

QUARTERLY GROUNDWATER MONITORING REPORT October 14, 2005

Sheaff's Garage 5930 College Avenue Oakland, California

ACHCSA Fuel Leak Case No. RO0000377

Prepared For:

William G. Sheaff TTE Trust Dr. Brian Sheaff 1945 Parkside Drive Concord, CA 94519

GGTR Project No. 7335 January 27, 2006

Reviewed By:

Mark Youngkin

Registered Geologist CEG 1380

Prepared By:

Greti Wolf Staff Geologist

RECEIVED

By lopprojectop at 8:54 am, Jan 31, 2006

QUARTERLY GROUNDWATER MONITORING REPORT October 14, 2005

5930 College Avenue, Oakland, California

Introduction

This report presents the results and findings of the October 14, 2005 groundwater monitoring and sampling activities conducted by Golden Gate Tank Removal, Inc. (GGTR) at 5930 College Avenue in Oakland, California. This was the 20th quarterly monitoring event performed at the site for the three existing monitor wells, MW1 through MW3, and the third monitoring and sampling event for the piezometer well, PW1, installed at the site in April 2005. The ACHCSA has designated the site as Fuel Leak Case No. RO000377. Figure 1, Site Location Map, shows the general location of the subject property in Oakland, California. The site, adjacent properties, and associated features are shown on the revised Figure 2, Site Plan. The groundwater elevation isocontour lines and associated gradient is shown on Figure 3, Groundwater Elevation Potentiometric Map. Table 1, Historical Results of Groundwater Sample Analysis & Fluid-Level Data, provides a tabulated summary of the laboratory results of historical groundwater sample analyses and fluid-level monitoring data at the site.

Gettler-Ryan, Inc. of Dublin, California is currently conducting a separate groundwater investigation for the former Chevron Station #20-9339 located adjacent to the north side of the subject property at 5940 College Avenue. Two groundwater monitoring wells (GR-MW1 & GR-MW2) are used to evaluate the hydrocarbon concentrations in groundwater at this site.

GGTR and Gettler-Ryan, Inc. have conducted joint monitoring and sampling activities at the associated sites on a quarterly basis since October 2000. As of the April 8, 2002 monitoring event, Gettler-Ryan has decreased their monitoring schedule to a biannual basis. Gettler-Ryan, Inc. performed their most recent joint/biannual monitoring and sampling of GR-MW1 & GR-MW2 on October 14, 2005. Figures 2 and 3 show the location of each Gettler-Ryan well relative to the subject wells at 5930 College Avenue.

Site Location and Description

The subject commercial property is located at 5930 College Avenue, along the east side of College Avenue between Harwood Street and Chabot Road in Oakland, California. The site lies approximately 0.2 mile (1,000 feet) north of Highway 24 and approximately 2.5 miles east of Interstate 80 and the San Francisco Bay. The general location of the site is shown on the attached Figure 1, *Site Location Map*.

The property is currently occupied by Stoddard Automotive, for the service and repair of automobiles. No active fuel storage or distribution system currently occupies the site. The site is approximately 5,500 square feet in area with about 75% utilized by a covered warehouse/garage and 25% used as an exterior (uncovered) storage yard. The ground surface of the entire property is paved with concrete. The elevation of the site is approximately 195 feet above Mean Sea Level (Figure 1). Figure 2 presents a *Site Plan* showing pertinent site structures and adjacent properties.

The property is relatively flat lying with the topographic relief in the immediate vicinity of the site generally directed toward the southwest (Figure 1). Regional topographic relief appears to be directed toward the west-southwest in the general direction of the San Francisco Bay. One 675-gallon gasoline UST and one 340-gallon waste oil UST were located beneath the sidewalk at the southwest corner of the site (Figure 2). The tanks were removed by GGTR in August 1996. A brief discussion of the tank removal activities is presented herein.

Site Geology and Hydrogeology

According to a Geologic Map of the San Francisco-San Jose Quadrangle published by the California Department of Conservation, the site is underlain by up to 500 feet of dissected Quaternary alluvium deposited on marine sandstone, shale and conglomerate of the Mesozoic Franciscan Complex and possibly Mesozoic, cretaceous marine sedimentary rocks of the Great Valley Sequence (thicknesses not established). Native subsurface soil encountered at the site during the additional soil and groundwater investigation activities was predominantly a moist, dark yellowish brown, clayey silt up to approximately 7 fbg, overlying a dark yellowish brown and dark greenish gray, silty clay up to approximately 15 fbg. Moist to wet, clayey silt/sand and silty clay lenses extend up to a total explored sample depth of 20 fbg. Soil observed in soil borings B10 and B11 was predominantly clayey, sandy silt.

The average depth to groundwater as measured in MW1-MW3 and PW-1, during the October 2005 monitoring event was approximately 9.77 fbg, with an associated mean groundwater elevation of 186.38 feet above Mean Sea Level. The associated groundwater gradient across the site historically has ranged between 0.005 (July 2001) and 0.032 (October 2002) foot per foot and the flow direction has fluctuated between 11° west of south (October 1999) to 71° east of north (October 2002).

The regional groundwater flow in the vicinity of the site is assumed to be towards the west-southwest, in the direction of the San Francisco Bay, and generally following the natural topographic relief of the area. At this time, with no risk-based corrective action study performed to date at the site, shallow groundwater beneath the site is considered a potential drinking water source.

The nearest surface water body is Claremont Creek, flowing southwest, with surface water flow ending approximately 0.9 mile northeast of the site. Creek flow then appears to continue southwest via an intermittent underground culvert and an open surface channel, and generally parallels Claremont Avenue towards its intersection with College Avenue, located approximately 0.1 mile (525 feet) north of the site (Figure 1). Lake Temescal, situated at an elevation approximately 200 feet higher than the site, is located approximately 1.1 miles east of the subject property, with effluent flow directed generally southeast.

Groundwater Sampling Field Procedures

On October 14, 2005 GGTR monitored and sampled MW1 through MW3 and PW1, in accordance with the requirements and procedures of the California Regional Water Quality Control Board, San Francisco Bay Region (RWQCB) and the ACHCSA. Prior to purging and sampling, GGTR removed the well cover and locking compression cap from each well and allowed the groundwater in each well column to stabilize for approximately 20 minutes. GGTR then measured and recorded the depth to groundwater and presence of floating product using a Keck® electronic oil/water interface probe. GGTR also measured the dissolved oxygen (DO) of the groundwater (in situ) using a YSI55® DO meter to assess the occurrence of biodegradation in shallow groundwater beneath the site. DO was measured prior to purging only. Fluid levels were measured relative to the north side of the top of each well casing to the nearest 0.01 foot.

GGTR then purged a minimum of three casing volumes from each well using a direct current, centrifugal purge pump, and simultaneously monitored and recorded the pH, temperature, specific conductivity, and oxidation reduction potential (ORP) of the purged well water. Well purge water was transferred directly to a 55-gallon, D.O.T.-approved steel drum. After the groundwater in each well recharged to approximately 80% of its original level, GGTR collected a groundwater sample by lowering a disposable, bottom-fill, polyvinyl chloride (PVC) bailer to just below the well's air-water interface. The bailer was immediately removed from the well and the groundwater was carefully decanted from the bailer into pre-cleaned, laboratory-provided sample containers. All volatile organic analysis (VOA) vials were inverted and checked to insure that no entrapped air was present. The samples were sealed with Teflon caps, properly labeled, and stored in a cooler chilled to approximately 4°C.

Water Sample Analytical Methods

On October 17, 2005, GGTR submitted the groundwater samples collected from the three monitoring wells and piezometer well under formal chain of custody command to Entech Analytical Labs, Inc. State-certified, analytical laboratory (CA ELAP #2346) in Santa Clara, California for laboratory analysis of the following fuel constituents:

- Gasoline Range Organics (TPH-G; GC-MS)
- Benzene, Toluene, Ethylbenzene and total Xylenes (BTEX; EPA8260)
- Methyl Tertiary-Butyl Ether (MTBE; EPA8260)
- VOCs (GC/MS Method 8260B)

Entech completed all volatile organic analyses by October 21, 2005, which is in conformance with the 14-day required time limit for analysis. GGTR submitted all analytical data in electronic deliverable format in accordance with the State Water Resources Control Board Assembly Bill 2886 for submission to the State's GeoTracker database system. The analytical results for this event as well as those reported during historical monitoring events at the site are presented in Table 1. A copy of the Laboratory Certificates of Analysis, associated Chain of Custody Record, and Fluid-Level Monitoring and Well Purge/Sampling Data Sheets and Sampling Data Sheets are included in the Appendix.

Quality Assurance / Quality Control

Quality Assurance and Quality Control details are shown on the laboratory Certificates of Analysis in the Appendix. The laboratory reported no quality assurance or quality control problems during the laboratory analysis procedures. All samples were analyzed within specified laboratory holding times.

Groundwater Monitoring Results

The groundwater elevations measured relative to the top of well casing in MW1 through MW3 and PW1 ranged between 186.32 (MW1) and 186.46 (PW1) feet above Mean Sea Level.

To assess the historically fluctuating groundwater flow directions at the site, GGTR calculated the groundwater gradient for the October 2005 event using groundwater elevation data from both 1) MW1 through MW3 and 2) MW1, MW3, and PW1. Both sets of data will be calculated for the next monitoring event and compared to regional groundwater flow direction data (west-southwest) to assess potential consistency over a period of three to four consecutive quarters. The gradient and flow direction for the two sets of data measured during the October 2005 event were approximately 0.002 ft/ft, directed 27° west of north, and 0.002 ft/ft 54° west of south, respectively. The associated groundwater gradient data calculated for the October 14, 2005 monitoring event is shown in Figure 3, *Groundwater Elevation Potentiometric Map*.

The table shown on the following page lists the historical data for MW1 through MW3, for mean groundwater elevation, flow direction, and groundwater slope for the site. The groundwater elevations prior to October 14, 2001 are referenced to an arbitrary site-specific datum point (MW1; north side of top of well casing) with an assumed elevation of 50 feet. This arbitrary datum point is not referenced to Mean Sea Level. Figure 4 presents a *Rose Diagram* showing the historical hydraulic gradients (magnitude and direction) to date across the site. The current gradient data, incorporating that of PW1, is shown in bold type.

Table - Mean Groundwater Elevation, Flow Direction, and Gradient

Measurement Date	Mean Groundwater Elevation (feet)	Groundwater Flow Direction	Gradient (feet / 100 feet)
10/07/99	39.87	11° west of south	0.67 foot / 100 feet
01/26/00	43.1	23° west of north	9.12 feet / 100 feet
10/25/00	39.96	40° east of north	0.64 foot / 100 feet
04/25/01	188.6	55° west of north	0.69 foot / 100 feet
07/10/01	186.26	4° east of north	0.5 foot / 100 feet
10/08/01	184.99	48° east of north	1.6 feet / 100 feet
01/07/02	191.63	52° west of south	2.3 feet / 100 feet
04/08/02	188.94	43° east of south	0.6 foot / 100 feet
07/09/02	186.63	51° west of north	0.7 foot / 100 feet
10/23/02	184.50	71° east of north	3.2 foot / 100 feet
10/15/03	185.14	28° east of north	1.0 foot / 100 feet
02/02/04	188.47	18° east of south	0.5 foot / 100 feet
04/23/04	189.00	77° east of south	0.5 foot / 100 feet
07/19/04	186.97	51° west of north	0.1 foot / 100 feet
10/22/04	186.49	82° west of north	2.9 foot / 100 feet
01/21/05	190.36	16° west of south	1.25 foot / 100 feet
04/14/05	100.01	13° east of south	1.10 foot / 100 feet
04/14/05	190.01	76° east of south	1.60 foot / 100 feet
07/26/05	100 27	56° west of north	0.08 foot / 100 feet
07/26/05	188.37	78° west of north	0.26 foot / 100 feet
10/14/05	107.20	27° west of north	0.2 foot / 100 feet
	186.38	54° west of south	0.2 foot / 100 feet

Results of Groundwater Sampling and Laboratory Analysis

The table shown on the following page summarizes the laboratory analytical results of groundwater samples collected during the October 14, 2005 monitoring event. Documentation of the well purging and sampling activities is contained in the Field Data Sheets of the Appendix.

October 14, 2005 Groundwater Sampling Results

Well	Sample	TPH-G	BTEX	MTBE	VOCs
ID	ID	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW1	7335-MW1	64000	13000/5700/3400/16000	ND	2700 - 1,2,4-Trimethylbenzene
MW2	7335-MW2	13000	2900/100/1300/1200	130	770 - 1,2,4-Trimethylbenzene
MW3	7335-MW3	6100	76/19/170/350	ND	210 - 1,2,4-Trimethylbenzene
PW1	7335-PW-1	4300	93/1.2/100/140	ND	120 - 1,2,4-Trimethylbenzene 67 - 1,3,5- Trimethylbenzene 29 - cis-1,2-Dichloroethene 28 - Isopropylbenzene 17 - n-Butylbenzene 72 - Propylbenzene 43 - Napthalene 12 - sec-Butylbenzene 25 - Tetrachloroethene 4.1 - Trichloroethene

Notes: TPH-G - Total Petroleum Hydrocarbons as Gasoline (EPA Methods 5030C)

BTEX - Benzene / Toluene / Ethylbenzene / Xylenes (EPA Methods 8260B)

MTBE - Methyl Tertiary Butyl Ether (EPA Method 8260B)

VOC - Volatile Organic Compounds (EPA Method 8260; Total Concentration)

ug/L - micrograms per liter (equivalent to parts per billion - ppb)

ND - not detected above laboratory reporting limit (See QC/QA, Lab Report)

* - MTBE concentration as confirmed by VOC and/or Fuel Oxygenate analysis

As requested by the ACHCSA in their letter dated June 3, 2004, groundwater monitoring should continue at the site on a quarterly basis. All quarterly groundwater samples should be analyzed for TPH-G, BTEX, and MTBE by EPA Methods 8015M/8021B, and VOCs by EPA Method 8260. Monitoring of DO and ORP should be continued to further evaluate the biodegradation potential in the shallow groundwater beneath the site.

GeoTracker AB2886 EDF Upload

In general accordance with State Assembly Bill 2886, GGTR uploaded the fluid-level monitoring data associated with the October 14, 2005 event in electronic deliverable format to the State Water Resources Control Board's GeoTracker Database System. The GeoTracker Upload Confirmation Number is **5610752701** An AB2886 Electronic Delivery

confirmation reports copy (GEO_Well) corresponding to submittal title Fluid-Level Monitoring Data (MW1-MW3, PW1) is included in the Appendix.

GGTR uploaded all groundwater sample analytical results associated with the October 14, 2005 event in electronic deliverable format to the State GeoTracker Database System. A copy of the Upload Confirmation Number **1188632249** corresponding to Lab Number/Submittal Title 45825: 10/14/2005 GW Analytical Data (MW1-MW3, PW1) is included in the Appendix.

Waste Management

The well purge and equipment wash and rinse water generated during the October 2005 monitoring event (@ 30 gallons) was transferred directly to a D.O.T.-approved, 55-gallon drum, appropriately labeled and stored onsite in a secure area, to be used for future groundwater monitoring events.

Environmental Site History & Chronology

In August 1996, GGTR removed two underground storage tanks (USTs) and associated fuel dispenser from the site at the locations shown in Figure 2. The following table presents a summary of the tank designations, size, type of construction and contents:

Designation	Construction	Diameter	Length	Volume	Contents
		(Feet)	(Feet)	(Gallons)	
TANK 1	Steel	4	7	675	Gasoline
TANK 2	Steel	4	3.5	340	Waste Oil

GGTR removed the residual fuel from the subsurface product piping (left in place), thoroughly flushed and drained the piping, and capped both ends. GGTR over-excavated the gasoline-contaminated soil surrounding the former UST location. The tank removal and over-excavation activities are documented in GGTR's *Tank Removal Report*, dated October 11, 1996.

Between May 1998 and October 1999, as requested by the ACHCSA, GGTR performed a preliminary subsurface soil boring investigation at the subject property and subsequently installed three groundwater monitor wells in the vicinity of the former UST cavity. Soil borings B1 through B3 were advanced immediately south, east, and west, respectively, of the former UST cavity. Following review and interpretation of all field and soil sample analytical data collected during these activities, additional soil borings (B4 through B6) were then advanced at the site to further assess the extent of contamination in soil and the potential impact to groundwater. These borings were converted to 2-inch-diameter groundwater monitoring wells, MW1 through MW3

In collaboration with Gettler-Ryan, Inc. of Dublin, California, which is conducting a separate groundwater investigation adjacent to the subject property (5940 College Avenue; Former Chevron Station), GGTR has jointly monitored and sampled each well on a

quarterly basis between January 2000 and April 2002. The locations of the subject monitor wells as Well as Gettler-Ryan's monitoring wells are shown on Figure 2.

Based on the residual elevated concentrations of gasoline-range hydrocarbons measured in the groundwater samples collected during the April 2001 quarterly monitoring activities, the ACHCSA, in a letter dated July 9, 2001, requested a work plan to assess whether any additional contaminant sources may potentially exist onsite that may be contributing to the elevated hydrocarbon concentration in groundwater. GGTR submitted the work plan on December 19, 2001, which was subsequently approved by the ACHCSA in a letter dated January 3, 2002. In August, October, and November 2002, GGTR implemented the approved work plan activities, details of which are presented in GGTR's June 10, 2003 Report of Additional Soil and Groundwater Investigation.

Based on review of GGTR's June 2003 report, the ACHCSA, in their letter dated September 8, 2003 requested a work plan addressing additional source and site characterization of contaminants in soil and groundwater at the subject property. GGTR submitted their Work Plan for Additional Site Characterization on December 29, 2003, which was conditionally approved by the ACHCSA in their most recent letter dated June 3, 2004. On September 30, 2004, GGTR submitted their *Additional Site Characterization Work Plan Addendum* for review. Between October 15, 2003 and October 2005, GGTR conducted quarterly groundwater monitoring and sampling activities at the site and submitted their associated Groundwater Monitoring Reports to the ACHCSA.

