RECEIVED

7:49 am, Feb 23, 2012

Alameda County
Environmental Health

Mr. Mark Detterman Alameda County Environmental Health Care Services Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Re: Former Olympic Service Station

1436 Grant Avenue San Lorenzo, California

ACEHD Case No. RO0000373, GeoTacker No. T0600102256

Dear Mr. Detterman:

I declare, under penalty of perjury, that the information and or recommendations contained in the attached document are true and correct to the best of my knowledge.

Sincerely,

George and Frida Jaber 1989 Family Trust

Philip Jaber, Trustee

February 21, 2012 Project No. 2115-1436-01

Mr. Mark Detterman Alameda County Environmental Health Department 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Re: Ozone Injection Pilot Test Report, Former Olympic Service Station, 1436 Grant Avenue, San Lorenzo, California (ACEHD Case No. RO0000373)

Dear Mr. Detterman:

Stratus Environmental, Inc. (Stratus) has prepared this *Ozone Injection Pilot Test Report* on behalf of Mr. Philip Jaber, for the Former Olympic Service Station (the site) located at 1436 Grant Avenue, San Lorenzo, California (Figure 1). Petroleum hydrocarbon impact has been identified in the soil and groundwater beneath the site. This report presents the results of ozone (O₃) injection pilot testing performed at the site in September and October 2011.

The scope of the work discussed in this report was originally proposed in the *Feasibility Analysis/Interim Remedial Action Plan*¹ (FA/IRAP) and two associated addenda.^{2,3} Combined, these documents proposed to assess the viability of using dual-phase extraction (DPE) and in-situ chemical oxidation (ISCO) by ozone injection to remediate petroleum hydrocarbon impact to the soil and groundwater beneath the site. The scope of work also included installation of an additional soil vapor sampling point to further evaluate soil vapor migration via a water line that transects the area of petroleum hydrocarbon impact. Alameda County Environmental Health Department (ACEHD) approved the proposed scope of work in a letter dated May 13, 2011.

Stratus installed the proposed DPE extraction wells, ozone injection wells, and soil vapor sampling point in May 2011; the 5-day DPE pilot test was completed in June 2011. Well installation and DPE test results were discussed in a separate report.⁴ This report presents data collected during the O₃ test performed from September 29 through October 31, 2011. Details associated with the pilot test, including descriptions of the injection

_

¹ Feasibility Analysis/Interim Remedial Action Plan, Stratus Environmental, Inc., dated March 15, 2011.

² Interim Remedial Action Plan Addendum, Stratus Environmental, Inc., dated April 22, 2011.

³ Interim Remedial Action Plan Addendum 2, Stratus Environmental, Inc., dated May 3, 2011.

⁴ Dual Phase Extraction Pilot Test Report, Stratus Environmental, dated November 3, 2011.

equipment, operation details, monitoring protocol, and an evaluation of field and analytical data are discussed in the subsequent sections of this document.

SITE DESCRIPTION

The subject site is located on the southern corner of the intersection of Grant Avenue and Channel Street in San Lorenzo, California. The site was previously developed as an Olympic service station; it is currently operated as San Lorenzo Auto Repair. The current and former station facilities are shown on Figure 2.

The adjoining property to the southwest, south, and southeast is developed as a strip mall (Arroyo Center). Properties to the northwest (across Grant Avenue) are developed as single family detached residences, and the property to the northeast (across Channel Street) has been developed as multi-family housing units (apartments or condominiums). A parking lot and athletic fields for Arroyo High School are situated on property north of Grant Avenue, across the intersection.

This description of the project background was developed from information contained in reports prepared by Reese Construction, Aqua Science Engineers, Inc. (ASE), and Conestoga-Rovers & Associates (CRA). Locations of the service station building, the former underground storage tanks (USTs), and the former dispenser islands are shown on Figure 2.

The former USTs and product dispensers were removed in 1998. Four groundwater monitoring wells (MW-1 through MW-4), five soil vapor sampling points (SV-1 through SV-5), three extraction wells (EX-1 through EX-3), two injection wells (IW-1 and IW-2), and nineteen exploratory soil borings (BH-A through BH-C, B-1 through B-13, and B-13A through B-13C) were installed between 1999 and 2011. The locations of the wells, vapor sample points, and soil borings are shown on Figure 2. Historical groundwater monitoring, groundwater analytical, soil analytical, and soil vapor analytical data are summarized in tables included in Appendix A. Drilling and well construction details are summarized in Table 1.

UST Removal Activities

Three gasoline USTs (10,000-gallon, 8,000-gallon, and 5,000-gallon) were located between the station building and Channel Street. The former waste oil UST (250 gallons) was located behind the station building. Six fuel dispensers were situated on two dispenser islands located adjacent to Grant Avenue. The USTs, dispensers, and associated product piping were removed on July 10, 1998, by Reese Construction.⁵ A total of eleven compliance soil samples were collected from the UST pits, the product

⁵ Tank Closure Report, Reese Construction, dated September 14, 1998.

piping trenches, and beneath the dispensers. Groundwater was encountered in the gasoline UST pit, and on September 8, 1998, approximately 5,000 gallons of groundwater was pumped from the pit and transported off-site for disposal. Soil and backfill material excavated during UST removal were sampled, and with approval of ACEHD, this material was utilized to backfill the excavations.

Based on analytical results from samples collected during UST removal activities, additional excavation was performed at the waste oil UST pit and the northern dispenser island. The waste oil UST pit was deepened from 8 to 12 feet below ground surface (bgs), and the dispenser excavation was extended to 3.5 feet bgs. A confirmation soil sample was collected from the base of each excavation; hydrocarbons were reported in the sample from the base of the waste oil UST pit.⁸

Site Characterization Activities

Wells MW-1 through MW-3 were installed by ASE on September 24, 1999. These wells were situated to evaluate groundwater conditions downgradient of the gasoline UST pit, the waste oil UST pit, and the dispenser islands. One soil sample from 10 feet bgs in each boring was submitted for analysis, and petroleum hydrocarbon impact was reported in all soil samples. Groundwater in the wells was measured at approximately 8 feet bgs. The wells were sampled on October 6, 1999, and petroleum hydrocarbon impact was reported in all three water samples.

To further assess the downgradient extent of petroleum hydrocarbon impact to soil and groundwater, ASE advanced three exploratory soil borings (BH-A through BH-C) on April 30, 2002. The borings were advanced to 20 feet bgs, and were situated southwest of the subject site, on the adjacent shopping center property. One soil sample from 11.5 feet bgs and a groundwater sample from each boring were submitted for analysis. Petroleum hydrocarbon impact was reported in each of the soil and groundwater samples.

To further characterize the downgradient and lateral extent of petroleum hydrocarbon impact, and to evaluate if preferential pathways were influencing hydrocarbon migration, CRA advanced three exploratory soil borings on the subject property (B-1, B-2, and B-4), four additional soil borings on the shopping center property (B-3 and B-5 through B-7), and one boring in the sidewalk along Grant Avenue (B-8) on February 25 and 26, 2008. ¹¹

⁶ Report of Excavation Dewatering Activities, Foss Environmental Services, dated September 21, 1998.

⁷ Stockpiled Soil Sampling Results, Aqua Science Engineers, Inc., dated November 24, 1998.

⁸ Report Detailing Former Waste-Oil UST Overexcavation Activities, Aqua Science Engineers, Inc., dated January 7, 1999.

⁹ Report of Soil and Groundwater Assessment, Aqua Science Engineers, Inc., dated November 12, 1999. ¹⁰ Report of Soil and Groundwater Assessment, Aqua Science Engineers, Inc., dated May 31, 2002.

Site Investigation, Preferential Pathway, and Workplan Report, Conestoga-Rovers & Associates, dated April 29, 2008.

February 21, 2012 2115-1436-01

CRA concluded that additional assessment was required to further characterize petroleum hydrocarbon impact east of the former UST pit (in Channel Street) and to the southwest, downgradient of the site (in Grant Avenue). This phase of the investigation also included a well search, and CRA concluded that it was unlikely that any of the identified wells would be impacted by petroleum hydrocarbons from the site. Finally, this phase of the investigation also included an evaluation of subsurface utilities in the site vicinity, and CRA concluded that the sanitary sewer lines in Grant Avenue and the storm drain in Channel Street were potential preferential pathways for hydrocarbon migration.

CRA completed additional site assessment work in 2010.¹² Five exploratory soil borings (B-9 through B-13) were installed in Grant Avenue to evaluate hydrocarbon concentrations in backfill material around the sanitary sewer lines, and to assess if these sewer lines were acting as preferential petroleum hydrocarbon migration pathways. An additional groundwater monitoring well (MW-4) was installed adjacent to the northern dispenser island to assess the groundwater impact identified earlier in boring B-1. Four soil vapor sampling probes (SV-1 through SV-4) were installed to assess the petroleum hydrocarbon concentrations in soil vapors. CRA concluded that the sanitary sewer lines in Grant Avenue may be acting as a preferential migration pathway for petroleum hydrocarbons dissolved in groundwater, that petroleum hydrocarbon concentrations in the soil vapor samples exceed applicable Environmental Screening Levels (ESLs), ¹³ and that the lateral and vertical extent of soil impact that exceeds applicable ESLs is limited.

Stratus installed extraction wells EX-1 through EX-3, injection wells IW-1 and IW-2, and soil vapor point SV-5 in May 2011. Wells EX-1 through EX-3 were installed to facilitate the DPE pilot test, wells IW-1 and IW-2 were installed to facilitate the ISCO pilot test, and soil vapor sampling point SV-5 was installed to evaluate soil vapor concentrations in the vicinity of the subsurface water line that transects the area impacted by petroleum hydrocarbons.

Pilot Testing

To evaluate potential remedial options for the site, Stratus conducted a DPE pilot test in June 2011. Soil vapor and groundwater were extracted from wells EX-1 through EX-3 for a period of 5 days. Approximately 29,450 gallons of water were extracted during the DPE test. A radius of influence of at least 25 feet developed around each of the extraction wells. The test achieved GRO extraction rates up to 64 pounds (lb)/day in soil vapor, and 94 lb/day in groundwater. During the course of the test approximately 441 lb

¹² Additional Site Investigation Report, Conestoga-Rovers & Associates, dated June 14, 2010.

Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Final-November 2007, San Francisco Bay Regional Water Quality Control Board, revised May 2008 [Table E].

of GRO, 6.4 lb of MTBE, and 1.2 lb of benzene were removed, demonstrating that DPE is a viable remedial option for the site conditions.

GEOLOGY, HYDROGEOLOGY, AND EXTENT OF IMPACT

Geology

The subject site is situated on the East Bay Plain approximately 1¼ miles northeast of San Francisco Bay. The site vicinity is underlain by unconsolidated Holocene-age alluvium consisting of moderately to poorly sorted silt and clay up to 10 feet thick, overlying well bedded, moderately sorted fine sand, silt, and clayey silt with occasional thin beds of coarse sand.¹⁴

These general conditions are reflected in the boring logs prepared by ASE and CRA, and in cross-section interpretations prepared by CRA. The shallow sedimentary material beneath the site consists predominantly of a sandy stratum to depths between approximately 2 and 6 feet bgs, overlying a stratum of fine-grained sediment, overlying a second sandy stratum. The upper sandy stratum is interpreted to be fill in some locations, and consists predominantly of fine to coarse sand, with up to 35% silt, and in some locations, up to 50% gravel. The fine-grained sediment consists of apparently interfingered layers of silt, clay, clayey silt, and silty clay in varying proportions, sometimes with fine to medium sand (up to 35%). The lower sandy stratum appears to consist predominantly of fine to medium sand with 10% to 40% silt. The lower sandy stratum is encountered in some, but not all, of the borings advanced at the site, at depths between 16 and 24 feet bgs.

Based on the borings advanced to date, the lateral and vertical extent of the lower sandy stratum has not been characterized, and its potential effect on the migration of dissolved hydrocarbons cannot be evaluated.

Hydrogeology

The site is situated within the East Bay Plain Groundwater Sub Basin. The nearest surface water is San Lorenzo Creek, which flows in a concrete-lined channel approximately 4-mile north of the site. A total of twenty-one groundwater monitoring events have been performed between the fourth quarter 1999 and third quarter 2011. During this time, groundwater has been measured between 5.25 and 8.35 feet bgs (Appendix A).

¹⁴ Flatland Deposits of the San Francisco Bay Region, California-Their Geology and Engineering Properties, and Their Importance to Comprehensive Planning, E.J. Helley, K.R. LaJoie, W.E. Spangle and M.L. Blair, US Geological Survey Professional Paper 943, 1979.

¹⁵ California Department of Water Resources Bulletin 118, dated 2004.

Data from the December 12, 2011¹⁶ monitoring and sampling event (indicate groundwater flow was to the southwest at a gradient of approximately 0.005 ft/ft. Historically, groundwater flow has been predominantly to the west-southwest, and during the historical monitoring period, groundwater flow has fluctuated from south-southwest to west.

Groundwater beneath the site is shallow (approximately 6.14 to 8.08 feet bgs based on historical monitoring data). Based on our understanding of general construction practices, electrical, communications, water service, and natural gas service lines are generally not installed deep enough to intersect the water table beneath the site. Storm drain and sanitary sewer lines generally are installed deep enough to intersect the water table beneath the site, and these piping excavations can locally affect groundwater flow. Sewer lines installed in Grant Avenue do intersect the water table, and the sewer lateral behind the Arroyo Center building is also likely installed deep enough to intersect the water table.

Extent of Impact in Soil

Residual petroleum hydrocarbons remain in the vicinity of the former USTs and dispenser islands. High concentrations were reported in sample T-3E (Appendix A) from 7 feet bgs in the northern corner of the former fuel UST pit, where total petroleum hydrocarbons as gasoline (TPHg) was reported at a concentration of 3,800 milligrams per kilogram (mg/Kg), benzene was reported at 30 mg/Kg, and methyl tert butyl ether (MTBE) was reported at 27 mg/Kg. Low concentrations of petroleum hydrocarbons were also reported in the three other samples collected from the walls of the former UST pit. High petroleum hydrocarbon concentrations were also reported beneath the southwestern end of the former dispenser nearest to the station building (inner dispenser island). This area was excavated, and a sample from the base of the excavation (3.5 feet bgs) did not contain residual petroleum hydrocarbons. Finally, petroleum hydrocarbons were not reported in the sample collected from the base of the former waste oil UST pit after it was excavated to 12 feet bgs.

Residual petroleum hydrocarbons in soil have been reported at depths up to 24.5 feet bgs (Appendix A) from borings advanced during site assessment activities implemented subsequent to UST and dispenser removal. The highest concentrations of diesel-range organics (DRO), gasoline-range organics (GRO), benzene, and MTBE are generally found in samples collected at depths from approximately 7 to 12 feet bgs. The highest concentrations of DRO (up to 1,800 mg/Kg) and GRO (up to 360 mg/Kg) were reported in samples collected from borings B-1 and MW-4 (adjacent to the outer dispenser island), and from boring B-4 (adjacent to the former gasoline UST pit where high concentrations

K:\Olympic Service Station (Jaber Family Trust)\Reports\Ozone Pilot Test Report.docx

¹⁶ Quarterly Groundwater Monitoring Report-Fourth Quarter 2011, Stratus Environmental, Inc., dated February 16, 2012.

were reported in compliance samples). The highest benzene concentration (0.72 mg/Kg) was reported in boring B-8, and the highest MTBE concentration (1.8 mg/Kg) was reported in a sample from boring B-4.

Away from the source areas (UST excavations and dispenser islands), the highest residual concentrations of DRO (up to 320 mg/Kg), GRO (up to 290 mg/Kg), and benzene (up to 0.72 mg/Kg) were reported southwest of the site in samples collected at 11.5 feet bgs in borings BH-A, BH-B, BH-C, and B-8, and the highest MTBE concentrations were reported in boring B-5 (up to 0.022 mg/Kg). The presence of hydrocarbons in soils away from the source areas is attributed to transport by groundwater.

Extent of Impact in Groundwater

The current analytical suite for groundwater includes GRO, benzene, toluene, ethylbenzene, and xylenes (BTEX), and MTBE. DRO analysis was discontinued after third quarter 2009. During the most recent full groundwater sampling event prior to the DPE pilot test (February 4, 2011), GRO was reported only in wells MW-3 (220 micrograms/liter [μ g/L]) and MW-4 (4,800 μ g/L). Benzene concentrations in these wells were reported at 64 μ g/L and 350 μ g/L, respectively, and in well MW-1 (0.90 μ g/L). MTBE was reported in all wells, at concentrations ranging from 4.4 μ g/L to 440 μ g/L, with the highest concentration reported in well MW-4 (Appendix A).

Historical analytical data for grab groundwater samples collected from the exploratory soil borings (Appendix A) indicate that characterization of the lateral extent of dissolved hydrocarbons in groundwater is adequate to begin interim remediation. Off-site migration of the dissolved petroleum hydrocarbon plume is to the west and southwest. CRA concluded¹¹ that the sanitary sewer lines in Grant Avenue may be acting as a preferential pathway for dissolved petroleum hydrocarbon migration. GRO and benzene were reported in grab groundwater samples collected adjacent to the first sewer line (borings B-11 and B-13), but were not reported in water samples collected adjacent to the second sewer line (borings B-10 and B-12), suggesting that once the dissolved hydrocarbons reach the first sewer line, they preferentially migrate in the backfill of the pipe trench instead of continuing to the northwest. MTBE concentrations in these grab groundwater samples from borings B-10 through B-13 show a similar pattern.

Potential Upgradient Hydrocarbon Source

A review of GeoTracker records indicates three former UST sites are situated upgradient (northeast) of the former Olympic site:

• One diesel and one gasoline UST were removed at Arroyo High School in January 1991 (northeast corner of campus, approximate 0.3 miles north-northeast

of the Olympic site). Low levels of DRO and BTEX compounds were reported in samples from groundwater wells. This site was closed by a letter from ACEHD dated January 18, 2000.

• A leaking UST was removed from former Chevron #9-5630, located at 997 Grant Avenue (northeast corner of Grant and Washington Avenues, approximately 0.4 miles from the site). Monitoring data on file with Alameda County indicate GRO, BTEX, and MTBE were reported in groundwater samples from this site. This site was closed by a letter from ACEHD dated September 19, 1997.

Based on the groundwater elevation and analytical data for these sites available in the ACEHD files, and the distances of these sites from the Olympic site, it appears unlikely hydrocarbons from either of these site contributed to the hydrocarbon plume beneath the Olympic site.

Petroleum Hydrocarbons in Soil Vapors

Soil vapor samples were collected from SV-1 through SV-4 on February 25, 2010. GRO (36,000,000 micrograms/cubic meter [μ g/m3] to 52,000,000 μ g/m3) and benzene (18,000 μ g/m3 to 160,000 μ g/m3) were reported in all samples. MTBE was reported only in the sample from SV-4 (5,400 μ g/m3). Soil vapor analytical data are included in Appendix A. All reported GRO and benzene concentrations were above their respective current ESLs for commercial land use. Due to the shallow groundwater, high soil vapor concentrations are likely to be found across the former Olympic station site and the portion of the adjoining property overlying the dissolved hydrocarbon plume.

OZONE INJECTION PILOT TEST

The O₃ injection pilot test was conducted from September 29 through October 31, 2011 (total duration 32 days). Details regarding the test wells, injection equipment, test protocol/procedures, analytical methods, and results of the test are presented in the following sub-sections. A summary of system operational data and field data collected periodically throughout the pilot test are included as Tables 2 and 3, respectively; field data sheets are included in Appendix B. Analytical data collected during the pilot test are summarized in Tables 4 and 5; laboratory reports and chain-of-custody documentation are presented in Appendix C.

Injection and Observation Wells

O₃-enriched air was injected through wells IW-1 and IW-2 (screened from 9.5 to 11.5 and 14 to 16 feet bgs, respectively). Wells MW-3, MW-4, and EX-1 served as observation points to monitor the performance of the O₃ injection system. Well locations are shown on

Figure 2. Refer to Table 1 for details regarding construction details of the injection and observation wells.

Test Equipment

The remediation equipment utilized during the pilot test consisted of O₃ generating and injection equipment housed in an enclosed, trailer-mounted cabinet. O₃ was generated using an oxygen concentrator and O₃ generator, followed by a compressor to inject the O₃-enriched air into the wells. The O₃ generation system was capable of generating up to 2.75 lb/day of O₃ at a concentration of 6% by weight, with injection flow rates up to 12 standard cubic feet per hour (scfh) at 12 pounds per square inch (psi) pressure. The O₃ injection system alternated between wells IW-1 and IW-2 in 30-minute cycles. Based on the system's O₃ generation capabilities, approximately 1.38 lbs of O₃ per well per day were injected during the pilot test. Based on system operational uptime (766 total hours of system operation, approximately 383 hours/well), approximately 87.7 lbs of O₃ were injected into the subsurface during the pilot test.

Monitoring Protocol

An array of four existing groundwater wells was used as observation points to monitor conditions at background and performance indicator points:

Background	MW-2
Performance Indicator	MW-3, MW-4, & EX-1
Compliance	6.5 < pH < 8.5 in PI wells

The background well was used to monitor the natural changes in groundwater geochemistry. Performance indicator wells were used to evaluate the effectiveness of O₃ injection in reducing gasoline hydrocarbon concentrations, and to monitor potential changes in groundwater geochemistry that could be attributed to O₃ injection. Injection well IW-1 was installed approximately 20 feet upgradient of groundwater monitoring well MW-4 and extraction well EX-1. Injection well IW-2 was situated approximately 20 feet upgradient of groundwater monitoring well MW-3.

Baseline Conditions

On September 29, 2011 (prior to starting O₃ injection), Stratus collected groundwater samples from the background and performance indicator wells to establish baseline conditions. Field instruments were used to measure depth to water (DTW), pH, temperature, dissolved oxygen (DO), oxygen reduction potential (ORP), and specific conductivity (SC) in the site wells (Table 3).

Injection Conditions

During the O₃ injection period, Stratus conducted weekly visits to verify system operation, optimize system performance, conduct maintenance as warranted, and measure field parameters (DTW, pH, temperature, DO, ORP, and SC). On October 12, 2011, a second round of groundwater samples were collected from the background and performance indicator wells to assess the interim progress of the pilot test.

Post Injection

The O₃ injection equipment was shut down and removed from the site on October 31, 2011. Post injection monitoring and sampling was performed on November 9, 2011, which included a final round of field parameter measurements (DTW, pH, temperature, DO, ORP, and SC) and a third round of groundwater samples collected from the background and performance indicator wells.

Laboratory Analytical Methods

All samples collected during the pilot test were handled and transported under strict chain-of-custody protocol. Samples were submitted to Alpha Analytical, Inc., a California-certified analytical laboratory (ELAP #2019). Laboratory reports with chain-of-custody records are presented in Appendix C. Groundwater samples were analyzed for the following gasoline hydrocarbon compounds (results are summarized in Table 4):

- GRO using United States Environmental Protection Agency (USEPA) Method SW8015B,
- BTEX, MTBE, tert butyl alcohol (TBA), tert amyl methyl ether (TAME), di-isopropyl ether (DIPE), ethyl tert butyl ether (ETBE), and 1,2-dichloroethane (1,2-DCA) using USEPA Method SW8260B.

Samples were also analyzed for the following inorganic compounds (results are summarized in Table 5):

- Metals (Be, Ca, Cr, Co, Cu, total Fe, dissolved Fe, Pb, Mg, Mn, Ni, Na, V, Cd, and Zn) by USEPA Method SW6020/SW6020A
- Hexavalent chromium (Cr⁺⁶) using USEPA Method 7199 or 218.6
- Ferrous iron (Fe⁺²) using USEPA Method SM3500-Fe B
- Ferric iron (Fe⁺³) using USEPA Method SM3500-Fe B/EPA Method 6020A
- Total phosphorus (P) using USEPA Method 365.3/SM4500PE

- Chemical oxygen demand (COD) using USEPA Method 410.4
- Total organic carbon (TOC) using USEPA Method SW9060/SM3510C
- Bromate (BrO⁻³) by USEPA Method 317

Pilot Test Results

System operation data and field parameter measurements collected periodically throughout the pilot test are summarized in Tables 2 and 3, respectively. The analytical data collected during the pilot test are summarized in Tables 4 and 5.

Summary of Field Parameters

- Baseline DO measurements in the background and performance indicator wells ranged from 1.07 to 1.57 milligrams/liter (mg/L). DO concentrations in the well network fluctuated from 0.00 to 2.03 mg/L during the course of the pilot test. DO concentrations in the performance indicator wells and do not indicate an influence from ozone injection (Figure 3).
- Temperature measurements ranged from 15.0 to 21.0 degrees Celsius (°C) during the test period. Measurements remained relatively steady in performance indicator wells do not indicate an influence from ozone injection (Figure 4).
- Measurements of the pH ranged from 6.63 to 7.58. Measurements remained relatively steady in performance indicator wells and do not indicate an influence from ozone injection (Figure 5).
- Specific conductivity (SC) measurements ranged from 1,112 to 1,366 microsiemens/centimeter (μS/cm). SC measurements varied only slightly during the test period. SC measurements during the pilot test do not indicate an influence from ozone injection (Figure 6).
- ORP measurements ranged from 247 to 405 millivolts (mV). Little variation in ORP values was observed during the test, and do not indicate an influence from ozone injection (Figure 7).

Gasoline Hydrocarbon Analytical Results

Graphs depicting the variations in gasoline hydrocarbon concentrations in the wells during the pilot test are shown in Figures 8 through 11. The following results/observations regarding the effects of O_3 injection are noted:

February 21, 2012 2115-1436-01

Background Well

• MW-2 - GRO, BTEX, DIPE, ETBE, TAME, TBA, and 1,2-DCA were not reported in the baseline, midpoint, or post-injection samples. MTBE was reported in all three samples; concentrations exhibited a decreasing trend, from 41 to 33 µg/L.

Performance Indicator Wells

- Well MW-3 –GRO, toluene, ethylbenzene, xylenes, DIPE, ETBE, TAME, TBA, and 1,2-DCA were not reported in the baseline, midpoint or post-injection samples. Low concentrations of benzene were reported in the midpoint sample (0.91 μg/L) and post-injections sample (1.8 μg/L). MTBE was reported in all three samples, exhibiting a slight increase from 28 to 32 μg/L.
- Well MW-4 DIPE, ETBE, and 1,2-DCA were not reported in the baseline, midpoint, or post-injection samples. GRO concentrations decreased from 8,700 μg/L in the baseline sample to 1,500 μg/L in the midpoint sample, then increased to 2,800 μg/L in the post-injection sample. Benzene concentrations exhibited a similar trend, decreasing from an initial concentration of 590 to 160 μg/L, then rebounding to 190 μg/L. Concentrations of MTBE decreased steadily from 1,500 to 720 μg/L; TAME concentrations decreased from 28 to 3.6 μg/L. TBA in the baseline sample was below the laboratory reporting limit of <100 μg/L, but was reported in the midpoint sample at 42 μg/L, and increased in the post-injection sample to 270 μg/L. TBA is a known byproduct of the oxidation of MTBE.
- Well EX-1 DIPE, ETBE, TBA and 1,2-DCA were not reported in the baseline, midpoint, or post-injection samples. GRO concentrations initially increased from 150 to 180 μ g/L, then decreased to <50 μ g/L. Benzene concentrations exhibited a similar trend, initially increasing from 13 to 23 μ g/L, then decreasing to 4.3 μ g/L. MTBE concentrations in this well increased from 23 to 34 μ g/L. TAME concentrations decreased from 1.2 to <1.0 μ g/L.

Metals and Inorganic Compounds

The following results/observations regarding the effects of O₃ injection on metals and inorganic compounds are noted:

Background Well

• Well MW-2 - Be, BrO⁻³, Cd, Cr⁺⁶, Fe⁺², and Zn were not reported in any of the samples. Concentrations of Co, total Cr, Cu, total Fe, dissolved Fe, Fe⁺³, Mn, Ni, P, TOC, and V decreased during the test. Concentrations of Ca, Mg, and Na exhibited increases. COD was reported at 7,100 μg/L in the baseline sample.

Performance Indicator Wells

- Well MW-3 Be, Cd, Co, Cr⁺⁶, Fe⁺², Pb, and Zn were not reported in any of the samples. Concentrations of Ca and Na fluctuated down, then up, but exhibited no overall change. Concentrations of total Cr, total Fe, Fe⁺³, and V exhibited an initial increase from baseline conditions, then a decrease to concentration to near or below the baseline. Concentrations of Mg, Ni, and P exhibited initial decreases from baseline, followed by an increase. Concentrations of BrO³⁻ exhibited an increase from <1.0 in the baseline sample to 68 μg/L in the post-injection sample. Concentrations of Cu, dissolved Fe, Mn, and TOC decreased during the test. COD was reported at 7,900 μg/L in the baseline sample.
- Well MW-4 Be, BrO⁻³, Cd, Co, Cr⁺⁶, Cu, Pb, and Zn were not reported in any of the samples. Concentrations of total Cr, total Fe, Fe⁺³, Mg, Mn, Na, P, and V decreased during the test. TOC concentrations increased during the test. Concentrations of Ca and Fe⁺² exhibited an initial increase followed by a decrease, while concentrations of dissolved Fe and Ni initially decreased, then increased. COD was reported at 80,000 μg/L in the baseline sample.
- Well EX-1 Be, BrO⁻³, Cd, Cr⁺⁶, Fe⁺², Pb, and Zn were not reported in any of the samples. Concentrations of dissolved Fe and Mn decreased during the test. Concentrations of Co, Cu, Mg, TOC, and V increased during the test. Concentrations of Ca initially increased, then decreased, while concentrations of total Cr, total Fe, Fe⁺³, Na, Ni, and P initially decreased, then increased. COD was reported at <5,000 μg/L in the baseline sample.

Discussion

Radius of Influence

The radius of influence (ROI) around an O₃ injection well is based on the observed effects on groundwater chemistry measured at various distances and directions around the injection well. However, these observations are influenced by effects of heterogeneity in the subsurface (variations in permeability and porosity of the sediments, localized variations in the chemistry of the sediments, non-homogenous distributions of gasoline hydrocarbons in the subsurface, etc). For these reasons, estimates of ROI are often inexact, and are a judgment call by the supervising engineer. Based on the field parameters and the chemical analytical data, the ROI for injection wells IW-1 and IW-2 was approximately 20 feet.

Effects of O₃ Injection

Strong oxidation effects from the injected O₃ were not observed in the field measurements. Trends in the field data were not consistent between wells MW-3 and MW-4, both situated approximately 20 feet downgradient from injections wells. Trends in the DO, pH, and temperature measurements were similar in both wells over the course of the test, while the SC and ORP measurements were dissimilar. Likewise, the pH and SC measurement trends in adjacent wells MW-4 and EX-1 were similar, but dissimilar for DO, ORP, and temperature measurements.

Analytical data from the hydrocarbon analyses also exhibited dissimilar trends between the three performance indicator wells and the background well. GRO and benzene were not reported in background well MW-2, and MTBE concentrations decreased. At performance indicator well MW-3, benzene and MTBE concentrations increased. At performance indicator well MW-4, GRO, benzene, and MTBE concentrations all decreased during the test. At performance indicator well EX-1, GRO and benzene concentrations both exhibited similar trends of initial increasing from the baseline concentrations at the midpoint injection sampling event, then decreasing below baseline in the post-injection sampling event, while MTBE concentrations increased during the test.

 O_3 injection does not appear to have significantly altered the groundwater geochemical environment to any significant degree. While changes in concentrations of metals are observed, and appear related to the injection of oxidizing compounds, the changes do not appear to have adversely affected groundwater quality. Significantly, Cr^{6+} was not reported in any of the samples collected during the pilot test. Of the inorganic indicators (COD, TOC, bromate), only bromate was reported. In performance indicator well MW-3, bromate was not reported in the baseline or midpoint injection samples (<1.0 μ g/L), but it was reported in the post-injection sample (68 μ g/L). The Maximum Contaminant Level for bromated is 10 μ g/L.

Recommendations

Injection of O₃ generally appears to reduce the concentrations of gasoline hydrocarbons dissolved in the groundwater beneath the site, without generating harmful alterations to groundwater chemistry. Stratus recommends that a Corrective Action Plan (CAP) be prepared that compares the overall effectiveness of DPE and O₃ injection, analyzes the long-term projected costs associated with implementation of both approaches, and presents a plan to implement the technology that presents the most cost effective remedial approach for the site.

February 21, 2012 2115-1436-01

LIMITATIONS

This report was prepared in general accordance with accepted standards of care that existed at the time this work was performed. No other warranty, expressed or implied, is made. Conclusions and recommendations are based on field observations and data obtained from this work and previous investigations. It should be recognized that definition and evaluation of geologic conditions is a difficult and somewhat inexact science. Judgments leading to conclusions and recommendations are generally made with an incomplete knowledge of the subsurface conditions present. More extensive studies may be performed to reduce uncertainties. This report is solely for the use and information of our client unless otherwise noted.

Please contact Steve Carter by telephone at (530) 676-6008 or by electronic mail at scarter@stratusinc.net if you have any questions regarding this project.

Sincerely,

STRATUS ENVIRONMENTAL, IN

Stephen J. Carter, P.G.

Project Manager

Stephen J. Carter
No. 5577

Gowri S. Kowtha, P.E.

Principal Engineeer

Attachments:

Table 1	Well	Construction	and Soil	Boring Summary
x 00 x 0 x	11011	COLIDIA GOLIOIT	mid Oom	Doming Dumman v

Table 2 O₃ Injection Pilot Test - System Operational Summary

Table 3 O₃ Injection Pilot Test - Field Data Summary

Table 4 O₃ Injection Pilot Test - Groundwater Analytical Summary

(Hydrocarbons)

Table 5 O₃ Injection Pilot Test - Groundwater Analytical Summary (Inorganics)

Figure 1 Site Location Map

Figure 2 Site Plan

Figure 3 Dissolved Oxygen (DO) Over Time

Figure 4 Temperature Over Time

Figure 5 pH Over Time

Figure 6 Specific Conductivity Over Time

Figure 7 ORP Over Time

Figure 8 Hydrocarbon Concentrations, Well MW-2

Figure 9 Hydrocarbon Concentrations, Well MW-3

Figure 10 Hydrocarbon Concentrations, Well MW-4

Figure 11 Hydrocarbon Concentrations, Well EX-1

Appendix A Historical Data Tables

Appendix B Field Data Sheets

Appendix C Laboratory Analytical Reports and Chain-of-Custody Documentation

cc: Mr. Philip Jaber

TABLE 1

WELL CONSTRUCTION AND SOIL BORING SUMMARY

Former Olympic Station 1436 Grant Avenue, San Lorenzo, California

Well		Boring	Boring	Well	Well	Screen	Slot		
I.D.	Date	Depth	Diameter	Diameter	Depth	Interval	Size	Drilling Method	Consultant
		(feet)	(inches)	(inches)	(feet)	(feet bgs)	(inches)		
BH-A	04/30/02	20	2					Direct Push	Aqua Science Engineers, Inc.
ВН-В	04/30/02	20	2					Direct Push	Aqua Science Engineers, Inc.
вн-с	04/30/02	20	2					Direct Push	Aqua Science Engineers, Inc.
B11 0	0 1/00/02	20	-					Direct I usii	Aqua science Engineers, inc.
B-1	02/25/08	25	3.25			***		Direct Push	Conestoga-Rovers & Assoc.
B-2	02/25/08	25	3.25					Direct Push	Conestoga-Rovers & Assoc.
B-3	02/26/08	25	3.25					Direct Push	Conestoga-Rovers & Assoc.
B-4	02/25/08	25	3.25					Direct Push	Conestoga-Rovers & Assoc.
B-5	02/26/08	25	3.25					Direct Push	Conestoga-Rovers & Assoc.
B-6	02/26/08	25	3.25					Direct Push	Conestoga-Rovers & Assoc.
B-7	02/26/08	25	3.25					Direct Push	Conestoga-Rovers & Assoc.
B-8	02/25/08	25	3.25					Direct Push	Conestoga-Rovers & Assoc.
B-9	02/11/10	25	2.5					Direct Push	Conestoga-Rovers & Assoc.
B-10	02/11/10	25	2.5					Direct Push	Conestoga-Rovers & Assoc.
B-11	02/10/10	11	2.5					Hand Auger	Conestoga-Rovers & Assoc.
B-12	02/11/10	25	2.5					Hand Auger	Conestoga-Rovers & Assoc.
B-13	02/10/10	4	3.25					Hand Auger	Conestoga-Rovers & Assoc.
B-13A	02/10/10	8	3.25					Hand Auger	Conestoga-Rovers & Assoc.
B-13B	02/10/10	9	3.25					Hand Auger	Conestoga-Rovers & Assoc.
B-13C	02/12/10	12	3.25					Hand Auger	Conestoga-Rovers & Assoc.
1.007.1	00/04/00	26.5	0						
MW-1	09/24/99	26.5	8	2	26.5	5 - 26.5	0.020	HSA	Aqua Science Engineers, Inc.
MW-2	09/24/99	20	8	2	20	5 - 20	0.020	HSA	Aqua Science Engineers, Inc.
MW-3	09/24/99	21.5	8	2	21	5 - 21	0.020	HSA	Aqua Science Engineers, Inc.
MW-4	02/09/10	10	10	4	10	5 - 10	0.010	HSA	Conestoga-Rovers & Assoc.
EX-1	05/19/11	20	10	4	20	5 -20	0.020	HSA	Stratus Environmental, Inc.
EX-2	05/19/11	20	10	4	20	5 -20	0.020	HSA	Stratus Environmental, Inc.
EX-3	05/19/11	20	10	4	20	5 -20	0.020	HSA	Stratus Environmental, Inc.
									Situation Environmental, inc.
IW-1	05/20/11	11.5	8	0.75	11.5	9.5 - 11.5	micro	HSA	Stratus Environmental, Inc.
IW-2	05/20/11	16	8	0.75	16	14 - 16	micro ¹	HSA	Stratus Environmental, Inc.
SV-1	02/12/10	5.5	3.25	0.375	5	5 ²	0.002^2	77 1 4	
SV-2	02/09/10	5.5	3.25		5	5 ²	0.002	Hand Auger	Conestoga-Rovers & Assoc.
SV-2 SV-3	02/09/10	5.5	3.25	0.375	5	5 5 ²	0.002° 0.002°	Hand Auger	Conestoga-Rovers & Assoc.
SV-3	02/09/10	5.5 5.5	3.25	0.375	5	5 ²	0.002^{-1} 0.002^{2}	Hand Auger	Conestoga-Rovers & Assoc.
SV-4	02/09/10	5.5 5.5		0.375		5 ³		Hand Auger	Conestoga-Rovers & Assoc.
S V - J	03/20/11	<i>3</i> .3	3.25	0.375	5	5 ⁻	0.002^3	Hand Auger	Stratus Environmental, Inc.

HSA = hollow stem auger

^{1 =} Wells were constructed with 3/4-inch casing attached to a 2" diameter x 24" long ceramic microsparge unit.
2 = Vapor points were constructed with a 3/8" diameter x 1" long 40- to 60-micron (0.002 inch) pore polyethylene vapor probe.
3 = Vapor point was constructed with a 3/8" diameter x 1/2" long 50-micron (0.002 inch) pore stainless-steel vapor probe.

