RECEIVED

4:37 pm, Oct 08, 2012

Alameda County Environmental Health

Mr. Mark Detterman Alameda County Environmental Health Care Services Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Re: Haber Oil Product

1401 Grand Avenue, San Leandro, CA

ACEHD Case # RO0000370, GeoTracker ID T0600101827

Dear Mr. Detterman:

I declare, under penalty of perjury, that the information and or recommendations contained in the attached document are true and correct to the best of my knowledge.

Sincerely,

Mohan Chopra

September 21, 2012 Project No. 2120-1401-01

Mr. Mark Detterman Alameda County Environmental Health Department 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (via Geotracker & Alameda County FTP site)

Re: Well Installation and Destruction and Additional Subsurface Site Assessment Report, Former Haber Oil Products Service Station Facility, 1401 Grand Avenue, San Leandro, California (ACEHD Case No. RO0000370)

Dear Mr. Detterman:

Stratus Environmental, Inc. (Stratus), on behalf of Mr. Mohan Chopra, is submitting this Well Installation and Destruction and Additional Subsurface Site Assessment Report (Report) for the former Haber Oil Products service station facility, located at 1401 Grand Avenue, San Leandro, California (see Figures 1 through 3). Alameda County Environmental Health Department (ACEHD) currently oversees an environmental case at the subject site relating to previously documented petroleum hydrocarbon and fuel oxygenate impact to soil and groundwater. At the request of ACEHD, Stratus prepared and submitted a document titled Work Plan for Additional Site Assessment (Work Plan) on behalf of the subject site (dated April 2, 2012). The Work Plan was prepared to address data gaps identified by Stratus in a January 25, 2012 Site Conceptual Model prepared for the subject property. After reviewing the content of the Work Plan, ACEHD issued a letter, dated May 24, 2012, that approved (with comments) a majority of the scope of work proposed by Stratus.

Stratus recently implemented the approved work scope, which included performing an underground utility survey near the site, advancement of two cone penetrometer test (CPT) borings and one hollow stem auger soil boring, installation of four groundwater monitoring wells and two vapor extraction wells, performance of soil and groundwater sampling, and destruction of two groundwater monitoring wells with excessively lengthy well screen intervals. This report documents the recent work completed at the site, and presents findings associated with implementation of these activities. Stratus also researched the installation of water supply wells within a ½ mile radius of the site, and information pertaining to these nearby water supply wells is included in this report.

SITE DESCRIPTION

The former Haber Oil Products facility is an active service station facility located at the intersection of Joaquin Avenue and Grand Avenue is San Leandro, California. The property is currently developed as a mini-mart and automotive service station. The station building is situated along the southern edge of the property, and three fuel dispensers are installed along the western side of the property. Gasoline is stored in one 8,000 gallon and one 12,000 gallon underground storage tank (UST), which are installed in the center of the property adjacent to the dispenser islands (Figure 2). Except for the planters, the entire site is covered by either the station building or concrete paving.

The site is bounded to the west and northwest by Grand Avenue, and to the east by Interstate 580. The property immediately to the south has been developed as an apartment complex. The property immediately to the west (across Grand Avenue) is not currently developed. Properties north of the site are developed for retail use, properties to the west and south are developed for residential use, and properties to the east (across the freeway) are developed for residential use. Except as noted above, virtually all property in the general site vicinity is developed for residential or commercial use.

PREVIOUS ENVIRONMENTAL WORK

This section summarizes environmental activities performed at the site as part of the investigation into hydrocarbon impact to soil and groundwater due to leaking USTs. The historical summary presented below is based on documents available on the ACEHD website. Locations of soil borings and groundwater monitoring wells are shown on Figure 2. Table 1 presents a summary of historical drilling and well construction details.

April 1991 – Aegis Environmental, Inc. (Aegis) drilled four soil borings (B-1 through B-4) to 41 feet below ground surface (bgs) on April 24, 1991. Total Petroleum Hydrocarbons as gasoline (TPHg) and benzene, toluene, ethylbenzene, and xylenes (BTEX) were reported in soil samples collected between 25.5 and 36 feet bgs. The highest TPHg (66 milligrams/kilogram [mg/kg]) and benzene (0.94 mg/kg) concentrations were reported in the sample from boring B-2 collected at 25.5 feet bgs.

April 1992 – Aegis drilled three angled soil borings (B-5 through B-7) on April 14 and 15, 1992. These borings were angled between 26 and 28 degrees from vertical to collect soil samples beneath the USTs. These borings reached a maximum vertical depth of 49 feet bgs. The highest concentrations of TPHg (510 to 4,000 mg/kg) and benzene (0.94 to 11 mg/kg) in each of these borings was reported in samples collected at approximately 40 to 45 feet bgs.

September 1992 – Aegis installed groundwater monitoring wells MW-1 through MW-5 to depths between 53 and 56 feet bgs on September 15 to 18, 1992. TPHg was reported only in the soil samples from boring MW-2 at 29.5 feet bgs (11 mg/kg) and boring MW-4 at 29.5 feet bgs (1.9 mg/kg). Benzene was reported in at least one soil sample from each boring (0.0062 to 0.27 mg/kg), except MW-5, with the highest benzene concentration reported in the sample collected from MW-4 at 29.5 feet bgs. Select soil samples from below the water table were also analyzed for permeability and grain size distribution. The initial monitoring and sampling of these wells was performed on September 29, 1992. Free product (0.02 feet thick) was reported in well MW-3. TPHg concentrations in wells MW-1, MW-2, MW-4, and MW-5 ranged from 60 to 20,000 micrograms per liter (μg/L), and benzene concentrations ranged from 10 to 4,600 μg/L. The highest TPHg and benzene concentrations were reported in well MW-2.

October 1992 – On October 7, 1992, short-duration soil vapor extraction (SVE) tests were performed, using wells MW-1 and MW-2 for extraction. Depth to water (DTW) was not measured in the well network during the SVE test; during the groundwater sampling event on September 29, 1992, DTW was measured between 41.55 and 44.60 feet bgs.

Soil vapors were extracted from well MW-1 for 2.25 hours under a vacuum of 31.5 to 33 inches water column, producing a calculated airflow of 63 to 91.6 cubic feet per minute (cfm). Influent Total Petroleum Hydrocarbon (TPH) concentrations (measured with a flame ionization detector [FID]) decreased from 11,500 parts per million (ppm) to 8,750 ppm. Calculated extraction rates started at 13.8 pounds per hour (lb/hr) and decreased to 10.6 lb/hr. Measureable vacuum influence was observed at wells MW-2 through MW-5. An influent air sample collected at the end of this test period contained 65,000 ppm TPH and 1,600 ppm benzene.

Soil vapors were extracted from well MW-2 for 2.5 hours under a vacuum of 6 to 7 inches water column, producing a calculated airflow of 48 to 51.2 cfm. Influent soil vapor concentrations (measured with a FID) decreased from 15,250 ppm to 9,250 ppm TPH. Calculated extraction rates started at 9.7 lb/hr and decreased to 6.2 lb/hr. Measureable vacuum influence was observed at wells MW-1, MW-3, and MW-4. An influent air sample collected at the end of this test period contained 60,000 ppm TPH and 2,500 ppm benzene.

Based on the data collected during the SVE test, an estimated radius of influence (ROI) of at least 38 to more than 50 feet was produced.

Rising head slug tests were also performed on October 7, 1992 using wells MW-1, MW-2, and MW-4.

<u>June 1995</u> – P&D Environmental, Inc. (P&D) installed offsite wells MW-6, MW-7, and MW-8 to 50 feet bgs. TPHg and BTEX were not reported in any of the soil samples collected from these well borings.

May 1997 – Bernabe & Brinker, Inc. (B&B) removed one 6,000 gallon gasoline UST, two 7,500 gallon gasoline USTs, one 500 gallon waste oil UST, and associated dispensers and product piping on May 5 and 6, 1997. A 4-inch diameter hole was reported in the bottom of the waste oil UST, and a small hole was observed in the top of the 6,000 gallon gasoline UST. Six soil samples were collected from the UST pit (TP-1 through TP-6) and four soil samples (DP-1 through DP-4) were collected from beneath the dispensers. TPHg (4.5 to 3,400 mg/kg) and benzene (0.012 to 2.8 mg/kg) were reported in eight of these soil samples, and methyl tertiary butyl ether (MTBE; 0.12 to 41 mg/kg) was reported in seven of the samples. Total Petroleum Hydrocarbons as diesel (TPHd; 300 mg/kg), Total Recoverable Petroleum Hydrocarbons (TRPH; 2,600 mg/kg), tetrachloroethene (PCE, 0.029 mg/kg), 1,1,1-trichloroethane (0.026 mg/kg), naphthalene (0.60 mg/kg), and 2-methylnaphthalene (0.65 mg/kg) were reported in sample TP-6, collected beneath the waste oil UST.

To remove hydrocarbon-impacted soil, the UST pit was excavated to depths up to approximately 17.5 feet bgs, and the area beneath the dispensers was deepened to approximately 5.5 feet bgs on May 10, 1997. Ten confirmation soil samples were collected from the furthest vertical and lateral extent of the UST excavation, and two confirmation soil samples were collected from the base of the excavation beneath the dispensers. The two samples with the highest residual hydrocarbon concentrations were collected at 16.5 feet bgs (TP-10; 4,200 mg/kg TPHg) and 12 feet bgs (TP-14; 3,200 mg/kg TPHg).

Approximately 800 cubic yards (yd³) of soil and backfill material were excavated during UST removal activities. Excavated material was removed from the site for disposal. The excavations were backfilled with pea gravel as one 8,000 gallon UST and one 12,000 gallon UST and associated product piping and dispensers were installed.

<u>December 1998</u> – P&D advanced one direct push boring to 41 feet bgs on December 4, 1998. Soil samples from this boring were not submitted for chemical analysis, but one grab groundwater sample was collected from the boring. This groundwater sample did not contain reportable concentrations of TPHg or MTBE, but did contain benzene $(0.54 \ \mu g/L)$.

Groundwater Monitoring and Sampling

Groundwater monitoring and sampling was first performed at the site in September 1992. A total of 32 groundwater monitoring and sampling events were performed between 1992

and the second quarter 2012 (most recent groundwater sampling event). Results of well sampling have indicated that TPHg/gasoline range organics (GRO), BTEX, naphthalene, MTBE, tertiary butyl alcohol (TBA), and several VOCs (most notably n-propyl benzene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene) impact groundwater beneath the site. The highest concentrations of most petroleum hydrocarbons and VOCs have historically been detected near or immediately downgradient of the former UST areas, near former well MW-2 (see Figure 2). Historical groundwater monitoring data was used in the development of the scope of work presented in the *Work Plan*.

SCOPE OF WORK

The objectives of the recently completed site assessment work were to:

- Further investigate the lateral and vertical extent of petroleum hydrocarbon impact to groundwater.
- Destroy and replace groundwater monitoring wells with excessively long well screens which could potentially function as conduits for vertical contaminant transport.
- Additionally assess geologic conditions beneath the site, in particular below 55 feet bgs, which is deeper than work performed during previous subsurface investigations.
- Identify the location of underground utility corridors near the site.
- Identify the locations of water supply wells installed near the site.
- Install vapor extraction wells for future remedial efforts or pilot testing.

To accomplish these objectives, Stratus implemented the following work activities:

- Utilized the services of an underground utility locator to identify the locations of underground utilities in the site vicinity.
- Advanced two (2) CPT borings (CPT-1 and CPT-2) to depths of 48 and 90 feet bgs, respectively.
- Collected soil and groundwater samples from borings situated adjacent to borings CPT-1 and CPT-2.
- Destroyed wells MW-1 and MW-2 by pressure grouting.
- Drilled and installed replacement groundwater monitoring wells MW-1R and MW-2R using hollow stem augers.

- Drilled and installed two offsite groundwater monitoring wells (MW-9 and MW-10) using hollow stem augers.
- Drilled and installed two vapor extraction wells (VE-1 and VE-2) using hollow stem augers.
- Advanced one onsite soil boring (B-11) using the direct push method.
- Developed and sampled wells MW-1R, MW-2R, MW-9, and MW-10.
- Updated the monitoring well survey for the subject site.
- Performed a records search and field reconnaissance for water supply wells in the site vicinity.

WATER SUPPLY WELL SURVEY

Stratus reviewed well completion records provided by the Department of Water Resources (DWR) and Alameda County Public Works Agency (ACPWA) in order to identify water wells installed within a ¼ mile (1,320 foot) radius of the site. Based on the information available from these agencies, it appears as though three water wells were installed within a ¼ mile radius of the site; the approximate locations of these wells are depicted on Figure 4. One well (map ID #1) was installed at 1400 Morgan Avenue, approximately 600 to 700 feet west of the site. The other two wells (Map ID #2 and #3) were installed approximately 1,300 to 1,400 feet south-southwest and north-northwest of the site, respectively.

Given the locations of these three wells, and our understanding of the subsurface conditions, it appears unlikely that Map ID wells 2 and 3 could be threatened from contaminants originating from the site. The well located at 1400 Morgan Avenue appears to be hydraulically downgradient of the subject property. However, since the 1400 Morgan Avenue well is at least 600 feet from the site, we believe that it is unlikely that site contaminants threaten this well at the present time.

Stratus inspected the areas where all three wells were reportedly installed; however, none of the wells could be visually identified from a general field reconnaissance of the properties where the wells were reportedly drilled.

Due to the confidential nature of DWR well completion logs, Stratus has not provided specific information regarding the wells in this report (as it has been uploaded to both State of California and Alameda County websites that can be accessed by the general public). However, well completion data will be provided to ACEHD upon request.

FIELD ACTIVITIES

Prior to initiating site assessment activities, a drilling permit was obtained from ACPWA and an encroachment permit was secured from the City of San Leandro. Underground Service Alert, the current service station operator, the City of San Leandro, ACPWA, and ACEHD were notified 48 hours prior to beginning work activities. All work was conducted under the direct supervision of a State of California Registered Professional Geologist. A generalized description of the field practices and procedures utilized during this investigation are described in Appendix A. Copies of the drilling permit and encroachment permit are provided in Appendix B.

Underground Utility Locating

Before initiating drilling and CPT boring work, a Stratus representative was onsite with a representative of OHJ Subsurface, Inc. in order to identify the locations of underground utilities in the site vicinity. The utility locating was performed before the subsurface investigation in order to assist in minimizing potential conflicts of the drilling locations with underground improvements. Figure 5 illustrates the approximate locations of known underground utilities in the site vicinity.

In the May 24, 2012 letter, ACEHD mentions the possibility that underground utility corridors may act as preferential conduits for migration of contaminants. Evaluating the possibility that contaminants may be present near utility corridors was outside of the scope of work completed during this phase of investigation, as no soil vapor samples or under-utility trench soil samples were collected. In the May 24, 2012 letter, ACEHD directed Stratus to postpone soil vapor sampling work that was proposed in the *Work Plan*. If utility trench soil vapor sampling is deemed necessary in the future by ACEHD, Stratus would likely incorporate this work with soil vapor sampling work proposed for other areas of the site (around the perimeter of the station building foundation to assess indoor air exposure risk).

CPT Investigation

A Stratus geologist was on-site to oversee Gregg Drilling and Testing, Inc. (GD&T, C-57 #485165) of Martinez, California, complete CPT testing and direct push soil and groundwater sampling on June 28 and 29, 2012. The CPT method consists of advancing a cone-tipped cylindrical probe (1.7 inches in diameter) into the ground while simultaneously measuring the resistance to penetration. The CPT method estimates soil lithology by comparing the force (cone bearing pressure) required to advance the probe (Q_t) to the friction ratio (R_f) [R_f equals sleeve friction (F_s) divided by the probe tip load times the penetration pore pressure (U_d)]. Graphical diagrams illustrating CPT interpretations of soil types are presented in Appendix C. Computer generated CPT logs were plotted in the field

to provide a graphical log of subsurface soil lithology. CPT tests were performed in accordance with American Society of Testing and Materials (ASTM) Method D3441. Information regarding the CPT profiling technique and equipment from Gregg In-Situ, Inc. is included in Appendix C. The locations of the CPT borings are included on Figure 2. GD&T was unable to advance the CPT-1 profiling boring beyond 48 feet bgs due to tight soil conditions. Boring CPT-2 was advanced to 90 feet bgs, as proposed in the April 2012 *Work Plan*. Following advancement to total depth, each borehole was grouted to surface grade.

Soil and groundwater samples were collected from separate borings, directly adjacent to borings CPT-1 and CPT-2. The water samples were collected using a HydropunchTM sampler, and soil samples were collected using a piston sampler equipped with two 6-inch length by 1.25-inch width stainless steel sleeves. The water samples were collected by pushing the HydropunchTM sampler, with 2-inch diameter steel rods, to the base of the desired sampling interval. The CPT operator subsequently pulled up on the steel rods approximately 3 feet, exposing a poly-vinyl chloride (PVC) screen at the desired sampling interval. The groundwater sample was collected by lowering a metal bailer within the steel rods. Groundwater was collected in the bailer and placed in appropriately preserved glass sample containers (voas). Soil samples were collected by driving the piston sampler into native soil at the desired 12-inch length sampling interval. Illustrations of the HydropunchTM sampler and piston sampler are also provided in Appendix C.

Following collection, the soil and groundwater samples were placed in an ice-chilled cooler. Each sample was appropriately labeled and identified on a chain-of-custody form. Soil and groundwater sampling intervals at the CPT-1 and CPT-2 locations are documented on sampling logs that are provided in Appendix C. The sampling logs also provide a description of the soil types observed in each sample; the Unified Soil Classification System was used to describe each soil sample. The CPT profiling logs and sampling logs have been uploaded to the State of California's Geotracker website; confirmation sheets documenting uploading of these boring/sampling logs are provided in Appendix H.

Soil Boring and Well Installation

Soil Borings

A Stratus geologist was onsite to oversee GD&T complete the drilling activities between July 9 and 12, 2012. The soil and well borings were advanced using a limited access hollow stem auger drilling rig or truck mounted drill rig, equipped with 8-inch or 10-inch diameter hollow stem augers, as appropriate. Six of the seven borings were converted to groundwater monitoring or vapor extraction wells, as described below. After advancement

to total depth, boring B-11 was backfilled to surface grade with neat cement. The approximate locations of wells VE-1, VE-2, MW-1R, MW-2R, MW-9, and MW-10, and boring B-11 are depicted on Figure 2. Details regarding the construction of the six wells are included on Table 1.

The initial 5 feet of the well borings were advanced with hand tools to reduce the possibility of damaging underground utilities. Soil samples were collected from boreholes MW-9 and MW-10 using a California-type split-spoon sampler equipped with three precleaned brass tubes. Soil samples were collected from the onsite borings (MW-1R, MW-2R, B-11, VE-1, and VE-2) using 4-foot length by 1.5-inch diameter or 5-foot length by 2.5-inch diameter acetate liners installed within a direct push coring device. The ends of the brass sleeves and plastic liners (cut to approximately 6-inch length) were lined with Teflon™ sheets, capped, and sealed. Each sample was labeled, placed in a resealable plastic bag, and stored in an ice-chilled cooler. Strict chain-of-custody procedures were followed from the time the samples were collected until the time the samples were relinquished to the laboratory. Soils were classified onsite using the Unified Soil Classification System. Boring logs detailing soil and rock lithologies encountered during this investigation are included in Appendix D. The boring logs were also uploaded to Geotracker (GeoBore); confirmation sheets documenting uploading of these boring logs are provided in Appendix H.

