 25.05  | 100  | 78-132 | 4   | 20  |
| Benzene                       | 25.00  | 21.56  | 86   | 80-120 | 3   | 20  |
| Toluene                       | 25.00  | 22.12  | 88   | 80-120 | 3   | 20  |
| 1,2-Dibromoethane             | 25.00  | 21.92  | 88   | 80-120 | 7   | 20  |
| Ethylbenzene                  | 25.00  | 23.31  | 93   | 80-122 | 3   | 20  |
| m,p-Xylenes                   | 50.00  | 46.53  | 93   | 80-126 | 5   | 20  |
| o-Xylene                      | 25.00  | 22.43  | 90   | 80-120 | 5   | 20  |

|          | Surrogate     | %REC | Limits |  |
|----------|---------------|------|--------|--|
| Dibromof | luoromethane  | 106  | 80-125 |  |
| 1,2-Dich | loroethane-d4 | 118  | 80-137 |  |
| Toluene- | d8            | 101  | 80-120 |  |
| Bromoflu | orobenzene    | 117  | 80-122 |  |



|           | Gasolin                  | ne by GC/MS |                        |
|-----------|--------------------------|-------------|------------------------|
| Lab #:    | 207099                   | Location:   | Former Sheaff's Garage |
| Client:   | Golden Gate Tank Removal | Prep:       | EPA 5030B              |
| Project#: | 7335                     | Analysis:   | EPA 8260B              |
| Matrix:   | Water                    | Batch#:     | 144273                 |
| Units:    | ug/L                     | Analyzed:   | 10/30/08               |
| Diln Fac: | 1.000                    |             |                        |

Type: BS Lab ID: QC467912

| Analyte         | Spiked | Result | %REC | Limits |
|-----------------|--------|--------|------|--------|
| Gasoline C7-C12 | 800.0  | 740.0  | 93   | 80-120 |

| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| Dibromofluoromethane  | 104  | 80-125 |
| 1,2-Dichloroethane-d4 | 118  | 80-137 |
| Toluene-d8            | 99   | 80-120 |
| Bromofluorobenzene    | 119  | 80-122 |

| Analyte         | Spiked | Result | %REC | Limits | RPD | Lim |
|-----------------|--------|--------|------|--------|-----|-----|
| Gasoline C7-C12 | 800.0  | 690.5  | 86   | 80-120 | 7   | 20  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 106  | 80-125 |  |
| 1,2-Dichloroethane-d4 | 119  | 80-137 |  |
| Toluene-d8            | 100  | 80-120 |  |
| Bromofluorobenzene    | 122  | 80-122 |  |



|           | Gasoline by GC/MS        |           |                        |  |  |  |  |  |  |  |
|-----------|--------------------------|-----------|------------------------|--|--|--|--|--|--|--|
| Lab #:    | 207099                   | Location: | Former Sheaff's Garage |  |  |  |  |  |  |  |
| Client:   | Golden Gate Tank Removal | Prep:     | EPA 5030B              |  |  |  |  |  |  |  |
| Project#: | 7335                     | Analysis: | EPA 8260B              |  |  |  |  |  |  |  |
| Type:     | BLANK                    | Diln Fac: | 1.000                  |  |  |  |  |  |  |  |
| Lab ID:   | QC468088                 | Batch#:   | 144318                 |  |  |  |  |  |  |  |
| Matrix:   | Water                    | Analyzed: | 10/31/08               |  |  |  |  |  |  |  |
| Units:    | ug/L                     |           |                        |  |  |  |  |  |  |  |

| Analyte                       | Result | RL   |  |
|-------------------------------|--------|------|--|
| Gasoline C7-C12               | ND     | 50   |  |
| tert-Butyl Alcohol (TBA)      | ND     | 10   |  |
| Isopropyl Ether (DIPE)        | ND     | 0.50 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 0.50 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 0.50 |  |
| MTBE                          | ND     | 0.50 |  |
| 1,2-Dichloroethane            | ND     | 0.50 |  |
| Benzene                       | ND     | 0.50 |  |
| Toluene                       | ND     | 0.50 |  |
| 1,2-Dibromoethane             | ND     | 0.50 |  |
| Ethylbenzene                  | ND     | 0.50 |  |
| m,p-Xylenes                   | ND     | 0.50 |  |
| o-Xylene                      | ND     | 0.50 |  |

| Surrogate             | %REC  | Limits |
|-----------------------|-------|--------|
| Dibromofluoromethane  | 107   | 80-125 |
| 1,2-Dichloroethane-d4 | 118   | 80-137 |
| Toluene-d8            | 101   | 80-120 |
| Bromofluorobenzene    | 130 * | 80-122 |