TABLE 2 O₃ Injection Pilot Test - System Operation Summary

Former Olympic Service Station 1436 Grant Avenue, San Lorenzo, California

Startup 0 4	(per well) 0 48	IW-1 24	20	(scfm) 4.2	(min/hr) 30
	-				30
	-				30
4	48	10	• •		
	10	10	10	4.0	30
13	156	15	10	4.0	30
21	254	9	9	4.1	30
26	100 page	19	18	4.5	30
32	383	18	19	4.4	30
	21 26	21 254 26	21 254 9 26 19	21 254 9 9 26 19 18	21 254 9 9 4.1 26 19 18 4.5

Legend

psi = pounds per square inch

-- not measured

scfm = standard cubic feet per minute

min/hr = minutes per hour

TABLE 3
O₃ Injection Pilot Test - Field Data Summary

Former Olympic Service Station 1436 Grant Avenue, San Lorenzo, CA

Inject. 10/0 10/1 10/2 10/2 10/3 Post I. 11/0 Performance Indi MW-3 Baseli 09/2 Injecti 10/0 10/1 10/2 10/3 Post Ii 11/0 MW-4 Baseli 09/2 Injecti 10/9/2 Injecti	ine 29/11 ion 03/11 12/11 20/11 25/11 31/11 injection 09/11	7.39 7.32 6.62 7.07 7.17 7.18	1.07 0.71 0.95 0.24 1.08 1.07	20.0 19.6 19.7 20.1 18.4 18.8	6.79 7.07 6.86 7.02 7.39 7.25 7.58	1252 1316 1329 1317 1354 1291 1366	(mV) 318 356 405 357 306 300 276
MW-2 Baseli 09/2 Inject 10/0 10/1 10/2 10/2 10/3 Post II 11/0 Performance Indi MW-3 Baseli 09/2 Injecti 10/0 10/1 10/2 10/3 Post II 11/0 MW-4 Baseli 09/2 Injecti 10/0 Injecti 10/0 Injecti Injecti	ine 29/11 ion 03/11 12/11 20/11 25/11 31/11 injection 09/11	7.32 6.62 7.07 7.17 7.18	0.71 0.95 0.24 1.08 1.07	19.6 19.7 20.1 18.4 18.8	7.07 6.86 7.02 7.39 7.25	1316 1329 1317 1354 1291	356 405 357 306 300
09/2 Inject. 10/0 10/1 10/2 10/2 10/2 10/3 Post I. 11/0 Performance Indi MW-3 Baseli 09/2 Injecti 10/0 10/1 10/2 10/3 Post In 11/0 MW-4 Baseli 09/2 Injecti 10/9/2 Injecti	29/11 ion 03/11 12/11 20/11 25/11 31/11 injection 09/11	7.32 6.62 7.07 7.17 7.18	0.71 0.95 0.24 1.08 1.07	19.6 19.7 20.1 18.4 18.8	7.07 6.86 7.02 7.39 7.25	1316 1329 1317 1354 1291	356 405 357 306 300
Inject. 10/0 10/1 10/2 10/2 10/3 10/3 Post I. 11/0 Performance Indi MW-3 Baseli 09/2 Injecti 10/0 10/1 10/2 10/3 Post Ii 11/0 MW-4 Baseli 09/2 Injecti 10/9/2 Injecti	ion 03/11 12/11 20/11 25/11 31/11 injection 09/11	7.32 6.62 7.07 7.17 7.18	0.71 0.95 0.24 1.08 1.07	19.6 19.7 20.1 18.4 18.8	7.07 6.86 7.02 7.39 7.25	1316 1329 1317 1354 1291	356 405 357 306 300
10/0 10/1 10/2 10/2 10/2 10/3 Post II 11/0 Performance Indi MW-3 Baseli 09/2 Injecti 10/0 10/1 10/2 10/3 Post Ii 11/0 MW-4 Baseli 09/2 Injecti 10/9/2 Injecti	03/11	6.62 7.07 7.17 7.18	0.95 0.24 1.08 1.07	19.7 20.1 18.4 18.8	6.86 7.02 7.39 7.25	1329 1317 1354 1291	405 357 306 300
10/1 10/2 10/2 10/2 10/3 Post II 11/0 Performance Indi MW-3 Baseli 09/2 Injecti 10/0 10/1 10/2 10/3 Post Ii 11/0 MW-4 Baseli 09/2 Injecti 10/9 Injecti	12/11 (20/11) (20/11) (25/11) (25/11) (25/11) (26/11)	6.62 7.07 7.17 7.18	0.95 0.24 1.08 1.07	19.7 20.1 18.4 18.8	6.86 7.02 7.39 7.25	1329 1317 1354 1291	405 357 306 300
10/2 10/3 10/3 Post II 11/0 Performance Indi MW-3 Baseli 09/2 Injecti 10/0 10/1 10/2 10/3 Post Ii 11/0 MW-4 Baseli 09/2 Injecti	20/11	7.07 7.17 7.18	0.24 1.08 1.07	20.1 18.4 18.8	7.02 7.39 7.25	1317 1354 1291	357 306 300
10/3 10/3 Post II 11/0 Performance Indi MW-3 Baseli 09/2 Injecti 10/0 10/1 10/2 10/3 Post Ii 11/0 MW-4 Baseli 09/2 Injecti	25/11	7.17 7.18	1.08 1.07	18.4 18.8	7.39 7.25	1354 1291	306 300
10/3 Post I. 11/0 Performance Indi MW-3 Baseli 09/2 Injecti 10/0 10/1 10/2 10/3 Post In 11/0 MW-4 Baseli 09/2 Injecti	31/11 Injection 09/11 icator Wells	7.18	1.07	18.8	7.25	1291	300
Post I. 11/0 Performance Indi MW-3 Baseli 09/2 Injecti 10/0 10/1 10/2 10/3 Post Ii 11/0 MW-4 Baseli 09/2 Injecti	njection 09/11 - * icator Wells						
Performance Indi MW-3 Baseli 09/2 Injecti 10/0 10/1 10/2 10/3 Post In 11/0 MW-4 Baseli 09/2 Injecti	09/11	7.11	1.25	17.3	7.58	1366	276
Performance Indi MW-3 Baseli 09/2 Injecti 10/0 10/1 10/2 10/2 10/3 Post In 11/0 MW-4 Baseli 09/2 Injecti	icator Wells	7.11	1.25	17.3	7.58	1366	276
MW-3 Baseli 09/2 Injecti 10/0 10/1 10/2 10/2 10/3 Post In 11/0 MW-4 Baseli 09/2 Injecti							
09/2 Injecti 10/0 10/1 10/2 10/2 10/3 Post Ii 11/0 MW-4 Baseli 09/2 Injecti							
Injecti 10/0 10/1 10/2 10/3 10/3 Post In 11/0 MW-4 Baseli 09/2 Injecti	ine						
10/0 10/1 10/2 10/2 10/3 <i>Post In</i> 11/0 MW-4 Baseli 09/2 Injecti	29/11	7.43	1.57	20.3	6.89	1315	263
10/1 10/2 10/2 10/3 <i>Post In</i> 11/0 MW-4 Baseli 09/2 <i>Injecti</i>	ion						
10/2 10/2 10/3 <i>Post Ii</i> 11/0 MW-4 <i>Baseli</i> 09/2 <i>Injecti</i>	03/11	7.39	1.70	20.0	7.53	1296	314
10/2 10/3 Post Ii 11/0 MW-4 Baseli 09/2 Injecti	12/11	5.67	2.03	19.5	7.12	1112	339
10/3 Post In 11/0 MW-4 Baseli 09/2 Injecti	20/11	7.12	0.69	20.5	7.06	1228	324
Post In 11/0 MW-4 Baseli 09/2 Injecti	25/11	7.26	1.43	20.9	7.11	1197	357
11/0 MW-4 Baseli 09/2 Injecti	31/11	7.28	1.17	20.6	7.09	1261	367
MW-4 Baseli 09/2 Injecti	njection						
09/2 Injecti)9/11	7.16	1.25	19.7	6.96	1245	365
09/2 Injecti	ine						
·	29/11	7.37	1.12	19.8	6.95	314	291
·	ion						
10/3	3/11 ¹						
		5.61	0.00	19.1	6.63	915	324
	$.2/11$ ϵ						
	0/11						
	0/11 ¹ 5/11 ¹						
	0/11 ¹ 5/11 ¹ 1/11 ¹						
11/0	0/11 ¹ 5/11 ¹ 1/11 ¹ njection	7.18	0.72	19.6	6.66	881	299

Former Olympic Service Station 1436 Grant Avenue, San Lorenzo, CA

Well Number	Date	Depth to Water (ft)	DO (mg/L)	Temperature (°C)	pН	Specific Conductivity (µS/cm)	ORP (mV)
EX-1	Baseline						
	09/29/11	7.53	1.11	19.5	7.11	1279	247
	Injection						
	10/03/11	7.48	1.06	19.1	7.35	1326	335
	10/12/11	6.63	1.46	19.4	6.97	1341	393
	10/20/11	7.22	0.60	19.1	7.37	1312	283
	10/25/11	7.35	1.23	21.0	7.02	1344	372
	10/31/11						
	Post Injection						
	11/09/11	7.28	1.65	15.0	7.02	1354	390

<u>Legend</u>

ft = feet

 μ S/cm = microSiemens per centimeter

DO = dissolved oxygen

ORP = oxidation reduction potential

mg/L = milligrams per liter

mV = millivolts

Temp. = temperature

-- = Not measured or collected

°C = degrees Celcius

Notes

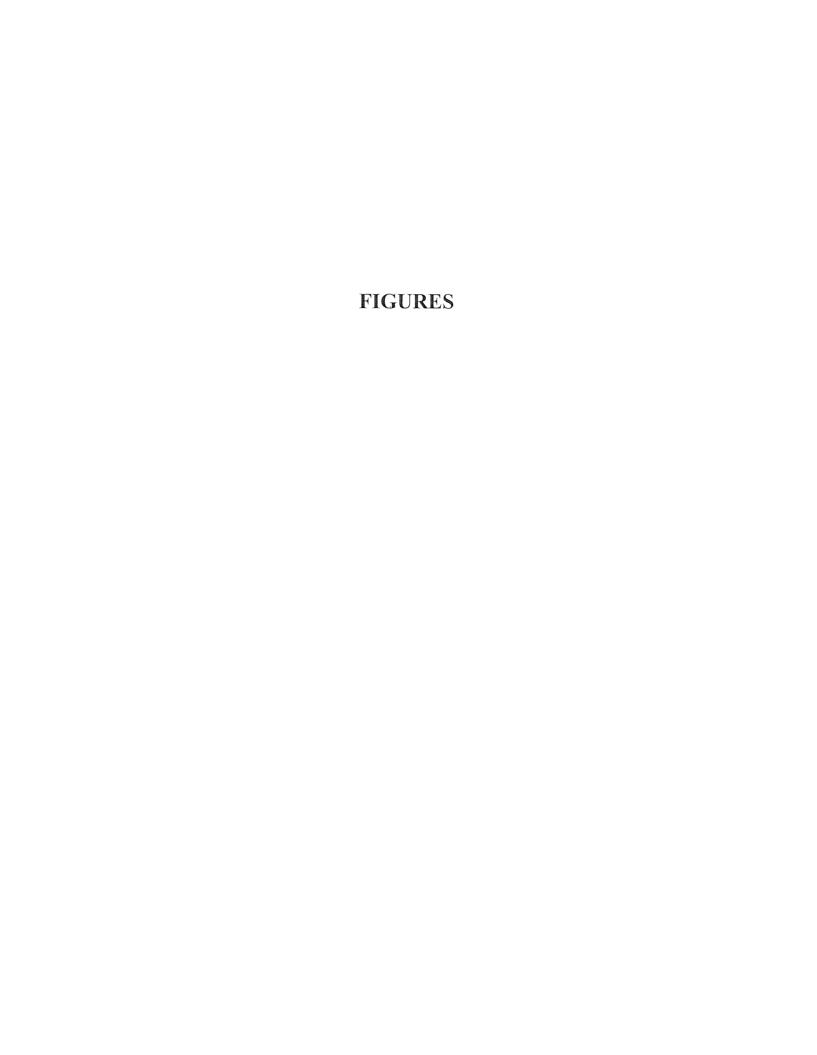
Temp., pH, specific conductance, and ORP measurements are all recorded without purging.

O₃ injection started September 29, 2011.

O₃ injection ended October 31, 2011.

¹No measurements taken, due to car parked over well.

 $TABLE\ 4 \\ O_3\ Injection\ Pilot\ Test\ -\ Groundwater\ Analytical\ Summary\ (Hydrocarbons) \\ Former\ Olympic\ Service\ Station$


1436 Grant Avenue, San Lorenzo, CA

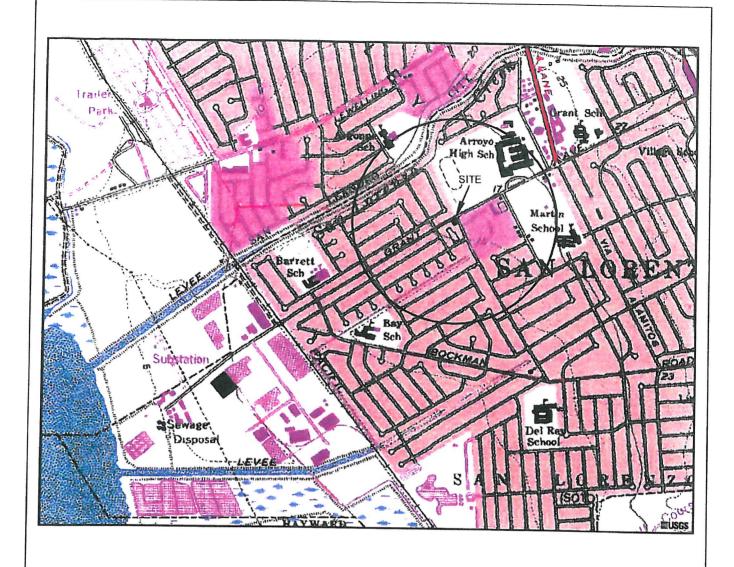

						Total						
Well Number	Sample Date	GRO (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Xylenes (μg/L)	MTBE (μg/L)	DIPE (μg/L)	ETBE (μg/L)	TAME (μg/L)	TBA (μg/L)	1,2-DCA (μg/L)
Backgroui	1 177. 11	<u> </u>	4.8.7	W 8)	(FE-/	(18-2)	(68.2)	(822)	(481)	(4812)	(µg/L)	(4812)
MW-2	<u>na vven</u> Baseline											
.,,,,,,,,	09/29/11 Injection	<50	< 0.50	< 0.50	< 0.50	< 0.50	41	<1.0	<1.0	<1.0	<10	<1.0
	10/12/11	<50	< 0.50	< 0.50	< 0.50	< 0.50	37	<1.0	<1.0	<1.0	<10	<1.0
	Post Injection 11/09/11	<50	< 0.50	< 0.50	< 0.50	< 0.50	33	<1.0	<1.0	<1.0	<10	<1.0
<u>Performan</u>	ice Indicator We	<u>lls</u>										
MW-3	Baseline											
	09/29/11	<50	< 0.50	< 0.50	< 0.50	< 0.50	28	<1.0	<1.0	<1.0	<10	<1.0
	Injection 10/12/11	<50	0.91	< 0.50	< 0.50	<0.50	22	<1.0	<1.0	<1.0	-10	41.0
	Post Injection	\ 30	0.91	<0.50	<0.50	< 0.50	32	<1.0	<1.0	<1.0	<10	<1.0
	11/09/11	<50	1.8	< 0.50	< 0.50	< 0.50	31	<1.0	<1.0	<1.0	<10	<1.0
MW-4	Baseline											
	09/29/11 Injection	8,700	590	<5.0 1	34	<5.0 1	1,500	<10 1	<10 1	28	<100 1	<10 1
	10/12/11 Post Injection	1,500	160	<1.0 1	1.8	<1.0 1	1,300	<2.0 1	<2.0 1	8.6	42	<2.0 1
	11/09/11	2,800	190	1.4	9.6	1.3	720	<2.0 1	<2.0 1	3.6	270	<2.0 1
EX-1	Baseline											
	09/29/11 Injection	150	13	< 0.50	3.2	1.1	23	<1.0	<1.0	1.2	<10	<1.0
	10/12/11	180	23	0.51	2.8	0.97	27	<1.0	<1.0	1.0	<10	<1.0
	Post Injection 11/09/11	<50	4.3	< 0.50	< 0.50	< 0.50	34	<1.0	<1.0	<1.0	<10	<1.0
Legend							Analytical Me	thods				***************************************
GRO - Gas	oline range orga	nics (C4 -	C13)	TAME = T	ertiary amyl meth	ıvl ether	GRO - EPA M		15B			
	lethyl tert-butyl	`	,		t-butyl alcohol	<i>y</i>	VOCs - EPA N					
	isopropyl ether				1,2-Dichloroetha	ne	. 500 1111	.10111000 0 1101	.001			
	hyl tertiary butyl	ether			rograms per liter		1 = Reporting 1	limits incress	ed due to bio	h concentrati	ons of target	analytes
	and terrior y outly!	. June1		PEL IIIC	rograma per mer		O ₃ injection st	arted Septem	ber 29, 2011		ons or target	anarytes

TABLE 5 O₃ Injection Pilot Test - Groundwater Analytical Summary (Inorganics)

Former Olympic Service Station 1436 Grant Avenue, San Lorenzo, CA

Date (μg/L) (μ	70C V Zn μg/L) (μg/L) (μg/L) 3400 96 <100 3300 78 <100 32 <100 3400 32 <100					
Date (μg/L) (μ	1g/L) (μg/L) (μg/L) 1,400 96 <100 1,300 78 <100 1,200 74 <100 1,500 22 <100					
Background Well MW-2 Baseline 09/29/11 < 4.0 < 1.0 100,000 < 5.0 18 7,100 85 < 1.0 < 1.0 10 29 32,000 360 < 50 32,000 72,000 2,100 210,000 93 1,300 9.4 36	,400 96 <100 ,300 78 <100 ,200 74 <100 ,500 22 <100					
MW-2 Baseline 09/29/11 <4.0 <1.0 100,000 <5.0 18 7,100 85 <1.0 <1.0 29 32,000 360 <50 32,000 72,000 2,100 210,000 93 1,300 9.4 3 0 3 Injection 10/12/11 <4.0 <1.0 110,000 <5.0 11 65 <1.0 <1.0 18 22,000 370 <50 22,000 66,000 1,600 190,000 50 530 6.0 3 Post Injection 11/09/11 <4.0 <1.0 110,000 <5.0 11 62 <1.0 <1.0 19 22,000 <300 <50 22,000 73,000 1,300 220,000 64 570 6.4 3 MW-3 Baseline 09/29/11 <4.0 <1.0 85,000 <5.0 <5.0 7,900 20 <1.0 <1.0 44 5,500 330 <50 5,500 59,000 1,300 240,000 58 530 <5.0 3 0 3	,300 78 <100 ,200 74 <100 ,500 22 <100					
MW-2 Baseline 09/29/11 < 4.0	,300 78 <100 ,200 74 <100 ,500 22 <100					
O ₃ Injection 10/12/11	,300 78 <100 ,200 74 <100 ,500 22 <100					
O ₃ Injection 10/12/11 <4.0 <1.0 110,000 <5.0 11 65 <1.0 <1.0 18 22,000 370 <50 22,000 66,000 1,600 190,000 50 530 6.0 3 Post Injection 11/09/11 <4.0 <1.0 110,000 <5.0 11 62 <1.0 <1.0 19 22,000 <300 <50 22,000 73,000 1,300 220,000 64 570 6.4 3 Performance Indicator Wells MW-3 Baseline 09/29/11 <4.0 <1.0 85,000 <5.0 <5.0 7,900 20 <1.0 <1.0 <1.0 44 5,500 330 <50 5,500 59,000 1,300 240,000 58 530 <5.0 3 O ₃ Injection 10/12/11 <4.0 <1.0 81,000 <5.0 <5.0 <5.0 22 <1.0 <1.0 <1.0 6,900 <300 <50 6,900 50,000 1,000 180,000 19 280 <5.0 3	,300 78 <100 ,200 74 <100 ,500 22 <100					
Post Injection 11/09/11 <4.0 <1.0 110,000 <5.0 11 62 <1.0 <1.0 19 22,000 <300 <50 22,000 73,000 1,300 220,000 64 570 6.4 3 Performance Indicator Wells MW-3 Baseline	,200 74 <100 ,500 22 <100					
11/09/11	,500 22 <100					
Performance Indicator Wells MW-3 Baseline 09/29/11 <4.0 <1.0 85,000 <5.0 <5.0 7,900 20 <1.0 <1.0 44 5,500 330 <50 5,500 59,000 1,300 240,000 58 530 <5.0 3 O3 Injection 10/12/11 <4.0 <1.0 81,000 <5.0 <5.0 <5.0 - 22 <1.0 <1.0 <1.0 6,900 <300 <50 6,900 50,000 1,000 180,000 19 280 <5.0 3 <5.0 3 <5.0 <5.0 3 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <	,500 22 <100					
MW-3 Baseline 09/29/11 <4.0	,					
MW-3 Baseline 09/29/11 <4.0 <1.0 85,000 <5.0 <5.0 7,900 20 <1.0 <1.0 44 5,500 330 <50 5,500 59,000 1,300 240,000 58 530 <5.0 3 O ₃ Injection 10/12/11 <4.0 <1.0 81,000 <5.0 <5.0 22 <1.0 <1.0 <10 6,900 <300 <50 6,900 50,000 1,000 180,000 19 280 <5.0 3	,					
09/29/11 <4.0 <1.0 85,000 <5.0 <5.0 7,900 20 <1.0 <1.0 44 5,500 330 <50 5,500 59,000 1,300 240,000 58 530 <5.0 3 O ₃ Injection 10/12/11 <4.0 <1.0 81,000 <5.0 <5.0 22 <1.0 <1.0 <10 6,900 <300 <50 6,900 50,000 1,000 180,000 19 280 <5.0 3	,					
O ₃ Injection 10/12/11 <4.0 <1.0 81,000 <5.0 <5.0 - 22 <1.0 <1.0 <10 6,900 <300 <50 6,900 50,000 1,000 180,000 19 280 <5.0 3	,					
10 0,500 10 0,500 1,000 1	400 32 <100					
Post Injection	,400 52 100					
11/09/11 <4.0 68 85,000 <5.0 <5.0 14 <1.0 <1.0 <10 3,900 <300 <50 3,900 60,000 1,000 240,000 20 340 <5.0 3	,300 23 <100					
MW-4 Baseline						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7,000 11 <100					
1010411 10 10 07 000 70 70						
10/12/11 <4.0 <1.0 85,000 <5.0 <5.0 <5.0 <1.0 <1.0 <10 7,000 330 2,700 4,300 77,000 4,300 83,000 <10 1,200 <5.0 2 Post Injection	7,000 <5.0 <100					
11/00/11 440 210 77/000 50 50	3,000 <5.0 <100					
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
EX-1 Baseline						
	300 29 <100					
O_3 Injection						
10/12/11 <4.0 <1.0 98,000 <5.0 <5.0 7.5 <1.0 <1.0 <10 3,400 330 <50 3,400 58,000 1,100 210,000 12 300 <5.0 3	,4 00 29 <100					
11/00/11 - 4.0 - 4.0 - 00.000 - 5.0 - 7.0	500 42 4100					
11/09/11 <4.0 <1.0 92,000 <5.0 5.0 33 <1.0 <1.0 11 11,000 <300 <50 11,000 64,000 1,000 240,000 40 490 <5.0 4	500 43 <100					
<u>Legend</u>						
$\mu g/L = micrograms per liter$ $Fe^{2+} = Ferrous iron$ $Analytical Methods$ $^2 = reported as dissolved metals (un-preserved in the field, lab-filtered to the field of the field) ^2 = reported as dissolved metals (un-preserved in the field) $	nen preserved)					
Be = Beryllium Fe ³⁺ = Ferric iron BrO ³⁻ - EPA Method 317 (UV/VIS)	ren preserved)					
BrO ³⁻ = bromate Mg = Magnisium Metals - EPA Methods SW6020/SW6020A						
Ca = Calcium $Ca = Calcium$ $Ca =$						
$Cd = Cadmium \qquad Na = Sodium \qquad Fe^{3+} - SM3500-FeB/EPA 6020A$						
Co - Cobalt Ni = Nickel Dissolved Iron - EPA Method 6020						
COD = Chemical oxygen demand P = Phosphorous P - EPA Method 365.3/SM4500PE						
Cr = Chromium Pb = Lead COD - EPA Method 410.4						
Cr ⁶⁺ = hexavalent chromum TOC = Total organic carbon TOC - EPA Method SW9060/SM5310C O ₃ injection started September 29, 2011.						
$Cu = Copper$ $V = Vanadium$ $Cr^{6+} - EPA$ Method 7199 or 218.6 O_3 injection ended October 31, 2011.	!					
Fe = Iron $Z_n = Z_n$ = Zinc	!					
	ļ					

GENERAL NOTES:
BASE MAP FROM U.S.G.S.
SAN LORENZO, CA.
7.5 MINUTE TOPOGRAPHIC
PHOTOREVISED 1978

APPROXIMATE SCALE

STRATUS ENVIRONMENTAL, INC. FORMER OLYMPIC SERVICE STATION 1436 GRANT AVENUE SAN LORENZO, CALIFORNIA

SITE LOCATION MAP

FIGURE

1
PROJECT NO.

2115-1436-01

Figure 3: Dissolved Oxygen (DO) Over Time
90-Day O₃ Injection Pilot Test --- Former Olympic Service Station

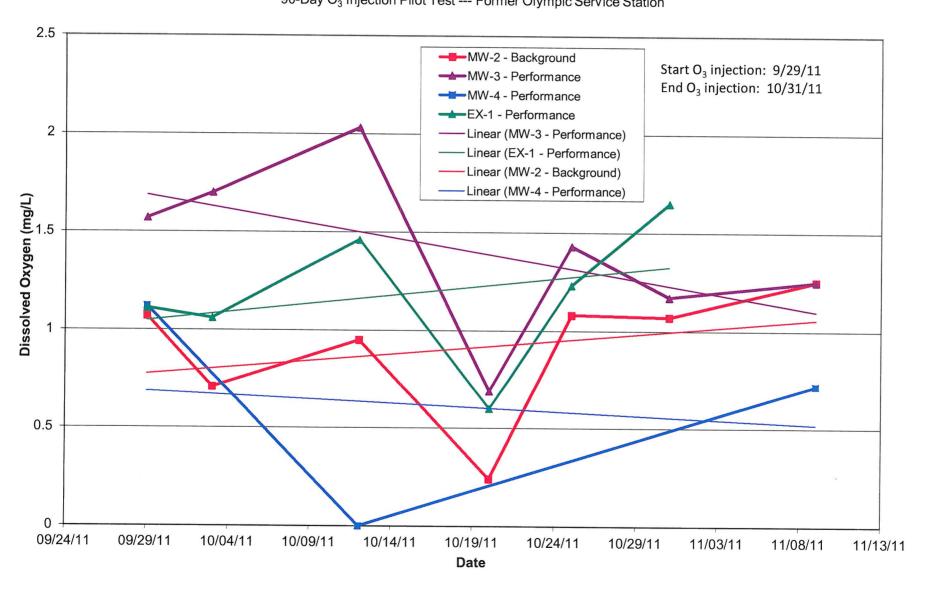


Figure 4: Temperature Over Time
90-Day O₃ Injection Pilot Test --- Former Olympic Service Station

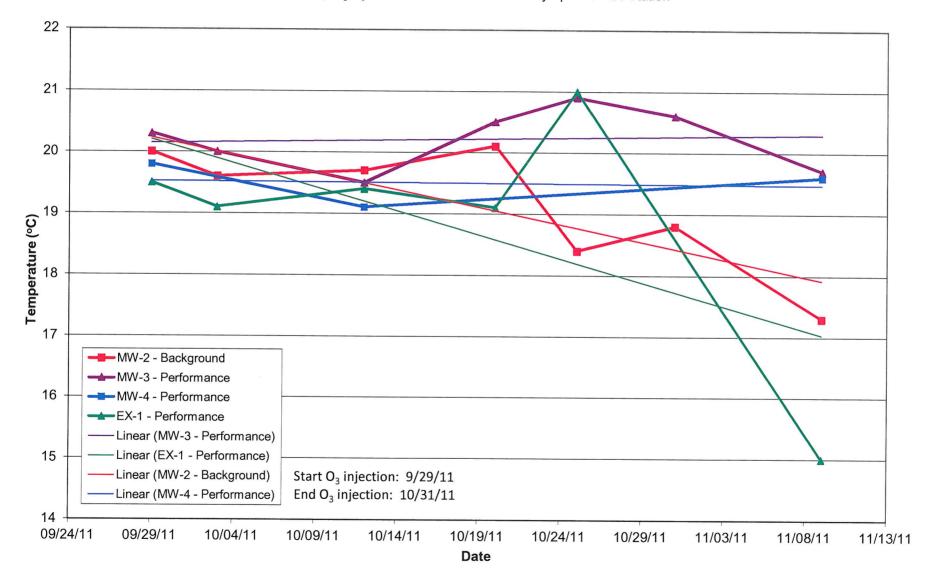


Figure 5: pH Over Time
90-Day O₃ Injection Pilot Test --- Former Olympic Service Station

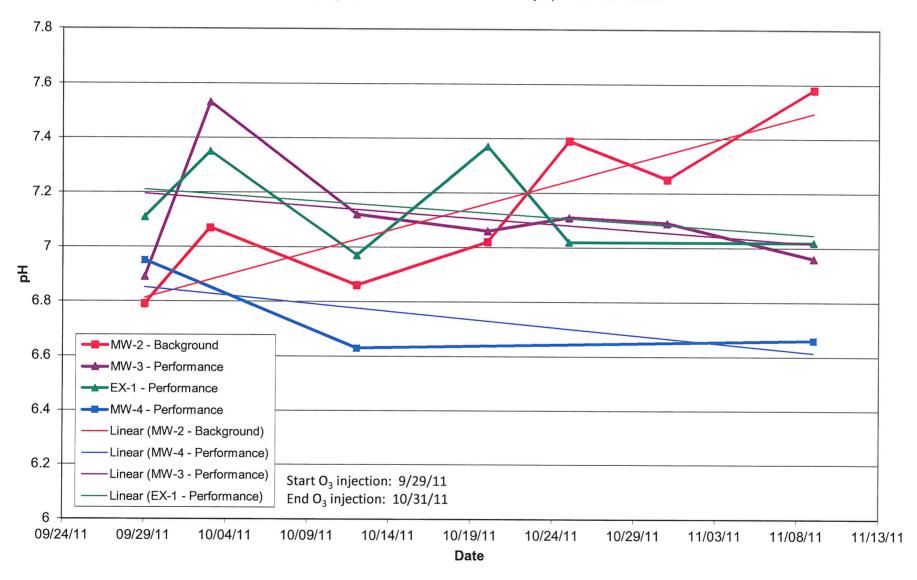
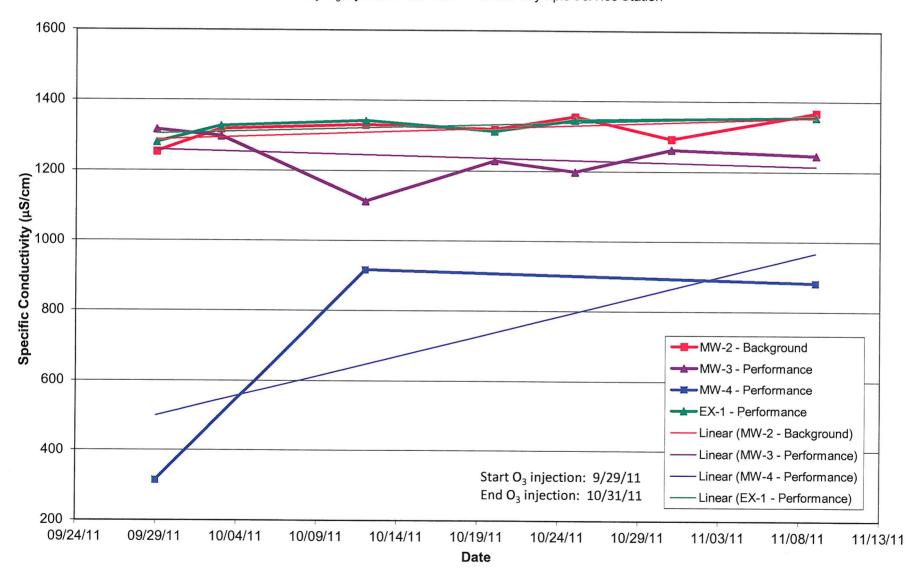
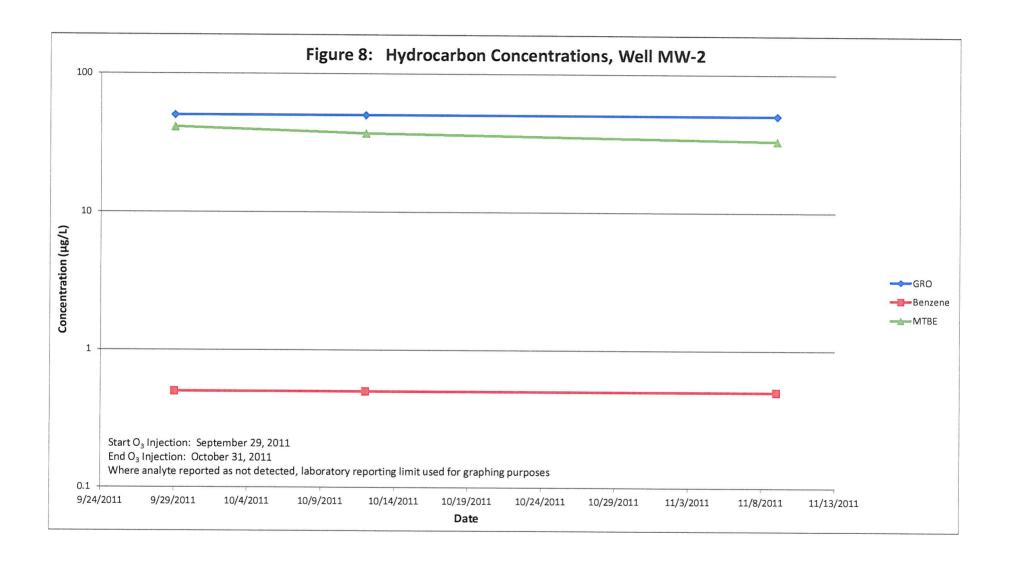
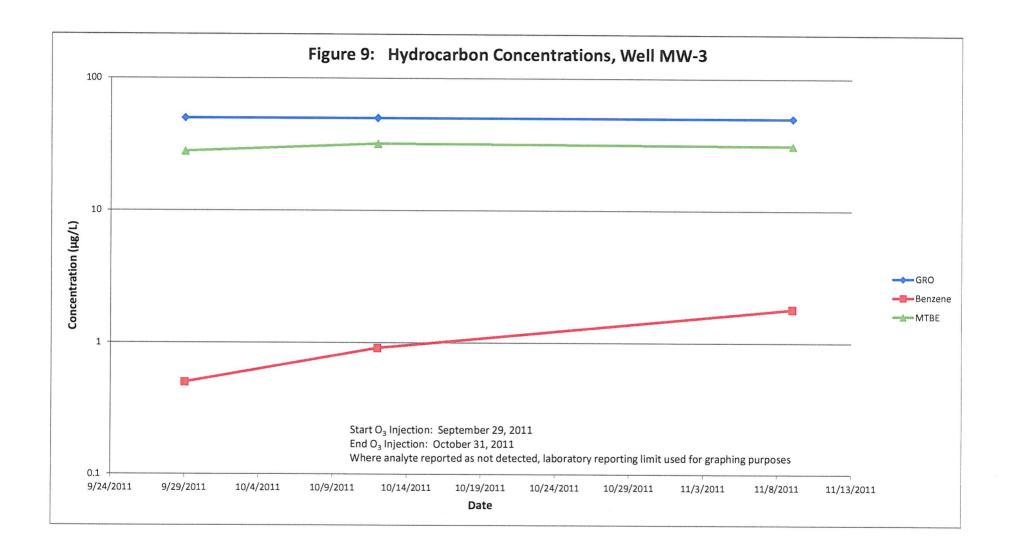
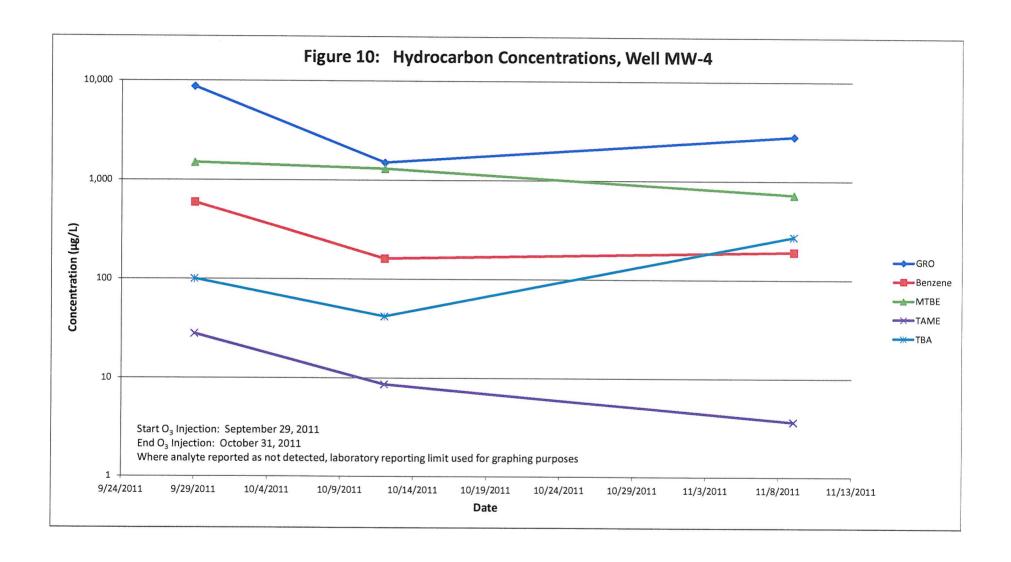
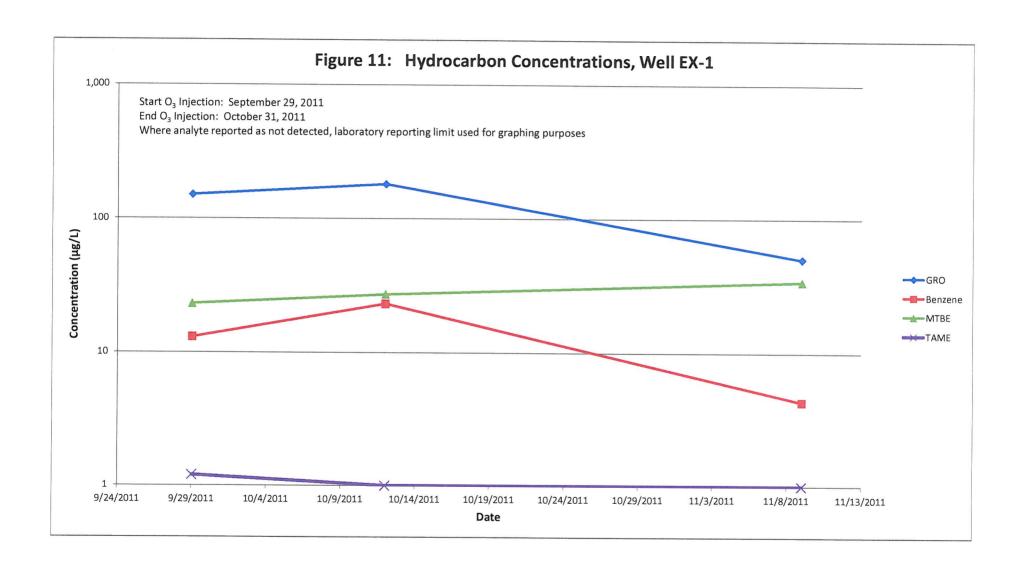


Figure 6: Specific Conductivity Over Time
90-Day O₃ Injection Pilot Test --- Former Olympic Service Station


Figure 7: ORP Over Time
90-Day O₃ Injection Pilot Test --- Former Olympic Service Station

APPENDIX A HISTORICAL DATA TABLES

TABLE 2
GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY

Former Olympic Service Station, 1436 Grant Avenue, San Lorenzo, CA

Well Number	Date Collected	Depth to Water (feet)	Top of Casing Elevation (ft msl)*	Grouwater Elevation (ft msl)	GRO (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (μg/L)
MW-1	02/04/11	7.20	15.71	8.51	<50	0.90	<0.5	<0.5	-0.5	
	06/03/11	7.28	18.60	11.32		0.50		mpled	<0.5	62
	08/02/11	7.47		11.13	120	< 0.50	< 0.50	<0.50	< 0.50	160
MW-2	02/04/11	6.79	15.17	8.38	<50	<0.50	-0.50	0 #0		
	06/03/11	6.82	18.00	11.18	~ 50	~0.50	< 0.50	< 0.50	< 0.50	4.4
	08/02/11	7.06	20,00	10.94	<50	-0.50	Not Sa	-		
				10.54	\ 30	< 0.50	< 0.50	< 0.50	< 0.50	46
MW-3	2/4/2011[1]	6.80	15.13	8.33	220[1]	64	1.6	<0.5	-0.5	
	06/03/11	6.87	17.95	11.08	200	26	< 0.50		< 0.5	36
	08/02/11	7.07		10.88	<50	2.5	<0.50	<0.50 <0.50	< 0.50	34
						2.2	~0.50	~0.50	< 0.50	36
MW-4	2/4/2011[1]	6.71	15.15	8.44	4,800[1]	350	7.1	23	-2.5	4.40
	06/03/11	6.78	17.99	11.21	4,700	350	2.6	23 19	<2.5	440
	08/02/11	7.01		10.98	4,700	290	<2.5[2]	19	<2.5[2]	670
					,	250	\Z.J[Z]	12	<2.5[2]	970
EX-1	06/03/11	6.96	18.14	11.18	76	8.3	< 0.50	< 0.50	0.99	37
	08/02/11	7.20		10.94	420	37	0.65	3.5	2.9	37
EW 0	0.640.545							٥.5	4.7	32
EX-2	06/03/11	6.81	18.14	11.33	760	<1.5[2]	<1.5[2]	<1.5[2]	<1.5[2]	1,100
	08/02/11	7.03		11.11	920	8.7	<1.0[2]	<1.0[2]	<1.0[2]	920
EX-3	06/03/11							[-]	1.0[2]	720
EA-3	06/03/11	6.55	17.63	11.08	95	0.93	< 0.50	< 0.50	< 0.50	78
	08/02/11	6.82		10.81	130	1.5	< 0.50	< 0.50	< 0.50	150

GROUNDWATER ANALYTICAL DATA ENCINAL PROPERTIES FORMER OLYMPIAN SERVICE STATION 1436 GRANT AVENUE SAN LORENZO, CALIFORNIA

TOC (ft above insi	Date Sampled l)	DTW (ft)	GWE (ft above msl)	Oil & Grease	ТРНто	TPUd	TPHg			Ethylbenzene			SVOCs & HVOC	DIPE	TAME	ЕТВЕ	TBA	Ethanol	EDB	1,2- DCA	Not
ESL': Groundw	aler is not a curre	nt or potential o	frinking water resource						Concentratio	us in micrograms	per liter (µg	A)		.5							
			, water resource	NE	NE	210	210	46	130	43	100	1,680		NE	NE					-	
Grab Groun	donter Sample	?S													NE .	NE	18,600	NE	NE	200	
Pit Water	9/13/1998		**	••		D 11 (18)															-
BH-A	4/30/2002	17/8				2,100	3,600	350	130	39	380	17,000	**								
BH-B	4/30/2002	16/8	**		<100	<100	180	<0.50	< 0.50	8.8	< 0.50	82						**	~~	**	
BH-C	4/30/2002	16/8			<100	<200	2,300	120	17	60	150	2,000		<0.50	< 0.50	< 0.50	<5.0			**	
B-1-gw	2/25/2008	3/3.95	**		<100	<150	1,200	57	0.72	43	87	240	**	<5.0	<5.0	<5.0	<50	***			
B-2-gw	2/25/2008	7.5/6.95				260,000	4,600	330	<5.0	33	<5.0			< 0.50	1.0	< 0.50	<5.0	**		**	
B-3-gw	2/26/2008	8/NA	•			1,900	540	12	<2.5	<2.5	<2.5	370	**	<5.0	<5.0	< 5.0	<20	<500	<5.0	<5.0	*
B-4-gw	2/25/2008		••			<50	<50	< 0.5	< 0.5	< 0.5		220	••	<2.5	<2.5	<2.5	<10	<250	<2.5	<2.5	
	2/26/2008	7.5/7.80			**	6,800	7,300	150	<50		<0.5	4.0		< 0.5	< 0.5	< 0.5	<2.0	<50	<0.5	<0.5	
		8/6,40	**	**		250	320	<10	<10	150	<50	2,700		<50	<50	<50	1,700	<5,000	<50	<50	
	2/26/2008	8/6.95				120	<50	<5.0	<5.0	13	<10	630		<10	<10	<10	<4()	<1,000	<10		
	2/26/2008	8/6.55				84	<50	<0.5		<5.0	<5.0	240		<5.0	<5.0	<5.0	<20	<500		<10	*
	2/25/2008	8/6.10				1,000	930		<0.5	<0.5	<0.5	27	**	< 0.5	< 0.5	<0.5	<2.0		<5.0	<5.0	•
	2/11/2010	6.33				<50		37	<2.5	64	23	160	**	<2.5	<2.5	<2.5		<50	< 0.5	<0.5	•
	2/11/2010	6.89	**				<50	<2.5	<2.5	<2.5	<2.5	160		<2.5	<2.5		<10	<250	<2.5	<2.5	*
	2/10/2010	5.20	***			<50	<50	<0.5	< 0.5	<0.5	< 0.5	5.1		<0.5		<2.5	<10	<250	<2.5	<2.5	4
3-12	2/11/2010	6.65				3,700	130	0.69	<0.5	< 0.5	< 0.5	25			<0.5		<2 ()	<50	<0.5	< 0.5	•
I-13C :	2/12/2010	8.97				<50	<50	<0.5	<0.5	<0.5	< 0.5	1.2		<0.5	<0.5		<2.0	<50	< 0.5	< 0.5	*
						3,400	2,300	<2.5	<2.5	<2.5	<2.5	92		<0.5 <2.5		<0.5 <2.5	<2.0 92	<50	<0.5	<0.5	٠
martarly Com	undumler Sam														-2.0	~2.3	92	<250	<2.5	<2.5	*
																					*
	10/6/1999	8.35	6.65	~-	**	84	3,900	<25	enr.												-
	/13/2000	7.90	7.10			<50	<1,300	18	<25 <13	<25		3,500	**					_			
	/12/2000	7.08	7.92			56	<1,000	66	<10	<13		1.700				****				••	•
	/19/2000	7.66	7.34			52	<1,000	<10	<10	<10		1,600									
	0/25/2000	7.91	7.09	**	**	76	4,100	120		<10	<10	1,200	**				**				
	/16/2007	6.32	8.68						<25	<25	<25	6,100						**			•
	3/1/2007	5.88	9.12		<250	<50	<50	-1.7			*-	**		**							•
	71/2007	7.24	8.47		<250	<50	<50	<1.2	<1.2	<1.2	<1.2	78		<1.2			<12	*100			
8	/1/2007	7,77	7.94	4.0	-2.50	<50		<5.0	<5.0	<5.0	<5.0	250							<1.2	<1.2	*
11	1/1/2007	7.71	8.00				<5(1	<25	<25	<25	<25	520	***				<50		5.0	<5.0	•
2,	/1/2008	5.71	10.00			<50	<50	<12	<12	<12	<12	460							<25	<25	*
5,	/2/2008	7.52	8.19			<50		<2.5	<2.5	<2.5		110	••						:12	<12	
8,	/1/2008	8.02	7.69		<250	<50	<50	<5.0	<5.0			240							2.5	<2.5	*
	/4/2008	7.28	8.43			<50	<50	<10	<10			500 500					:20	<500 <	5.0	<5.0	
	11/2009	8.08			**	<50	<50	<5.0	<5.0				**				40 <	1,000 <	10	<10	
			7.63			<50			<5.0	_ :		260	*~	<5.0	<5.0 <	5.0	26	<500 <	5.0	<5.0	
		6.14	9.57						<0.5			270	**	<5.0	<5.0 <	5.0 <	20	<500 <	5.0	<5.0	
5/	18/2010	7.09	8.62	**				-0.5				39				••				-5.0	
											**		**								