Additional soil from each sampled interval was placed and sealed in plastic bags to allow the accumulation of volatile organic compound (VOC) vapors within the airspace in the bags. A portable photoionization detector (PID) was used to measure VOC concentrations from each sample in parts per million by volume (ppmv). PID results are included on the boring logs presented in Appendix D. PID concentrations and soil types were evaluated prior to submitting soil samples for chemical analysis.

Vapor Extraction Well Installation

Wells VE-1 and VE-2 were constructed through 8-inch diameter hollow stem augers using 2-inch diameter schedule 40 PVC well casing and 15 feet of 0.02-inch diameter well screen, extending from approximately 15 to 30 feet bgs. A filter pack of #3 sand was placed in the annular space around the well screen from the bottom of the borehole to approximately 2 feet above the top of the well screen. Approximately 2 feet of bentonite was placed on top of the filter pack and hydrated with clean water to provide a transition seal for the well. The remaining annular space in the borehole was backfilled with neat cement. A traffic rated vault box was placed over the well, and a watertight locking cap was placed on the top of the well casing. DWR well completion forms for wells VE-1 and VE-2 were completed and submitted.

Monitoring Well Installation

Wells MW-1R, MW-9, and MW-10 were constructed through 8-inch diameter hollow stem augers using 2-inch diameter schedule 40 PVC well casing and well MW-2R was constructed through 10-inch diameter hollow stem augers using 4-inch diameter schedule 40 PVC well casing. Each well was constructed using 10-feet of factory slotted well screen; wells MW-1R and MW-2R were screened from approximately 34 to 44 feet bgs, well MW-9 was screened from approximately 37 to 47 feet bgs, and well MW-10 was screened from approximately 35 to 45 feet bgs. A filter pack of #3 sand was placed in the annular space around the well screen from the bottom of the borehole to approximately 2 feet above the top of the well screen. Approximately 2 feet of bentonite was placed on top of the filter pack and hydrated with clean water to provide a transition seal for the well. The remaining annular space in the borehole was backfilled with neat cement. A traffic rated vault box was placed over each well, and a watertight locking cap was placed on the top of the well casing. DWR well completion forms were prepared and submitted for wells MW-1R, MW-2R, MW-9, and MW-10.

Monitoring Well Destruction

GD&T destroyed wells MW-1 and MW-2 on July 12, 2012. Both wells were pressure grouted with neat cement. The upper five feet of well MW-2 was also overdrilled with a hollow stem auger. Due to the close proximity of a UST, the upper five feet of well MW-1 was not overdrilled. The traffic rated vault covers of wells MW-1 and MW-2 were removed after destruction and the ground surface was patched to match the surrounding concrete driving surface. DWR well destruction notices were prepared and submitted for wells MW-1 and MW-2.

Well Development and Sampling

Stratus personnel developed the newly installed monitoring wells on July 24, 2012, by surging and bailing. Groundwater pumping was also used in the development of 4-inch diameter well MW-2R. Development was completed until the extracted groundwater appeared free of suspended sediment, or bailed/pumped dry. Stratus returned to the site on August 9, 2012, to sample newly installed wells MW-9, MW-10, MW-1R, and MW-2R. Following purging, a sample of the groundwater was collected using a disposable bailer, transferred to laboratory supplied containers, labeled, placed in an ice-chilled cooler, and identified on a chain-of-custody form. Field data sheets documenting the well development and sampling events are presented in Appendix E.

Surveying

Morrow Surveying, Inc. of West Sacramento, California, surveyed the elevations and locations of the newly constructed wells, and borings CPT-1, CPT-2, and B-11, under the direction of a State of California professional land surveyor (P.L.S. No. 5161). Well elevations were established to the nearest 0.01 vertical feet and tied to a previous survey performed at the site. Latitudes and longitudes of all wells were established using the Global Positioning System (GPS). California State Plane Coordinates, latitudes and longitudes of the wells, and well elevations are included on the surveyor's map presented in Appendix F. It should be noted that at the time of the well survey, Morrow Surveying personnel were unable to remove the well cap situated on top of well MW-10; thus the reported well elevation is for the top of the well cap, and not the top of the well casing (as was done for the other wells). This will be corrected during the fourth quarter 2012. Well survey data was forwarded to the California State Water Resources Control Board for inclusion in the Geotracker database (see Appendix H for documentation).

Waste Management

Soil and wastewater generated during the investigation were containerized in steel drums and stored onsite pending disposal. A sample of the soil cuttings was collected and chemically analyzed in order to determine an appropriate disposal facility for this waste material. Integrated Wastestream Management of San Jose transported the drums offsite for proper disposal in August 2012. Waste disposal certificates will be forwarded to ACEHD upon receipt.

Analytical Methods

Soil and groundwater samples were forwarded to Alpha Analytical, Inc., a California state-certified laboratory (ELAP #2019), for chemical analysis under strict chain-of-custody procedures. The samples were analyzed for GRO using USEPA Method SW8015B, and for fuel oxygenates using United States Environmental Protection Agency (USEPA) Method SW8260B. Soil samples collected from boring B-11, and soil and groundwater samples collected from boring CPT-1, were also analyzed for diesel and oil range organics (DRO and ORO, with silica gel treatment) using USEPA Method SW8015B, and for VOCs using USEPA Method SW8260B. The groundwater samples collected from wells MW-9, MW-10, MW-1R, MW-2R, and CPT-2 were also analyzed for VOCs using USEPA Method SW8260B. A summary of soil analytical results are presented in Table 2 and a summary of groundwater analytical results are provided in Table 3. Certified analytical reports and chain-of-custody documentation are provided in Appendix G. The certified analytical reports prepared by Alpha Analytical have been uploaded to the State of California's Geotracker database; upload confirmation documentation for these lab results are included in Appendix H.

Findings

Site Geology and Hydrogeology

Graymer¹ describes the sedimentary deposit upon which the site is situated as loose, moderately sorted to well sorted sandy or clayey silt, grading to sandy or silty clay, originating as levee deposits bordering stream channels. Other sediments in the site vicinity are described as medium dense to dense, gravely sand or sandy gravel that grades upwards to sandy or silty clay, originating as alluvial fan and fluvial deposits. Based on the Graymer map, it appears that the subject site is located immediately west of the Hayward Fault, near where the East Bay Plain meets the San Leandro Hills.

Based on a review of boring logs prepared during historical site work, and the findings of work during this phase of investigation, a predominantly fine-grained sedimentary deposit overlies a coarser-grained sedimentary deposit in the shallow subsurface. The fine-grained sediments are described predominantly as silty clay, silt, clayey silt, and sandy silt from below the paved ground surface to approximately 30 to 35 feet bgs. At offsite locations MW-6, MW-7, MW-10, and CPT-2, significant coarse grained soils are interbedded within finer grained strata between 10 and 30 feet bgs. Coarser grained soils (silty sand, clayey sand, sand, silty gravel, clayey gravel) are predominately encountered between approximately 30 and 50 feet bgs, although finer grained soils are interbedded within these coarser grained strata. Groundwater is first encountered within these coarser grained soils. Based on data collected from borings CPT-1 and CPT-2, sandy clay strata, approximately 7 to 12 feet in thickness, is present between the depths of approximately 48 and 65 feet bgs. The lateral extent of this sandy clay interval has not been thoroughly assessed; however, these strata appear to provide some hydraulic segregation between the uppermost water bearing strata and deeper saturated soils, based on our interpretation of available data. Samples collected between 70 and 90 feet bgs at borings CPT-1 and CPT-2 were logged by Stratus personnel as clayey sand, and these soils may represent the second water bearing interval at the site; further study regarding the thickness and lateral extent of the sandy clay strata located above the clayey sand soils would be needed to assess whether the clayey sand represents the second water bearing interval at the site. A geologic cross section for the site that includes data collected during this phase of investigation is provided as Figure 6; the surface trace for the cross section is depicted on Figure 2.

Depth to groundwater, as measured in the monitoring well network, has fluctuated from approximately 31.6 to 44.6 feet bgs. At the time of the second quarter 2012 groundwater

¹ Geologic map and map database of the Oakland metropolitan area, Alameda, Contra Costa, and San Francisco Counties, California: R.W. Graymer, US Geological Survey Miscellaneous Field Studies MF-2342, version 1.0, dated 2000.

monitoring event, groundwater in the well network was measured between 37.16 and 40.34 feet below top of well casing. Groundwater flow has consistently been calculated to be towards the west-northwest. Groundwater elevations have generally increased at the site since initiation of monitoring in 1992.

Soil Analytical Results

Onsite, no petroleum hydrocarbons, fuel oxygenates, or VOCs were detected in any of the soil samples collected between surface grade and 25 feet bgs, and the highest concentrations of contaminants were typically observed at approximately 30 feet bgs. At boring B-11, GRO and DRO were reported at levels of 8,000 mg/Kg and 140 mg/Kg, respectively, in a soil sample retained from 30 feet bgs (the lab noted that the reported DRO concentration may include contributions from lighter end hydrocarbons). The 30-foot depth soil sample from B-11 was also impacted with ethylbenzene (44 mg/Kg), xylenes (350 mg/Kg), isopropyl benzene (12 mg/Kg), n-propyl benzene (61 mg/Kg), sec-butylbenzene (20 mg/Kg), n-butyl benzene (36 mg/Kg), 1,3,5-trimethylbenzene (170 mg/Kg), 1,2,4-trimethylbenzene (440 mg/Kg), 4-isopropyltoluene (29 mg/Kg), and naphthalene (100 mg/Kg). Significantly lower concentrations of petroleum hydrocarbons and VOCs were observed in the 35-foot depth sample collected from boring B-11 versus the contaminant levels noted at 30-feet bgs. At boring CPT-1, GRO (8.4 mg/Kg), iso-propyl benzene (0.044 mg/Kg), n-propyl benzene (0.23 mg/Kg), sec-butyl benzene (0.065 mg/Kg), and n-butyl benzene (0.12 mg/Kg) were detected in the 30-foot depth sample. No petroleum hydrocarbons, VOCs, or fuel oxygenates were detected in CPT-1 soil samples collected between 40 and 90 feet bgs; given this observation, we believe that the vertical extent of petroleum hydrocarbon impact to soil onsite is adequately assessed.

At borings MW-2R and VE-1, GRO and benzene were detected in soil samples retained from 30 feet bgs at concentrations of 2.3 mg/Kg and 0.0059 mg/Kg, respectively (MW-2R) and 8.2 mg/Kg and 0.015 mg/Kg, respectively (VE-1). MTBE was detected in soil samples collected from boring MW-1R between 30 and 40 feet bgs, at concentrations ranging from 0.15 mg/Kg to 0.79 mg/Kg, from boring MW-2R at 40 feet bgs (0.032 mg/Kg), from boring VE-1 at 30 feet bgs (0.26 mg/Kg), and from boring B-11 at 35 feet bgs (0.012 mg/Kg).

Toluene (0.026 mg/Kg) and total xylenes (0.021 mg/Kg) were reported in a sample collected from offsite boring MW-9 at approximately 11 feet bgs. No petroleum hydrocarbons or fuel oxygenates were detected in soil samples collected from offsite borings CPT-2 or MW-10, or in samples collected from well boring MW-9 between 21 and 45 feet bgs.

Groundwater Analytical Results

Petroleum hydrocarbons, fuel oxygenates, and VOCs were reported in samples collected from onsite wells MW-1R and MW-2R, which were installed in areas previously known to be impacted with the above-mentioned contaminants. GRO and MTBE were reported in the samples collected from both wells MW-1R and MW-2R, at concentrations of 4,000 μ g/L and 63 μ g/L, respectively, at well MW-1R, and 30,000 μ g/L and 340 μ g/L, respectively, in the MW-2R sample. BTEX (benzene at 1,500 μ g/L) were also detected at well MW-2R. In the MW-1R sample, isopropyl benzene (6.6 μ g/L), n-propylbenzene (19 μ g/L), sec-butylbenzene (17 μ g/L), 4-isopropyltoluene (4.4 μ g/L), n-butyl benzene (17 μ g/L), ethylbenzene (4.6 μ g/L), xylenes (1.4 μ g/L), and tertiary amyl methyl ether (TAME ;5.3 μ g/L) were also detected. In the sample collected from well MW-2R, n-propylbenzene (190 μ g/L), 1,3,5 trimethylbenzene (260 μ g/L) 1,2,4 trimethylbenzene (1,300 μ g/L), and naphthalene (220 μ g/L) were detected.

Boring CPT-1 was advanced approximately 12 feet from well MW-2R and generally downgradient of the former UST area. In samples collected from this boring, only MTBE (1.1 μ g/L) and tertiary butyl alcohol (TBA; 100 μ g/L) were detected from groundwater recovered at about 56 feet bgs. In samples collected from about 66, 76, and 80 feet bgs, no petroleum hydrocarbons, fuel oxygenates, or VOCs were detected. Given the results of the CPT-1 samples, it is our opinion that the vertical extent of contaminant impact to groundwater extends to approximately 60 feet bgs and has been adequately assessed at the site.

Northwest (generally downgradient) of the site, concentrations of petroleum hydrocarbons, fuel oxygenates, and VOCs were below laboratory instrument detection levels in samples collected at boring CPT-2 from approximately 48, 58, 68, and 85 feet bgs. At well MW-9, benzene, PCE, and dichloromethane were detected at concentrations of 1.1 μ g/L, 2.7 μ g/L, and 2.4 μ g/L, respectively. In a sample collected from well MW-10, PCE (1.0 μ g/L) and chloroform (1.2 μ g/L) were the only analytes detected during laboratory testing. Based on the findings of the CPT-2 samples, and initial sampling of wells MW-9 and MW-10, we believe that the lateral and vertical extent of impact to groundwater is sufficiently assessed northwest of the site.

SUMMARY

The following summarizes the findings of this phase of investigation:

 Subsurface conditions deeper than approximately 55 feet bgs were first investigated during this phase of work. Sandy clay strata, approximately 7 to 12 feet in thickness between about 48 and 65 feet bgs, appear to provide some hydraulic segregation between the uppermost water bearing strata and deeper saturated soils, based on the available data. Clayey sand soils were observed in samples collected between 70 and 90 feet bgs, and may represent the second water bearing zone at the site.

- At the onsite drilling locations, the highest concentrations of fuel contaminants in soil were observed between approximately 30 and 40 feet bgs, with a maximum GRO concentration of 8,000 mg/Kg detected in a sample collected from boring B-11 at 30 feet bgs.
- At boring CPT-1, relatively low levels of MTBE (1.1 μg/L) and TBA (100 μg/L) were detected in a sample collected from 56 feet bgs. Fuel contaminants were not reported in samples collected from CPT-1 at 66, 76, and 80 feet bgs; given this observation, it is our opinion that the vertical extent of impact to groundwater is adequately assessed, and does not appear to extend to the second water bearing zone.
- Very low levels of benzene (1.1 µg/L), PCE (up to 2.7 µg/L), dichloromethane (2.4 µg/L) and chloroform (1.2 µg/L) were reported in samples collected from offsite wells MW-9 or MW-10; with all other analytes reported below laboratory detection limits in these samples. Given this observation, and that no petroleum hydrocarbons, VOCs, or fuel oxygenates were detected in samples collected at offsite location CPT-2, the vertical and lateral extent of impact northwest (downgradient) of the site appears to be adequately characterized.
- A water supply well appears to have been installed approximately 600 to 700 feet west of the site, at 1400 Morgan Avenue. Given the apparent extent of impact identified during this phase of work, it appears unlikely that this water supply well will be threatened from contaminants originating from the site; however, the current condition and operational status of this well is not known.

DISCUSSION AND RECOMMENDATIONS

Based on the available data, most of the contaminant mass originating from the site remains onsite, or extends a short distance west-northwest of the site beneath Grand Avenue, and has been adequately characterized. Given this condition, Stratus recommends that future project work focus on performing activities, including pilot testing and remediation, as necessary, in order to manage the site's environmental case towards closure.

Pending approval from ACEHD, Stratus will proceed with preparing a work plan to perform an SVE pilot test/remediation event. In addition to utilizing wells VE-1 and VE-2, extracting contaminants from wells screened deeper in the subsurface (approximately 30 to

45 feet bgs) would likely be appropriate for reducing petroleum hydrocarbon mass beneath the site. Groundwater level fluctuations may limit the effectiveness of SVE below about 30 feet bgs at times of seasonally high groundwater levels, and thus the SVE pilot test/remediation event should be performed at times of seasonally low groundwater levels to maximize the effectiveness of this work. Due to the presence of VOCs within the subsurface, in particular near the former waste oil UST, a thermal oxidizer would be needed to perform SVE work. Due to the higher temperatures necessary to properly consume/abate some VOCs, including PCE, to levels required by the Bay Area Air Quality Management District, use of a catalytic oxidizer is not recommended at this site.

In order to verify that that there are no groundwater receptors likely to be impacted from contaminants originating from the site, Stratus recommends contacting the property owner at 1400 Morgan Avenue in order to inquire about the status of this water supply well.

LIMITATIONS

This report was prepared in general accordance with accepted standards of care that existed at the time this work was performed. No other warranty, expressed or implied, is made. Conclusions and recommendations are based on field observations and data obtained from this work and previous investigations. It should be recognized that definition and evaluation of geologic conditions is a difficult and somewhat inexact science. Judgments leading to conclusions and recommendations are generally made with an incomplete knowledge of the subsurface conditions present. More extensive studies may be performed to reduce uncertainties. This report is solely for the use and information of our client unless otherwise noted.

Stephen J. Cartez

Well Installation/Destruction and Subsurface Site Assessment Report Former Haber Oil Products Service Station, San Leandro, California Page 17

Please contact Steve Carter at (530) 676-6008, or via electronic mail at scarter@stratusinc.net, if you have any questions regarding this document or the project in general.

Sincerely,

STRATUS ENVIRONMENTAL, INC.