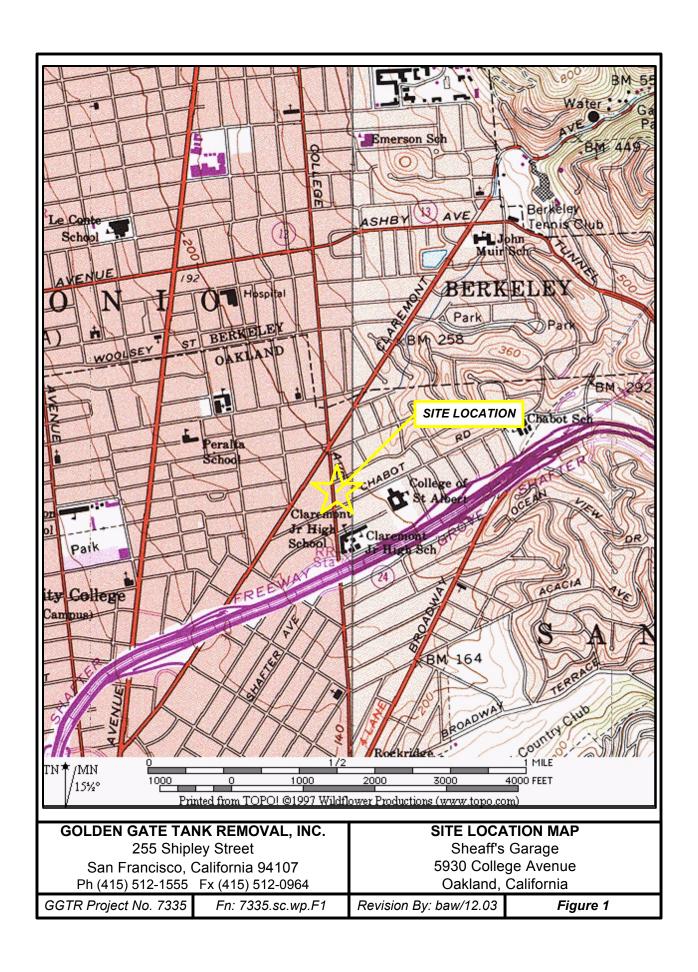
The following chronological list of activities shows the significant UST removal and investigative activities performed at the site to date:

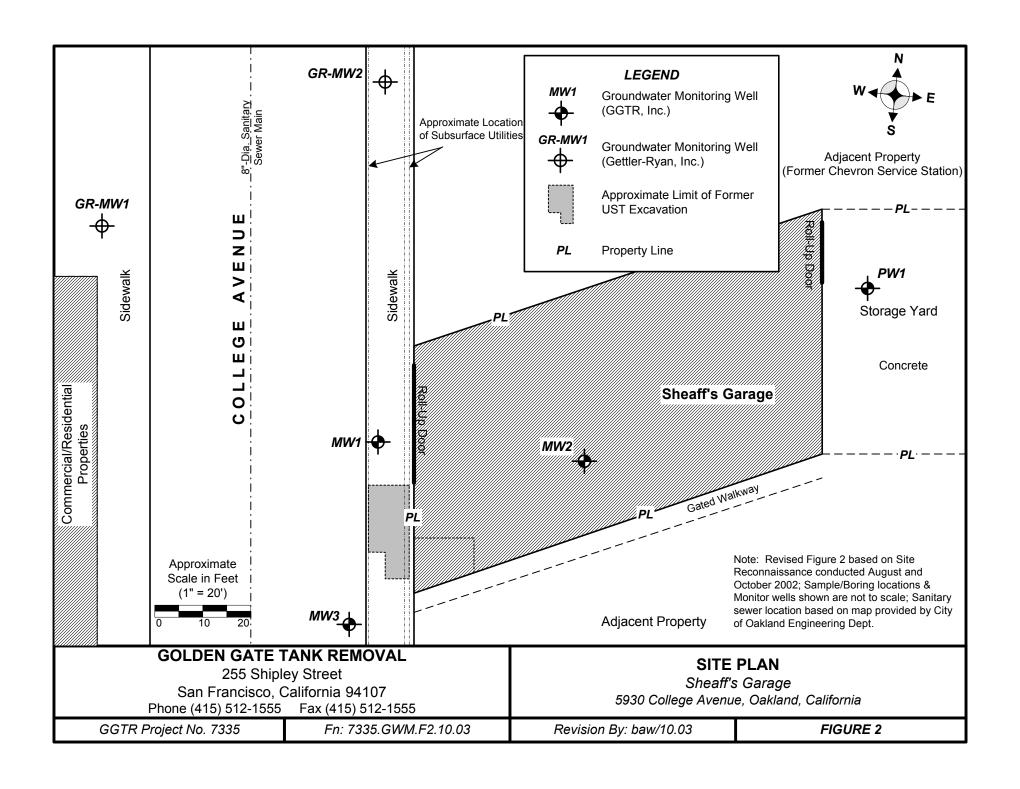
08/06/96	Underground storage tanks 1 and 2 were removed and samples recovered
08/15/96	A work plan was submitted by GGTR for over excavation and disposal of gasoline-
	contaminated soil surrounding the UST
09/30/96	Over-excavation of gasoline-contaminated soil performed
10/01/96	Last of additional excavation soil disposed of at a Class II facility
10/11/96	TANK REMOVAL REPORT published by GGTR
12/30/96	ACHSA submitted letter requiring soil and groundwater investigation
03/10/97	GGTR authorized to prepare a work plan for additional investigation
04/01/97	GGTR submitted work plan for a Soil and Groundwater Investigation
04/21/97	ACHSA submitted letter authorizing work plan
05/06/98	GGTR drills borings B1 through B3
05/20/98	GGTR drills borings B4 (Monitoring Well MW1)
05/27/98	GGTR develops monitoring well MW1
06/01/98	GGTR measures, purges and samples monitoring well MW1
06/17/98	GGTR submitted Soil and Groundwater Investigation Report
07/21/98	GGTR submitted Work Plan Addendum for installation of two additional
	groundwater monitoring wells
09/10/98	GGTR measures, purges and samples monitoring well MW1 then submits a
	groundwater monitoring report

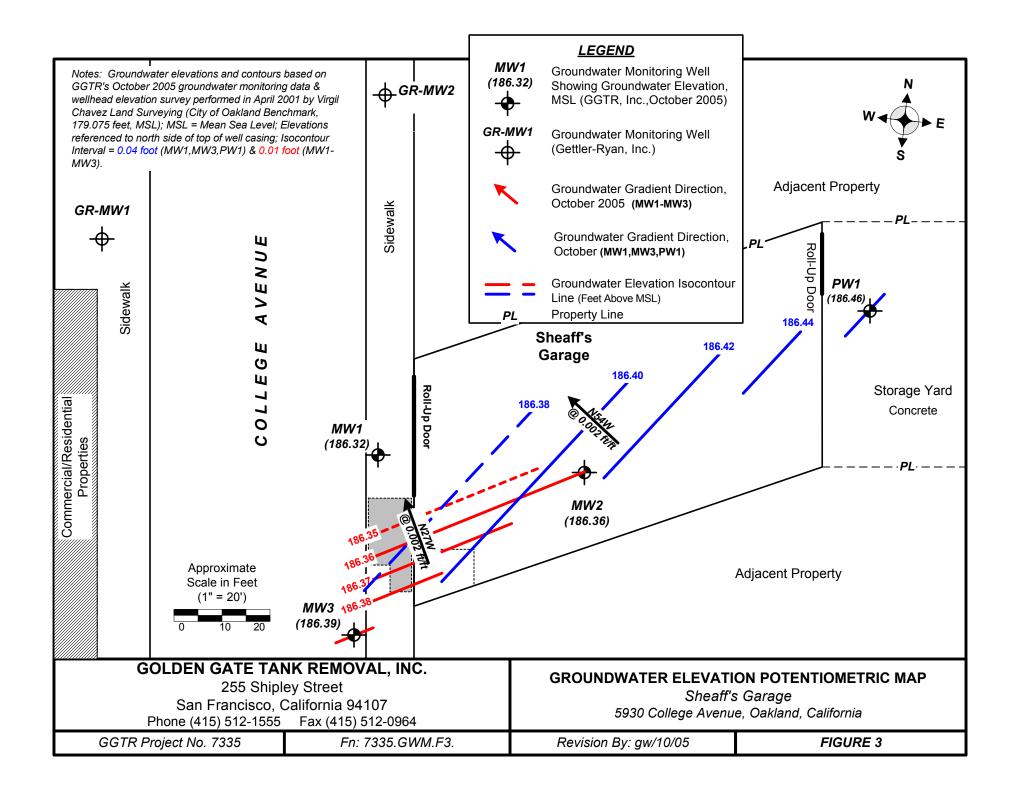
10/02/99	GGTR drills two borings (B5 and B6) and converts them to groundwater
	monitoring Wells (MW2 and MW3)
10/04/99	GGTR develops monitoring wells MW2 and MW3
10/07/99	GGTR surveys monitoring wells MW2 / MW3; measures, purges and samples
	monitoring wells MW1, MW2 and MW3 then submits a groundwater monitoring
	report
10/22/99	GGTR submitted Summary Report
11/24/99	HCS submitted letter requiring quarterly monitoring and setting parameters for
	January 2000 analyses
01/26/00	GGTR measures, purges and samples monitoring wells MW1, MW2 and MW3 then
	submits a groundwater monitoring report
10/25/00	GGTR and Gettler-Ryan, Inc. perform joint groundwater monitoring activities;
	GGTR measures, purges and samples monitoring wells MW1, MW2 and MW3 then
	submits a groundwater monitoring report
04/25/01	GGTR and Gettler-Ryan, Inc. perform joint groundwater monitoring activities;
	GGTR surveys, measures and samples monitoring wells MW1, MW2 and MW3
	then submits a groundwater monitoring report
07/10/01	GGTR and Gettler-Ryan, Inc. perform joint groundwater monitoring activities;
	GGTR measures and samples monitoring wells MW1, MW2 and MW3 then
	submits a groundwater monitoring report
10/08/01	GGTR and Gettler-Ryan, Inc. perform joint groundwater monitoring activities;
	GGTR monitors and samples MW1, MW2 and MW3.
11/28/01	GGTR submits October 2001 Groundwater Monitoring Report to the ACHCSA
12/19/01	GGTR submits Work Plan for Additional Soil & Groundwater Investigation to the
	ACHCSA
01/03/02	ACHCSA submits work plan implementation request letter.
01/07/02	ACHCSA submits work plan implementation request letter. GGTR monitors and samples MW1, MW2 and MW3.
01/07/02 01/13/02	ACHCSA submits work plan implementation request letter. GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2.
01/07/02 01/13/02 02/11/02	ACHCSA submits work plan implementation request letter. GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits January 7, 2001 Groundwater Monitoring Report to the ACHCSA
01/07/02 01/13/02 02/11/02 04/08/02	ACHCSA submits work plan implementation request letter. GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits January 7, 2001 Groundwater Monitoring Report to the ACHCSA GGTR monitors and samples MW1, MW2 and MW3.
01/07/02 01/13/02 02/11/02 04/08/02 04/08/02	ACHCSA submits work plan implementation request letter. GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits January 7, 2001 Groundwater Monitoring Report to the ACHCSA GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2.
01/07/02 01/13/02 02/11/02 04/08/02 04/08/02 05/15/02	ACHCSA submits work plan implementation request letter. GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits January 7, 2001 Groundwater Monitoring Report to the ACHCSA GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits April 8, 2002 Groundwater Monitoring Report to the ACHCSA
01/07/02 01/13/02 02/11/02 04/08/02 04/08/02	ACHCSA submits work plan implementation request letter. GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits January 7, 2001 Groundwater Monitoring Report to the ACHCSA GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits April 8, 2002 Groundwater Monitoring Report to the ACHCSA GGTR monitors and samples MW1, MW2 and MW3; Gettler-Ryan, Inc. currently
01/07/02 01/13/02 02/11/02 04/08/02 04/08/02 05/15/02 07/09/02	ACHCSA submits work plan implementation request letter. GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits January 7, 2001 Groundwater Monitoring Report to the ACHCSA GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits April 8, 2002 Groundwater Monitoring Report to the ACHCSA GGTR monitors and samples MW1, MW2 and MW3; Gettler-Ryan, Inc. currently on bi-annual sampling basis
01/07/02 01/13/02 02/11/02 04/08/02 04/08/02 05/15/02 07/09/02	ACHCSA submits work plan implementation request letter. GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits January 7, 2001 Groundwater Monitoring Report to the ACHCSA GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits April 8, 2002 Groundwater Monitoring Report to the ACHCSA GGTR monitors and samples MW1, MW2 and MW3; Gettler-Ryan, Inc. currently
01/07/02 01/13/02 02/11/02 04/08/02 04/08/02 05/15/02 07/09/02 08/19/02 08/24/02-	ACHCSA submits work plan implementation request letter. GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits January 7, 2001 Groundwater Monitoring Report to the ACHCSA GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits April 8, 2002 Groundwater Monitoring Report to the ACHCSA GGTR monitors and samples MW1, MW2 and MW3; Gettler-Ryan, Inc. currently on bi-annual sampling basis GGTR submits July 9, 2002 Groundwater Monitoring Report to the ACHCSA
01/07/02 01/13/02 02/11/02 04/08/02 04/08/02 05/15/02 07/09/02	ACHCSA submits work plan implementation request letter. GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits January 7, 2001 Groundwater Monitoring Report to the ACHCSA GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits April 8, 2002 Groundwater Monitoring Report to the ACHCSA GGTR monitors and samples MW1, MW2 and MW3; Gettler-Ryan, Inc. currently on bi-annual sampling basis GGTR submits July 9, 2002 Groundwater Monitoring Report to the ACHCSA GGTR conducts December 2001 work plan subsurface fuel piping removal and site
01/07/02 01/13/02 02/11/02 04/08/02 04/08/02 05/15/02 07/09/02 08/19/02 08/24/02- 08/30/02	ACHCSA submits work plan implementation request letter. GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits January 7, 2001 Groundwater Monitoring Report to the ACHCSA GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits April 8, 2002 Groundwater Monitoring Report to the ACHCSA GGTR monitors and samples MW1, MW2 and MW3; Gettler-Ryan, Inc. currently on bi-annual sampling basis GGTR submits July 9, 2002 Groundwater Monitoring Report to the ACHCSA GGTR conducts December 2001 work plan subsurface fuel piping removal and site restoration activities.
01/07/02 01/13/02 02/11/02 04/08/02 04/08/02 05/15/02 07/09/02 08/19/02 08/24/02- 08/30/02	ACHCSA submits work plan implementation request letter. GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits January 7, 2001 Groundwater Monitoring Report to the ACHCSA GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits April 8, 2002 Groundwater Monitoring Report to the ACHCSA GGTR monitors and samples MW1, MW2 and MW3; Gettler-Ryan, Inc. currently on bi-annual sampling basis GGTR submits July 9, 2002 Groundwater Monitoring Report to the ACHCSA GGTR conducts December 2001 work plan subsurface fuel piping removal and site restoration activities. Gettler-Ryan, Inc. monitors and samples GR-MW1 & GR-MW2.
01/07/02 01/13/02 02/11/02 04/08/02 04/08/02 05/15/02 07/09/02 08/19/02 08/24/02- 08/30/02 10/15/02 10/23/02	ACHCSA submits work plan implementation request letter. GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits January 7, 2001 Groundwater Monitoring Report to the ACHCSA GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits April 8, 2002 Groundwater Monitoring Report to the ACHCSA GGTR monitors and samples MW1, MW2 and MW3; Gettler-Ryan, Inc. currently on bi-annual sampling basis GGTR submits July 9, 2002 Groundwater Monitoring Report to the ACHCSA GGTR conducts December 2001 work plan subsurface fuel piping removal and site restoration activities.
01/07/02 01/13/02 02/11/02 04/08/02 04/08/02 05/15/02 07/09/02 08/19/02 08/24/02- 08/30/02 10/15/02 10/23/02 10/30/02 &	ACHCSA submits work plan implementation request letter. GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits January 7, 2001 Groundwater Monitoring Report to the ACHCSA GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits April 8, 2002 Groundwater Monitoring Report to the ACHCSA GGTR monitors and samples MW1, MW2 and MW3; Gettler-Ryan, Inc. currently on bi-annual sampling basis GGTR submits July 9, 2002 Groundwater Monitoring Report to the ACHCSA GGTR conducts December 2001 work plan subsurface fuel piping removal and site restoration activities. Gettler-Ryan, Inc. monitors and samples GR-MW1 & GR-MW2. GGTR monitors and samples MW1, MW2 and MW3.
01/07/02 01/13/02 02/11/02 04/08/02 04/08/02 05/15/02 07/09/02 08/19/02 08/24/02- 08/30/02 10/15/02 10/23/02 11/01/02	ACHCSA submits work plan implementation request letter. GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits January 7, 2001 Groundwater Monitoring Report to the ACHCSA GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits April 8, 2002 Groundwater Monitoring Report to the ACHCSA GGTR monitors and samples MW1, MW2 and MW3; Gettler-Ryan, Inc. currently on bi-annual sampling basis GGTR submits July 9, 2002 Groundwater Monitoring Report to the ACHCSA GGTR conducts December 2001 work plan subsurface fuel piping removal and site restoration activities. Gettler-Ryan, Inc. monitors and samples GR-MW1 & GR-MW2. GGTR monitors and samples MW1, MW2 and MW3.
01/07/02 01/13/02 02/11/02 04/08/02 04/08/02 05/15/02 07/09/02 08/19/02 08/24/02- 08/30/02 10/15/02 10/23/02 11/01/02 12/30/02	ACHCSA submits work plan implementation request letter. GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits January 7, 2001 Groundwater Monitoring Report to the ACHCSA GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits April 8, 2002 Groundwater Monitoring Report to the ACHCSA GGTR monitors and samples MW1, MW2 and MW3; Gettler-Ryan, Inc. currently on bi-annual sampling basis GGTR submits July 9, 2002 Groundwater Monitoring Report to the ACHCSA GGTR conducts December 2001 work plan subsurface fuel piping removal and site restoration activities. Gettler-Ryan, Inc. monitors and samples GR-MW1 & GR-MW2. GGTR monitors and samples MW1, MW2 and MW3. GGTR conducts December 2001 work plan additional soil boring activities GGTR submits October 23, 2002 Groundwater Monitoring Report to the ACHCSA
01/07/02 01/13/02 02/11/02 04/08/02 04/08/02 05/15/02 07/09/02 08/19/02 08/24/02- 08/30/02 10/15/02 10/23/02 11/01/02	ACHCSA submits work plan implementation request letter. GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits January 7, 2001 Groundwater Monitoring Report to the ACHCSA GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits April 8, 2002 Groundwater Monitoring Report to the ACHCSA GGTR monitors and samples MW1, MW2 and MW3; Gettler-Ryan, Inc. currently on bi-annual sampling basis GGTR submits July 9, 2002 Groundwater Monitoring Report to the ACHCSA GGTR conducts December 2001 work plan subsurface fuel piping removal and site restoration activities. Gettler-Ryan, Inc. monitors and samples GR-MW1 & GR-MW2. GGTR monitors and samples MW1, MW2 and MW3. GGTR conducts December 2001 work plan additional soil boring activities GGTR submits October 23, 2002 Groundwater Monitoring Report to the ACHCSA GGTR submits Report of Additional Soil and Groundwater Investigation to the
01/07/02 01/13/02 02/11/02 04/08/02 04/08/02 05/15/02 07/09/02 08/19/02 08/24/02- 08/30/02 10/15/02 10/23/02 10/30/02 & 11/01/02 12/30/02 06/10/03	ACHCSA submits work plan implementation request letter. GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits January 7, 2001 Groundwater Monitoring Report to the ACHCSA GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits April 8, 2002 Groundwater Monitoring Report to the ACHCSA GGTR monitors and samples MW1, MW2 and MW3; Gettler-Ryan, Inc. currently on bi-annual sampling basis GGTR submits July 9, 2002 Groundwater Monitoring Report to the ACHCSA GGTR conducts December 2001 work plan subsurface fuel piping removal and site restoration activities. Gettler-Ryan, Inc. monitors and samples GR-MW1 & GR-MW2. GGTR monitors and samples MW1, MW2 and MW3. GGTR conducts December 2001 work plan additional soil boring activities GGTR submits October 23, 2002 Groundwater Monitoring Report to the ACHCSA GGTR submits Report of Additional Soil and Groundwater Investigation to the ACHCSA
01/07/02 01/13/02 02/11/02 04/08/02 04/08/02 05/15/02 07/09/02 08/19/02 08/24/02- 08/30/02 10/15/02 10/23/02 10/30/02 & 11/01/02 12/30/02 06/10/03	ACHCSA submits work plan implementation request letter. GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits January 7, 2001 Groundwater Monitoring Report to the ACHCSA GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits April 8, 2002 Groundwater Monitoring Report to the ACHCSA GGTR monitors and samples MW1, MW2 and MW3; Gettler-Ryan, Inc. currently on bi-annual sampling basis GGTR submits July 9, 2002 Groundwater Monitoring Report to the ACHCSA GGTR conducts December 2001 work plan subsurface fuel piping removal and site restoration activities. Gettler-Ryan, Inc. monitors and samples GR-MW1 & GR-MW2. GGTR monitors and samples MW1, MW2 and MW3. GGTR conducts December 2001 work plan additional soil boring activities GGTR submits October 23, 2002 Groundwater Monitoring Report to the ACHCSA GGTR submits Report of Additional Soil and Groundwater Investigation to the ACHCSA ACHCSA submits Report Review Letter
01/07/02 01/13/02 02/11/02 04/08/02 04/08/02 05/15/02 07/09/02 08/19/02 08/24/02- 08/30/02 10/15/02 10/23/02 10/30/02 & 11/01/02 12/30/02 06/10/03	ACHCSA submits work plan implementation request letter. GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits January 7, 2001 Groundwater Monitoring Report to the ACHCSA GGTR monitors and samples MW1, MW2 and MW3. Gettler-Ryan, Inc. monitors and samples GR-MW1 &GR-MW2. GGTR submits April 8, 2002 Groundwater Monitoring Report to the ACHCSA GGTR monitors and samples MW1, MW2 and MW3; Gettler-Ryan, Inc. currently on bi-annual sampling basis GGTR submits July 9, 2002 Groundwater Monitoring Report to the ACHCSA GGTR conducts December 2001 work plan subsurface fuel piping removal and site restoration activities. Gettler-Ryan, Inc. monitors and samples GR-MW1 & GR-MW2. GGTR monitors and samples MW1, MW2 and MW3. GGTR conducts December 2001 work plan additional soil boring activities GGTR submits October 23, 2002 Groundwater Monitoring Report to the ACHCSA GGTR submits Report of Additional Soil and Groundwater Investigation to the ACHCSA