GROUNDWATER ANALYTICAL DATA ENCINAL PROPERTIES FORMER OLYMPIAN SERVICE STATION 1436 GRANT AVENUE SAN LORENZO, CALIFORNIA

Well ID TOC (ft above ms		DTW (ft)	GWE (ft above msl)	Oil & Grease	TPHmp	ТРНа	ТРНд			Ethylbenzene			SVOCs & HVOCs	DIPE	ТАМЕ	ETRE	TBA	Ethanal	EDR	1,2- DCA	Notes
ESI : Grounds	vater is not a curren	d or polential.	drinking water resource	NE	NE	240				ns in micrograms	per liter (ug	/L)									
					146	210	210	46	130	43	100	1,800		NE	NE	NE	18,000	NE	NE.	200	
	8/5/2010	7.65	8.06				<50	<0.5	<0.5	<0.5	<0.5	350	••							200	
MW-2	10/6/1999	7.87	6.59	<1.000	<500	<50	70													***	*
14,46	1/13/2000	7.46	7.00	<1,000	<500	<50	70	<0.5	< 0.5	<0.5	< 0.5	11	ND								
	4/12/2000	6.67	7.79	1,100	<500	<50	<50	<0.5	< 0.5	<0.5	< 0.5	6.2	ND				. **		**	~~	•
	7/19/2000	7.23	7.23	1,300	<500		<50	< 0.5	<0.5	< 0.5	< 0.5	39	**								
	10/25/2000	7.52	6.94	**		<50	<1,000	<10	<10	< 10	<10	990	**						W. 40		
	2/16/2007	5.89	8.57		<500	<50	370	<2.5	<2.5	<2.5	<2.5	690	**		**		**				
	3/1/2007	5.45	9.01				~-	***										**	***	*-	
5.17	5/1/2007	6.83	8.34		<250	<50	<50	<0.5	<0.5	< 0.5	< 0.5	9.8									
	8/1/2007	7.35	7.82		<250	<50	<50	<5.0	<5.0	<5.0	<5.0	120	••	<0.5	<0.5	<0.5	<5.0	<50	<0.5	< 0.5	•
	11/1/2007	7.27				<50	<50	<5.0	<5.0	<5,0	<5.0			<5.0	<5,0	<5.0	<50	<500	<5.0	<5.0	
	2/1/2008	5.25	7.90	**		<50	<50	<0.5	< 0.5	<0.5	<0.5	130	***	<5.0	<5.0	<5.0	<50	<500	<5.0	<5,0	
	5/2/2008	7.12	9.92			<50	<50	< 0.5	<0.5	<0.5		19		<0.5	<0.5	<0.5	< 5.0	<50	< 0.5	< 0.5	
	8/1/2008		8.05		***	<50	<50	<2.5	<2.5	<2.5	<0.5	3.3	-	<0.5	< 0.5	< 0.5	<2.0	<50	< 0.5	< 0.5	*
IW-2		7.59	7.58		**	<50	<50	<1.0	<1.0		<2.5	83.0	**	<2.5	<2.5	<2.5	<10	<250	<2.5	<2.5	
	11/4/2008	6.84	8.33			80	<50	<0.5	<0.5	<1.0	<1.0	52		<1.0	<1.0	<1.0	<4.0	<100	<1.0	<1.0	
mi,	8/11/2009	7.65	7.52		**	<50	<50	<0.5	<0.5	<0.5	<0.5	5.9		< 0.5	< 0.5	< 0.5	<2.0	<50	<0.5	<0.5	
	2/3/2010	5.75	9.42	70			<50	<0.5		<0.5	<0.5	9.4	~*	<0.5	<0.5	<0.5	< 2.0		<0.5		-
	5/18/2010	6.67	8.50		**	**	-50		<0.5	<0.5	<0.5	0.86						-50	-0.0	<0.5	
	8/5/2010	7.25	7.92				<50	-0.#				***							~~	**	
							\30	<0.5	<0.5	<0.5	<0.5	57								**	
	10/6/1999	7.90	6.51		h.m.	300	3.000													**	
	1/13/2000	7.50	6.91			210	3,900 740	900	89	160	560	790									
	4/12/2000	6.61	7.80			640	2,200	110	4.8	35	18	290		**						~-	
	7/19/2000	7.24	7.17			270	2,700	650	9.7	180	24	140									
1	0/25/2000	7.52	6.89			150		420	<2.5	160	<2.5	99	**				-	••	**		
:	2/16/2007	5.90	8.51				710	180	<2.5	24	<2.5	71	**							**	•
	3/1/2007	5,44	8.97	~~	<250										**			**			•
.13	5/1/2007	6.87	8.26		<250	<50	82	20	<1.7	<1.7	<1.7	100	••				-10	- 100			
	6/1/2007	7.40	7.73			<50	<50	<5.0	<5.0	<5.0	<5.0	88							<1.7	<1.7	*
1	1/1/2007	7.35	7.78		**	<50	130	12	<2.5	<2.5	<2.5	98							5.0	<5.0	*
:	2/1/2008	5.28	9.85		**	<50	77	<2.5	<2.5	<2.5	<2.5	68							2.5	<2.5	•
		7.15	7.98	•	**	<50	<50	<2.5	<2.5	<2.5		97							2.5	<2.5	*
		7.66		••	-	<50	68	2.3	<1.7	<1.7		86							2.5	<2.5	
		6,96	7.47			<50	85	3.5	<1.0	<1.0								<170 <	1.7	<1.7	
			8.17		••	<50	<50	<1.0	<1.0	<1.0		66				1.0	7.2	<100 <	1.0	<1.0	
		7.72	7.41			<50	110		<0.5	<0.5		40			<1.0 <	1.0 <	4.0	<100 <	1.0	<1.0	
		5.72	9.41	**		**			<0.5			28		<0.5	<0.5 <	0.5 <	2.0		0.5	<0.5	
5,	/18/2010	6.73	8.40			**			~0.3	<0.5		25	**				***				
																	**				

CRA 629100 (7)

GROUNDWATER ANALYTICAL DATA ENCINAL PROPERTIES FORMER OLYMPIAN SERVICE STATION 1436 GRANT AVENUE SAN LORENZO, CALIFORNIA

Well ID TOC (ft nhove ms	Date Sampled l)	DTW (ft)	GWE (ft above msl)	Oil & Grense		TPHd				3	.,	MTBE	SVOCs & HVOCs	DIPE	TAME	ETBE.	TBA	Ethanol	EDB	1,2- DCA	Notes
FSL': Grounds	rater is not a current	er cotential o	drinking water resource						Concentratio	ons in micrograms	per liter (µ	g/L)									
			man, man resource	NE:	NE	210	210	46	130	43	100	1,800	-	NI.	Nf						
	8/5/2010	7.31	7.82			**	450	110	2.2	0.76	0.64	32	~-		N	NE.	16,000	NE	NE	200	
MW-4 15.15	5/18/2010 8/5/2010	6.68	8.47				13,000	620	36	170	12	1,200					-	**	**		*
	0,3/2010	7.25	7.90	***		ana,	9,200	780	13	230	4.3	1,800					**			**	•

a Sen Francisco Bay Regional Waer Quality Control Board ESL for groundwater where groundwater is not a current or potential drinking water resource

TOC = Top of casing

DTW = Depth to water

GWE = Groundwater elevation in feet above mean sea level

ft above msl = feet above mean sea level

17/8 = Depth to first encountered groundwater/depth of static groundwater

<n = Not delected above laboratory reporting limit</p>

-- = Not sampled, not analyzed, not available

ND = Not detected above laboratory reporting limit Oil and grease by EPA Method 5520 E&F

TPHd = Total Petroleum Hydrocarbons as diesel range by EPA Method 8015

1PH = 10tal Petroleum Hydrocarbons as cuese range by EPA Method 8015 1PH = 16tal Petroleum Hydrocarbons as gasoline range by EPA Method 8015 1PH mo = Total Petroleum Hydrocarbons as motor oil by EPA Method 8015 Benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8020

MTBE = Methyl tertiary bulyl ether by EPA Method 8260

Mino = methy) terrany busy etner by EAN method acou.

Dissopropyl ether (DIPE), terrany-anyl methyl ether (TAME), ethyl tertiary-bulyl ether (ETBE), terrany-bulyl alcohol (TBA) by EPA Method \$260B.

Disappropyl ciner (UIPs), remary-amyl memyl ciner (1) note), emyl icrualy-outyl ciner (ETUC), retriary-outyl occurrent to a full list of compounds SVOCs = Semi-volatile organic compounds by EPA Method 8270, refer to corresponding analytical laboratory report for a full list of compounds

SVC.5. Semi-violantic organic compounds by EFA segmon 6670, refer to corresponding analytical laboratory report for a full list of compounds. HyOCs = Halogenated volatile organic compounds by EFA Method 8010, refer to corresponding analytical laboratory report for a full list of compounds.

EDB = 1,2-dibromoethane

* = See Analytical Laboratory Report for laboratory sample description and TPH chromatogram interpretation.

TOC elevations were surveyed on March 8, 2007 by Virgil Chavez Land Surveying, Prior to this date, TOC elevation were relative to a project datum determined by Aqua Science Engineers, Inc. in 1998.

TABLE 2

Former Olympic Station 1436 Grant Avenue, San Lorenzo, California

Sample Oil and Sample Date TPH-mo Ethyl-DRO Total GRO Depth (feet Benzene Toluene Grease Location MTBE TBA DIPE Naph-Collected benzene Xylenes ETBE TAME 1,2-DCA EDB (mg/kg) Ethanol (mg/kg) bgs) (mg/Kg) (mg/Kg) (mg/kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) thalene (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/kg) Shallow Soil (≤10' bgs) ESL¹: (mg/kg) NE NE 180 180 0.27 9.3 8.4 110 NE NE NE. 0.044 2.8 Deep Soil (>10' bgs) ESL1: NE NE. 180 2.0 9.3 4.7 11 8.4 110 NE NE NE 0.48 NE 18 July 1998 UST Removal WO-1-7 5 7.5 7/10/1998 4,300 1,300 200 1.5 11 3.6 20 1.4 T-1E-7.5 < 0.025 7.5 7/10/1998 180 < 0.01 0.94 4.6 0.56 < 0.2 T-2E-8.0 7/10/1998 82 < 0.01 0.39 2.9 0.28 0.45 T-3E-7.0 7/10/1998 3,800 30 180 93 430 27 T-3W-10.0 10 7/10/1998 170 < 0.02 0.71 5.3 6.6 <0.4 D-1G-1.5 1.5 7/10/1998 5,700 < 0.25 14 54 280 <5 D-2G-1.5 2 7/10/1998 460 < 0.02 0.26 0.61 5.0 < 0.4 D-1D-2.0 2 7/10/1998 5.7 D-2D-2.0 2 7/10/1998 39 PL-1-1.5 1.5 7/10/1998 2.8 58 0.062 0.062 0.33 0.14 < 0.05 PL-2-2.0 2 7/10/1998 1.3 5.9 0.10 0.56 0.19 0.42 0.75 December 1998 Waste Oil Tank Overexcavation WO-0EX-12 12/18/1998 570 940 250 <1.3 < 0.0050 0 024 0.057 0.24 < 0.0050 DIG-OEX-3.5 < 0.0050 3.5 12/18/1998 <50 <1.0 <1.0 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 1999 Assessment MW-1 10.5 9/24/1999 250 6.5 0.42 0.18 0.065 0.027 1.7 MW-2 10 9/24/1999 700 2,400 1,000 2.9 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 MW-3 10 9/24/1999 26 11 0.63 0.18 0.31 1.1 < 0.0050 2002 Assessment BH-A 11.5 4/30/2002 180 270 150 < 0.025 0.027 1.9 0.28 < 0.025 < 0.25 < 0.025 < 0.025 < 0.025 вн-в 11.5 4/30/2002 <10 320 290 2.2 0.49 5.0 12 < 0.050 < 0 25 < 0.050 вн-с < 0.050 < 0.050 4/30/2002 12 280 240 1.7 0.016 4.3 5.1 0.014 < 0.050 < 0.0050 < 0.0050 < 0.0050 2008 Assessment 3 2/25/2008 8.3 <1.0 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.05 < 0.005 < 0.005 < 0.005 < 0.004 < 0.004 < 0.25 7 2/25/2008 1,700 290 0.25 < 0.20 < 0.20 < 0.20 < 0.20 < 2.0 < 0.20 < 0.20 < 0.20 < 0.16 < 0.16 <10 10.5 2/25/2008 120 140 0.31 0.089 0.11 < 0.050 1.0 < 0.50 < 0.050 < 0.050 < 0.050 < 0.040 < 0.040 < 2.5 19.5 2/25/2008 120 85 0.42 < 0.050 0.91 < 0.050 1.7 < 0.50 < 0.050 < 0.050 < 0.050 < 0.040 < 0.040 <2.5

TABLE 2

Former Olympic Station

1436 Grant Avenue, San Lorenzo, California

Sample Location	Sample Depth (feet bgs)	Date Collected	Oil and Grease (mg/kg)	TPH-mo (mg/kg)	DRO (mg/kg)	GRO (mg/Kg)	Benzene (mg/Kg)	Toluene (mg/Kg)	benzana	,	MTBE (mg/Kg)	TBA (mg/Kg)	DIPE (mg/Kg)	ETBE (mg/Kg)	TAME (mg/Kg)	1,2-DCA (mg/Kg)	EDB (mg/Kg)	Ethanol	Naph- thalen
Shallow Soil	l (≤10' bgs) E	SI.1:	NE	NE	180	180	0.27	9,3	4.7	11	8.4	110	NE.					(mg/kg)	(mg/kg
Deep Soil (>	10' bgs) ESL	1:	NE	NE	180	180	2.0	9.3	4.7	11	8.4	110		NE	NE	0.48	0.014	NE	2.8
3-2	7	2/25/2008		**	14	30	0.016						NE	NE	NE.	0.48	1.0	NE	4.8
	11.5	2/25/2008			41	86	0.010	<0.005 <0.005	<0.005 0.020	<0.005	< 0.005	<0.05	< 0.005	< 0.005	<0.005	< 0.004	< 0.004	<0.25	
	15	2/25/2008			2.2	49	0.018	<0.005	<0.020	<0.005	< 0.005	< 0.05	<0.005	< 0.005	< 0.005	< 0.004	< 0.004	< 0.25	
	24.5	2/25/2008			<1.0	<1.0	<0.005	< 0.005	<0.005	<0.005 <0.005	<0.005 0.033	<0.05 <0.05	<0.005	<0.005	< 0.005	<0.004	< 0.004	< 0.25	
3-3										0.005	0.033	NO.03	<0.005	<0.005	<0.005	< 0.004	<0.004	<0.25	
3-3	7	2/26/2008		~-	<1.0	<1.0	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.05	<0.005	<0.005	< 0.005	< 0.004	-0.004		
	15	2/26/2008	••		<1.0	<1.0	<0.005	< 0.005	< 0.005	< 0.005	0.0084	< 0.05	<0.005	<0.005	< 0.005		<0.004	< 0.25	
	24.5	2/26/2008			<1.0	<1.0	< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.05	< 0.005	<0.005	< 0.005	<0.004 <0.004	<0.004 <0.004	<0.25 <0.25	
3-4	7	2/25/2008			269											0.001	0.007	-0.25	
	11.5	2/25/2008				250	0.016	< 0.010	0.037	< 0.010	0.28	0.34	<0.010	< 0.010	< 0.010	< 0.0080	<0.0080	< 0.50	
	15	2/25/2008			12	110	0.28	<0.050	1.1	< 0.050	1.8	< 0.50	< 0.050	< 0.050	< 0.050	< 0.040	<0.040	<2.5	
	24.5	2/25/2008		••	<1.0	<1.0	<0.005	< 0.005	< 0.005	< 0.005	0.045	< 0.05	< 0.005	< 0.005	< 0.005	< 0 004	< 0.004	<0.25	
	24.5	2/23/2008			<1.0	<1.0	<0,005	<0.005	< 0.005	<0.005	< 0.005	<0.05	<0.005	<0.005	< 0.005	< 0.004	<0 004	<0.25	
-5	7	2/26/2008			<1.0	<1.0	< 0.005	< 0.005	<0.005	-0.00F	-0.005								
	11.5	2/26/2008			7.2	49	< 0.005	<0.005	0.15	<0.005	<0.005	<0.05	<0.005	< 0.005	< 0.005	< 0.004	< 0.004	< 0.25	
	15	2/26/2008			<1.0	<1.0	< 0.005	< 0.003		<0.005	0.0056	<0.05	<0.005	< 0.005	<0.005	< 0.004	<0.004	< 0.25	
	24.5	2/26/2008			<1.0	<1,0	<0.005	<0.005	<0.005	<0.005	0.019	<0.05	<0.005	< 0.005	< 0.005	< 0.004	< 0.004	< 0.25	
					*.5	-1.0	<0.003	<0.005	< 0.005	<0.005	0.022	<0,05	<0.005	< 0.005	< 0.005	< 0.004	< 0.004	<0.25	
-6	7	2/26/2008	••	**	<1.0	<1.0	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.05	-0.005						
	11.5	2/26/2008	••		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<0.005		<0.005	< 0.005	< 0.005	<0.004	< 0.004	< 0.25	
	15.5	2/26/2008			<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.05	<0.005	< 0.005	< 0.005	<0.004	< 0.004	<0.25	
	24 5	2/26/2008		**	<1.0	<1.0	<0.005	<0.005	<0.005	<0.005	0.020	<0.05 <0.05	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.004 <0.004	<0.004	<0.25	
7	7	2/26/2008											4.003	10 003	<0 003	<0.004	<0 004	<0.25	
'	11.5	2/26/2008			<1.0	<1.0	<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.05	< 0.005	< 0.005	< 0.005	< 0.004	<0 004	< 0.25	
	15.5	2/26/2008			<1.0	<1.0	<0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.05	<0.005	< 0.005	< 0.005	< 0.004	<0.004	<0.25	
	24.5	2/26/2008			<1.0	<1.0	<0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.05	< 0.005	< 0.005	< 0.005	< 0.004	<0.004	< 0.25	
	24.3	2/20/2006		••	<1.0	<1.0	<0.005	<0.005	<0.005	<0.005	<0.005	<0.05	< 0.005	<0.005	<0.005	< 0.004	<0 004	<0.25	
8	6.5	2/25/2008			4.3	5 8	0.015	<0.005	0.0075	<0.005	<0.005	-0.05							
	11.5	2/25/2008			16	270	0.72	<0.20	2.5	0.99		<0.05	<0.005		<0.005	<0.004	<0.004	< 0.25	
	15	2/25/2008			1.5	4.9	<0.005	<0.005	0.014		<0.20	<2.0	<0.20	<0.20	<0.20	<0.16	< 0.16	<10	
	24.5	2/25/2008			<1.0		<0.005	<0.005	<0.005	<0.005 <0.005	0.027 <0.005				<0.005	<0.004	<0.004	<0.25	**
10.4											005	-0,60	~0.00,0	~0.003	<0.005	<0.004	<0.004	<0.25	
10 Assessment V-4	2	# 10 m a																	
¥-4	3	2/9/2010		~~	530	160	<0.050	<0.050	<0.050	<0.050	<0.050	<0.50	<0.050	<0.050	<0.050	<0.040	<0.040	~5.O	
	5	2/9/2010		**	1,800	360	<0.10	<0.10	< 0.10	< 0.10	<0.10	<1.0	<0.10				<0.040	<5.0	1.3
	8	2/9/2010			50	270	<0.050	<0.050	0.70	< 0.050	0.20						<0.080 <0.040	<10 <5.0	3.1 1.1

TABLE 2

Former Olympic Station

1436 Grant Avenue, San Lorenzo, California

Sample Location	Sample Depth (feet bgs)	Date Collected	Oil and Grease (mg/kg)	TPH-mo (mg/kg)	DRO (mg/kg)	GRO (mg/Kg)	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethyl- benzene (mg/Kg)	Total Xylenes	MTBE (mg/Kg)	TBA (mg/Kg)	DIPE (mg/Kg)	ETBE (mg/Kg)	TAME (mg/Kg)	1,2-DCA (mg/Kg)	EDB	Ethanol	Naph- thaten
Shallow Soi	l (≤10' bgs) l	SL ¹ :	NE	NE	180	180	0.27	9.3	4.7	(mg/Kg)				(5/16)	(mg/kg)	(mg/Kg)	(mg/Kg)	(mg/kg)	(mg/kg
Deep Soil (>	10' bgs) ESI	1;	NE	NE	180	180	2.0	9.3	4.7	11	8.4	110	NE.	NE	NE	0.48	0.044	NE	2.8
B-9	3	2/11/2010			19					11	8.4	110	NE	NE	NE	0.48	1.0	NE	4.8
	5	2/11/2010			<1.0	<1.0 <1.0	<0.005 <0.005	<0.005	<0.005	< 0.005	< 0.005	<0.05	< 0.005	<0.005	< 0.005	< 0.004	< 0.004	<0.5	<0.00
	10	2/11/2010			<1.0	<1.0	<0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.05	<0.005	< 0.005	< 0.005	< 0.004	< 0 004	<0.5	<0.003
	15	2/11/2010			<1.0	<1.0	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.05	< 0.005	< 0.005	< 0.005	< 0.004	< 0.004	< 0.5	<0.003
	20	2/11/2010			<1.0	<1.0		< 0.005	<0.005	< 0.005	< 0.005	< 0.05	< 0.005	< 0.005	< 0.005	< 0.004	< 0.004	< 0.5	< 0.00
	24.5	2/11/2010			<1.0	<1.0	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	< 0.005	< 0.005	< 0.005	< 0.004	< 0 004	< 0.5	< 0.00
					~1.0	~1.0	<0.005	<0.005	<0.005	< 0.005	< 0.005	<0.0.5	< 0.005	< 0.005	< 0.005	< 0.004	< 0 004	<0.5	< 0.005
B-10	3	2/11/2010			2.0	<1.0	< 0.005	<0.005	<0.005										
	5	2/11/2010			1.5	<1.0	<0.005	< 0.005		<0.005	<0.005	<0.05	<0.005	< 0.005	< 0.005	< 0.004	< 0.004	< 0.5	< 0.005
	9.5	2/11/2010	•-		<1.0	<1.0	<0.005		< 0.005	<0.005	< 0.005	< 0.05	< 0.005	< 0.005	< 0.005	< 0.004	< 0.004	< 0.5	< 0.005
	15	2/11/2010	**		<1.0	<1.0		<0.005	<0.005	<0.005	<0 005	< 0.05	< 0.005	< 0.005	< 0.005	< 0.004	< 0.004	< 0.5	< 0.005
	20	2/11/2010	**		1.5	<1.0	< 0.005	<0.005	<0.005	< 0.005	< 0.005	<0.05	< 0.005	< 0.005	< 0.005	< 0.004	< 0.004	< 0.5	<0.005
	24.5	2/11/2010			<1.0		< 0.005	<0.005	<0.005	<0.005	< 0.005	< 0.05	< 0.005	<0.005	< 0.005	< 0.004	< 0.004	<0.5	< 0.005
					~1.0	<1.0	< 0.005	<0.005	< 0.005	<0.005	<0.005	< 0.05	<0.005	< 0.005	< 0.005	< 0.004	< 0.004	< 0.5	<0.005
3-11	3	2/10/2010			2 1	<1.0	<0.005	<0.005	-0.00=										
	5	2/10/2010	+-	••	2,9	<1.0	<0.005		< 0.005	< 0.005	< 0.005	< 0.05	<0.005	< 0.005	< 0.005	< 0.004	< 0.004	< 0.5	< 0.005
	8	2/10/2010		~-	<1.0	<1.0	<0.005	< 0.005	< 0.005	0.0078	< 0.005	< 0.05	< 0.005	< 0.005	< 0.005	< 0.004	< 0.004	< 0.5	< 0.005
	10	2/10/2010	**		2.7	<1.0		<0.005	<0.005	< 0.005	< 0.005	<0.05	< 0.005	< 0.005	< 0.005	< 0.004	< 0.004	< 0.5	< 0.005
					21	×1.0	<0.005	<0.005	<0.005	<0.005	< 0.005	< 0.05	< 0.005	< 0.005	< 0.005	< 0 004	< 0.004	<0.5	< 0.005
-12	3	2/11/2010			1.8	<1.0	< 0.005	-0.005											
	5	2/11/2010	*-		<1.0	<1.0		<0.005	<0.005	<0.005	<0.005	<0.05	< 0.005	< 0.005	< 0.005	< 0.004	< 0.004	< 0.5	< 0.005
	10	2/11/2010			<1.0	<1.0	<0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.05	< 0.005	< 0.005	< 0.005	< 0 004	<0.004	< 0.5	< 0.005
	15	2/11/2010			<1.0	<1.0	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.05	< 0.005	< 0.005	< 0.005	< 0.004	< 0 004	< 0.5	< 0.005
	20	2/11/2010			<1.0		<0.005	<0.005	<0.005	<0.005	< 0.005	<0.05	< 0.005	< 0.005	< 0.005	< 0.004	< 0.004	< 0.5	< 0.005
	24.5	2/11/2010			<1.0	<1.0	<0.005	<0.005	<0.005	<0.005	< 0.005	< 0.05	< 0.005	< 0.005	< 0.005	<0.004	< 0.004	< 0.5	< 0.005
					~1.0	<1.0	<0.005	<0.005	<0.005	<0 005	<0.005	< 0.05	< 0.005	< 0.005	<0.005	<0.004	<0 004	< 0.5	< 0.005
-13A	3	2/10/2010			6.1	<1.0	0.023	<0.005	~0.00	-0.004									
	5	2/10/2010			1.2			<0.005	<0.005	<0.005	<0.005	<0.05	<0.005	<0.005	< 0.005	<0.004	< 0.004	< 0.5	< 0.005
	7	2/10/2010			2.8	3.3	<0.005	<0.005	0.010	0.011	<0.005	<0.05	<0.005	< 0.005	< 0.005	<0.004	< 0 004	<0.5	< 0.005
					2.0	5.5	~0.003	~0.003	0.016	0.021	<0.005	<0.05	<0.005	<0.005	< 0.005	<0.004	<0.004	< 0.5	< 0.005
13C	11.5	2/12/2010			8.0	15	<0.005	<0.005	<0.005	<0.005	<0.005	<0.05	<0.005	<0.005	<0.005	<0.004	<0 004	<0.5	< 0.005
mediation Well	l Instaltation 2	2011																	
ζ- 1	6	5/19/2011				83	0.15	-0.005											
	11	5/19/2011						<0.020	1.3	0.041	0.076								••
		5/19/2011				110	1.5	0.19	1.7	3.5	0.21					**			
		5/19/2011								<0.005	0.046				***	•-		***	
						<1.0	<0.005	<0.005	<0.005	<0.005 ·	<0.005					**			
-2	11	5/19/2011			**	340	0.10	-0.10											
		5/19/2011						<0.10		<0.10	1.7						••		
		5/19/2011	~~							<0.005	1.2			**				~-	
		2/2011				2.3	<0.005 <	0 005 <	<0.005 <	0.005	0.098							**	

TABLE 2

Former Olympic Station

1436 Grant Avenue, San Lorenzo, California

Sample Location	Sample Depth (feet bgs)	Date Collected	Oil and Grease (mg/kg)	TPH-mo (mg/kg)	DRO (mg/kg)	GRO (mg/Kg)	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethyl- benzene (mg/Kg)	Total Xylenes (mg/Kg)	MTBE (mg/Kg)	TBA (mg/Kg)	DIPE (mg/Kg)	ETBE (mg/Kg)	TAME (mg/Kg)	1,2-DCA (mg/Kg)	EDB (mg/Kg)	Ethanol (mg/kg)	Naph- thalene
Shallow S	oil (≤10′ bgs) E9	SL¹:	NE	NE	180	180	0.27	9.3	4.7	(mg/Kg)	8.4	110						(mg/kg)	(mg/kg)
Deep Soil	(>10' bgs) ESL1		NE	NE	180						0.4	110	NE	NE	NE	0.48	0.044	NE	2.8
				IVE	180	180	2.0	9.3	4.7	- 11	8.4	110	NE	NE	NE.	0.48	1.0	NE	4.8
EX-3	6	5/19/2011				41	0.023	< 0.010	<0.010	<0.010	<0.010								
	11	5/19/2011				340	<0.10	< 0.10	< 0.10	< 0.10	<0.10			**		**			
	16	5/19/2011		**	00 No.	<1.0	< 0.005	<0.005	<0.005	<0 005	<0.005								
IW-1	6	5/20/2011				220	<0.050	<0.050	0.49	0.40	0,054	No. op							
	11	5/20/2011	**			170	0.17	0.11	1.9	1.8	0.070					**			
IW-2	6	5/20/2011				140	0.39	<0.050	2.9	0.17	< 0.050								
	11	5/20/2011				160	0.89	0.18	2.4	3.8	< 0.050								~
	21	5/20/2011				<1.0	< 0.005	<0.005	< 0.005	<0.005	<0.005						**		**

Explanation
TPH-mo = Total purgeable hydrocarbons as motor oil

DRO = Diesel range organics GRO = Gasoline range organics (C4 - C13)

BTEX = Benzene, toluene, ethylbenzene, and xylenes

MTBE = Methyl tertiary butyl ether

TBA=Tertiary butyl alcohol

DIPE = Di-isopropyl ether

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

1,2-DCA=1,2-Dichloroethane EDB = 1,2-Dibromoethane

mg/Kg = milligrams per kilogram

All data reported prior to 2011 provided by Conestoga-Rovers & Associates.

Analytical Methods

Oil and grease analyzed using EPA Method 5520 E&F

TPH-mo, DRO, and GRO analyzed using EPA Method SW8015B/DHS LUFT Manual

BTEX and MTBE analyzed prior to 2002 using EPA Method 8020

BTEX, MTBE, TBA, DIPE, ETBE, TAME, 1,2-DCA, and EDB analyzed using EPA Method SW8260B

Analytical Laboratory

Alpha Analytical, Inc. (ELAP #2019)

SOIL VAPOR ANALYTICAL DATA ENCINAL PROPERTIES 1436 GRANT AVE, SAN LORENZO, CALIFORNIA

Sample ID	Date Sampled	Depth (ft)	TPHg (ug/m³)	Benzene (ug/m³)	Toluene (ug/m³)	Ethylbenzene (ug/m³)	m,p-Xylene (ug/m³)	o-Xylene (ug/m³)	MTBE (ug/m³)	Naphthalene (ug/m³)	Helium (%)	Oxygen (%)	Methane (%)	Carbon Dioxide (%)
SV-1	2/25/2010	5	36,000,000	18,000	<2,100	<2,500	<2,500	<2,500	<2,000	<12,000	<0.11	1.4	or.	
SV-2	2/25/2010	5	44,000,000	160,000	<2,500	<2.900	<2,900	<2,900	<2,400				35	8.5
SV-3	2/25/2010	. 5	52,000,000	52,000	<2,200	<3.F00				<14,000	< 0.13	1.2	13	9.0
SV-4		_		,	•	<2,500	<2,500	<2,500	<2,100	<12,000	< 0.12	1.2	18	5.8
31-4	2/25/2010	5	41,000,000	120,000	<4,400	<5,000	<5,000	<5,000	5,400	<24,000	< 0.12	1.2	5.2	9.5
Duplicate Samples														
SV-2-D	2/25/2010	5	43,000,000	160,000	<2,400	<2,800	<2,800	<2,800	<2,300	<13,000	< 0.13	1.1	13	8.9

Abbreviations and Analyses:

<n = Not dectected above laboratory detection limit, n.

ug/m³ = Microgram per cubic meter.

% = Percent

ft = Measured in feet

MTBE = methyl tert-butyl ether

TPHg by EPA Method TO-3

Benzene, Toluene, Ethylbenzene, m.p.-Xylenes, o-Xylenes, MTBE, & Naphthalene by modified EPA Method TO-15.

Oxygen, Methane, Carbon Dioxide, & Helium by ASTM D-1946

TABLE 3 SOIL ANALYTICAL SUMMARY

Fromer Olympic Station 1436 Grant Avenue, San Lorenzo, CA

Sample Point ID	Date Collected	Sample Depth (feet)	GRO (µg/kg)	Benzene (μg/kg)	Toluene (μg/kg)	Ethyl- benzene (µg/kg)	Total Xylenes (μg/kg)	MTBE (μg/kg)
EX-1	05/19/11	6	83,000	150	<20 [1]	1,300	41	7.0
	05/15/11	11	110,000	1,500	190	-		76
		16	<1,000			1,700	3,510	210
			•	<5.0	<5.0	< 5.0	< 5.0	46
		21	<1,000	< 5.0	<5.0	<5.0	<5.0	<5.0
EX-2	05/19/11	11	340,000	190	<100 [1]	310	<100 [1]	1,700
		16	1,600	< 5.0	<5.0	<5.0	<5.0	1,200
		21	2,300	<5.0	< 5.0	< 5.0	<5.0	98
EX-3	05/19/11	6 11	41,000 340,000	23 <100 [1]	<10 [1] <100 [1]	<10 [1] <100 [1]	<10 [1] <100 [1]	<10 [1] <100 [1]
		16	<1,000	<5.0	<5.0	<5.0	<5.0	<5.0
IW-1	05/20/11	6 11	220,000 170,000	<50 [1] 170	<50 [1] 110	490 1,900	400 1,770	54 70
IW-2	05/20/11	6	140,000	390	<50 [1]	2,900	170	<50 [1]
		11	160,000	890	180	2,400	3,800	<50 [1]
		21	<1,000	<5.0	<5.0	<5.0	<5.0	<5.0
Legend:				Analytical A	4.1.1			

Legend:

Analytical Methods:

GRO = Gasoline-range organics (C4-C13)

GRO = EPA Method SW8015B

MTBE = Methyl tertiary butyl ether

BTEX, MTBE = EPA Method 8260B

[1] Reporting limit increased due to high concnetrations of target analytes.

APPENDIX B FIELD DATA SHEETS

Former Olympic Service Station 1436 Grant Avenue

- 5		file.	A	,;	-1,	,	Ñ.		
	Sec.	拉星	育	Ĉ,	S	Į.	M	Di.	k

Arrival Time: Departure Time Equipment Man	_	odel No.:	-		Ambient Temp	erature: 60		—————————————————————————————————————	
	Ozo	ne (O3) Injection	System		7 Noch	A 1900	1 4/1	144 10	Sour
System currentl System currentl			yes yes	no no	Run s	pozen	inps t	TU bing 1	
Status Upon Ar	rival:	ON		⋈ OFF	wells				
Status Upon De	parture:	ON		OFF	Name of the last o				
Hour Meter Rea	ading:			1					
Injection Pressu	re IW-1 (psi):			•					
Injection Time I	-								
Injection Pressu Injection Time I Oxygen flow rat	W-2 (min):								
Air + ozone flow	v rate (scfm):	-							
Air + ozone flow	v rate (scfm):		Tr.						
A TANKSTON AND AND AND AND AND AND AND AND AND AN		DTW		and the second second second	ts (Weekly Visit	_			
Air + ozone flow Well ID	v rate (scfm):	DTW feet bgs	Fie pH units	DO	Conductivity	Temperature	ORP		
A TANKSTON AND AND AND AND AND AND AND AND AND AN			рН	and the second second second	T	_	ORP mV		
Well ID			рН	DO	Conductivity	Temperature			
Well ID			рН	DO	Conductivity	Temperature			
Well ID MW-1 MW-2			рН	DO	Conductivity	Temperature			
Well ID MW-1 MW-2 MW-3			рН	DO	Conductivity	Temperature			
Well ID MW-1 MW-2 MW-3 MW-4			рН	DO	Conductivity	Temperature			
Well ID MW-1 MW-2 MW-3 MW-4 EX-1			рН	DO	Conductivity	Temperature			
Well ID MW-1 MW-2 MW-3 MW-4 EX-1 EX-2			рН	DO	Conductivity	Temperature			
Well ID MW-1 MW-2 MW-3 MW-4 EX-1 EX-2 EX-3			рН	DO	Conductivity	Temperature			
Well ID MW-1 MW-2 MW-3 MW-4 EX-1 EX-2 EX-3 IW-1			рН	DO	Conductivity	Temperature			
Well ID MW-1 MW-2 MW-3 MW-4 EX-1 EX-2 EX-3 IW-1			рН	DO	Conductivity	Temperature			
Well ID MW-1 MW-2 MW-3 MW-4 EX-1 EX-2 EX-3 IW-1			рН	DO	Conductivity	Temperature			

If pH is outside the range of 6.5<pH<8.5 contact PM immediately.

Groundwater samples to be collected prior to start up of O₃ injection, 2-weeks after start up and 1 week after O₃ injection ceases per Table 1 of IRAP.

Notes/Comments:

Former Olympic Service Station 1436 Grant Avenue San Lorenzo, California

CH	RI:	. :	NA.	'n

Date: Technician: CHILL Arrival Time: 0517 Departure Time: 0830 Equipment Manufacturer / Model No.: Extend DO Estude, gaktery Pt, Conditions: Climate System Ozone (O3) Injection System System currently injecting into well IW-1? yes System currently injecting into well IW-2? yes Status Upon Arrival: ON Status Upon Departure: ON Hour Meter Reading: OOOO Injection Pressure IW-1 (psi): 244	Date: 9-29-11	San Lorenzo, California
Departure Time: 63 Equipment Manufacturer / Model No.: Extech DO Estud, gakten PIt, Conditions if Series Ozone (O3) Injection System System currently injecting into well IW-1? yes System currently injecting into well IW-2? yes Status Upon Arrival: ON Status Upon Departure: ON Hour Meter Reading: ODOO Ambient Temperature: 65 Calcten PIt, Conditions if Series Calculations if Series Calculation PIT, Conditions if Series Calculation PIT, Condition		Technician: CHILL
Departure Time: 65 Equipment Manufacturer / Model No.: Extend DO Estruh, cakton PIt, Cond Tamp & Server Ozone (O3) Injection System Ozone (O3) Injection System System currently injecting into well IW-1?		Weather Conditions: C/W
Ozone (O3) Injection System Ozone (O3) Injection System System currently injecting into well IW-1? System currently injecting into well IW-2? Status Upon Arrival: ON Status Upon Departure: ON Hour Meter Reading: Ozone (O3) Injection System Eco Sensors ozone meter Eco Sensors ozone meter System Starty OFF System Starty OFF Hour Meter Reading:		Ambient Temperature: 63
System currently injecting into well IW-2? System currently injecting into well IW-2? Status Upon Arrival: ON Status Upon Departure: ON Hour Meter Reading: ODOO System 5 tavtv System 5 tavtv OFF	Equipment Manufacturer / Model No.: Extech DO	Estich, Oakten PIT, Cond Tamy 18 Series
System currently injecting into well IW-2? System currently injecting into well IW-2? Status Upon Arrival: ON Status Upon Departure: ON Hour Meter Reading: ODOO System 5 tavtv System 5 tavtv OFF	Ozone (O ₂) Injection System	Caleton 01213 NO Solinst Dr
System currently injecting into well IW-2? System currently injecting into well IW-2? Status Upon Arrival: ON Status Upon Departure: Hour Meter Reading: ON OFF System Start V OFF OFF	(=3/ ::- j =::::::::::::::::::::::::::::::::::::	ECO SENSOVS OZENE METER
Status Upon Arrival: Status Upon Departure: Hour Meter Reading: ON OFF System Stautup OFF OFF	yes Jacon currently injecting into well IW-1?	
Hour Meter Reading: OFF	System currently injecting into well IW-2? yes	
Hour Meter Reading: OFF	Status Upon Arrival: ON	DOFF System startup
	Status Upon Departure: NON	OFF
Injection Pressure IW-1 (psi): 24	Hour Meter Reading:	_
	Injection Pressure IW-1 (psi): 24	
Injection Time IW-1 (min): 30	Injection Time IW-1 (min):	_
Injection Pressure IW-2 (psi): 20	Injection Pressure IW-2 (psi): 20	
Injection Time IW-2 (min):	Injection Time IW-2 (min):	
Oxygen flow rate (scfh):	Oxygen flow rate (scfh):	
Air + ozone flow rate (scfm): 4,2 Sumpled wells	Air + ozone flow rate (scfm): 4,2	- Similar mells

Field Measurements (Weekly Visit)

1	Well ID	Time	DTW	pН	DO	Conductivity	Temperature	ORP	
F			feet bgs	units	mg/L	μsiemen/cm	deg C	mV	
	MW-1	0735	7.83	6.85	1.04	1436	20.0	348	
0	MW-2	0700	7.39	6.79	1.07	1252	20.0	318	0705
9	MW-3	0630	7.43	6.89	157	1315	20.3	263	
,	MW-4	0522	7.37	6.95	1.17	314	19.8	291	0648
	EX-1	0531	7.53	7.11	111	71 1		• 4	0620
Ť		•	7 27	767	1.11	1279	19.5	247	0600
\vdash	EX-2	0727	1.37	6-11	1.30	1406	21.0	348	
L	EX-3	0655	7.15	6.87	1.20	1400	20-6	313	
L	IW-1	9.42	DTB					·	
	IW-2	13.95	DTB						
		•							
+									
-									

			_	
No	tes/Co	mr	nen	ts:

If pH is outside the range of 6.5<pH<8.5 contact PM immediately.