RL= Reporting Limit

<sup>\*=</sup> Value outside of QC limits; see narrative

ND= Not Detected



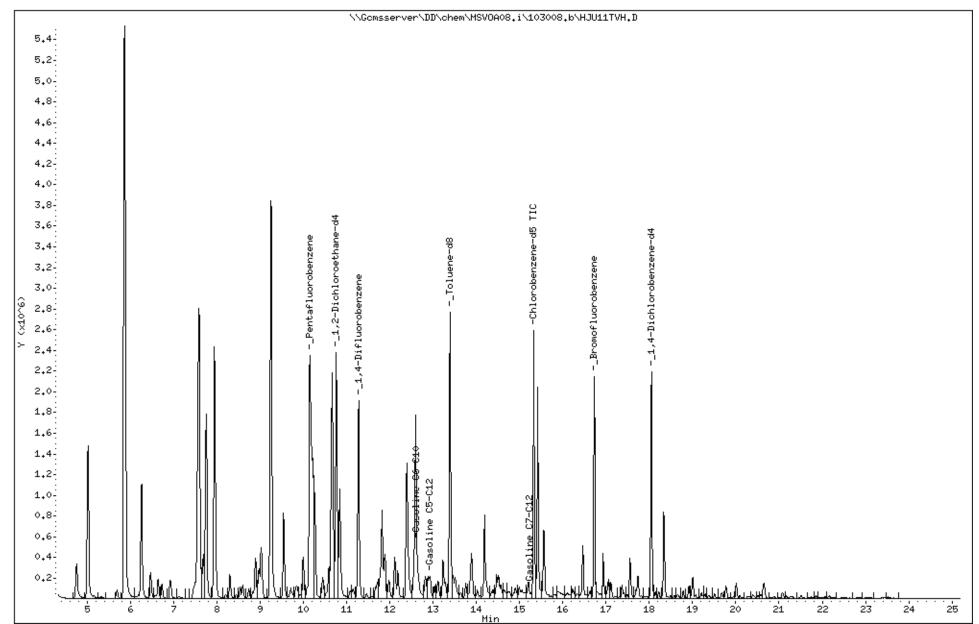
|                                | Gasolin                                    | e by GC/MS                      |                                                  |
|--------------------------------|--------------------------------------------|---------------------------------|--------------------------------------------------|
| Lab #:<br>Client:<br>Project#: | 207099<br>Golden Gate Tank Removal<br>7335 | Location:<br>Prep:<br>Analysis: | Former Sheaff's Garage<br>EPA 5030B<br>EPA 8260B |
| Matrix:<br>Units:<br>Diln Fac: | Water<br>ug/L<br>1.000                     | Batch#:<br>Analyzed:            | 144318<br>10/31/08                               |

Type: BS Lab ID: QC468089

| Analyte                       | Spiked | Result | %REC | Limits |
|-------------------------------|--------|--------|------|--------|
| tert-Butyl Alcohol (TBA)      | 112.5  | 94.96  | 84   | 59-152 |
| Isopropyl Ether (DIPE)        | 22.50  | 19.02  | 85   | 67-126 |
| Ethyl tert-Butyl Ether (ETBE) | 22.50  | 21.76  | 97   | 69-127 |
| Methyl tert-Amyl Ether (TAME) | 22.50  | 20.53  | 91   | 80-122 |
| MTBE                          | 22.50  | 19.00  | 84   | 70-125 |
| 1,2-Dichloroethane            | 22.50  | 24.29  | 108  | 78-132 |
| Benzene                       | 22.50  | 21.02  | 93   | 80-120 |
| Toluene                       | 22.50  | 21.57  | 96   | 80-120 |
| 1,2-Dibromoethane             | 22.50  | 20.97  | 93   | 80-120 |
| Ethylbenzene                  | 22.50  | 23.18  | 103  | 80-122 |
| m,p-Xylenes                   | 45.00  | 45.78  | 102  | 80-126 |
| o-Xylene                      | 22.50  | 22.07  | 98   | 80-120 |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 105  | 80-125 |  |
| 1,2-Dichloroethane-d4 | 117  | 80-137 |  |
| Toluene-d8            | 100  | 80-120 |  |
| Bromofluorobenzene    | 115  | 80-122 |  |

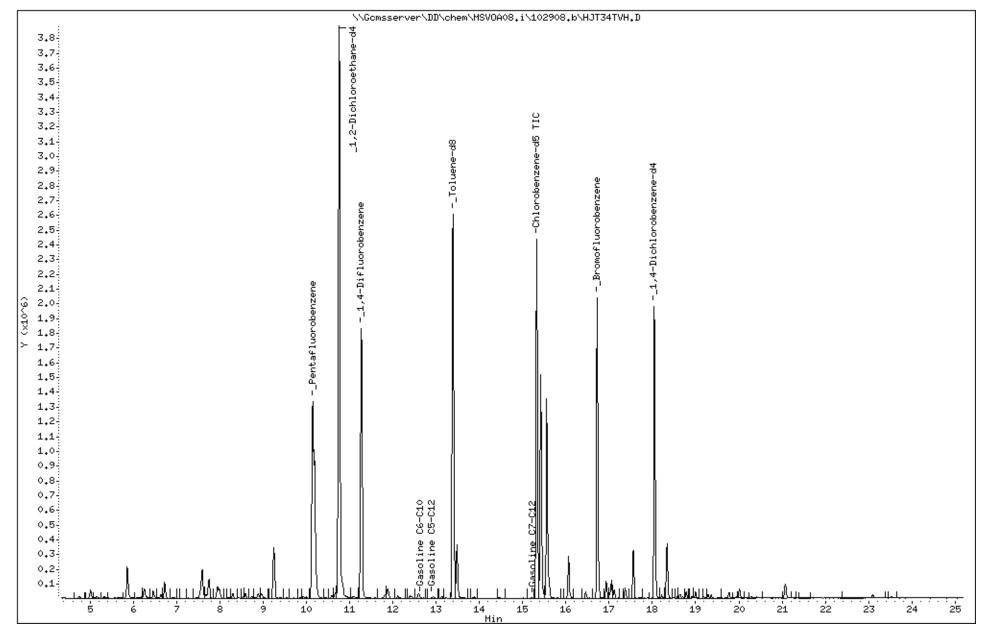
| Analyte                       | Spiked | Result | %REC | Limits | RPD | Lim |
|-------------------------------|--------|--------|------|--------|-----|-----|
| tert-Butyl Alcohol (TBA)      | 112.5  | 93.90  | 83   | 59-152 | 1   | 20  |
| Isopropyl Ether (DIPE)        | 22.50  | 19.09  | 85   | 67-126 | 0   | 20  |
| Ethyl tert-Butyl Ether (ETBE) | 22.50  | 22.14  | 98   | 69-127 | 2   | 20  |
| Methyl tert-Amyl Ether (TAME) | 22.50  | 20.87  | 93   | 80-122 | 2   | 20  |
| MTBE                          | 22.50  | 19.18  | 85   | 70-125 | 1   | 20  |
| 1,2-Dichloroethane            | 22.50  | 24.17  | 107  | 78-132 | 1   | 20  |
| Benzene                       | 22.50  | 20.76  | 92   | 80-120 | 1   | 20  |
| Toluene                       | 22.50  | 21.89  | 97   | 80-120 | 1   | 20  |
| 1,2-Dibromoethane             | 22.50  | 21.31  | 95   | 80-120 | 2   | 20  |
| Ethylbenzene                  | 22.50  | 19.68  | 87   | 80-122 | 16  | 20  |
| m,p-Xylenes                   | 45.00  | 43.97  | 98   | 80-126 | 4   | 20  |
| o-Xylene                      | 22.50  | 21.43  | 95   | 80-120 | 3   | 20  |


| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| Dibromofluoromethane  | 104  | 80-125 |
| 1,2-Dichloroethane-d4 | 119  | 80-137 |
| Toluene-d8            | 99   | 80-120 |
| Bromofluorobenzene    | 117  | 80-122 |

Date : 30-0CT-2008 17:45 Client ID: DYNA P&T

Sample Info: S,207099-001

Operator: voc


Instrument: MSVOA08.i

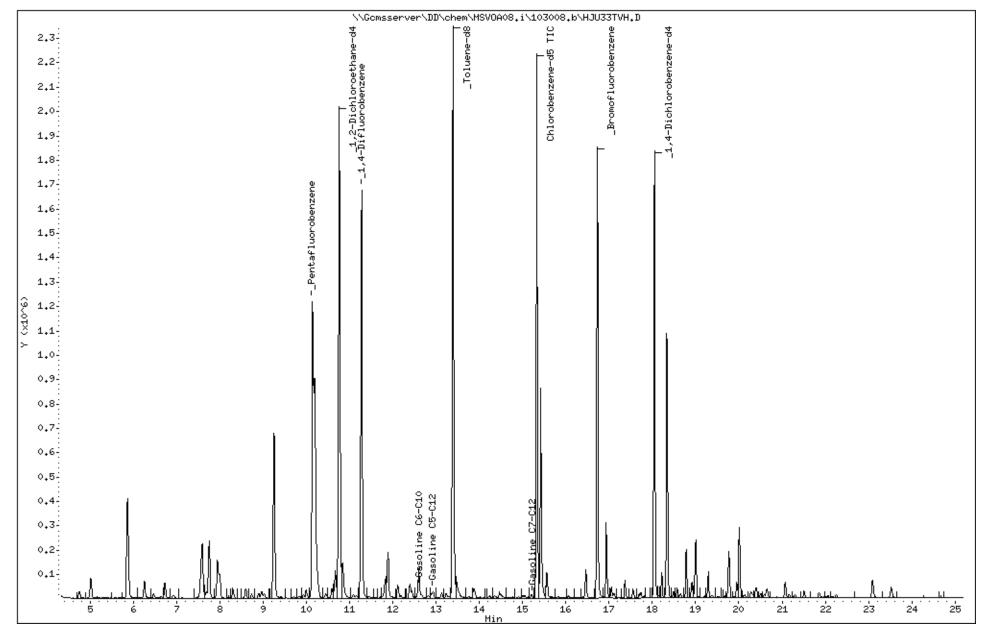


Date : 30-0CT-2008 06:07 Client ID: DYNA P&T Sample Info: S,207099-002

Instrument: MSVOA08.i

Operator: voc

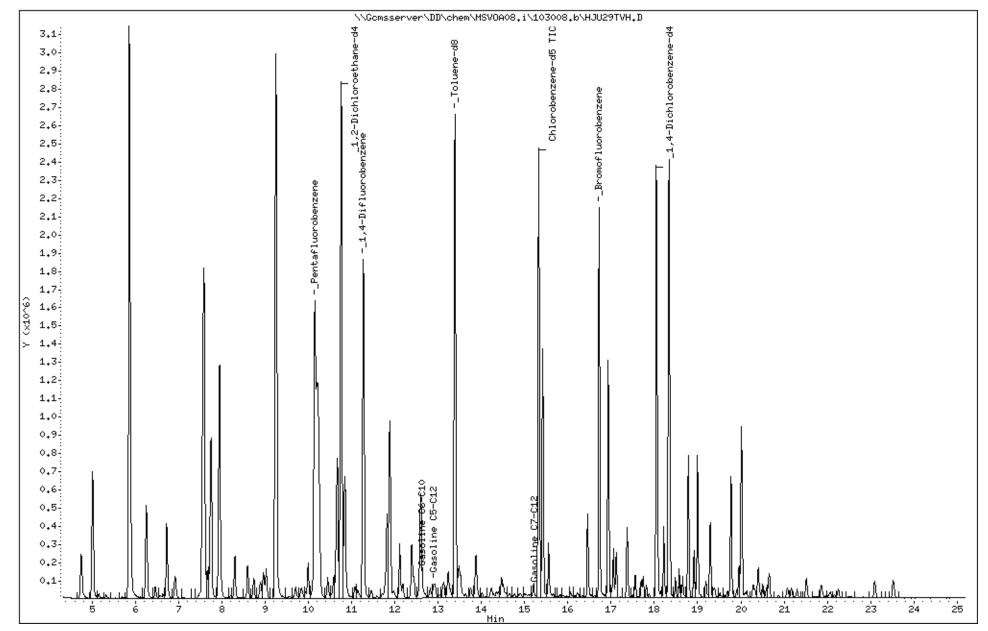



Page 2

Data File: \\Gcmsserver\DD\chem\MSVOA08.i\103008.b\\HJU33TVH.D

Date : 31-0CT-2008 06:06 Client ID: DYNA P&T Sample Info: S,207099-003

Instrument: MSVOA08.i


Operator: voc

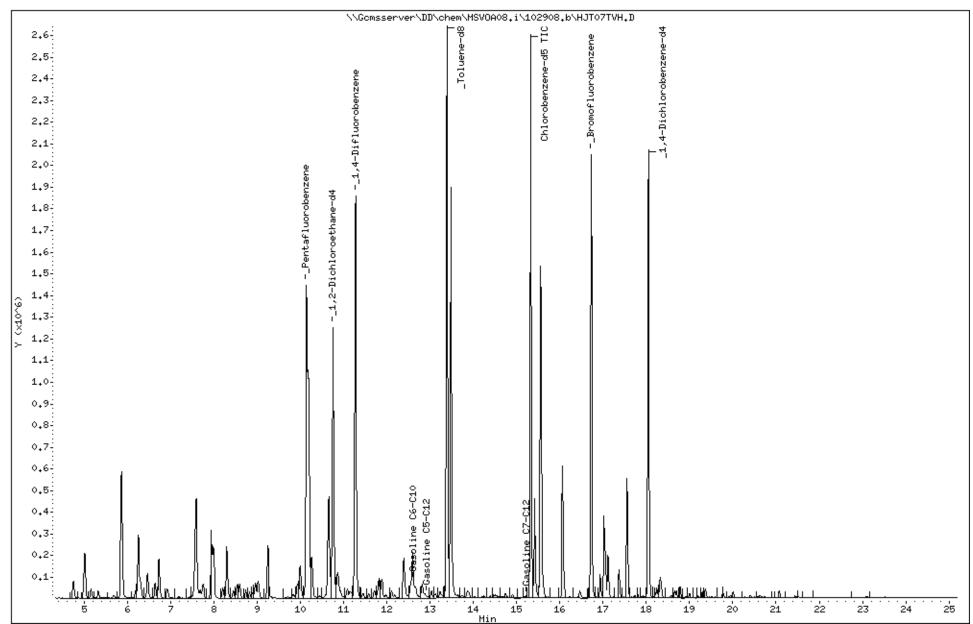


Date : 31-0CT-2008 03:44 Client ID: DYNA P&T Sample Info: S,207099-004

Instrument: MSVOA08.i

Operator: voc




Data File: \\Gcmsserver\DD\chem\MSVOA08.i\102908.b\\HJT07TVH.D

Date : 29-0CT-2008 14:20 Client ID: DYNA P&T

Sample Info: CCV/BS,QC467652,144221,S10222,0.007/100

Operator: voc

Instrument: MSVOA08.i



# Curtis & Tompkins, Ltd. Analytical Laboratory Since 1878

# **CHAIN OF CUSTODY**

| Sampler: S. D. A.Z.  Report To: SRENT WHEELER  Sampler: S. D. A.Z.  Report To: SRENT WHEELER  Sompler: S. D. A.Z.  Toject Name: For MER. Shaped S. Sompler: L/(1-1/12-1/12-0964)  Fax: Y. J.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 2323 Fifth Street<br>Berkeley, CA 94710 |          |         |            |             |            | 70   | 7700        |          |                                |              |          |              |         |            |        |         | An | aly | sis |            |             |         |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------|----------|---------|------------|-------------|------------|------|-------------|----------|--------------------------------|--------------|----------|--------------|---------|------------|--------|---------|----|-----|-----|------------|-------------|---------|------|
| Sampler: Z. JIAE  Report To: BLENT WHEELER  Telephone: 4/15-172-0914  Report To: BLENT WHEELER  Tolephone: 4/15-172-0914  Report Tolephone: 4/15-172-0914  Report Tolephone: 4/15-172-0914  Report Tolep | (5         | 510) 486-0900 Phone                     |          | C&TL    | .OG        | IN #        | ' <b>:</b> |      | 77099       |          |                                |              |          |              | T.      |            | _      | +       |    |     |     |            |             |         |      |
| Tolephone: L/(1-5/12-175)  Trolephone: L/(1-5/15)  Trolephone: L/(1-5/ |            |                                         |          | Sample  | er:        | <del></del> | ٤          | .a.  | DIAZ        | <u>.</u> |                                |              | · / ii   |              | ני<br>ל | TEE<br>TEC |        |         |    |     |     |            |             | :       |      |
| AMPLE RECEIPT  Preservative  SAMPLE RECEIPT  Preservative  AMANUAL RECEIPT  DATE / TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | roject     | No.: 7335                               |          | Report  | To:        |             |            |      |             |          |                                |              |          | _   L        | 3       | <u> </u>   | 2      |         |    |     |     |            |             |         |      |
| AMPLE RECEIPT  Preservative  SAMPLE RECEIPT  Preservative  AMANUAL RECEIPT  DATE / TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | roject     | Name: FORMER She                        | aff's    | Compa   | ny:        |             |            |      |             |          |                                |              |          | _   `        |         | X          | i<br>S |         |    |     |     |            |             |         |      |
| AMPLE RECEIPT  PLAN  SAMPLE RECEIPT  PLAN  SAMPLE RECEIPT  Preservative  SAMPLE RECEIPT  DATE / TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | roject     | P.O.:                                   |          | Teleph  | one:       | !           | 4          | 10   | 1-11        | 2 -      | 1-                             | 1            | [J       |              | اد      | 7 3        |        |         |    |     |     |            |             |         |      |