12/29/03	GGTR submits Work Plan for Additional Site Characterization to the ACHCSA
02/02/04	GGTR conducts 1 st Quarter 2004 Monitoring & Sampling (MW1-MW3)
03/29/04	GGTR submits February 2, 2004 Groundwater Monitoring Report to the ACHCSA
04/23/04	GGTR conducts 2 nd Quarter 2004 Monitoring & Sampling (MW1-MW3)
08/19/04	GGTR submits April 23, 2004 Groundwater Monitoring Report to the ACHCSA
07/19/04	GGTR conducts 3 rd Quarter 2004 Monitoring and Sampling (MW1-MW3)
09/30/04	GGTR submits Additional Site Characterization Work Plan Addendum to
	the ACHCSA
10/22/04	GGTR conducts 4 th Quarter 2004 Monitoring and Sampling (MW1-MW3)
11/11/04	GGTR submits July 19, 2004 Groundwater Monitoring Report to the ACHCSA
01/20/05	GGTR submits October 22, 2004 Groundwater Monitoring Report to the ACHCSA
01/21/05	GGTR conducts 1 st Quarter 2005 Groundwater Monitoring and Sampling (MW1-
	MW3)
03/17/05	GGTR submits October 14 2005 Groundwater Monitoring Report to the ACHCSA
3/26/05	GGTR submits Additional Site Characterization Work Plan Addendum to
	the ACHCSA
04/05	GGTR conducts Additional Site Characterization Activities
04/14/05	GGTR conducts 2 nd Quarter 2005 Groundwater Monitoring and Sampling (MW1-
	MW3, and PW1))
07/24/05	GGTR submits October 14 2005 Groundwater Monitoring Report to the ACHCSA
07/26/05	GGTR conducts 2 nd Quarter 2005 Groundwater Monitoring and Sampling (MW1-
	MW3, and PW1))
10/31/05	GGTR submits July 2005 Groundwater Monitoring Report to the ACHCSA
10/14/05	GGTR conducts 4th Quarter 2005 Groundwater Monitoring and Sampling
	(MW1-MW3, and PW1)
01/13/06	GGTR conducts 1st Quarter 2006 Groundwater Monitoring and Sampling
	(MW1-MW3, and PW1)
1/31/06	GGTR submits October 14 2005 Groundwater Monitoring Report to the
	ACHCSA

Report Distribution


A copy of this quarterly groundwater monitoring report be submitted to the following site representatives:


Alameda County Health Care Services Agency Environmental Health Services Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577


Attention: Mr. Don Hwang (1Electronic Copy via ACGOV)

Mr. Brian Sheaff William G. Sheaff Trust 1945 Parkside Drive Concord, CA 94519

(2 Copies; Bound)

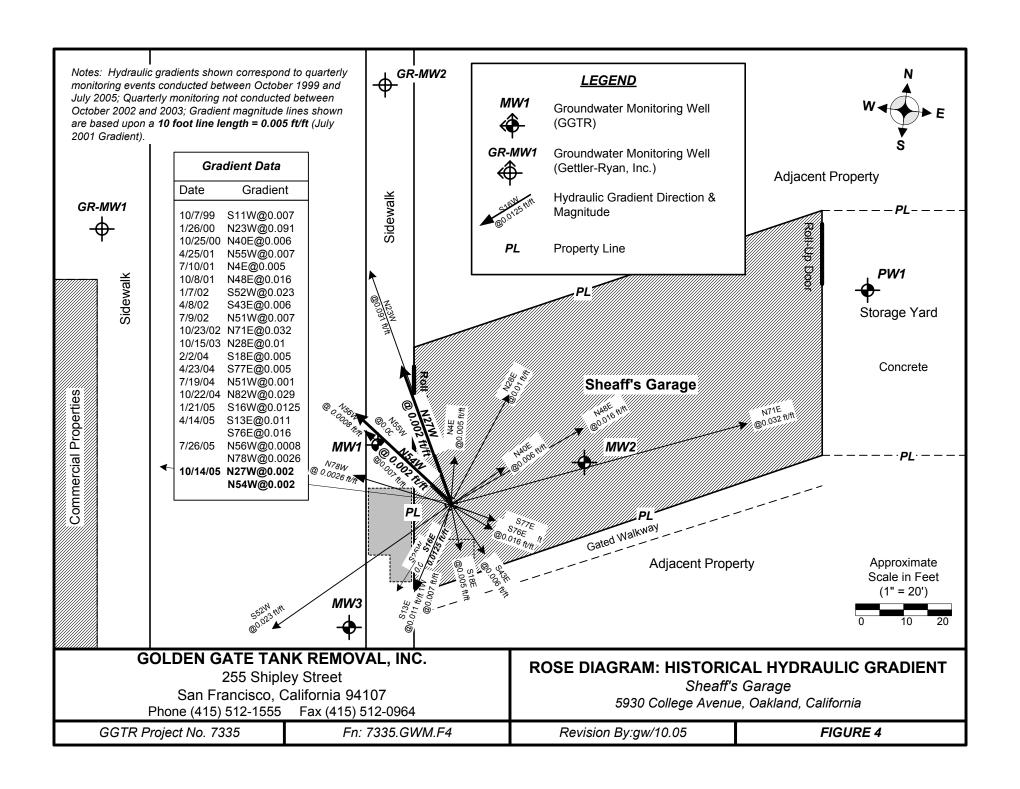


TABLE 1
Historical Results of Groundwater Sample Analysis & Fluid-Level Data 5930 College Avenue, Oakland, CA

Well ID	Sample Date	Casing Elevation	DTW (Feet/	Water Elevation	Product/ Odor/ Sheen	TPH-G	ТЕРН	Total VOCs	MTBE	B/T/E/X
		(Feet/MSL)	TOC)	(Feet/MSL)		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
	06/01/98	50.00 1	4.81	45.19	slight sheen	160,000	ND		1,900	28,000 / 21,000 / 3,800 / 21,000
	09/10/98	50.00 ¹	7.50	42.50	odor	290,000	ND		440	<50 / 25,000 / 7,100 / 32,000
	10/07/99	50.00 ¹	10.04	39.96	odor	85,000	ND		1,100	20,000 / 13,000 / 3,800 / 17,000
	01/26/00	50.00 ¹	8.26	41.74	slight sheen	130,000			470	25,000 / 18,000 / 4,500 / 22,000
	10/25/00	50.00 ¹	10.10	39.90	odor	130,000		ND	1,300	23,000 / 12,000 / 3,900 / 18,000
	02/02/01	50.00 ¹	9.61	40.39	odor	128,000			780	19,000 / 11,000 / 3,800 / 18,000
	04/25/01 195.90 7.39 188.51 odor		odor	120,000			900	21,000 / 13,000 / 390 / 18,000		
MW1	07/10/01	195.90	9.72	186.18	odor	79,000			660	15,000 / 7,800 / 3000 / 15,000
IVI VV I	10/08/01	195.90	10.88	185.02	sheen/odor	112,000			374	25,300 / 11,800 / 4,280 / 20,600
	01/07/02	195.90	4.34	191.56	odor	96,100			596 ³	21,100 / 13,500 / 4,160 / 21,900
	04/08/02	195.90	6.84	189.06	slight odor	111,000		1,040 ²	814 (679 ³)	21,200 / 13,400 / 4,230 / 21,000
	07/09/02	195.90	9.40	186.50	slight odor	110,000		573 ⁴	$746 (570^3)$	20,300 / 13,300 / 4,060 / 19,800
	10/23/02	195.90	11.04	184.86	none	54,100		41,482 5	1,010 (1,080 ³)	10,800 / 3,870 / 2,320 / 9,440
	10/15/03	195.90	10.80	185.10	none	90,700		47,837 8	534 (724 ³)	17,800 / 4,740 / 3,150 / 13,900
	02/02/04	195.90	7.35	188.55	none	108,000		50,118 12	216 (194 ³)	14,200 / 7,420 / 3,450 / 19,800
	04/23/04	195.90	6.83	189.07	slight odor	49,200		28,750 ¹⁵	85 (114 ³)	7,910 / 1,480 / 1,810 / 10,100
	07/19/04	195.90	8.95	186.95	odor	63,900		$32,739^{18}$	373 (303 ³⁾	7,260 /2,270 / 2,510 / 10,100
	10/22/04	195.90	10.15	185.75	None	80,700		$34,550^{21}$	493 (296 ³)	13,900 / 1,670 / 3,550 / 15,200
	01/21/05	195.90	5.45	190.45	odor	278,000		$46,142^{24}$	271 (174 ³)	14,700 / 25,300 / 10,800 /
										73,500
	04/14/05	195.90	5.3	190.60	Odor / sheen	116,000		$63,650^{27}$	366 (410 ³)	15,100 / 7,080 / 4,220 / 20,700
	07/26/05 195.90 7.6 188.30 Odor		Odor	82,000		$36,300^{31}$	ND	12000/4500/3300/14000		
	10/14/05 195.90 9.58 186.32 Odor/sheen							6400	ND	13000/5700/3400/16000
	Laboratory Reporting Limit							<u>≤</u> 50	2.0	0.5 / 0.5 / 0.5 / 1.0
		CRWQCB M	ISWQO (N	MCL)		NC	NC	Varies	5 11	1 / 150 / 700 / 1,750
		CRWQCB Feb	oruary 200	5 ESL		100/100	100/640	Varies	5.0/1,800	1.0 (46) / 40 (130) / 30 (290) /
	I. N. 4 F. II.									20(100)

Table Notes Following

TABLE 1 (Cont'd)

Historical Results of Groundwater Sample Analysis & Fluid-Level Data 5930 College Avenue, Oakland, CA

Well	Sample	Casing	DTW	Water	Product/	TPH-G	ТЕРН	Total	MTBE	B/T/E/X
ID	Date	Elevation	(Feet/	Elevation (F. 4/MSL)	Odor/ Sheen	(/II)	(/T)	VOCs	(/T.)	(/II)
	10/07/00	(Feet/MSL)	TOC)	(Feet/MSL)	1: 1./ 1	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
	10/07/99	51.42 1	11.49	39.93	slight/odor	18,000	ND		490	3,000 / 1,700 / 1,000 / 3,900
	01/26/00	51.42 1	7.85	43.57	none	42,000			560	9,300 / 2,200 / 2,300 / 7,700
	10/25/00	51.42 1	11.57	39.85	slight/odor	31,000		ND	500	5,500 / 370 / 1,700 / 2,600
	02/02/01	51.42 1	10.77	40.65	odor	36,000			400	4,300 / 530 / 1,800 / 4,500
	04/25/01	197.28	8.52	188.76	odor	56,000			460	6,700 / 1700 / 2,600 / 8,200
	07/10/01	197.28	11.05	186.23	odor	39,000			180	6,200 / 730 / 2,300 / 6,100
	10/08/01	197.28	12.79	184.49	sheen/odor	40,700			6,460	6,310 / 399 / 2,100 / 5,320
MW2	01/07/02	197.28	4.92	192.36	odor	59,600			366 ³	10,300 / 3,250 / 4,180 / 14,400
IVI VV Z	04/08/02	197.28	8.40	188.88	slight odor	66,700			583 ³	10,200 / 2,670 / 3,840 / 13,200
	07/09/02	197.28	10.55	186.73	slight odor	37,100		298	$303 (298^3)$	5,340 / 890 / 2,110 / 6,920
	10/23/02	197.28	13.85	183.43	none	13,300		8,686 6	$322 (360^3)$	2,420 / 216 / 922 / 1,470
	10/15/03	197.28	12.38	184.90	none	11,300		6,642 9	264 (322 ³)	2,660 / 51 / 1,180 / 1,220
	02/02/04	197.28	8.80	188.48	none	21,700		8,020 13	$168 (200^3)$	2,130 / 51 / 1,030 / 2,060
	04/23/04	197.28	8.40	188.88	Slight odor	30,400		13,921 16	112 (203 ³)	3,570 / 322 / 1,620 / 4,140
	07/19/04	197.28	10.30	186.98	odor	28,300		10,284 ¹⁹	283 (373³)	2,540 / 239 /1,320 / 2,300
	10/22/04	197.28	10.25	187.03	Moderate odor	13,500		4,548 22	273 (229³)	1,790 / 54 / 892 / 915
	1/21/05	197.28	6.65	190.63	Moderate odor	27,8000		17746 ²⁵	161 (163³)	5980 / 1030 / 2890 / 9070
	4/14/05	197.28	8.7	188.58	None	46100		24398 ²⁸	$155 (150^3)$	5,170 / 787 / 2,530 / 6,010
	7/26/05 197.28 8.95 188.33 Moderate odor		41,000		12,160 ³²	ND (ND ³)	5600/550/2600/4600			
10/14/05 197.28 10.92 186.36 Odor/sheen								1300	130	2900/100/1300/1200
	Laboratory Reporting Limit							<u>≤</u> 50	0.5 (1)	0.5 / 0.5 / 0.5 / 1.0
		CRWQCB M				NC	NC	Varies	5 11	1 / 150 / 700 / 1,750
		CRWQCB Fel	oruary 200	95 ESL		100/100	100/640	Varies	5.0/1,800	1.0 (46) / 40 (130) / 30 (290) / 20(100)

Table Notes Following

TABLE 1 (Cont'd)
Historical Results of Groundwater Sample Analysis & Fluid-Level Data
5930 College Avenue, Oakland, CA

Well	Sample	TOC	DTW	Water	Product/	TPH-G	ТЕРН	Total	MTBE	B/T/E/X
ID	Date	Elevation (Feet/MSL)	(Feet/ TOC)	Elevation (Feet/MSL)	Odor/ Sheen	(ug/L)	(ug/L)	VOCs (ug/L)	(ug/L)	(ug/L)
	10/07/99	49.39 1	9.67	39.72	none	6,600	ND		390	310 / 110 / 430 / 1,000
	01/26/00	49.39 ¹	5.40	43.99	none	3,300	1		40	110 / 8 / 100 / 32
	10/25/00	49.39 ¹	9.24	40.15	slight odor	4,500		ND	ND	100 / 2 / 120 / 130
	02/02/01	49.39 ¹	8.73	40.66	slight odor	2,900	1		35	35 / 3 / 160 / 298
	02/02/01 49.39 8.73 40.66 slight odor 04/25/01 195.22 6.61 188.61 slight odor 07/10/01 195.22 8.85 186.37 slight odor		slight odor	8,400	Ī		56	260 / 33 / 290 / 510		
			12,000	1		35	39 / 10 / 690 / 1600			
	10/08/01	195.22	9.75	185.47	sheen/odor	4,913	-		52	108 / 4 / 99 / 133
MW3	01/07/02	195.22	4.25	190.97	sheen/odor	7,260			81.7 3	723 / 138 / 492 / 887
IVI VV 3	04/08/02	195.22	6.33	188.89	odor	11,700	1		ND ³	540 / 108 / 706 / 1,710
	07/09/02	195.22	8.56	186.66	odor	2,320		20	$28.3 (20^{3})$	37.1 / 4.7 / 98.5 / 187
								(MTBE)		
	10/23/02	195.22	10.02	185.20	Sheen/odor	2,830		865 7	$ND (ND^3)$	46.8 / 4.7 / 43.6 / 65.5
	10/15/03	195.22	9.80	185.42	Sheen/odor	3,040		436 10	ND (ND ³)	91.3 / 8.4 / 69.9 / 148
	02/02/04	195.22	6.85	188.37	Sheen/odor	5,140		769.5 ¹⁴	$ND (ND^3)$	126 / 8.7 / 134 / 238
	04/23/04	195.22	6.17	189.05	none	7,210		2,807.9 17	$ND (ND^3)$	227 / 39.5 / 448 / 879
	07/19/04	195.22	8.25	186.97	Slight odor	9,860		568.2 ²⁰	$ND (ND^3)$	20.4 / 3.2 / 30.6 / 117
	10/22/04	195.22	9.25	185.97	None	7,420		$1,901^{23}$	96 (21 ³)	152 / 12.8 / 267 / 480
	1/21/05	195.22	5.22	190.00	Slight odor	2,420		809.5 ²⁶	$ND (ND^3)$	111 / 11.4 / 139 / 265
	4/14/05	195.22	6.64	188.58	Odor / sheen	5130		2107^{29}	54 (41.4 ³)	357 / 19.4 / 287 / 510
	7/26/05	195.22	6.90	188.32	none	9,800		5,409 ³³	ND (21 ³)	200/23/220/360
	10/14/05 195.22 8.83 186.39 Odor/sheen				6100		825	ND	76/19/170/350	
		Laboratory	Reporting L	imit		50	5,000	<u>≤</u> 50	0.5 (1)	0.5 / 0.5 / 0.5 / 1.0
		CRWQCB N	MSWQO (M	ICL)		NC	NC	Varies	5 11	1 / 150 / 700 / 1,750
		CRWQCB Fe	ebruary 2005	5 ESL		100/100	100/640	Varies	5.0/1,800	1.0 (46) / 40 (130) / 30 (290) / 20(100)

TABLE NOTES ON FOLLOWING PAGE

TABLE 1 (Cont'd)

Historical Results of Groundwater Sample Analysis & Fluid-Level Data 5930 College Avenue, Oakland, CA

Well ID	Sample Date	TOC Elevation	DTW (Feet/	Water Elevation	Product/ Odor/	TPH-G	ТЕРН	Total VOCs	MTBE	B/T/E/X
ID	Date	(Feet/MSL)	TOC)	(Feet/MSL)	Sheen	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
	4/14/05	5 197.17 6.4 190.77 none		none	3360		968 ³⁰	ND (ND ³)	62.8 / 6.7 / 79.5/ 317	
PW1	7/26/05	197.17	8.63	188.54	none	1,300		336.6 ³⁴	ND (ND ³)	22/ND/48/110
	10/14/05	197.17	10.71	186.46	none	4300		751.3	ND	93/1.2/100/140
	Laboratory Reporting Limit					50	5,000	<u><</u> 50	0.5 (1)	0.5 / 0.5 / 0.5 / 1.0
CRWQCB MSWQO (MCL)					NC	NC	Varies	5 11	1 / 150 / 700 / 1,750	
CRWQCB February 2005 ESL							100/640	Varies	5.0/1,800	1.0 (46) / 40 (130) / 30 (290) / 20(100)