Groundwater samples to be collected prior to start up of O₃ injection, 2-weeks after start up and 1 week after O₃ injection ceases per Table 1 of IRAP.

Purgl Wells 3 well will Before sample

Former Olympic Service Station 1436 Grant Avenue San Lorenzo, California

ON	Val
** ** ***	- + V. Z#11

10, 2	Chizo, California
Date: 10-5-11	Technician: CHILC
Arrival Time: 0/50	Weather Conditions: Clear
Departure Time: US 31	Ambient Temperature: 60
Equipment Manufacturer / Model No.:	
Ozone (O3) Injection System	
System currently injecting into well IW-1? yes no	0
System currently injecting into well IW-2? yes no	
Status Upon Arrival: 🔀 ON 🔲 O)FF
Status Upon Departure: ON O	FF
Hour Meter Reading: JWI 48 IW2 48	
Injection Pressure IW-1 (psi):	
Injection Time IW-1 (min): 30	
Injection Pressure IW-2 (psi):	
Injection Time IW-2 (min): 30	
Oxygen flow rate (scfh):	
Air + ozone flow rate (scfm): $\mathbf{H} \cdot \mathbf{D}$	

		Fi	eld Measuremen	ts (Weekly Visit)			
Time	DTW	рН	DO	Conductivity	Temperature	ORP		
		units	mg/L	μsiemen/cm	deg C			
0801	1.17	6.91	8.97	1411	1915	マフノ		
0749	フィ3て	7.07	82.71	1316	19.10	25%		
0735	7.39	7.53	1.70	1296	712.17	214		
Under	CAR			7 7 7	COID	·) 1 T		
0740	7.48	7.35	1.06	132/	15.1	775		
7.58	7.30	6.40	8.91	1355	70.7			
0745	7.10	7.10	8192	1370				+
				17 10	11.7	110		-
						•		-
	0801 0749 0735 Under 0740 7.58	11me feet bgs 080 (7.75 0749 7.37 0735 7.39 UNLEY CAR 0740 7.48 7.56 7.30	Time DTW pH feet bgs units 080 (7.75 G.91 0749 7.37 7.07 0735 7.39 7.93 UNULU CUR 0740 7.48 7.35 7.56 7.30 6.90	Time DTW pH DO feet bgs units mg/L 080 (7.75 G.9 (8.92 0749 7.37 7.07 8.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0	Time DTW pH DO Conductivity feet bgs units mg/L µsiemen/cm 080 (7.75 G.91 &.92 1911 0749 7.32 7.01 &.7 (1316 0735 7.39 7.93 1.70 1296 UALLY CAR 0740 7.48 7.35 1.06 1326 7.38 7.30 6.90 &.91 1357	Time feet bgs units mg/L µsiemen/cm deg C 0801 7.75 6.91 8.92 1411 1915 0749 7.37 7.01 8.71 1316 19.6 0735 7.39 7.93 1.70 1296 20.0 URLE CAR 0740 7.48 7.35 1.06 1326 19.1 7.58 7.30 6.90 8.91 1357 20.2 0749 7.10 7.10 8.92 1370 19.9	Time DTW pH DO Conductivity Temperature ORP feet bgs units mg/L µsiemen/cm deg C mV 0801 7.75 G.91 8.92 1411 19.5 371 0749 7.37 7.07 8.71 1316 19.6 356 0735 7.39 7.93 1.70 1296 20.0 314 UALLY CAR	Time DTW pH DO Conductivity Temperature ORP feet bgs units mg/L µsiemen/cm deg C mV 080 (7.75 G.91 & 9.72 1411 19.5 3.71 0749 7.32 7.01 & 71 1316 19.6 356 0735 7.39 7.43 1.70 1296 20.0 314 UN NEW CHR 0740 7.48 7.35 1.06 1326 19.1 335 7.58 7.30 6.90 8.91 1357 20.2 369 0745 7.10 7.10 8.92 1370 19.9 348

Notes/Comments:

If pH is outside the range of 6.5<pH<8.5 contact PM immediately.

Groundwater samples to be collected prior to start up of O₃ injection, 2-weeks after start up and 1 week after O₃ injection ceases per Table 1 of IRAP.

No ozene leutes At wells

Former Olympic Service Station 1436 Grant Avenue San Lorenzo, California

Oppo	WA	
1 020	MA	NO.

Date: 10-12-01 Arrival Time: 0,500 Departure Time: 0,900 Equipment Manufacturer / Model No.:	Technician: CHILL Weather Conditions: CILLUM Ambient Temperature: 55
Ozone (O3) Injection System	
System currently injecting into well IW-1? System currently injecting into well IW-2? Status Upon Arrival: ON Status Upon Departure: Hour Meter Reading: Injection Pressure IW-1 (psi): Injection Time IW-1 (min): Injection Time IW-2 (psi): Injection Time IW-2 (min): Oxygen flow rate (scfh): Air + ozone flow rate (scfm):	no

······································			Fi	eld Measureme	nts (Weekly Visit)		······································	
Well ID	Time	DTW	pН	DO ·	Conductivity	Temperature	ORP		_
	1	feet bgs	units	mg/L	μsiemen/cm	deg C	mV		
MW-I	0640	7,03	6.88	1.03	1446	19.3	387		_
MW-2	0610	6.62	6.56	2.99	1329	19.7	405		61.
MW-3	0575	6.67	7.12	2.03	1/12	19.5	339		06.
MW-4	0万里』	6.61	6-63	\$	9/9	19:1	324		105
EX-1	0540	6.63	6.97	1.4/0	1341	9.4	202		08
EX-2	0635	6065	6.85	1.56	1226	* P	379		05
EX-3	01007	6.37	6-72	1.04	1281	19.5	267		
IW-1				<u> </u>	1201	2000	7501		
IW-2									-
									-
								· · · · · · · · · · · · · · · · · · ·	

3. T		\sim		
INU	レレン	C.	J11111	nents:

If pH is outside the range of 6.5<pH<8.5 contact PM immediately.

Groundwater samples to be collected prior to start up of O₃ injection, 2-weeks after start up and 1 week after O₃ injection ceases per Table 1 of IRAP.

30-DAY O_3 PILOT TEST FIELD DATA

Former Olympic Service Station 1436 Grant Avenue San Lorenzo, California

OFR.	NAI
------	-----

Date: 10 20 ((Arrival Time: 1020) Departure Time: 1115			Technician: CHILC Weather Conditions: Clove's Ambient Temperature: 45
Equipment Manufacturer / Mo			
Ozor	ie (O3) Injection System		1
System currently injecting into	well IW-1? yes	□ no	
System currently injecting into	well IW-2? yes	no	
Status Upon Arrival:	Ø ON	OFF	
Status Upon Departure:	ON	OFF	
Hour Meter Reading:	1-253.55 2-	253.68	
Injection Pressure IW-1 (psi):	9		
Injection Time IW-1 (min):	30	-	
Injection Pressure IW-2 (psi):	9	-	
Injection Time IW-2 (min):	30	•	
Oxygen flow rate (scfh):	18		
Air + ozone flow rate (scfm):	4.1		

		Fi	eld Measuremen	its (Weekly Visit)			
Time	DTW	pН	DO	Conductivity		ORP		
	feet bgs	units	mg/L	μsiemen/cm				+
	7.50	102	8.38	1452	1445			+
	17.07	7.02	8.24	1317	70.			-
	7.12	7.06	8.69	1228	70.5			+-
CAIS	Tari	rown	Du 3 By	14516	7918 -	375		+
	7.22	7.37	D.100	1317	191	763		
	7.01	6.91	1 / /	1306	210	207		
	10.81	(1.95	<u> </u>	1734				ļ
		<u> </u>	0.51	127	2013	210		ļ
	Time	7.50 7.07 7.12	Time DTW pH feet bgs units 7.50 7.02 7.07 7.02 7.12 7.06 CMC FLOW ROWN 7.22 7.37 7.01 6.91	Time DTW pH DO feet bgs units mg/L 7.50 7.02 8.38 7.07 7.02 8.24 7.12 7.06 8.69 CAL FARL ROW SUSB 7.22 7.37 8.60 7.01 6.41 8.54	Time DTW pH DO Conductivity feet bgs units mg/L µsiemen/cm 7.50 7.02 8.38 1492 7.07 7.02 8.24 1317 7.12 7.06 8.69 1228 CAL PARAMETER TOWNS 14916 7.22 7.37 8.60 1312 7.01 6.91 8.94 1395	Time feet bgs units mg/L µsiemen/cm deg C 7.50 7.02 8.38 1492 1996 7.07 7.02 8.24 1317 20.5 7.12 7.06 8.69 1228 20.5 CARC PART ROLL BUSEN 145th 1908 1 7.22 7.37 8.60 1312 19.1 7.01 6.91 8.94 1395 21.0 6.81 6.95 8.59 1234 20.3	Time DTW pH DO Conductivity Temperature ORP feet bgs units mg/L µsiemen/cm deg C mV 7.50 7.02 8.38) 47 C 19 G 378 7.07 7.02 8.24 1317 20.5 357 7.12 7.06 8.69 1228 20.5 324 CAC PARAMETER DO Conductivity Temperature ORP mv 1.27 7.02 8.38) 49 C 19 G 378 7.12 7.06 8.69 1228 20.5 324 CAC PARAMETER DO 1312 19.1 283 7.01 6.91 8.94 1395 21.0 373 6.81 6.99 8.59 1234 20.3 348	Time DTW pH DO Conductivity Temperature ORP feet bgs units mg/L µsiemen/cm deg C mV 7.50 1.02 8.38 1492 1496 378 7.07 7.02 8.24 1317 20.5 357 7.12 7.06 8.69 1228 20.9 324 CMC TOOLONG WAS HARM TANK 378 7.22 7.37 8.60 1312 19.1 283 7.01 6.91 8.94 1395 21.0 373 6.81 6.99 8.59 1234 20.3 348

Notes/	Com	ments:

If pH is outside the range of 6.5<pH<8.5 contact PM immediately.

Groundwater samples to be collected prior to start up of O₃ injection, 2-weeks after start up and 1 week after O₃ injection ceases per Table 1 of IRAP.

Former Olympic Service Station 1436 Grant Avenue San Lorenzo, California

ORKE	NAL
------	-----

Date: 17 - 25 - 11 Arrival Time: 0530 Departure Time: 0630 Equipment Manufacturer / Model No.:		Technician: CYILL Weather Conditions: CIM Ambient Temperature: 30	
Ozone (O3) Injection System		7	
System currently injecting into well IW-1? yes System currently injecting into well IW-2? yes Status Upon Arrival: ON	no no		
Status Upon Departure: ON Hour Meter Reading:	☐ OFF		
Injection Pressure IW-1 (psi): Injection Time IW-1 (min):			
Injection Pressure IW-2 (psi): 18 Injection Time IW-2 (min): 30			
Oxygen flow rate (scfh): Air + ozone flow rate (scfm):			

			Fi	eld Measuremen	ts (Weekly Visit)			
Well ID	Time	DTW	рН	DO	Conductivity	Temperature	ORP		
		feet bgs	units	mg/L	μsiemen/cm	deg C	mV	<u> </u>	-
MW-1		7,60	4.91	0.97	1407	19,0	2911		+
MW-2		7.17	7,39	1.08	1354	15011	710		
MW-3		7.26	7.11	1,42	1197	15.4	306		
MW-4		CAR	7(1)	1.1/	117/	20.9	357		
EX-I		7.35	71-1	159	12111				
EX-2		フィブ	1.00	1,73	1344	21.0	372		
		211	6.94	0.76	1380	2112	385		
EX-3		6.95	7.06	Q.89	1210	20.0	334		
IW-1						200	27-1		ļ
IW-2									

Notes/Comments:

If pH is outside the range of 6.5<pH<8.5 contact PM immediately.

Groundwater samples to be collected prior to start up of O₃ injection, 2-weeks after start up and 1 week after O3 injection ceases per Table 1 of IRAP.

DIA VAC KINDIMENSIONS, COM RZZI-FP-CA Page 1 of 1

Former Olympic Service Station 1436 Grant Avenue San Lorenzo, California

Date: 10-31-11 Arrival Time: 0545 Departure Time: 0800 Equipment Manufacturer / Model No.:	Technician: CHILL Weather Conditions: Clynls Ambient Temperature: 50
System currently injecting into well IW-1? yes no System currently injecting into well IW-2? yes no System currently injecting into well IW-2? yes no Status Upon Arrival: ON OFF Status Upon Departure: ON ZOFF Hour Meter Reading: 383-33 383.33 Injection Pressure IW-1 (psi): IS Injection Time IW-1 (min): 30 Injection Time IW-2 (min): 30 Oxygen flow rate (scfh): IS Air + ozone flow rate (scfm): H. H.	Test stop - Remove Pipinas, Unit, Bumps

			Fi	eld Measureme	nts (Weekly Visit)			-
Well ID	Time	DTW	pН	DO	Conductivity	Temperature	ORP		
		feet bgs	units	mg/L	μsiemen/cm	deg C	mV		+
MW-1		7.112	6000	1.44	1462	18.4	पाप		+
MW-2		7.18	7.25	1.07	1291	18.8	300		+
MW-3		7.28	7,09	1.17	1261	201	367		+
MW-4		CAR 0	ver in	211	7-91	200	30 /		+
EX-1		CAIL OF		(/					+
EX-2		7.19	6.86	1.14	1286	20.7	417		+
EX-3		6.99	7.13	1.27	1234	20.0	343		+-
IW-1			-4	10-7	1-24	20.0	273		
IW-2									-
								· · · · · · · · · · · · · · · · · · ·	<u> </u>
									<u> </u>

Notes/Comments:		
If pH is outside the range of 6.5 <ph<8.5 contact="" immediately.<="" pm="" td=""><td></td><td></td></ph<8.5>		
Groundwater samples to be collected prior to start up of O ₃ injection, 2-weeks after start up and 1 week after O ₃ injection ceases per	Table 1 of IDA	T)
	Table I of IKA	Ρ.

Former Olympic Service Station 1436 Grant Avenue San Lorenzo, California OFFICE

Date: 19-9-16 Arrival Time: 0.530 Departure Time: 0.800 Equipment Manufacturer / Model No.:			Technician: CHILC Weather Conditions: CIM Ambient Temperature: 40
Ozone (O3) Inj	ection System]
System currently injecting into well IW-1 System currently injecting into well IW-2 Status Upon Arrival: ON Status Upon Departure: Hour Meter Reading:	? □ yes	⊠ no ⊠ no ∭ OFF ∑ OFF	Sumpling After Test Done
Injection Pressure IW-1 (psi): Injection Time IW-1 (min):			
Injection Pressure IW-2 (psi): Injection Time IW-2 (min):			
Oxygen flow rate (scfh):			
Air + ozone flow rate (scfm):			

	-	7	Fi	eld Measuremen	ts (Weekly Visit)			
Well ID	Time	DTW	pН	DO	Conductivity	Temperature	ORP		
	<u> </u>	feet bgs	units	mg/L	μsiemen/cm	deg C	mV		+
MW-1	0722	7.55	6.91	2.74	1448	19.2	323		1
MW-2	0348	7.11	7.58	1.75	1366	17.3	226		060
MW-3	19617	7.16	696	1,25	1249	19.7	3/14		063
MW-4	860	7.18	6.66	8.72	881	19.6	299		272
EX-1	0640	7.28	7.02	1.65	1354	15.0	39/7		370
EX-2	0720	7.08	6.74	131	1375	70.67	300		1090
EX-3	0614	6.59	6.89	1.20	1105	18th	356		
IW-1					7,50	1 2 2)	200		-
IW-2									-
									+
			-4 ₀					****	ļ

Notes	/Comn	ents:

If pH is outside the range of 6.5<pH<8.5 contact PM immediately.

Groundwater samples to be collected prior to start up of O₃ injection, 2-weeks after start up and 1 week after O3 injection ceases per Table 1 of IRAP.

APPENDIX C

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 Job: Olympic Station

Attn:

Steve Carter

Phone:

(530) 676-6008

Fax:

(530) 676-6005

Alpha Analytical Number: STR11092905-01A

Sampled: 09/29/11

Client I.D. Number: MW-2

Received: 09/29/11

Method Reference:	EPA Method SW6020 / SW6020A					
Analyte	Result	Reporting Limit	Qual	Units	Date Extracted	Date Analyzed
Beryllium (Be)	ND	4.0		μg/L	09/30/11 15:24	10/05/11
Sodium (Na)	210,000	500		μg/L	09/30/11 15:24	10/05/11
Magnesium (Mg)	72,000	500		μg/L	09/30/11 15:24	10/05/11
Calcium (Ca)	100,000	500		μg/L	09/30/11 15:24	10/05/11
Vanadium (V)	96	5.0		μg/L	09/30/11 15:24	10/05/11
Chromium (Cr)	85	5.0		μg/L	09/30/11 15:24	10/05/11
Manganese (Mn)	2,100	5.0		μg/L	09/30/11 15:24	10/05/11
ron (Fe)	32,000	300		μg/L	09/30/11 15:24	10/05/11
Cobalt (Co)	18	5.0		μg/L	09/30/11 15:24	10/05/11
Vickel (Ni)	93	10		μg/L	09/30/11 15:24	10/05/11
Copper (Cu)	29	10		μg/L	09/30/11 15:24	10/05/11
Zinc (Zn)	ND	100		μg/L	09/30/11 15:24	10/05/11
Cadmium (Cd)	ND	5.0		μg/L	09/30/11 15:24	10/05/11
ead (Pb)	9.4	5.0		μg/L	09/30/11 15:24	10/05/11
1ethod Reference : S	M3500-Fe B			, 0		
analyte	Result	Reporting Limit	Qual	Units	Date Extracted	Date Analyzed
on, Ferrous (+2)	ND	50		μg/L	09/30/11	09/30/11
lethod Reference: S	M3500-Fe B / EPA Method 6020A					
nalyte	Result	Reporting Limit	Qual	Units	Date Extracted	Date Analyzed
on, Ferric (+3) (by calcul	ation) 32,000		The many participation of the second			

Ferric iron concentrations are based off of raw (non-rounded ferrous and total iron) data. Therefore, hand calculated ferric iron values may differ slightly. Ferrous iron samples were color developed promptly after laboratory login.

ND = Not Detected

Reported in micrograms per Liter, per client request.

Report Date

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Client I.D. Number: MW-3

Attn: Phone: (530) 676-6008

Steve Carter

Fax:

(530) 676-6005

Job:

Olympic Station

Alpha Analytical Number: STR11092905-02A

Sampled: 09/29/11

Received: 09/29/11

Method Reference:	EPA Method SW6020) / SW6020A					
Analyte		Result	Reporting Limit	Qual	Units	Date Extracted	Date Analyzed
Beryllium (Be)		ND	4.0		μg/L	09/30/11 15:24	10/05/11
Sodium (Na)		240,000	500		μg/L	09/30/11 15:24	10/05/11
Magnesium (Mg)		59,000	500		μg/L	09/30/11 15:24	10/05/11
Calcium (Ca)		85,000	500		μg/L	09/30/11 15:24	10/05/11
Vanadium (V)		22	5.0		μg/L	09/30/11 15:24	10/05/11
Chromium (Cr)		20	5.0		μg/L	09/30/11 15:24	10/05/11
Manganese (Mn)		1,300	5.0		μg/L	09/30/11 15:24	10/05/11
Iron (Fe)		5,500	300		μg/L	09/30/11 15:24	10/05/11
Cobalt (Co)		ND	5.0		μg/L	09/30/11 15:24	10/05/11
Nickel (Ni)		58	10		μg/L	09/30/11 15:24	10/05/11
Copper (Cu)		44	10		μg/L	09/30/11 15:24	10/05/11
Zinc (Zn)		ND	100		μg/L	09/30/11 15:24	10/05/11
Cadmium (Cd)		ND	5.0		μg/L	09/30/11 15:24	10/05/11
.ead (Pb)		ND	5.0		μg/L	09/30/11 15:24	10/05/11
Method Reference :	SM3500-Fe B						
analyte		Result	Reporting Limit	Qual	Units	Date Extracted	Date Analyzed
ron, Ferrous (+2)		ND	50		μg/L	09/30/11	09/30/11
lethod Reference :	SM3500-Fe B / EPA M	lethod 6020A					
nalyte		Result	Reporting Limit	Qual	Units	Date Extracted	Date Analyzed
on, Ferric (+3) (by cale	culation)	5,500	300		μg/L	10/05/11	10/05/11

Ferric iron concentrations are based off of raw (non-rounded ferrous and total iron) data. Therefore, hand calculated ferric iron values may differ slightly. Ferrous iron samples were color developed promptly after laboratory login.

ND = Not Detected

Reported in micrograms per Liter, per client request.

Report Date

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Job:

Olympic Station

Attn:

Steve Carter

Phone:

(530) 676-6008

Fax:

(530) 676-6005

Alpha Analytical Number: STR11092905-03A

Sampled: 09/29/11

Received: 09/29/11

Client I.D. Number: MW-4

Method Reference: EPA Method SW6020 / SW6020A Analyte Result Reporting Limit Qual Units Date Extracted Date Analyzed Beryllium (Be) ND 4.0 μg/L 09/30/11 15:24 10/05/11 Sodium (Na) 90,000 500 09/30/11 15:24 $\mu g/L$ 10/05/11 Magnesium (Mg) 80,000 500 $\mu g/L$ 09/30/11 15:24 10/05/11 Calcium (Ca) 81,000 500 μg/L 09/30/11 15:24 10/05/11 Vanadium (V) 11 5.0 $\mu g/L$ 09/30/11 15:24 10/05/11 Chromium (Cr) 12 5.0 μg/L 09/30/11 15:24 10/05/11 Manganese (Mn) 4.500 5.0 $\mu g/L$ 09/30/11 15:24 10/05/11 Iron (Fe) 14,000 300 $\mu g/L$ 09/30/11 15:24 10/05/11 Cobalt (Co) ND 5.0 $\mu g/L$ 09/30/11 15:24 10/05/11 Nickel (Ni) 30 10 $\mu g/L$ 09/30/11 15:24 10/05/11 Copper (Cu) ND 10 $\mu g/L$ 09/30/11 15:24 10/05/11 Zinc (Zn) ND 100 μg/L 09/30/11 15:24 10/05/11 Cadmium (Cd) ND 5.0 μg/L 09/30/11 15:24 10/05/11 Lead (Pb) ND 5.0 $\mu g/L$ 09/30/11 15:24 10/05/11 Method Reference: SM3500-Fe B Analyte Result Reporting Limit Oual Units **Date Extracted** Date Analyzed Iron, Ferrous (+2) 790 50 μg/L 09/30/11 09/30/11 Method Reference: SM3500-Fe B / EPA Method 6020A

Analyte Result Reporting Limit Units **Date Extracted** Date Analyzed Iron, Ferric (+3) (by calculation) 13,000 300 10/05/11 μg/L 10/05/11

Ferric iron concentrations are based off of raw (non-rounded ferrous and total iron) data. Therefore, hand calculated ferric iron values may differ slightly. Ferrous iron samples were color developed promptly after laboratory login.

ND = Not Detected

Reported in micrograms per Liter, per client request.

Report Date

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Olympic Station

Attn:

Steve Carter

Phone:

(530) 676-6008

Fax:

(530) 676-6005

Alpha Analytical Number: STR11092905-04A

Job:

Sampled: 09/29/11

Client I.D. Number: EX-1

Received: 09/29/11

Method Reference:	EPA Method SW6020 / SW602	20A					
Analyte	R	Result	Reporting Limit	Qual	Units	Date Extracted	Date Analyzed
Beryllium (Be)		ND	4.0		μg/L	09/30/11 15:24	10/05/11
Sodium (Na)	2	230,000	500		μg/L	09/30/11 15:24	10/05/11
Magnesium (Mg)		58,000	500		μg/L	09/30/11 15:24	10/05/11
Calcium (Ca)		89,000	500		μg/L	09/30/11 15:24	10/05/11
Vanadium (V)		29	5.0		μg/L	09/30/11 15:24	10/05/11
Chromium (Cr)		21	5.0		μg/L	09/30/11 15:24	10/05/11
Manganese (Mn)		1,200	5.0		μg/L	09/30/11 15:24	10/05/11
Iron (Fe)		7,500	300		μg/L	09/30/11 15:24	10/05/11
Cobalt (Co)	1	ND	5.0		μg/L	09/30/11 15:24	10/05/11
Nickel (Ni)		50	10		μg/L	09/30/11 15:24	10/05/11
Copper (Cu)]	ND	10		μg/L	09/30/11 15:24	10/05/11
Zinc (Zn)	1	ND	100		μg/L	09/30/11 15:24	10/05/11
Cadmium (Cd)	ì	ND	5.0		μg/L	09/30/11 15:24	10/05/11
Lead (Pb)	1	ND	5.0		μg/L	09/30/11 15:24	10/05/11
Method Reference :	SM3500-Fe B						
Analyte	Re	esult	Reporting Limit	Qual	Units	Date Extracted	Date Analyzed
Iron, Ferrous (+2)	1	ND	50		μg/L	09/30/11	09/30/11
Method Reference :	SM3500-Fe B / EPA Method 60	020A					
Analyte	Re	esult	Reporting Limit	Qual	Units	Date Extracted	Date Analyzed
Iron, Ferric (+3) (by calc	culation)	7,500	300		μg/L	10/05/11	10/05/11

Ferric iron concentrations are based off of raw (non-rounded ferrous and total iron) data. Therefore, hand calculated ferric iron values may differ slightly. Ferrous iron samples were color developed promptly after laboratory login.

ND = Not Detected

Reported in micrograms per Liter, per client request.

10/7/11

Report Date

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Attn:

Steve Carter

Phone: (530) 676-6008

(530) 676-6005

Date Received: 09/29/11

Job:

Olympic Station

Dissolved Metals by ICPMS EPA Method SW6020 / SW6020A

			·		
	Parameter	Concentration	Reporting Limit	Date Extracted	Date Analyzed
Client ID: MW-2 Lab ID: STR11092905-01A Date Sampled 09/29/11 07:15	Iron (Fe), Dissolved	360	300 μg/L	10/03/11	10/04/11
Client ID: MW-3 Lab ID: STR11092905-02A Date Sampled 09/29/11 06:48	Iron (Fe), Dissolved	330	300 μg/L	10/03/11	10/04/11
Client ID: MW-4 Lab ID: STR11092905-03A Date Sampled 09/29/11 06:20	Iron (Fe), Dissolved	400	300 μg/L	10/03/11	10/04/11
Client ID: EX-1 Lab ID: STR11092905-04A Date Sampled 09/29/11 06:00	lron (Fe), Dissolved	360	300 μg/L	10/03/11	10/04/11

Reported in micrograms per Liter, per client request.

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Attn:

Steve Carter

Phone:

(530) 676-6008

Fax:

(530) 676-6005

Date Received: 09/29/11

Job:

Olympic Station

Chemical Oxygen Demand

EPA Method 410.4

Parameter		Concentration	Reporting Limit	Date Extracted	Date Analyzed
Client ID: MW-2 Lab ID: STR11092905-01A Date Sampled 09/29/11 07:15	Chemical Oxygen Demand (COD)	7,100	5,000 μg/L	10/06/11	10/06/11
Client ID: MW-3 Lab ID: STR11092905-02A Date Sampled 09/29/11 06:48	Chemical Oxygen Demand (COD)	7,900	5,000 μg/L	10/06/11	10/06/11
Client ID: MW-4 Lab ID: STR11092905-03A Date Sampled 09/29/11 06:20	Chemical Oxygen Demand (COD)	80,000	5,000 μg/L	10/06/11	10/06/11
Client ID: EX-1 Lab ID: STR11092905-04A Date Sampled 09/29/11 06:00	Chemical Oxygen Demand (COD)	ND	5,000 μg/L	10/06/11	10/06/11

ND = Not Detected

Reported in micrograms per Liter, per client request.

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Attn:

Steve Carter

Phone:

(530) 676-6008

Fax:

(530) 676-6005

Date Received: 09/29/11

Job:

Olympic Station

Phosphorus

EPA Method 365.3 / SM4500PE

	Parameter	Concentration	Reporting Limit	Date Extracted	Date Analyzed
Client ID: MW-2 Lab ID: STR11092905-01A Date Sampled 09/29/11 07:15	Phosphorus, Total (As P)	1,300	500 μg/L	10/06/11	10/06/11
Client ID: MW-3 Lab ID: STR11092905-02A Date Sampled 09/29/11 06:48	Phosphorus, Total (As P)	530	500 μg/L	10/06/11	10/06/11
Client ID: MW-4 Lab ID: STR11092905-03A Date Sampled 09/29/11 06:20	Phosphorus, Total (As P)	2,400	500 μg/L	10/06/11	10/06/11
Client ID: EX-1 Lab ID: STR11092905-04A Date Sampled 09/29/11 06:00	Phosphorus, Total (As P)	730	500 μg/L	10/06/11	10/06/11

Reported in micrograms per Liter, per client request.

Roger L. Scholl, Ph.D., Laboratory Director • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

10/7/11

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Attn:

Steve Carter

Phone:

(530) 676-6008

Fax:

(530) 676-6005

Date Received: 09/29/11

Job:

Olympic Station

Total Organic Carbon as NonPurgeable Organic Carbon EPA Method SW9060 / SM5310C

	Parameter	Concentration	Reporting Limit	Date Extracted	Date Analyzed
Client ID: MW-2 Lab ID: STR11092905-01A Date Sampled 09/29/11 07:15	Total Organic Carbon	3,400	1,000 μg/L	10/04/11	10/04/11
Client ID: MW-3 Lab ID: STR11092905-02A Date Sampled 09/29/11 06:48	Total Organic Carbon	3,500	1,000 μg/L	10/04/11	10/04/11
Client ID: MW-4 Lab ID: STR11092905-03A Date Sampled 09/29/11 06:20	Total Organic Carbon	27,000	2,000 μg/L	10/04/11	10/04/11
Client ID: EX-1 Lab ID: STR11092905-04A Date Sampled 09/29/11 06:00	Total Organic Carbon	3,300	1,000 μg/L	10/04/11	10/04/11

Reported in micrograms per Liter, per client request.

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Attn: Steve Carter Phone: (530) 676-6008 Fax: (530) 676-6005

Date Received: 09/29/11

Job:

Olympic Station

Total Petroleum Hydrocarbons - Purgeable (TPH-P) EPA Method SW8015B Volatile Organic Compounds (VOCs) EPA Method SW8260B

		Parameter	Concentra	tion	Reporting	Date	Date
					Limit	Extracted	Analyzed
Client ID:	MW-2						•
Lab ID:	STR11092905-01A	TPH-P (GRO)	ND		50 μg/L	10/03/11	10/03/11
Date Sampled	09/29/11 07:15	Tertiary Butyl Alcohol (TBA)	ND		10 μg/L	10/03/11	10/03/11
		Methyl tert-butyl ether (MTBE)	41		0.50 μg/L	10/03/11	10/03/11
		Di-isopropyl Ether (DIPE)	ND		1.0 µg/L	10/03/11	10/03/11
		Ethyl Tertiary Butyl Ether (ETBE)	ND		1.0 μg/L	10/03/11	10/03/11
		1,2-Dichloroethane	ND		1.0 μg/L	10/03/11	10/03/11
		Benzene	ND		0.50 µg/L	10/03/11	10/03/11
		Tertiary Amyl Methyl Ether (TAME)	ND		1.0 µg/L	10/03/11	10/03/11
		Toluene	ND		0.50 μg/L	10/03/11	10/03/11
		Ethylbenzene	ND		0.50 μg/L	10/03/11	10/03/11
		m,p-Xylene	ND		0.50 μg/L	10/03/11	10/03/11
		o-Xylene	ND		0.50 μg/L	10/03/11	10/03/11
Client ID:	MW-3						
Lab ID:	STR11092905-02A	TPH-P (GRO)	ND		50 μg/L	10/03/11	10/03/11
Date Sampled	09/29/11 06:48	Tertiary Butyl Alcohol (TBA)	ND		10 μg/L	10/03/11	10/03/11
		Methyl tert-butyl ether (MTBE)	28		0.50 μg/L	10/03/11	10/03/11
		Di-isopropyl Ether (DIPE)	ND		1.0 μg/L	10/03/11	10/03/11
		Ethyl Tertiary Butyl Ether (ETBE)	ND		1.0 μg/L	10/03/11	10/03/11
		1,2-Dichloroethane	ND		1.0 µg/L	10/03/11	10/03/11
		Benzene	ND		0.50 μg/L	10/03/11	10/03/11
		Tertiary Amyl Methyl Ether (TAME)	ND		1.0 µg/L	10/03/11	10/03/11
		Toluene	ND		0.50 μg/L	10/03/11	10/03/11
		Ethylbenzene	ND		0.50 μg/L	10/03/11	10/03/11
		m,p-Xylene	ND		0.50 μg/L	10/03/11	10/03/11
G11		o-Xylene	ND		0.50 μg/L	10/03/11	10/03/11
Client ID:	MW-4						
	STR11092905-03A	TPH-P (GRO)	8,700		1,000 μg/L	10/04/11	10/04/11
Date Sampled	09/29/11 06:20	Tertiary Butyl Alcohol (TBA)	ND	V	100 μg/L	10/04/11	10/04/11
		Methyl tert-butyl ether (MTBE)	1,500		5.0 μg/L	10/04/11	10/04/11
		Di-isopropyl Ether (DIPE)	ND	V	10 μg/L	10/04/11	10/04/11
		Ethyl Tertiary Butyl Ether (ETBE)	ND	V	10 μg/L	10/04/11	10/04/11
		1,2-Dichloroethane	ND	V	10 μg/L	10/04/11	10/04/11
		Benzene	590		5.0 μg/L	10/04/11	10/04/11
		Tertiary Amyl Methyl Ether (TAME)	28		10 μg/L	10/04/11	10/04/11
		Toluene	ND	V	5.0 μg/L	10/04/11	10/04/11
		Ethylbenzene	34		5.0 μg/L	10/04/11	10/04/11
		m,p-Xylene	ND	V	5.0 μg/L	10/04/11	10/04/11
		o-Xylene	ND	V	5.0 μg/L	10/04/11	10/04/11

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID:	EX-1					
Lab ID:	STR11092905-04A	TPH-P (GRO)	150	50 μg/L	10/03/11	10/03/11
Date Sampled (09/29/11 06:00	Tertiary Butyl Alcohol (TBA)	ND	10 μg/L	10/03/11	10/03/11
		Methyl tert-butyl ether (MTBE)	23	0.50 µg/L	10/03/11	10/03/11
		Di-isopropyl Ether (DIPE)	ND	1.0 µg/L	10/03/11	10/03/11
		Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0 μg/L	10/03/11	10/03/11
		1,2-Dichloroethane	ND	1.0 μg/L	10/03/11	10/03/11
		Benzene	13	0.50 μg/L	10/03/11	10/03/11
		Tertiary Amyl Methyl Ether (TAME)	1.2	1.0 µg/L	10/03/11	10/03/11
		Toluene	ND	0.50 μg/L	10/03/11	10/03/11
		Ethylbenzene	3.2	0.50 μg/L	10/03/11	10/03/11
		m,p-Xylene	1.1	0.50 μg/L	10/03/11	10/03/11
		o-Xylene	ND	0.50 μg/L	10/03/11	10/03/11

Gasoline Range Organics (GRO) C4-C13

V = Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Reported in micrograms per Liter, per client request.

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

VOC Sample Preservation Report

Work Order: STR11092905	Job: Olympic Station			
Alpha's Sample ID	Client's Sample ID	Matrix	рН	
11092905-01A	MW-2	Aqueous	2	ATT TO SERVICE AND ARE TO BE
11092905-02A	MW-3	Aqueous	2	
11092905-03A	MW-4	Aqueous	2	
11092905-04A	EX-1	Aqueous	2	

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 07-Oct-11	(QC Summary Report							er: 5
Method Blank File ID:		Type M		est Code: SN atch ID: W09		Fe B	Analysis Da	te: 09/30/2011 14:41	
Sample ID: MBLK-W0930FR	Units : µg/L		Run ID: W	ETLAB_110	930F		Prep Date:	09/30/2011 14:41	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDR	tefVal %RPD(Limit)	Qual
Iron, Ferrous (+2)	ND	50	·						
Laboratory Control Spike		Type L	CS T	est Code: SN	/13500-	Fe B			
File ID:			В	atch ID: W09	30FR		Analysis Da	te: 09/30/2011 14:41	
Sample ID: LCS-W0930FR	Units : µg/L		Run ID: W	ETLAB_110	930F		Prep Date:	09/30/2011 14:41	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDR	tefVal %RPD(Limit)	Qual
Iron, Ferrous (+2)	1420	50	1500		94	85	115		
Sample Matrix Spike		Type M	s T	est Code: SN	13500-	Fe B	,		
File ID:			Ва	atch ID: W09	30FR		Analysis Da	te: 09/30/2011 14:42	
Sample ID: 11093023-01AMS	Units : µg/L		Run ID: W	ETLAB_110	930F		Prep Date:	09/30/2011 14:42	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDR	tefVal %RPD(Limit)	Qual
Iron, Ferrous (+2)	2130	50	1500	564	105	70	130		
Sample Matrix Spike Duplicate		Type M	SD T	est Code: SN	13500-	Fe B			
File ID:			Ba	atch ID: W09	30FR		Analysis Dat	te: 09/30/2011 14:42	
Sample ID: 11093023-01AMSD	Units : µg/L		Run ID: W	ETLAB_110	930F		Prep Date:	09/30/2011 14:42	
Analyte	Result	PQL				LCL(ME)	UCL(ME) RPDR	efVal %RPD(Limit)	Qual
Iron, Ferrous (+2)	2150	50		564	106	70		0.7(20)	

Comments

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Reported in micrograms per Liter, per client request.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 07-Oct-11	QC Summary Report									
Method Blank File ID:		Type N		est Code: El		hod 410.4	Analysis Dat	e: 10/06/2011 00:00		
Sample ID: MBLK-W1006CD	Units : µg/L		Run ID: W	ETLAB_111	006C		Prep Date:	10/06/2011 00:00		
Analyte	Result	PQL				LCL(ME)	UCL(ME) RPDR	efVal %RPD(Limit)	Qual	
Chemical Oxygen Demand (COD)	ND	5000								
Laboratory Control Spike		Type L	CS Te	est Code: El	A Met	hod 410.4				
File ID:			Ba	atch ID: W10	06CD		Analysis Dat	e: 10/06/2011 00:00		
Sample ID: LCS-W1006CD	Units : µg/L		Run ID: W	ETLAB_111	006C		Prep Date:	10/06/2011 00:00		
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDR	efVal %RPD(Limit)	Qual	
Chemical Oxygen Demand (COD)	51000	5000	50000		102	90	110			
Sample Matrix Spike		Type M	S Te	est Code: EF	A Met	hod 410.4				
File ID:			Ba	atch ID: W10	06CD		Analysis Dat	e: 10/06/2011 00:00		
Sample ID: 11092905-01AMS	Units : µg/L		Run ID: W	ETLAB_111	006C		Prep Date:	10/06/2011 00:00		
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDR	efVal %RPD(Limit)	Qual	
Chemical Oxygen Demand (COD)	58600	5000	50000	7134	103	90	110			
Sample Matrix Spike Duplicate		Туре М	SD Te	est Code: EF	A Met	hod 410.4			-	
File ID:			Ba	itch ID: W10	06CD		Analysis Dat	e: 10/06/2011 00:00		
Sample ID: 11092905-01AMSD	Units : μg/L		Run ID: WI	ETLAB_111	006C		Prep Date:	10/06/2011 00:00		
Analyte	Result	PQL				LCL(ME)	UCL(ME) RPDR	efVal %RPD(Limit)	Qual	
Chemical Oxygen Demand (COD)	53700	5000	50000	7134	93	90		8.8(20)		

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Reported in micrograms per Liter, per client request.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 07-Oct-11	QC Summary Report					Work Order: 11092905			
Method Blank File ID: 100411.B\149_M.D\		Type Mi		est Code: EP atch ID: 274 0		hod SW6	020 / SW6020A Analysis Date:	10/05/2011 02:31	
Sample ID: MB-27405	Units : µg/L		Run ID: IC	P/MS_11100)5A		Prep Date:	09/30/2011 15:24	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual
Beryllium (Be)	ND	4							
Sodium (Na)	ND	500		-					
Magnesium (Mg) Calcium (Ca)	ND	500							
Vanadium (V)	ND ND	500 5							
Chromium (Cr)	ND	5							
Manganese (Mn)	ND	5							
Iron (Fe)	ND	300							
Cobalt (Co) Nickel (Ni)	ND	.5							
Copper (Cu)	ND ND	10							
Zinc (Zn)	ND	10 100							
Cadmium (Cd)	ND	5							
Lead (Pb)	ND	5							
Laboratory Control Spike		Type LC	S T	est Code: EP	A Meti	nod SW60	020 / SW6020A		
File ID: 100411.B\150_M.D\			В	atch ID: 2740	5		Analysis Date:	10/05/2011 02:37	
Sample ID: LCS-27405	Units : µg/L	F	Run ID: IC	P/MS_11100	5A		Prep Date:	09/30/2011 15:24	
Analyte	Result	PQL	SpkVal	SpkRefVal 9	%REC	LCL(ME)	UCL(ME) RPDRef\	/al %RPD(Limit)	Qual
Beryllium (Be)	240	4	250		96	80	120		
Sodium (Na) Magnesium (Mg)	50700	500	50000		101	80	120		
Calcium (Ca)	49700 48900	500	50000		99	80	120		
Vanadium (V)	223	500 5	50000 250		97 89	80 80	120 120		
Chromium (Cr)	228	5	250		91	80	120		
Manganese (Mn)	2370	5	2500		95	80	120		
Iron (Fe)	47500	300	50000		95	80	120		
Cobalt (Co) Nickel (Ni)	229 234	5	250		92	80	120		
Copper (Cu)	234	10 10	250 250		94 94	80 80	120 120		
Zinc (Zn)	231	100	250		92	80	120		
Cadmium (Cd)	234	5	250		93	80	120		
Lead (Pb)	234	5	250		93	80	120		
Sample Matrix Spike		Type MS	Te	est Code: EP	A Meth	od SW60	20 / SW6020A		
File ID: 100411.B\155_M.D\			Ва	atch ID: 2740	5		Analysis Date:	10/05/2011 03:06	
Sample ID: 11092905-01AMS	Units : µg/L	F	Run ID: IC I	P/MS_11100	5A		Prep Date:	09/30/2011 15:24	
Analyte	Result	PQL	SpkVal	SpkRefVal %	6REC	LCL(ME)	UCL(ME) RPDRefV		Qual
Beryllium (Be)	255	4	250	0	102	75	125	<u></u>	
Sodium (Na)	251000	500	50000	209000	84	75	125		
Magnesium (Mg) Calcium (Ca)	117000	500	50000	72270	90	75	125		
Vanadium (V)	151000 337	500 5	50000 250	103000	95	75	125		
Chromium (Cr)	323	5	250 250	95.89 84.88	96 95	75 75	125 125		
Manganese (Mn)	4580	5	2500		99.7	75 75	125		
Iron (Fe)	83300	300	50000		102	75	125		
Cobalt (Co) Nickel (Ni)	267	5	250		99.7	75	125		
Copper (Cu)	350 284	10	250		103	75 75	125		
Zinc (Zn)	284 341 -	10 100	250 250		102 136	75 75	125		
Cadmium (Cd)	238	5	250	0	95	75 75	125 125		M1
Lead (Pb)	256	5	250		99 99	75 75	125 125		

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 07-Oct-11	QC Summary Report									Work Order: 11092905	
Sample Matrix Spike Duplicate	Type MSD Test Code: EPA Method SW60						20 / SW6	020A			
File ID: 100411.B\156_M.D\	Batch ID: 27405 Analysis D							sis Date: 1	0/05/2011 03:12		
Sample ID: 11092905-01AMSD	Units : µg/L	Jnits: µg/L Run ID: ICP/MS_111005A						Date: 0	9/30/2011 15:24		
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRefVa	I %RPD(Limit)	Qual	
Beryllium (Be)	261	4	250	0	104	75	125	254.7	2.4(20)		
Sodium (Na)	259000	500	50000	209000	99.6	75	125	251000	3.1(20)		
Magnesium (Mg)	120000	500	50000	72270	94	75	125	117400	1.8(20)		
Calcium (Ca)	152000	500	50000	103000	98	75	125	150600	1.1(20)		
Vanadium (V)	334	5	250	95.89	95	75	125	337	1.0(20)		
Chromium (Cr)	324	5	250	84.88	96	75	125	323.3	0.2(20)		
Manganese (Mn)	4670	5	2500	2091	103	75	125	4584	1.8(20)		
Iron (Fe)	84700	300	50000	32440	105	75	125	83290	1.7(20)		
Cobalt (Co)	275	5	250	17.75	103	75	125	266.9	2.9(20)		
Nickel (Ni)	360	10	250	92.78	107	75	125	350.2	2.8(20)		
Copper (Cu)	292	10	250	28.8	105	75	125	284.3	2.6(20)		
Zinc (Zn)	345	100	250	0	138	75	125	341	1.2(20)	M1	
Cadmium (Cd)	240	5	250	0	96	75	125	238.4	0.6(20)		
Lead (Pb)	257	5	250	9.435	99	75	125	256.3	0.1(20)		

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

M1 = Matrix spike recovery was high, the method control sample recovery was acceptable.