Scott G. Bittinger, P.G. Project Geologist

Stephen J. Carter, P.G. Project Manager

Attachments:

Table 1 Summary of Drilling and Well Construction Details

Table 2 Soil Analytical Results

Table 3 Groundwater Analytical Results

Figure 1 Site Location Map

Figure 2 Site Plan

Figure 3 Site Vicinity Aerial Map

Figure 4 Water Supply Well Location Map
Figure 5 Underground Utility Location Map
Figure 6 Geologic Cross Section A to A'

Appendix A Field Practices and Pr

Appendix A Field Practices and Procedures

Appendix B Drilling Permit and Encroachment Permit

Appendix C CPT Data and Sampling Logs Appendix D Soil Boring Logs and Well Details

Appendix E Field Data Sheets from Well Development and Sampling

Appendix F Surveyor's Map

Appendix G Certified Analytical Reports and Chain-of-Custody Documentation

Appendix H Geotracker Data Upload Confirmation Sheets

cc: Mr. Mohan Chopra

Table 1 - Summary of Drilling and Well Construction Details

Former Haber Oil Products, 1401 Grand Avenue, San Leandro, CA

Well/ Boring ID	Date	Boring Diameter (in)	Boring Depth (ft bgs)	Casing Diameter (in)	Casing Depth (ft bgs)	Screen Interval (ft bgs)	Slot size (in)	Drilling Method	Consultant	Status
Groundw	ater Monitor	ing Wells								
MW-1	9/15/92	10	53	4	53	15 - 53	0.02	HSA	Aegis	destroyed July 2012
MW-2	9/15/92	10	53	4	53	15 - 53	0.02	HSA	Aegis	destroyed July 2012
MW-3	9/16/92	10	56	4	56	36 -56	0.02	HSA	Aegis	Active
MW-4	9/18/92	10	53.5	4	53.5	33 - 53.5	0.02	HSA	Aegis	Active
MW-5	9/17/92	10	56	4	56	36 - 56	0.02	HSA	Aegis	Active
MW-6	6/15/95	8	50	2	50	35 - 50	0.01	HSA	P&D	Active
MW-7	6/16/95	8	50	2	50	35 - 50	0.01	HSA	P&D	Active
MW-8	6/15/95	8	50	2	50	35 - 50	0.01	HSA	P&D	Active
MW-9	7/9/12	8	48	2	47	37 - 47	0.02	HSA	Stratus	Active
MW-10	7/12/12	8	45	2	45	35 - 45	0.02	HSA	Stratus	Active
MW-1R	7/11/12	8	45	2	44	34 - 44	0.02	HSA	Stratus	Active
MW-2R	7/11/12	10	44	4	44	34 - 44	0.02	HSA	Stratus	Active
Vapor Exti	raction Wells	5								7100,70
VE-1	7/9/12	- 8	30	2	30	15 - 30	0.02	HSA	Stratus	Active
VE-2	7/12/12	8	30	2	30	15 - 30	0.02	HSA	Stratus	Active
Explorator	ry Soil Boring	ic		_		13 30	0.02	ПЭД	Stratus	Active
B-1	4/24/91	<u>8</u>	41					LICA		r
B-2	4/24/91	8	41					HSA	Aegis	Grouted to Surface
B-3	4/24/91	8	41					HSA	Aegis	Grouted to Surface
B-4	4/24/91	8	41					HSA	Aegis	Grouted to Surface
B-5	4/14/92	6	48.8	/Anglo boring	EE E foot law	+ 30° f		HSA	Aegis	Grouted to Surface
B-6	4/15/92	6	48.4			ng at 28° from v	-	HSA	Aegis	Grouted to Surface
В-7	4/15/92					at 28° from ver	•	HSA	Aegis	Grouted to Surface
в-7 В-10	4/13/92 12/4/98	6 1.5	49.4	(Angle poring:	55 feet long	at 26° from ver	tical.)	HSA	Aegis	Grouted to Surface
B-10 B-11			41					DP	P&D	Grouted to Surface
CPT-1	7/9/12 06/29/12	2	38					DP	Stratus	Grouted to Surface
CPT-1		2	48*					CPT	Stratus	Grouted to Surface
CP1-2	06/28/12	2	90*					СРТ	Stratus	Grouted to Surface

Table 1 - Summary of Drilling and Well Construction Details

Former Haber Oil Products, 1401 Grand Avenue, San Leandro, CA

Explanation:

in = inches

ft bgs = feet below ground surface

* = Depth of lithologic profiling boring. Separate soil and groundwater sampling borings were advanced adjacent to CPT borings.

HSA = Hollow-stem augers

CPT = Cone Penetrometer Test

DP = Direct Push

Aegis = Aegis Environmental, Inc.

P&D = P&D Environmental, Inc.

Stratus = Stratus Environmental, Inc.

TABLE 2 SOIL ANALYTICAL RESULTS

Haber Oil Products Facility 1401 Grand Avenue, San Leandro, California

Sample ID	Depth (Feet bgs)	Date Collected	DRO (mg/Kg)	ORO (mg/Kg)	GRO (mg/Kg)	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethyl- benzene (mg/Kg)	Total Xylenes (mg/Kg)	MTBE (mg/Kg)	Fuel oxy's & additives (except MTBE) (mg/Kg)	Iso- propyl benzene (mg/Kg)	n-propyl benzene (mg/Kg)	sec-butyl benzene (mg/Kg)	n-butyl benzene (mg/Kg)	methyl-	benzene		Naphthalend (mg/Kg)
Well Boring S	Samples															*			
Boring MW-1	<u>R</u>																		
MW-1R-10	10	07/09/12	NA	NA	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND	NA	NA	NA	NA	NIA	NIA	27.4	27.
MW-1R-15	15	07/09/12	NA	NA	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA
MW-1R-20	20	07/09/12	NA	NA	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND	NA	NA	NA NA	NA	NA NA	na Na	NA	NA
MW-1R-25	25	07/09/12	NA	NA	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND	NA	NA	NA	NA	NA	NA	NA NA	NA NA
MW-1R-30	30	07/09/12	NA	NA	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	0.15	ND	NA	NA	NA	NA	NA	NA	NA NA	NA NA
MW-1R-35	35	07/09/12	NA	NA	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	0.79	ND	NA	NA	NA	NA	NA	NA	NA NA	NA NA
MW-1R-40	40	07/09/12	NA	NA	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	0.58	ND	NA	NA	NA	NA	NA	NA	NA	NA NA
Boring MW-2	R																	1 17 1	147.5
MW-2R-10	10	07/12/12	NA	NA	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND	NA	NIA	3.7.4	37.	27.			
MW-2R-15	15	07/12/12	NA	NA	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND ND	NA NA	NA NA	NA	NA	NA	NA	NA	NA
MW-2R-20	20	07/12/12	NA	NA	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND	NA NA	NA NA	NA NA	NA	NA	NA	NA .	NA
MW-2R-25	25	07/12/12	NA	NA	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA
MW-2R-30	30	07/12/12	NA	NA	2.3	0.0059	< 0.005	< 0.005	< 0.005	< 0.005	ND	NA	NA	NA	NA NA	NA NA	NA	NA	NA
MW-2R-35	35	07/12/12	NA	NA	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA
MW-2R-40	40	07/12/12	NA	NA	<1.0	0.022	< 0.005	0.023	0.023	0.032	ND	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA
Boring VE-1															* 12 1	1171	1423	INA	NA
VE-1-15	15	07/09/12	NA	NA	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND	NA	NIA	NIA	NIA	374	27.1		
VE-1-20	20	07/09/12	NA	NA	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND	NA NA	NA NA	NA	NA	NA	NA	NA	NA
VE-1-25	25	07/09/12	NA	NA	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA
VE-1-30	30	07/09/12	NA	NA	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	0.26	ND	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA
D.: NEA											1.2		1471	1421	11/4	INA	NA	NA	NA
Boring VE-2																			
VE-2-10	10	07/12/12	NA	NA	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND	NA	NA	NA	NA	NA	NA	NA	NA
VE-2-15	15	07/12/12	NA	NA	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND	NA	NA	NA	NA	NA	NA	NA	NA
VE-2-20	20	07/12/12	NA	NA	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND	NA	NA	NA	NA	NA	NA	NA	NA
VE-2-25 VE-2-30	25	07/12/12	NA	NA	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND	NA	NA	NA	NA	NA	NA	NA	NA
V E-2-30	30	07/12/12	NA	NA	8.2	0.015	< 0.005	0.0071	< 0.005	< 0.005	ND	NA	NA	NA	NA	NA	NA	NA	NA
Boring MW-9																			
MW-9-11	11	07/11/12	NA	NA	<4.0**	<0.02**	0.026	<0.02**	0.021	<0.02**	ND**	NA	NA	NA	NA	NIA	NIA	NTA	3.7.4
MW-9-21	21	07/11/12	NA	NA	<2.0**	<0.01**	<0.01**	<0.01**	<0.01**	<0.01**	ND/ND**	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
MW-9-31	31	07/11/12	NA	NA	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA
MW-9-36	36	07/11/12	NA	NA	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA
MW-9-41	41	07/11/12	NA	NA	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND	NA	NA	NA	NA	NA	NA	NA NA	NA NA
MW-9-45	45	07/11/12	NA	NA	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND	NA	NA	NA	NA	NA	NA	NA	NA NA

TABLE 2 SOIL ANALYTICAL RESULTS

Haber Oil Products Facility

1401 Grand Avenue, San Leandro, California

Sample ID	Depth (Feet bgs)	Date Collected	DRO (mg/Kg)	ORO (mg/Kg)	GRO (mg/Kg)	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethyl- benzene (mg/Kg)	Total Xylenes (mg/Kg)	MTBE (mg/Kg)	Fuel oxy's & additives (except MTBE) (mg/Kg)	Iso- propyl benzene (mg/Kg)	n-propyl benzene (mg/Kg)	sec-butyl benzene (mg/Kg)	n-butyl benzene (mg/Kg)	methyl-	1,2,4 Tri- methyl- benzene (mg/Kg)	4- Isopropyl toluene (mg/Kg)	Naphthalene (mg/Kg)
Boring MW-1	0																		
MW-10-11	11	07/11/12	NA	NA	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND	NA	NA	NA	NA	NA	NA	NA	NA
MW-10-21	21	07/11/12	NA	NA	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND	NA	NA	NA	NA	NA	NA	NA NA	NA NA
MW-10-26	26	07/11/12	NA	NA	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA
MW-10-36	36	07/11/12	NA	NA	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND	NA	NA	NA	NA	NA	NA NA	NA NA	
MW-10-40	40	07/11/12	NA	NA	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Exploratory 1	Boring Sam	ples											1121	1471	1421	1923	IVA	INA	INA
Boring B-11																			
B-11-10	10	07/09/12	< 5.0	<10	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND	<0.02	<0.02	<0.03	<0.00	40.0 0	-0.00	.0.00	
B-11-15	15	07/09/12	< 5.0	<10	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND ND	<0.02 <0.02	<0.02 <0.02	<0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.04
B-11-20	20	07/09/12	< 5.0	<10	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND ND	<0.02		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.04
B-11-25	25	07/09/12	<5.0	<10	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND ND		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.04
B-11-30	30	07/09/12	140*	<10	8,000	<2.0***	<2.0***	44	350	<2.0***	ND***	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.04
B-11-35	35	07/09/12	< 5.0	<10	1.3	< 0.005	< 0.005	0.015	0.103	0.012	ND	12 <0.02	61 <0.02	20 <0.02	36 < 0.02	170	440	29	100
Boring CPT-1					110	-0.005	-0.005	0.015	0.105	0.012	ND	\0.02	<0.02	<0.02	<0.02	0.026	0.099	< 0.02	< 0.04
CPT-1-10-S	10	06/29/12	< 5.0	<10	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	NID	-0.00							
CPT-1-20-S	20	06/29/12	<5.0	<10	<1.0	<0.005	< 0.005	< 0.005	<0.005	< 0.005	ND	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.04
CPT-1-30-S	30	06/29/12	<5.0	<10	8.4	< 0.005	<0.005	< 0.005	<0.005	<0.005	ND	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.04
CPT-1-40-S	40	06/29/12	<5.0	<10	<1.0	< 0.005	<0.005	< 0.005	< 0.005	<0.005 <0.005	ND	0.044	0.23	0.065	0.12	< 0.02	< 0.02	< 0.02	0.28
CPT-1-50-S	50	06/29/12	<5.0	<10	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	ND	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.04
CPT-1-60-S	60	06/29/12	<5.0	<10	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	ND	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.04
CPT-1-70-S	70	06/29/12	<5.0	<10	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND ND	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.04
CPT-1-80-S	80	06/29/12	<5.0	<10	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<0.005		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.04
CPT-1-90-S	90	06/29/12	<5.0	<10	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	ND ND	<0.02 <0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.04
Boring CPT-2	, ,	00,23,12	-5.0	110	11.0	<0.003	\0.003	<0.005	~0.003	~0.003	ND	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.04
CPT-2-40-S	40	06/28/12	NA	NA	<1.0	<0.005	<0.005	<0.00 <i>c</i>	-0.005	-0.005	3.775								I
CPT-2-50-S	50	06/28/12	NA NA	NA NA		< 0.005	< 0.005	< 0.005	<0.005	< 0.005	ND	NA	NA	NA	NA	NA	NA	NA	NA
CPT-2-60-S	60	06/28/12	NA NA	NA NA	<1.0 <1.0	<0.005 <0.005	<0.005	<0.005	< 0.005	< 0.005	ND	NA	NA	NA	NA	NA	NA	NA	NA
CPT-2-70-S	70	06/28/12	NA NA	NA NA	<1.0 <1.0		< 0.005	< 0.005	< 0.005	< 0.005	ND	NA	NA	NA	NA	NA	NA	NA	NA
CPT-2-80-S	80	06/28/12	NA NA	NA NA	<1.0 <1.0	<0.005 <0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND	NA	NA	NA	NA	NA	NA	NA	NA
C1 1-2-00-3	00	00/20/12	INA	INA	<u>~1.U</u>	<u>~0.005</u>	<0.005	< 0.005	<0.005	< 0.005	ND	NA	NA	NA	NA	NA	NA	NA	NA

page 2 of 2

Notes:

Concentrations of volatile organic compounds (VOCs) not included on this table were reported below laboratory instrument detection levels.

DRO = Diesel range organics with silica gel treatment

ORO = Oil range organics with silica gel treatment

GRO = Gasoline range organics

MTBE = Methyl tertiary butyl ether

Feet bgs = feet below ground surface

mg/Kg = milligrams per kilogram

ND = non-detectable (The VOCs have various detection limits for the suite of compounds.)

NA = Not analyzed

* = DRO concentration may include contributions from lighter-end hydrocarbons that elute in the DRO range.

** = Reporting limits were increased due to sample foaming.

*** = Reporting limits were increased due to high concentrations of target analytes.

Analysis

DRO, ORO, and GRO analyzed by EPA Method 8015B; all remaining analytes analyzed by EPA Method 8260B.

TABLE 3 GROUNDWATER ANALYTICAL RESULTS

Haber Oil Products Facility 1401 Grand Avenue, San Leandro, California

Well Number / Sample ID Monitoring V	Depth (Feet bgs) Vell Sample		DRO (μg/L)	ORO (μg/L)	GRO (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (μg/L)		TAME (μg/L)	TBA (μg/L)	PCE (µg/L)	Dichloro- methane (µg/L)		Iso- propyl benzene (µg/L)	n-propyl benzene (µg/L)	sec-butyl benzene (μg/L)	4- Isopropyl toluene (μg/L)	n-butyl benzene (µg/L)	methyl-	1,2,4 Tri- methyl- benzene (µg/L)	Naphthalene (µg/L)
MW-9 MW-10 MW-1R MW-2R		08/09/12 08/09/12 08/09/12 08/09/12	NA NA NA NA	NA NA NA NA	<50 <50 4,000 30,000	1.1 <0.50 <1.0** 1,500	<0.50 <0.50 <1.0** 1,300	<0.50 <0.50 4.6 1,500	<0.50 <0.50 1.4 5,000	<0.50 <0.50 63 340	<1.0 <1.0 5.3 <40**	<10 <10 <20** <400**	2.7 1.0 <2.0** <40**	2.4 <2.0 <8.0** <160**	<1.0 1.2 <2.0** <40**	<1.0 <1.0 6.6 <40**	<1.0 <1.0 19 190	<1.0 <1.0 17 <40**	<1.0 <1.0 4.4 <40**	<1.0 <1.0 17 <40**	<1.0 <1.0 <2.0** 260	<1.0 <1.0 <2.0** 1,300	<2.0 <2.0 <8.0** 220
CPT Boring S Boring CPT-1																							

100

<10

<10

<10

<10

<10

<10

<10

<1.0

<1.0

<1.0

<1.0

< 1.0

<1.0

<1.0

<1.0

< 2.0

< 2.0

< 2.0

< 2.0

< 2.0

< 2.0

< 2.0

< 2.0

Notes:

CPT-1-56-W

CPT-1-66-W

CPT-1-76-W

Boring CPT-2 CPT-2-48-W

CPT-2-58-W

CPT-2-68-W

CPT-1-80-W 77.5-80.5

CPT-2-85-W 83-86

Feet bgs = Feet below ground surface

54-57

64-67

74-77

47-50

57-60

67-70

DRO = Diesel Range Organics with silica gel treatment

ORO = Oil Range Organics with silica gel treatment

GRO = Gasoline Range Organics

MTBE = Methyl tertiary butyl ether

PCE = Tetrachloroethene

TAME = Tertiary amyl methyl ether

TBA = Tertiary butyl alcohol

μg/L = Micrograms per liter

NA = Not analyzed

* = Reporting limits were increased due to sample matrix interferences.

** = Reporting limits were increased due to high concentrations of target analytes.

06/29/12 <100*

06/29/12 <100*

06/28/12 <100*

< 50

<50

< 50

<100*

<50

06/29/12

06/29/12

06/28/12

06/28/12

06/28/12

< 500

< 500

< 500

< 500

< 500

< 500

< 500

< 500

<50

<50

< 50

< 50

< 50

< 50

< 50

<50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

1.1

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

< 0.50

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

Analysis:

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

< 1.0

DRO, ORO, and GRO analyzed by EPA Method 8015B; all remaining analytes analyzed by EPA

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

< 1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

< 2.0

<2.0

< 2.0

< 2.0

<2.0

< 2.0

< 2.0

< 2.0

Method 8260B.

GENERAL NOTES:
BASE MAP FROM U.S.G.S.
SAN LEANDRO, CA.
7.5 MINUTE TOPOGRAPHIC
PHOTOREVISED 1978

FORMER HABER OIL PRODUCT 1401 GRAND AVENUE SAN LEANDRO, CALIFORNIA

SITE LOCATION MAP

FIGURE

1
PROJECT NO.
2120-1401-01

CURRENT UST COMPLEX • - CONCRETE -FORMER WASTE BUILDING BUILDING -AC PAVING-BUILDING

LEGEND

♠ MW-3 GROUNDWATER MONITORING WELL LOCATION

→ VE-1 SOIL VAPOR EXTRACTION WELL LOCATION

MW-1 ABANDONED MONITORING WELL LOCATION

O CPT-1 CPT BORING LOCATION

SOIL BORING LOCATION

CROSS SECTION TRACE

NOTES:
1. SOIL BORING AND FORMER UST LOCATIONS ARE APPROXIMATE
2. BASE MAP PROVIDED BY MORROW SURVEYING

STRATUS ENVIRONMENTAL, INC.

FORMER HABER OIL PRODUCT 1401 GRAND AVENUE SAN LEANDRO, CALIFORNIA

SITE PLAN

FIGURE

PROJECT NO. 2120-1401-01

STRATUS ENVIRONMENTAL, INC.