TABLE 1 NOTES: TOC - top of well casing (north side)

DTW - depth to water relative to TOC

ug/L - micrograms per liter (equivalent to parts per billion)
TPH-G - Total Petroleum Hydrocarbons as Gasoline (SW8020F)

TEPH - Total Extractable Petroleum Hydrocarbons [EPA Methods 5030/8015M & EPA 1664 (B10 Only)]

Total VOCs - Total Volatile Organic Compounds by EPA Method 8260

MTBE - Methyl Tertiary Butyl Ether (EPA Method 8260)

BTEX - Benzene / Toluene / Ethylbenzene / Total Xylenes (SW8020F)

MSL - Mean Sea Level; TB = Trip Blank (7335-TB) ND - not detected above laboratory reporting limit NC - no criteria established; NA – not applicable

-- - not analyzed for this constituent fbg - feet below grade surface

TABLE NOTES CONTINUED ON FOLLOWING PAGE

TABLE 1 (Cont'd)

Historical Results of Groundwater Sample Analysis & Fluid-Level Data 5930 College Avenue, Oakland, CA

- ¹ Arbitrary datum point with assumed elevation of 50 feet used prior to MSL survey on April 26, 2001
- ² Fuel oxygenate concentrations reported as 1,2-Dichloroethane (361 ug/l) and MTBE (679 ug/l)
- ³ Concentration confirmed by EPA Method 8260 (analysis of VOCs of Fuel Oxygenates)
- ⁴ Fuel oxygenate concentrations reported as 1,2-Dichloroethane (3 ug/l) and MTBE (570 ug/l)
- ⁵ VOC concentrations reported as 1,080 ug/l MTBE, 14,500 ug/l benzene, 5,370 ug/l toluene, 3,360 ug/l ethylbenzene, 13,700 ug/l total xylenes, 96 ug/l isopropylbenzene, 292 ug/l n-propylbenzene, 1,730 ug/l 1,3,5-trimethylbenzene, 500 ug/l 1,2,4-trimethylbenzene, 15 ug/l sec-butylbenzene, 61 ug/l n-butylbenzene, and 778 ug/l naphthalene
- ⁶ VOC concentrations reported as 360 ug/l MTBE, 3,430 ug/l benzene, 319 ug/l toluene, 1,210 ug/l ethylbenzene, 1,960 ug/l total xylenes, 59 ug/l isopropylbenzene, 148 ug/l n-propylbenzene, 631 ug/l 1,3,5-trimethylbenzene, 153 ug/l 1,2,4-trimethylbenzene, 14 ug/l sec-butylbenzene, 43 ug/l n-butylbenzene, and 359 ug/l naphthalene
- ⁷ VOC concentrations reported as 9 ug/l chloroform, 74 ug/l benzene, 9 ug/l toluene, 72 ug/l ethylbenzene, 109 ug/l total xylenes, 42 ug/l isopropylbenzene, 112 ug/l n-propylbenzene, 216 ug/l 1,3,5-trimethylbenzene, 100 ug/l 1,2,4-trimethylbenzene, 20 ug/l sec-butylbenzene, 59 ug/l n-butylbenzene, and 43 ug/l naphthalene
- 8 VOC concentrations reported as 724 ug/l MTBE, 19,300 ug/l benzene, 5,070 ug/l toluene, 3,230 ug/l ethylbenzene, 15,470 ug/l total xylenes, 288 ug/l n-propylbenzene, 565 ug/l 1,3,5-trimethylbenzene, 2,150 ug/l 1,2,4-trimethylbenzene, 1,040 ug/l naphthalene, and ND<50 ug/L 1,2-dibromoethane (EDB) & ND<100 ug/L 1,2-dichloroethane (EDC)</p>
- 9 VOC concentrations reported as 322 ug/l MTBE, 2,580 ug/l benzene, 53 ug/l toluene, 1,190 ug/l ethylbenzene, 1,045 ug/l total xylenes, 75 ug/l isopropylbenzene, 210 ug/l n-propylbenzene, 140 ug/l 1,3,5-trimethylbenzene, 529 ug/l 1,2,4-trimethylbenzene, 56 ug/l n-butylbenzene, 442 ug/l naphthalene, and ND<5 ug/L 1,2-dibromoethane (EDB) & ND<10 ug/L 1,2-dichloroethane (EDC)
- ¹⁰ VOC concentrations reported as 79 ug/l benzene, 8.3 ug/l toluene, 65 ug/l ethylbenzene, 118.6 ug/l total xylenes, 21 ug/l isopropylbenzene, 62 ug/l n-propylbenzene, 11 ug/l 1,3,5-trimethylbenzene, 30 ug/l 1,2,4-trimethylbenzene, 13 ug/l n-butylbenzene, 28 ug/l naphthalene, and ND<0.5 ug/L 1,2-dibromoethane (EDB) & ND<1 ug/L 1,2-dichloroethane (EDC)
- ¹¹ Secondary Maximum Contaminant Level established by CRWQCB
- ¹² VOC concentrations reported as 194 ug/l MTBE, 14,700 ug/l benzene, 7,620 ug/l toluene, 3,940 ug/l ethylbenzene, 18,710 ug/l total xylenes, 47 ug/l 4-methyl-2-pentanone, 116 ug/l isopropylbenzene, 342 ug/l n-propylbenzene, 701 ug/l 1,3,5-trimethylbenzene, 2,690 ug/l 1,2,4-trimethylbenzene, 66 ug/l n-butylbenzene, 992 ug/l naphthalene, and ND<50 ug/L 1,2-dibromoethane (EDB) & ND<100 ug/L 1,2-dichloroethane (EDC)
- 13 VOC concentrations reported as 200 ug/l MTBE, 2,370 ug/l benzene, 92 ug/l toluene, 1,200 ug/l ethylbenzene, 2,024 ug/l total xylenes, 73 ug/l isopropylbenzene, 186 ug/l n-propylbenzene, 306 ug/l 1,3,5-trimethylbenzene, 1,090 ug/l 1,2,4-trimethylbenzene, 66 ug/l n butylbenzene, 413 ug/l nophthalene, and NDC5 ug/l 1,2 dibromoethane (EDR) & NDC 10 ug/l 1,2 dichlorgethane (EDR)
- 66 ug/l n-butylbenzene, 413 ug/l naphthalene, and ND<5 ug/L 1,2-dibromoethane (EDB) & ND<10 ug/L 1,2-dichloroethane (EDC) ¹⁴ VOC concentrations reported as 110 ug/l benzene, 6.4 ug/l toluene, 148 ug/l ethylbenzene, 238.1 ug/l total xylenes,
- 23 ug/l isopropylbenzene, 83 ug/l n-propylbenzene, 22 ug/l 1,3,5-trimethylbenzene, 68 ug/l 1,2,4-trimethylbenzene,
- 38 ug/l n-butylbenzene, 33 ug/l naphthalene, and ND<0.5 ug/L 1,2-dibromoethane (EDB) & ND<1 ug/L 1,2-dichloroethane (EDC)
- 15 VOC concentrations reported as 1,210 ug/l methylene chloride, 114 ug/l MTBE, 10,300 ug/l benzene, 1,960 ug/l toluene, 2,220 ug/l ethylbenzene, 10,230 ug/l total xylenes, 180 ug/l n-propylbenzene, 417 ug/l 1,3,5-trimethylbenzene, 1,560 ug/l 1,2,4-trimethylbenzene, 559 ug/l naphthalene, and ND<50 ug/L 1,2-dibromoethane (EDB) & ND<100 ug/L 1,2-dichloroethane (EDC
- ¹⁶ VOC concentrations reported as 203 ug/l MTBE, 4,570 ug/l benzene, 511 ug/l toluene, 1,760 ug/l ethylbenzene, 4,055 ug/l total xylenes, 215 ug/l isopropylbenzene, 469 ug/l 1,3,5-trimethylbenzene, 1,570 ug/l 1,2,4-trimethylbenzene, 568 ug/l naphthalene, and ND<5 ug/L 1,2-dibromoethane (EDB) & ND<10 ug/L 1,2-dichloroethane (EDC)

TABLE NOTES CONTINUED ON FOLLOWING PAGE

TABLE 1 (Cont'd)

Historical Results of Groundwater Sample Analysis & Fluid-Level Data

5930 College Avenue, Oakland, CA

- 17 VOC concentrations reported as 341 ug/l benzene, 42.9 ug/l toluene, 547 ug/l ethylbenzene, 1,185 ug/l total xylenes,
 29 ug/l isopropylbenzene, 82 ug/l n-propylbenzene, 60 ug/l 1,3,5-trimethylbenzene, 337 ug/l 1,2,4-trimethylbenzene,
 24 ug/l n-butylbenzene, 160 ug/l naphthalene, and ND<0.5 ug/L 1,2-dibromoethane (EDB) & ND<1 ug/L 1,2-dichloroethane (EDC)
- ¹⁸ VOC concentrations reported as 303 ug/l MTBE, 11200 ug/l benzene, 2440 ug/l toluene, and 2730 ug/l ethylbenzene 12540 ug/l total xylenes, 239 ug/l n-propylbenzene, 89 ug/l isopropylbenzene, 507 ug/l 1,3,5-trimethylbenzene, 1890 ug/l 1,2,4-trimethylbenzene, and 801 ug/l naphthalene.
- ¹⁹ VOC concentrations reported as 373 ug/l MTBE, 3670 ug/l benzene, 207 ug/l toluene, 1450 ug/l ethylbenzene, 2403 ug/l total xylenes, 73 ug/l isopropylbenzene, 316 ug/l 1,3,5-trimethylbenzene, 1070 ug/l 1,2,4-trimethylbenzene, 475 ug/l naphthalene, 173 ug/l n-propylbenzene, 475 ug/l naphthalene, and 72 ug/l n-butylbenzene.
- ²⁰ VOC concentrations reported as 39.3 ug/l benzene, 3.6 ug/l toluene, 31 ug/l ethylbenzene, 59.3 ug/l total xylenes, 27 ug/l isopropylbenzene, 2 ug/l 1,1,2,2-tetrachloroethane, 105 ug/l n-propylbenzene, 48 ug/l 1,3,5-trimethylbenzene, 204 ug/l 1,2,4-trimethylbenzene, 34 ug/l n-butylbenzene, 16 ug/l naphthalene, and ND<0.5 ug/L 1,2-dibromoethane (EDB) & ND<1 ug/L 1,2-dichloroethane (EDC)</p>
- ²¹ VOC concentrations reported as 296 ug/l MTBE, 15600 ug/l benzene, 1440 ug/l toluene, 3020 ug/l ethylbenzene, 12020 ug/l total xylenes, 264 ug/l n-propylbenzene, 520 ug/l 1,3,5-trimethylbenzene, 1990 ug/l 1,2,4-trimethylbenzene, and 700 ug/l naphthalene.
- ²² VOC concentrations reported as 229 ug/l MTBE, 2010 ug/l benzene, 54 ug/l toluene, 799 ug/l ethylbenzene, 667 ug/l total xylenes, 49 ug/l isopropylbenzene, 80 ug/l 1,3,5-trimethylbenzene, 257 ug/l 1,2,4-trimethylbenzene, 227 ug/l naphthalene, 132 ug/l n-propylbenzene, and 44 ug/l n-butylbenzene.
- ²³ VOC concentrations reported as 21 ug/l MTBE, 128 ug/l benzene, 12 ug/l toluene, 225 ug/l ethylbenzene, 394 ug/l total xylenes, 55 ug/l isopropylbenzene, 182 ug/l n-propylbenzene, 192 ug/l 1,3,5-trimethylbenzene, 574 ug/l 1,2,4-trimethylbenzene, 42 ug/l n-butylbenzene, and 76 ug/l naphthalene
- VOC concentrations reported as 174 ug/l MTBE, 16600 ug/l benzene, 7130 ug/l toluene, 3580 ug/l ethylbenzene17200 ug/l total xylenes, 271 ug/l n-propylbenzene, 525 ug/l 1,3,5-trimethylbenzene, 2080 ug/l 1,2,4-trimethylbenzene, and 662 ug/l naphthalene
- ²⁵ VOC concentrations reported as 163 ug/l MTBE, 5710 ug/l benzene, 936 ug/l toluene, 2380 ug/l ethylbenzene, 5750 ug/l total xylenes, 239 ug/l n-propylbenzene, 371 ug/l 1,3,5-trimethylbenzene, 1500 ug/l 1,2,4-trimethylbenzene, and 697 ug/l naphthalene
- ²⁶ VOC concentrations reported as 9.8 ug/l toluene, 150 ug/l ethylbenzene, 241.7 ug/l total xylenes, 25 ug/l isopropylbenzene, 88 ug/l n-propylbenzene, 23 ug/l 1,3,5-trimethylbenzene, 96 ug/l 1,2,4-trimethylbenzene, 15 ug/l n-butylbenzene, and 43 ug/l naphthalene
- ²⁷ VOC concentrations reported as 410ug/l MTBE, 19,800 ug/l benzene, 9420 ug/l toluene, 4970 ug/l ethylbenzene 26670 ug/l total xylenes, 141 ug/l isopropylbenzene, 437 ug/l n-propylbenzene, 882ug/l 1,3,5-trimethylbenzene, 3450 ug/l 1,2,4-trimethylbenzene, and 1220 ug/l naphthalene
- VOC concentrations reported as 150 ug/l MTBE, 8190 ug/l benzene, 9420 ug/l toluene, 3210 ug/l ethylbenzene, 6870 ug/l total xylenes, 293 ug/l n-propylbenzene, 109 ug/l isopropylbenzene, 445 ug/l 1,3,5-trimethylbenzene, 2390 ug/l 1,2,4-trimethylbenzene, and 1490 ug/l naphthalene

TABLE NOTES CONTINUED ON FOLLOWING PAGE

TABLE 1 (Cont'd)

Historical Results of Groundwater Sample Analysis & Fluid-Level Data 5930 College Avenue, Oakland, CA

- ²⁹ VOC concentrations reported as 27.4 ug/l toluene, 351 ug/l ethylbenzene, 41.4 ug/l MTBE, 388 ug/l benzene, 570.2 ug/l total xylenes, 45 ug/l isopropylbenzene, 148 ug/l n-propylbenzene, 85 ug/l 1,3,5-trimethylbenzene, 302 ug/l 1,2,4-trimethylbenzene, 28 ug/l n-butylbenzene, and 121 ug/l naphthalene
- VOC concentrations reported as 12 ug/l cis-1,2-Dichloroethene, 55.9 ug/l Benzene, 3.3 ug/l Trichloroethene, 9.2 ug/l Toluene, 84.9 ug/l Tetrachloroethene, 88 ug/l Ethylbenzene, 319.7 ug/l total Xylenes, 11 ug/l Isopropylbenzene,27 ug/l n-propylbenzene, 110 ug/l 1,3,5- Trimethylbenzene, 257 ug/l 1,2,4-Trimethylbenzene, 22 ug/l n-Butylbenzene, 56 ug/l Napthalene
- ³¹ VOC concentrations reported as 12000 ug/l benzene, 4900 ug/l toluene, 3400 ug/l ethylbenzene 16000 ug/l total xylenes,
- ³² VOC concentrations reported as 5000 ug/l benzene, 560 ug/l toluene,2300 ug/l ethylbenzene, 4300 ug/l total xylenes,
- ³³ VOC concentrations reported as 44 ug/l benzene 6.9 ug/l toluene, 310 ug/l total xylenes, and 120 ug/l 1,3,5-

Trimethylbenzene, 60 ug/l Napthalene

- ³⁴ VOC concentrations reported as 24 ug/l Benzene, 1.8 ug/l Toluene, 150 ug/l Total Xylenes, 7 ug/l cis-1,2-Dichloroethene,
- 48 ug/l Tetrachloroethene, 7.3 ug/l Isopropylbenzene, 17 ug/l n-propylbenzene, 37 ug/l 1,3,5- Trimethylbenzene,
- 1.5 ug/l Trichloroflouromethane

VOCs on Table 2 as of 10/14/05

CRWQCB MSWQO (Primary MCL) = California Regional Water Quality Control Board, Municipal Supply Water Quality Objective;
Primary Maximum Contaminant Level

CRWQCB/ESL = California Regional Water Quality Control Board's Tier 1Environmental (Risk-Based) Screening Level; Levels shown are for **Groundwater < 10 fbg (3 meters)**, which IS / IS NOT a threatened drinking water resource.