Reported in micrograms per Liter, per client request.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 07-Oct-11	(QC S	ummar	y Repor	t				Work Orde 11092905	
Method Blank File ID: 100411.B\070_M.D\		Type N		est Code: EF		hod 200.8	Analysi	is Date:	10/04/2011 18:09	
Sample ID: MB-27417	Units : µg/L		Run ID: IC	P/MS_11100	04C		Prep D	ate:	10/03/2011 16:01	
Analyte	Result	PQL				LCL(ME)	UCL(ME) F	RPDRef	/al %RPD(Limit)	Qual
Iron (Fe), Dissolved	ND	300								
Laboratory Control Spike		Type L	CS To	est Code: EF	A Met	hod 200.8				
File ID: 100411.B\071_M.D\			Ba	atch ID: 2741	7		Analysi	s Date:	10/04/2011 18:15	
Sample ID: LCS-27417	Units : µg/L		Run ID: IC	P/MS_11100)4C		Prep Da	ate:	10/03/2011 16:01	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) F	RPDRef\	/al %RPD(Limit)	Qual
Iron (Fe), Dissolved	5020	300			100	80	120			
Sample Matrix Spike		Type N	IS Te	est Code: EF	A Met	hod 200.8				
File ID: 100411.B\076_M.D\			Ва	atch ID: 2741	7		Analysi	s Date:	10/04/2011 18:45	
Sample ID: 11092905-01AMS	Units : μg/L		Run ID: IC	P/MS_11100)4C		Prep Da	ate:	10/03/2011 16:01	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) R	RPDRef\	/al %RPD(Limit)	Qual
Iron (Fe), Dissolved	5460	300	5000	362.4	102	75	125			
Sample Matrix Spike Duplicate		Type M	SD Te	est Code: EP	A Met	hod 200.8				
File ID: 100411.B\077_M.D\			Ва	tch ID: 2741	7		Analysi	s Date:	10/04/2011 18:51	
Sample ID: 11092905-01AMSD	Units : µg/L		Run ID: IC	P/MS_11100	4C		Prep Da		10/03/2011 16:01	
Analyte	Result	PQL				LCL(ME)	UCL(ME) R	PDRef\	/al %RPD(Limit)	Qual
Iron (Fe), Dissolved	5710	300		362.4		75	125	5456		

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Reported in micrograms per Liter, per client request.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 07-Oct-11	QC Summary Report									er:
Method Blank File ID:		Type I		Fest Code: E Batch ID: W1		thod 365.3			10/06/2011 00:00	
Sample ID: MBLK-W1006TP	Units : µg/L		Run ID: V	VETLAB_11	1006B		Prep	Date:	10/06/2011 00:00	
Analyte	Result	PQL	SpkVa	SpkRefVal	%REC	C LCL(ME)	UCL(ME)	RPDRef\	/al %RPD(Limit)	Qual
Phosphorus, Total (As P)	ND	10	0					***************************************		
Laboratory Control Spike		Type I		est Code: E		thod 365.3	/ SM4500	PE		
Sample ID: LCS-W1006TP Analyte	Units : µg/L Result	PQL	Run ID: V	Batch ID: W1 6 VETLAB_11 1 I SpkRefVal	1006B	C LCL(ME)	Prep	Date:	10/06/2011 00:00 10/06/2011 00:00 /al %RPD(Limit)	Qual
Phosphorus, Total (As P)	987	100			99	73	127		(2)	
Sample Matrix Spike File ID:		Type I		est Code: E		thod 365.3			10/06/2011 00:00	
Sample ID: 11100644-01AMS Analyte	Units : µg/L Result	PQL		/ETLAB_111 SpkRefVal		CLCL(ME)	Prep	Date:	10/06/2011 00:00 /al %RPD(Limit)	Qual
Phosphorus, Total (As P)	997	100			99.7	73	127			
Sample Matrix Spike Duplicate File ID:		Type N		est Code: El		hod 365.3			40/00/00/00	
Sample ID: 11100644-01AMSD Analyte	Units : µg/L Result	PQL	Run ID: V	atch ID: W1(/ETLAB_111 SpkRefVal	006B	LCL(ME)	Prep l	Date:	10/06/2011 00:00 10/06/2011 00:00 /al %RPD(Limit)	Qual
Phosphorus, Total (As P)	1030	100				73	127	997	3.1(20)	

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 07-Oct-11	(QC S	ummar	y Repor	t				Work Orde 11092905	
Method Blank File ID:		Type: N		est Code: EF		hod SW90			10/04/2011 12:18	
Sample ID: MBLK-27421	Units : µg/L		Run ID: To	OC_111004A			Prep D		10/04/2011 09:53	
Analyte	Result	PQL				LCL(ME)	•		Val %RPD(Limit)	Qual
Total Organic Carbon	ND	1000					· · · · · · · · · · · · · · · · · · ·			
Laboratory Control Spike		Type: L	CS T	est Code: EF	A Met	hod SW90	60 / SM531	0C		
File ID:			В	atch ID: 2742	21		Analys	is Date:	10/04/2011 12:44	
Sample ID: LCS-27421	Units: µg/L		Run ID: TO	DC_111004A			Prep D	ate:	10/04/2011 09:53	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) F	RPDRef	Val %RPD(Limit)	Qual
Total Organic Carbon	4910	1000			98	74	126			
Sample Matrix Spike		Type: M	S T	est Code: EF	A Met	hod SW90	60 / SM531	0C		
File ID:			B	atch ID: 2742	11		Analysi	is Date:	10/04/2011 13:34	
Sample ID: 11092922-01AMS	Units : µg/L		Run ID: TO	DC_111004A			Prep D		10/04/2011 09:53	
Analyte	Result	PQL				LCL(ME)	UCL(ME) F	RPDRef	Val %RPD(Limit)	Qual
Total Organic Carbon	6190	1000	5000	2020	83	56	137			
Sample Matrix Spike Duplicate		Type: M	SD T	est Code: EF	A Met	hod SW90	30 / SM531	0C		
File ID:			В	atch ID: 2742	1		Analysi	s Date:	10/04/2011 14:00	
Sample ID: 11092922-01AMSD	Units: µg/L		Run ID: TO	OC_111004A			Prep D		10/04/2011 09:53	
Analyte	Result	PQL				LCL(ME)	•		Val %RPD(Limit)	Qual
Total Organic Carbon	6240	1000		2020	84	56	137	6188	······································	

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Reported in micrograms per Liter, per client request.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 07-Oct-11	(QC Si	ummar	y Repor	t			Work Orde 11092905	
Method Blank		Type N	IBLK Te	st Code: El	PA Meti	hod SW80	15B/C		
File ID: C:\HPCHEM\MS06\DATA\111003\11100	306.D		Ва	itch ID: MS	6W100	3B	Analysis Date:	10/03/2011 18:31	
Sample ID: MBLK MS06W1003B U	Inits : μg/L		Run ID: MS	SD_06_1110	003A		Prep Date:	10/03/2011 18:31	
Analyte	Result	PQL				LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual
	ND	50							
Surr: 1,2-Dichloroethane-d4	10.9		10		109	70	130		
Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	9.98		10		99.8	70	130		
	9.5		10		95	70	130		
Laboratory Control Spike		Type L	CS Te	st Code: El	PA Meti	nod SW80	15B/C		
File ID: C:\HPCHEM\MS06\DATA\111003\11100			Ba	tch ID: MS(6W100	3B	Analysis Date:	10/03/2011 17:38	
	nits : µg/L		Run ID: MS	D_06_1110	03A		Prep Date:	10/03/2011 17:38	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual
TPH-P (GRO)	419	50	400		105	70	130		
Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8	10.6		10		106	70	130		
Surr: 4-Bromofluorobenzene	9.84 9.4		10 10		98 94	70 70	130 130		
									
Sample Matrix Spike File ID: C:\HPCHEM\MS06\DATA\111003\11100	200 D	Type M		st Code: EF					
O-mark ID				tch ID: MS0		3B		10/03/2011 19:23	
Amend to	nits : μg/L			D_06_1110			Prep Date:	10/03/2011 19:23	
	Result	PQL				LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual
TPH-P (GRO) Surr: 1,2-Dichloroethane-d4	2130	250	2000	0	107	51	144		
Surr: Toluene-d8	53.4 50.5		50 50		107 101	70 70	130		
Surr: 4-Bromofluorobenzene	46.2		50 50		92	70 70	130 130		
Sample Matrix Spike Duplicate		Type M		st Code: EF					
File ID: C:\HPCHEM\MS06\DATA\111003\11100	309.D		Ba	tch ID: MS0	6W100	3B	Analysis Date:	10/03/2011 19:50	
Sample ID: 11092905-01AGSD U	nits : μg/L		Run ID: MS	D_06_1110	03A		Prep Date:	10/03/2011 19:50	
Analyte	Result	PQL				LCL(ME)	JCL(ME) RPDRef\		Qual
TPH-P (GRO)	2180	250	2000	0	109	51	144 2130		
Surr: 1,2-Dichloroethane-d4	51.7		50	•	103	70	130	2.0(20)	
Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	50.6		50		101	70	130		
Guil. 4-Dromonuoropenzene	46.8		50		94	70	130		

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Reported in micrograms per Liter, per client request.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 07-Oct-11			QC St	ımmar	y Repo	rt				Work Ord 1109290	
Method Bla			Type M	BLK T	est Code: E	PA Met	thod SW82	260B			
File ID: C:\HP	CHEM\MS06\DATA\111003\1	1100306.D			atch ID: MS				sis Date:	10/03/2011 18:31	
Sample ID:	MBLK MS06W1003A	Units : µg/L		Run ID: M	SD_06_111	003A		•	Date:	10/03/2011 18:31	
Analyte		Result	PQL				LCL(ME)			Val %RPD(Limit)	Qual
Tertiary Butyl	Alcohol (TBA)	ND	10								
	tyl ether (MTBE)	ND	0.5								
Di-isopropyl E	ther (DIPE) Butyl Ether (ETBE)	ND	1								
1,2-Dichloroet		ND ND	1								
Benzene		ND	0.5								
	Methyl Ether (TAME)	ND	1								
Toluene		ND	0.5								
Ethylbenzene m,p-Xylene		ND	0.5								
o-Xylene		ND ND	0.5 0.5								
Surr: 1,2-Dichl	oroethane-d4	10.9	0.5	10		109	70	130			
Surr: Toluene-		9.98		10		99.8	70	130			
Surr: 4-Bromo	fluorobenzene	9.5		10		95	70	130			
	Control Spike		Type LC	CS Te	est Code: E	PA Met	hod SW82	260B			
	CHEM\MS06\DATA\111003\1	1100305.D		Ва	atch ID: MS	06W100)3A	Analy	sis Date:	10/03/2011 18:04	
Sample ID:	LCS MS06W1003A	Units : µg/L	F	Run ID: MS	SD_06_111	003A		Prep	Date:	10/03/2011 18:04	
Analyte		Result	PQL				LCL(ME)	UCL(ME)	RPDRef\	/al %RPD(Limit)	Qual
	yl ether (MTBE)	8.74	0.5	10		87	65	140			
Benzene		10.2	0.5	10		102	70	130			
Toluene Ethylbenzene		9.48	0.5	10		95	80	120			
m,p-Xylene		10.1 10.4	0.5	10		101	80	120			
o-Xylene		10.4	0.5 0.5	10 10		104 101	70 70	130 130			
Surr: 1,2-Dichle		10.6	0.5	10		106	70 70	130			
Surr: Toluene-		10.4		10		104	70	130			
Surr: 4-Bromof	luorobenzene	8.84		10		88	70	130			
Sample Mat			Type MS	3 Te	st Code: El	PA Meti	hod SW82	60B			
	CHEM\MS06\DATA\111003\1	1100310.D		Ва	tch ID: MS0	6W100	3A	Analys	sis Date:	10/03/2011 20:17	
Sample ID:	11092905-01AMS	Units : µg/L	F	Run ID: MS	SD_06_1110	03A		Prep [10/03/2011 20:17	
Analyte		Result	PQL				LCL(ME)			/al %RPD(Limit)	Qual
Methyl tert-buty	/I ether (MTBE)	91.9	1.3	50	41.35	101	47	150		,	
Benzene		48.7	1.3	50	0	97	59	138			
Toluene		45.2	1.3	50	0	90	68	130			
Ethylbenzene m,p-Xylene		48.3 50.9	1.3	50	0	97	68	130			
o-Xylene		50.9 48.7	1.3 1.3	50 50	0	102 97	68 70	131			
Surr: 1,2-Dichlo	proethane-d4	52.9	1.5	50	U	106	70 70	130 130			
Surr: Toluene-c		51.4		50		103	70	130			
Surr: 4-Bromoff	uorobenzene	43.8		50		88	70	130			
	ix Spike Duplicate		Type MS	D Te	st Code: EF	A Meth	od SW82	60B			
	CHEM\MS06\DATA\111003\11	100311.D		Ba	tch ID: MS0	6W100	3A	Analys	sis Date:	10/03/2011 20:43	
Sample ID:	11092905-01AMSD	Units : µg/L	R	Run ID: MS	D_06_1110	03A		Prep [10/03/2011 20:43	
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRefV	al %RPD(Limit)	Qual
Methyl tert-buty	l ether (MTBE)	95.2	1.3	50	41.35	108	47	150	91.87	3.5(40)	
Benzene Toluene		50.5	1.3	50	0	101	59	138	48.73	3.6(21)	
Ethylbenzene		47.1 50.2	1.3 1.3	50 50	0	94	68 60	130	45.19	, ,	
m,p-Xylene		51.6	1.3	50 50	0	100 103	68 68	130 131	48.3 50.94	3.9(20) 1.2(20)	
o-Xylene		50.8	1.3	50	0	102	70	130	48.65	1.2(20) 4.4(20)	
Surr: 1,2-Dichlo Surr: Toluene-d		53		50		106	70	130		()	
Surr: 4-Bromofic		52		50		104	70	130			
I DIOINOIN		43.8		50		88	70	130			

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date:	OC C	Work Order:
07-Oct-11	QC Summary Report	
07-001-11	Qualification of the second of	11092905

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

California Laboratory Services

3249 Fitzgerald Road Rancho Cordova, CA 95742

October 05, 2011

CLS Work Order #: CUI1170 COC #:

Reyna Vallejo Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21 Sparks, NV 89431

Project Name: STR11092905

Enclosed are the results of analyses for samples received by the laboratory on 09/29/11 12:45. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

CA DOHS ELAP Accreditation/Registration number 1233

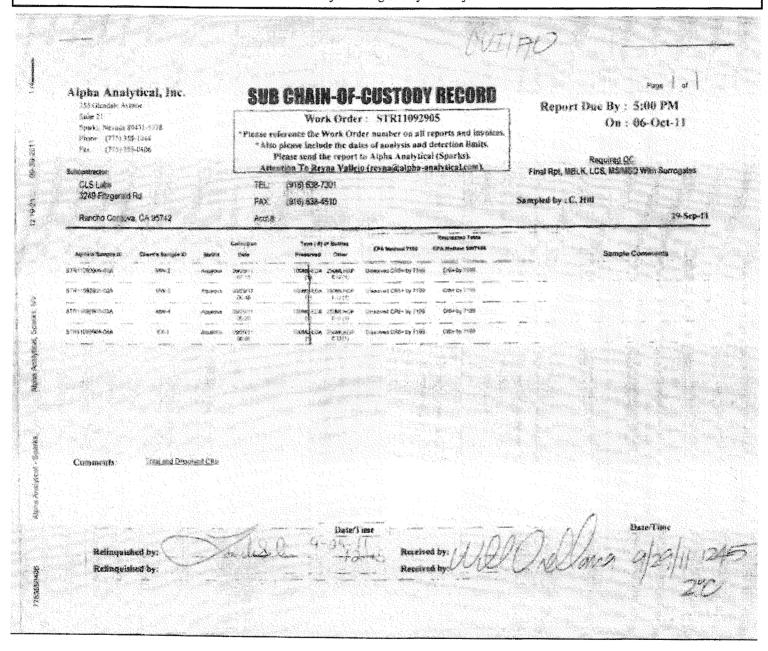
California Laboratory Services

Page 1 of 4

10/05/11 11:03

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.: Suite 21

Sparks, NV 89431


Project: STR11092905

Project Number: STR11092905

Project Manager: Reyna Vallejo

CLS Work Order #: CUI1170

COC#:

2040 Ettermountain and Demail of 1 Or Arm.

CALIFORNIA LABORATORY SERVICES

Page 2 of 4

10/05/11 11:03

Alpha Analytical, Inc.-Sparks

255 Glendale Ave.; Suite 21 Sparks, NV 89431

Project: STR11092905

Project Number: STR11092905 Project Manager: Reyna Vallejo

CLS Work Order #: CUI1170

COC #:

Conventional Chemistry Parameters by APHA/EPA Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
STR11092905-01A (MW-2) (CUI1170-01) Aqueous	Sampled: 09/2	9/11 07	:15 Rece	ived: 09/29	/11 12:45			
Hexavalent Chromium	ND	1.0	μg/L	1	CU07018	09/29/11	09/29/11	EPA 7199	
Hexavalent Chromium, Dissolved	ND	1.0	n	n	11	н	н	н	
STR11092905-02A (MW-3) (CUI1170-02) Aqueous	Sampled: 09/2	9/11 06	:48 Rece	ived: 09/29	/11 12:45			
Hexavalent Chromium	ND	1.0	μg/L	1	CU07018	09/29/11	09/29/11	EPA 7199	
Hexavalent Chromium, Dissolved	ND	1.0	"	#1	11	H	п	N	
STR11092905-03A (MW-4) (CUI1170-03) Aqueous	Sampled: 09/2	9/11 06:	:20 Rece	ived: 09/29	/11 12:45			
Hexavalent Chromium	ND	1.0	μg/L	1	CU07018	09/29/11	09/29/11	EPA 7199	
Hexavalent Chromium, Dissolved	ND	1.0	n	**	11	11	11	11	
STR11092905-04A (EX-1) (CUI1170-04)	Aqueous Sa	ampled: 09/29	/11 06:0	0 Receiv	ed: 09/29/1	1 12:45			
Hexavalent Chromium	ND	1.0	μg/L	1	CU07018	09/29/11	09/29/11	EPA 7199	
Hexavalent Chromium, Dissolved	ND	1.0		11	**	11	11	11	

CALIFORNIA LABORATORY SERVICES

Page 3 of 4

10/05/11 11:03

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21

Sparks, NV 89431

Project: STR11092905

Project Number: STR11092905

Project Manager: Reyna Vallejo

CLS Work Order #: CUI1170

COC#:

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CU07018 - General Prep										
Blank (CU07018-BLK1)				Prepared	& Analyz	ed: 09/29/	11			
Hexavalent Chromium	ND	1.0	μg/L							
Hexavalent Chromium, Dissolved	ND	1.0	"							
LCS (CU07018-BS1)				Prepared	& Analyz	ed: 09/29/	11			
Hexavalent Chromium	4.73	1.0	μg/L	5.00		95	80-120			
Hexavalent Chromium, Dissolved	4.73	1.0	"	5.00		95	80-120			
LCS Dup (CU07018-BSD1)				Prepared	& Analyz	ed: 09/29/	11			
Hexavalent Chromium	4.91	1.0	μg/L	5.00	··· J	98	80-120	4	20	
Hexavalent Chromium, Dissolved	4.91	1.0	11	5.00		98	80-120	4	20	
Matrix Spike (CU07018-MS1)	So	urce: CUI112	25-05	Prepared a	& Analyz	ed: 09/29/	11			
Hexavalent Chromium	2.93	1.0	μg/L	5.00	ND	59	75-125			QM-7
Hexavalent Chromium, Dissolved	2.93	1.0	"	5.00		59	75-125			QM-7
Matrix Spike Dup (CU07018-MSD1)	So	urce: CUI112	25-05	Prepared a	& Analyze	ed: 09/29/	11			
Hexavalent Chromium	2.58	1.0	μg/L	5.00	ND	52	75-125	13	25	QM-7
Hexavalent Chromium, Dissolved	2.58	1.0	"	5.00		52	75-125	13	25	QM-7

CALIFORNIA LABORATORY SERVICES

Page 4 of 4

10/05/11 11:03

Alpha Analytical, Inc.-Sparks

255 Glendale Ave.; Suite 21

Sparks, NV 89431

Project: STR11092905

Project Number: STR11092905

Project Manager: Reyna Vallejo

CLS Work Order #: CUI1170

COC#:

Notes and Definitions

QM-7 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable

LCS/LCSD recovery.

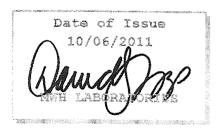
DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference


750 Royal Oak Dr., Suite 100 Monrovia, California, 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227)

Laboratory Report

for

Alpha Analytical, Inc. 255 Glendale Avenue, Suite 21 Sparks, NV 89431 Attention: Reyna Vallejo

Fax: 775-355-0406

DST: David S Tripp Project Manager nelac III

Report#: 377536

Project: SUBCONTRACT

Group: Bromate

Laboratory certifies that the test results meet all **NELAC** requirements unless noted in the Comments section or the Case Narrative. Following the cover page are Hits Reports, Comments, QC Summary, QC Report and Regulatory Forms. This report shall not be reproduced except in full, without the written approval of the laboratory.

STATE CERTIFICATION LIST

State	Certification Number	State	Certification Number
Alabama	41060	Mississippi	Certified
Alaska	CA00006	Montana	Cert 0035
Arizona	AZ0455	Nevada	CA00006-2010-1
Arkansas	Certified	New Hampshire	2959-11
California – NELAP	01114CA	New Jersey	CA 008
California – ELAP	1422	New Mexico	Certified
Colorado	Certified	New York	11320
Connecticut	PH-0107	North Carolina	06701
Delaware	CA 006	North Dakota	R-009
Florida	E871024	Oregon	CA 200003-009
Georgia	947	Pennsylvania	68-565
Guam	11-004r	Rhode Island	01114CA
Hawaii	Certified	South Carolina	87016001
Idaho	Certified	South Dakota	Certified
Illinois	200033	Tennessee	TN02839
Indiana	C-CA-01	Texas	T104704230-11-2
Kansas	E-10268	Utah	Mont-1
Kentucky	90107	Vermont	VT0114
Louisiana	LA110022	Virginia	00210
Maine	CA0006	Washington	C383
Maryland	224	West Virginia	9943 C
Commonwealth of Northern Marianas Is.	MP0004	Wisconsin	998316660
Massachusetts	M-CA006	Wyoming	8TMS-L
Michigan	9906	EPA Region 5	Certified

Acknowledgement of Samples Received

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21

Sparks, NV 89431 Attn: Reyna Vallejo Phone: 775-355-1044 Customer Code: ALPHA-NV

Folder #: 377536

Project: SUBCONTRACT

Sample Group: Bromate

Project Manager: David S Tripp

Phone: (626) 386-1158 PO #: STR11092905

The following samples were received from you on **September 30, 2011**. They have been scheduled for the tests listed below each sample. If this information is incorrect, please contact your service representative. Thank you for using MWH Laboratories.

3ample #	Sample ID	Sample Date			
<u>:01109300136</u>	MW-2 Variable ID: STR11092905-01A	Sep 29, 2011 07,15			
	Bromate by UV/VIS				
<u>:01109300137</u>	MW-3 Variable ID: STR11092905-02A	Sep 29, 2011 06,48			
	Bromate by UV/VIS				
01109300138	MW-4 Variable ID: STR11092905-03A	Sep 29, 2011 06:20			
	Bromate by UV/VIS				
<u>01109300139</u>	EX-1 Variable ID: STR11092905-04A	Sep 29, 2011 06:00			
	Bromate by UV/VIS				

Reported: 10/07/11

255 Glondale Avenue

Suite 21

Sparks, Nevada 89431-5778

Phone: (775) 355-1044

Fex: (775) 355-0406

Subcontractor:

Montgomery Watson Harza Laboratories, Inc.

750 Royal Oaks Drive

Suite 100

Monrovia, CA 91016-3629

SUB CHAIN-OF-GUSTODY REGORD

Work Order: STR11092905

*Please reference the Work Order number on all reports and invoices.

*Also please include the dates of analysis and detection limits.

Please send the report to Alpha Analytical (Sparks).

Attention To Reyna Vallejo (reyna@alpha-analytical.com).

TEL: (626) 386-1100

FAX: (626) 386-1124

Acci #:

Report Due By: 5:00 PM

On: 06-Oct-11

Required QC: Final Rpt, MBLK, LCS, MS/MSD With Surregates

Sampled by : C. Hill

29-Sep-11

Alpha's Sample IO	CHent's Sample ID Matrix	Collection Data	Type (#) of Bottles Preserved Other	Requested Tests EPA Sistand 317		Sample Comments
STR11082905-01A	MW-2 Aqueous	09/29/11 07:15	100ML-EDA 250ML-HDP (1) E-V (1)	Bromete (Sub to MWH)		
\$7911002905-02A	MV-3 Aqueous	09/29/11 06:48	100ML-EDA 250MLHDP (1) E-U(1)	Bromete (Sub to MWH)	- Anger announce de la constant de l	
STR11092905-03A	MW4 Aqueous	09/29/11 05:20	100ML-EDA 250M HDP (1) E-U(1)	Bromete (Sub to MWH)	And the second of the second o	
\$TR1109280-04A	EX-1 Agueous	09/29/11 06:00	100ML-EDA 250MLHDP (1) E-U(1)	Bromate (Sub to MWH)	A second to the	

Comments:

	Date/Time	7	ner remains defined as the legislation for the legislation of the legi	Date/Time
Relinquished by:	WILL 9-99-61	Received by:		9/30/11/024
Relinquished by:		Received by:	and the second s	

Alpha Analytical, Inc. Phone: (775) 355-1044 FAX: (775) 355-0406

Subcontract Sample Receipt Checklist

Date Report is due at Alpho . 08-069-11

Date of Notice :

If any items are checkmarked NO or are non-compliant, a phone call back to Alpka Analytical is required immediately. If all items are acceptable, a fexed copy of the signed sub chain of custody (COC) and the completed sample receipt check list is required within 24 hours of sample receipt.

Alpha's Work Order Number : STR11092905 SubContract Work	Order Number	Date Received:
Chain of Gu	stody (COC) Infor	mation
Carrier name: <u>FED EV</u>		
Chain of custody present ?	Yes 🔳	■ No
Custody seals intact on shippping container/cooler?	Yes 🔣	No Not Presen
Custody seals intact on sample bottles?	Yes 🗐	■ No Not Presen ■
Chain of custody signed when relinquished and received ?	Yes 🔳 🎤	a No
Chain of custody agrees with sample labels ?	Yes 🔟 🐪	Non-Compliant
Internal Chain of Custody (COC) requiseted ?	Yes 🗐	No No
Sample I	Receipt Informati	on .
Shipping container/cooler in good condition?	Yes 🗃	No Not Presen
Samples in proper container/bottle?	Yes 🗐	Non-Compliant
Sample containers intact?	Yes 🗐	No.
Sufficient sample volume for indicated test?	Yes 🖫	■ No
Sample Preservation	and Hold Time (F	IT) Information
All samples received within holding time?	Yes 🗐	Non-Compliant
Cooler Temperature: 2 / is Wet Ice present in Cooler?	Yes 🗐 II YE	S, then temperature is 4°C.
	No 📵 IFNO	, then actual cooler temperature is :°€
Analytical F	Requirement Info	rmation
Are non-Standard or Modified methods requested ?	Yes 🔳	■ No
SubContract Lab CA STATE certified?	Yes 📳	No.
SubContract Lab NELAP confilled?	Yes 🔳	M No
SubContract Lab CERTIFIED for the various methods requested	Yes	No.
Will the SubContract Lab be able to meet the turn-around time (TAT) requirements ?	Yes 🔟	■ No

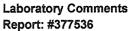
Comments:

750 Royal Oak Dr., Suite 100 Monrovia, California, 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227)

Alpha Analytical, Inc. Reyna Vallejo 255 Glendale Avenue, Suite 21 Sparks, NV 89431 Laboratory Hits Report: 377536

Samples Received on: 09/30/2011

				Federal		
Analyzed	Analyte	Sample ID	Result	MCL	Units	MRL



750 Royal Oak Dr., Suite 100 Monrovia, California, 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227)

Alpha Analytical, Inc. Reyna Vallejo 255 Glendale Avenue, Suite 21 Sparks, NV 89431 Laboratory Data Report: 377536

Samples Received on: 09/30/2011

Prepared	Analyzed	QC Ref#	Method	Analyte	Result	Units	MRL Di	lution
VIW-2 (201	109300136)					Sampled on	09/29/2011 0715	
1			92905-01A mate by UV/VIS 31 7 (EPA 317)	7 Bromate by UV/VIS	ND	ug/L	1	1
WW-3 (2011	109300137)		,		2	•	09/29/2011 0648	•
11 VIW-4 (2011	EP/ 0/03/2011 19:4		92905-02A mate by UV/VIS 317 (EPA 317)	7 Bromate by UV/VIS	ND	ug/L Sampled on	1 09/29/2011 0620	1
10 <u>EX-1 (2011)</u>	EP/ 0/04/2011 15:3	ID: STR110 A 317 - Bro D 621436	92905-03A mate by UV/VIS 317 (EPA 317)	7 Bromate by UV/VIS	ND	ug/L Sampled on	1 09/29/2011 0600	1
10			92905-04A mate by UV/VIS 317 (EPA 317)	Promate by UV/VIS	ND	ug/L	4	4

750 Royal Oak Dr., Suite 100 Monrovia, California, 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227)

Alpha Analytical, Inc. Reyna Vallejo 255 Glendale Avenue, Suite 21 Sparks, NV 89431

750 Royal Oak Dr., Suite 100 Monrovia, California, 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227)

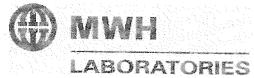
Alpha Analytical, Inc.

QC Ref # 621270 - Bromate by UV/VIS 317

201109300136 MW-2 201109300137 MW-3 201109300139 EX-1

QC Ref # 621436 - Bromate by UV/VIS 317

201109300138


MW-4

Analysis Date: 10/03/2011

Analyzed by: TLH Analyzed by: TLH Analyzed by: TLH

Analysis Date: 10/04/2011

Analyzed by: TLH

750 Royal Oak Dr., Suite 100 Monrovia, California, 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227) Laboratory QC Report: 377536

Alpha Analytical, Inc.

QC Туре	Analyte	Native	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPDLimit (%)	RPD%
QC Ref# 621270 - Bro	omate by UV/VIS 317 by EPA 317				A	nalysis Da	ate: 10/03/2	011	
LCS1	Bromate by UV/VIS		10	9.28	ug/L	93	(90-110)		
LCS2	Bromate by UV/VIS		10	9.41	ug/L	94	(90-110)	20	1.4
MBLK	Bromate by UV/VIS			<1	ug/L		,		
MRL_CHK	Bromate by UV/VIS		1.0	0.760	ug/L	76	(75-125)		
MS_201109300065	Bromate by UV/VIS	ND	5.0	5.2	ug/L	90	(75-125)		
MSD_201109300065	Bromate by UV/VIS	ND	5.0	5.16	ug/L	89	(75-125)	15	1.0
MS_201110040140	Bromate by UV/VIS	ND	5.0	4.3	ug/L	86	(75-125)		
MSD_201110040140	Bromate by UV/VIS	ND	5.0	4.3	ug/L	86	(75-125)	15	0.23
QC Ref# 621436 - Bro	mate by UV/VIS 317 by EPA 317				А	nalysis Da	ate: 10/04/20)11	
LCS1	Bromate by UV/VIS		10	9.32	ug/L	93	(90-110)		
LCS2	Bromate by UV/VIS		10	9.27	ug/L	93	(90-110)	20	0.54
MBLK	Bromate by UV/VIS			<1	ug/L		(00 / 10)		0.07
MRL_CHK	Bromate by UV/VIS		1,0	0.816	ug/L	82	(75-125)		
MS_201109300184	Bromate by UV/VIS	3.7	5.0	8.54	ug/L	96	(75-125)		
MSD_201109300184	Bromate by UV/VIS	3.7	5.0	8.44	ug/L	94	(75-125)	15	2.1
MS_201110030063	Bromate by UV/VIS	ND	5.0	4.53	ug/L	91	(75-125)		6 1
MSD_201110030063	Bromate by UV/VIS	ND	5.0	4.67	ug/L	93	(75-125)	15	3.1

Billing Information:

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

Phone Number

(530) 676-6008 x

EMail Address

scarter@stratusinc.net

Page: 1 of 2

WorkOrder: STR11092905

Report Due By: 5:00 PM On: 07-Oct-11

Client:

Stratus Environmental 3330 Cameron Park Drive Suite 550

Cameron Park, CA 95682-8861

EDD Required: Yes

Sampled by : C. Hill

PO:

Client's COC #: 56842

Job: Olympic Station

Report Attention

Steve Carter

Cooler Temp

0°C

Samples Received 29-Sep-11

Date Printed 30-Sep-11

QC Level: S3 = Final Rpt, MBLK, LCS, MS/MSD With Surrogates

									Requested Tests						
Alpha Sample ID		Collection x Date	No. of Alpha	No. of Bottles Alpha Sub T	TAT	317_W	3500FE_2O S_W	3500FE_3IC _W	COD_W			METALS_C R6DS_SUB _W		Sample Remarks	
STR11092905-01A	MW-2	AQ	09/29/11 07:15	13	2	5	Bromate (Sub to MWH)	FE+2	FE+3	COD	Special List	Cr6+ by 7199	Dissolved CR6+ by 7199	Fe	Control of the Contro
STR11092905-02A	MW-3	AQ	09/29/11 06:48	13	2	5	Bromate (Sub to MWH)	FE+2	FE+3	COD	Special List	Cr6+ by 7199	Dissolved CR6+ by 7199	Fe	
STR11092905-03A	MW-4	AQ	09/29/11 06:20	13	2	5	Bromate (Sub to MWH)	FE+2	FE+3	COD	Special List	Cr6+ by 7199	Dissolved CR6+ by 7199	Fe	
STR11092905-04A	EX-1	AQ	09/29/11 06:00	13	2	5	Bromate (Sub to MWH)	FE+2	FE+3	COD	Special List	Cr6+ by 7199	Dissolved CR6+ by 7199	Fe	

Comments:

Chain prelogged in order for Sac to sub Total and Dissolved CR6 by 7199 to CLS and Bromate to MWH. Remaining samples picked up by Alpha employee on 9/30/11. TOC pH=2. Samples 01 and 04 had 3 VOAs marked as Fe+2 voas, but they are preserved with HCL. : They were grouped with VOC VOAs. Client sent bottle marked COD but it was not on the chain. Verified with Lisa it was included in bottle order, therefore it was added to analysis.

Logged in by:

Signature

Print Name

Company

Alpha Analytical, Inc.

Date/Time

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other) Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

Billing Information:

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

EMail Address

scarter@stratusinc.net

TEL: (775) 355-1044 FAX: (775) 355-0406

Phone Number

(530) 676-6008 x

CA

Page: 2 of 2

WorkOrder: STR11092905

Report Due By: 5:00 PM On: 07-Oct-11

Client:

Stratus Environmental 3330 Cameron Park Drive Suite 550

Cameron Park, CA 95682-8861

EDD Required: Yes

Sampled by : C. Hill

0 °C

PO:

Client's COC #: 56842

Job: Olympic Station

Report Attention

Steve Carter

Cooler Temp

Samples Received 29-Sep-11 Date Printed 30-Sep-11

QC Level: S3

= Final Rpt, MBLK, LCS, MS/MSD With Surrogates

									Requested Tests	
Alpha Sample ID	Client Sample ID	Collection Matrix Date	No. of Alpha	Bottles Sub	-	PHOSPHOR US_W	TOC_W	TPH/P_W	VOC_W	Sample Remarks
STR11092905-01A	MW-2	AQ 09/29/11 07:15	13	2	5	Total	TOC	GAS-C	BTEX/OXY/ 1,2-DCA_C	-
STR11092905-02A	MW-3	AQ 09/29/11 06:48	13	2	5	Total	тос	GAS-C	BTEX/OXY/ 1,2-DCA_C	
STR11092905-03A	MW-4	AQ 09/29/11 06:20	13	2	5	Total	TOC	GAS-C	BTEX/OXY/ 1,2-DCA_C	
STR11092905-04A	EX-1	AQ 09/29/11 06:00	13	2	5	Total	TOC	GAS-C	BTEX/OXY/ 1,2-DCA_C	

Comments:

Chain prelogged in order for Sac to sub Total and Dissolved CR6 by 7199 to CLS and Bromate to MWH. Remaining samples picked up by Alpha employee on 9/30/11. TOC pH=2. Samples 01 and 04 had 3 VOAs marked as Fe+2 yoas, but they are preserved with HCL: They were grouped with VOC VOAs. Client sent bottle marked. COD but it was not on the chain. Verified with Lisa it was included in bottle order, therefore it was added to analysis.

Logged in by:

Signature

Print Name

They Camble

Company
Alpha Analytical, Inc.

nc. 4

Date/Time

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report.

Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

Billing Information:		Alpha Analytical, Inc. Samples Collected From Which State? AZ CA NV WA DOD)					
Company Name Strates			e Avenue, Suit							_ DOD;	Site ₁	_
address 3330 Cambra F	The DR	Sparks, Nev Phone (775 Fax (775) 3		78	ID	OR	OTI	4ER	P	Page #	oħ	-
Tity State Zink-Winkerin	- Line Lines	Fax (775) 5			/	dans	lycac D	oquirod		/	•	
Phone Number 5306766004 fax 530	676 6000				/	Sila		equired	/	l Data Valid	-la4:	
Consultant / Client Name)/smpil Stat	Job#		b Name		13	12/3	12/2	7 7	$\sqrt{1}$	Data vand Level: III		
Address	Q4.	Report Attention / Project	Manager		- 12°/	# 1.7. P	12/	阿州	· / · /			
City, State, Zip SAN Lovenz	Name: 3/20				-13/K.X	WI TO	15/2	The High	~ \)/EDE2 VES	NO	
Time Date Matrix* P.O. #		Mobile:			$ \gg $	KIZY.	2/3	2 - P	SO Clab		710	
Sampled Sampled See Key Below Lab ID Number (Use O	e Sample	Description	TAT Fie.	Id # Containers**	100/2	1 65/	ينه الأ	tond.	ID#_	REMAR	KS	-
0715 929 AR STR 11092905-0		- PPPM-1	STU	15	VX	16	人文	i K		neta		•
With the second	2A MW-3		STO	15	VV	XX		14 X	R	Cal	2	-
	3A MW-4		STD	15	XX	XX	- X		Cr	Cal	Cd Cv, Fe Ma, Ni	-
o bas () - 0	49 EX-1		510	115	文文	1 /	人义	2	PS	Me	ma Ni	
2 X 572									No	7	701	•
There is the second									100	- 1 -	~/1	~
\$ 3 7° k 1886	***************************************								- Su	bto.	CIS	
A Company of the contract of t										1 mu		-
		de la constant de la								929		•
.00 Web64									1,7,0		<u> </u>	-
		W. W										
										The control of the co		-
ADDITIONAL INSTRUCTIONS:												
I, (field sampler), attest to the validity and author grounds for legal action. Sampled By	ticity of this sample. I am awa	are that tampering with or	intentionally m	nislabeling the	sample locat	ion, date oi	time of c	collection i	s consider	ed fraud ar	nd may be	-
Relinquished by: (Signature/Affiliation)	Stantos	Received by: (Signature/A		cleSi				ate: 1-29		Time: 1.c		-
Relinquished by: (Signature/Affiliation)		Received by: Signature/A	nha		D	ate:/ 7(30)	1	Time:	oフ	•		
Relinquished by: (Signature/Affiliation)	,	Received by: (Signature/A	Received by: (Signature/Affiliation)					ate:	. 1	Time:	<u> </u>	_
						······································	L_			L		_

*Key: AQ - Aqueous NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this coc. The liability of the laboratory is limited to the amount paid for the report.