| Color   Colo   | urnaro     | ound Time: SAAD DAR I                   | >        | Fax:    |            |             | Ĺ          | 11   | 1-1-        | 2 -      | · 0                            | 9            | 64       | ò            | 0       |            |        |         |    |     |     |            | ļ           |         |      |
| Lab No. Sample ID. Sampling Date Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _          |                                         |          | 12      |            | Mat         | trix       |      |             | F        | Pres                           | erv          | ative    |              |         | 5          | 2 0    | 2       |    |     |     |            |             |         |      |
| Pw-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lab<br>No. | Sample ID.                              |          | -       | Soil       | Water       | Waste      |      |             | HCL      | H <sub>2</sub> SO <sub>4</sub> | °ONH         | ICE      | 1/10         | > =     | ± (        | S      |         |    |     |     |            |             |         |      |
| MW-2    MW-3    11 00    3 vo A    X    X    MW-3    MW-3    MW-3    MW-3    MW-3    MW-3    MW-3    MW-2    MW-3    MW-3    MW-3    MW-4    MW-3    MW-4    MW-3    MW-4    MW-3    MW-4    M | 1          | •                                       | 10/21/08 |         |            | س           |            |      | <del></del> | _        |                                |              |          | 5            |         |            |        |         |    |     |     |            |             |         |      |
| SAMPLE RECEIPT   SAMPLE RECEIPT   RELINQUISHED BY:  PDF C EDF  Preservative Correct?  Preservative Correct?  Preservative Correct?  Preservative Correct?  Preservative Correct?  DATE / TIME  DATE / TIME  DATE / TIME  DATE / TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | Mw-I                                    |          |         |            |             | _          |      |             | -        |                                |              |          | -            |         |            | ļ      | ļ       | -  |     |     |            | $\perp$     | $\perp$ | 1    |
| SAMPLE RECEIPT DITE PROVIDE PR |            | Mw-3                                    | 47       |         |            |             |            |      |             | /        |                                |              |          | -            | _       |            | ļ      | +       | İ  |     |     |            | +           | +       | +    |
| PDF COLED F  On Ice Ambient EUGENIO DIAZ DATE/TIME PRESERVATIVE CORRECT?  Yes No N/A  DATE/TIME  DATE/TIME  DATE/TIME  DATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                         |          | 11 00   |            |             |            |      |             |          |                                |              |          | 1            | +       |            |        |         |    |     |     |            |             | +       |      |
| PDF COLED F  On Ice Ambient EUGENIO DIAZ DATE/TIME PRESERVATIVE CORRECT?  Yes No N/A  DATE/TIME  DATE/TIME  DATE/TIME  DATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                         |          |         |            |             |            |      |             |          |                                |              |          |              |         |            |        |         |    |     |     |            |             |         |      |
| PDF COLED F  On Ice Ambient EUGENIO DIAZ DATE/TIME PRESERVATIVE CORRECT?  Yes No N/A  DATE/TIME  DATE/TIME  DATE/TIME  DATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                         |          |         |            |             |            |      |             |          |                                |              |          |              |         |            |        | _       | -  |     |     |            | _           | $\perp$ |      |