TABLE 2
2004 -2005 Groundwater Sampling Results for VOCs
Sheaff's Garage, 5930 College Avenue, Oakland, CA

Sample/ Well ID	Sample Date	IPB (ppb)	n-PB (ppb)	1,3,5-TMB (ppb)	1,2,4-TMB (ppb)	Sec-BB (ppb)	n-BB (ppb)	Acetone (ppb)	Napthalene (ppb)	Hexone (ppb)	TCE (ppb)	MC (ppb	cis-1,2- DCE (ppb)	Tri- CFM (ppb)	PCE (ppb)
	02/02/04	116	342	701	2690	ND	66	ND	992	47	ND	ND	ND	ND	ND
MW-1	04/23/04	ND	ND	417	1560	ND	180	ND	559	ND	ND	1210	ND	ND	ND
	07/19/04	ND	239	507	1890	ND	ND	ND	801	ND	ND	ND	ND	ND	ND
	10/22/04	ND	264	520	1990	ND	ND	ND	700	ND	ND	ND	ND	ND	ND
	01/21/05	ND	271	525	2080	ND	ND	ND	662	ND	ND	ND	ND	ND	ND
	04/14/05	141	437	882	3450	ND	ND	ND	1220	ND	ND	ND	ND	ND	ND
	07/26/05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	10/14//05	ND	ND	ND	2700	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	02/02/04	73	186	306	1090	ND	66	ND	413	ND	ND	ND	ND	ND	ND
MW-2	04/23/04	215	ND	469	1570	ND	ND	ND	568	ND	ND	ND	ND	ND	ND
	07/19/04	73	173	316	1070	ND	72	ND	475	ND	ND	ND	ND	ND	ND
	10/22/04	49	132	80	257	ND	132	ND	227	ND	ND	ND	ND	ND	ND
	01/21/05	ND	239	371	1500	ND	ND	ND	697	ND	ND	ND	ND	ND	ND
	04/14/05	139	293	445	2390	ND	71	ND	1490	ND	ND	ND	ND	ND	ND
	07/26/05	109	293	445	2390	ND	ND	ND	1490	ND	ND	ND	ND	ND	ND
	10/14//05	ND	ND	ND	770	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CRWC	CB ESL	NC	NC	NC	12/12	5/47	NC	610/ 1,500	21/24	32	5/3600	5/2200	NC	NC	5/12

NOTES: 1,2- DCA= 1,2-Dichloroethane, IPB = Isopropylbenzene, n-PB=n-Propylbenzene, TMB= Trimethylbenzene, sec-BB= sec-Butylbenzene, n-BB =n-Butylbenzene, 1,2-EDB=1,2-Dibromoethane, Hexone=4-methyl-2-pentanone, TCE = Trichloroethene, Tri-CFM`=Trichloroflouromethane (Freon/Refrigerant), 1,1-DCA= 1,1-Dichloroethane, MC = Methylene Chloride, cis-1,2-DCE = cis-1,2-Dichloroethene, PCE = Tetrachloroethene, ppb - parts per billion (equivalent to micrograms per liter), ND = not detected above laboratory reporting limit, NC = No Criteria Listed

CRWQCB ESL= California Regional Water Quality Control Board's (SF Bay Region), February 2005 Tier 1 Environmental Screening Level for groundwater (< or >10fbg) that **is/is not** a current or potential source of drinking water

TABLE 2 (Continued)

Historical Groundwater Sampling Results for VOCs

Sheaff's Garage, 5930 College Avenue, Oakland, CA

Sample/ Well ID	Sample Date	IPB (ppb)	n-PB (ppb)	1,3,5-TMB (ppb)	1,2,4-TMB (ppb)	Sec-BB (ppb)	n-BB (ppb)	Acetone (ppb)	Napthalene (ppb)	Hexone (ppb)	TCE (ppb)	MC (ppb	cis-1,2- DCE (ppb)	Tri- CFM (ppb)	PCE (ppb))
	02/02/04	23	83	22	68	ND	38	ND	33	ND	ND	ND	ND	ND	ND
MW-3	04/23/04	29	82	60	337	ND	24	ND	160	ND	ND	ND	ND	ND	1210
	07/19/04	27	105	48	204	ND	34	ND	16	ND	ND	ND	ND	ND	ND
	10/22/04	55	182	192	574	ND	42	ND	76	ND	ND	ND	ND	ND	ND
	01/21/05	25	88	23	96	ND	15	ND	43	ND	ND	ND	ND	ND	ND
	04/14/05	45	148	85	302	ND	28	ND	121	ND	ND	ND	ND	ND	ND
	07/26/05	ND	ND	120	ND	ND	ND	ND	60	ND	ND	ND	ND	ND	ND
	10/14//05	ND	ND	ND	2700	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	07/26/05	7.3	17	37	100	ND	ND	ND	43	ND	1.5	ND	7	1.5	48
PW-1	10/14//05	28	72	67	120	12	17	ND	43	ND	4.1	ND	29	ND	25
CRWO	QCB ESL	NC	NC	NC	12/12	5/47	NC	610/ 1,500	21/24	32	5/3600	5/2200	NC	NC	5/12

NOTES: 1,2- DCA= 1,2-Dichloroethane, IPB = Isopropylbenzene, n-PB=n-Propylbenzene, TMB= Trimethylbenzene, sec-BB= sec-Butylbenzene, n-BB =n-Butylbenzene, 1,2-EDB=1,2-Dibromoethane, Hexone=4-methyl-2-pentanone, TCE = Trichloroethene, Tri-CFM`=Trichloroflouromethane (Freon/Refrigerant), 1,1-DCA= 1,1-Dichloroethane, MC = Methylene Chloride, cis-1,2-DCE = cis-1,2-Dichloroethene, PCE = Tetrachloroethene, ppb - parts per billion (equivalent to micrograms per liter), ND = not detected above laboratory reporting limit, NC = No Criteria Listed

CRWQCB ESL= California Regional Water Quality Control Board's (SF Bay Region), February 2005 Tier 1 Environmental Screening Level for groundwater (< or >10fbg) that **is/is not** a current or potential source of drinking water

APPENDIX

LABORATORY CERTIFICATES OF ANALYSIS
CHAIN OF CUSTODY FORM
FLUID-LEVEL MONITORING DATA SHEET
WELL PURGING/SAMPLING DATA SHEETS
GEOTRACKER AB2886 UPLOAD CONFIRMATION FORMS

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Brent Wheeler

Golden Gate Tank Removal

255 Shipley Street

San Francisco, CA 94107

Certificate Number: 45825

Issued: 10/21/2005

Project ID: 7335 Sheaff's Garage

Project Number: T0600102112

Project Name: 7335 Sheaff's Garage

Order / Lab Number: 45825

Global ID: T0600102112

Certificate of Analysis - Final Report

On October 17, 2005, samples were received under chain of custody for analysis. Entech analyzes samples "as received" unless otherwise noted. The following results are included:

<u>Matrix</u>

<u>Test</u>

Liquid EDF

EPA 8260B EPA 624 TPH as Gasoline - GC-MS Comments

Entech Analytical Labs, Inc. is certified for environmental analyses by the State of California (#2346). If you have any questions regarding this report, please call us at 408-588-0200 ext. 225.

Sincerely,

Erin Cunniffe

Laboratory Operations Manager

0.0

Sample ID: 7335-MW1

3334 Victor Court, Santa Clara, CA 95054

Certificate of Analysis - Data Report

Golden Gate Tank Removal 255 Shipley Street

San Francisco, CA 94107 Attn: Brent Wheeler

Lab #: 45825-001

Phone: (408) 588-0200

Date Received: 10/17/2005 12:33:51 PM Project ID: 7335 Sheaff's Garage Project Number: T0600102112 Project Name: 7335 Sheaff's Garage

Fax: (408) 588-0201

GlobalID: T0600102112

Sample Collected by: client

Matrix: Liquid Sample Date: 10/14/2005 1:29 PM

EPA 5030C EPA 8260B EPA 6	24							EPA 8260B
Parameter		ual D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
1,1,1,2-Tetrachloroethane	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
1,1,1-Trichloroethane	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
1,1,2,2-Tetrachloroethane	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
1,1,2-Trichloroethane	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
1,1-Dichloroethane	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
1,1-Dichloroethene	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
1,1-Dichloropropene	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
1,2,3-Trichlorobenzene	ND	250	1200	μg/L	N/A	N/A	10/19/2005	WM1051018B
1,2,3-Trichloropropane	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
1,2,4-Trichlorobenzene	ND	250	1200	μg/L	N/A	N/A	10/19/2005	WM1051018B
1,2,4-Trimethylbenzene	2700	250	1200	μg/L	N/A	N/A	10/19/2005	WM1051018B
1,2-Dibromo-3-Chloropropane	ND	250	1200	μg/L	N/A	N/A	10/19/2005	WM1051018B
1,2-Dibromoethane (EDB)	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
1,2-Dichlorobenzene	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
1,2-Dichloroethane	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
1,2-Dichloropropane	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
1,3,5-Trimethylbenzene	ND	250	1200	μg/L	N/A	N/A	10/19/2005	WM1051018B
1,3-Dichlorobenzene	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
1,3-Dichloropropane	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
1,4-Dichlorobenzene	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
1,4-Dioxane	ND	250	12000	μg/L	N/A	N/A	10/19/2005	WM1051018B
2,2-Dichloropropane	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
2-Butanone (MEK)	ND	250	5000	μg/L	N/A	N/A	10/19/2005	WM1051018B
2-Chloroethyl-vinyl Ether	ND	250	1200	μg/L	N/A	N/A	10/19/2005	WM1051018B
2-Chlorotoluene	ND	250	1200	μg/L	N/A	N/A	10/19/2005	WM1051018B
2-Hexanone	ND	250	5000	μg/L	N/A	N/A	10/19/2005	WM1051018B
4-Chlorotoluene	ND	250	1200	μg/L	N/A	N/A	10/19/2005	WM1051018B
4-Methyl-2-Pentanone(MIBK)	ND	250	5000	μg/L	N/A	N/A	10/19/2005	WM1051018B
Acetone	ND	250	5000	μg/L	N/A	N/A	10/19/2005	WM1051018B
Acetonitrile	ND	250	1200	μg/L	N/A	N/A	10/19/2005	WM1051018B
Acrolein	ND	250	1200	μg/L	N/A	N/A	10/19/2005	WM1051018B
Acrylonitrile	ND	250	1200	μg/L	N/A	N/A	10/19/2005	WM1051018B
Benzene	13000	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
Benzyl Chloride	ND	250	1200	μg/L	N/A	N/A	10/19/2005	WM1051018E
Bromobenzene	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
Bromochloromethane	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018E
Bromodichloromethane	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018E
	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018E
Bromoform Bromomethane	ND ND	250	120	μg/L μg/L	N/A	N/A	10/19/2005	WM1051018E
Carbon Disulfide	ND ND	250	120	μg/L μg/L	N/A	N/A	10/19/2005	WM1051018E
	ND ND	250	120	μg/L μg/L	N/A	N/A	10/19/2005	WM1051018I
Carbon Tetrachloride		250	120	μg/L μg/L	N/A	N/A	10/19/2005	WM1051018E
Chlorosthano	ND ND	250	120	μg/L μg/L	N/A	N/A	10/19/2005	WM1051018E
Chloroethane	ND ND		120		N/A	N/A	10/19/2005	WM1051018E
Chloroform	ND	250	120	μg/L	IN/A	18/74	10/19/2003	** 1*1100 10100

3334 Victor Court, Santa Clara, CA 95054

Certificate of Analysis - Data Report

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107

Attn: Brent Wheeler

Phone: (408) 588-0200

Date Received: 10/17/2005 12:33:51 PM

Fax: (408) 588-0201

Project ID: 7335 Sheaff's Garage Project Number: T0600102112 Project Name: 7335 Sheaff's Garage

GlobalID: T0600102112

Sample Collected by: client

Lab #: 45825-001 Sample ID: 7335-MW1 Matrix: Liquid Sample Date: 10/14/2005 1:29 PM

EPA 5030C EPA 8260B EPA	624	·						EPA 8260B
Parameter	Result Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Chloromethane	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
cis-1,2-Dichloroethene	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
cis-1,3-Dichloropropene	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
Cyclohexanone	ND	250	5000	μg/L	N/A	N/A	10/19/2005	WM1051018B
Dibromochloromethane	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
Dibromomethane	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
Dichlorodifluoromethane	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
Diisopropyl Ether	ND	250	1200	μg/L	N/A	N/A	10/19/2005	WM1051018B
Ethyl Benzene	3400	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
Freon 113	ND	250	1200	μg/L	N/A	N/A	10/19/2005	WM1051018B
Hexachlorobutadiene	ND	250	1200	μg/L	N/A	N/A	10/19/2005	WM1051018B
Iodomethane	ND	250	250	μg/L	N/A	N/A	10/19/2005	WM1051018B
Isopropanol	ND	250	5000	μg/L	N/A	N/A	10/19/2005	WM1051018B
Isopropylbenzene	ND	250	250	μg/L	N/A	N/A	10/19/2005	WM1051018B
Methyl-t-butyl Ether	ND	250	250	μg/L	N/A	N/A	10/19/2005	WM1051018B
Methylene Chloride	ND	250	5000	μg/L	N/A	N/A	10/19/2005	WM1051018B
n-Butylbenzene	ND	250	1200	μg/L	N/A	N/A	10/19/2005	WM1051018B
n-Propylbenzene	ND	250	1200	μg/L	N/A	N/A	10/19/2005	WM1051018B
Naphthalene	ND	250	1200	μg/L	N/A	N/A	10/19/2005	WM1051018B
p-Isopropyltoluene	ND	250	1200	μg/L	N/A	N/A	10/19/2005	WM1051018B
Pentachloroethane	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
sec-Butylbenzene	ND	250	1200	μg/L	N/A	N/A	10/19/2005	WM1051018B
Styrene	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
tert-Amyl Methyl Ether	ND	250	1200	μg/L	N/A	N/A	10/19/2005	WM1051018B
tert-Butanol (TBA)	ND	250	2500	μg/L	N/A	N/A	10/19/2005	WM1051018B
tert-Butyl Ethyl Ether	ND	250	1200	μg/L	N/A	N/A	10/19/2005	WM1051018B
tert-Butylbenzene	ND	250	1200	μg/L	N/A	N/A	10/19/2005	WM1051018B
Tetrachloroethene	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
Tetrahydrofuran	ND	250	5000	μg/L	N/A	N/A	10/19/2005	WM1051018B
Toluene	5700	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
trans-1,2-Dichloroethene	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
trans-1,3-Dichloropropene	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
trans-1,4-Dichloro-2-butene	ND	250	250	μg/L	N/A	N/A	10/19/2005	WM1051018B
Trichloroethene	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
Trichlorofluoromethane	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
Vinyl Acetate	ND	250	1200	μg/L	N/A	N/A	10/19/2005	WM1051018B
Vinyl Chloride	ND	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B
Xylenes, Total	16000	250	120	μg/L	N/A	N/A	10/19/2005	WM1051018B

Surrogate Recovery	Control Limits (%)				
90.6	70 - 130				
113	70 - 130				
101	70 - 130				
	90.6 113				

Analyzed by: XBian
Reviewed by: MaiChiTu

3334 Victor Court, Santa Clara, CA 95054

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler Phone: (408) 588-0200 Fax: (408) 588-0201

Date Received: 10/17/2005 12:33:51 PM

Project ID: 7335 Sheaff's Garage Project Number: T0600102112 Project Name: 7335 Sheaff's Garage

GlobalID: T0600102112

Certificate of Analysis - Data Report

Sample Collected by: client

Lab #: 45825-001	Sample ID: 7335-MW1				Matrix: Liquid Sample Date: 10/14/2005 1:29 PM					
EPA 5030C GC-MS Parameter	Result Oual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	TPH as Gas Analysis Date	soline - GC-MS QC Batch		
TPH as Gasoline	64000	250	6200	μg/L	N/A	N/A	10/19/2005	WM1051018B		
Surrogate	Surrogate Recovery	Control	Limits (%)	, whose where All Tills (Till)			Analyzed by: XBia	nn		
4-Bromofluorobenzene	102	70	- 130				Reviewed by: Mai	ChiTu		
Dibromofluoromethane	104	70	- 130							
Toluene-d8	94.8	70	- 130							

3334 Victor Court , Santa Clara, CA 95054

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Lab #: 45825-002

Phone: (408) 588-0200

Date Received: 10/17/2005 12:33:51 PM

Matrix: Liquid Sample Date: 10/14/2005 1:44 PM

Fax: (408) 588-0201

Project ID: 7335 Sheaff's Garage Project Number: T0600102112 Project Name: 7335 Sheaff's Garage

GlobalID: T0600102112

Sample Collected by: client

Certificate of Analysis - Data Report

Sample ID: 7335-MW2

EPA 5030C EPA 8260B EPA 63	24								
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
,1,1,2-Tetrachloroethane	ND		100	50	μg/L	N/A	N/A	10/19/2005	WM1051019
,1,1-Trichloroethane	ND		100	50	μg/L	N/A	N/A	10/19/2005	WM1051019
,1,2,2-Tetrachloroethane	ND		100	50	μg/L	N/A	N/A	10/19/2005	WM1051019
,1,2-Trichloroethane	ND		100	50	μg/L	N/A	N/A	10/19/2005	WM1051019
,1-Dichloroethane	ND		100	50	μg/L	N/A	N/A	10/19/2005	WM1051019
1,1-Dichloroethene	ND		100	50	μg/L	N/A	N/A	10/19/2005	WM1051019
1,1-Dichloropropene	ND		100	50	μg/L	N/A	N/A	10/19/2005	WM105101
1,2,3-Trichlorobenzene	ND		100	500	μg/L	N/A	N/A	10/19/2005	WM1051019
1,2,3-Trichloropropane	ND		100	50	μg/L	N/A	N/A	10/19/2005	WM1051019
1,2,4-Trichlorobenzene	ND		100	500	μg/L	N/A	N/A	10/19/2005	WM1051019
2,4-Trimethylbenzene	770		100	500	μg/L	N/A	N/A	10/19/2005	WM1051019
1,2-Dibromo-3-Chloropropane	ND		100	500	μg/L	N/A	N/A	10/19/2005	WM1051019
1,2-Dibromoethane (EDB)	ND		100	50	μg/L	N/A	N/A	10/19/2005	WM1051019
1,2-Dichlorobenzene	ND		100	50	μg/L	N/A	N/A	10/19/2005	WM105101
1,2-Dichloroethane	ND		100	50	μg/L	N/A	N/A	10/19/2005	WM105101
1,2-Dichloropropane	ND		100	50	μg/L	N/A	N/A	10/19/2005	WM105101
1,3,5-Trimethylbenzene	ND		100	500	μg/L	N/A	N/A	10/19/2005	WM105101
1,3-Dichlorobenzene	ND		100	50	μg/L	N/A	N/A	10/19/2005	WM105101
1,3-Dichloropropane	ND		100	50	μg/L	N/A	N/A	10/19/2005	WM105101
1,4-Dichlorobenzene	ND		100	50	μg/L	N/A	N/A	10/19/2005	WM105101
1.4-Dioxane	ND		100	5000	μg/L	N/A	N/A	10/19/2005	WM105101
2,2-Dichloropropane	ND		100	50	μg/L	N/A	N/A	10/19/2005	WM105101
2-Butanone (MEK)	ND		100	2000	μg/L	N/A	N/A	10/19/2005	WM105101
2-Chloroethyl-vinyl Ether	ND		100	500	μg/L	N/A	N/A	10/19/2005	WM105101
2-Chlorotoluene	ND ND		100	500	μg/L μg/L	N/A	N/A	10/19/2005	WM105101
	ND ND		100	2000	μg/L μg/L	N/A	N/A	10/19/2005	WM105101
2-Hexanone	ND ND		100	500	μg/L μg/L	N/A	N/A	10/19/2005	WM105101
4-Chlorotoluene			100	2000	μg/L μg/L	N/A	N/A	10/19/2005	WM105101
4-Methyl-2-Pentanone(MIBK)	ND		100	2000	μg/L μg/L	N/A	N/A	10/19/2005	WM105101
Acetone	ND		100	500	μg/L μg/L	N/A	N/A	10/19/2005	WM105101
Acetonitrile	ND			500		N/A	N/A	10/19/2005	WM105101
Acrolein	ND		100	500	μg/L	N/A N/A	N/A	10/19/2005	WM105101
Acrylonitrile	ND		100		μg/L		N/A	10/19/2005	WM105101
Benzene	2900		100	50	μg/L	N/A N/A	N/A N/A	10/19/2005	WM105101 WM105101
Benzyl Chloride	ND		100	500	μg/L				WM105101
Bromobenzene	ND		100	50	μg/L	N/A	N/A	10/19/2005	
Bromochloromethane	ND		100	50	μg/L	N/A	N/A	10/19/2005	WM105101
Bromodichloromethane	ND		100	50	μg/L	N/A	N/A	10/19/2005	WM105101
Bromoform	ND		100	50	μg/L	N/A	N/A	10/19/2005	WM105101
Bromomethane	ND		100	50	μg/L	N/A	N/A	10/19/2005	WM105101
Carbon Disulfide	ND		100	50	μg/L	N/A	N/A	10/19/2005	WM105101
Carbon Tetrachloride	ND		100	50	μg/L	N/A	N/A	10/19/2005	WM105101
Chlorobenzene	ND		100	50	μg/L	N/A	N/A	10/19/2005	WM105101
Chloroethane	ND		100	50	μg/L	N/A	N/A	10/19/2005	WM105101
Chloroform	ND		100	50	μg/L	N/A	N/A	10/19/2005	WM105101

3334 Victor Court, Santa Clara, CA 95054

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler Phone: (408) 588-0200 Fax: (408) 588-0201

Date Received: 10/17/2005 12:33:51 PM Project ID: 7335 Sheaff's Garage Project Number: T0600102112 Project Name: 7335 Sheaff's Garage