FORMER HABER OIL PRODUCT 1401 GRAND AVENUE SAN LEANDRO, CALIFORNIA

SITE VICINITY AERIAL MAP

FIGURE

3

PROJECT NO. 2120-1401-01

ENVIRONMENTAL, INC.

1401 GRAND AVENUE SAN LEANDRO, CALIFORNIA

WATER SUPPLY WELL LOCATION MAP

PROJECT NO. 2120-1401-01

LEGEND

MW-3 GROUNDWATER MONITORING WELL LOCATION VE-1 SOIL VAPOR EXTRACTION WELL LOCATION

MW-1 ABANDONED MONITORING WELL LOCATION

O CPT-1 CPT BORING LOCATION

B-1 SOIL BORING LOCATION

----- WATER LINE

--- · --- SANITARY SEWER LINE

--- GAS LINE

--- STORM DRAIN

----- COMMUNICATION LINE

1. SOIL BORING AND FORMER UST LOCATIONS ARE APPROXIMATE
2. BASE MAP PROVIDED BY MORROW SURVEYING

STRATUS ENVIRONMENTAL, INC.

FORMER HABER OIL PRODUCT 1401 GRAND AVENUE SAN LEÁNDRO, CALIFORNIA

UNDERGROUND UTILITY LOCATION MAP

5

FIGURE

PROJECT NO. 2120-1401-01

2120-1401-01

APPENDIX A FIELD PRACTICES AND PROCEDURES

FIELD PRACTICES AND PROCEDURES

General procedures used by Stratus in site assessments for drilling exploratory borings, collecting samples, and installing monitoring wells are described herein. These general procedures are used to provide consistent and reproducible results; however, some procedure may be modified based on site conditions. A California state-registered geologist supervises the following procedures.

PRE-FIELD WORK ACTIVITIES

Health and Safety Plan

Field work performed by Stratus at the site is conducted according to guidelines established in a Site Health and Safety Plan (SHSP). The SHSP is a document which describes the hazards that may be encountered in the field and specifies protective equipment, work procedures, and emergency information. A copy of the SHSP is at the site and available for reference by appropriate parties during work at the site.

Locating Underground Utilities

Prior to commencement of any work that is to be below surface grade, the location of the excavation, boring, etc., is marked with white paint as required by law. An underground locating service such as Underground Service Alert (USA) is contacted. The locating company contacts the owners of the various utilities in the vicinity of the site to mark the locations of their underground utilities. Any invasive work is preceded by hand augering to a minimum depth of five feet below surface grade to avoid contact with underground utilities.

FIELD METHODS AND PROCEDURES

Exploratory Soil Borings

Soil borings will be drilled using a truck-mounted, hollow stem auger drill rig. Soil samples for logging will be obtained from auger-return materials and by advancing a modified California split-spoon sampler equipped with brass or stainless steel liners into undisturbed soil beyond the tip of the auger. Soils will be logged by a geologist according to the Unified Soil Classification System and standard geological techniques. Drill cuttings well be screened using a portable photoionization detector (PID) or a flame ionization detector (FID). Exploratory soil borings not used for monitoring well installation will be backfilled to the surface with a bentonite-cement slurry pumped into the boring through a tremie pipe.

Soil sampling equipment will be cleaned with a detergent water solution, rinsed with clean water, and equipped with clean liners between sampling intervals. Augers and

samplers will be steam cleaned between each boring to reduce the possibility of cross contamination. Steam cleaning effluent will be contained in 55-gallon drums and temporarily stored on site. The disposal of the effluent will be the responsibility of the client.

Drill cuttings generated during the drilling procedure will be stockpiled on site. Stockpiled drill cuttings will be placed on and covered with plastic sheeting. The stockpiled soil is typically characterized by collecting and analyzing composite samples from the stockpile. Stratus Environmental will recommend an appropriate method for disposition of the cuttings based on the analytical results. The client will be responsible for disposal of the drill cuttings.

Soil Sample Collection

During drilling, soil samples will be collected in cleaned brass, two by six inch tubes. The tubes will be set in an 18-inch-long split-barrel sampler. The sampler will be conveyed to bottom of the borehole attached to a wire-line hammer device on the drill rig. When possible, the split-barrel sampler will be driven its entire length, either hydraulically or by repeated pounding a 140-pound hammer using a 30-inch drop. The number of drops (blows) used to drive the sampler will be recorded on the boring log. The sampler will be extracted from the borehole, and the tubes containing the soil samples will be removed. Upon removal, the ends of the lowermost tube will be sealed with Teflon sheets and plastic caps. Soil samples for chemical analysis will be labeled, placed on ice, and delivered to a state-certified analytical laboratory, along with the appropriate chain-of-custody documentation.

Soil Classification

As the samples are obtained in the field, they will be classified by the field geologist in accordance with the Unified Soil Classification System. Representative portions of the samples will be retained for further examination and for verification of the field classification. Logs of the borings indicating the depth and identification of the various strata and pertinent information regarding the method of maintaining and advancing the borehole will be prepared.

Soil Sample Screening

Soil samples selected for chemical analysis will be determined from a head-space analysis using a PID or an FID. The soil will be placed in a Ziploc[®] bag, sealed, and allowed to reach ambient temperature, at which time the PID probe will be inserted into the Ziploc[®] bag. The total volatile hydrocarbons present are detected by the PID and reported in parts per million by volume (ppmv). The PID will be calibrated to an isobutylene standard.

Generally two soil samples from each soil boring will be submitted for chemical analysis unless otherwise specified in the scope of work. Soil samples selected for analysis typically represent the highest PID reading recorded for each soil boring and the sample just above first-encountered groundwater.

Stockpiled Drill Cuttings and Soil Sampling

Soil generated during drilling operations will be stockpiled on-site. The stockpile will be set on and covered by plastic sheeting in a manner to prevent rain water from coming in contact with the soil. Prior to collecting soil samples, Stratus personnel will calculate the approximate volume of soil in the stockpile. The stockpile will then divided into sections, if warranted, containing the predetermined volume sampling interval. Soil samples will be collected at 0.5 to 2 feet below the surface of the stockpile. Four soil samples will be collected from the stockpile and composited into one sample by the laboratory prior to analysis. The soil samples will be collected in cleaned brass, two by six inch tubes using a hand driven sampling device. To reduce the potential for cross-contan1ination between samples, the sampler will be cleaned between each sampling event. Upon recovery, the sample container will be sealed at each end with Teflon sheeting and plastic caps to minimize the potential of volatilization and cross-contan1ination prior to chemical analysis. The soil sample will be labe1ed, placed on ice, and delivered to a state-certified analytical laboratory, along with the appropriate chain-of-custody documentation.

Direct Push Technology, Soil Sampling

GeoProbeTM is a drilling method of advancing small diameter borings without generating soil cuttings. The GeoProbeTM system consists of a 2-inch diameter, 5-feet long, stainless steel soil sampling tool that is hydraulically advanced into subsurface soils by a small, truck-mounted rig. The sampling tool is designed similar to a California-modified split-spoon sampler, and lined with a 5-foot long, clear acrylic sample tube that enables continuous core sampling.

To collect soil samples, the sampler is advanced to the desired sampling depth. The mouth of the sampling tool is plugged to prevent soil from entering the sampler. Upon reaching the desired sampling depth, the plug at the mouth of the sample tool is disengaged and retracted, the sampler is advanced, and the sampler is filled with soil. The sample tool is then retrieved from the boring, and the acrylic sample tube removed. The sample tool is then cleaned, a new acrylic tube is placed inside and the sampling equipment is advanced back down the borehole to the next sample interval.

The Stratus geologist describes the entire interval of soil visible in the acrylic tube. The bottom-most 6-inch long section is cut off and retained for possible chemical analysis. The ends of the chemical sample are lined with Teflon sheets, capped, labeled, and placed in an ice-chilled cooler for transport to California Department of Health Services-certified analytical laboratory under chain-of-custody.

Direct Push Technology, Water Sampling

A well known example of direct push technology for water sampling is the Hydropunch[®]. For the purpose of this field method the term hydropunch will be used instead of direct push technology for water sampling.

The hydropunch is typically used with a drill rig. A boring is drilled with hollow stemaugers to just above the sampling zone. In some soil conditions the drill rig can push directly from the surface to the sampling interval. The hydropunch is conveyed to the bottom of the boring using drill rods. Once on bottom the hydropunch is driven a maximum of five feet. The tool is then opened by lifting up the drill rod no more than four feet. Once the tool is opened, water enters and a sample can be collected with a bailer or tubing utilizing a peristaltic pump. Soil particles larger than silt are prevented from entering the tool by a screen within the tool. The water sample is collected, labeled, and handled according to the Quality Assurance Plan.

Monitoring Well Installation

Monitoring wells will be completed by installing 2 to 6 inch-diameter Schedule 40 polyvinyl chloride (PVC) casing. The borehole diameter for a monitoring well will be a minimum of four inches larger than the outside diameter of the casing. The 2-inch-diameter flush-threaded casing is generally used for wells dedicated for groundwater monitoring purposes.

A monitoring well is typically cased with threaded, factory-perforated and blank Schedule 40 PVC. The perforated interval consists of slotted casing, generally with 0.01 or 0.02 inch-wide by 1.5-inch-long slots, with 42 slots per foot. The screened sections of casing are factory machine slotted and will be installed approximately 5 feet above and 10 feet below first-encountered water level. The screened interval will allow for seasonal fluctuation in water level and for monitoring floating product. A threaded or slip PVC cap is secured to the bottom of the casing. The slip cap can be secured with stainless steel screws or friction; no solvents or cements are used. Centering devices may be fastened to the casing to ensure even distribution of filter material and grout within the borehole annulus. The well casing is thoroughly washed and/or steam cleaned, or may be purchased as pre-cleaned, prior to completion.

A filter pack of graded sand will be placed in the annular space between the PVC casing and the borehole wall. Sand will be added to the borehole through the hollow stem of the augers to provide a uniform filter pack around the casing and to stabilize the borehole. The sand pack will be placed to a maximum of 2 feet above the screens, followed by a minimum 1-foot seal consisting of bentonite pellets.

Cement grout containing 5 percent bentonite or concrete will be placed above the bentonite seal to the ground surface. A concrete traffic-rated vault box will be installed over the monitoring well(s). A watertight locking cap will be installed over the top of the

Field Practices and Procedures Page 5

well casing. Reference elevations for each monitoring well will be surveyed when more than two wells will be located on site. Monitoring well elevations will be surveyed by a California licensed surveyor to the nearest 0.01-foot relative to mean sea level (MSL). Horizontal coordinates of the wells will be measured at the same time.

Exploratory boring logs and well construction details will be prepared for the final written report.

APPENDIX B DRILLING PERMIT AND ENCROACHMENT PERMIT

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 06/15/2012 By jamesy

Permit Numbers: W2012-0401 to W2012-0409 Permits Valid from 06/18/2012 to 07/31/2012

Application Id:

1339105873943

City of Project Site: San Leandro

Site Location:

1401 Grand Avenue and adjacent properties, San Leandro, CA

Completion Date: 07/31/2012

Project Start Date:

06/18/2012

Assigned Inspector:

Contact Vicky Hamlin at (510) 670-5443 or vickyh@acpwa.org

Applicant:

Stratus - Scott Bittinger

Phone: 530-676-2062

3330 Cameron Park #550, Cameron Park, CA 95682

Property Owner:

Manmohan Chopra

Phone: 510-962-1961

29211 Marshbrook Dr, Hayward, CA 94545

Client:

** same as Property Owner **

Total Due:

\$3441.00

Receipt Number: WR2012-0179

Total Amount Paid:

\$3441.00

Payer Name : Stratus

Paid By: CHECK

PAID IN FULL

Works Requesting Permits:

Well Construction-Monitoring-Monitoring - 6 Wells Driller: Gregg - Lic #: 485165 - Method: press

Work Total: \$2382.00

Specifications

Permit #	Issued Date	Expire Date	Owner Well	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2012- 0401	06/15/2012	09/16/2012	MW-1R	8.00 in.	2.00 in.	27.00 ft	52.00 ft
W2012- 0402	06/15/2012	09/16/2012	MW-2R	10.00 in.	4.00 in.	27.00 ft	52.00 ft
W2012- 0403	06/15/2012	09/16/2012	MW10	8.00 in.	2.00 in.	27.00 ft	52.00 ft
W2012- 0404	06/15/2012	09/16/2012	MW9	8.00 in.	2.00 in.	27.00 ft	52.00 ft
W2012- 0405	06/15/2012	09/16/2012	VE1	8.00 in.	2.00 in.	10.00 ft	52.00 ft
W2012- 0406	06/15/2012	09/16/2012	VE2	8.00 in.	2.00 in.	10.00 ft	52.00 ft

Specific Work Permit Conditions

- 1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 2. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled. properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.
- 3. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits

and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

- 4. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Include permit number and site map.
- 5. Applicant shall submit the copies of the approved encroachment permit to this office within 60 days.
- 6. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 7. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.
- 8. Minimum surface seal thickness is two inches of cement grout placed by tremie.
- 9. Minimum seal (Neat Cement seal) depth for monitoring wells is 5 feet below ground surface(BGS) or the maximum depth practicable or 20 feet.
- 10. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

Borehole(s) for Investigation-Contamination Study - 7 Boreholes

Driller: Gregg - Lic #: 485165 - Method: press Work Total: \$265.00

Specifications

Permit Number	Issued Dt	Expire Dt	# Boreholes	Hole Diam	Max Depth
W2012- 0407	06/15/2012	09/16/2012	7	8.00 in.	100.00 ft

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to,

properly damage, personal injury and wrongful death.

- 4. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 5. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 6. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 7. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

Well Destruction-Monitoring - 2 Wells

Driller: Gregg Drilling - Lic #: 485165 - Method: press Work Total: \$794.00

Specifications

Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth	State Well #	Orig. Permit #	DWR#
W2012- 0408	06/15/2012	09/16/2012	MW1	0.00 in.	4.00 in.	0.00 ft	53.00 ft	No Records	No Records	No Records
W2012- 0409	06/15/2012	09/16/2012	MW2	0.00 in.	4.00 in.	0.00 ft	53.00 ft	No Records	No Records	No Records

Specific Work Permit Conditions

- 1. Drilling Permit(s) can be voided/ cancelled only in writing. It is the applicant's responsibility to notify Alameda County Public Works Agency, Water Resources Section in writing for an extension or to cancel the drilling permit application. No drilling permit application(s) shall be extended beyond ninety (90) days from the original start date. Applicants may not cancel a drilling permit application after the completion date of the permit issued has passed.
- 2. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 3. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Include permit number and site map.
- 4. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend

and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost and liability in connection with or resulting from the exercise of this Permit including, but not limited to, property damage, personal injury and wrongful death.

- 5. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 6. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.
- 7. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 8. Remove the Christy box or similar structure. Tremie Grout with Cement (More than 30 ft in depth). After the seal has set, backfill the remaining hole with concrete or compacted material to match existing.

City of San Leandro Engineering and Transportation Department 835 East 14th Street San Leandro, California 94577 (510) 577-3428

ENCROACHMENT PERMIT

Permit Type

Environmental

JL

Permit Number: ENC2012-00356

Job Address: 1400 1499 Grand Av

Issued: 6/25/2012

Project Name: STRATUS

Description of Work:

Adjacent to 1401 Grand Ave., Install 2 ground water monitoring wells (1 in street and other in planter strip). Perform soil borings for soil & water collection, develop,

Customer # 23893

sample survey monitoring wells.

Planned Start Date: June 27, 2012

Planned Completion Date:

USA Tag No.

214670

Emergency Contact

Scott Brittinger

Contact Phone Number

916-601-9756

.

Applicant:

Owner:

Agent:

STRATUS ENVIRONMENTAL INC 3330 CAMERON PARK DR. SUITE 550

CAMERON PARK CA 95682

CITY OF SAN LEANDRO

Contractor:

GREGG DRILLING & TESTING 950 HOWE RD.

MARTINEZ CA 94553

SCOTT BITTINGER

3330 CAMERON PARK DR. SUITE 550

CAMERON PARK CA 95682

Associated Permits:

PERMIT FEE:

PLAN CHECKER

To Acct #3306

Utility /Job Number

Building Permit No.

Oro Loma Permit No. W2012-0403

Cal State Permit No.

To CN#

RESTORE/INSPECT DEPOSIT

Ala County Permit No.

l# 23893

Grading Permit No.

STREET CUT FEE

To Acct #3304

TOTAL:

IOIAL

Post Video

Method of Repair

Backfill Required

Class 2 AB or CDF

All work shall be per City Standard Provisions. Pedestrian safety and access shall be maintained at all times.

Pavement Section Requir

Min Depth of Cover

Section 1 9 inches

Section 2

Section 3
Consent Form

Pre Video

Per eity Standard plan and approved Traffic control plan.

PLEASE CALL (510) 577-3308 FOR INSPECTIONS 24 HOURS PRIOR TO WORK

By the application and acceptance of this permit, the undersigned intending to be legally bound does hereby agree that all work performed will be in accordance with all applicable provisions of this permit and all regulations, provisions, and specifications as adopted by the City. Further, the undersigned agrees that this permit is to serve as a guaranty for payment for all permit and/or inspection charges as billed by the City. Any misrepresentation of information requested from the applicant on this form shall make this permit null and void.

Date 6/25/12

GENERAL PROVISIONS ENC2012-00356

- (a) All work must be performed in accordance with City of San Leandro Standard Plans, Specifications, and Title V Chapter 1 of the Municipal Code.
- (b) Twenty four hours notice required prior to start and/or requests for inspection. All work must be completed between the hours of 8:00AM to 4:00PM. No work is permitted on Saturday, Sunday, City holidays, or Furlough days. The City website has a schedule of holidays and furlough days: http://www.sanleandro.org/holidayschedule.html
- (c) City to be notified next working day (by permit application) of all emergency work performed.
- (d) Permittee shall be responsible for all liability imposed by law for personal injury or property damage proximately caused by failure on permittee's part to perform his obligations under said permit respect to maintenance. If any claim of such liability is made against the City of San Leandro or its officers or employees, permittee shall defend, indemnify and hold each of them harmless from such claim.
- (e) No utility contractor or subcontractor shall park their construction equipment, including personal vehicles, entirely or partially in the sidewalk area. Per Section 5610 of the Streets and Highways Code, the permittee shall be responsible for the repair of any damaged sidewalk where utility contractor's or subcontractor's vehicles or equipment are parked whether or not the damage was preexisting.
- (f) Cost of emergency work required to restore unsatisfactorily construction that becomes hazardous will be charged to permittee.
- (g) Permit void 90 days from issue date unless otherwise noted. Extension time may be granted when requested in writing.
- (h) Permit must be readily available at work site. Permit is not assignable.
- Section 6500 of the Labor Code requires permit from the State Division of Industrial Safety (CAL OSHA) prior to an excavation five feet or deeper.
- (j) Prior to digging or drilling, permittee shall request Undergrounding Service Alert (USA) markings, phone #800-227-2600.
- (k) Trenches are to be inspected prior to backfilling. Backfill compaction tests may be required.
- (I) All tunneling prohibited. Pipe must be bored or jacked or open trenched including under curb, gutter and/or sidewalk.
- (m) Forms for concrete work must be inspected prior to placing concrete.
- (n) All concrete, including concrete pavement (overlayed with A.C. or not), must be sawcut prior to breakout. Concrete sections to be replaced shall be no smaller than 30 inches in either length or width. All sawcuts must be along scorelines, 1.5" minimum depth (special conditions for concrete pavements). If a sawcut falls within 30 inches of a construction joint, expansion joint, or edge, the concrete shall be removed to the joint or edge. Forms for concrete work must be inspected prior to placing concrete.
- (o) Temporary paving is required in all street and sidewalk areas and is to be placed the same day work is performed. From those 15 through April 15, only A.C. paving is to be used. Temporary paving is to be maintained by applicant.
- (p) Permanent paving or sidewalk is to be replaced withi **30 days**. Permittee shall notify City before placing surfacing.
- (q) Permittee shall provide, erect, and/or maintain such lights, barriers, warning signs, patrols, watchmen and other safeguards as are necessary to protect the traveling public in accordance with the current State "Manual of Warning Signs, Lights, and Devices for Use in Performance of Work Upon Highways".
- (r) Before any work is begun that will interrupt the normal flow of public traffic, proposed lane closures or advanced warning light, sign, and barricade with flashing light details and layout plans shall be submitted to the City. If flagmen are required copies of certifications must be provided prior to issuance of a permit.
- (s) Open trench one lane at a time, with necessary traffic control, to keep traffic moving in both directions during working hours. If at the end of the work day backfilling operations have not been completed, steel bridging shall be required to make the entire traveled way available to the public traffic.
- (t) Pedestrian safety shall be maintained at all times.
- (u) Permittee shall contact City for final inspection and approval of completed work.