V-Voa

S-Soil Jar

O-Orbo

T-Tedlar

B-Brass

P-Plastic

OT-Other

**: L-Liter

OT - Other

AR - Air

WA - Waste

SO - Soil

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 Job:

Olympic Station

Attn:

Steve Carter

Phone:

(530) 676-6008

Fax:

(530) 676-6005

Alpha Analytical Number: STR11101201-01A

Client I.D. Number: MW2

Sampled: 10/12/11

Received: 10/12/11

Method Reference:	EPA Method SW6020 / SW6020A					
Analyte	Result	Reporting Limit	Qual	Units	Date Extracted	Date Analyzed
Beryllium (Be)	ND	4.0		μg/L	10/13/11 11:21	10/13/11
Sodium (Na)	190,000	500		μg/L	10/13/11 11:21	10/13/11
Magnesium (Mg)	66,000	500		μg/L	10/13/11 11:21	10/13/11
Calcium (Ca)	110,000	500		μg/L	10/13/11 11:21	10/13/11
Vanadium (V)	73	5.0		μg/L	10/13/11 11:21	10/13/11
Chromium (Cr)	65	5 5.0		μg/L	10/13/11 11:21	10/13/11
Manganese (Mn)	1,600	5.0		μg/L	10/13/11 11:21	10/13/11
Iron (Fe)	22,000	300		μg/L	10/13/11 11:21	10/13/11
Cobalt (Co)	11	5.0		μg/L	10/13/11 11:21	10/13/11
Nickel (Ni)	50	10		μg/L	10/13/11 11:21	10/13/11
Copper (Cu)	18	3 10		μg/L	10/13/11 11:21	10/13/11
Zinc (Zn)	ND	100		μg/L	10/13/11 11:21	10/13/11
Cadmium (Cd)	ND	5.0		μg/L	10/13/11 11:21	10/13/11
Lead (Pb)	6.0	5.0		μg/L	10/13/11 11:21	10/13/11
Method Reference:	SM3500-Fe B			, 5		- 4/ 10/ 11
Analyte	Result	Reporting Limit	Qual	Units	Date Extracted	Date Analyzed
ron, Ferrous (+2)	ND	50		μg/L	10/14/11	10/14/11
Method Reference:	SM3500-Fe B / EPA Method 6020A					
Analyte	Result	Reporting Limit	Quai	Units	Date Extracted	Date Analyzed
ron, Ferric (+3) (by calc	ulation) 22,000	300		μg/L	10/14/11	10/14/11

Ferric iron concentrations are based off of raw (non-rounded ferrous and total iron) data. Therefore, hand calculated ferric iron values may differ slightly. Ferrous iron samples were color developed promptly after laboratory login.

ND = Not Detected

Reported in micrograms per Liter, per client request.

Roger Scholl

10/20/11

Report Date

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com Alpha certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Steve Carter Phone: (530) 676-6008

Fax:

Attn:

(530) 676-6005

Job:

Olympic Station

Alpha Analytical Number: STR11101201-02A

Sampled: 10/12/11

Client I.D. Number: MW3

Received: 10/12/11

Method Reference:	EPA Method SW6020 /	SW6020A					
Analyte		Result	Reporting Limit	Qual	Units	Date Extracted	Date Analyzed
Beryllium (Be)		ND	4.0		μg/L	10/13/11 11:21	10/13/11
Sodium (Na)		180,000	500		μg/L	10/13/11 11:21	10/13/11
Magnesium (Mg)		50,000	500		μg/L	10/13/11 11:21	10/13/11
Calcium (Ca)		81,000	500		μg/L	10/13/11 11:21	10/13/11
Vanadium (V)		32	5.0		μg/L	10/13/11 11:21	10/13/11
Chromium (Cr)		22	5.0		μg/L	10/13/11 11:21	10/13/11
Manganese (Mn)		1,000	5.0		μg/L	10/13/11 11:21	10/13/11
Iron (Fe)		6,900	300		μg/L	10/13/11 11:21	10/13/11
Cobalt (Co)		ND	5.0		μg/L	10/13/11 11:21	10/13/11
Nickel (Ni)		19	10		μg/L	10/13/11 11:21	10/13/11
Copper (Cu)		ND	10		μg/L	10/13/11 11:21	10/13/11
Zinc (Zn)		ND	100		μg/L	10/13/11 11:21	10/13/11
Cadmium (Cd)		ND	5.0		μg/L	10/13/11 11:21	10/13/11
Lead (Pb)		ND	5.0		μg/L	10/13/11 11:21	10/13/11
Method Reference:	SM3500-Fe B						
Analyte		Result	Reporting Limit	Qual	Units	Date Extracted	Date Analyzed
Iron, Ferrous (+2)		ND	50		μg/L	10/14/11	10/14/11
Method Reference:	SM3500-Fe B / EPA Met	hod 6020A					
Analyte		Result	Reporting Limit	Qual	Units	Date Extracted	Date Analyzed
Iron, Ferric (+3) (by cal	culation)	6,900	300		μg/L	10/14/11	10/14/11

Ferric iron concentrations are based off of raw (non-rounded ferrous and total iron) data. Therefore, hand calculated ferric iron values may differ slightly. Ferrous iron samples were color developed promptly after laboratory login.

ND = Not Detected

Reported in micrograms per Liter, per client request.

10/20/11

Report Date

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman. Quality Assurance Officer $Sacramento, CA \bullet (916)\ 366-9089\ /\ Las\ Vegas,\ NV \bullet (702)\ 281-4848\ /\ Carson,\ CA \bullet (714)\ 386-2901\ /\ info@alpha-analytical.com$

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 Job:

Olympic Station

Attn:

Steve Carter

Phone:

(530) 676-6008

Fax:

(530) 676-6005

Alpha Analytical Number:

STR11101201-03A

Sampled: 10/12/11

Client I.D. Number: MW4

Received: 10/12/11

Method Reference:	EPA Method SW6020 / S	W6020A					
Analyte		Result	Reporting Limit	Qual	Units	Date Extracted	Date Analyzed
Beryllium (Be)		ND	4.0		μg/L	10/13/11 11:21	10/13/11
Sodium (Na)		83,000	500		μg/L	10/13/11 11:21	10/13/11
Magnesium (Mg)		77,000	500		μg/L	10/13/11 11:21	10/13/11
Calcium (Ca)		85,000	500		μg/L	10/13/11 11:21	10/13/11
Vanadium (V)		ND	5.0		μg/L	10/13/11 11:21	10/13/11
Chromium (Cr)		ND	5.0		μg/L	10/13/11 11:21	10/13/11
Manganese (Mn)		4,300	5.0		μg/L	10/13/11 11:21	10/13/11
Iron (Fe)		7,000	300		μg/L	10/13/11 11:21	10/13/11
Cobalt (Co)		ND	5.0		μg/L	10/13/11 11:21	10/13/11
Nickel (Ni)		ND	10		μg/L	10/13/11 11:21	10/13/11
Copper (Cu)		ND	10		μg/L	10/13/11 11:21	10/13/11
Zinc (Zn)		ND	100		μg/L	10/13/11 11:21	10/13/11
Cadmium (Cd)		ND	5.0		μg/L	10/13/11 11:21	10/13/11
Lead (Pb)		ND	5.0		μg/L	10/13/11 11:21	10/13/11
Method Reference:	SM3500-Fe B						
Analyte		Result	Reporting Limit	Qual	Units	Date Extracted	Date Analyzed
Iron, Ferrous (+2)		2,700	100		μg/L	10/14/11	10/14/11
Method Reference :	SM3500-Fe B / EPA Meth	od 6020A					
Analyte		Result	Reporting Limit	Qual	Units	Date Extracted	Date Analyzed
fron, Ferric (+3) (by calc	culation)	4,300	300		μg/L	10/14/11	10/14/11

Ferric iron concentrations are based off of raw (non-rounded ferrous and total iron) data. Therefore, hand calculated ferric iron values may differ slightly. Ferrous iron samples were color developed promptly after laboratory login.

ND = Not Detected

Reported in micrograms per Liter, per client request.

Report Date

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 Olympic Station

Attn: Phone:

Steve Carter (530) 676-6008

Fax:

(530) 676-6005

Alpha Analytical Number: STR11101201-04A

Sampled: 10/12/11

Client I.D. Number: EX-1

Received: 10/12/11

Method Reference:	EPA Method SW6020	/ SW6020A					
Analyte		Result	Reporting Limit	Qual	Units	Date Extracted	Date Analyzed
Beryllium (Be)		ND	4.0		μg/L	10/13/11 11:21	10/13/11
Sodium (Na)		210,000	500		μg/L	10/13/11 11:21	10/13/11
Magnesium (Mg)		58,000	500		μg/L	10/13/11 11:21	10/13/11
Calcium (Ca)		98,000	500		μg/L	10/13/11 11:21	10/13/11
Vanadium (V)		29	5.0		μg/L	10/13/11 11:21	10/13/11
Manganese (Mn)		1,100	5.0		μg/L	10/13/11 11:21	10/13/11
Iron (Fe)		3,400	300		μg/L	10/13/11 11:21	10/13/11
Cobalt (Co)		ND	5.0		μg/L	10/13/11 11:21	10/13/11
Nickel (Ni)		12	10		μg/L	10/13/11 11:21	10/13/11
Copper (Cu)		ND	10		μg/L	10/13/11 11:21	10/13/11
Zinc (Zn)		ND	100		μg/L	10/13/11 11:21	10/13/11
Cadmium (Cd)		ND	5.0		μg/L	10/13/11 11:21	10/13/11
Lead (Pb)		ND	5.0		μg/L	10/13/11 11:21	10/13/11
Chromium (Cr)		7.5	5.0		μg/L	10/13/11 11:21	10/14/11
Method Reference :	SM3500-Fe B				F-0		14/11/11
Analyte		Result	Reporting Limit	Qual	Units	Date Extracted	Date Analyzed
Iron, Ferrous (+2)		ND	50	530 53-00-00-00-00-00-00-00-00-00-00-00-00-00	μg/L	10/14/11	10/14/11
Method Reference:	SM3500-Fe B / EPA M	ethod 6020A			, -		
Analyte		Result	Reporting Limit	Qual	Units	Date Extracted	Date Analyzed
Iron, Ferric (+3) (by ca	lculation)	3,400	300	9000 i	μg/L	10/14/11	10/14/11

Ferric iron concentrations are based off of raw (non-rounded ferrous and total iron) data. Therefore, hand calculated ferric iron values may differ slightly. Ferrous iron samples were color developed promptly after laboratory login.

ND = Not Detected

Reported in micrograms per Liter, per client request.

Report Date

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Attn:

Steve Carter

Phone:

(530) 676-6008

Fax:

(530) 676-6005

Date Received: 10/12/11

Job:

Olympic Station

Dissolved Metals by ICPMS EPA Method SW6020 / SW6020A

	Parameter	Concentration	Reporting	Date	Date
			Limit	Extracted	Analyzed
Client ID: MW2					
Lab ID: STR11101201-01A	Iron (Fe), Dissolved	370	300 μg/L	10/18/11	10/20/11
Date Sampled 10/12/11 06:25					
Client ID: MW3					
Lab ID: STR11101201-02A	Iron (Fe), Dissolved	ND	300 μg/L	10/18/11	10/20/11
Date Sampled 10/12/11 05:30			300 µg/L	10/10/11	10/20/11
Client ID: MW4					
Lab ID: STR11101201-03A	Iron (Fe) Dissolved	330	200/7	10/10/11	10/20/11
Date Sampled 10/12/11 08:45	non (10), Dissolval	330	300 μg/L	10/18/11	10/20/11
·					
Client ID: EX-1					
Lab ID: STR11101201-04A	Iron (Fe), Dissolved	330	300 μg/L	10/18/11	10/20/11
Date Sampled 10/12/11 05:55					

ND = Not Detected

Reported in micrograms per Liter, per client request.

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacrameuto, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Attn:

Steve Carter

Phone:

(530) 676-6008

Fax:

(530) 676-6005

Date Received: 10/12/11

Job:

Olympic Station

Phosphorus

EPA Method 365.3 / SM4500PE

	Parameter	Concentration	Reporting Limit	Date Extracted	Date Analyzed
Client ID: MW2 Lab ID: STR11101201-01A Date Sampled 10/12/11 06:25	Phosphorus, Total (As P)	530	100 μg/L	10/18/11	10/18/11
Client ID: MW3 Lab ID: STR11101201-02A Date Sampled 10/12/11 05:30	Phosphorus, Total (As P)	280	100 μg/L	10/18/11	10/18/11
Client ID: MW4 Lab ID: STR11101201-03A Date Sampled 10/12/11 08:45	Phosphorus, Total (As P)	1,200	100 μg/L	10/18/11	10/18/11
Client ID: EX-1 Lab ID: STR11101201-04A Date Sampled 10/12/11 05:55	Phosphorus, Total (As P)	300	100 μg/L	10/18/11	10/18/11

Reported in micrograms per Liter, per client request.

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

10/20/11

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Attn: Steve Carter

Phone: (530) 676-6008

Fax:

(530) 676-6005

Date Received: 10/12/11

Job:

Olympic Station

Total Organic Carbon as NonPurgeable Organic Carbon EPA Method SW9060 / SM5310C

	Parameter	Concentration	Reporting Limit	Date Extracted	Date Analyzed
Client ID: MW2 Lab ID: STR11101201-01A Date Sampled 10/12/11 06:25	Total Organic Carbon	3,300	1,000 μg/L	10/14/11	10/14/11
Client ID: MW3 Lab ID: STR11101201-02A Date Sampled 10/12/11 05:30	Total Organic Carbon	3,400	1,000 μg/L	10/14/11	10/14/11
Client ID: MW4 Lab ID: STR11101201-03A Date Sampled 10/12/11 08:45	Total Organic Carbon	27,000	4,000 μg/L	10/14/11	10/15/11
Client ID: EX-1 Lab ID: STR11101201-04A Date Sampled 10/12/11 05:55	Total Organic Carbon	3,400	1,000 μg/L	10/14/11	10/14/11

Reported in micrograms per Liter, per client request.

Roger Scholl Kandy Saulur Walter Her

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Office Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

10/20/11 Report Date

Olumnia Station

n 1 /1

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 Attn: Steve Carter Phone: (530) 676-6008 Fax: (530) 676-6005 Date Received: 10/12/11

Job:

Olympic Station

Total Petroleum Hydrocarbons - Purgeable (TPH-P) EPA Method SW8015B Volatile Organic Compounds (VOCs) EPA Method SW8260B

		Parameter	Concentrat	ion	Reporting	Date	Date
Client ID:	MW2				Limit	Extracted	Analyzed
Lab ID:	STR11101201-01A	TPH-P (GRO)	ND		50 μg/L	10/14/11	10/14/11
Date Sampled	10/12/11 06:25	Tertiary Butyl Alcohol (TBA)	ND		10 μg/L	10/14/11	10/14/11
		Methyl tert-butyl ether (MTBE)	37		0.50 μg/L	10/14/11	10/14/11
		Di-isopropyl Ether (DIPE)	ND		1.0 μg/L	10/14/11	10/14/11
		Ethyl Tertiary Butyl Ether (ETBE)	ND		1.0 μg/L	10/14/11	10/14/11
		1,2-Dichloroethane	ND		1.0 μg/L	10/14/11	10/14/11
		Benzene	ND		0.50 μg/L	10/14/11	
		Tertiary Amyl Methyl Ether (TAME)	ND				10/14/11
		Toluene	ND		1.0 μg/L	. 10/14/11	10/14/11
		Ethylbenzene	ND		0.50 μg/L	10/14/11	10/14/11
		m,p-Xylene			0.50 μg/L	10/14/11	10/14/11
		o-Xylene	ND ND		0.50 μg/L	10/14/11	10/14/11
Client ID:	MW3	o regione	ND		0.50 μg/L	10/14/11	10/14/11
Lab ID :	STR11101201-02A	TPH-P (GRO)	ND		50 μg/L	10/14/11	10/14/11
Date Sampled	10/12/11 05:30	Tertiary Butyl Alcohol (TBA)	ND		30 μg/L 10 μg/L	10/14/11	10/14/11
•		Methyl tert-butyl ether (MTBE)	32		0.50 μg/L	10/14/11	10/14/11
		Di-isopropyl Ether (DIPE)	ND		0.50 μg/L 1.0 μg/L	10/14/11	10/14/11 10/14/11
		Ethyl Tertiary Butyl Ether (ETBE)	ND		1.0 μg/L 1.0 μg/L	10/14/11	
		1,2-Dichloroethane	ND			10/14/11	10/14/11
		Benzene	0.91		1.0 μg/L 0.50 μg/L	10/14/11	10/14/11
		Tertiary Amyl Methyl Ether (TAME)	ND				10/14/11
		Toluene	ND		1.0 μg/L 0.50 μg/L	10/14/11	10/14/11
		Ethylbenzene	ND			10/14/11	10/14/11
		m,p-Xylene	ND		0.50 μg/L 0.50 μg/L	10/14/11	10/14/11
		o-Xylene	ND			10/14/11	10/14/11
Client ID:	MW4	- 11,10110	ND		0.50 µg/L	10/14/11	10/14/11
Lab ID:	STR11101201-03A	TPH-P (GRO)	1,500		200 μg/L	10/17/11	10/17/11
Date Sampled	10/12/11 08:45	Tertiary Butyl Alcohol (TBA)	42		200 μg/L 20 μg/L	10/17/11	10/17/11
		Methyl tert-butyl ether (MTBE)	1,300		1.0 μg/L	10/17/11	10/17/11
		Di-isopropyl Ether (DIPE)	ND	V	2.0 μg/L	10/17/11	10/17/11
		Ethyl Tertiary Butyl Ether (ETBE)	ND	v	2.0 μg/L 2.0 μg/L	10/17/11	
		1,2-Dichloroethane	ND	v	2.0 μg/L 2.0 μg/L	10/17/11	10/17/11
		Benzene	160	•	2.0 μg/L 1.0 μg/L		10/17/11
		Tertiary Amyl Methyl Ether (TAME)	8.6		1.0 μg/L 2.0 μg/L	10/17/11	10/17/11
		Toluene Toluene	ND	v		10/17/11	10/17/11
		Ethylbenzene	1.8	*	1.0 μg/L	10/17/11	10/17/11
		m,p-Xylene	ND	v	1.0 μg/L 1.0 μg/L	10/17/11	10/17/11
		o-Xylene	ND	V		10/17/11	10/17/11
		-	147	•	1.0 µg/L	10/17/11	10/17/11

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID:	EX-1					
Lab ID:	STR11101201-04A	TPH-P (GRO)	180	50 μg/L	10/14/11	10/14/11
Date Sampled	10/12/11 05:55	Tertiary Butyl Alcohol (TBA)	ND	10 μg/L	10/14/11	10/14/11
		Methyl tert-butyl ether (MTBE)	27	0.50 μg/L	10/14/11	10/14/11
		Di-isopropyl Ether (DIPE)	ND	1.0 μg/L	10/14/11	10/14/11
	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0 µg/L	10/14/11	10/14/11	
		1,2-Dichloroethane	ND	1.0 μg/L	10/14/11	10/14/11
		Benzene	23	0.50 μg/L	10/14/11	10/14/11
		Tertiary Amyl Methyl Ether (TAME)	1.0	1.0 μg/L	10/14/11	10/14/11
		Toluene	0.51	0.50 μg/L	10/14/11	10/14/11
		Ethylbenzene	2.8	$0.50~\mu g/L$	10/14/11	10/14/11
		m,p-Xylene	0.97	0.50 μg/L	10/14/11	10/14/11
		o-Xylene	ND	0.50 ug/L	10/14/11	10/14/11

Gasoline Range Organics (GRO) C4-C13

V = Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Reported in micrograms per Liter, per client request.

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

 $Sacramento, CA \bullet (916) \ 366-9089 \ / \ Las \ Vegas, \ NV \bullet (702) \ 281-4848 \ / \ Carson, \ CA \bullet (714) \ 386-2901 \ / \ info@alpha-analytical.com$ Alpha certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

VOC Sample Preservation Report

Work Order: STR11101201

Job:

Olympic Station

	out orympic station			
Alpha's Sample ID	Client's Sample ID	Matrix	рН	
11101201-01A	MW2	Aqueous	2	
11101201-02A	MW3	Aqueous	2	
11101201-03A	MW4	Aqueous	2	
11101201-04A	EX-1	Aqueous	2	

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 21-Oct-11	(QC Summary Report					Work Ord 1110120		
Method Blank File ID:		Type: M		est Code: SI atch ID: W10		-Fe B	Analysis Da	ate: 10/14/2011 00:00	
Sample ID: MBLK-W1014FR	Units : µg/L		Run ID: W	ETLAB_111	014A		Prep Date:	10/14/2011 00:00	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDF	RefVal %RPD(Limit)	Qual
Iron, Ferrous (+2)	ND	50		•					
Laboratory Control Spike File ID:		Type: L		est Code: Si		Fe B	Analysis Da	ate: 10/14/2011 00:00	
Sample ID: LCS-W1014FR Analyte	Units : µg/L Result	PQL	Run ID: W	ETLAB_111	014A	: LCL(ME)	Prep Date:	10/14/2011 00:00 10/14/2011 00:00 RefVal %RPD(Limit)	
Iron, Ferrous (+2)	1490	50		Opkirtoi vai	99	85	115	tervar zoru B(Emity	
Sample Matrix Spike File ID:		Туре: М		est Code: SM		Fe B	Analysis Da	ite: 10/14/2011 00:00	
Sample ID: 11101141-01AMS Analyte	Units : µg/L Result	PQL		ETLAB_111 SpkRefVal		: LCL(ME)	Prep Date:	10/14/2011 00:00 RefVal %RPD(Limit)	
Iron, Ferrous (+2)	1480	50	1500	0	99	70	130	······································	
Sample Matrix Spike Duplicate File ID:		Type: M		est Code: SN		Fe B			
Sample ID: 11101141-01AMSD Analyte	Units : µg/L Result	PQL	Run ID: WI	atch ID: W10 ETLAB_111 SpkRefVal	014A	LCL(ME)	Prep Date:	te: 10/14/2011 00:00 10/14/2011 00:00 RefVal %RPD(Limit)	Qual
Iron, Ferrous (+2)	1500	50		0	100	70	·	478 1.6(20)	

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Reported in micrograms per Liter, per client request.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 21-Oct-11	(QC S	ummar	y Report				Work Orde 11101201	
Method Blank File ID: 101311.B\076_M.D\		Type: N		Test Code: EP		hod SW60	20 / SW6020A Analysis Date	e: 10/13/2011 19:14	
Sample ID: MB-27481	Units : μg/L			CP/MS_11101			Prep Date:	10/13/2011 11:21	
Analyte	Result	PQL		_		LCL(ME)	•	efVal %RPD(Limit)	Qual
Beryllium (Be)	ND	4							
Sodium (Na)	ND	500							
Magnesium (Mg)	ND	500)						
Calcium (Ca)	ND	500							
Vanadium (V) Chromium (Cr)	ND	5							
Manganese (Mn)	ND ND	5 5							
Iron (Fe)	ND	300							
Cobalt (Co)	ND	5							
Nickel (Ni)	ND	10)						
Copper (Cu)	ND	10							
Zinc (Zn) Cadmium (Cd)	ND	100							
Lead (Pb)	ND ND	5 5							
Laboratory Control Spike		Type: L		est Code: EP	A Met	hod SW60	20 / SW6020A		
File ID: 101311.B\077_M.D\			В	latch ID: 27481	1		Analysis Date	: 10/13/2011 19:21	
Sample ID: LCS-27481	Units : µg/L		Run ID: IC	P/MS_11101:	3D		Prep Date:	10/13/2011 11:21	
Analyte	Result	PQL				LCL(ME)	UCL(ME) RPDRe	fVal %RPD(Limit)	Qual
Beryllium (Be)	270	4	250		108	80	120		
Sodium (Na)	51500	500			103	80	120		
Magnesium (Mg)	50800	500			102	80	120		
Calcium (Ca) Vanadium (V)	50200	500			100	80	120		
Chromium (Cr)	216 222	5			86	80	120		
Manganese (Mn)	2510	5 5			89 100	80 80	120 120		
Iron (Fe)	50000	300			100	80	120		
Cobalt (Co)	238	5			95	80	120		
Nickel (Ni)	248	10			99	80	120		
Copper (Cu) Zinc (Zn)	248	10			99	80	120		
Cadmium (Cd)	257 240	100			103	80	120		
Lead (Pb)	240	5 5			96 95	80 80	120 120		
Sample Matrix Spike								***************************************	
File ID: 101311.B\082_M.D\		Type: M		atch ID: 27481		1100 24400	20 / SW6020A	: 10/13/2011 19:50	
Sample ID: 11101104-01AMS	Units : µg/L							10/13/2011 19:30	
Analyte	Result	PQL		P/MS_111013 SpkRef\/al %		LCI (ME)	Prep Date:	fVal %RPD(Limit)	Qual
Bervilium (Be)	286					 		IVAI MAPO(LIIIII)	
Sodium (Na)	87000	4 500			114 106	75 75	125 125		
Magnesium (Mg)	58700	500			104	75	125		
Calcium (Ca)	67100	500			102	75	125		
Vanadium (V)	230	5			92	75	125		
Chromium (Cr) Manganese (Mn)	241	5			96	75	125		
Iron (Fe)	2860 52900	300 300			106	75 75	125		
Cobalt (Co)	52900 254	300 5			105 102	75 75	125 125		
Nickel (Ni)	273	10			104	75 75	125		
Copper (Cu)	264	10			106	75	125		
Zinc (Zn)	278	100	250	0	111	75	125		
Cadmium (Cd)	255	5			102	75	125		
Lead (Pb)	256	5	250	0	103	75	125		

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 21-Oct-11	QC Summary Report								Work Orde 11101201	
Sample Matrix Spike Duplicate		Type: MS	SD T	est Code: El	PA Met	hod SW60	20 / SW6	020A		
File ID: 101311.B\083_M.D\			B	atch ID: 274	81		Analy	/sis Date: 10	0/13/2011 19:56	
Sample ID: 11101104-01AMSD	Units : µg/L	F	Run ID: IC	P/MS_1110	13D		Prep	Date: 16	0/13/2011 11:21	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRefVal	%RPD(Limit)	Qual
Beryllium (Be)	287	4	250	0	115	75	125	286	0.3(20)	
Sodium (Na)	88300	500	50000	33980	109	75	125	86980	1.6(20)	
Magnesium (Mg)	59200	500	50000	6604	105	75	125	58730	0.7(20)	
Calcium (Ca)	67100	500	50000	16380	101	75	125	67130	0.1(20)	
Vanadium (V)	226	5	250	0	90	75	125	230	1.7(20)	
Chromium (Cr)	237	5	250	0	95	75	125	240.8	1.5(20)	
Manganese (Mn)	2810	5	2500	209.3	104	75	125	2855	1.7(20)	
Iron (Fe)	51800	300	50000	626.8	102	75	125	52930	2.1(20)	
Cobalt (Co)	247	5	250	0	99	75	125	254	2.7(20)	
Nickel (Ni)	268	10	250	12.58	102	75	125	273.2	2.0(20)	
Copper (Cu)	257	10	250	0	103	75	125	264.3	2.7(20)	
Zinc (Zn)	271	100	250	0	108	75	125	277.6	2.3(20)	
Cadmium (Cd)	250	5	250	0	100	75	125	254.8	1.7(20)	
Lead (Pb)	253	5	250	0	101	75	125	256.4	1.5(20)	

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 21-Oct-11	QC Summary Report						Work Order: 11101201			
Method Blank File ID: 101911.B\148_M.D\		Type: N		est Code: E atch ID: 275		thod 200.8	Analysis [Date:	10/20/2011 08:01	
Sample ID: MB-27503	Units : µg/L		Run ID: IC	P/MS_1110	20B		Prep Date	: :	10/18/2011 13:57	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPI	DRefV	al %RPD(Limit)	Qual
Iron (Fe), Dissolved	ND	300)							
Laboratory Control Spike		Type: L	.cs T	est Code: El	PA Met	thod 200.8				
File ID: 101911.B\149_M.D\			В	atch ID: 275	03		Analysis [Date:	10/20/2011 08:07	
Sample ID: LCS-27503	Units : μg/L		Run ID: IC	P/MS_1110	20B		Prep Date	: :	10/18/2011 13:57	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPI)RefV	al %RPD(Limit)	Qual
Iron (Fe), Dissolved	5060	300	5000		101	80	120			
Sample Matrix Spike		Type: N	IS T	est Code: El	PA Met	hod 200.8				
File ID: 101911.B\154_M.D\			В	atch ID: 275	03		Analysis [Date:	10/20/2011 08:37	
Sample ID: 11101201-01AMS	Units : µg/L		Run ID: IC	P/MS_1110	20B		Prep Date	:	10/18/2011 13:57	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPI)RefV	al %RPD(Limit)	Qual
Iron (Fe), Dissolved	5340	300	5000	373.4	99	75	125			
Sample Matrix Spike Duplicate		Type: N	ISD T	est Code: El	A Met	hod 200.8				-
File ID: 101911.B\155_M.D\			В	atch ID: 2750)3		Analysis [ate:	10/20/2011 08:43	
Sample ID: 11101201-01AMSD	Units : µg/L		Run ID: IC	P/MS_1110	20B		Prep Date		10/18/2011 13:57	
Analyte	Result	PQL		_		LCL(ME)	•		al %RPD(Limit)	Qual
Iron (Fe), Dissolved	5630	300		373.4	105	75	125	5338	5.3(20)	

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 20-Oct-11	QC Summary Report								Work Order: 11101201	
Method Blank File ID:		Type: N		est Code: E atch ID: W1		thod 365.3	/ SM4500PE Analysis Date	: 10/18/2011 00:00		
Sample ID: MBLK-W1018TP	Units : µg/L		Run ID: W	ETLAB_111	018A		Prep Date:	10/18/2011 00:00		
Analyte	Result	PQL	SpkVai	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDRe	fVal %RPD(Limit)	Qual	
Phosphorus, Total (As P)	ND	100)			**************************************				
Laboratory Control Spike File ID:		Type: L		est Code: E		thod 365.3	/ SM4500PE	: 10/18/2011 00:00	<u> </u>	
Sample ID: LCS-W1018TP	Units : µg/L			ETLAB_111			Prep Date:	10/18/2011 00:00		
Analyte	Result	PQL		-		LCL(ME)	•	fVal %RPD(Limit)	Qual	
Phosphorus, Total (As P)	1010	100		· · · · · · · · · · · · · · · · · · ·	101	73	127			
Sample Matrix Spike		Type: N	is To	est Code: El	PA Met	thod 365.3	/ SM4500PE			
File ID:			Ва	atch ID: W10	18TP		Analysis Date	: 10/18/2011 00:00		
Sample ID: 11101201-01AMS	Units : µg/L		Run ID: W	ETLAB_111	018A		Prep Date:	10/18/2011 00:00		
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDRe	fVal %RPD(Limit)	Qual	
Phosphorus, Total (As P)	1470	100		527	94	73	127			
Sample Matrix Spike Duplicate		Type: N	ISD Te	est Code: El	A Met	hod 365.3	/ SM4500PE			
File ID:			Ва	atch ID: W10	18TP		Analysis Date	: 10/18/2011 00:00		
Sample ID: 11101201-01AMSD	Units : µg/L		Run ID: W	ETLAB_111	018A		Prep Date:	10/18/2011 00:00		
Analyte	Result	PQL				LCL(ME)	UCL(ME) RPDRe	Nal %RPD(Limit)	Qual	
Phosphorus, Total (As P)	1500	100		527	98	73	127 146			

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 20-Oct-11	QC Summary Report							Work Orde 11101201		
Method Blank		Type: M	BLK T	est Code: EF	A Met	thod SW90	60 / SM53	10C		
File ID:			Ва	atch ID: 2749)4		Analys	is Date:	10/14/2011 17:57	
Sample ID: MBLK-27494	Units : µg/L		Run ID: TO	C_111014A	٧		Prep D	Date:	10/14/2011 15:55	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef	/al %RPD(Limit)	Qual
Total Organic Carbon	ND	1000								
Laboratory Control Spike		Type: Lo	CS To	est Code: EF	A Met	thod SW90	60 / SM53	10C		-
File ID:			Ва	atch ID: 2749	4		Analys	is Date:	10/14/2011 18:23	
Sample ID: LCS-27494	Units : µg/L		Run ID: TO	C_111014A			Prep D	Date:	10/14/2011 15:55	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef\	/al %RPD(Limit)	Qual
Total Organic Carbon	4620	1000	5000		92	74	126			
Sample Matrix Spike		Type: M	S Te	est Code: EF	A Wet	thod SW90	60 / SM53	10C		
File ID:			Ba	atch ID: 2749	4		Analys	is Date:	10/14/2011 19:21	
Sample ID: 11101226-01AMS	Units : µg/L		Run ID: TC	C_111014A	ı.		Prep D	ate:	10/14/2011 15:55	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef\	/al %RPD(Limit)	Qual
Total Organic Carbon	20200	1000	5000	16790	69	56	137		-	
Sample Matrix Spike Duplicate		Type: M	SD Te	est Code: EP	A Met	hod SW90	60 / SM53	10C		
File ID:			Ba	atch ID: 2749	4		Analys	is Date:	10/14/2011 19:50	
Sample ID: 11101226-01AMSD	Units : µg/L		Run ID: TC	C_111014A			Prep D	ate:	10/14/2011 15:55	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef\	/al %RPD(Limit)	Qual
Total Organic Carbon	20100	1000	5000	16790	67	56	137	2023	0.4(20)	

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 20-Oct-11	(QC S1	ummar	y Report	oo ah aharata 24 Simil Sabbunganaga ya magaa ga 22		Work Orde 11101201	
Method Blank File ID: 11101407.D Sample ID: MBLK MS15W1014B Analyte	Units : µg/L Result	Type: M	Ba Run ID: M :	est Code: EPA N atch ID: MS15W ² SD_15_111014A	1014B	Analysis Date:	10/14/2011 10:27 10/14/2011 10:27	
TPH-P (GRO) Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	ND 9.83 10.1 9.85	PQL 50		98 10 99	3 70 1 70	130 130 130 130	Vai %RPD(Limit)	Qual
Laboratory Control Spike File ID: 11101403.D Sample ID: GLCS MS15W1014B	Units : µg/L	Type: L	Ва	est Code: EPA M atch ID: MS15W1 SD_15_111014A	1014B		10/14/2011 08:50 10/14/2011 08:50	
Analyte TPH-P (GRO) Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	Result 392 9.34 10.1 10.1	PQL 50	SpkVal		EC LCL(ME) 70 70 1 70	UCL(ME) RPDRef 130 130 130 130		Qual
Sample Matrix Spike File ID: 11101410.D Sample ID: 11101243-21AGS Analyte	Units : µg/L Result	Type: M	Ba Run ID: MS	est Code: EPA Match ID: MS15W1 SD_15_111014A	014B		10/14/2011 11:31 10/14/2011 11:31 Val %RPD/(imit)	Qual
TPH-P (GRO) Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	2000 48.4 49.8 50.4	250		0 100 97 99. 10	0 51 70 7 70	144 130 130 130	var And Dicamiy	- Quai
Sample Matrix Spike Duplicate File ID: 11101411.D		Type: M	Ва	est Code: EPA M atch ID: MS15W1	014B	Analysis Date:	10/14/2011 11:53	
Analyte TPH-P (GRO) 11101243-21AGSD	Units : µg/L Result	PQL	SpkVal	··- -	C LCL(ME)	Prep Date: UCL(ME) RPDRef	· · · · · · · · · · · · · · · · · · ·	Qual
Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	2130 48.8 49.6 50.7	250	2000 50 50 50	0 106 98 99 10	70 70	144 2004 130 130 130	4 6.1(29)	

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

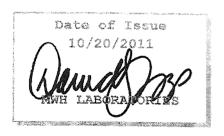
Date: 19-Oct-11		QC S	ummai	y Repo	rt				Work Ord 1110120	
Method Blank		Type N	IBLK T	est Code: E	PA Me	thod SW8	260B			
File ID: 11101407.D			Е	Batch ID: MS	15W10	14A	Anal	ysis Date:	10/14/2011 10:27	
Sample ID: MBLK MS15W1014A	Units : µg/L		Run ID: M	ISD_15_111	014A			Date:	10/14/2011 10:27	
Analyte	Result	PQL				C LCL(ME			Val %RPD(Limit)	Qual
Tertiary Butyl Alcohol (TBA)	ND	10				, , , , , ,	,(,	TO: 70TH D(EITHE)	
Methyl tert-butyl ether (MTBE)	ND	0.5								
Di-isopropyl Ether (DIPE)	ND	- 1								
Ethyl Tertiary Butyl Ether (ETBE) 1,2-Dichloroethane	ND	1								
Benzene	ND ND	1								
Tertiary Amyl Methyl Ether (TAME)	ND	0.5 1								
Toluene	ND	0.5								
Ethylbenzene	ND	0.5								
m,p-Xylene	ND	0.5								
o-Xylene Surr: 1,2-Dichloroethane-d4	ND	0.5								
Surr: Toluene-d8	9.83 10.1		10		98	70	130			
Surr: 4-Bromofluorobenzene	9.85		10 10		101 99	70 70	130 130			
Laboratory Control Spike	3.00	T								
File ID: 11101404.D		Type Lo		est Code: E						
Sample ID: LCS MS15W1014A				atch ID: MS		14A	Analy	sis Date:	10/14/2011 09:11	
	Units : µg/L			SD_15_111			Prep		10/14/2011 09:11	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef\	/al %RPD(Limit)	Qual
Methyl tert-butyl ether (MTBE)	11.6	0.5	10		116	65	140			
Benzene Toluene	10.7	0.5	10		107	70	130			
Ethylbenzene	10.2	0.5	10		102	80	120			
m,p-Xylene	10.9 10.7	0.5 0.5	10		109	80	120			
o-Xylene	10.6	0.5	10 10		107 106	70 70	130			
Surr: 1,2-Dichloroethane-d4	9.78	0.0	10		98	70 70	130 130			
Surr: Toluene-d8	9.91		10		99	70	130			
Surr: 4-Bromofluorobenzene	10.2		10		102	70	130			
Sample Matrix Spike		Type MS	3 Te	est Code: El	A Met	hod SW82	PANE			
File ID: 11101408.D		, ,		tch ID: MS1				sic Date:	10/14/2011 10:48	
Sample ID: 11101243-21AMS	Units : µg/L			SD_15_1110		774				
Analyte	Result	PQL				LOLIMEN	Prep I		10/14/2011 10:48	
Methyl tert-butyl ether (MTBE)								RPDRefV	al %RPD(Limit)	Qual
Benzene	48.9 43.5	1.3	50 50	0	98	47	150			
Toluene	40.4	1.3 1.3	50 50	0	87 81	59 60	138			
Ethylbenzene	44.3	1.3	50	0	89	68 68	130 130			
m,p-Xylene	43.1	1.3	50	0	86	68	131			
o-Xylene Surr: 1,2-Dichloroethane-d4	43.1	1.3	50	0	86	70	130			
Surr: Toluene-d8	49.2		50		98	70	130			
Surr: 4-Bromofluorobenzene	48.6 50.5		50 50		97	70	130			
Comple Matrix C. 21 D 11					101	70	130			
Sample Matrix Spike Duplicate File ID: 11101409.D		Type MS	D Te	st Code: EP	A Meth	od SW82	60B			
				tch ID: MS1		4A	Analys	sis Date:	10/14/2011 11:10	
,	Units : µg/L		tun ID: MS	D_15_1110	14A		Prep [ate:	10/14/2011 11:10	
Analyte	Result	PQL	SpkVal	SpkRefVal ⁽	%REC	LCL(ME)	UCL(ME)	RPDRefV	al %RPD(Limit)	Qual
Methyl tert-butyl ether (MTBE)	53.1	1.3	50	0	106	47	150	48.92	8.1(40)	
Benzene	47.1	1.3	50	ŏ	94	59	138	43.48	8.1(21)	
Toluene Ethylbenzene	43.9	1.3	50	Ō	88	68	130	40.44	8.2(20)	
m,p-Xylene	47.4	1.3	50	0	95	68	130	44.3	6.8(20)	
o-Xylene	46.2 46.5	1.3	50	0	92	68	131	43.07	7.0(20)	
Surr: 1,2-Dichloroethane-d4	49.5	1.3	50 50	0	93	70	130	43.09	7.6(20)	
Surr: Toluene-d8	48.8		50 50		99 98	70 70	130 130			
Surr: 4-Bromofluorobenzene	50.6		50		101	70 70	130			
			-			. •				

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date:	QC Summary Report	Work Order:
19-Oct-11	UL Silmmary Kenort	Work Order.
19-001-11	Qe Summary Report	11101201
~		11101201

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.


750 Royal Oak Dr., Suite 100 Monrovia, California, 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227)

Laboratory Report

for

Alpha Analytical, Inc. 255 Glendale Avenue, Suite 21 Sparks, NV 89431 Attention: Reyna Vallejo

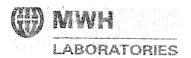
Fax: 775-355-0406

DST: David S Tripp

Project Manager

Report#: 378785

Project: SUBCONTRACT


Group: Bromate

Laboratory certifies that the test results meet all **NELAC** requirements unless noted in the Comments section or the Case Narrative. Following the cover page are Hits Reports, Comments, QC Summary, QC Report and Regulatory Forms. This report shall not be reproduced except in full, without the written approval of the laboratory.

STATE CERTIFICATION LIST

State	Certification Number	State	Certification Numbe
Alabama	41060	Mississippi	Certified
Alaska	CA00006	Montana	Cert 0035
Arizona	AZ0455	Nevada	CA00006-2010-1
Arkansas	Certified	New Hampshire	2959-11
California – NELAP	01114CA	New Jersey	CA 008
California – ELAP	1422	New Mexico	Certified
Colorado	Certified	New York	11320
Connecticut	PH-0107	North Carolina	06701
Delaware	CA 006	North Dakota	R-009
Florida	E871024	Oregon	CA 200003-009
Georgia	947	Pennsylvania	68-565
Guam	11-004r	Rhode Island	01114GA
Hawaii	Certified	South Carolina	87016001
Idaho	Certified	South Dakota	Certified
Illinois	200033	Tennessee	TN02839
Indiana	C-CA-01	Texas	T104704230-11-2
Kansas	E-10268	Utah	Mont-1
Kentucky	90107	Vermont	VT0114
Louislana	LA110022	Virginia	00210
Maine	CA0006	Washington	C383
Maryland	224	West Virginia	9943 C
Commonwealth of Northern Marianas Is.	MP0004	Wisconsin	998316660
Massachusetts	M-CA006	Wyoming	8TMS-L
Michigan	9906	EPA Region 5	Certified

Acknowledgement of Samples Received

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21

Sparks, NV 89431 Attn: Reyna Vallejo Phone: 775-355-1044 Customer Code: ALPHA-NV

Folder #: 378785

Project: SUBCONTRACT

Sample Group: Bromate

Project Manager: David S Tripp Phone: (626) 386-1158

PO #: STR11101201

The following samples were received from you on **October 13**, **2011**. They have been scheduled for the tests listed below each sample. If this information is incorrect, please contact your service representative. Thank you for using MWH Laboratories.

Sample #	Sample ID	Sample Date
<u>201110130611</u>	MW2 Variable ID: STR11101201-01A	Oct 12, 2011 06:25
	Bromate by UV/VIS	
201110130612	MW3 Variable ID: STR11101201-02A	Oct 12, 2011 05;30
	Bromate by UV/VIS	The second secon
<u>201110130613</u>	MW4 Variable ID: STR11101201-03A	Oct 12, 2011 06:45
	Bromate by UV/VIS	
201110130614	EX-1 Variable ID: STR11101201-04A	Od 12, 2011 05:55
	Bromate by UV/VIS	

Test Description

Reported: 10/21/11

20°

Alpha Analytical, Inc.