GlobalID: T0600102112

Sample Collected by: client

Certificate of Analysis - Data Report

Lab#: 45825-002	Sample ID: 7335-M	W2		ī	Matrix: Liqu	uid Sample I	Date: 10/14/200:	5 1:44 PM
EPA 5030C EPA 8260B Parameter	EPA 624 Result Qu	al D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	EPA 8260B QC Batch
Chloromethane	ND	100	50	μg/L	N/A	N/A	10/19/2005	WM1051019
cis-1.2-Dichloroethene	ND	100	50	μg/L	N/A	N/A	10/19/2005	WM1051019
cis-1,3-Dichloropropene	ND	100	50	μg/L	N/A	N/A	10/19/2005	WM1051019
Cyclohexanone	ND	100	2000	μg/L	N/A	N/A	10/19/2005	WM1051019
Dibromochloromethane	ND	100	50	μg/L	N/A	N/A	10/19/2005	WM1051019
Dibromomethane	ND	100	50	μg/L	N/A	N/A	10/19/2005	WM1051019
Dichlorodifluoromethane	ND	100	50	μg/L	N/A	N/A	10/19/2005	WM1051019
Diisopropyl Ether	ND	100	500	μg/L	N/A	N/A	10/19/2005	WM1051019
Ethyl Benzene	1300	100	50	μg/L	N/A	N/A	10/19/2005	WM1051019
Freon 113	ND	100	500	μg/L	N/A	N/A	10/19/2005	WM1051019
Hexachlorobutadiene	ND	100	500	μg/L	N/A	N/A	10/19/2005	WM1051019
Iodomethane	ND	100	100	μg/L	N/A	N/A	10/19/2005	WM1051019
Isopropanol	ND	100	2000	μg/L	N/A	N/A	10/19/2005	WM1051019
Isopropylbenzene	ND	100	100	μg/L	N/A	N/A	10/19/2005	WM1051019
Methyl-t-butyl Ether	130	100	100	μg/L	N/A	N/A	10/19/2005	WM1051019
Methylene Chloride	ND	100	2000	μg/L	N/A	N/A	10/19/2005	WM1051019
n-Butylbenzene	ND	100	500	μg/L	N/A	N/A	10/19/2005	WM1051019
n-Propylbenzene	ND	100	500	μg/L	N/A	N/A	10/19/2005	WM1051019
Naphthalene	ND	100	500	μg/L	N/A	N/A	10/19/2005	WM1051019
p-Isopropyltoluene	ND	100	500	μg/L	N/A	N/A	10/19/2005	WM1051019
Pentachloroethane	ND	100	50	μg/L	N/A	N/A	10/19/2005	WM1051019
sec-Butylbenzene	ND	100	500	μg/L	N/A	N/A	10/19/2005	WM1051019
Styrene	ND	100	50	μg/L	N/A	N/A	10/19/2005	WM1051019
tert-Amyl Methyl Ether	ND	100	500	μg/L	N/A	N/A	10/19/2005	WM1051019
tert-Butanol (TBA)	ND	100	1000	μg/L	N/A	N/A	10/19/2005	WM1051019
tert-Butyl Ethyl Ether	ND	100	500	μg/L	N/A	N/A	10/19/2005	WM1051019
tert-Butylbenzene	ND	100	500	μg/L	N/A	N/A	10/19/2005	WM1051019
Tetrachloroethene	ND	100	50	μg/L	N/A	N/A	10/19/2005	WM1051019
Tetrahydrofuran	ND	100	2000	μg/L	N/A	N/A	10/19/2005	WM1051019
Toluene	100	100	50	μg/L	N/A	N/A	10/19/2005	WM1051019
trans-1,2-Dichloroethene	ND	100	50	μg/L	N/A	N/A	10/19/2005	WM1051019
trans-1,3-Dichloropropene	ND	100	50	μg/L	N/A	N/A	10/19/2005	WM1051019
trans-1,4-Dichloro-2-butene		100	100	μg/L	N/A	N/A	10/19/2005	WM1051019
Trichloroethene	ND	100	50	μg/L	N/A	N/A	10/19/2005	WM1051019
Trichlorofluoromethane	ND	100	50	μg/L	N/A	N/A	10/19/2005	WM1051019
Vinyl Acetate	ND	100	500	μg/L	N/A	N/A	10/19/2005	WM1051019
Vinyl Chloride	ND	100	50	μg/L	N/A	N/A	10/19/2005	WM1051019
Xylenes, Total	1200	100	50	μg/L	N/A	N/A	10/19/2005	WM1051019

SurrogateSurrogate RecoveryControl Limits (%)4-Bromofluorobenzene89.270-130Dibromofluoromethane11070-130Toluene-d810170-130

Analyzed by: XBian Reviewed by: MaiChiTu

3334 Victor Court , Santa Clara, CA 95054

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler Phone: (408) 588-0200

Date Received: 10/17/2005 12:33:51 PM

Fax: (408) 588-0201

Project ID: 7335 Sheaff's Garage Project Number: T0600102112 Project Name: 7335 Sheaff's Garage

GlobalID: T0600102112

Certificate of Analysis - Data Report

Sample Collected by: client

Lab #: 45825-002	Sample ID: 7335-MW	/2]	Matrix: Liq	uid Sample I	Date: 10/14/200	5 1:44 PM
EPA 5030C GC-MS Parameter	Result Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	TPH as Gas Analysis Date	oline - GC-MS QC Batch
TPH as Gasoline	13000	100	2500	μg/L	N/A	N/A	10/19/2005	WM1051019
Surrogate	Surrogate Recovery	Control	Limits (%)				Analyzed by: XBia	n
4-Bromofluorobenzene	100	70	- 130				Reviewed by: MaiC	ChiTu
Dibromofluoromethane	100	70	- 130					
Toluene-d8	95.7	70	- 130					

Sample ID: 7335-MW3

3334 Victor Court , Santa Clara, CA 95054

Certificate of Analysis - Data Report

Golden Gate Tank Removal 255 Shipley Street

San Francisco, CA 94107 Attn: Brent Wheeler

Lab #: 45825-003

Phone: (408) 588-0200

Date Received: 10/17/2005 12:33:51 PM

Fax: (408) 588-0201

Project ID: 7335 Sheaff's Garage Project Number: T0600102112 Project Name: 7335 Sheaff's Garage

GlobalID: T0600102112

Sample Collected by: client

		·		
Lab#: 45825-003	Sample ID: 7335-MW3	Matrix: Liquid	Sample Date: 10/14/2005	1:05 PM

EPA 5030C EPA 8260B EPA 6 Parameter	24 Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	EPA 8260B QC Batch
1.1.1.2-Tetrachloroethane	ND		20	10	μg/L	N/A	N/A	10/19/2005	WM1051019
,1,1-Trichloroethane	ND		20	10	μg/L	N/A	N/A	10/19/2005	WM1051019
.1.2.2-Tetrachloroethane	ND		20	10	μg/L	N/A	N/A	10/19/2005	WM1051019
,1,2-Trichloroethane	ND		20	10	μg/L	N/A	N/A	10/19/2005	WM1051019
.1-Dichloroethane	ND		20	10	μg/L	N/A	N/A	10/19/2005	WM1051019
.1-Dichloroethene	ND		20	10	μg/L	N/A	N/A	10/19/2005	WM1051019
,1-Dichloropropene	ND		20	10	μg/L	N/A	N/A	10/19/2005	WM1051019
,2,3-Trichlorobenzene	ND		20	100	μg/L	N/A	N/A	10/19/2005	WM1051019
.2,3-Trichloropropane	ND		20	10	μg/L	N/A	N/A	10/19/2005	WM1051019
1,2,4-Trichlorobenzene	ND		20	100	μg/L	N/A	N/A	10/19/2005	WM1051019
,2,4-Trimethylbenzene	210		20	100	μg/L	N/A	N/A	10/19/2005	WM1051019
,2-Dibromo-3-Chloropropane	ND		20	100	μg/L	N/A	N/A	10/19/2005	WM1051019
1,2-Dibromoethane (EDB)	ND		20	10	μg/L	N/A	N/A	10/19/2005	WM1051019
1,2-Dichlorobenzene	ND		20	10	μg/L	N/A	N/A	10/19/2005	WM1051019
1,2-Dichloroethane	ND		20	10	μg/L	N/A	N/A	10/19/2005	WM105101
1,2-Dichloropropane	ND		20	10	μg/L	N/A	N/A	10/19/2005	WM105101
1,3,5-Trimethylbenzene	ND		20	100	μg/L	N/A	N/A	10/19/2005	WM105101
1,3-Dichlorobenzene	ND		20	10	μg/L	N/A	N/A	10/19/2005	WM105101
1,3-Dichloropropane	ND		20	10	μg/L	N/A	N/A	10/19/2005	WM105101
1,4-Dichlorobenzene	ND		20	10	μg/L	N/A	N/A	10/19/2005	WM105101
<i>'</i>	ND		20	1000	μg/L	N/A	N/A	10/19/2005	WM105101
1,4-Dioxane	ND		20	10	μg/L	N/A	N/A	10/19/2005	WM105101
2,2-Dichloropropane	ND		20	400	μg/L	N/A	N/A	10/19/2005	WM105101
2-Butanone (MEK)	ND		20	100	μg/L	N/A	N/A	10/19/2005	WM105101
2-Chloroethyl-vinyl Ether	ND ND		20	100	μg/L	N/A	N/A	10/19/2005	WM105101
2-Chlorotoluene	ND ND		20	400	μg/L	N/A	N/A	10/19/2005	WM105101
2-Hexanone	ND		20	100	μg/L	N/A	N/A	10/19/2005	WM105101
4-Chlorotoluene	ND ND		20	400	μg/L μg/L	N/A	N/A	10/19/2005	WM105101
4-Methyl-2-Pentanone(MIBK)	ND ND		20	400	μg/L μg/L	N/A	N/A	10/19/2005	WM105101
Acetone	ND ND		20	100	μg/L μg/L	N/A	N/A	10/19/2005	WM105101
Acetonitrile	ND ND		20	100	μg/L μg/L	N/A	N/A	10/19/2005	WM105101
Acrolein	ND ND		20	100	μg/L	N/A	N/A	10/19/2005	WM105101
Acrylonitrile	76		20	10	μg/L	N/A	N/A	10/19/2005	WM105101
Benzene	ND		20	100	μg/L	N/A	N/A	10/19/2005	WM105101
Benzyl Chloride			20	10	μg/L	N/A	N/A	10/19/2005	WM105101
Bromobenzene	ND ND		20	10	μg/L	N/A	N/A	10/19/2005	WM105101
Bromochloromethane	ND ND		20	10	μg/L μg/L	N/A	N/A	10/19/2005	WM105101
Bromodichloromethane	ND		20	10	μg/L μg/L	N/A	N/A	10/19/2005	WM105101
Bromoform	ND ND		20	10	μg/L μg/L	N/A	N/A	10/19/2005	WM105101
Bromomethane	ND		20	10	μg/L μg/L	N/A	N/A	10/19/2005	WM105101
Carbon Disulfide	ND			10		N/A	N/A	10/19/2005	WM105101
Carbon Tetrachloride	ND		20	10	μg/L	N/A	N/A	10/19/2005	WM105101
Chlorobenzene	ND		20	10	μg/L ug/I	N/A	N/A	10/19/2005	WM105101
Chloroethane	ND		20		μg/L				WM105101
Chloroform	ND		20	10	μg/L	N/A	N/A	10/19/2005	

3334 Victor Court , Santa Clara, CA 95054

Certificate of Analysis - Data Report

Golden Gate Tank Removal 255 Shipley Street

San Francisco, CA 94107 Attn: Brent Wheeler Phone: (408) 588-0200

Fax: (408) 588-0201

Date Received: 10/17/2005 12:33:51 PM

Project ID: 7335 Sheaff's Garage Project Number: T0600102112 Project Name: 7335 Sheaff's Garage

GlobalID: T0600102112

Sample Collected by: client

Lab #: 45825-003	Sample ID: 7335-MW3	Matrix: Liquid	Sample Date: 10/14/2005 1:05 PM

EPA 5030C EPA 8260B EPA	624							EPA 8260B
Parameter	Result Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Chloromethane	ND	20	10	μg/L	N/A	N/A	10/19/2005	WM1051019
cis-1,2-Dichloroethene	ND	20	10	μg/L	N/A	N/A	10/19/2005	WM1051019
cis-1,3-Dichloropropene	ND	20	10	μg/L	N/A	N/A	10/19/2005	WM1051019
Cyclohexanone	ND	20	400	μg/L	N/A	N/A	10/19/2005	WM1051019
Dibromochloromethane	ND	20	10	μg/L	N/A	N/A	10/19/2005	WM1051019
Dibromomethane	ND	20	10	μg/L	N/A	N/A	10/19/2005	WM1051019
Dichlorodifluoromethane	ND	20	10	μg/L	N/A	N/A	10/19/2005	WM1051019
Diisopropyl Ether	ND	20	100	μg/L	N/A	N/A	10/19/2005	WM1051019
Ethyl Benzene	170	20	10	μg/L	N/A	N/A	10/19/2005	WM1051019
Freon 113	ND	20	100	μg/L	N/A	N/A	10/19/2005	WM1051019
Hexachlorobutadiene	ND	20	100	μg/L	N/A	N/A	10/19/2005	WM1051019
Iodomethane	ND	20	20	μg/L	N/A	N/A	10/19/2005	WM1051019
Isopropanol	ND	20	400	μg/L	N/A	N/A	10/19/2005	WM1051019
Isopropylbenzene	ND	20	20	μg/L	N/A	N/A	10/19/2005	WM1051019
Methyl-t-butyl Ether	ND	20	20	μg/L	N/A	N/A	10/19/2005	WM1051019
Methylene Chloride	ND	20	400	μg/L	N/A	N/A	10/19/2005	WM1051019
n-Butylbenzene	ND	20	100	μg/L	N/A	N/A	10/19/2005	WM1051019
n-Propylbenzene	ND	20	100	μg/L	N/A	N/A	10/19/2005	WM1051019
Naphthalene	ND	20	100	μg/L	N/A	N/A	10/19/2005	WM1051019
p-Isopropyltoluene	ND	20	100	μg/L	N/A	N/A	10/19/2005	WM1051019
Pentachloroethane	ND	20	10	μg/L	N/A	N/A	10/19/2005	WM1051019
sec-Butylbenzene	ND	20	100	μg/L	N/A	N/A	10/19/2005	WM1051019
Styrene	ND	20	10	μg/L	N/A	N/A	10/19/2005	WM1051019
tert-Amyl Methyl Ether	ND	20	100	μg/L	N/A	N/A	10/19/2005	WM1051019
tert-Butanol (TBA)	ND	20	200	μg/L	N/A	N/A	10/19/2005	WM1051019
tert-Butyl Ethyl Ether	ND	20	100	μg/L	N/A	N/A	10/19/2005	WM1051019
tert-Butylbenzene	ND	20	100	μg/L	N/A	N/A	10/19/2005	WM1051019
Tetrachloroethene	ND	20	10	μg/L	N/A	N/A	10/19/2005	WM1051019
Tetrahydrofuran	ND	20	400	μg/L	N/A	N/A	10/19/2005	WM1051019
Toluene	19	20	10	μg/L	N/A	N/A	10/19/2005	WM1051019
trans-1,2-Dichloroethene	ND	20	10	μg/L	N/A	N/A	10/19/2005	WM1051019
trans-1,3-Dichloropropene	ND	20	10	μg/L	N/A	N/A	10/19/2005	WM1051019
trans-1,4-Dichloro-2-butene	ND	20	20	μg/L	N/A	N/A	10/19/2005	WM1051019
Trichloroethene	ND	20	10	μg/L	N/A	N/A	10/19/2005	WM1051019
Trichlorofluoromethane	ND	20	10	μg/L	N/A	N/A	10/19/2005	WM1051019
Vinyl Acetate	ND	20	100	μg/L	N/A	N/A	10/19/2005	WM1051019
Vinyl Chloride	ND	20	10	μg/L	N/A	N/A	10/19/2005	WM1051019
Xylenes, Total	350	20	10	μg/L	N/A	N/A	10/19/2005	WM1051019

Surrogate	Surrogate Recovery	Control Limits (%)			
4-Bromofluorobenzene	90.4	70	-	130	
Dibromofluoromethane	102	70	-	130	
Toluene-d8	99.7	70	-	130	

Analyzed by: XBian

Raviowed by: MaiChiTu

Reviewed by: MaiChiTu

3334 Victor Court, Santa Clara, CA 95054

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler Phone: (408) 588-0200

Fax: (408) 588-0201

Date Received: 10/17/2005 12:33:51 PM Project ID: 7335 Sheaff's Garage Project Number: T0600102112 Project Name: 7335 Sheaff's Garage

GlobalID: T0600102112

Certificate of Analysis - Data Report

Sample Collected by: client

Lab #: 45825-003	Sample ID: 7335-MW3			Matrix: Liquid Sample Date: 10/14/2005 1:05 PM					
EPA 5030C GC-MS Parameter	Result Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	TPH as Gas Analysis Date	oline - GC-MS QC Batch	
TPH as Gasoline	6100	20	500	μg/L	N/A	N/A	10/19/2005	WM1051019	
Surrogate	Surrogate Recovery Control Limits (%)				Analyzed by: XBian				
4-Bromofluorobenzene	102	70 - 130					Reviewed by: MaiChiTu		
Dibromofluoromethane	93.5	70	- 130						
Toluene-d8	94.0	70	- 130						

3334 Victor Court , Santa Clara, CA 95054

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler Phone: (408) 588-0200 Fax: (408) 588-0201

Date Received: 10/17/2005 12:33:51 PM

Project ID: 7335 Sheaff's Garage Project Number: T0600102112 Project Name: 7335 Sheaff's Garage

GlobalID: T0600102112

Certificate of Analysis - Data Report

Sample Collected by: client

Lab #: 45825-004 Samp	ole ID: 7335-PW	-1		ľ	Matrix: Liqi	uid Sample I	Date: 10/14/2005	2:01 PM
EPA 5030C EPA 8260B EPA 6	24							EPA 8260B
Parameter	Result Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
1,1,1,2-Tetrachloroethane	ND	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
1,1,1-Trichloroethane	ND	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
1,1,2,2-Tetrachloroethane	ND	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
1,1,2-Trichloroethane	ND	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
1,1-Dichloroethane	ND	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
1,1-Dichloroethene	ND	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
1,1-Dichloropropene	ND	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
1,2,3-Trichlorobenzene	ND	2.0	10	μg/L	N/A	N/A	10/19/2005	WM1051019
1,2,3-Trichloropropane	ND	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
1,2,4-Trichlorobenzene	ND	2.0	10	μg/L	N/A	N/A	10/19/2005	WM1051019
1,2,4-Trimethylbenzene	120	2.0	10	μg/L	N/A	N/A	10/19/2005	WM1051019
1,2-Dibromo-3-Chloropropane	ND	2.0	10	μg/L	N/A	N/A	10/19/2005	WM1051019
1,2-Dibromoethane (EDB)	ND	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
1,2-Dichlorobenzene	ND	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
1,2-Dichloroethane	ND	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
1.2-Dichloropropane	ND	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
1,3,5-Trimethylbenzene	67	2.0	10	μg/L	N/A	N/A	10/19/2005	WM1051019
1,3-Dichlorobenzene	ND	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
1,3-Dichloropropane	ND	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
1,4-Dichlorobenzene	ND	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
1,4-Dioxane	ND	2.0	100	μg/L	N/A	N/A	10/19/2005	WM1051019
2,2-Dichloropropane	ND	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
2-Butanone (MEK)	ND	2.0	40	μg/L	N/A	N/A	10/19/2005	WM1051019
2-Chloroethyl-vinyl Ether	ND	2.0	10	μg/L	N/A	N/A	10/19/2005	WM1051019
2-Chlorotoluene	ND	2.0	10	μg/L	N/A	N/A	10/19/2005	WM1051019
2-Hexanone	ND	2.0	40	μg/L	N/A	N/A	10/19/2005	WM1051019
4-Chlorotoluene	ND	2.0	10	μg/L	N/A	N/A	10/19/2005	WM1051019
4-Methyl-2-Pentanone(MIBK)	ND	2.0	40	μg/L	N/A	N/A	10/19/2005	WM1051019
Acetone	ND	2.0	40	μg/L	N/A	N/A	10/19/2005	WM1051019
Acetonitrile	ND	2.0	10	μg/L	N/A	N/A	10/19/2005	WM1051019
Acrolein	ND	2.0	10	μg/L	N/A	N/A	10/19/2005	WM1051019
Acrylonitrile	ND	2.0	10	μg/L	N/A	N/A	10/19/2005	WM1051019
·	93	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
Benzene Benzyl Chloride	ND	2.0	10	μg/L	N/A	N/A	10/19/2005	WM1051019
Bromobenzene	ND	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
Bromobenzene Bromochloromethane	ND	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
Bromochioromethane	ND ND	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
	ND ND	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
Bromoform Bromomethane	ND ND	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
	ND ND	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM105101
Carbon Disulfide		2.0	1.0	μg/L μg/L	N/A	N/A	10/19/2005	WM105101
Carbon Tetrachloride	ND ND	2.0	1.0	μg/L μg/L	N/A	N/A	10/19/2005	WM105101
Chlorobenzene		2.0	1.0	μg/L μg/L	N/A	N/A	10/19/2005	WM105101
Chloroethane	ND ND		1.0	μg/L μg/L	N/A	N/A	10/19/2005	WM105101
Chloroform	ND	2.0	1.0	μg/L	19/73	19/71	10,17,2000	