| PDF COLED F  On Ice Ambient EUGENIO DIAZ DATE/TIME PRESERVATIVE CORRECT?  Yes No N/A  DATE/TIME  DATE/TIME  DATE/TIME  DATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                         |          |         |            |             |            |      |             | -        |                                |              |          | <del> </del> | +       |            |        | -       | -  |     |     |            | _           |         | -    |
| PDF COLED F  On Ice Ambient EUGENIO DIAZ DATE/TIME PRESERVATIVE CORRECT?  Yes No N/A  DATE/TIME  DATE/TIME  DATE/TIME  DATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | <u> </u>                                |          |         |            |             |            |      |             | -        |                                | <del> </del> |          | 1  -         | +       |            | +      |         |    |     |     |            | +           | -       | +    |
| PDF COLED F  On Ice Ambient EUGENIO DIAZ DATE/TIME PRESERVATIVE CORRECT?  Yes No N/A  DATE/TIME  DATE/TIME  DATE/TIME  DATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | ***                                     |          |         |            |             |            |      |             |          |                                |              |          |              |         |            | †      | <b></b> | 1  |     |     |            |             |         |      |
| PDF COLED F  On Ice Ambient EUGENIO DIAZ DATE/TIME PRESERVATIVE CORRECT?  Yes No N/A  DATE/TIME  DATE/TIME  DATE/TIME  DATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                         |          |         |            |             |            |      |             |          |                                |              |          |              |         |            |        |         |    |     |     |            |             |         |      |
| PDF COLED F  On Ice Ambient EUGENIO DIAZ DATE/TIME PRESERVATIVE CORRECT?  Yes No N/A  DATE/TIME  DATE/TIME  DATE/TIME  DATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                         | CAMPLE   | DECEIDT | ļ <u>.</u> |             |            |      |             | <u> </u> |                                |              |          | -            |         |            |        |         |    |     |     |            |             | Ш       |      |
| Prints    On Ice   Ambient   EUGENIO DIAZ   DATE / TIME   DATE / TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Notes:     | Please Provide                          | 1        |         | RE         | LIN         | QU         | ISH  | ED BY:      |          |                                |              |          | F            |         |            |        |         |    |     |     | •          | <u>~/</u> - |         |      |
| DATE / TIME  DATE / TIME  DATE / TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ۲D         | FAEDE                                   |          |         | E          | U           | 'n E       | · N1 | 10 DIAZ     | -        |                                | ,<br>D       | ATE / TI | ME           | Z.      | ufl        | Z<br>Z | 3_      | F  | 4   | ~   | <b>∽</b> ˈ |             |         |      |
| DATE / TIME DATE / TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •          | 5 10.12                                 | i        |         |            |             |            |      |             |          |                                |              |          |              |         |            | /      |         |    |     |     |            |             |         |      |
| V SIGNATIDÉ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | /          | SIGNATURE                               |          |         |            |             |            |      |             |          |                                | D            | ATE / TI | ME           |         |            |        |         |    |     |     |            | DA          | TE /    | TIME |