 ART Arterial Col Collector

Res - Residential

INSPECTION RECORD

Inspected Date	Comments	Inspector	Hours Charged	Date Charged
		Subtotal	The state of the s	

APPENDIX C CPT DATA AND SAMPLING LOGS

STRATUS

Site: HABER OIL Sounding: CPT-1

Engineer: S.BITTINGER

Date: 6/29/2012 08:10

Avg. Interval: 0.328 (ft)

SBT: Soil Behavior Type (Robertson 1990)

		= ==	BOR	EH	IOLE LO)G						CPT-1
STRATUS Pro	iect No.:				Site: Haber					Dwilli	na Con	
	1000 21011				1401 Grand		San I	eandr	10		r: Geri	npany: Gregg In Situ, Inc.
Date: June 29,	2012			_	TIOT GIANG	zivenue,	J411 1	Canui	.0			ist: Shane Edmunds
				\top						Ticiu	Geolog	ist. Shane Edinunus
Drilling Rig:			CPT				Dr	illing N	Method:			Direct Push (CPT Truck)
Borehole Diam	eter:		2 inch	es					ple Equipr	nent:		12-inch piston sampler
Total Sampling	Depth:		90 fee	bgs	3				mpling Ed		nt·	Hydropunch TM
						ll Comple			mpmag Ex	1 mp mix		Trydropulion
Slotted Interva	l:								ng Materia	 il:		
Filter Pack Ma	terial:								ng Diamete			
Seal Material:								Slot S				
Backfill Materi					Neat Cen	nent						
Sample ID	Depth	Sam	•	%	Sample	PID	So	il	Descrip	tion:		
	(ft.)	Inter	val I	lec.	Time	(ppm)	Cla	iss.				
		+	_	_		-	_					
									ļ			
CPT-1-10-S	10	10.1	11		0040			CT.	0''			
CF 1-1-10-5	10	10-1	11		0948			CL_	Silty Cla	y, oliv	brown	ı, est. 75% clay, 25% silt,
CPT-1-20-S	20	20-2	1		0056			OT.	Dry to m			
C1 1-1-20-5	20	20-2	21		0956			CL				n, est. 70% clay, 20%
CPT-1-30-S	30	30-3	1 1		1007		77	V-SM				silt, moist
C1 1-1-50-5	30	30-3	'		1007		SV	V-21VI	Moist	ie to me	edium g	grained with 10% fines,
CPT-1-40-S	40	40-4	11		1024		ļ.,	SC		and or	annich .	Smarr and 65 750/ 5
		' '			1024			30				gray, est. 65-75% fine clayey fines, dry to moist
CPT-1-50-S	50	50-5	51		1106		-	CL				ish gray, est. 70% clayey
				_	1100							d sand, wet, soft
CPT-1-56-W	56	54-5	57		1609		_		Water	770 11110	grame	saild, wet, soit
									77 4465			
CPT-1-60-S	60	60-6	1		1131		(CL	Sandy cl	ay with	silt and	d caliche, yellowish brown,
												d, 10% silt, 10% caliche
CPT-1-66-W	66	64-6	7		1652				Water			
CPT-1-70-S	70	70-7	1		1216			SC	Clayey sa	and, est	:. 70% f	fine grained sand, 30%
CDT 1 TC IVI			_ +		 				Clayey fi	nes, we	et	
CPT-1-76-W	76	74-7	/		1755				Water			
CPT-1-80-S	90	00.0	1		1240			10				
CF 1-1-0U-S	80	80-8	1		1349			SC				fine grained sand, 10%
CPT-1-80-W	80	77.5-8	0.5		1836			_				20% clayey fines, wet
O1 1 1 1 - 00 - 11	30	11.5-0	0.5		1020				water, di	rect pu	sn refus	sal at 80.5 feet bgs.
CPT-1-90-S	90	89-9	0	-	1433			SC	Clayey	and are	Tr oat	650/ gard 250/ -1
			<u> </u>	_	1133				Fines, we		iy, est.	65% sand, 35% clayey
									Tillos, we			
											_	
									57	RATU CHMENTAL I	15 NC	
									CHANN	A COUNTY OF THE LAND OF THE LA		1

STRATUS

Site: HABER OIL Sounding: CPT-2

Engineer: S.BITTINGER

Date: 6/28/2012 07:25

Avg. Interval: 0.328 (ft)

SBT: Soil Behavior Type (Robertson 1990)

]	BORE	H	OLE LC)G						CPT-2
STRATUS Proj	ject No.: 2	2120-14	01-1	S	Site: Haber	Oil				Drilli	ng Cor	npany: Gregg In Situ, Inc.
				1	401 Grand	Avenue, S	San I	Leand	ro		r: Ger	
Date: June 28, 2	2012			1						Field	Geolog	gist: Shane Edmunds
Daillia - Dia			CDT	_								
Drilling Rig: Borehole Diame			CPT				1		Method:			Direct Push (CPT Truck)
Total Sampling			2 inches						ple Equip			12-inch piston sampler
Total Samping	Берии.		86 feet l	gs	Wo	ll Comple	tion	Doto	ampling E	quipme	ent:	Hydropunch TM
Slotted Interval	l:					ii Compie	CIOII		ng Materi			
Filter Pack Mat									ng Diamet			
Seal Material:		-							Size:			
Backfill Materia	al:				Neat Cen	nent						
Sample ID	Depth	Samp			Sample	PID	So	il	Descrip	tion:		
	(ft.)	Interv	al Re	ec.	Time	(ppm)	Cla	iss.				
				_								
									 			
CPT-2-40-S	40	40-4	1		1048			SC	Clavey	and li	aht aliv	re brown, est. 60% fine gr.
<u> </u>		10 1	1		1040			<u> </u>				es, 5% silt, wet
CPT-2-48-W	48	47-5	0		1430				Water	70 Clay	cy IIIIc	s, 570 siit, wet
CPT-2-50-S	50	50-5	1		1113			SC	Clayey	sand, es	t. 85-9	0% fine grained sand, trace
												clayey fines, wet
CPT-2-58-W	58_	57-6)		1511				Water			
CPT-2-60-S	60	60-6	,		1140							
CF 1-2-00-5	00	00-0	¹		1142		'	CL	10%	h sand	& silt,	est. 80% clay, 10% silt,
		· <u> </u>		\neg					Fine gra	ined sa	nd	
CPT-2-68-W	68	67-70			1559				Water	inou sa		
CPT-2-70-S	70	70-7	l _		1216			SC	Clayey s	and, es	t. 70%	fine grained sand, 30%
CDT 2 00 C				_	10.10				Clayey f			
CPT-2-80-S	80	80-8	-	\dashv	1240			SC	Clayey s	and, lig	ght oliv	e brown, est. 60% sand,
CPT-2-85-W	85	83-86			1336				40% cla	y, damp	to wet	
C1 1-2-05- W		03-00	' -	\dashv	1330				Water			
				_								
			_ _	-					ļ			
			-	\dashv								
			-	\dashv					 			
				_					 			
				\dashv								
				\Box								
				\perp								
			-	+								
				+				_				
									-	TDATI	100	
									Envi	TRATU PORMENTAL	INC.	
		<u> </u>										

CPT Classification Chart

(after Robertson 1990)

Non-Normalized Classification Chart

Geotechnical and Environmental In Situ Testing Contractors

Los Angeles · San Francisco · Houston · Aiken Vancouver · Edmonton · Salt Lake City · New Jersey

Tel: (925)313-5800 · Fax: (925)313-0302 · E-mail: gregg@ecis.com

GREGG IN SITU, INC.

Geotechnical and Environmental In Situ Testing Contractors

THE PIEZO CONE PENETROMETER

The electrical piezocone (CPTU) is the premier soil logging tool. The CPTU provides a rapid, reliable and economic means of determining soil stratigraphy, relative density, strength and equilibrium groundwater pressures.

Gregg In Situ offers a choice of 2.5, 5, 10 and 15 ton tip (Qc) capacity cones. Our cones also have variable capacity friction sleeves (Fs) and pore pressure (U). The pore pressure can be measured at one of 2 locations, either on the face of the cone tip or behind the cone tip. Pore pressure dissipation data is recorded automatically.

All data is displayed in real time at the ground surface, facilitating the on site decision making process. Field data reduction, plotting and CPT interpretation can be carried out upon request.

Geotechnical and Environmental In Situ Testing Contractors

Los Angeles · San Francisco · Houston · Aiken Vancouver · Edmonton · Salt Lake City · New Jersey

Tel: (925)313-5800 · Fax: (925)313-0302 · E-mail: gregg@ecis.com

Groundwater Sampling (GWS)

Gregg Drilling conducts groundwater sampling using a Hydropunch® type groundwater sampler, Figure GWS. The groundwater sampler has a retrievable stainless steel or disposable PVC screen with steel drop off tip. This allows for samples to be taken at multiple depth intervals within the same sounding location. In areas of slower water recharge, provisions may be made to set temporary PVC well screens during sampling to allow the drill rig to advance to the next sample location while the groundwater is allowed to infiltrate.

The groundwater sampler operates advancing 1 3/4 inch hollow push rods with the filter tip in a closed configuration to the base of the desired sampling interval. Once at the desired sample depth, the push rods are retracted; exposing the encased filter screen allowing groundwater to infiltrate hydrostatically from the formation into the inlet screen. A small diameter bailer (approximately ½ or ¾ inch) is lowered through the push rods into the screen section for sample collection. The number of downhole trips with the bailer and time necessary to complete the sample collection at each depth interval is a function of sampling protocols, volume requirements, and the yield characteristics and storage capacity of the formation. Upon completion of sample collection, the push rods and sampler, with the exception of the PVC screen and steel drop off tip are retrieved to the ground surface, decontaminated and prepared for the next sampling event.

A summary of the groundwater samples collected, including the sampling date, depth and location identification, is presented in Table 1 and the corresponding CPT plot.

Figure GWS

For a detailed reference on direct push groundwater sampling, refer to Zemo et. al., 1992.

PISTON TYPE SOIL SAMPLER

Figure 3

APPENDIX D SOIL BORING LOGS AND WELL DETAILS

Sheet: 1 of 2

Client	Haber Oil	Date	July 9, 2012	The state of the s	
Address	1401 Grand Ave.	Drilling Co.	Gregg Drilling	rig type: MARL Rhino	·
	San Leandro, CA	Driller	Vince		
Project No.	2120-1401-01	Method	Direct push	Hole Diameter: 3 inches	
Logged By:	Allan Dudding	Sampler:	5-foot long x 2-inch dia	meter core barrel	

Depth to GW: V first encountered:

	Sample	Diam	Sa	mple		1 1 1		T
Type		Blow Count		Recov.	Depth Scale	Lithologic Column	Descriptions of Materials and Conditions	PID
				Troub.		Coranni	Concrete pavement at surface; boring hand cleared to 5 feet bgs.	(PPM)
	ļ	ļ			_1			
					2	CL	Clay, some silt, CL, very dark brown (10YR 2/2), medium plasticity, moist,	
						02	80% clay, 20% silt.	
					3			
					₄			
		ļ			5			
					— 6			
					7			
					8			
					9		Silty Clay CL you dork growish brown (40VD 2/0)	
s	B-11-10		0906		10		Silty Clay, CL, very dark grayish brown (10YR 3/2), medium plasticity, moist, 70% clay, 30% silt.	
								0
					11	/		
					12			
					13			
					14	ML	Clayey Silt, ML, dark yellowish brown (10YR 4/4), low plasticity, moist, 70%	
s	B-11-15		0911		145		silt, 30% clay.	
		·			15			0
					16			
		1	1					
					<u></u>			
					18			
					 19		Sandy Silt with clay MI dark vallential harry (40VD 444) I and a	
					19		Sandy Silt with clay, ML, dark yellowish brown (10YR 4/4), low to non-plastic, moist, 50% silt, 40% fine sand, 10% clay.	
S	B-11-20	(0916		20			0
							Comments: Color descriptions from Munsell Color Chart.	
				overy ^{_l}			The state of the s	
			Sa	ample_				
							STRATUS	
							ENVIRONMENTAL, INC.	

Boring No. B-11

Sheet: 2 of 2

Client	Haber Oil	Date	July 9, 2012		w
Address	1401 Grand Ave.	Drilling Co.	Gregg Drilling	rig type: MARL Rhino	
	San Leandro, CA	_ Driller	Vince		0.00
Project No.	2120-1401-01	_ Method	Direct push	Hole Diameter: 3 inches	
Logged By:	Allan Dudding	Sampler:	5-foot long x 2-inch dia	meter core barrel	A4-4
			7		

Depth to GW: Virst encountered:

	Sample	Blow	Sa	mple				1
Туре		Count		Recov.	Depth Scale	Lithologic Column	Descriptions of Materials and Conditions	PID (PPM
					21 22	ML	Sandy Silt with clay, ML, dark yellowish brown (10YR 4/4), low to non-plastic, moist, 50% silt, 40% fine sand, 10% clay.	(FFWI
					23 24			
S	B-11-25		0922		25 26			0
					27 27 		Clover Cit M. deduction to the control of the contr	
					28 29		Clayey Silt, ML, dark yellowish brown (10YR 4/4), low plasticity, moist, 60% silt, 40% clay, trace fine sand.	
S	B-11-30		0926		30 31	∇		169.1
					32 - 33	SM	Silty Sand, SM, very dark greenish gray (GLEY1 3/10Y), wet, 60% fine sand, 40% silt.	
					34	CL	Sandy Clay with gravel, CL, very dark greenish gray (GLEY1 3/10Y), moist, 50% clay, 30% fine to medium sand, 20% fine gravel.	
S	B-11-35		0931		35			4.6
					37			
					39	-		
	I			covery	40	ı	Comments: Color descriptions from Munsell Color Chart. Boring advanced to 38 bgs; 35-foot to 38-foot bgs sample not collected due to a rock in the sample tube.	3 feet
							STRATUS ENVIRONMENTAL, INC.	

Boring No. MW-1R

Sheet: 1 of 3

Client	Haber Oil Company	Date	July 9, 2012		
Address	1401 Grand Avenue	_ Drilling Co.	Gregg Drilling rig type	: MARL Rhino	
	San Leandro, California	_ Driller	Vince		
Project No.	2120-1401-01	Method	Hollow Stem Auger/Direct Push Hole Diameter:	8/3 inches	
Logged By:	Allan Dudding	Sampler:	5 foot long x 2.5 inch diameter acetate sample lin	ers	
Well Pack	sand: 32 ft. to 44 ft.	Well Construction	Casing Material: Schedule 40 PVC	Screen Interval:	34 to 44 ft.
	bent.: 30 ft. to 32 ft.		Casing Diameter: 2 in.	Screen Slot Size:	0.020-in.
	grout: 0 ft. to 30 ft.	Depth to GW:	first encountered: 38 feet bgs	Static:	

	Sample	Blow	Sar	mple	٠.		Donth			
Туре	No.	Count	Time	Recov.	Well	Details	Depth Scale	Lithologic Column	Descriptions of Materials and Conditions	PID (PPM)
							₁		Concrete pavement at surface; boring hand cleared to 5 feet bgs.	(FFIVI)
							2 3	CL	Silty Clay, CL, very dark brown (10YR 2/2), medium plasticity, moist, 70% clay, 30% silt.	
							_ _4			
							5 6			
							7 7 8			
s	MW-1R-10		1343				9		As above, dark brown (10YR 3/3).	
			1040				10 11			0
							12 13			
S	MW-1R-15		1345				14 15	SM	Silty Sand, SM, dark yellowish brown (10YR 4/4), moist, 60% fine sand, 40% silt.	0
							16 17 18	CL	Silty Clay, CL, dark yellowish brown (10YR 4/4), moist, low plasticity, 60% clay, 40% silt.	
s	MW-1R-20		1352				19			
<u> </u>			1002	Reco	overy		20		Comments: Color descriptions from Munsell Color Chart.	0
				oa.	inpie				STRATUS Environmental, inc.	

SOIL BOR	1401 Grand Avenue				Boring No.	MW-1R	Sheet:	2 of 3
Client	Haber C	Oil Company		Date	July 9, 2012			
Address	1401 Gr	rand Avenue		Drilling Co.	Gregg Drilling	rig typ	e: MARL Rhino	
	San Lea	andro, Califor	nia	Driller	Vince			
Project No.	2120-14	101-01		Method	Hollow Stem Auger/Direct Push	Hole Diameter	r: 8/3 inches	
Logged By:	Allan Du	udding	-	Sampler:	5 foot long x 2.5 inch diameter ac	cetate sample li	ners	
Well Pack	sand:	32 ft. to	44 ft.	Well Construction	Casing Material: Schedule 40	PVC	Screen Interval:	34 to 44 ft.
	bent.:	30 ft. to	32 ft.	_	Casing Diameter: 2 in.		Screen Slot Size:	0.020-in.
	grout:	0 ft. to	30 ft.	Depth to GW:	√ first encountered: 38 feet	bgs	VStatic:	

	Sample	Diam	Sar	mple	i i		1 5		
Туре	No.	Blow Count			Well Detai	Depth Is Scale	Lithologic Column	Descriptions of Materials and Conditions	PID (PPM)
						21 22	CL	Silty Clay, CL, dark yellowish brown (10YR 4/4), moist, medium plasticity, 70% clay, 30% silt.	
						23 24			-
S	MW-1R-25		1357			25 — 26			0
						27 28 		Clay with silt, CL, olive brown (2.5Y 4/3), medium plasticity, moist, 80% clay, 20% silt.	
S	MW-1R-30		1402			29 30 31			27.2
						32 33 34	SC	Clayey Sand, SC, olive (5Y 4/3), moist to dry, 70% fine to medium sand, 30% clay. Has the appearance of decomposing crystalline rock.	
S	MW-1R-35		1407			35 36 37			10.1
						38 39	∇	As above, moist to wet, greenish gray (GLEY1 5/5G).	
s	MW-1R-40		1411			40			0
					overy —— ample			Comments: Color descriptions from Munsell Color Chart.	
								STRATUS ENVIRONMENTAL, INC.	