3334 Victor Court, Santa Clara, CA 95054

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler Phone: (408) 588-0200 Fax: (408) 588-0201

Date Received: 10/17/2005 12:33:51 PM

Project ID: 7335 Sheaff's Garage Project Number: T0600102112 Project Name: 7335 Sheaff's Garage

GlobalID: T0600102112

Certificate of Analysis - Data Report

Sample Collected by: client

Lab #: 45825-004	Sample ID: 7335-PW-1	Matrix: Liquid	Sample Date:	10/14/2005	2:01 PM	
------------------	----------------------	----------------	--------------	------------	---------	--

EPA 5030C EPA 8260B EPA	624							EPA 8260B
Parameter	Result Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Chloromethane	ND	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
cis-1,2-Dichloroethene	29	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
cis-1,3-Dichloropropene	ND	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
Cyclohexanone	ND	2.0	40	μg/L	N/A	N/A	10/19/2005	WM1051019
Dibromochloromethane	ND	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
Dibromomethane	ND	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
Dichlorodifluoromethane	ND	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
Diisopropyl Ether	ND	2.0	10	μg/L	N/A	N/A	10/19/2005	WM1051019
Ethyl Benzene	100	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
Freon 113	ND	2.0	10	μg/L	N/A	N/A	10/19/2005	WM1051019
Hexachlorobutadiene	ND	2.0	10	μg/L	N/A	N/A	10/19/2005	WM1051019
Iodomethane	ND	2.0	2.0	μg/L	N/A	N/A	10/19/2005	WM1051019
	ND	2.0	40	μg/L	N/A	N/A	10/19/2005	WM1051019
Isopropanol	28	2.0	2.0	μg/L	N/A	N/A	10/19/2005	WM1051019
Isopropylbenzene	ND	2.0	2.0	μg/L	N/A	N/A	10/19/2005	WM1051019
Methyl-t-butyl Ether	ND ND	2.0	40	μg/L	N/A	N/A	10/19/2005	WM1051019
Methylene Chloride	17	2.0	10	μg/L	N/A	N/A	10/19/2005	WM1051019
n-Butylbenzene	72	2.0	10	μg/L	N/A	N/A	10/19/2005	WM1051019
n-Propylbenzene	43	2.0	10	μg/L	N/A	N/A	10/19/2005	WM1051019
Naphthalene		2.0	10	μg/L	N/A	N/A	10/19/2005	WM1051019
p-Isopropyltoluene	ND ND	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
Pentachloroethane		2.0	10	μg/L μg/L	N/A	N/A	10/19/2005	WM1051019
sec-Butylbenzene	12	2.0	1.0	μg/L μg/L	N/A	N/A	10/19/2005	WM1051019
Styrene	ND		1.0	μg/L μg/L	N/A	N/A	10/19/2005	WM1051019
tert-Amyl Methyl Ether	ND	2.0	20	μg/L μg/L	N/A	N/A	10/19/2005	WM1051019
tert-Butanol (TBA)	ND	2.0		μg/L μg/L	N/A	N/A	10/19/2005	WM1051019
tert-Butyl Ethyl Ether	ND	2.0	10	μg/L μg/L	N/A	N/A	10/19/2005	WM1051019
tert-Butylbenzene	ND	2.0	10		N/A	N/A	10/19/2005	WM1051019
Tetrachloroethene	25	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
Tetrahydrofuran	ND .	2.0	40	μg/L		N/A	10/19/2005	WM1051019
Toluene	1.2	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
trans-1,2-Dichloroethene	ND	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
trans-1,3-Dichloropropene	ND	2.0	1.0	μg/L	N/A		10/19/2005	WM1051019
trans-1,4-Dichloro-2-butene	ND	2.0	2.0	μg/L	N/A	N/A	10/19/2005	WM1051019
Trichloroethene	4.1	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019
Trichlorofluoromethane	ND	2.0	1.0	μg/L	N/A	N/A		WM1051019
Vinyl Acetate	ND	2.0	10	μg/L	N/A	N/A	10/19/2005	WM1051019
Vinyl Chloride	ND	2.0	1.0	μg/L	N/A	N/A	10/19/2005	WM1051019 WM1051019
Xylenes, Total	140	2.0	1.0	μg/L	N/A	N/A	10/19/2005	W IVI1031019

SurrogateSurrogate RecoveryControl Limits (%)4-Bromofluorobenzene83.770 - 130Dibromofluoromethane10970 - 130Toluene-d891.870 - 130

Analyzed by: XBian
Reviewed by: MaiChiTu

Qual = Data Qualifier

3334 Victor Court , Santa Clara, CA 95054

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler Phone: (408) 588-0200

Date Received: 10/17/2005 12:33:51 PM Project ID: 7335 Sheaff's Garage Project Number: T0600102112 Project Name: 7335 Sheaff's Garage

Fax: (408) 588-0201

GlobalID: T0600102112

Certificate of Analysis - Data Report

Sample Collected by: client

Lab #: 45825-004	uid Sample I	Date: 10/14/2005 2:01 PM						
EPA 5030C GC-MS Parameter	Result Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	TPH as Gas Analysis Date	oline - GC-MS QC Batch
TPH as Gasoline	4300	20	500	μg/L	N/A	N/A	10/20/2005	WM1051019
Surrogate	Surrogate Recovery	Control 1	Limits (%)				Analyzed by: XBian	n
4-Bromofluorobenzene	104	70 -	- 130				Reviewed by: MaiC	ChiTu
Dibromofluoromethane	101	70 -	- 130					
Toluene-d8	96.1	70 -	- 130					

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Liquid - EPA 8260B - EPA 8260B

QC Batch ID: WM1051018B Validated by: MaiChiTu - 10/19/05

QC Batch Analysis Date: 10/18/2005

Parameter	Result	DF	PQLR	Units
1,1,1,2-Tetrachloroethane	ND	1	0.50	μg/L
1.1.1-Trichloroethane	ND	1	0.50	μg/L
1,1,2,2-Tetrachloroethane	ND	1	0.50	μg/L
1,1,2-Trichloroethane	ND	1	0.50	μg/L
1,1-Dichloroethane	ND	1	0.50	μg/L
1,1-Dichloroethene	ND	1	0.50	μg/L
1,1-Dichloropropene	ND	1	0.50	μg/L
1,2,3-Trichlorobenzene	ND	1	5.0	μg/L
1,2,3-Trichloropropane	ND	1	0.50	μg/L
1,2,4-Trichlorobenzene	ND	1	5.0	μg/L
1,2,4-Trimethylbenzene	ND	1	5.0	μg/L
1,2-Dibromo-3-Chloropropane	ND	1	5.0	μg/L
1,2-Dibromoethane (EDB)	ND	1	0.50	μg/L
1,2-Dichlorobenzene	ND	1	0.50	μg/L
1,2-Dichloroethane	ND	1	0.50	μg/L
1,2-Dichloropropane	ND	1	0.50	μg/L
1,3,5-Trimethylbenzene	ND	1	5.0	μg/L
1,3-Dichlorobenzene	ND	1	0.50	μg/L
1,3-Dichloropropane	ND	1	0.50	μg/L
1,4-Dichlorobenzene	ND	1	0.50	μg/L
1,4-Dioxane	ND	1	50	μg/L
2,2-Dichloropropane	ND	1	0.50	μg/L
2-Butanone (MEK)	ND	1	20	μg/L
2-Chloroethyl-vinyl Ether	ND	1	5.0	μg/L
2-Chlorotoluene	ND	1	5.0	μg/L
2-Hexanone	ND	1	20	μg/L
4-Chlorotoluene	ND	1	5.0	μg/L
4-Methyl-2-Pentanone(MIBK)	ND	1	20	μg/L
Acetone	ND	1	20	μg/L
Acetonitrile	ND	1	5.0	μg/L
Acrolein	ND	1	5.0	μg/L
Acrylonitrile	ND	1	5.0	μg/L
Benzene	ND	1	0.50	μg/L
Benzyl Chloride	ND	1	5.0	μg/L
Bromobenzene	ND	1	0.50	μg/L
Bromochloromethane	ND	1	0.50	μg/L
Bromodichloromethane	ND	1	0.50	μg/L
Bromoform	ND	1	0.50	μg/L
Bromomethane	ND	1	0.50	μg/L
Carbon Disulfide	ND	1	0.50	μg/L
Carbon Tetrachloride	ND	1	0.50	μg/L
Chlorobenzene	ND	1	0.50	μg/L
Chloroethane	ND .	1	0.50	μg/L
Chloroform	ND	1	0.50	μg/L
Chloromethane	ND	1	0.50	μg/L
cis-1,2-Dichloroethene	ND	1	0.50	μg/L
cis-1,3-Dichloropropene	ND	1	0.50	μg/L
Cyclohexanone	ND	1	20	μg/L
Cy stotto Admission				

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Liquid - EPA 8260B - EPA 8260B

QC Batch ID: WM1051018B Validated by: MaiChiTu - 10/19/05

QC Batch Analysis Date: 10/18/2005

Parameter	Result	DF	PQLR	Units
Dibromochloromethane	ND	1	0.50	μg/L
Dibromomethane	ND	1	0.50	μg/L
Dichlorodifluoromethane	ND	1	0.50	μg/L
Diisopropyl Ether	ND	1	5.0	μg/L
Ethyl Benzene	ND	1	0.50	μg/L
Freon 113	ND	1	5.0	μg/L
Hexachlorobutadiene	ND	1	5.0	μg/L
Iodomethane	ND	1	1.0	μg/L
Isopropanol	ND	1	20	μg/L
Isopropylbenzene	ND	1	1.0	μg/L
Methylene Chloride	ND	1	20	μg/L
Methyl-t-butyl Ether	ND	1	1.0	μg/L
Naphthalene	ND	1	5.0	μg/L
n-Butylbenzene	ND	1	5.0	μg/L
n-Propylbenzene	ND	1	5.0	μg/L
Pentachloroethane	ND	1	0.50	μg/L
p-Isopropyltoluene	ND	1	5.0	μg/L
sec-Butylbenzene	ND	1	5.0	μg/L
Styrene	ND	1	0.50	μg/L
tert-Amyl Methyl Ether	ND	1	5.0	μg/L
tert-Butanol (TBA)	ND	1	10	μg/L
tert-Butyl Ethyl Ether	ND	1	5.0	μg/L
tert-Butylbenzene	ND	1	5.0	μg/L
Tetrachloroethene	ND	1	0.50	μg/L
Tetrahydrofuran	ND	1	20	μg/L
Toluene	ND	1	0.50	µg/L
trans-1,2-Dichloroethene	ND	1	0.50	μg/L
trans-1,3-Dichloropropene	ND	1	0.50	μg/L
trans-1,4-Dichloro-2-butene	ND	1	1.0	μg/L
Trichloroethene	ND	1	0.50	μg/L
Trichlorofluoromethane	ND	1	0.50	μg/L
Vinyl Acetate	ND	1	5.0	μg/L
Vinyl Chloride	ND	1	0.50	μg/L
Xylenes, Total	ND	1	0.50	μg/L

Surrogate for Blank	% Recovery	Cont	rol	Limits
4-Bromofluorobenzene	90.9	70	-	125
Dibromofluoromethane	116	70	-	125
Toluene-d8	107	70	-	125

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Laboratory Control Sample / Duplicate - Liquid - EPA 8260B - EPA 8260B

QC Batch ID: WM1051018B Reviewed by: MaiChiTu - 10/19/05

QC Batch ID Analysis Date: 10/18/2005

QC Batch ID Analy	isis Date: 10/16	0/2005							
LCS Parameter	Method Blanl	Spike Amt	SpikeResult	Units	% Recovery			Recovery Limits	
1,1-Dichloroethene	< 0.50	20	21.7	μg/L	108			70 - 130	
Benzene	< 0.50	20	20.7	μg/L	104			70 - 130	
Chlorobenzene	<0.50	20	20.9	μg/L	104			70 - 130	
Methyl-t-butyl Ether	<1.0	20	18.2	μg/L	91.0			70 - 130	
Toluene	<0.50	20	21.6	μg/L	108			70 - 130	
Trichloroethene	<0.50	20	20.5	μg/L	102			70 - 130	
Surrogate	% Recovery	Control Limits							
4-Bromofluorobenzene	88.7	70 - 130							
Dibromofluoromethane	106	70 - 130							
Toluene-d8	99.4	70 - 130							
LCSD									
Parameter	Method Blan	k Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits	
1,1-Dichloroethene	<0.50	20	21.7	μg/L	108	0.0	25.0	70 - 130	
Benzene	<0.50	20	20.9	μg/L	104	0.96	25.0	70 - 130	
Chlorobenzene	<0.50	20	21.4	μg/L	107	2.4	25.0	70 - 130	
Methyl-t-butyl Ether	<1.0	20	19.8	μg/L	99.0	8.4	25.0	70 - 130	
Toluene	< 0.50	20	21.4	μg/L	107	0.93	25.0	70 - 130	
Trichloroethene	<0.50	20	20.8	μg/L	104	1.5	25.0	70 - 130	
Surrogate	% Recovery	Control Limits							
4-Bromofluorobenzene	87.2	70 - 130							
Dibromofluoromethane	107	70 - 130							
Toluene-d8	97.6	70 - 130							

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Liquid - EPA 8260B - EPA 8260B

QC Batch ID: WM1051019 Validated by: MaiChiTu - 10/20/05

QC Batch Analysis Date: 10/19/2005

QC Batch Analysis Date: 10/13/200			2012	
Parameter	Result	DF	PQLR	Units
1,1,1,2-Tetrachloroethane	ND	1	0.50	μg/L "
1,1,1-Trichloroethane	ND	1	0.50	μg/L
1,1,2,2-Tetrachloroethane	ND	1	0.50	μg/L
1,1,2-Trichloroethane	ND	1	0.50	μg/L
1,1-Dichloroethane	ND	1	0.50	μg/L
1,1-Dichloroethene	ND	1	0.50	μg/L
1,1-Dichloropropene	ND	1	0.50	μg/L
1,2,3-Trichlorobenzene	ND	1	5.0	μg/L
1,2,3-Trichloropropane	ND	1	0.50	µg/L
1,2,4-Trichlorobenzene	ND	1	5.0	μg/L
1,2,4-Trimethylbenzene	ND	1	5.0	μg/L
1,2-Dibromo-3-Chloropropane	ND	1	5.0	μg/L
1,2-Dibromoethane (EDB)	ND	1	0.50	μg/L
1,2-Dichlorobenzene	ND	1	0.50	μg/L
1,2-Dichloroethane	ND	1	0.50	μg/L
1,2-Dichloropropane	ND	1	0.50	μg/L
1,3,5-Trimethylbenzene	ND	1	5.0	μg/L
1,3-Dichlorobenzene	ND	1	0.50	μg/L
1,3-Dichloropropane	ND	1	0.50	μg/L
1,4-Dichlorobenzene	ND	1	0.50	μg/L
1,4-Dioxane	ND	1	50	μg/L
2,2-Dichloropropane	ND	1	0.50	μg/L
2-Butanone (MEK)	ND	1	20	μg/L
2-Chloroethyl-vinyl Ether	ND	1	5.0	μg/L
2-Chlorotoluene	ND	1	5.0	μg/L
2-Hexanone	ND	1	20	μg/L
4-Chlorotoluene	ND	1	5.0	μg/L
4-Methyl-2-Pentanone(MIBK)	ND	1	20	μg/L
Acetone	ND	1	20	μg/L
Acetonitrile	ND	1	5.0	μg/L
Acrolein	ND	1	5.0	μg/L
	ND	1	5.0	μg/L
Acrylonitrile	ND	1	0.50	μg/L
Benzene Benzene	ND	1	5.0	μg/L
Benzyl Chloride	ND ND	1	0.50	μg/L
Bromobenzene	ND	1	0.50	μg/L
Bromochloromethane	ND	1	0.50	μg/L
Bromodichloromethane	ND ND	1	0.50	μg/L
Bromoform	ND ND	1	0.50	μg/L
Bromomethane			0.50	μg/L μg/L
Carbon Disulfide	ND	1	0.50	
Carbon Tetrachloride	ND	1		μg/L
Chlorobenzene	ND	1	0.50	μg/L
Chloroethane	ND	1	0.50	μg/L
Chloroform	ND	1	0.50	μg/L
Chloromethane	ND	1	0.50	μg/L
cis-1,2-Dichloroethene	ND	1	0.50	μg/L
cis-1,3-Dichloropropene	ND	1	0.50	μg/L
Cyclohexanone	ND	1	20	μg/L

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Liquid - EPA 8260B - EPA 8260B

QC Batch ID: WM1051019 Validated by: MaiChiTu - 10/20/05

QC Batch Analysis Date: 10/19/2005

Parameter	Result	DF	PQLR	Units
Dibromochloromethane	ND	1	0.50	μg/L
Dibromomethane	ND	1	0.50	μg/L
Dichlorodifluoromethane	ND	1	0.50	μg/L
Diisopropyl Ether	ND	1	5.0	μg/L
Ethyl Benzene	ND	1	0.50	μg/L
Freon 113	ND	1	5.0	μg/L
Hexachlorobutadiene	ND	1	5.0	μg/L
Iodomethane	ND	1	1.0	μg/L
Isopropanol	ND	1	20	μg/L
Isopropylbenzene	ND	1	1.0	μg/L
Methylene Chloride	ND	1	20	μg/L
Methyl-t-butyl Ether	ND	1	1.0	μg/L
Naphthalene	ND	1	5.0	μg/L
n-Butylbenzene	ND	1	5.0	µg/L
n-Propylbenzene	ND	1	5.0	μg/L
Pentachloroethane	ND	1	0.50	μg/L
p-Isopropyltoluene	ND	1	5.0	μg/L
sec-Butylbenzene	ND	1	5.0	μg/L
Styrene	ND	1	0.50	μg/L
tert-Amyl Methyl Ether	ND	1	5.0	μg/L
tert-Butanol (TBA)	ND	1	10	μg/L
tert-Butyl Ethyl Ether	ND	1	5.0	μg/L
tert-Butylbenzene	ND	1	5.0	μg/L
Tetrachloroethene	ND	1	0.50	μg/L
Tetrahydrofuran	ND	1	20	μg/L
Toluene	ND	1	0.50	μg/L
trans-1,2-Dichloroethene	ND	1	0.50	μg/L
trans-1,3-Dichloropropene	ND	1	0.50	μg/L
trans-1,4-Dichloro-2-butene	ND	1	1.0	μg/L
Trichloroethene	ND	1	0.50	μg/L
Trichlorofluoromethane	ND	1	0.50	μg/L
Vinyl Acetate	ND	1	5.0	μg/L
Vinyl Chloride	ND	1	0.50	μg/L
Xylenes, Total	ND	1	0.50	μg/L