# COOLER RECEIPT CHECKLIST



| Login # 2070991 Date Received 10/22/09 Number of cooler Client GGT/L Project FORMER 9HEAFFS 6                                                                                                                                                                                                                 | rs J       | LIE            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|
| Date Opened 10/22/08 By (print) A (1) i x (1) lury (circ)                                                                                                                                                                                                                                                     | 2          | 017            |
| Date Opened 10 72/08 By (print) M. VILLAU USIGN)  Date Logged in Sy (print) (sign)                                                                                                                                                                                                                            | m          |                |
| Did cooler come with a shipping slip (airbill, etc)?  Shipping info                                                                                                                                                                                                                                           | .YES       | <b>№</b>       |
| 2A. Were custody seals present? TYES (circle) on cooler on samples  How many Name Date  2B. Were custody seals intest upon arrivel?                                                                                                                                                                           |            | <u>@</u>       |
| 2B. Were custody seals intact upon arrival?  3. Were custody papers dry and intact when received?  4. Were custody papers filled out properly (ink, signed, etc)?  5. Is the project identifiable from custody papers? (If so fill out top of form).  6. Indicate the packing in cooler: (if other, describe) | .VES       | NO<br>NO<br>NO |
| ☐ Bubble Wrap ☐ Foam blocks ☐ Bags ☐ None ☐ Cloth material ☐ Cardboard ☐ Styrofoam ☐ Paper town.  7. Temperature documentation:                                                                                                                                                                               | wels       |                |
| Type of ice used: Wet Blue/Gel None Temp(°C)                                                                                                                                                                                                                                                                  |            |                |
| Samples Received on ice & cold without a temperature blank                                                                                                                                                                                                                                                    |            |                |
| ☐ Samples received on ice directly from the field. Cooling process had begun                                                                                                                                                                                                                                  | -          |                |
| 8. Were Method 5035 sampling containers present?  If YES, what time were they transferred to freezer?                                                                                                                                                                                                         | YES        | <b>(</b> 0)    |
| 3. Did an oothes arrive unotoken/unopened!                                                                                                                                                                                                                                                                    | YES        | NO             |
| 10. Are samples in the appropriate containers for indicated tests?                                                                                                                                                                                                                                            | <b>VEO</b> | NO             |
| <ul><li>11. Are sample labels present, in good condition and complete?</li><li>12. Do the sample labels agree with custody papers?</li></ul>                                                                                                                                                                  | YES        | NO             |
| 13. Was sufficient amount of sample sent for tests requested?                                                                                                                                                                                                                                                 | YES        | NO<br>NO       |
| 14. Are the samples appropriately preserved?                                                                                                                                                                                                                                                                  | NO         | N/A            |
| 13. Are outdies > 6mm absent in VOA samples?                                                                                                                                                                                                                                                                  | MO:        |                |
| 16. Was the client contacted concerning this sample delivery?  If YES Who was called?                                                                                                                                                                                                                         | YES        | NO             |
| If YES, Who was called?ByDate:                                                                                                                                                                                                                                                                                |            |                |
| COMMENTS                                                                                                                                                                                                                                                                                                      |            |                |
|                                                                                                                                                                                                                                                                                                               |            |                |
|                                                                                                                                                                                                                                                                                                               |            |                |
|                                                                                                                                                                                                                                                                                                               |            |                |
|                                                                                                                                                                                                                                                                                                               |            |                |
|                                                                                                                                                                                                                                                                                                               |            |                |
|                                                                                                                                                                                                                                                                                                               |            |                |
|                                                                                                                                                                                                                                                                                                               |            |                |

SOP Volume:

Client Services

Section: Page: 1.1.2

1 of 1

Rev. 6 Number 1 of 3 Effective: 23 July 2008

F:\qc\forms\checklists\Cooler Receipt Checklist\_rv6.doc

#### STATE WATER RESOURCES CONTROL BOARD

# **GEOTRACKER ESI**

**UPLOADING A GEO\_WELL FILE** 

# **SUCCESS**

Processing is complete. No errors were found! Your file has been successfully submitted!

**Submittal Type:** 

GEO\_WELL

**Submittal Title:** 

Groundwater Levels - 4Q08GWM (10-21-08)

Facility Global ID:

T0600102112

**Facility Name:** 

SHEAFFS SERVICE GARAGE

File Name:

GEO\_WELL.zip

**Organization Name:** 

**Golden Gate Tank Removal** 

Username:

**GGTR** 

**IP Address:** 

75.55.192.158

Submittal Date/Time:

11/5/2008 2:41:24 PM

**Confirmation Number:** 

3227722644

Copyright © 2008 State of California

#### STATE WATER RESOURCES CONTROL BOARD

# **GEOTRACKER ESI**

**UPLOADING A EDF FILE** 

## SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

**Submittal Type:** 

**GWM R** 

**Submittal Title:** 

207099- Laboratory Analytical Results - 4Q08GWM (10-

21-08)

Facility Global ID:

T0600102112

**Facility Name:** 

SHEAFFS SERVICE GARAGE

File Name:

207099\_Revised 11.4.08.zip

Organization Name:

**Golden Gate Tank Removal** 

**Username:** 

**GGTR** 

**IP Address:** 

75.55.192.158

Submittal Date/Time:

11/5/2008 2:39:02 PM

**Confirmation** 

3051897943

Number:

**VIEW QC REPORT** 

VIEW DETECTIONS REPORT

Copyright © 2008 State of California

Table 1
Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station #209339 5940 College Avenue Oakland, California

|              |        |       |         | Oakland,           | California  |             |             |             |                     |
|--------------|--------|-------|---------|--------------------|-------------|-------------|-------------|-------------|---------------------|
| WELL ID/     | TOC*   | DTW   | GWE     | TPH-G              | В           | T           | E           | X           | MTBE                |
| DATE         | (ft.)  | (ft.) | (msl)   | $(\mu g/L)$        | $(\mu g/L)$ | $(\mu g/L)$ | $(\mu g/L)$ | $(\mu g/L)$ | $(\mu g/L)$         |
| MW-1         |        |       |         |                    |             |             |             |             |                     |
| 01/03/01     | 196.91 | 12.75 | 184.16  | $930^{1}$          | 2.9         | 6.9         | 2.7         | 7.6         | $14/<2.0^3$         |
| 04/25/01     | 196.91 | 9.23  | 187.68  | $210^{4}$          | 2.0         | 1.5         | 2.0         | 3.3         | $5.3 < 2.0^3$       |
| 07/09/01     | 196.91 | 11.86 | 185.05  | $290^{5}$          | 1.8         | 2.0         | 2.5         | 0.96        | <2.5                |
| 06/08/00     | 196.91 | 13.49 | 183.42  | 200                | < 0.50      | < 0.50      | < 0.50      | <1.5        | <2.5                |
| 01/13/02     | 196.91 | 7.33  | 189.58  | < 50               | < 0.50      | < 0.50      | < 0.50      | < 0.50      | < 2.5               |
| 04/08/02     | 196.91 | 7.45  | 189.46  | 670                | < 0.50      | < 2.0       | <1.0        | 5.6         | <2.5                |
| 10/15/02     | 196.91 | 13.68 | 183.23  | 260                | 0.62        | 0.82        | < 0.50      | <1.5        |                     |
| 04/15/03     | 196.91 | 6.82  | 190.09  | 1,700              | 1.3         | < 5.0       | < 2.0       | < 5.0       |                     |
| 10/31/03     | 196.91 | 13.72 | 183.19  | 150                | < 2.0       | 0.7         | < 2.0       | < 5.0       |                     |
| 04/23/04     | 196.91 | 9.02  | 187.89  | < 50               | < 0.5       | < 0.5       | < 0.5       | <1.5        |                     |
| 10/22/04     | 196.91 | 11.50 | 185.41  | 63                 | < 0.5       | < 0.5       | < 0.5       | <1.5        |                     |
| 04/14/05     | 196.91 | 7.11  | 189.80  | < 50               | < 0.5       | < 0.5       | < 0.5       | <1.5        |                     |
| 10/14/05     | 196.91 | 11.90 | 185.01  | 160                | < 0.5       | < 0.5       | 0.6         | < 5.0       |                     |
| 04/14/06     | 196.91 | 6.95  | 189.96  | < 50               | < 0.5       | < 0.5       | < 0.5       | <1.5        |                     |
| 10/26/06     | 196.91 | 11.68 | 185.23  | < 50               | < 0.5       | < 0.5       | < 0.5       | <1.5        |                     |
| $04/13/07^6$ | 196.91 | 10.71 | 186.20  | 1,200              | 3.4         | < 5.0       | 2.1         | <20         |                     |
| 10/22/07     | 196.91 | 13.75 | 183.16  | < 50               | < 0.5       | < 0.5       | < 0.5       | <1.5        |                     |
| 04/21/08     | 196.91 | 9.95  | 186.96  | 120                | < 0.5       | < 0.5       | < 0.5       | <1.5        |                     |
| 10/15/08     | 196.91 | 14.30 | 182.61  | <50                | <0.5        | <0.5        | <0.5        | <1.5        |                     |
| MW-2         |        |       |         |                    |             |             |             |             |                     |
| 01/03/01     | 197.35 | 12.48 | 184.87  | $2,100^{2}$        | 110         | 11          | 63          | 25          | 83/2.2 <sup>3</sup> |
| 04/25/01     | 197.35 | 8.90  | 188.45  | 1,700 <sup>4</sup> | 150         | 12          | 30          | 15          | $150/<2.0^3$        |
| 07/09/01     | 197.35 | 11.44 | 185.91  | $2,500^5$          | 200         | 21          | 55          | 26          | <50                 |
| 04/08/02     | 197.35 | 13.37 | 183.98  | 4,200              | 87          | 2.8         | 29          | 9.8         | <2.5                |
| 01/13/02     | 197.35 | 6.55  | 190.80  | 410                | 20          | 2.9         | <2.5        | 4.4         | $27/<2.0^3$         |
| 04/08/02     | 197.35 | 8.37  | 188.98  | 4,000              | 70          | 1.7         | 17          | 17          | <2.5                |
| 10/15/02     | 197.35 | 13.00 | 184.35  | 3,100              | 41          | 2.2         | 16          | <6.0        |                     |
| 04/15/03     | 197.35 | 7.58  | 189.77  | 2,400              | 37          | <2.5        | 12          | <7.5        | <br>                |
| 10/31/03     | 197.35 | 13.02 | 184.33  | 2,300              | 12          | 3.4         | 4.8         | <7.5        | <br>                |
| 04/23/04     | 197.35 | 8.38  | 188.97  | 960                | 8.9         | 1.0         | 2.4         | <1.5        | <br>                |
| 10/22/04     | 197.35 | 11.41 | 185.94  | 2,200              | 24          | <2.5        | 4.1         | <1.5        | <br>                |
| 04/14/05     | 197.35 | 6.69  | 190.66  | 640                | 2.1         | <2.0        | <2.0        | 7.5         |                     |
| 04/14/03     | 197.33 | 0.09  | 1 70.00 | 040                | ∠.1         | <2.0        | <2.0        | 1.3         |                     |