55 Glendale Avenue

vite 21

parks, Nevada 89431-5778

none: (775) 355-1044

(775) 355-0406

Subcontractor:

lontgomery Watson Harza Laboratories, Inc.

50 Royal Oaks Drive

uite 100

onrovia, CA 91016-3629

SUB CHAIN-OF-CUSTODY RECORD

Work Order: STR11101201

*Please reference the Work Order number on all reports and involces.

*Also please include the dates of analysis and detection limits.

Please send the report to Alpha Analytical (Sparks).

Attention To Reyna Vallejo (reyna@alpha-analytical.com).

TEL:

(626) 386-1100

FAX:

(626) 386-1124

Acct#:

Page 1 of

Report Due By: 5:00 PM

On: 20-Oct-11

Required QC:

Final Rpt, MBLK, LCS, MS/MSD With Surrogates

Sample Communits

Sampled by : C. Hill

12-Oct-11

Al w's Sample ID Client's Sample ID	Matrin	Collection Date	Type (9) of Preserved	Boilles Other	EPA Method 317	Regressied Tests	- to ₩ .à.	
STR19-101201-01A MW2	Aqueous	10/12/11 05:25		SOMEMOR Solvett	Bromate (Sub to MWH)	The second secon		
STR1 01201-02A MW3	Aqueous	05:30		SHACTOP E-JUA)	Bromata (Sub to MWH)			
STR1 01201-03A MW4	Aqueous	10/12/11 08:45		DOWNER OF P	Bromate (Sub to IMA/H)	The state of the s		
STR1 B201-04A EX-1	Aqueous	10/12/11 05:55		MALADP 5-444 Varxu	Bromate (Sub to MWH)	more to property of the	No. or such	

Comments:

Relinquished by:

Relinquished by;

Date/Fime パウール

/ <.J-

Received by:

Received by:

Mu.

Date/Time

Phone: (775) 355-1044 FAX: (775) 355-0406


Subcontract Sample Receipt Checklist

Date Report is due at Alpha: 20-Oct-11 Date of Notice: 10/12/2011 12:08:37 If any items are checkmarked NO or are non-compliant, a phone call back to Alpha Analytical is required immediately. If all items are acceptable, a faxed copy of the signed sub chain of custody (COC) and the completed sample receipt check list is required within 24 hours of sample receipt. Alpha's Work Order Number : STR11101201 SubContract Work Order Number: Date Received: Chain of Custody (COC) Information Carrier name Chain of custody present? Yes 🖾 [No Custody seals intact on shippping container/conter? Custody seals intact on sample bottles? Yes 🗔 No No Not Presen Chain of custody signed when relinquished and received? Yes T □ No Chain of custody agrees with sample labels ? Ves [] ☐ Non-Compliant Internal Chain of Custody (COC) requseted ? □ No Yes Sample Receipt Information Shipping container/cooler in good condition? Yes 🕅 M No Not Presen Samples in proper container/bottle? Yes Z Non-Compliant Sample containers intact? ■ No Sufficient sample volume for indicated test? ₩ No Sample Preservation and Hold Time (HT) Information All samples received within holding time? Yes 🗹 Non-Compliant Cooler Temperature: Is Wet Ice present in Cooler? Yes 2 If YES, then temperature is 4°C. No III If NO, then actual cooler temperature is: Analytical Requirement Information Are non-Standard or Modified methods requested? Yes 🖪 ■ No SubContract Lab CA STATE certified? Yes 🗇 III No SubContract Lab NELAP certified? Yes [] SubContract Lab CERTIFIED for the various methods requested Yes 🗌 □ No Will the SubContract Lab be able to meet the turn-around time (TAT) requirements?

Comments:

Yes 🗔

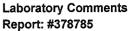
□ No

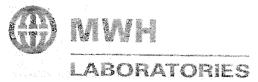
750 Royal Oak Dr., Suite 100 Monrovia, California, 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227)

Alpha Analytical, Inc. Reyna Vallejo 255 Glendale Avenue, Suite 21 Sparks, NV 89431 Laboratory Hits Report: 378785

Samples Received on: 10/13/2011

				Federal		
Analyzed	Analyte	Sample ID	Result	MCL	Units	MRL


750 Royal Oak Dr., Suite 100 Monrovia, California, 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227)


Alpha Analytical, Inc.

Reyna Vallejo 255 Glendale Avenue, Suite 21 Sparks, NV 89431 Laboratory Data Report: 378785

Samples Received on: 10/13/2011

Prepared	Analyz	ed Q	C Ref#	Method	Analyte	Result	Units	MRL	Dilution
MW2 (201	110130611)					Sampled on	10/12/2011 062	 25
	10/18/2011	EPA 31 07:29 6	7 - Bro	01201-01A mate by UV/VIS 31 7 (EPA 317)	7 Bromate by UV/VIS	ND	ug/L	1	1
MV43 (201	110130612	_					Sampled on	10/12/2011 053	30
		EPA 317 07:52 6:	7 - Bror	01201-02A nate by UV/VIS 317 (EPA 317)	Bromate by UV/VIS	ND	ug/L Sampled on	1 10/12/2011 06 4	1 !5
	10/18/2011	EPA 317 08:15 62	7 - Bror	01201-03A mate by UV/VIS 317 (EPA 317)	Bromate by UV/VIS	ND	ug/L	1	1
EX-1 (2011	<u>110130614</u>)	!				,	Sampled on	10/12/2011 055	55
				01201-04A nate by UV/VIS 317	,				
				(EPA 317)	Bromate by UV/VIS	ND	ug/L	1	1

750 Royal Oak Dr., Suite 100 Monrovia, California, 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227)

Alpha Analytical, Inc. Reyna Vallejo 255 Glendale Avenue, Suite 21 Sparks, NV 89431

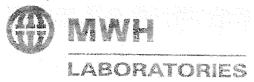
750 Royal Oak Dr., Suite 100 Monrovia, California, 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227)

Alpha Analytical, Inc.

QC Ref # 623462 - Bromate by UV/VIS 317

201110130611 201110130612 201110130613

201110130614


MW3 MW4

MW2

EX-1

Analysis Date: 10/18/2011

Analyzed by: TLH Analyzed by: TLH Analyzed by: TLH Analyzed by: TLH

750 Royal Oak Dr., Suite 100 Monrovia, California, 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227) Laboratory QC Report: 378785

Alpha Analytical, Inc.

QC Type	Analyte	Native	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPDLimit (%)	RPD%
QC Ref# 623462 - Br	omate by UV/VIS 317 by EPA 317				A	nalysis Da	ate: 10/18/20	011	
LCS1	Bromate by UV/VIS		10	9.21	ug/L	92	(90-110)		
LCS2	Bromate by UV/VIS		10	9.25	ug/L	93	(90-110)	20	0.33
MBLK	Bromate by UV/VIS			<1	ug/L		, ,		
MRL_CHK	Bromate by UV/VIS		1.0	0.847	ug/L	85	(75-125)		
MS_201110130452	Bromate by UV/VIS	8.0	5.0	12.1	ug/L	81	(75-125)		
MSD_201110130452	Bromate by UV/VIS	8.0	5.0	12.3	ug/L	84	(75-125)	15	1.6
MS_201110180073	Bromate by UV/VIS	ND	5.0	3.74	ug/L	75	(75-125)		
MSD_201110180073	Bromate by UV/VIS	ND	5.0	3.56	ug/L	<u>71</u>	(75-125)	15	4.9

California Laboratory Services

3249 Fitzgerald Road Rancho Cordova, CA 95742

October 19, 2011

CLS Work Order #: CUJ0620 COC #:

Reyna Vallejo Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21 Sparks, NV 89431

Project Name: STR11101201

Enclosed are the results of analyses for samples received by the laboratory on 10/12/11 13:00. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

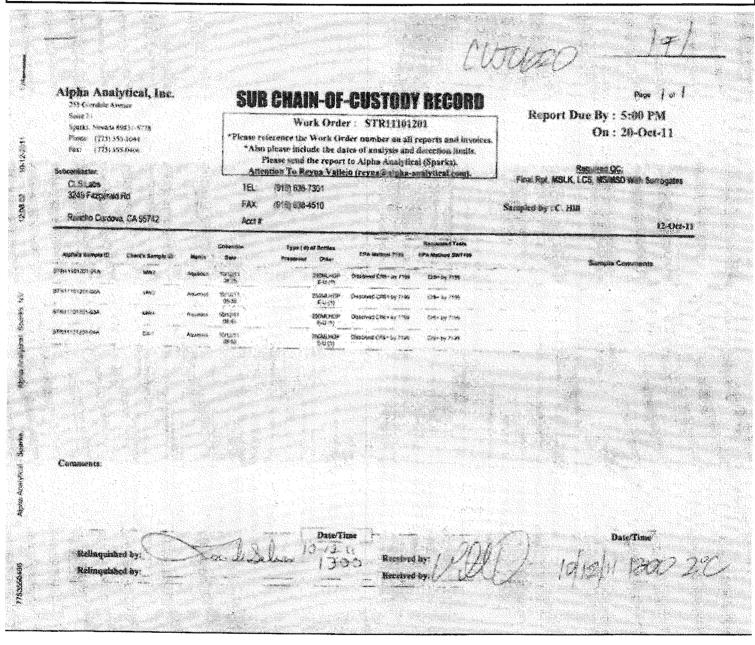
CA DOHS ELAP Accreditation/Registration number 1233

CALIFORNIA LABORATORY SERVICES

Page 1 of 4

10/19/11 09:57

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21


Sparks, NV 89431

Project: STR11101201
Project Number: STR11101201

Project Manager: Reyna Vallejo

CLS Work Order #: CUJ0620

COC#:

California Laboratory Services

Page 2 of 4

10/19/11 09:57

Alpha Analytical, Inc.-Sparks

255 Glendale Ave.; Suite 21 Sparks, NV 89431 Project: STR11101201

Project Number: STR11101201

Project Manager: Reyna Vallejo

CLS Work Order #: CUJ0620

COC#:

Conventional Chemistry Parameters by APHA/EPA Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
STR11101201-01A (MW2) (CUJ0620-01) A	queous S	Sampled: 10/12	2/11 06:	25 Recei	ved: 10/12/	11 13:00			
Hexavalent Chromium	ND	1.0	μg/L	1	CU07363	10/12/11	10/12/11	EPA 7199	
Hexavalent Chromium, Dissolved	ND	1.0	**	**	n	ŧı	11	**	
STR11101201-02A (MW3) (CUJ0620-02) A	queous S	Sampled: 10/12	2/11 05:	30 Receiv	ved: 10/12/	11 13:00			
Hexavalent Chromium	ND	1.0	μg/L	1	CU07363	10/12/11	10/12/11	EPA 7199	
Hexavalent Chromium, Dissolved	ND	1.0	n	11	n	31	0	11	
STR11101201-03A (MW4) (CUJ0620-03) A	queous S	Sampled: 10/12	2/11 08:	45 Receiv	ved: 10/12/	11 13:00			
Hexavalent Chromium	ND	1.0	μg/L	1	CU07363	10/12/11	10/12/11	EPA 7199	
Hexavalent Chromium, Dissolved	ND	1.0	"	11	v	**	н	11	
STR11101201-04A (EX-1) (CUJ0620-04) Aq	ueous S	Sampled: 10/12	/11 05:5	55 Receiv	ed: 10/12/1	11 13:00			
Hexavalent Chromium	ND	1.0	μg/L	1	CU07363	10/12/11	10/12/11	EPA 7199	
Hexavalent Chromium, Dissolved	ND	1.0	11	H	11	11	11	н	

20A0 Fitemanuald Daniel Dennis Or 1 Or Ammu

047 700 8004 - 15 047 70

California Laboratory Services

Page 3 of 4

10/19/11 09:57

Alpha Analytical, Inc.-Sparks
255 Glendale Ave.: Suite 21

255 Glendale Ave.; Suite 21 Sparks, NV 89431 Project: STR11101201

Project Number: STR11101201

CLS Work Order #: CUJ0620 COC #:

Project Manager: Reyna Vallejo

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CU07363 - General Prep										
Blank (CU07363-BLK1)				Prepared .	& Analyze	ed: 10/12/	11			
Hexavalent Chromium	ND	1.0	μg/L	Tropulou		pa. 10/12/			, meadamend	
Hexavalent Chromium, Dissolved	ND	1.0	11							
LCS (CU07363-BS1)				Prepared	& Analyze	ed: 10/12/	11			
Hexavalent Chromium	4.93	1.0	μg/L	5.00		99	80-120			
Hexavalent Chromium, Dissolved	4.93	1.0	11	5.00		99	80-120			
LCS Dup (CU07363-BSD1)				Prepared a	& Analyze	ed: 10/12/	11			
Hexavalent Chromium	4.54	1.0	μg/L	5.00	2 1 11101 / 20	91	80-120	8	20	
Hexavalent Chromium, Dissolved	4.54	1.0	"	5.00		91	80-120	8	20	
Matrix Spike (CU07363-MS1)	Sou	irce: CUJ056	66-01	Prepared a	& Analyze	d: 10/12/1	11			
Hexavalent Chromium	227	10	μg/L	50.0	186	81	75-125			
Hexavalent Chromium, Dissolved	227	10	в	50.0	ND	454	75-125			QM-4X
Matrix Spike Dup (CU07363-MSD1)	Sou	irce: CUJ056	66-01	Prepared &	& Analyze	d: 10/12/1	1			
Hexavalent Chromium	273	10	μg/L	50.0	186	173	75-125	18	25	QM-4X
Hexavalent Chromium, Dissolved	273	10	"	50.0	ND	545	75-125	18	25	QM-4X

CALIFORNIA LABORATORY SERVICES

Page 4 of 4

10/19/11 09:57

Alpha Analytical, Inc.-Sparks

255 Glendale Ave.; Suite 21 Sparks, NV 89431

Project: STR11101201 Project Number: STR11101201

Project Manager: Reyna Vallejo

CLS Work Order #: CUJ0620

COC#:

Notes and Definitions

The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater QM-4X the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

Sample results reported on a dry weight basis dry

RPD Relative Percent Difference

Billing I	nforma	tion :
-----------	--------	--------

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

Report Attention Phone Number **EMail Address** Steve Carter (530) 676-6008 x scarter@stratusinc.net

EDD Required: Yes

Sampled by : C. Hill

WorkOrder: STR11101201

Report Due By: 5:00 PM On: 20-Oct-11

Cooler Temp

5°C

Samples Received 12-Oct-11

Date Printed 13-Oct-11

Page: 1 of 2

PO:

Client:

Client's COC #: 56817

Suite 550

Stratus Environmental

3330 Cameron Park Drive

Cameron Park, CA 95682-8861

Olympic Station

= Final Rpt, MBLK, LCS, MS/MSD With Surrogates QC Level: S3

Almha	Olim in 6	2							Request	ed Tests				
Alpha Client Sample ID Sample ID	Collection Matrix Date	No. of Alpha	Bottles Sub	TAT	317_W	3500FE_2O S_W	3500FE_3IC _W	METALS_A Q	METALS_C R6_SUB_W	METALS_C R6DS_SUB _W	METALS_D S	PHOSPHOR US_W	Sample Remark	
STR11101201-01A	MW2	AQ 10/12/11 06:25	13	2	5	Bromate (Sub to MWH)	FE+2	FE+3	Special List	Cr6+ by 7199	Dissolved CR6+ by 7199	Fe	Total	
STR11101201-02A	MW3	AQ 10/12/11 05:30	13	2	5	Bromate (Sub to MWH)	FE+2	FE+3	Special List	Cr6+ by 7199	Dissolved CR6+ by 7199	Fe	Total	
	MW4	AQ 10/12/11 08:45	13	2	5	Bromate (Sub to MWH)	FE+2	FE+3	Special List	Cr6+ by 7199	Dissolved CR6+ by 7199	Fe	Total	
STR11101201-04A	EX-1	AQ 10/12/11 05:55	13	2	5	Bromate (Sub to MWH)	FE+2	FE+3	Special List	Cr6+ by 7199	Dissolved CR6+ by 7199	Fe	Total	

Comments:

Chain prelogged 10/12/11 in order for Sac office to sub Total and Dissolved Cr6+ by 7199 to CLS and Bromate to MWH. Remaining samples received on 10/13/11. Security seals intact. Frozen ice. TOC pH=2.:

Logged in by:

Signature

Print Name

Company Alpha Analytical, Inc.

Date/Time

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other) Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

Billing I	nformation
-----------	------------

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

Report Attention Phone Number **EMail Address** Steve Carter (530) 676-6008 x scarter@stratusinc.net

EDD Required: Yes

Sampled by : C. Hill

5°C

WorkOrder: STR11101201

Report Due By: 5:00 PM On: 20-Oct-11

Cooler Temp

Samples Received 12-Oct-11

Date Printed 13-Oct-11

Page: 2 of 2

PO:

Client:

Client's COC #: 56817

Suite 550

Stratus Environmental

3330 Cameron Park Drive

Cameron Park, CA 95682-8861

Olympic Station

= Final Rpt, MBLK, LCS, MS/MSD With Surrogates QC Level: S3

Alpha	Client	.								
Sample ID	Client Sample ID		Collection C Date	No. of Alpha			TOC_W	TPH/P_W	voc_w	Sample Remark
STR11101201-01A	MW2	AQ	10/12/11 06:25	13	2	5	TOC	GAS-C	BTEX/OXY/ 1,2-DCA_C	Cample Remark
STR11101201-02A	MW3	AQ	10/12/11 05:30	13	2	5	TOC	GAS-C	BTEX/OXY/ 1,2-DCA_C	
STR11101201-03A	MW4	AQ	10/12/11 08:45	13	2	5	тос	GAS-C	BTEX/OXY/ 1,2-DCA_C	
STR11101201-04A	EX-1	AQ	10/12/11 05:55	13	2	5	тос	GAS-C	BTEX/OXY/ 1,2-DCA_C	

Comments:

Chain prelogged 10/12/11 in order for Sac office to sub Total and Dissolved Cr6+ by 7199 to CLS and Bromate to MWH. Remaining samples received on 10/13/11. Security seals intact. Frozen ice. TOC pH=2.:

Logged in by:

Signature

Print Name

Company Alpha Analytical, Inc.

Date/Time

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other) Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

Billing Info	ormatic	trufes			Alpha A	nalytica	ıl, İnd	c.								State? 'A		\$ite
Attn: 5/24 Address 3	WL 330	Carrery Ptr DR		Cox Cox	255 Glenda Sparks, Nev Phone (775 Fax (775) 3	vada 89431 5) 355-1044	-5778		ID .		OR		07	HER .				of T
City, State, Zip	<u> </u>	weve Ph 6766884Fax 53062	11/1/1/25							/	4	Analy	ses F	?equi	red ⊱	<u> </u>	/	
			Job #		Tia	b Name				<u>'</u>	, À	<u>, , , , , , , , , , , , , , , , , , , </u>	/ L	نبا	<u> </u>)	Data Valid	dation
Consultant / Of	0	Tympic Startion	300 #						/`	\80 80 \	~/	阿阿	3	3	100	/ /	Level: III	or IV
Address		/ /	Name: 57	Report Att	ention / Project	Manager			_ / 4	\	-				3	· /		
City, State, Zip)	SAW Lovenzo	Email:	<u> </u>					_ / c	' / §	á/	3	73	A C	17:	EDD	/EDF? YES	NO
Time Date	Matrix*	P.O. #	Phone:		Mobile: _				10	기 옷	1/2	x / <	1/\$	5. K	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Globa		
Sampled Sample	d See Key Below	Lab ID Number (Use Only)		Sample Description		TAT	Field Filtered	# Containers**	-√ ` ೨	500	EC		2/10°		:/ \	ID #	REMAR	KS
0625 121		STR11101201-01A	MWZ			571)	7 mereo	15	1	X	الا	×	12	P	10	M	e tal	
0530 1	1	-024	Mu 3			577		15	文	y y	1	a	X	1/	1			ed, Cr
0845	1)	-03A	mw4			STID		15	1	元	2	a	1	X.	1		Cu, F	
9555	+	- 044	EX.			570		15	<u>/\</u>	×	X	Y	عد	2	7	Ma.		
	+->-		h / h			111		<u> </u>		<i></i>	/	/	/					101
	_					<u> </u>			_		 	 	ļ			Nay	· V , 2	-^
		10000							 		 	<u> </u>	 	 				
	-	• * * * * * * * * * * * * * * * * * * *				-	ļ				<u> </u>	ļ	ļ	 				
	-										 	ļ	ļ	<u> </u>		Sa	pto	CLS
		Sand Marie Same				-		······································				ļ	<u> </u>	ļ!		AN	dm_{ν}	NUT
																#	1110	120/
																		•
						<u> </u>							<u> </u>					
ADDITION	NAL II	NSTRUCTIONS:						,										
I, (field samp grounds for I	oler), atte	est to the validity and authenticity, ion. Sampled By:	of this sample.	I am aware that tar	mpering with or	r intentiona	lly misl	labeling the	sample	location	on, da	te or tii	me of	collecti	ion is c	onsidere	ed fraud ar	nd may be
Relinquished by	y: (Signatı		thefer		d by: (Signature/	and the same of th	۳ د و۰ ۱۶ در درسترین	sou d) ()	0			C	ate:	-12-	~ l1	Time:	-1S
Relinquished by	y: (Signati	ire/Affiliation) on use his	10-12	Receive 30	d by: /Signature//	Affiliation)*		_	ha				D	1	13/1		Time:	
Relinquished by	y: (Signatı	ure/Affiliation)		Receive	d by: (Signature/A	Affiliation)							D	ate:			Time:	
*Key: AQ - Ad	queous	SO - Soil WA - Wast	te OT - O	ther AR - Air	**: L-Li	ter V-\	/oa	S-Soil Jar	0-	Orbo	Ţ.	-Tedlar	r	B-Bras	ss	P-Plasti	ic OT	-Other

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this coc. The liability of the laboratory is limited to the amount paid for the report.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 Attn:

Steve Carter Phone: (530) 676-6008

Job: Olympic Station

Fax:

(530) 676-6005

Alpha Analytical Number: STR11110905-01A

Sampled: 11/09/11

Client I.D. Number: MW-2

Received: 11/09/11

Method Reference: EPA Method SW6020 / S	W6020A					
Analyte	Result	Reporting Limit	Qual	Units	Date Extracted	Date Analyzed
Beryllium (Be)	ND	4.0		μg/L	11/11/11 10:20	11/12/11
Sodium (Na)	220,000	500		μg/L	11/11/11 10:20	11/12/11
Magnesium (Mg)	73,000	500		μg/L	11/11/11 10:20	11/12/11
Calcium (Ca)	110,000	500		μg/L	11/11/11 10:20	11/12/11
Vanadium (V)	74	5.0		μg/L	11/11/11 10:20	11/12/11
Chromium (Cr)	62	5.0		$\mu g/L$	11/11/11 10:20	11/12/11
Manganese (Mn)	1,300	5.0		$\mu g/L$	11/11/11 10:20	11/12/11
Iron (Fe)	22,000	300		μg/L	11/11/11 10:20	11/12/11
Cobalt (Co)	11	5.0		μg/L	11/11/11 10:20	11/12/11
Nickel (Ni)	64	10		$\mu g/L$	11/11/11 10:20	11/12/11
Copper (Cu)	19	10		μg/L	11/11/11 10:20	11/12/11
Zinc (Zn)	ND	100		$\mu g/L$	11/11/11 10:20	11/12/11
Cadmium (Cd)	ND	5.0		μg/L	11/11/11 10:20	11/12/11
Lead (Pb)	6.4	5.0		$\mu g/L$	11/11/11 10:20	11/12/11
Method Reference : SM3500-Fe B						
Analyte	Result	Reporting Limit	Qual	Units	Date Extracted	Date Analyzed
Iron, Ferrous (+2)	ND	. 50		μg/L	11/11/11	11/11/11
Method Reference : SM3500-Fe B / EPA Meth	od 6020A					
Analyte	Result	Reporting Limit	Qual	Units	Date Extracted	Date Analyzed
Iron, Ferric (+3) (by calculation)	22,000	300	aato araksii aaksii ta	μg/L	11/12/11	11/12/11

Ferric iron concentrations are based off of raw (non-rounded ferrous and total iron) data. Therefore, hand calculated ferric iron values may differ slightly. Ferrous iron samples were color developed promptly after laboratory login.

ND = Not Detected

Reported in micrograms per Liter, per client request.

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 Attn:

Steve Carter

Phone:

(530) 676-6008

Fax:

(530) 676-6005

Job: Olympic Station

Alpha Analytical Number: STR11110905-02A

Sampled: 11/09/11

Client I.D. Number: MW-3

Received: 11/09/11

Method Reference:	EPA Method SW6020) / SW6020A					
Analyte		Result	Reporting Limit	Qual	Units	Date Extracted	Date Analyzed
Beryllium (Be)		ND	4.0	e incomme dispositoria	μg/L	11/11/11 10:20	11/12/11
Sodium (Na)		240,000	500		μg/L	11/11/11 10:20	11/12/11
Magnesium (Mg)		60,000	500		μg/L	11/11/11 10:20	11/12/11
Calcium (Ca)		85,000	500		μg/L	11/11/11 10:20	11/12/11
Vanadium (V)		23	5.0		μg/L	11/11/11 10:20	11/12/11
Chromium (Cr)		14	5.0		μg/L	11/11/11 10:20	11/12/11
Manganese (Mn)		1,000	5.0		μg/L	11/11/11 10:20	11/12/11
Iron (Fe)		3,900	300		μg/L	11/11/11 10:20	11/12/11
Cobalt (Co)		ND	5.0		μg/L	11/11/11 10:20	11/12/11
Nickel (Ni)		20	10		$\mu g/L$	11/11/11 10:20	11/12/11
Copper (Cu) ·		ND	10		μg/L	11/11/11 10:20	11/12/11
Zinc (Zn)		ND	100		μg/L	11/11/11 10:20	11/12/11
Cadmium (Cd)		ND	5.0		μg/L	11/11/11 10:20	11/12/11
Lead (Pb)		ND	5.0		$\mu g/L$	11/11/11 10:20	11/12/11
Method Reference :	SM3500-Fe B						
Analyte		Result	Reporting Limit	Qual	Units	Date Extracted	Date Analyzed
Iron, Ferrous (+2)		ND	50		μg/L	11/11/11	11/11/11
Method Reference :	SM3500-Fe B / EPA M	lethod 6020A					
Analyte		Result	Reporting Limit	Qual	Units	Date Extracted	Date Analyzed
Iron, Ferric (+3) (by ca	lculation)	3,900	300	reasonale di Nobel en como	μg/L	11/12/11	11/12/11

Ferric iron concentrations are based off of raw (non-rounded ferrous and total iron) data. Therefore, hand calculated ferric iron values may differ slightly. Ferrous iron samples were color developed promptly after laboratory login.

ND = Not Detected

Reported in micrograms per Liter, per client request.

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Olympic Station

Attn:

Steve Carter

Phone:

(530) 676-6008

Fax:

(530) 676-6005

Alpha Analytical Number: STR11110905-03A

Client I.D. Number: MW-4

Sampled: 11/09/11

Received: 11/09/11

Method Reference:	EPA Method SW6020 / S	W6020A					
Analyte		Result	Reporting Limit	Qual	Units	Date Extracted	Date Analyzed
Beryllium (Be)		ND	4.0		μg/L	11/11/11 10:20	11/12/11
Sodium (Na)	*	67,000	500		μg/L	11/11/11 10:20	11/12/11
Magnesium (Mg)		70,000	500		μg/L	11/11/11 10:20	11/12/11
Calcium (Ca)		77,000	500		μg/L	11/11/11 10:20	11/12/11
Vanadium (V)		ND	5.0		μg/L	11/11/11 10:20	11/12/11
Chromium (Cr)		ND	5.0		μg/L	11/11/11 10:20	11/12/11
Manganese (Mn)		3,100	5.0		μg/L	11/11/11 10:20	11/12/11
Iron (Fe)		4,300	300		μg/L	11/11/11 10:20	11/12/11
Cobalt (Co)		ND	5.0		μg/L	11/11/11 10:20	11/12/11
Nickel (Ni)		13	10		μg/L	11/11/11 10:20	11/12/11
Copper (Cu)		ND	10		μg/L	11/11/11 10:20	11/12/11
Zinc (Zn)		ND	100		μg/L	11/11/11 10:20	11/12/11
Cadmium (Cd)		ND	5.0		μg/L	11/11/11 10:20	11/12/11
Lead (Pb)		ND	5.0		μg/L	11/11/11 10:20	11/12/11
Method Reference :	SM3500-Fe B						
Analyte		Result	Reporting Limit	Qual	Units	Date Extracted	Date Analyzed
fron, Ferrous (+2)		330	50		μg/L	11/11/11	11/11/11
Method Reference :	SM3500-Fe B / EPA Metl	10d 6020A					
Analyte		Result	Reporting Limit	Qual	Units	Date Extracted	Date Analyzed
ron, Ferric (+3) (by cale	culation)	4,000	300		μg/L	11/12/11	11/12/11

Ferric iron concentrations are based off of raw (non-rounded ferrous and total iron) data. Therefore, hand calculated ferric iron values may differ slightly. Ferrous iron samples were color developed promptly after laboratory login.

ND = Not Detected

Reported in micrograms per Liter, per client request.

Roger Scholl

Kandy Sadner

Walter Hinkon

11/17/11 Report Date

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 Job: Olympic Station

Attn: Steve Carter

Phone: (530) 676-6008

Fax:

(530) 676-6005

Alpha Analytical Number: STR11110905-04A

Sampled: 11/09/11

Client I.D. Number: EX-1

Received: 11/09/11

Method Reference:	EPA Method SW6020 / S	W6020A					
Analyte		Result	Reporting Limit	Qual	Units	Date Extracted	Date Analyzed
Beryllium (Be)		ND	4.0		μg/L	11/11/11 10:20	11/12/11
Sodium (Na)		240,000	500		$\mu g/L$	11/11/11 10:20	11/12/11
Magnesium (Mg)		64,000	500		$\mu g/L$	11/11/11 10:20	11/12/11
Calcium (Ca)		92,000	500		μg/L	11/11/11 10:20	11/12/11
Vanadium (V)		43	5.0		μg/L	11/11/11 10:20	11/12/11
Chromium (Cr)		33	5.0		μg/L	11/11/11 10:20	11/12/11
Manganese (Mn)		1,000	5.0		μg/L	11/11/11 10:20	11/12/11
ron (Fe)		11,000	300		μg/L	11/11/11 10:20	11/12/11
Cobalt (Co)		5.0	5.0		$\mu g/L$	11/11/11 10:20	11/12/11
Nickel (Ni)		40	10		μg/L	11/11/11 10:20	11/12/11
Copper (Cu)		11	. 10		μ g/L	11/11/11 10:20	11/12/11
Zinc (Zn)		ND	100		$\mu g/L$	11/11/11 10:20	11/12/11
Cadmium (Cd)		ND	5.0		μg/L	11/11/11 10:20	11/12/11
Lead (Pb)		ND	5.0		$\mu g/L$	11/11/11 10:20	11/12/11
Method Reference :	SM3500-Fe B						
Analyte		Result	Reporting Limit	Qual	Units	Date Extracted	Date Analyzed
ron, Ferrous (+2)		ND	50		μg/L	11/11/11	11/11/11
Method Reference :	SM3500-Fe B / EPA Metl	hod 6020A					
Analyte		Result	Reporting Limit	Qual	Units	Date Extracted	Date Analyzed

Ferric iron concentrations are based off of raw (non-rounded ferrous and total iron) data. Therefore, hand calculated ferric iron values may differ slightly. Ferrous iron samples were color developed promptly after laboratory login.

ND = Not Detected

Reported in micrograms per Liter, per client request.

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 Attn: Steve Carter

Phone: (530) 676-6008 Fax: (530) 676-6005

Date Received: 11/09/11

Job: Olympic Station

Dissolved Metals by ICPMS EPA Method SW6020 / SW6020A

	Parameter	Concentration	Reporting Limit	Date Extracted	Date Analyzed
Client ID: MW-2 Lab ID: STR11110905-01A Date Sampled 11/09/11 06:05	Iron (Fe), Dissolved	ND	300 μg/L	11/10/11	11/12/11
Client ID: MW-3 Lab ID: STR11110905-02A Date Sampled 11/09/11 06:30	Iron (Fe), Dissolved	ND	300 μg/L	11/10/11	11/12/11
Client ID: MW-4 Lab ID: STR11110905-03A Date Sampled 11/09/11 07:25	Iron (Fe), Dissolved	1,100	300 μg/L	11/10/11	11/12/11
Client ID: EX-1 Lab ID: STR11110905-04A Date Sampled 11/09/11 07:05	Iron (Fe), Dissolved	ND	300 μg/L	11/10/11	11/12/11

ND = Not Detected

Reported in micrograms per Liter, per client request.

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples

11/17/11 **Report Date**

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Steve Carter Attn:

(530) 676-6008 Phone:

Fax:

(530) 676-6005

Date Received: 11/09/11

Job:

Olympic Station

Phosphorus

EPA Method 365.3 / SM4500PE

	Parameter	Concentration	Reporting Limit	Date Extracted	Date Analyzed
Client ID: MW-2 Lab ID: STR11110905-01A Date Sampled 11/09/11 06:05	Phosphorus, Total (As P)	570	100 μg/L	11/15/11	11/15/11
Client ID: MW-3 Lab ID: STR11110905-02A Date Sampled 11/09/11 06:30	Phosphorus, Total (As P)	340	100 μg/L	11/15/11	11/15/11
Client ID: MW-4 Lab ID: STR11110905-03A Date Sampled 11/09/11 07:25	Phosphorus, Total (As P)	1,100	100 μg/L	11/15/11	11/15/11
Client ID: EX-1 Lab ID: STR11110905-04A Date Sampled 11/09/11 07:05	Phosphorus, Total (As P)	490	100 μg/L	11/15/11	11/15/11

Reported in micrograms per Liter, per client request.

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

11/17/11 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Attn: Steve Carter

Phone: (530) 676-6008

(530) 676-6005 Fax:

Date Received: 11/09/11

Job:

Olympic Station

Total Organic Carbon as NonPurgeable Organic Carbon EPA Method SW9060 / SM5310C

	Parameter	Concentration	Reporting Limit	Date Extracted	Date Analyzed
Client ID: MW-2 Lab ID: STR11110905-01A Date Sampled 11/09/11 06:05	Total Organic Carbon	3,200	1,000 μg/L	11/11/11	11/11/11
Client ID: MW-3 Lab ID: STR11110905-02A Date Sampled 11/09/11 06:30	Total Organic Carbon	3,300	1,000 μg/L	11/11/11	11/11/11
Client ID: MW-4 Lab ID: STR11110905-03A Date Sampled 11/09/11 07:25	Total Organic Carbon	73,000	10,000 μg/L	11/11/11	11/14/11
Client ID: EX-1 Lab ID: STR11110905-04A Date Sampled 11/09/11 07:05	Total Organic Carbon	4,500	1,000 μg/L	11/11/11	11/11/11

Reported in micrograms per Liter, per client request.

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 Attn: Steve Carter
Phone: (530) 676-6008
Fax: (530) 676-6005
Date Received: 11/09/11

Job:

Olympic Station

Total Petroleum Hydrocarbons - Purgeable (TPH-P) EPA Method SW8015B Volatile Organic Compounds (VOCs) EPA Method SW8260B

		Parameter	Concentra	tion	Reporting Limit	Date Extracted	Date Analyzed
Client ID:	MW-2				Limit	Lxtracted	Anaryzeu
Lab ID:	STR11110905-01A	TPH-P (GRO)	ND		50 μg/L	11/14/11	11/14/11
Date Sampled	11/09/11 06:05	Tertiary Butyl Alcohol (TBA)	ND		10 μg/L	11/14/11	11/14/11
		Methyl tert-butyl ether (MTBE)	33		0.50 μg/L	11/14/11	11/14/11
		Di-isopropyl Ether (DIPE)	ND		1.0 μg/L	11/14/11	11/14/11
		Ethyl Tertiary Butyl Ether (ETBE)	ND		1.0 μg/L	11/14/11	11/14/11
		1,2-Dichloroethane	ND		1.0 μg/L	11/14/11	11/14/11
		Benzene	ND		0.50 µg/L	11/14/11	11/14/11
		Tertiary Amyl Methyl Ether (TAME)	ND		1.0 μg/L	11/14/11	11/14/11
		Toluene	ND		0.50 μg/L	11/14/11	11/14/11
		Ethylbenzene	ND		0.50 μg/L	11/14/11	11/14/11
		m,p-Xylene	ND		0.50 μg/L	11/14/11	11/14/11
		o-Xylene	ND		0.50 μg/L	11/14/11	11/14/11
Client ID:	MW-3						
Lab ID:	STR11110905-02A	TPH-P (GRO)	ND		50 μg/L	11/14/11	11/14/11
Date Sampled	11/09/11 06:30	Tertiary Butyl Alcohol (TBA)	ND		10 μg/L	11/14/11	11/14/11
		Methyl tert-butyl ether (MTBE)	31		0.50 μg/L	11/14/11	11/14/11
		Di-isopropyl Ether (DIPE)	ND		1.0 µg/L	11/14/11	11/14/11
		Ethyl Tertiary Butyl Ether (ETBE)	ND		1.0 μg/L	11/14/11	11/14/11
		1,2-Dichloroethane	ND		1.0 µg/L	11/14/11	11/14/11
		Benzene	1.8		0.50 μg/L	11/14/11	11/14/11
		Tertiary Amyl Methyl Ether (TAME)	ND		1.0 μg/L	11/14/11	11/14/11
		Toluene	ND		0.50 μg/L	11/14/11	11/14/11
		Ethylbenzene	ND		0.50 μg/L	11/14/11	11/14/11
		m,p-Xylene	ND		0.50 μg/L	11/14/11	11/14/11
		o-Xylene	ND		0.50 μg/L	11/14/11	11/14/11
Client ID:	MW-4						
Lab ID:	STR11110905-03A	TPH-P (GRO)	2,800		200 μg/L	11/14/11	11/14/11
Date Sampled	11/09/11 07:25	Tertiary Butyl Alcohol (TBA)	270		20 μg/L	11/14/11	11/14/11
		Methyl tert-butyl ether (MTBE)	720		1.0 µg/L	11/14/11	11/14/11
		Di-isopropyl Ether (DIPE)	ND	V	$2.0~\mu g/L$	11/14/11	11/14/11
		Ethyl Tertiary Butyl Ether (ETBE)	ND	V	2.0 μg/L	11/14/11	11/14/11
		1,2-Dichloroethane	ND	V	$2.0~\mu g/L$	11/14/11	11/14/11
		Benzene	190		1.0 μg/L	11/14/11	11/14/11
		Tertiary Amyl Methyl Ether (TAME)	3.6		2.0 μg/L	11/14/11	11/14/11
		Toluene	1.4		1.0 μg/L	11/14/11	11/14/11
		Ethylbenzene	9.6		1.0 µg/L	11/14/11	11/14/11
		m,p-Xylene	ND	V	$1.0~\mu g/L$	11/14/11	11/14/11
		o-Xylene	1.3		1.0 µg/L	11/14/11	11/14/11

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID:	EX-1					
Lab ID:	STR11110905-04A	TPH-P (GRO)	ND	50 μg/L	11/14/11	11/14/11
Date Sampled	11/09/11 07:05	Tertiary Butyl Alcohol (TBA)	ND	10 μg/L	11/14/11	11/14/11
		Methyl tert-butyl ether (MTBE)	34	0.50 μg/L	11/14/11	11/14/11
		Di-isopropyl Ether (DIPE)	ND	1.0 µg/L	11/14/11	11/14/11
		Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0 μg/L	11/14/11	11/14/11
		1,2-Dichloroethane	ND	1.0 μg/L	11/14/11	11/14/11
		Benzene	4.3	0.50 μg/L	11/14/11	11/14/11
		Tertiary Amyl Methyl Ether (TAME)	ND	1.0 µg/L	11/14/11	11/14/11
		Toluene	ND	$0.50~\mu g/L$	11/14/11	11/14/11
		Ethylbenzene	ND	$0.50~\mu g/L$	11/14/11	11/14/11
		m,p-Xylene	ND	$0.50~\mu g/L$	11/14/11	11/14/11
		o-Xylene	ND	0.50 μg/L	11/14/11	11/14/11

Gasoline Range Organics (GRO) C4-C13

V = Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Reported in micrograms per Liter, per client request.