Boring No. MW-1R Sheet: 3 of 3

Client	Haber Oil Company	Date	July 9, 2012		
Address	1401 Grand Avenue	Drilling Co.	Gregg Drilling rig type	: MARL Rhino	
	San Leandro, California	Driller	Vince		
Project No.	2120-1401-01	Method	Hollow Stem Auger/Direct Push Hole Diameter:	8/3 inches	
Logged By:	Allan Dudding	Sampler:	5 foot long x 2.5 inch diameter acetate sample lin	ers	
Well Pack	sand: 32 ft. to 44 ft.	Well Construction	Casing Material: Schedule 40 PVC	Screen Interval:	34 to 44 ft.
	bent.: 30 ft. to 32 ft.		Casing Diameter: 2 in.	Screen Slot Size:	0.020-in.
	grout: 0 ft. to 30 ft.	Depth to GW:	first encountered: 38 feet bgs	VStatic:	

	Sample		Sar	mnla					T
1				1	Well Details	Depth	Lithologic	Descriptions of Materials and October	PID
S	Sample No. MW-1R-45	Blow		Recov.	Well Details	Depth Scale	SC	Descriptions of Materials and Conditions Clayey Sand, SC, greenish gray (GLEY1 5/5G), wet, 70% fine to medium sand, 30% clay. Has the appearance of decomposing crystalline rock, with less weathering than above.	PID (PPM)
				~~~		54 55			
						56 57			
						58 59 60			
				Reco Sa	overy ———			Comments: Color descriptions from Munsell Color Chart.	
	-							STRATUS ENVIRONMENTAL, INC.	

Boring No. MW-2R

SOIL BOF	RING/WEI	L CONST	RUCTIO	N LOG	Boring No.	MW-2R	Sheet	: 1 of 3
Client	Haber C	il Company		Date	July 12, 2012			
Address	1401 Gr	and Avenue		Drilling Co.	Gregg Drilling	rig type	: MARL Rhino	
	San Lea	indro, Californ	nia	Driller	Vince			
Project No.	2120-14	01-01		Method	Hollow Stem Auger/Direct Push	Hole Diameter:	10/2 inches	
Logged By:	Allan Du	ıdding		Sampler:	4 foot long x 1.5 inch diameter ac	etate sample line		
Well Pack	sand:	32 ft. to	44 ft.	Well Construction	Casing Material: Schedule 40 F	PVC	Screen Interval:	34 to 44 ft.
	bent.:	30 ft. to	32 ft.	_	Casing Diameter: 4 in.		Screen Slot Size:	0.020-in.
	grout:	0 ft. to	30 ft.	Depth to GW	√ first encountered: 37 feet b	oas	V Static:	

	Sample	Plan	Sar	nple		* 1				
Туре		Blow Count		Recov.	Well	l Details	Depth Scale	Lithologic Column	Descriptions of Materials and Conditions	PID
							1	Concrete pavement at surface; boring hand cleared to 5 feet bgs.	(PPM)	
							_ 2	CL	Silty Clay, CL, black (10YR 2/1), moist, medium plasticity, 70% clay, 30% silt.	
							— — 3		The state of the s	
							 ₅			
							6			
							8			
							9			
s	MW-2R-10		0857				10		Silty Clay, CL, brown (10YR 4/3), moist, low plasticity, 60% clay, 40% silt.	0
							12			
							13	:		
							14			
S	MW-2R-15		0843				15			0
							16			
							17			
							18	ML	Clayey Silt, ML, dark yellowish brown (10YR 4/4), moist, low plasticity, 70% silt,	
							19		30% clay.	
s	MW-2R-20		0846				20			0
				Poo	ovon	,			Comments: Color descriptions from Munsell Color Chart.	
					overy ample					
									6777116	
									STRATUS ENVIRONMENTAL, INC.	

Boring No. MW-2R

Sheet: 2 of 3

Client	Haber C	Oil Com	pany			Date	July 12, 2012				
Address	1401 Gr	and Av	enue			Drilling Co.	Gregg Drilling rig	type: MARL Rhino			
	San Leandro, California					Driller	Vince				
Project No.	2120-1401-01					Method	Hollow Stem Auger/Direct Push Hole Diameter: 10/2 inches				
Logged By:	Allan Du	Allan Dudding				Sampler:	4 foot long x 1.5 inch diameter acetate sample	liners			
Well Pack	sand:	32	ft. to	44	ft.	Well Construction	Casing Material: Schedule 40 PVC	Screen Interval:	34 to 44 ft		
	bent.:	30	ft. to	32	ft.		Casing Diameter: 2 in.	Screen Slot Size:	0.020-in.		
	grout:	0	ft. to	30	ft.	Depth to GW:	√first encountered: 38 feet bgs	Static:			

	Sample	T	Sar	nple		1 1			
Туре	No.	Blow Count	Time	Recov.	Well Details	Depth S Scale	Lithologic Column	Descriptions of Materials and Conditions	PID (PPM)
						21 22	ML	Clayey Silt, ML, dark yellowish brown (10YR 4/4), moist, low plasticity, 70% silt, 30% clay.	,
						23 24			
S	MW-2R-25		0853			25 26		As above, dark greenish gray (GLEY1 4/5GY).	2.9
						27 28 29	SM	Silty Sand, SM, dark greenish gray (GLEY1 4/5GY), moist, 60% fine sand, 40% silt. silt.	
S	MW-2R-30		0859			30  31	SW	Well-graded Sand with gravel and fines, SW, dark greenish gray (GLEY1	13.8
						32 33		4/5GY), moist, 50% fine to coarse sand, 20% fine ot coarse gravel, 30% fines.	
S	MW-2R-35		0905			34		Silty Sand, SM, dark greenish gray (GLEY1 4/5GY), moist, possibly wet, 60% fine sand, 40% silt.	4.6
						36	$-\nabla$	Silty Gravel, GM, moist to wet, 50% fine gravel, 30% fine to coarse sand, 20% silt.	
						38		Sandy Silt, ML, dark greenish gray (GLEY1 4/5GY), moist, 60% silt, 40% fine sand.  Clayey Sand, SC, greenish gray (GLEY1 5/10GY), moist, 60% fine to medium	
s	MW-2R-40		0912	Reco	overy—	40		sand, 40% clay. Has the appearance of decomposing crystalline rock.  Comments: Color descriptions from Munsell Color Chart.	0
					mple			STRATUS ENVIRONMENTAL, INC.	

Boring No. MW-2R Sheet: 3 of 3

			· ·			
Client	Haber Oil Company	Date	July 12, 2012			
Address	1401 Grand Avenue	Drilling Co.	Gregg Drilling rig type: MARL Rhino			
	San Leandro, California	Driller	Vince			
Project No.	2120-1401-01	Method	Hollow Stem Auger/Direct Push Hole Diamete	er: 10/2 inches		
Logged By:	Allan Dudding	Sampler:	4 foot long x 1.5 inch diameter acetate sample lin	ners		
Well Pack	sand: 32 ft. to 44 ft.	Well Construction	Casing Material: Schedule 40 PVC	Screen Interval: 34 to 44 ft.		
	bent.: 30 ft. to 32 ft.	_	Casing Diameter: 2 in.	Screen Slot Size: 0.020-in.		
	grout: 0 ft. to 30 ft.	Depth to GW	: V first encountered: 38 feet bgs	Static:		

	Commis	Ι		T : : :		I		
			T	Well Dotails	Depth	Lithologic	Produktiva - SMA state (1990)	PID
S	Sample No.  MW-4R-44	Blow	Recov.	Well Details	Depth Scale  41 42 43 44 45 46 47 48 49 50 50 51	Lithologic Column SC	Descriptions of Materials and Conditions  Clayey Sand, SC, greenish gray (GLEY1 5/10GY), moist, 60% fine to medium sand, 40% clay. Has the appearance of decomposing crystalline rock.	PID (PPM)
					51 52 53 54 55 56 57 58 59 60			
				overy			Comments: Color descriptions from Munsell Color Chart.  STRATUS ENVIRONMENTAL, INC.	

Boring No. MW-9

Sheet: 1 of 3

Client	Haber Oil Company	Date	July 11, 2012		
Address	1401 Grand Avenue	Drilling Co.	Gregg Drilling rig ty	pe: MARL Rhino	
	San Leandro, California	Driller	Vince		
Project No.	2120-1401-01	Method	Hollow Stem Auger` Hole Diamete	er: 8 inches	
Logged By:	Allan Dudding	Sampler:	18 inch long x 2 inch diameter split spoon		
Well Pack	sand: 35 ft. to 47 ft.	Well Construction	Casing Material: Schedule 40 PVC	Screen Interval:	37 to 47 ft.
	bent.: 33 ft. to 35 ft.	_	Casing Diameter: 2 in.	Screen Slot Size:	0.020-in.
	grout: 0 ft. to 33 ft.	_ Depth to GW:	√ first encountered: 44 feet bgs	VStatic:	

	Sample	Blow	Sar	nple			Depth	Litholas'-		T	
Туре	No.	Count	Time	Recov.	Well	Details	Scale	Lithologic Column	Descriptions of Materials and Conditions	PID (PPM)	
								1 2 3		Asphalt pavement at surface; boring hand cleared to 5 feet bgs.	
S	MW-9-6		0856	60%			4 5 6	CL	Silty Clay, CL, very dark grayish brown (10YR 3/2), medium plasticity, moist, 70% clay, 30% silt.	0	
S	MW-9-11		0859	50%			8 9 10 11 12		Same as above.	0	
S	MW-9-16		0901				13 14 15	SM	Silty Sand, SM, dark yellowish brown (10YR 4/4), moist, 80% fine sand, 20% silt.	0	
							17 18 19 20				
				Red Si	covery				Comments: Color descriptions from Munsell Color Chart.  STRATUS  ENVIRONMENTAL, INC.		

Boring No. MW-9

Sheet: 2 of 3

Client	Haber Oil Company	Date	July 11, 2012		
Address	1401 Grand Avenue	Drilling Co.	Gregg Drilling rig typ	e: MARL Rhino	
	San Leandro, California	Driller	Vince		
Project No.	2120-1401-01	Method	Hollow Stem Auger` Hole Diamete	r: 8 inches	
Logged By:	Allan Dudding	Sampler:	18 inch long x 2 inch diameter split spoon		
Well Pack	sand: 35 ft. to 47 ft.	Well Construction	Casing Material: Schedule 40 PVC	Screen Interval:	37 to 47 ft.
	bent.: 33 ft. to 35 ft.		Casing Diameter: 2 in.	Screen Slot Size:	0.020-in.
	grout: 0 ft. to 33 ft.	Depth to GW:	first encountered: 44 feet bgs	VStatic:	

	Sample		Sai	mple	1					Т
Туре		Blow Count		Recov.	W	ell Details	Depth Scale	Lithologic Column	Descriptions of Materials and Conditions	PID
S	MW-9-21		0906		ile.		21	SM	Silty Sand, SM, dark brown (10YR 3/3), moist, 50% fine sand, 50% silt.	(PPM) 2.8
							22 23			
							24 25			
S	MW-9-26		0909	50%			26 27	CL	Silty Clay with sand, CL, dark brown (10YR 3/3), moist, low plasticity, 50% clay 30% silt, 20% fine sand.	NS
					.01		28 29	are a service a		
S	MW-9-31		0912	67%			31	GC	Clayey Gravel, GC, dark grayish brown (10YR 3/2), moist, 70% fine gravel, 30% clay.	0
							33 34	and the second		
S	MW-9-36		0922	100%			35 36 37	CL	Silty Clay, CL, dark yellowish brown (10YR 3/4), moist, medium plasticity, 70% clay, 30% silt, trace fine to medium sand.	0
							38 39 40			
				Red Sa	ove amp				Comments: Color descriptions from Munsell Color Chart.	-
									STRATUS ENVIRONMENTAL, INC.	

SOIL BOR	ING/WELL CONSTRUCTION	N LOG	Boring No. MW-9	Sheet: 3 of 3
Client	Haber Oil Company	Date	July 11, 2012	
Address	1401 Grand Avenue	Drilling Co.	Gregg Drilling rig ty	pe: MARL Rhino
	San Leandro, California	Driller	Vince	
Project No.	2120-1401-01	Method	Hollow Stem Auger` Hole Diamete	er: 8 inches
Logged By:	Allan Dudding	Sampler:	18 inch long x 2 inch diameter split spoon	
Well Pack	sand: 35 ft. to 47 ft.	Well Construction	Casing Material: Schedule 40 PVC	Screen Interval: 37 to 47 ft.
	bent.: 33 ft. to 35 ft.		Casing Diameter: 2 in.	Screen Slot Size: 0.020-in.
	grout: 0 ft. to 33 ft.	Depth to GW	: V first encountered: 44 feet bgs	VStatic:

	Sample		Sar	nple					1
Туре		Blow Count		Recov.	Well Details	Depth Scale	Lithologic Column	Descriptions of Materials and Constitutions	PID
S	MW-9-41		0928			41	CL	Descriptions of Materials and Conditions  Silty Clay, CL, dark yellowish brown (10YR 3/4), moist, medium plasticity, 70% clay, 30% silt, trace fine to medium sand.	( <b>PPM</b> )
S	MW-9-45		0931	50%		44 45	GP	Gravel, not logged, fine, wet.	0
S	MW-9-48		0935	100%		46 47 48 49	SW	Well-graded Sand, SW, dark yellowish brown (10YR 4/4), wet, 90% fine to coarse sand, 10% silt, trace fine gravel.	0
						50 51 52			
						53 54 54			
						55 56 57			
						58 59 60			
					overy imple			Comments: Color descriptions from Munsell Color Chart.	
								STRATUS ENVIRONMENTAL, INC.	

Boring No. MW-10

Sheet: 1 of 3

Client	Haber Oil Company	Date	July 11, 2012	
Address	1401 Grand Avenue	Drilling Co.	Gregg Drilling rig type	e: MARL Rhino
	San Leandro, California	Driller	Vince	
Project No.	2120-1401-01	Method	Hollow Stem Auger` Hole Diameter:	: 8 inches
Logged By:	Allan Dudding	Sampler:	18 inch long x 2 inch diameter split spoon	
Well Pack	sand: 33 ft. to 45 ft.	Well Construction	Casing Material: Schedule 40 PVC	Screen Interval: 35 to 45 ft.
	bent.: 31 ft. to 33 ft.		Casing Diameter: 2 in.	Screen Slot Size: 0.020-in.
	grout: 0 ft. to 31 ft.	Depth to GW:	first encountered: 44 feet bgs	VStatic:

	Sample	Blow	Sar	nple			Depth	Linhata		
Туре	No.	Count	Time	Recov.	Well	Details	Scale	Lithologic Column	Descriptions of Materials and Conditions	PID (PPM)
									Sod at surface; boring hand cleared to 5 feet bgs.	(PPIVI
		ļ		.  <u></u>		- 36	1			
					.		2			
							3			
		<del> </del> -					3			
							4			
							_			<del> </del>
		ļ		ļ			5			
								8.41		T
s	MW-10-6		1233	100%			6	ML	Clayey Silt, ML, dark brown (10YR 3/3), moist, low to non-plastic, 70% silt, 30% clay, trace fine sand.	0
			1200	100%		*   <b>*</b>	7		ciay, trace fine sand.	
				<del> </del> -			_7			<b></b>
							_8	معمور		
l							_			
							9	بمعمعه		
							10			ļ
							11	SP	Poorly-graded Sand, SP, light yellowish brown (10YR 6/4), moist, 90% fine	
S	MW-10-11		1236	100%			<b>.</b>	Oi.	sand, 10% silt.	0
							12			
							13	المعموم		
								, paranar		
+							14	, e ^{r.}		ļ
							15			
										}
							16	GP	Poorly-graded Gravel, GP, dark brown (10YR 3/3), moist, 60% fine gravel, 30%	0
S	MW-10-16		1240	100%					fine to coarse sand, 10% fines.	
						la S	17			
							18	مممممر		
							19	100°		
							_ '	NAI		
						32.95	20	ML		
				Ren	overy	,			Comments: Color descriptions from Munsell Color Chart.	
				Sa	ample	!				
					, -					
									STRATUS	
									ENVIRONMENTAL, INC.	
								1		
								ļ		ĺ

Boring No. MW-10

Sheet: 2 of 3

Client	Haber Oil Company	Date	July 11, 2012	
Address	1401 Grand Avenue	Drilling Co.	Gregg Drilling rig type	e: MARL Rhino
	San Leandro, California	Driller	Vince	
Project No.	2120-1401-01	Method	Hollow Stem Auger` Hole Diameter	: 8 inches
Logged By:	Allan Dudding	Sampler:	18 inch long x 2 inch diameter split spoon	
Well Pack	sand: 33 ft. to 45 ft.	Well Construction	Casing Material: Schedule 40 PVC	Screen Interval: 35 to 45 ft.
	bent.: 31 ft. to 33 ft.		Casing Diameter: 2 in.	Screen Slot Size: 0.020-in.
	grout: 0 ft. to 31 ft.	Depth to GW:	√ first encountered: 36 feet bgs	VStatic:



Boring No. MW-10

Sheet: 3 of 3

Client	Haber Oil Company					Date	July 11, 2012				
Address	1401 Grand Avenue			Drilling Co.	Gregg Drilling		rig type:	MARL Rhino			
	San Lea	San Leandro, California				Driller	Vince				
Project No.	2120-14	2120-1401-01				Method	Hollow Stem Auger	r` H	ole Diameter:	8 inches	
Logged By:	Allan Du	Allan Dudding				Sampler:	18 inch long x 2 inc	ch diameter split s	poon		
Well Pack	sand:	33	ft. to	45	ft.	Well Construction	Casing Material:	Schedule 40 PV	3	Screen Interval:	35 to 45 ft
	bent.:	31	ft. to	33	ft.		Casing Diameter:	2 in.		Screen Slot Size:	0.020-in.
	grout:	0	ft. to	31	ft.	Depth to GW:	first encounter	ed: 44 feet bgs		VStatic:	

	Sample	Blow	Sar	nple					1
Туре	No.	Count			Well Details	Depth Scale	Lithologic Column	Descriptions of Materials and Conditions	PID (PPM)
S	MW-10-45			100%	Well Details	Scale 414243434445464748495051525354555657	Column	Poorly-graded Gravel, GP, dark brown (10YR 3/3), moist to wet, angular as if crushed, 100% gravel, trace fines.	0 0
						58			
						59			
		<u>-</u>		Recc Sa	overymple	60		Comments: Color descriptions from Munsell Color Chart.  STRATUS ENVIRONMENTAL, INC.	