Table 1
Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station #209339 5940 College Avenue Oakland, California

| WELL ID/              | TOC*   | DTW   | GWE    | TPH-G       | В           | T           | E           | X                         | MTBE        |
|-----------------------|--------|-------|--------|-------------|-------------|-------------|-------------|---------------------------|-------------|
| DATE                  | (ft.)  | (ft.) | (msl)  | $(\mu g/L)$               | $(\mu g/L)$ |
| MW-2 (cont)           |        |       |        |             |             |             |             |                           |             |
| 10/14/05              | 197.35 | 11.14 | 186.21 | 1,200       | 6.9         | <2.5        | < 2.5       | <7.5                      |             |
| 04/14/06              | 197.35 | 6.54  | 190.81 | 180         | < 0.5       | < 0.5       | < 0.5       | < 5.0                     |             |
| 10/26/06              | 197.35 | 11.02 | 186.33 | 550         | < 2.0       | 0.5         | < 2.0       | <10                       |             |
| 04/13/07 <sup>6</sup> | 197.35 | 9.95  | 187.40 | < 50        | < 0.5       | < 0.5       | < 0.5       | <1.5                      |             |
| 10/22/07              | 197.35 | 12.63 | 184.72 | 3,200       | 12          | < 5.0       | 4.7         | <20                       |             |
| 04/21/08              | 197.35 | 9.31  | 188.04 | 860         | 1.0         | < 2.07      | < 2.07      | <10 <sup>7</sup>          |             |
| 10/15/08              | 197.35 | 13.71 | 183.64 | 480         | 1.3         | 0.8         | 1.1         | < <b>5.0</b> <sup>8</sup> |             |
| TRIP BLANK            |        |       |        |             |             |             |             |                           |             |
| TB-LB                 |        |       |        |             |             |             |             |                           |             |
| 01/03/01              |        |       |        | < 50        | < 0.50      | < 0.50      | < 0.50      | < 0.50                    | <2.5        |
| 04/25/01              |        |       |        | <50         | < 0.50      | < 0.50      | < 0.50      | < 0.50                    | <2.5        |
| 07/09/01              |        |       |        | <50         | < 0.50      | < 0.50      | < 0.50      | < 0.50                    | <2.5        |
| QA                    |        |       |        |             |             |             |             |                           |             |
| 10/08/01              |        |       |        | < 50        | < 0.50      | < 0.50      | < 0.50      | <1.5                      | <2.5        |
| 01/13/02              |        |       |        | < 50        | < 0.50      | < 0.50      | < 0.50      | < 0.50                    | <2.5        |
| 04/08/02              |        |       |        | < 50        | < 0.50      | < 0.50      | < 0.50      | <1.5                      | < 2.5       |
| 10/15/02              |        |       |        | < 50        | < 0.50      | < 0.50      | < 0.50      | <1.5                      |             |
| 04/15/03              |        |       |        | < 50        | < 0.5       | < 0.5       | < 0.5       | <1.5                      |             |
| 10/31/03              |        |       |        | < 50        | < 0.5       | < 0.5       | < 0.5       | <1.5                      |             |
| 04/23/04              |        |       |        | < 50        | < 0.5       | < 0.5       | < 0.5       | <1.5                      |             |
| 10/22/04              |        |       |        | < 50        | < 0.5       | < 0.5       | < 0.5       | <1.5                      |             |
| 04/14/05              |        |       |        | < 50        | < 0.5       | < 0.5       | < 0.5       | <1.5                      |             |
| 10/14/05              |        |       |        | < 50        | < 0.5       | < 0.5       | < 0.5       | <1.5                      |             |
| 04/14/06              |        |       |        | < 50        | < 0.5       | < 0.5       | < 0.5       | <1.5                      |             |
| 10/26/06              |        |       |        | < 50        | < 0.5       | < 0.5       | < 0.5       | <1.5                      |             |
| 04/13/07              |        |       |        | < 50        | < 0.5       | < 0.5       | < 0.5       | <1.5                      |             |
| 10/22/07              |        |       |        | < 50        | < 0.5       | < 0.5       | < 0.5       | <1.5                      |             |
| 04/21/08              |        |       |        | < 50        | < 0.5       | < 0.5       | < 0.5       | <1.5                      |             |
| 10/15/08              |        |       |        | < 50        | < 0.5       | <0.5        | < 0.5       | <1.5                      |             |

#### Table 1

### **Groundwater Monitoring Data and Analytical Results**

Former Chevron Service Station #209339 5940 College Avenue Oakland, California

#### **EXPLANATIONS:**

TOC = Top of Casing TPH-G = Total Petroleum Hydrocarbons as Gasoline MTBE = Methyl Tertiary Butyl Ether (ft.) = Feet B = Benzene ( $\mu$ g/L) = Micrograms per liters DTW = Depth to Water T = Toluene --- Not Measured/Not Analyzed GWE = Groundwater Elevation E = Ethylbenzene QA = Quality Assurance/Trip Blank

(msl) = Mean sea level X = Xylenes

- \* TOC elevations were surveyed on December 27, 2000, by Virgil Chavez Land Surveying. The benchmark used for the survey was a City of Oakland benchmark being a cut square in the top of curb, at the curb return at the northeast corner of College Avenue and Miles Avenue, (Benchmark Elev. = 179.075 feet, msl).
- Laboratory report indicates unidentified hydrocarbons C6-C12.
- Laboratory report indicates gasoline C6-C12.
- MTBE by EPA Method 8260.
- Laboratory report indicates gasoline C6-C12 + unidentified hydrocarbons < C6.
- Laboratory report indicates gasoline C6-C12 + unidentified hydrocarbons C6-C12.
- 6 Current laboratory analytical results do not coincide with historical data, although the laboratory results were confirmed.
- Laboratory report indicates that due to the presence of interferent near their retention time, normal reporting limits were not attained for toluene, ethylbenzene, and total xylenes.
  - The presence or concentration of these compounds cannot be determined below the reporting limits due to the presence of these interferents.
- Laboratory report indicates that due to the presence of an interferent near its retention time, the normal reporting limit was not attained for total xylenes.

  The presence or concentration of this compound cannot be determined due to the presence of this interferent.