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

11/17/11

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

VOC Sample Preservation Report

Work Order: STR11110905

Job:

Olympic Station

Alpha's Sample ID	Client's Sample ID	Matrix	pН	
11110905-01A	MW-2	Aqueous	2	
11110905-02A	MW-3	Aqueous	2	
11110905-03A	MW-4	Aqueous	2	
11110905-04A	EX-1	Aqueous	2	

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 17-Nov-11	QC Summary Report					Work Order: 11110905					
Method Blan File ID:	nk		Type: N		est Code: SN atch ID: W11		Fe B	Analysi	s Date:	11/11/2011 00:00	
Sample ID:	MBLK-W1111FR	Units : µg/L		Run ID: W	ETLAB_111	111A		Prep Da	ate:	11/11/2011 00:00	
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) F	RPDRef\	/al %RPD(Limit)	Qual
Iron, Ferrous (-	+2)	ND	50)							
Laboratory	Control Spike		Type: L	.CS T	est Code: SN	13500-	Fe B		***************************************		
File ID:				В	atch ID: W11	11FR		Analysi	s Date:	11/11/2011 00:00	
Sample ID:	LCS-W1111FR	Units : µg/L		Run ID: W	ETLAB_111	111A		Prep Da	ate:	11/11/2011 00:00	
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) R	RPDRef\	/al %RPD(Limit)	Qual
Iron, Ferrous (-	+2)	1500	50	1500		99.9	85	115			
Sample Mat	rix Spike		Type: N	IS T	est Code: SN	13500-	Fe B				
File ID:				В	atch ID: W11	11FR		Analysi	s Date:	11/11/2011 00:00	
Sample ID:	11110905-01AMS	Units : μg/L		Run ID: W	ETLAB_111	111A		Prep Da	ate:	11/11/2011 00:00	
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) R	RPDRef\	/al %RPD(Limit)	Qual
Iron, Ferrous (+	+2)	1530	50	1500	0	102	70	130			
	rix Spike Duplicate		Type: N	ISD T	est Code: SN	13500-	Fe B		***************************************		
File ID:				Ва	atch ID: W11	11FR		Analysi	s Date:	11/11/2011 00:00	
Sample ID:	11110905-01AMSD	Units : µg/L		Run ID: W	ETLAB_111	111A		Prep Da	ate:	11/11/2011 00:00	
Analyte		Result	PQL				LCL(ME)	UCL(ME) R	PDRef\	/al %RPD(Limit)	Qual
Iron, Ferrous (+	+2)	1510	50		0	101	70	130	1528		

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 17-Nov-11	(QC Sı	ımmar	y Repor	t				Work Orde 11110905	
Method Blank File ID: 111111.B\090_M.D\		Type: M		est Code: EF atch ID: 2768		hod SW60			11/12/2011 02:09	
Sample ID: MB-27681	Units : µg/L		Run ID: IC	P/MS_11111	12A		Prep Da	ite:	11/11/2011 10:20	
Analyte	Result	PQL				LCL(ME)	UCL(ME) R	PDRef\	/al %RPD(Limit)	Qua
Beryllium (Be)	ND	4	******							
Sodium (Na)	ND	500								
Magnesium (Mg)	ND	500								
Calcium (Ca)	ND	500								
Vanadium (V) Chromium (Cr)	ND ND	5								
Manganese (Mn)	ND	5 5								
Iron (Fe)	ND	300								
Cobalt (Co)	ND	5								
Nickel (Ni)	ND	10								
Copper (Cu)	ND	10								
Zinc (Zn)	ND	100								
Cadmium (Cd) Lead (Pb)	ND ND	5 5							,	
Laboratory Control Spike	ND	Type: L		est Code: EF	A Meti	hod SW60	20 / SW602	0A		
File ID: 111111.B\091_M.D\		.,,,		atch ID: 2768					11/12/2011 02:15	
Sample ID: LCS-27681	Units : µg/L			P/MS_1111			Prep Da		11/11/2011 10:20	
Analyte	Result	PQL				LCL(ME)	•		/al %RPD(Limit)	Qua
Beryllium (Be)	264	4		Opinitorvar	106	80	120			
Sodium (Na)	52000	500			104	80	120			
Magnesium (Mg)	52900	500	50000	i	106	80	120			
Calcium (Ca)	49700	500			99	80	120		•	
Vanadium (V)	241	5			97	80	120			
Chromium (Cr)	252	5	250		101	80	120			
Manganese (Mn) Iron (Fe)	2480	5			99	80 80	120 120			
Cobalt (Co)	49600 245	300 5			99 98	80	120			
Nickel (Ni)	253	10			101	80	120			
Copper (Cu)	248	10			99	80	120			
Zinc (Zn)	245	100	250		98	80	120			
Cadmium (Cd)	251	5			100	80	120			
Lead (Pb)	249	5	250		99.7	80	120			
Sample Matrix Spike		Type: M		est Code: EF		hod SW60				
File ID: 111111.B\096_M.D\				atch ID: 2768			•		11/12/2011 02:44	
Sample ID: 11111122-02AMS	Units : µg/L	DO:		P/MS_11111		LOUGHEN	Prep Da		11/11/2011 10:20	Our
Analyte	Result	PQL	·					Puren	/al %RPD(Limit)	Qua
Beryllium (Be) Sodium (Na)	268	500		0 5705	107	75 75	125			
Magnesium (Mg)	57600 59400	500 500		5785 7075	104 105	75 75	125 125			
Calcium (Ca)	87500	500		40380	94	75 75	125			
Vanadium (V)	237	5		0	95	75	125			
Chromium (Cr)	249	5		6.875	97	75	125			
Manganese (Mn)	3630	5	2500	1271	94	75	125			
Iron (Fe)	50900	300		2389	97	75 75	125			
	240	5		0	96	75	125			
		4.0	~							
Nickel (Ni)	253	10		0	101	75 75	125			
Nickel (Ni) Copper (Cu)	253 244	10	250	0	97	75	125			
Cobalt (Co) Nickel (Ni) Copper (Cu) Zinc (Zn) Cadmium (Cd)	253		250 250							

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 17-Nov-11 QC Summary Report									Work Orde 11110905	
Sample Matrix Spike Duplicate File ID: 111111.B\097_M.D\		•							11/12/2011 02:50	
Sample ID: 11111122-02AMSD	Units : µg/L	F	Run ID: IC	P/MS_1111	12A		Prep	Date:	11/11/2011 10:20	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRefVa	al %RPD(Limit)	Qual
Beryllium (Be) Sodium (Na) Magnesium (Mg) Calcium (Ca) Vanadium (V) Chromium (Cr) Manganese (Mn) Iron (Fe) Cobalt (Co) Nickel (Ni) Copper (Cu) Zinc (Zn) Cadmium (Cd)	286 61400 63200 93100 258 268 3890 54100 258 271 260 407 264	4 500 500 500 5 5 5 5 300 5 10 100 5	250 50000 50000 50000 250 250 2500 50000 250 25	5785 7075 40380 0	114 111 112 105 103 105 105 103 103 108 104 106	75 75 75 75 75 75 75 75 75 75 75	125 125 125 125 125 125 125 125 125 125	268 57570 59410 87450 236.6 249.3 3631 50930 240.2 253.3 243.5 366.4 247	6.2(20) 6.2(20) 8.5(20) 7.4(20) 6.9(20)	
Lead (Pb)	264	5	250	0	106	75	125	248.3	6.2(20)	

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 17-Nov-11	QC Summary Report				Work Order: 11110905				
Method Blank File ID: 111111.B\118_M.D\ Sample ID: MB-27673 Analyte	Units : µg/L Result	Type: M	Ba Run ID: ICI	st Code: EF tch ID: 2767 P/MS_11111	'3 12C		Prep Date:	: 11/12/2011 04:54 11/10/2011 14:55 FVal %RPD(Limit)	Qual
Iron (Fe), Dissolved	ND	300		Spkreivai	70REC	, LCL(IVIE)	OCL(MC) NEDICE	IVAI /AINE D(LIIIII)	Quai
Laboratory Control Spike File ID: 111111.B\119_M.D\ Sample ID: LCS-27673	Units : μg/L	Type: L	Ba Run ID: ICI	est Code: EF tch ID: 2767 P/MS_1111	73 12C		Prep Date:	: 11/12/2011 05:00 11/10/2011 14:55	
Analyte Iron (Fe), Dissolved	Result 4840	PQL 300		SpkRefVal	%REC 97	ELCL(ME)	UCL(ME) RPDRef	fVal %RPD(Limit)	Qual
Sample Matrix Spike File ID: 111111.B\124_M.D\ Sample ID: 11110802-02AMS Analyte	Units : µg/L Result	Type: M	S Te Ba Run ID: ICI	st Code: EF tch ID: 2767 P/MS_11111 SpkRefVal	PA Met '3 12C	hod 200.8	Analysis Date:	: 11/12/2011 05:30 11/10/2011 14:55 FVal %RPD(Limit)	Qual
Iron (Fe), Dissolved	5290	300	5000	0	106	75	125		
Sample Matrix Spike Duplicate File ID: 111111.B\125_M.D\ Sample ID: 11110802-02AMSD Analyte	Units : µg/L Result	Type: M	Ba Run ID: ICI	st Code: EF tch ID: 2767 P/MS_11111 SpkRefVal	'3 12C		Prep Date:	: 11/12/2011 05:36 11/10/2011 14:55 Wal %RPD(Limit)	Qual
Iron (Fe), Dissolved	5280	300		0	106	75	125 528		_

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date:		(QC S	ummar	y Repor	t		J.		Work Orde 11110905	
Method Blan	nk		Type: N	IBLK T	est Code: El	PA Met	hod 365.3	/ SM4500F	E		
File ID:				Ва	atch ID: W1	115TP		Analys	is Date:	11/15/2011 00:00	
Sample ID:	MBLK-W1115TP	Units : µg/L		Run ID: W	ETLAB_111	115A		Prep D	ate:	11/15/2011 00:00	
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef\	/al %RPD(Limit)	Qual
Phosphorus, T	otal (As P)	ND	100)							
Laboratory	Control Spike		Type: L	.CS Te	est Code: El	PA Met	hod 365.3	/ SM4500F	E		
File ID:	-			Ва	atch ID: W11	15TP		Analys	is Date:	11/15/2011 00:00	
Sample ID:	LCS-W1115TP	Units : µg/L		Run ID: W	ETLAB_111	115A		Prep D	ate:	11/15/2011 00:00	
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef	/al %RPD(Limit)	Qual
Phosphorus, T	otal (As P)	1070	100	1000		107	73	127			
Sample Mat	rix Spike		Type: N	IS To	est Code: El	PA Met	hod 365.3	/ SM4500F	E		
File ID:				Ва	atch ID: W1	115TP		Analys	is Date:	11/15/2011 00:00	
Sample ID:	11110905-01AMS	Units : µg/L		Run ID: W	ETLAB_111	115A		Prep D	ate:	11/15/2011 00:00	
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	C LCL(ME)	UCL(ME)	RPDRef\	/al %RPD(Limit)	Qual
Phosphorus, T	otal (As P)	1090	100	1000	571	52	. 73	127			M2
Sample Mat	rix Spike Duplicate		Type: N	ISD To	est Code: El	A Met	hod 365.3	/ SM4500F	E		
File ID:				Ва	atch ID: W1	15TP		Analys	is Date:	11/15/2011 00:00	
Sample ID:	11110905-01AMSD	Units : µg/L		Run ID: W	ETLAB_111	115A		Prep D	ate:	11/15/2011 00:00	
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef\	/al %RPD(Limit)	Qual
Phosphorus, T	otal (As P)	1190	100	1000	571	62	73	127	1089	8.5(20)	M2

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

M2 = Matrix spike recovery was low, the method control sample recovery was acceptable.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 15-Nov-11		(QC S	ummar	y Repor	t				Work Ord e 11110905	
Method Blan	ık		Type: N		est Code: EF		hod SW90			11/11/2011 11:21	
Sample ID:	MBLK-27675	Units : µg/L		Run ID: TO	C_111111A			Prep (Date:	11/11/2011 09:47	
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef	Val %RPD(Limit)	Qual
Total Organic	Carbon	ND	1000)							
Laboratory	Control Spike		Type: L	CS T	est Code: EF	A Met	hod SW90	60 / SM53	10C		
File ID:	•			В	atch ID: 2767	'5		Analy	sis Date:	11/11/2011 11:47	
Sample ID:	LCS-27675	Units : µg/L		Run ID: TO	OC_111111A			Prep I	Date:	11/11/2011 09:47	
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef	Val %RPD(Limit)	Qual
Total Organic	Carbon	4790	1000	5000		96	74	126			
Sample Mat	rix Spike		Type: N	IS T	est Code: EF	A Met	hod SW90	60 / SM53	10C		
File ID:	-			В	atch ID: 2767	' 5		Analy	sis Date:	11/11/2011 15:47	
Sample ID:	11111004-02AMS	Units : µg/L		Run ID: TO	OC_111111A			Prep I	Date:	11/11/2011 09:47	
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef	Val %RPD(Limit)	Qual
Total Organic	Carbon	6100	1000	5000	1416	94	56	137			
Sample Mat	rix Spike Duplicate		Type: N	ISD T	est Code: EF	A Met	hod SW90	60 / SM53	10C		
File ID:	•			В	atch ID: 2767	' 5		Analy	sis Date:	11/11/2011 17:07	
Sample ID:	11111004-02AMSD	Units : µg/L		Run ID: TO	OC_111111A	L.		Prep l	Date:	11/11/2011 09:47	
Analyte		Result	PQL				LCL(ME)	UCL(ME)	RPDRef	Val %RPD(Limit)	Qual
Total Organic (Carbon	6120	1000	5000	1416	94	56	137	6101	0.3(20)	

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 21-Nov-11	(QC S	ummar	y Report				Work Orde 11110905	
Method Blank File ID: 11111406.D Sample ID: MBLK MS09W1114B	Units : µg/L	Type: N	Ва	est Code: EPA etch ID: MS09V SD_09_111114	N1114			e: 11/14/2011 11:58 11/14/2011 11:58	
Analyte	Result	PQL				LCL(ME)	•	efVal %RPD(Limit)	Qual
TPH-P (GRO) Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	ND 10.2 10 10.1	50			102 100 101	70 70 70 70	130 130 130		<u></u>
Laboratory Control Spike		Type: L	CS Te	est Code: EPA	Meth	od SW80	15B/C		
File ID: 11111405.D Sample ID: GLCS MS09W1114B	Units : μg/L			atch ID: MS09\ 6D_09_111114		IB	Analysis Date Prep Date:	e: 11/14/2011 11:35 11/14/2011 11:35	
Analyte	Result	PQL	SpkVal	SpkRefVal %	REC	LCL(ME)	UCL(ME) RPDRe	efVal %RPD(Limit)	Qual
TPH-P (GRO) Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	418 10.2 10 10.4	50	400 10 10 10		105 102 100 104	70 70 70 70	130 130 130 130		
Sample Matrix Spike		Type: M	S Te	est Code: EPA	Meth	od SW80	15B/C		
File ID: 11111419.D			Ва	atch ID: MS09V	N 1114	IB	Analysis Date	e: 11/14/2011 16:53	
Sample ID: 11110820-21AGS Analyte	Units : µg/L Result	PQL		SpkRefVal %		LCL(ME)	Prep Date: UCL(ME) RPDRe	11/14/2011 16:53 efVal %RPD(Limit)	Qual
TPH-P (GRO) Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	2290 52.4 49.6 51.3	250	2000 50 50 50	1	115 105 99 103	51 70 70 70	144 130 130 130		
Sample Matrix Spike Duplicate		Type: M	SD Te	est Code: EPA	Meth	od SW80	15B/C		
File ID: 11111420.D			Ba	itch ID: MS09V	V1114	В	•	: 11/1 4/2011 17:16	
Sample ID: 11110820-21AGSD	Units : µg/L			SD_09_111114			Prep Date:	11/14/2011 17:16	
Analyte TPH-P (GRO) Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	2300 51.9 49.3 51.1	PQL 250		0 1	REC 15 04 99 02	51 70 70 70 70	UCL(ME) RPDRe 144 22 130 130 130	efVal %RPD(Limit) 92 0.5(29)	Qual

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 21-Nov-11	(QC Sui	mmary	Report				Work Orde 11110905	
Method Blank File ID: 11111406.D Sample ID: MBLK MS09W1114A Analyte	Units : µg/L Result		Ba un ID: MS	est Code: EPA Me atch ID: MS09W11 SD_09_111114A SpkRefVal %REC	14A	Analysis Prep Da	te: 11	/14/2011 11:58 /14/2011 11:58 % PRD((imit)	Quai
Tertiary Butyl Alcohol (TBA) Methyl tert-butyl ether (MTBE) Di-isopropyl Ether (DIPE) Ethyl Tertiary Butyl Ether (ETBE) 1,2-Dichloroethane Benzene Tertiary Amyl Methyl Ether (TAME)	ND ND ND ND ND ND ND	PQL 10 0.5 1 1 1 0.5	Эркуаг	Spikkeivai //NEC	S ECE(ME)	OCL(ML) IN	Diverval	7014 D(LIIIII)	<u> </u>
Toluene Ethylbenzene m,p-Xylene o-Xylene Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	ND ND ND ND 10.2 10 10.1	0.5 0.5 0.5 0.5	10 10 10	102 100 101	70 70 70	130 130 130			
Laboratory Control Spike File ID: 11111404.D		Type: LC:		est Code: EPA Me atch ID: MS09W11			Date: 11	/14/2011 11:12	
Sample ID: LCS MS09W1114A Analyte	Units : µg/L Result	R PQL		SD_09_111114A SpkRefVal %RE0	C LCL(ME)	Prep Da		/14/2011 11:12 %RPD(Limit)	Qual
Methyl tert-butyl ether (MTBE) Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	11.2 10.9 10.2 10.3 9.2 9.15 10.6 9.72 9.9	0.5 0.5 0.5 0.5 0.5	10 10 10 10 10 10 10 10	112 109 102 103 92 92 106 97 99	65 70 80 80 70 70 70 70	140 130 120 120 130 130 130 130 130			
Sample Matrix Spike		Type: MS		est Code: EPA Me					
File ID: 11111417.D Sample ID: 11110820-21AMS Analyte	Units : µg/L Result	R PQL	un ID: MS	atch ID: MS09W11 5 D_09_111114A SpkRefVal %RE0		Prep Da	te: 11	/14/2011 16:06 /14/2011 16:06 %RPD(Limit)	Qual
Methyl tert-butyl ether (MTBE). Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	63 57.1 51.3 53 46.9 47.1 57.1 46.7 48.5	1.3 1.3 1.3 1.3 1.3 1.3	50 50 50 50 50 50 50 50 50	0 126 0 114 0 103 0 106 0 94 0 94 114 93 97	47 59 68 68 68 70 70 70	150 138 130 130 131 131 130 130 130 130	Diverval	7011 D(LIIIII)	- Qual
Sample Matrix Spike Duplicate File ID: 11111418.D		Type: MS		est Code: EPA Me			Data: 44	/14/2011 16:29	
Sample ID: 11110820-21AMSD	Units : µg/L	R		itch ID: MS09W11 SD_09_111114A	14 A	Prep Da		/14/2011 16:29	
Analyte Methyl tert-butyl ether (MTBE) Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8	Result 65 58.9 53.4 55.1 48.6 49.2 56.3 47.1	PQL 1.3 1.3 1.3 1.3 1.3 1.3		SpkRefVal %REC 0 130 0 118 0 107 0 110 0 97 0 98 113 94	47 59 68 68 68 70 70 70	150 138 130 130 131 131 130 130 130	63.04 57.12 51.34 52.97 46.92 47.09	%RPD(Limit) 3.1(40) 3.0(21) 3.9(20) 4.0(20) 3.6(20) 4.3(20)	Qual
Surr: 4-Bromofluorobenzene	47.1		50 50	94 96	70 70	130			

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date:	QC Summary Report	Work Order:
21-Nov-11	QC Summary Report	11110905
~		

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

CALIFORNIA LABORATORY SERVICES

3249 Fitzgerald Road Rancho Cordova, CA 95742

November 21, 2011

CLS Work Order #: CUK0428 COC #:

Reyna Vallejo Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21 Sparks, NV 89431

Project Name: STR11110905

Enclosed are the results of analyses for samples received by the laboratory on 11/09/11 13:10. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

CA DOHS ELAP Accreditation/Registration number 1233

Page 1 of 4 11/21/11 10:08 Alpha Analytical, Inc.-Sparks Project: STR11110905 CLS Work Order #: CUK0428 255 Glendale Ave.; Suite 21 Project Number: [none] COC#: Sparks, NV 89431 Project Manager: Reyna Vallejo COM 428 Alpha Apalytical, Inc 201 Observe Avenue Report Due By: 5:00 PM Senior 94 Specks. Neverdo #5434 3778 On: 17-Nov-11 "Phase reference the Work Order number on all reports and invoices. Phone (770) 155-1644 *Also please include the dates of analysis and detertion limits. (7359 355 0406 Please send the report to Aigha Analytical (Sparks). Required QC: Attustica To Keyna Vellejo (revolucipos postvico), com Subcontractor Final Rpt. MELK, LCS, MS/MSD With Surrogates CLS Labo (916) 623 (919) 3249 Fingersrate Re 144 (916) 629-4510 Sampled by : C. ### Rencho Contovo, CA 95742 69 Nov-11 47 A MACKING SAFERING 41911 TANSON i terret i gentekoa. Otto pp 7198 30000 Total and DESSOLVE Date/Time District Line Relinquished by Relinquished by

MAO Titanamata Dana a D

Page 2 of 4

11/21/11 10:08

Alpha Analytical, Inc.-Sparks

255 Glendale Ave.; Suite 21 Sparks, NV 89431 Project: STR11110905

Project Number: [none]

CLS Work Order #: CUK0428

Project Manager: Reyna Vallejo

COC#:

Conventional Chemistry Parameters by APHA/EPA Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
STR11110905-01A (MW-2) (CUK0428-01)	Aqueous	Sampled: 11/	09/11 06	:05 Rec	eived: 11/0	9/11 13:10			
Hexavalent Chromium, Dissolved	ND	1.0	μg/L	1	CU08414	11/18/11	11/18/11	EPA 218.6	
Hexavalent Chromium	ND	1.0	n	**	**	11	**	н	
STR11110905-02A (MW-3) (CUK0428-02)	Aqueous	Sampled: 11/	09/11 06	:30 Red	eived: 11/09	9/11 13:10			
Hexavalent Chromium, Dissolved	ND	1.0	μg/L	1	CU08414	11/18/11	11/18/11	EPA 218.6	
Hexavalent Chromium	ND	1.0	n	11	11	"	"	**	
STR11110905-03A (MW-4) (CUK0428-03)	Aqueous	Sampled: 11/	09/11 07	:25 Red	eived: 11/09	9/11 13:10			
Hexavalent Chromium, Dissolved	ND	1.0	μg/L	1	CU08414	11/18/11	11/18/11	EPA 218.6	
Hexavalent Chromium	ND	1.0	**	ij	n	11	11	11	
STR11110905-04A (EX-1) (CUK0428-04) A	Aqueous S	Sampled: 11/0	9/11 07:	05 Rece	ived: 11/09/	11 13:10			
Hexavalent Chromium, Dissolved	ND	1.0	μg/L	1	CU08414	11/18/11	11/18/11	EPA 218.6	
Hexavalent Chromium	ND	1.0	17	*1	11	19	ŧ!	11	

Page 3 of 4

11/21/11 10:08

Alpha Analytical, Inc.-Sparks

255 Glendale Ave.; Suite 21

Sparks, NV 89431

Project: STR11110905

Project Number: [none]

Project Manager: Reyna Vallejo

CLS Work Order #: CUK0428

COC #:

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CU08414 - General Prep										
Blank (CU08414-BLK1)				Prepared	& Analyzo	ed: 11/18/	11	•		
Hexavalent Chromium	ND	1.0	μg/L						many to the or the same of the same	
Hexavalent Chromium, Dissolved	ND	1.0	"							
LCS (CU08414-BS1)				Prepared	& Analyzo	ed: 11/18/	11			
Hexavalent Chromium	4.68	1.0	μg/L	5.00		94	80-120			
Hexavalent Chromium, Dissolved	4.68	1.0	11	5.00		94	80-120			
LCS Dup (CU08414-BSD1)				Prepared	& Analyze	ed: 11/18/	11			
Hexavalent Chromium	4.85	1.0	μg/L	5.00		97	80-120	4	20	
Hexavalent Chromium, Dissolved	4.85	1.0	**	5.00		97	80-120	4	20	
Matrix Spike (CU08414-MS1)	Sor	rce: CUK07	42-01	Prepared	& Analyze	ed: 11/18/	11			
Hexavalent Chromium	6.73	1.0	μg/L	5.00	ND	135	80-120			QM-
Hexavalent Chromium, Dissolved	6.73	1.0	n	5.00	ND	135	80-120			QM-
Matrix Spike Dup (CU08414-MSD1)	Soi	rce: CUK07	42-01	Prepared .	& Analyze	ed: 11/18/	11			
Hexavalent Chromium	6.76	1.0	μg/L	5.00	ND	135	80-120	0.5	20	QM-
Hexavalent Chromium, Dissolved	6.76	1.0	tr	5.00	ND	135	80-120	0.5	20	QM-5

Page 4 of 4 11/21/11 10:08

Alpha Analytical, Inc.-Sparks

255 Glendale Ave.; Suite 21

Project: STR11110905
Project Number: [none]

CLS Work Order #: CUK0428

Project Manager: Reyna Vallejo

COC #:

Notes and Definitions

QM-5 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were

within acceptance limits showing that the laboratory is in control and the data is acceptable.

DET Analyte DETECTED

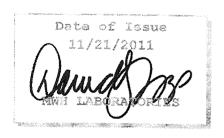
ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

Sparks, NV 89431

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference


750 Royal Oak Dr., Suite 100 Monrovia, California, 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227)

Laboratory Report

for

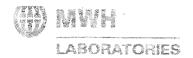
Alpha Analytical, Inc. 255 Glendale Avenue, Suite 21 Sparks, NV 89431 Attention: Reyna Vallejo

Fax: 775-355-0406

DST: David S Tripp Project Manager Telac III

Report#: 381055

Project: SUBCONTRACT


Group: Bromate

Laboratory certifies that the test results meet all **NELAC** requirements unless noted in the Comments section or the Case Narrative. Following the cover page are Hits Reports, Comments, QC Summary, QC Report and Regulatory Forms. This report shall not be reproduced except in full, without the written approval of the laboratory.

STATE CERTIFICATION LIST

State	Certification Number	State	Certification Number
Alabama	41060	Mississippi	Certified
Alaska	CA00006	Montana	Cert 0035
Arizona	AZ0455	Nevada	CA00006-2010-1
Arkansas	Certified	New Hampshire	2959-11
California – NELAP	01114CA	New Jersey	CA 008
California – ELAP	1422	New Mexico	Certified
Colorado	Certified	New York	11320
Connecticut	PH-0107	North Carolina	06701
Delaware	CA 006	North Dakota	R-009
Florida	E871024	Oregon	CA 200003-009
Georgia	947	Pennsylvania	68-565
Guam	11-004r	Rhode Island	01114GA
Hawaii	Certified	South Carolina	87016001
ldaho	Certified	South Dakota	Certified
Illinois	200033	Tennessee	TN02839
Indiana	C-CA-01	Texas	T104704230-11-2
Kansas	E-10268	Utah	Mont-1
Kentucky	90107	Vermont	VT0114
Louisiana	LA110022	Virginia	00210
Maine	CA0006	Washington	C383
Maryland	224	West Virginia	9943 C
Commonwealth of Northern Marianas Is.	MP0004	Wisconsin	998316660
Massachusetts	M-CA006	Wyoming	8TMS-L
Michigan	9906	EPA Region 5	Certified

Acknowledgement of Samples Received

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21

Sparks, NV 89431 Attn: Reyna Vallejo Phone: 775-355-1044 Customer Code: ALPHA-NV

Folder #: 381055

Project: SUBCONTRACT

Sample Group: Bromate
Project Manager: David S Tripp

Phone: (626) 386-1158 PO #: STR11110905

The following samples were received from you on **November 10, 2011**. They have been scheduled for the tests listed below each sample. If this information is incorrect, please contact your service representative. Thank you for using MWH Laboratories.

Sample #	Sample ID	Sample Date
201111100500	MW-2 Variable ID: STR11110905-01A	Nov 09, 2011 06:05
	Bromate by UV/VIS	
201111100502	MW-3 Variable ID: STR11110905-02A	Nov 09, 2011 06:30
	Bromate by UV/VIS	
201111100503	MW-4 Variable ID: STR11110905-03A	Nov 09, 2011 07:25
	Bromate by UV/VIS	
201111100504	EX-1 Variable ID: STR11110905-04A	Nov 09, 2011 07:05
	Bromate by UV/VIS	

Test Description

Reported: 11/21/11

man from the same of the same

Alpha Analytical, Inc.

255 Glendale Avenue

Suite 21

Sparks, Nevada 89431-5778

Phone: (775) 355-1044

c: (775) 355-**0**406

Subcontractor:

Montgomery Watson Harza Laboratories, Inc.

750 Royal Oaks Drive

Suite 100

Monroviz, CA 91016-3629

SUB CHAIN-OF-CUSTODY RECORD

Work Order: STR11110905

*Please reference the Work Order number on all reports and invoices.

*Also please include the dates of analysis and detection limits.

Please send the report to Alpha Analytical (Sparks).

Attention To Reyna Vallejo (reyna@alpha-analytical.com).

TEL:

(626) 386-1100

FAX:

(626) 386-1124

Acct#:

Report Due By: 5:00 PM

On: 17-Nov-11

Required QC: Final Rpt, MBLK, LCS, MS/MSD With Surrogates

Sampled by : C. Hill

89-Nov-11

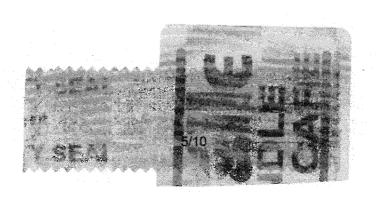
Alpha's Sample ID	Client's Sample ID	Matrix	Collection Date	Type (d) of flottles Preserved Other	EPA Hethod 317	Roquested Tests	A CONTRACTOR OF THE PARTY OF TH	Sample Community
STR11119905-01A	WAA-5	Aqueous	11/09/11 06:05	100ML-EDA 250M HDP (1) E-U (1)	Bromate (Sub to MWH)		y and come and analysis and a	e de la companya del companya de la companya del companya de la co
STR1110505-02A	MW-3	Aqueous	11/09/11 06:30	100ML-EDA 250M HDP (1) E-U (1)	Bromate (Sub to MWH)	A state of the sta	ny mangamandonong poliningan ny mano.	A Mandager E. Koli
A60-202011118T2	MW-4	Aqueous	11/09/11 07:25	100ML-EDA 250ML HDP (1) E-U (1)	Bromate (Sub to MWH)		** ***********************************	Let the 8 annual control to the Visit of the Visit of Vis
57611 3 805-044	EX-1	aucaupA	11/09/11 07:05	100ML-EDA 250MLI DP (1) E-U(8)	Bromete (Sub to MWH)			

Comments:

Date/Time	a parties
	Date/Lime
Relinquished by: Knachduhrift 4/1/160 Received by: M. DE WESD Mart	- Italiana
Relinquished by: Received by:	

Alpha Analytical, Inc. Phone: (775) 355-1044 FAX: (775) 355-0406

Subcontract Sample Receipt Checklist


Date	Report	15	due	100	Alpha	^	17-Nov-11
------	--------	----	-----	-----	-------	---	-----------

Date of Notice: 11/9/2011 11:55:25

If any items are checkmarked NO or are non-compliant, a phone call back to Alpha Analytical is required immediately. If all items are acceptable, a fexed copy of the signed sub chain of custody (COC) and the completed sample receipt check list is required within 24 hours of sample receipt.

Alpha's Work Order Number : STR11110905 SubContract Work	k Order Number: Date Received:
<u>Chain of Cu</u> Carrier name: <u>FED EX 속 기약기 2175 54억년</u>	istody (COC) information
Chain of custody present?	Yes No
Custody seats intact on shippping container/cooler?	Yes No Not Presen
Custody seals intact on sample bottles?	Yes No Not Presen
Chain of custody signed when relinquished and received?	Yes 🎩 No
Chain of custody agrees with sample labels?	Yes Non-Compliant
internal Chain of Custody (COC) requseted?	Yes 📵 No
Sample	Receipt Information
Shipping container/cooler in good condition?	Yes 🔟 🕨 No Not Presen 📳
Samples in proper container/bottle?	Yes Non-Compliant
Sample containers intact?	Yes 🔟 - 🖳 No
Sufficient sample volume for indicated test?	Yes 🗐 📵 No
Sample Preservation	and Hold Time (HT) Information
All samples received within holding time?	Yes Non-Compliant
Cooler Temperature : is Wet Ice present in Cooler ?	Yes III YES, then temperature is 4°C.
	No If NO, then actual cooler temperature is: 3.8 °C
Analytical	Requirement Information
Are non-Standard or Modified methods requested ?	Yes 🖫 🗷 No
SubContract Lab CA STATE certified?	Yes 🔳 🔳 No
SubContract Lab NELAP certified?	Yes 📵 🔳 No
SubContract Lab CERTIFIED for the various methods requested	Yes 🗃 No No Santa Anna Anna Anna Anna Anna Anna Anna
Will the SubContract Lab be able to meet the turn-around time (TAT) requirements?	Yes 🔳 No

Comments:

Laboratory Hits Report: 381055

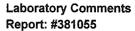
A Division of MWH Americas, Inc.

750 Royal Oak Dr., Suite 100 Monrovia, California, 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227)

Alpha Analytical, Inc. Reyna Vallejo 255 Glendale Avenue, Suite 21 Sparks, NV 89431

Samples Received on: 11/10/2011

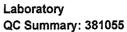
Analyzed	Analyte	Sample ID	Result	Federal MCL	Units	MRL
	201111100502	<u>MW-3</u>				
11/15/2011	14:43 Bromate by t	JV/VIS	68	10	ug/L	5



750 Royal Oak Dr., Suite 100 Monrovia, California, 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227)

Alpha Analytical, Inc. Reyna Vallejo 255 Glendale Avenue, Suite 21 Sparks, NV 89431 Laboratory Data Report: 381055

Samples Received on: 11/10/2011


Prepared	Analy	zed	QC Ref#	Method	Analyte	Result	Units	MRL	Dilution
MW-2 (20)11111005(00)				44.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	Sampled on	11/09/2011 060)5
	Varia	EPA :	317 - Bro	110905-01A mate by UV/VIS 31					
MW-3 (20)111110050	22:37)2)	627102	(EPA 317)	Bromate by UV/VIS	ND	ug/L Sampled on	1 11/09/2011 063	1 30
		EPA :		110905-02A mate by UV/VIS 31' (EPA 317)	7 Bromate by UV/VIS	68	ug/L	5	5
MW-4 (20	111110050	<u>)3)</u>		,	,		-	11/09/2011 072	-
		EPA :	317 - Bro	110905-03A mate by UV/VIS 31					
EX-1 (201	11/14/2011 111110050 4	23:23 <u>4)</u>	627102	(EPA 317)	Bromate by UV/VIS	ND	ug/L Sampled on	1 11/09/2011 070	1)5
	Varia			110905-04A mate by UV/VIS 31	7				
	11/14/2011	23:47		(EPA 317)	Bromate by UV/VIS	ND	ug/L	1	1

750 Royal Oak Dr., Suite 100 Monrovia, California, 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227)

Alpha Analytical, Inc. Reyna Vallejo 255 Glendale Avenue, Suite 21 Sparks, NV 89431

750 Royal Oak Dr., Suite 100 Monrovia, California, 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227)

Alpha Analytical, Inc.

QC Ref # 627102 - Bromate by UV/VIS 317

201111100500

MW-2

201111100503

MW-4

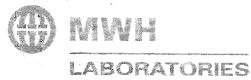
201111100504

EX-1

QC Ref # 627278 - Bromate by UV/VIS 317

201111100502

MW-3


Analysis Date: 11/14/2011

Analyzed by: TLH Analyzed by: TLH

Analyzed by: TLH

Analysis Date: 11/15/2011

Analyzed by: TLH

750 Royal Oak Dr., Suite 100 Monrovia, California, 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227) Laboratory QC Report: 381055

Alpha Analytical, Inc.

QC Type	Analyte	Native	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPDLimit (%)	RPD%
QC Ref# 627102 - Bro	omate by UV/VIS 317 by EPA 317				А	nalysis Da	ate: 11/14/20	011	
LCS1	Bromate by UV/VIS		10	9.42	ug/L	94	(90-110)		
LCS2	Bromate by UV/VIS		10	9.48	ug/L	95	(90-110)	20	0.64
MBLK	Bromate by UV/VIS			<1	ug/L				
MRL_CHK	Bromate by UV/VIS		1.0	0.869	ug/L	87	(75-125)		
MS_201111110205	Bromate by UV/VIS	2.3	5.0	7.16	ug/L	96	(75-125)		
MS_201111120047	Bromate by UV/VIS	1.8	5.0	6.87	ug/L	102	(75-125)		
MSD_201111110205	Bromate by UV/VIS	2.3	5.0	7.41	ug/L	101	(75-125)	15	3.4
MSD_201111120047	Bromate by UV/VIS	1.8	5.0	6.61	ug/L	97	(75-125)	15	3.9
QC Ref# 627278 - Bro	omate by UV/VIS 317 by EPA 317				Α	nalysis Da	ate: 11/15/20)11	
LCS1	Bromate by UV/VIS		10	10.5	ug/L	105	(90-110)		
LCS2	Bromate by UV/VIS		10	10.4	ug/L	104	(90-110)	20	0.96
MBLK	Bromate by UV/VIS			<1	ug/L		, ,		
MRL_CHK	Bromate by UV/VIS		1.0	1.03	ug/L	103	(75-125)		
MS_201111140020	Bromate by UV/VIS	ND	5.0	5.41	ug/L	108	(75-125)		
MS_201111150127	Bromate by UV/VIS	ND	5.0	5.12	ug/L	102	(75-125)		
MSD_201111140020	Bromate by UV/VIS	ND	5.0	5.27	ug/L	105	(75-125)	15	2.6
MSD_201111150127	Bromate by UV/VIS	ND	5.0	5.2	ug/L	104	(75-125)	15	1.6

⁽S) Indicates surrogate compound.

⁽I) Indicates internal standard compound.

Billing	Information
---------	-------------

Suite 550

Client's COC #: 56858

Stratus Environmental

3330 Cameron Park Drive

Cameron Park, CA 95682-8861

Client:

PO:

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

Report Attention Phone Number EMail Address

Steve Carter (530) 676-6008 x scarter@stratusinc.net

EDD Required: Yes

Sampled by : C. Hill

Cooler Temp Samples Received

0 °C 09-Nov-11

WorkOrder: STR11110905

Report Due By: 5:00 PM On: 17-Nov-11

Date Printed
10-Nov-11

Page: 1 of 2

QC Level: S3 = Final Rpt, MBLK, LCS, MS/MSD With Surrogates

Job: Olympic Station

61t	Client Sample ID														
Alpha Sample ID			Collection x Date	No. of Alpha		TAT	317_W	3500FE_2O S_W	3500FE_3IC _W	METALS_A Q	METALS_C R6_SUB_W	METALS_C R6DS_SUB _W	METALS_D S	PHOSPHOR US_W	Sample Remarks
STR11110905-01A	MW-2	AQ	11/09/11 06:05	13	2	5	Bromate (Sub to MWH)	FE+2	FE+3	Special List	Cr6+ by 7199	Dissolved CR6+ by 7199	Fe	Total	The surface delicate and administration of the surface and administration
STR11110905-02A	MW-3	AQ	11/09/11 06:30	13	2	5	Bromate (Sub to MWH)	FE+2	FE+3	Special List	Cr6+ by 7199	Dissolved CR6+ by 7199	Fe	Total	
STR11110905-03A	MW-4	AQ	11/09/11 07:25	13	2	5	Bromate (Sub to MWH)	FE+2	FE+3	Special List	Cr6+ by 7199	Dissolved CR6+ by 7199	Fe	Total	***************************************
STR11110905-04A	EX-1	AQ	11/09/11 07:05	13	2	5	Bromate (Sub to MWH)	FE+2	FE+3	Special List	Cr6+ by 7199	Dissolved CR6+ by	Fe	Total	

Comments:

Chain prelogged 11/09/11 in order for Sac office to sub Total and Dissolved Cr6+ by 7199 to CLS and Bromate to MWH. Remaining samples received on 11/10/11. Security seals intact. Frozen ice. TOC pH=2.:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other) Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

Billing	Inform	ation
---------	--------	-------

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

EMail Address

scarter@stratusinc.net

Phone Number

(530) 676-6008 x

CA

Page: 2 of 2

WorkOrder: STR11110905

Report Due By: 5:00 PM On: 17-Nov-11

Client:

Stratus Environmental 3330 Cameron Park Drive Suite 550

Cameron Park, CA 95682-8861

EDD Required: Yes

Sampled by : C. Hill

PO:

Client's COC #: 56858

lob: Olympic Station

Report Attention

Steve Carter

Cooler Temp

0°C

Samples Received 09-Nov-11 Date Printed
10-Nov-11

QC Level: S3

= Final Rpt, MBLK, LCS, MS/MSD With Surrogates

Alpha	Client	Collection	No. of	Bottles	•	TOC_W	TPH/P_W	VOC_W	
Sample ID	Sample ID	Matrix Date	Alpha	Sub	TAT				Sample Remarks
STR11110905-01A	MW-2	AQ 11/09/11 06:05	13	2	5	TOC	GAS-C	BTEX/OXY/ 1,2-DCA_C	
STR11110905-02A	MW-3	AQ 11/09/11 06:30	13	2	5	тос	GAS-C	BTEX/OXY/ 1,2-DCA_C	
STR11110905-03A	MW-4	AQ 11/09/11 07:25	13	2	5	TOC	GAS-C	BTEX/OXY/ 1,2-DCA_C	
STR11110905-04A	EX-1	AQ 11/09/11 07:05	13	2	5	TOC	GAS-C	BTEX/OXY/ 1,2-DCA_C	

Comments:

Chain prelogged 11/09/11 in order for Sac office to sub Total and Dissolved Cr6+ by 7199 to CLS and Bromate to MWH. Remaining samples received on 11/10/11. Security seals intact. Frozen ice. TOC pH=2.:

Logged in by:

Signature

Charyl Gamble

Company

Alpha Analytical, Inc.

Date/Time

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report.

Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

Attn: _S	722	212	Frak 5 Camera	PL 0	2	CGY.	255 Glenda Sparks, Ne	Analytica ale Avenue, S evada 89431- 75) 355-1044 355-0406	Suite 21 -5778	Sar AZ ID	npies 	COIIE CA OR	CTGO	Prom NY _ OTHE	: WNI	WA	Pag	DOD \$	Site of	<u> </u>
City, Stat	e, Zip 🕻	57AL	even Pt2 126 6004 Fax 1	530676	6005						/	Αı	nalys	es Red	quire	ed		-1- 1/- <i>K</i> -		
			Dlympic .					Job Name				3	13		Jan Jan	The second		ata Valid vel: III		
Address			7 July Co	7,00000		Report A	Attention / Project	t Manager		<i>-</i>	Cher.	120cg		2/2/	H.	d ,	,			
City, Sta	te, Zip		San Lov	enzo	Email:					=/		Desir.		180	100	222	Global	EDF? YES	NO	
Time Sampled	Date Sampled	Matrix* See Key	P.O. # Lab ID Number	Office (Use Only)	Phone:	Sample Descriptio		TAT	Field # Contain		120	Diss	12	经过	10 to	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/ ID# F	REMAR		
	119	Below	STR1110905.		MWZ			SYD	15	一人	X	7	4	1	1	1	m	etul	<u> </u>	
0605	1	1	Matternance	-02A	mu 3				15	<u> </u>	K	اح	X	1	2	I De	Be, C Cu, F Mn,	a, Cd	Cr.C	.0
0130 725 0705				-03A	mn 4			+	/ / / _	٧	1	کر عر	X) 	7	ا علی	Ma A	n. a) 1Mg	,
2005			V	-04A	EX-1				1.7		 						Zn	'') ''	7	
				, settem :														bto 1		
			The state of the s	e same							 							1 mu		
							W				-						<u> </u>	110	, , 0	
		-																		
ADDI	TION	L IAL II	NSTRUCTIONS	3:																
									-											
I, (field	samp	ler), atte	est to the validity and	1 Sthepticity	of this sample	e. I am aware that	tampering with	or intentiona	ally mislabeling	the samp	le loca	tion, da	te or tii	me of co	ollecti	on is c	considere	d fraud a	and may	be
groun Beling	ds for le	egal act	est to the validity and ion. Sampled By:			Rec	eived to: (Signatu	re/Affiliation)						Da	ate:	9.1		Time:	1:05	,
			ure/Affiliation)	4			eived by: (Signati			Alo	1			Da	ate:/	oli		Time:	30	
Relinqu	ished by	r: (Signat	ure/Affiliation)			Rec	eived by: (Signatu					**************************************			ate:			Time:		
						l				1 4	0.0.1	т	Todlo	, .	2 Brac		P-Placti	ic (T-Other	

*Key: AQ - Aqueous SO - Soil WA - Waste OT - Other AR - Air **: L-Liter V-Voa S-Soil Jar O-Orbo 1-Tediar B-Brass P-Plastic OT-Other NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this coc. The liability of the laboratory is limited to the amount paid for the report.