Boring No. VE-1

Sheet: 1 of 2

Client	Haber Oil Company	Date	July 9, 2012		
Address	1401 Grand Avenue	Drilling Co.	Gregg Drilling rig typ	e: MARL Rhino	
	San Leandro, California	Driller	Vince		
Project No.	2120-1401-01	Method	Hollow Stem Auger/Direct Push Hole Diamete	r: 8/3 inches	
Logged By:	Allan Dudding	Sampler:	5 foot long x 2.5 inch diameter acetate sample li	ners	
Well Pack	sand: 13 ft. to 30 ft.	Well Construction	Casing Material: Schedule 40 PVC	Screen Interval: 15 to 30 ft.	
	bent.: 11 ft. to 13 ft.		Casing Diameter: 2 in.	Screen Slot Size: 0.020-in.	
	grout: 0 ft. to 11 ft.	Depth to GW:	first encountered: feet bgs	Static:	

	Sample	Diam	Sar	mple					
Туре		Blow Count		Recov.	Well Detail	Depth Is Scale	Lithologic Column	Descriptions of Materials and Conditions	PID
								Concrete pavement at surface; boring hand cleared to 5 feet bgs.	(PPM)
				<b>.</b>		√ <u> </u>			
							CL	Clay with ailt Cl. your dark heavy (10VD 2/2) reading plants (1.000)	
				·		2	CL	Clay with silt, CL, very dark brown (10YR 2/2), medium plasticity, moist, 80% clay, 20% silt.	
						3			
ĺ									
				<del> </del>		_4			
				1					
		ļ		ļ		6			
						<b>-</b> ,			
		<del> </del>							
						8			
				ļ		9			
s	VE-1-10		1448			10		As above, dark yellowish brown (10YR 3/4)	0
				İ	**			(10.11.07.1)	
						11			
					0 B	12			
						- 12			
						13			
						14	ML	Clayey Silt, ML, dark yellowish brown (10YR 4/4), low plasticity, moist, 60% silt,	
s	VE-1-15		1451			15	IVIL	40% clay.	0
									+
				<b></b>		16			
l						17			
						- ''			
						18			
				ŀ					
						19			
s	VE-1-20		1454			20			0
				Rec	overy	_		Comments: Color descriptions from Munsell Color Chart.	
				Sa	ample				
								GTDATILE	
								STRATUS ENVIRONMENTAL, INC.	
								ENVIRONIVIENTAL, INC.	

Boring No. VE-1

Sheet: 2 of 2

Client	Haber Oil Company	Date	July 9, 2012					
Address	1401 Grand Avenue	Drilling Co.	Drilling Co. Gregg Drilling rig type: MARL Rhino					
	San Leandro, California	Driller	Vince					
Project No.	2120-1401-01	Method	Hollow Stem Auger/Direct Push Hole Diame	ter: 8/3 inches				
Logged By:	Allan Dudding	Sampler:	5 foot long x 2.5 inch diameter acetate sample	e liners				
Well Pack	sand: 13 ft. to 30 ft.	Well Construction	Casing Material: Schedule 40 PVC	Screen Interval:	15 to 30 ft.			
	bent.: 11 ft. to 13 ft.		Casing Diameter: 2 in.	Screen Slot Size:	0.020-in.			
	grout: 0 ft. to 11 ft.	Depth to GW:	first encountered: feet bgs	▼Static:				



Boring No. VE-2

Sheet: 1 of 2

Client	Haber Oil Company	Date	July 12, 2012					
Address	1401 Grand Avenue	Drilling Co.	Gregg Drilling rig typ	rig type: MARL Rhino				
	San Leandro, California	Driller	Vince					
Project No.	2120-1401-01	Method	Hollow Stem Auger/Direct Push Hole Diameter: 8/2 inches					
Logged By:	Allan Dudding	Sampler:	4 foot long x 1.5 inch diameter acetate sample liners					
Well Pack	sand: 13 ft. to 30 ft.	Well Construction	Casing Material: Schedule 40 PVC	Screen Interval: 15 to 30 ft				
	bent.: 11 ft. to 13 ft.		Casing Diameter: 2 in.	Screen Slot Size: 0.020-in.				
	grout: 0 ft. to 11 ft.	Depth to GW:	√ first encountered: feet bgs	VStatic:				

	Sample		Come-1-				T					
	1	Blow	3		1	Depth	Lithologic					
Туре	No.	Count	Time	Recov.	Well Details	Scale	Column	Descriptions of Materials and Conditions  Concrete pavement at surface; boring hand cleared to 5 feet bgs.	(PPM)			
						1		Concrete pavernent at surface, boiling fland cleared to 5 feet pgs.				
	<b></b>			ļ		2	CL	Silty Clay, CL, very dark grayish brown (10YR 3/2), moist, medium plasticity,				
								70% clay, 30% silt.				
		+		ļ		3						
						4						
						_						
		+				5						
						— 6						
		-				~						
		ļ		ļ		7						
		<del> </del>		<b></b>		8						
						9						
	\/E 0 . 6		44==			10 m		As above, brown (10YR 4/3), low plasticity, 60% clay, 40% silt.				
S	VE-2-10		1156			10			0			
						— ₁₁						
		<b>†</b>				- ' ·						
		ļl				12						
		<del> </del>				13	/					
						14						
							/		11			
S	VE-2-15	<del> </del>	1200			15	ML	Clayey Silt, ML, dark yellowish brown (10YR 4/4), moist, low plasticity, 60% silt, 40% silt.	0			
						16		40% Sitt.				
						- "						
		ļ				17						
						18						
						19						
S	VE-2-20		1204			20			0			
								Comments: Color descriptions from Munsell Color Chart.				
					overy ——			The state of the s				
				Sa	ample							
								STRATUS				
								ENVIRONMENTAL, INC.				
									•			

Boring No. VE-2

SOIL BOR	ING/WELL CONSTRUCTION	N LOG	Boring No. VE-2	Sheet: 2 of 2					
Client	Haber Oil Company	Date	July 12, 2012						
Address	1401 Grand Avenue	Drilling Co.	Gregg Drilling rig	type: MARL Rhino					
	San Leandro, California	Driller	Vince						
Project No.	2120-1401-01	Method	Hollow Stem Auger/Direct Push Hole Diameter: 8/2 inches 4 foot long x 1.5 inch diameter acetate sample liners						
Logged By:	Allan Dudding	Sampler:							
Well Pack	sand: 13 ft. to 30 ft.	Well Construction	Casing Material: Schedule 40 PVC	Screen Interval: 15 to 30 ft.					
	bent.: 11 ft. to 13 ft.	-	Casing Diameter: 2 in.	Screen Slot Size: 0.020-in.					
	grout: 0 ft. to 11 ft.	Depth to GW	: V first encountered: feet bgs	V Static:					

Sample		Τ	Sample					T					
Туре		Blow Count		Recov.	Well	Detai	Depth is Scale	Lithologic Column	Descriptions of Materials and Conditions	PID (PPM)			
							21 22	ML	Clayey Silt, ML, dark yellowish brown (10YR 4/4), moist, low plasticity, 60% silt, 30% clay, 10% fine sand.				
							23 24						
S	VE-2-25		1211				25		As above, very dark gray (5Y 3/1).	0			
							27 28	SM	Silty Sand, SM, very dark gray (5Y 3/1), moist, 60% fine sand, 40% silt.				
S	VE-2-30		1215				29						
					-:		31	sw	Well-graded Sand, SW, very dark gray (5Y 3/1), moist to dry, 70% fine to coarse sand, 20% fine gravel, 10% silt.	2.1			
							32 33						
							34 35						
							36 37						
							38 39						
							40		Comments: Color descriptions from Munsell Color Chart.				
					overy imple								
									STRATUS ENVIRONMENTAL, INC.				

### APPENDIX E

# FIELD DATA SHEETS FROM WELL DEVELOPMENT AND SAMPLING



Sampled By:

Project Number Haber Oll

Project PM Trend

		Water Level	Data		T T	Dura	e Volume C	- Vian	VIOD IN								
	I	Water Lever	T	T	1	<u> </u>	Purge	Method		Sample Record			Field Data				
Well ID	Time	Depth to Product (feet)	Depth to Water (feet)	Total Depth (feet)	Water Column (feet)	Diamater (inches)	Multiplier	/ Dcasing volumes (gallons	Actual Water Purged (gallons)	No Purge	Bailer	Pump	Other	DTW at sample time (feet)	Sample I.D.	Sample Time	DO (mg/L)
mw a	0345		40.50	46.0	5.5	て	.16	10	5 AY		X				0		
mulo	0410		38.90	44.40	5.2	Z	.16	10	15		X				0		
	2 0445			43.70		Н	165		20 DIG		火	v			0		
	2510			43.65											0		
VIAV	7010		2100	1000	7.19	Z	.16	7	5 DPY		X				0		
															0		
															0		
	2		// -	<i>A</i> 3											0		
	Surge	- Wel	15 WI	th Bri	lev										0		
	All me	e115 I	ook	SPFU	BOX	CV0	n)								0		
															0		
		***************************************													0		
															0		
															0		
															0		
															0	IPPATION DA	

Multiplier 2'' = 0.5, 3'' = 1.0, 4'' = 2.0, 6'' = 4.4

Please refer to groundwater sampling field procedures pH/Conductivity/temperature Meter - Oakton Model )PC-10 DO Meter - Oakton 300 Series (DO is always mesured before purge)

CALIBRATION DATE



Site Address	1401 Grand Avenue	
City	San Leandro	
Sampled by:	Allan Dudding	
Signature	Carda	

Site Number	Haber Oil	
Project Number	2120-1401-01	
Project PM_	Steve Carter	
DATE_	4/9/n	

		N	later Level I	Data			Purge \	olume Cal	culations			Purae	Metho				
,	Well ID	Time	Depth to Preduct (feet)	Depth to Water (feet)	Total Depth (feet)	Water column (feet)	Diameter (inches)	Multiplier	3 casing volumes (gallons)	Actual water purged (gallons)	No Purge		Pump	DTW at sample time	Sample Rec	: Sample Time	Field Dat DO (mg/L)
	MW-18 MW-28	1642	39.94		44	4.06	2	~5 M(1.0)	and a	3,6 10		义 v		(feet)	1- NW-19	1853	
ii -	MW-7 MW-4	16496	38./2.					100 .0	9.80	10		X			WM-58	1945	
- 11	MW-5 MW-6	1685	39.76						-					ŢŹ.			
L	NW-4	1710	41.20											'			
L	NW-9	1702	40171		47	6,29	5	<b>.</b> 6	3.14	4		X			MW-0	1744	
۲	4410				47	7.92	2	الأ	3 86	4		×		·	mwlo	1874	
L	4	ALD	TP B	9CHal	yDC	W)											
	·	· ·															
_																	
								·									

Multiplie	r			
<b>"</b> = 0.5	3" = 1.0	4" = 2.0	6" = 4.4	1

Please refer to groundwater sampling field procedures pH/Conductivity/temperature Meter - Oakton Model PC-10 DO Meter - Oakton 300 Series (DO is always measured before purge)

	Page 1
	CALIBRATION DATE
рН	
Conductivity	
DO	
•	

# APPENDIX F SURVEYOR'S MAP



# Monitoring Well Exhibit Prepared For: Stratus Environmental

DESC.	NORTHING	EASTING	LATITUDE	LONGITUDE	EL. PVC	EL. RIM
MW-1* MW-2* MW-3 MW-4	2091785. 3 2091794. 3 2091833. 6 2091779. 3	6087738. 3 6087702. 5 6087734. 2 6087689. 1	37. 7282534 37. 7282762 37. 7283858 37. 7282344	-122. 1388214 -122. 1389459 -122. 1388387 -122. 1389912	90. 70 89. 29 90. 15 88. 88	91. 20 89. 61 90. 53 89. 32
MW-5 MW-6 MW-7 MW-8	2091800, 5 2091824, 0 2091959, 3 2091896, 6	6087771. 1 6087630. 3 6087722. 4 6087774. 8	37. 7282966 37. 7283545 37. 7287303 37. 7285609	-122. 1387090 -122. 1391971 -122. 1388868 -122. 1387020	91. 79 86. 73 89. 69 92. 41	92. 44 87. 09 90. 15 92. 67
*MV-1 AND M	W-2 DESTROYE	D.				
PDINTS SURVI	EYED ON 7-17-	-12:				
MW-1R MW-2R MW-9 MW-10	2091802. 0 2091795. 7 2091913. 9 2091880. 0	6087739. 2 6087700. 7 6087703. 1 6087639. 4	37, 7282994 37, 7282802 37, 7286047 37, 7285087	-122. 1388193 -122. 1389520 -122. 1389508 -122. 1391690	90. 07 88. 81 89. 06 87. 01**	90, 63 89, 36 89, 35 87, 78
VE-1 VE-2	2091799, 6 2091814, 5	6087747. 0 6087718. 3	37. 7282931 37. 7283326	-122. 1387923 -122. 1388923	90. 67 89. 49	91. 01 89. 89
B-11	2091776. 2	6087697. 0	37. 7282264	-122. 1389636		
CPT-1 CPT-2	2091784. 7 2091861. 1	6087692. 0 6087648. 6	37. 7282496 37. 7284572	-122. 1389815 -122. 1391360		
**TOP OF CAL	P (UNABLE TO	TAKE CAP OF	F).			

BASIS OF COORDINATES AND ELEVATIONS:

COORDINATES ARE CALIFORNIA STATE PLANE ZONE 3 COORDINATES FROM GPS OBSERVATIONS USING CSDS VIRTUAL SURVEY NETWORK.

COORDINATE DATUM IS NAD 83.

REFERENCE GEOID IS GEOIDO3.

VERTICAL DATUM IS NAVD 88 FROM GPS OBSERVATIONS.



Former Haber Oil Station 1401 Grand Ave. San Leandro Alameda County California



1255 Starboard Drive West Sacramento California 95691 (916) 372-8124 mark@morrowsurveying.com Date: June, 2011 Field: 6-15-11 Scale: 1"=40' Sheet 1 of 1 Revised: 7-26-12 Field Book: MW-53,57 Dwg. No. 7502-107 MAM

### APPENDIX G

## CERTIFIED ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION



255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

### ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Attn: Steve Carter

Phone: (530) 676-6008

Fax: (530) 676-6005 Date Received: 07/03/12

Job: 2120-1401-1/Haber Oil

Total Petroleum Hydrocarbons - Extractable (TPH-E) EPA Method SW8015B Total Petroleum Hydrocarbons - Purgeable (TPH-P) EPA Method SW8015B Volatile Organic Compounds (VOCs) EPA Method SW8260B

		Parameter	Concent	tration	Reporting	Date	Date
		1 di diliotti	Concent	iration	Limit	Extracted	Analyzed
Client ID:	CPT-1-56-W						
Lab ID:	STR12070345-01A	TPH-E (DRO), Silica Gel	NID	v	100 /		
Date Sample	1 06/29/12 16:09	TPH-E (ORO), Silica Gel	ND ND	X	100 μg/L	07/04/12	07/04/12
•		TPH-P (GRO)	ND ND		500 μg/L 50 μg/L	07/04/12	07/04/12
Client ID:	CPT-1-66-W	, ,	(AD		30 μg/L	07/10/12	07/10/12
Lab ID:	STR12070345-02A	TIDIA D. GODO CO.					
	· · · · · · ·	TPH-E (DRO), Silica Gel	ND		50 μg/L	07/04/12	07/05/12
Date Samplex	1 06/29/12 16:52	TPH-E (ORO), Silica Gel	ND		500 μg/L	07/04/12	07/05/12
		TPH-P (GRO)	ND		50 μg/L	07/10/12	07/10/12
Client ID:	CPT-1-76-W						
Lab ID:	STR12070345-03A	TPH-E (DRO), Silica Gel	ND	X	100 μg/L	07/04/12	07/04/12
Date Sampleo	06/29/12 17:55	TPH-E (ORO), Silica Gel	ND		500 μg/L	07/04/12	07/04/12
		TPH-P (GRO)	ND		50 μg/L	07/10/12	07/10/12
Client ID:	CPT-1-80-W				, ,		
Lab ID:	STR12070345-04A	TPH-E (DRO), Silica Gel	ND		"		
Date Sampled	06/29/12 18:36	TPH-E (ORO), Silica Gel	ND ND		50 μg/L	07/04/12	07/05/12
•		TPH-P (GRO)	ND ND	44	500 μg/L	07/04/12	07/05/12
Client ID:	CPT-2-48-W	,	110		50 μg/L	07/10/12	07/10/12
Lab ID:							
	STR12070345-05A	TPH-E (DRO), Silica Gel	ND		50 μg/L	07/04/12	07/04/12
Date Sampled	06/28/12 14:30	TPH-E (ORO), Silica Gel	ND		500 μg/L	07/04/12	07/04/12
		TPH-P (GRO)	ND		50 μg/L	07/10/12	07/10/12
Client ID:	CPT-2-58-W						
Lab ID:	STR12070345-06A	TPH-E (DRO), Silica Gel	ND	X	100 μg/L	07/04/12	07/04/12
Date Sampled	06/28/12 15:11	TPH-E (ORO), Silica Gel	ND		500 μg/L	07/04/12	07/04/12
		TPH-P (GRO)	ND		50 μg/L	07/10/12	07/10/12
Client ID:	CPT-2-68-W				, 0		0.7.107.12
Lab ID:	STR12070345-07A	TPH-E (DRO), Silica Gel	ND		40. (7		
Date Sampled	06/28/12 15:59	TPH-E (ORO), Silica Gel	ND ND		50 μg/L	07/04/12	07/05/12
•		TPH-P (GRO)	ND		500 μg/L 50 μg/L	07/04/12 07/10/12	07/05/12
Client ID:	CPT-2-85-W		1417		30 μg/L	07/10/12	07/10/12
Lab ID:	STR12070345-08A	The state of the s					
		TPH-E (DRO), Silica Gel	ND	X	100 μg/L	07/04/12	07/04/12
Date Sampled	06/28/12 13:36	TPH-E (ORO), Silica Gel	ND		500 μg/L	07/04/12	07/04/12
<b>~</b>		TPH-P (GRO)	ND		50 μg/L	07/10/12	07/10/12
Client ID:	CPT-1-10-S						
Lab ID:	STR12070345-09A	TPH-E (DRO), Silica Gel	ND		5,000 μg/Kg	07/04/12	07/05/12
Date Sampled	06/29/12 09:48	TPH-E (ORO), Silica Gel	ND		10,000 μg/Kg	07/04/12	07/05/12
		TPH-P (GRO)	ND		1,000 μg/Kg	07/10/12	07/11/12
					, , , ,		- // /