Surrogate for Blank	% Recovery	Cont	Limits	
4-Bromofluorobenzene	93.9	70	-	125
Dibromofluoromethane	115	70	-	125
Taluana 40	106	70		125

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Laboratory Control Sample / Duplicate - Liquid - EPA 8260B - EPA 8260B

QC Batch ID: WM1051019

Reviewed by: MaiChiTu - 10/20/05

QC Batch ID Analysis Date: 10/19/2005

LCS Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery			Recovery Limits
1,1-Dichloroethene	< 0.50	20	21.3	μg/L	106			70 - 130
Benzene	< 0.50	20	20.8	μg/L	104			70 - 130
Chlorobenzene	<0.50	20	21.7	μg/L	108			70 - 130
Methyl-t-butyl Ether	<1.0	20	19.6	μg/L	98.0			70 - 130
Toluene	<0.50	20	21.6	μg/L	108			70 - 130
Trichloroethene	<0.50	20	21.3	μg/L	106			70 - 130
Surrogate	% Recovery Co	ontrol Limits						
4-Bromofluorobenzene	89.9	70 - 130						
Dibromofluoromethane	105	70 - 130						
Toluene-d8	96.3	70 - 130						
LCSD								
Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
1,1-Dichloroethene	<0.50	20	20.7	μg/L	104	2.9	25.0	70 - 130
Benzene	<0.50	20	20.0	μg/L	100	3.9	25.0	70 - 130
Chlorobenzene	<0.50	20	21.1	μg/L	106	2.8	25.0	70 - 130
Methyl-t-butyl Ether	<1.0	20	19.4	μg/L	97.0	1.0	25.0	70 - 130
Toluene	<0.50	20	20.9	μg/L	104	3.3	25.0	70 - 130

20.6

μg/L

103

Trichloroethene	<0.50	20
Surrogate	% Recovery	Control Limits
4-Bromofluorobenzene	89.9	70 - 130
Dibromofluoromethane	103	70 - 130
Toluene-d8	96.7	70 - 130

25.0

3.3

70 - 130

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Liquid - GC-MS - TPH as Gasoline - GC-MS

QC Batch ID: WM1051018B

Validated by: MaiChiTu - 10/19/05

QC Batch Analysis Date: 10/18/2005

Parameter	Result	DF	PQLR	Units
TPH as Gasoline	ND	1	25	μg/L

Surrogate for Blank	% Recovery	Cont	rol	Limits
4-Bromofluorobenzene	102	70	-	130
Dibromofluoromethane	106	70	-	130
Toluene-d8	101	70	-	130

Laboratory Control Sample / Duplicate - Liquid - GC-MS - TPH as Gasoline - GC-MS

Reviewed by: MaiChiTu - 10/19/05 QC Batch ID: WM1051018B

QC Batch ID Analysis Date: 10/18/2005

100

Parameter TPH as Gasoline	Method B <25	lank Spike Amt 120	SpikeResult 119	Units µg/L	% Recovery 95.4	Recovery Limits 65 - 135
Surrogate	% Recovery	Control Limits				
4-Bromofluorobenzene	97.7	70 - 130				
Dibromofluoromethane	96.9	70 - 130				

94.9 70 - 130 Toluene-d8

LCSD

Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
TPH as Gasoline	<25	120	117	μg/L	93.8	1.7	25.0	65 - 135

Surrogate	% Recovery	Conti	ol	Limits
4-Bromofluorobenzene	102	70	-	130
Dibromofluoromethane	94.3	70	-	130
Toluene-d8	92.2	70	-	130

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Liquid - GC-MS - TPH as Gasoline - GC-MS

QC Batch ID: WM1051019 Validated by: MaiChiTu - 10/20/05

QC Batch Analysis Date: 10/19/2005

Surrogate for Blank% RecoveryControl Limits4-Bromofluorobenzene10670-130Dibromofluoromethane10670-130Toluene-d810070-130

Laboratory Control Sample / Duplicate - Liquid - GC-MS - TPH as Gasoline - GC-MS

QC Batch ID: WM1051019 Reviewed by: MaiChiTu - 10/20/05

QC Batch ID Analysis Date: 10/19/2005

LCS

ParameterMethod BlankSpike AmtSpikeResultUnits% RecoveryRecovery LimitsTPH as Gasoline<25</td>120130μg/L10465 - 135

 Surrogate
 % Recovery
 Control Limits

 4-Bromofluorobenzene
 101
 70
 - 130

 Dibromofluoromethane
 94.1
 70
 - 130

 Toluene-d8
 94.5
 70
 - 130

LCSD

Parameter Method Blank Spike Amt SpikeResult Units % Recovery RPD RPD Limits Recovery Limits

TPH as Gasoline <25 120 126 ug/l 101 3.5 25.0 65 - 135

TPH as Gasoline <25 120 126 μ g/L 101 3.5 25.0 65 - 135 Surrogate % Recovery Control Limits

 4-Bromofluorobenzene
 102
 70
 130

 Dibromofluoromethane
 94.5
 70
 130

 Toluene-d8
 95.3
 70
 130

3334 Victor Court

(408) 588-0200

Chain of Custody / Analysis Request

Santa Clara, CA 950	54 (408)	588-0201 -	Fax																	,			
Attention to:		Phone No.:		Pu	ırchase Oı	rder No	o.:				I	nvoice	to: (If	Differ	ent)					Phone	:		l
BRENT WHE	ELER	415-512-	1555								_									Quote	No ·		
Company Name:		Fax No.:		Pr	oject No.:	7	-33	55			10	Compan	ıy:							Quote	: 140		
GOLDENGATE VANIC	CEMOVAL	415.512	.0964		ningt No-			<u> </u>			-	Billing A	ddrac	s: (If I	Differe	ent)				L			
Mailing Address:		Email Address:	2012	Pr	oject Nan	ne:						ming A	144163	. (II I	J.11010								
255 SHIPLEY ST		State:	gtr.com	Pr	oject Loc	ation:						City:								State	: 7	ip:	
City: SAN FRANCISCO	ا د	CA	94107	<u>~</u> ``	<u>593</u>	\mathbf{S}	كەر	عد	GE	A	UE	City: ()a	KL	ANI	>_				C	A-		
C170-11411 C170-10-10-10-10-10-10-10-10-10-10-10-10-10		<u> </u>		\top					T	G	C/MS	Meth	ods	T	(GC Me	thods	;		G	eneral	Chemistry	
Sampler: Field C	Org. Code:	Turn Ard Same Day Day A Day	ound Time y 1 Day 1 3 Day 2 5 Day					/	7	2,50% 150%	STAND STANDS			J. Other J.	7 ?/#		1 6 6			7			// 3/
T060010	2112	□ 4.Day	0 Day					/		12.2				/ ş ⁸ ,	1/2	//		' /			/ 8		7
Order ID:	2112	Samp			of Containers		/		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Oesel Z		\$ A	3		J /	//	//	//			
Client ID / Field Point	, Lab. No.	Date	Time	Matrix	No. of Con	\$ 5 m	\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	50xy (47BE)	1 5 1 5 1 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8		THE GARAGE		1808	To the last of the	8 5	5/		//	Anion C		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Remar	
	45825-001	10/14/05	1329 U	_	5		×	X						1	X								
	DOL	1011-1705	1344		6		×	X							\overline{X}								-
PAW-27335-MU2 PAW-31336-MW3	003		1305		6		-	<							×								
	004	1	1401		2			Z							X								
Ptv 7335-PW-1	- CL7	7	1301	\dashv	->	$\neg \uparrow$			\neg										1				
				十		$\neg \dagger$		$\neg \dagger$					$\neg \uparrow$		7								
				十			_	$\neg \dagger$					\neg		\neg								
				\dashv				$\neg \uparrow$				$\neg \uparrow$						\top					
				\dashv			\dashv	-					\dashv	\dashv	十	_		1	1				
				\dashv		-+	+		\dashv				\dashv	\dashv	\dashv			\top	1	1			
				\dashv			\dashv	-					\dashv		1	$\neg \dagger$	\dashv			1			
				\dashv			\dashv			\dashv			\dashv	\dashv	1		-	1	1	1			
			-	+		\vdash	\dashv	\dashv					\dashv	\dashv	\dashv		_	\top	1	1			
Solinguished by:	Redeived by:	Date:	Time:	٦,	Speci	al In	stri	ıcti	ons	or	Co	mme	nts	<u>.</u>				<u> </u>	EDI	D Rer	oort		
Relinquished by:		(10/s	1/08 Time: 1040) [opeci	ui III		4 U LI	J. 13	. J.				-					L EDI			☐ Platin	g
Relifiquished by:	Received by:	Date:	i Time:	\dashv														/-	•			LUFT	
Treminda silver silver		rede 101	1 - 1 . 14		Metals:																	☐ RCRA	-8
Reinquished by:	Received by:	Date:	Time:		Al, As, :		a. Re	. Bi	B. C	d. Ce	e. Ca	. Cr. 0	Co. C	s, Cu	ı, Fe.	Pb. N	Иg, M	n,				☐ PPM-	13
					Ga, Ge,	Ha. I	n, Li.	, D., Mo.	Ni, 1	э, ос Р, К.	Si, A	,, \ \g, Na	i, S,	Se, S	r, Ta	ı, Te,	TI, Sr	n, Ti,	Zn, V	, W,	Zr	☐ CAM-	17
June 2004					,)	٠, ٠,	,				س ئىس												

ÆLL PU	JRGING/SA	AMPLING I	DATA	ĩ					
roject Ni	umber:	335	, n°		Date: _	10/14	105		
roject / S	Site Location	n: <u>S</u>	93°0 Dakla	colle	ge.Ava	<u> </u>	•	,	
ampler/]	Technician:		Shaor	POR	wyan				ŧ
VELL I.	D.: PU				, in the second	A A A A A A A A A A A A A A A A A A A	1일: - 1일: - 경취:	To .	,
	down 1	EVENT:	SA	MPLING _	WELL	DEVELO	PMENT	- 4	
	O WATER O BOTTO OWB		79	, P	·		DTh	1401 UEST=12.	20
Well Diamet 2-inch we 4-inch weinch we	er ell ell	7,	,49	ft.x 0.163 gal/ ft.x 0.652 gal/ ft.x gal/	/ft = //, / /ft = //, / /ft = //		X 3 = X = X = =		
0 percent	recharge lev	rel: <u>[Z, [3</u>	11.101		•		ling Device:	Disp. Bailer	
TIME	GALS. PURGED	TEMP (°C)	gR pH	COND.	D.O.	ORP.	ÓDOR/ SHEEN	NOTES/ OTHER	
1139	1.25	18,6	7.6	478		`		yenomude	3/)
11413	2,5	18.6	7.7	537		372		1 2 1	<i>.</i>
1147	3.5	18,5	7.6	SEG					
	3		7	· Land					
		,							
						1			
a				a	Α				
					5				
						ξ.			
Total V	olume: 🏂	Gals		r	in out	in / Out	>		

GGTR

WELL PU	JRGING/S/	AMPLING I	DATA 🤚					
Project N	umber:	7335			Date:	10/11	1/05	-
Project / S	Site Locatio	n: <u> </u>	2930 Dakla	college and Bo	je Ava			ħ
Sampler/	Γechnician:		Shave	10 B/	5 <u>9</u> 11			Sept.
WELL I.	D.: <u>Mu</u>	0-1		, ,	•			
		EVENT:	SA	MPLING _	WELI	L DEVELO	PMENT	
	O WATER O BOTTO OWB	: <u>9</u> M: <u>14</u>	,58 ,56				DIM	@ 5.T=10, 52 Mg
Well Diamet 2-inch we 4-inch we -inch we 80 percent	ell ell	4		ft.x 0.163 gal/ ft.x 0.652 gal/ ft.x gal/ of Pump: D	fit =		<pre></pre>	Total Purge (gals.)
				OUNDWATE	**			
TIME	GALS. PURGED	TEMP (°C)	рН	COND.	D.O.	ORP	ODOR/ SHEEN	NOTES/ OTHER
12:03		19.2	7.7	569			Shen	Clean
1206	2	19.0	7.6	569		557	l i	Ł
1208	2.5	1972	7.7	570			le t	t ę
								45
Total Vo	olume: 2	, ŚGals.			(in) <u>out</u> of well	in / Out of well		

No. 2 1 N.Y.	IRGING/SA -	7775			T	1011	1-0	
rojeci Ni	ımber:	_				10/14	105	
Project / S	ite Location	n: <u> </u>	5930 Oaklo	Colle	ge An	<i>?</i>		
-	Technician:		Havn	O'Bry	<i></i>	- 1148 V		
WELL I.	D.:	W-Z	, were					
		EVENT:	_VSA	MPLING _	WELI	_ DEVELO	PMENT	
	O WATER O BOTTO! OWB		9 <u>2</u> 66	ì	DTW	012	TZ (A)	Total
Well Diamet 2-inch we 4-inch we	er ell ell			ft.x 0.163 gal/ ft.x 0.652 gal/	ft = 1 (1) ft = 1	gals.) X	<u> </u>	Total Purge (gals.) 4,27
inch we 30 percent		el: <u>/2.67</u>		ft.x gal/ of Pump: <u>C</u>			ing Device:	Disp Bailer
				OUNDWATI		······································		
TIME	GALS. PURGED	TEMP (°C)	pН	COND.	D.O.	ORP	ODOR/ SHEEN	NOTES/ OTHER
1245	Î, Ç	18,3	7.6	647			Shen	(lever
1248	3	195	7,8	611		2/2	हैं - क् इ.च	l é
1249	4.5	19,2	7.7	641			. e	£ 3
						-		
					1	1		
			75					
			*					
		/			£			

BDocs/FForms/PS Data

GGTR

						· · · · · · · · · · · · · · · · · · ·		
WELL P	URGING/S	SAMPLING	DATA					
Project N	Jumber:	7335	<u> </u>		Date:	10/14/	05	
Project /	Site Location	on:	5930 Dak <i>l</i> ar	Colled LA				
Sampler	Technician	: <u>.</u>	Shaur	1 0'B1	~VaV			
WELL	. D .: <u>M</u>	N-3	/		7-3-1			
DEPTH	TO WATEI	R: 9.	:SA 	MPLING .				1305
Wel Diame 2-inch w 4-inch w -inch w	ter ell ell	10		ft.x 0.163 gal/ ft.x 0.652 gal/ ft.x gal/ of Pump:	fft = // fft = // fft = //	(gals.)	x <u>3</u> = x _ = x _ =	Total Purge (gals.) 4,9 Disp. Bailer
				OUNDWATI				
TIME	GALS. PURGED	TEMP (°C)	рН	COND.	D.O.	ORP	ODOR/ SHEEN	NOTES/ OTHER
10:57	1,25	18.7	7, 4	172.2			Olov	
	2.5	18,5	7.4	175.5				
11:08	4,5	18.5	7,5	179.0		313		Sheem
11.12	5	18.4	7,5	78				
			-					
		<u> </u>						
Total Vo	lume:	Gals.			of well	in/ 6 ut) of well		

BDocs/FForms/PS Data

Page __ of __

GGTR

Electronic Submittal Information

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_WELL FILE

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Title:

fluid level monitoring data; MW1-MW3, PW-1,

10/14/05

Submittal Date/Time: 10/24/2005 2:18:55 PM

Confirmation

3469557046

Number:

Back to Main Menu

Logged in as GGTR (AUTH_RP)

CONTACT SITE ADMINISTRATOR

Electronic Submittal Information

Main Menu | View/Add Facilities | Upload EDD | Check EDD

Your EDF file has been successfully uploaded!

Confirmation 1188632249

Date/Time of 10/24/2005 2:28:11 PM

Facility Global ID: T0600102112

Facility Name: SHEAFFS SERVICE GARAGE

Submittal Title: PW-1)

45825: 10/14/05 Groundwater Monitoring Analytical Data (MW1-MW3,

Submittal Type: GW Monitoring Report

Click here to view the detections report for this upload.

SHEAFFS SERVICE GARAGE

5930 COLLEGE AVE OAKLAND, CA 94618 Regional Board - Case #: 01-2296

SAN FRANCISCO BAY RWQCB (REGION 2) - (BG)

Local Agency (lead agency) - Case #: 514

ALAMEDA COUNTY LOP - (AG)

CONF#

1188632249 45825: 10/14/05 Groundwater Monitoring Analytical Data (MW1-MW3, PW-1)

QUARTER Q4 2005

SUBMITTED BY

SUBMIT DATE

STATUS

Brent Wheeler 10/24/2005 PENDING REVIEW

SAMPLE DETECTIONS REPORT

FIELD POINTS SAMPLED

FIELD POINTS WITH DETECTIONS

FIELD POINTS WITH WATER SAMPLE DETECTIONS ABOVE MCL

SAMPLE MATRIX TYPES

4 WATER

4

4

METHOD QA/QC REPORT

METHODS USED

TESTED FOR REQUIRED ANALYTES?

MISSING PARAMETERS NOT TESTED:

- SW8260B REQUIRES EDB TO BE TESTED

LAB NOTE DATA QUALIFIERS

8260TPH,SW8260B

QA/QC FOR 8021/8260 SERIES SAMPLES

TECHNICAL HOLDING TIME VIOLATIONS METHOD HOLDING TIME VIOLATIONS

LAB BLANK DETECTIONS ABOVE REPORTING DETECTION LIMIT

LAB BLANK DETECTIONS

DO ALL BATCHES WITH THE 8021/8260 SERIES INCLUDE THE FOLLOWING?

- LAB METHOD BLANK

- MATRIX SPIKE

- MATRIX SPIKE DUPLICATE

- BLANK SPIKE

- SURROGATE SPIKE

N

0

0

O

0

Ν

N

Y

VATER SAMPLES FOR 802		n/a
•	JPLICATE(S) % RECOVERY BETWEEN 65-135%	· ·
•	JPLICATE(S) RPD LESS THAN 30%	n/a
SURROGATE SPIKES % RECOVERY		N
BLANK SPIKE / BLANK SPIKE DUP	ICATES % RECOVERY BETWEEN 70-130%	Υ
OIL SAMPLES FOR 8021/8	260 SERIES	
MATRIX SPIKE / MATRIX SPIKE DU	JPLICATE(S) % RECOVERY BETWEEN 65-135%	n/a
MATRIX SPIKE / MATRIX SPIKE D	JPLICATE(S) RPD LESS THAN 30%	n/a
SURROGATE SPIKES % RECOVER		n/a
BLANK SPIKE / BLANK SPIKE DUP	LICATES % RECOVERY BETWEEN 70-130%	n/a
FIELD QC SAMPLES		PERSONAL PROPERTY OF THE PROPE
SAMPLE	COLLECTED	DETECTIONS > REPD
QCTB SAMPLES		0
•	N	0
OCEB SAMPLES		

Logged in as GGTR (AUTH_RP)

CONTACT SITE $\underline{\text{ADMINISTRATOR}}$