255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID:	CPT-1-20-S					
Lab ID:	STR12070345-10A	TPH E (DRO) Gir., C.1	3.000			
	d 06/29/12 09:56	TPH-E (DRO), Silica Gel TPH-E (ORO), Silica Gel	ND	5,000 μg/Kg	07/04/12	07/05/12
Date Sample	1 00/27/12 09:50	TPH-P (GRO)	ND	10,000 μg/Kg	07/04/12	07/05/12
-		1111-F (GRO)	ND	1,000 μg/Kg	07/10/12	07/11/12
Client ID:	CPT-1-30-S					
Lab ID:	STR12070345-11A	TPH-E (DRO), Silica Gel	ND	5,000 µg/Kg	07/04/12	07/05/12
Date Sampleo	1 06/29/12 10:07	TPH-E (ORO), Silica Gel	ND	10,000 μg/Kg	07/04/12	07/05/12
		TPH-P (GRO)	8,400	1,000 µg/Kg	07/10/12	07/11/12
Client ID:	CPT-1-40-S					
Lab ID:	STR12070345-12A	TPH-E (DRO), Silica Gel	ND	5.000 . 77	07/04/10	0.00.00.00
Date Sampled	1 06/29/12 10:24	TPH-E (ORO), Silica Gel	ND	5,000 μg/Kg	07/04/12	07/05/12
•		TPH-P (GRO)	ND	10,000 μg/Kg 1,000 μg/Kg	07/04/12	07/05/12
Client ID:	CDC 1 #0 C	(3.32)	ND	1,000 μg/Kg	07/10/12	07/11/12
Lab ID:	CPT-1-50-S					
	STR12070345-13A	TPH-E (DRO), Silica Gel	ND	5,000 μg/ <b>K</b> g	07/04/12	07/05/12
Date Sampled	06/29/12 11:06	TPH-E (ORO), Silica Gel	ND	10,000 μg/Kg	07/04/12	07/05/12
		TPH-P (GRO)	ND	1,000 μg/Kg	07/10/12	07/11/12
Client ID:	CPT-1-60-S					
Lab ID:	STR12070345-14A	TPH-E (DRO), Silica Gel	ND	5,000 µg/Kg	07/04/12	07/05/12
Date Sampled	06/29/12 11:31	TPH-E (ORO), Silica Gel	ND	10,000 μg/Kg	07/04/12	07/05/12
		TPH-P (GRO)	ND	1,000 μg/Kg	07/10/12	07/11/12
Client ID:	CPT-1-70-S			-7	0 77 10. 12	07/11/12
Lab ID:	STR12070345-15A	TPH-E (DRO), Silica Gel				
	06/29/12 12:16	TPH-E (ORO), Silica Gel	ND	5,000 μg/Kg	07/04/12	07/05/12
- are sampred	00/25/12 12.10	TPH-P (GRO)	ND	10,000 μg/Kg	07/04/12	07/05/12
Off in		III-I (GKO)	ND	1,000 µg/Kg	07/10/12	07/11/12
Client ID:	CPT-1-80-S					
Lab ID:	STR12070345-16A	TPH-E (DRO), Silica Gel	ND	5,000 µg/Kg	07/04/12	07/06/12
Date Sampled	06/29/12 13:49	TPH-E (ORO), Silica Gel	ND	10,000 µg/Kg	07/04/12	07/06/12
*		TPH-P (GRO)	ND	1,000 µg/Kg	07/10/12	07/11/12
Client ID:	CPT-1-90-S					
Lab ID:	STR12070345-17A	TPH-E (DRO), Silica Gel	ND	£ 000 = 07 -	07/04/10	0.000
Date Sampled	06/29/12 14:33	TPH-E (ORO), Silica Gel	ND ND	5,000 μg/Kg 10,000 μg/Kg	07/04/12	07/06/12
-		TPH-P (GRO)	ND	10,000 µg/Kg 1,000 µg/Kg	07/04/12 07/10/12	07/06/12
Client ID:	CPT-2-40-S		.,_	1,000 μg/kg	07/10/12	07/11/12
Lab ID:	STR12070345-18A	TRY D (CD C)				
	06/28/12 10:48	TPH-P (GRO)	ND	1,000 μg/Kg	07/10/12	07/11/12
Date Sampled	00/28/12 10:48	Tertiary Butyl Alcohol (TBA)	ND	500 μg/Kg	07/10/12	07/11/12
		Methyl tert-butyl ether (MTBE)	ND	5.0 μg/Kg	07/10/12	07/11/12
		Di-isopropyl Ether (DIPE) Ethyl Tertiary Butyl Ether (ETBE)	ND	20 μg/Kg	07/10/12	07/11/12
		1,2-Dichloroethane	ND ND	20 μg/Kg	07/10/12	07/11/12
		Benzene	ND ND	20 μg/Kg	07/10/12	07/11/12
		Tertiary Amyl Methyl Ether (TAME)	ND ND	5.0 μg/Kg	07/10/12	07/11/12
		Toluene Toluene	ND	20 μg/Kg	07/10/12	07/11/12
		Ethylbenzene	ND	5.0 μg/Kg 5.0 μg/Kg	07/10/12	07/11/12
		m,p-Xylene	ND ND	5.0 μg/Kg 5.0 μg/Kg	07/10/12 07/10/12	07/11/12
		o-Xylene	ND	5.0 μg/Kg	07/10/12	07/11/12 07/11/12
		1,2-Dibromo-3-chloropropanc (DBCP)	ND	5.0 μg/Kg 60 μg/Kg	07/10/12	07/11/12
			-	~ PB # B	07/10/12	07/11/12



255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID:	CPT-2-50-S					•
Lab ID:	STR12070345-19A	TPH-P (GRO)	M	1,000 077	05/10/10	
Date Sample	d 06/28/12 11:13	Tertiary Butyl Alcohol (TBA)	ND ND	1,000 µg/Kg	07/10/12	07/11/12
•		Methyl tert-butyl ether (MTBE)	ND	500 μg/Kg 5.0 μg/Kg	07/10/12	07/11/12
		Di-isopropyl Ether (DIPE)	ND	3.0 μg/Kg 20 μg/Kg	07/10/12 07/10/12	07/11/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND	20 µg/Kg 20 µg/Kg	07/10/12	07/11/12
		1,2-Dichloroethane	ND	20 µg/Kg 20 µg/Kg	07/10/12	07/11/12
		Benzene	ND	20 μg/Kg 5.0 μg/Kg	07/10/12	07/11/12
		Tertiary Amyl Methyl Ether (TAME)	ND	20 µg/Kg	07/10/12	07/11/12
		Toluene	ND	5.0 µg/Kg	07/10/12	07/11/12
		Ethylbenzene	ND	5.0 μg/Kg 5.0 μg/Kg		07/11/12
		m,p-Xylene	ND	5.0 μg/Kg 5.0 μg/Kg	07/10/12 07/10/12	07/11/12
		o-Xylene	ND	5.0 μg/Kg	07/10/12	07/11/12 07/11/12
		1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0 μg/Kg 60 μg/Kg	07/10/12	07/11/12
Client ID:	CPT-2-60-S	(2201)		ου μεγκε	07/10/12	07/11/12
Lab ID:						
	STR12070345-20A	TPH-P (GRO)	ND	1,000 µg/Kg	07/10/12	07/11/12
Date Sampled	1 06/28/12 11:42	Tertiary Butyl Alcohol (TBA)	ND	500 μg/Kg	07/10/12	07/11/12
		Methyl tert-butyl ether (MTBE)	ND	5.0 μ <b>g/K</b> g	07/10/12	07/11/12
		Di-isopropyl Ether (DIPE)	ND	20 μg/Kg	07/10/12	07/11/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND	20 μg/Kg	07/10/12	07/11/12
		1,2-Dichloroethane	ND	20 μg/Kg	07/10/12	07/11/12
		Benzene	ND	5.0 μg/Kg	07/10/12	07/11/12
		Tertiary Amyl Methyl Ether (TAME)	ND	20 μg/Kg	07/10/12	07/11/12
		Toluene	ND	5.0 μg/Kg	07/10/12	07/11/12
		Ethylbenzene	ND	5.0 μg/Kg	07/10/12	07/11/12
		m,p-Xylene	ND	5.0 µg/Kg	07/10/12	07/11/12
		o-Xylene	ND	5.0 μg/Kg	07/10/12	07/11/12
		1,2-Dibromo-3-chloropropane (DBCP)	ND	60 μg/Kg	07/10/12	07/11/12
Client ID:	CPT-2-70-S					
Lab ID:	STR12070345-21A	TPH-P (GRO)	NTD	1 000		
	06/28/12 12:16	Tertiary Butyl Alcohol (TBA)	ND	1,000 µg/Kg	07/10/12	07/11/12
	00/20/12 12.10	Methyl tert-butyl cther (MTBE)	ND	500 μg/Kg	07/10/12	07/11/12
		Di-isopropyl Ether (DIPE)	ND ND	5.0 μg/Kg	07/10/12	07/11/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND	20 μg/Kg	07/10/12	07/11/12
		1,2-Dichloroethane	ND ND	20 μg/Kg	07/10/12	07/11/12
		Benzene	ND ND	20 μg/Kg	07/10/12	07/11/12
		Tertiary Amyl Methyl Ether (TAME)	ND ND	5.0 μg/Kg	07/10/12	07/11/12
		Toluene		20 μg/Kg	07/10/12	07/11/12
		Ethylbenzene	ND ND	5.0 μg/Kg	07/10/12	07/11/12
		m,p-Xylene	ND ND	5.0 μg/Kg	07/10/12	07/11/12
		o-Xylene		5.0 μg/Kg	07/10/12	07/11/12
		1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0 μg/Kg	07/10/12	07/11/12
OII m		1,2 2.010110 5 Unioropropane (DBCI)	ND	60 μg/Kg	07/10/12	07/11/12
Client ID:	CPT-2-80-S					
Lab ID:	STR12070345-22A	TPH-P (GRO)	ND	1,000 µg/Kg	07/10/12	07/11/12
Date Sampled	06/28/12 12:40	Tertiary Butyl Alcohol (TBA)	ND	500 µg/Kg	07/10/12	07/11/12
		Methyl tert-butyl ether (MTBE)	ND	5.0 µg/Kg	07/10/12	07/11/12
		Di-isopropyl Ether (DIPE)	ND	20 µg/Kg	07/10/12	07/11/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND	20 µg/Kg	07/10/12	07/11/12
		1,2-Dichloroethane	ND	20 μg/Kg	07/10/12	07/11/12
		Benzene	ND	5.0 µg/Kg	07/10/12	07/11/12
		Tertiary Amyl Methyl Ether (TAME)	ND	20 μg/Kg	07/10/12	07/11/12
		Toluene	ND	5.0 µg/Kg	07/10/12	07/11/12
		Ethylbenzene	ND	5.0 µg/Kg	07/10/12	07/11/12
		m,p-Xylene	ND	5.0 µg/Kg	07/10/12	07/11/12
		o-Xylene	ND	5.0 µg/Kg	07/10/12	07/11/12
		1,2-Dibromo-3-chloropropane (DBCP)	ND	60 µg/Kg	07/10/12	07/11/12
		· ·		1.5		· · · ·



255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Diesel Range Organics (DRO) C13-C22

Gasoline Range Organics (GRO) C4-C13

Oil Range Organics (ORO) C22-C40+

Reported in micrograms per Kilogram and micrograms per Liter, per client request.

X = Reporting Limits were increased due to sample matrix interferences.

Sample results were calculated on a wet weight basis.

ND = Not Detected

Roger L. Scholl, Ph.D., Laboratory Director · Randy Gardner, Laboratory Manager · · Walter Hinchman, Quality Assurance Officer

Sacramento, CA • (916) 365-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

**%** 7/12/12

**Report Date** 



255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

#### ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 2120-1401-1/Haber Oil

Steve Carter Phone: (530) 676-6008 Fax: (530) 676-6005

Alpha Analytical Number: STR12070345-01A

Client I.D. Number: CPT-1-56-W

Sampled: 06/29/12 16:09 Received: 07/03/12 Extracted: 07/10/12 Analyzed: 07/10/12

### Volatile Organics by GC/MS EPA Method SW8260B

	Compound	Concentration	Reporting	Limit		Compound	Concentration	Reporting Li	imit
1	Dichlorodifluoromethane	ND	1.0	µg/L	36	1,2-Dibromoethane (EDB)	ND	2.0	μg/L
2	Chloromethane	ND	2.0	µg/L	37	Tetrachloroethene	ND	1.0	µg/∟ µg/L
3	Vinyl chloride	ND	1.0	μg/L	38	1.1.1.2-Tetrachloroethane	ND	1.0	µg/L
4	Chloroethane	ND	1.0	μg/L	39	Chlorobenzene	ND	1.0	µg/∟
5	Bromomethane	ND	2.0	μg/L	40	Ethylbenzene	ND	0.50	µg/∟
6	Trichlorofluoromethane	ND	1.0	μg/L	41	m,p-Xylene	ND	0.50	µg/L
7	Acrolein	ND	100	μg/L	42	Bromoform	ND	1.0	μg/L
8	1,1-Dichloroethene	ND	1.0	µg/L	43	Styrene	ND	1.0	
9	Tertiary Butyl Alcohol (TBA)	100	10	μg/L	44	o-Xvlene	ND	0.50	µg/∟ µg/∟
10	Dichloromethane	ND	2.0	µg/L	45	1.1.2.2-Tetrachloroethane	ND	1.0	
11	trans-1,2-Dichloroethene	ND	1.0	μg/L	46	1,2,3-Trichloropropane	ND	2.0	μg/L
12	Methyl tert-butyl ether (MTBE)	1.1	0.50	µg/L	47	Isopropylbenzene	ND	1.0	μg/L
13	1,1-Dichloroethane	ND	1.0	µg/L	48	Bromobenzene	. ND	1.0	μg/L
14	Di-isopropyl Ether (DIPE)	ND	1.0	µg/∟ µg/L	49	n-Propylbenzene	ND	1.0	μg/L
15	cis-1,2-Dichloroethene	ND	1.0	μg/L	50	4-Chlorotoluene	ND		μg/L
16	Bromochloromethane	ND	1.0	μg/L	51	2-Chlorotoluene	ND	1.0	μg/L
17	Chloroform	ND	1.0	µg/L	52	1,3,5-Trimethylbenzene	ND	1.0	μg/L
18	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	53	tert-Butylbenzene	ND	1.0	µg/L
19	2,2-Dichloropropane	ND	1.0	μg/L	54	1,2,4-Trimethylbenzene	ND	1.0	μg/L
20	1,2-Dichloroethane	. ND	1.0	μg/L μg/L	55	sec-Butvibenzene	ND	1.0	μg/L
21	1,1,1-Trichloroethane	ND	1.0	μg/L μg/L	56	1.3-Dichlorobenzene	ND	1.0	µg/L
22	1,1-Dichloropropene	ND	1.0	μg/L μg/L	57	1,4-Dichlorobenzene	1	1.0	µg/L
23	Carbon tetrachloride	ND	1.0	μg/L μg/L	58	4-Isopropyltoluene	ND	1.0	µg/L
24	Benzene	ND	0.50	μg/L μg/L	59	1.2-Dichlorobenzene	ND	1.0	µg/∟
25	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L μg/L	60	n-Butylbenzene	ND	1.0	μg/L
26	Dibromomethane	ND	1.0	µg/L µg/L		•	ND	1.0	µg/L
27	1,2-Dichloropropane	ND	1.0		61	1,2-Dibromo-3-chloropropane (DBCI		3.0	µg/L
28	Trichloroethene	ND	1.0	μg/L	62	1,2,4-Trichlorobenzene	ND	2.0	µg/L
29	Bromodichloromethane	ND		µg/∟	63	Naphthalene	ND	2.0	µg/L
30	cis-1,3-Dichloropropene	ND ND	1.0	µg/L	64	Hexachlorobutadiene	ND	2.0	µg/L
31	trans-1,3-Dichloropropene	ND	1.0	μg/L	65	1,2,3-Trichlorobenzene	ND	2.0	µg/L
32	1.1.2-Trichloroethane	ND ND	1.0	µg/L					
33	Toluene	ND	1.0	µg/L					
34	1,3-Dichloropropane	ND	0.50	µg/L					
25		i ND	1.0	µg/L					

Sample results were calculated on a wet weight basis.

ND = Not Detected

35 Dibromochloromethane

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardaer, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

μg/L

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples. 7/12/12

Report Date



255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

#### ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 2120-1401-1/Haber Oil

Attn: Steve Carter Phone: (530) 676-6008 Fax: (530) 676-6005

Alpha Analytical Number: STR12070345-02A

Client I.D. Number: CPT-1-66-W

Sampled: 06/29/12 16:52 Received: 07/03/12 Extracted: 07/10/12 Analyzed: 07/10/12

### Volatile Organics by GC/MS EPA Method SW8260B

	Compound	pound Concentration Reporting Limit Compound Co		Concentration	Reporting Li	imit			
1	Dichlorodifluoromethane	ND	1.0	μg/L	36	1,2-Dibromoethane (EDB)	ND	2.0	μg/L
2	Chloromethane	ND	2.0	µg/L	37	Tetrachloroethene	ND	1.0	µg/L
3	Vinyl chloride	ND	1.0	µg/L	38	1,1,1,2-Tetrachioroethane	ND	1.0	µg/L
4	Chloroethane	ND	1.0	μg/L	39		ND	1.0	μg/L
5	Bromomethane	ND	2.0	μg/L	40	Ethylbenzene	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	1.0	µg/L	41	m,p-Xylene	ND	0.50	µg/L
7	Acrolein	ND	100	μg/L	42		ND	1.0	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	43		ND	1.0	µg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	µg/L	44		ND	0.50	µg/L
10	Dichloromethane	ND	2.0	µg/L	45		ND	1.0	µg/L
11	trans-1,2-Dichloroethene	ND	1.0	μg/L	46	1,2,3-Trichloropropane	, ND	2.0	µg/L
12	Methyl tert-butyl ether (MTBE)	ND	0.50	µg/L	47	Isopropylbenzene	ND	1,0	µg/L
13	1,1-Dichloroethane	ND	1.0	µg/L	48	Bromobenzene	. ND	1.0	µg/L
14	Di-isopropyl Ether (DIPE)	ND	1.0	µg/L	49	n-Propylbenzene	ND	1.0	μg/L
15	cis-1,2-Dichloroethene	ND	1.0	µg/L	50	4-Chlorotoluene	ND	1.0	µg/L
16	Bromochloromethane	ND	1.0	µg/L	51	2-Chlorotoluene	ND	1.0	μg/L μg/L
17	Chloroform	ND	1.0	µg/L	52	1,3,5-Trimethylbenzene	ND	1.0	
18	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	53	tert-Butylbenzene	ND	1.0	µg/L
19	2,2-Dichioropropane	ND	1.0	µg/L	54	1,2,4-Trimethylbenzene	ND	1.0	µg/L
20	1,2-Dichloroethane	ND	1.0	µg/L	55	sec-Butylbenzene	ND ND	1.0	μg/L
21	1,1,1-Trichloroethane	ND	1.0	µg/L	56	1,3-Dichlorobenzene	ND	1.0	µg/L
22	1,1-Dichloropropene	ND	1.0	μg/L	57	1,4-Dichlorobenzene	ND ND	1.0	µg/L
23	Carbon tetrachloride	ND	1.0	µg/L	58	4-Isopropyltoluene	ND	1.0	µg/L
24	Benzene	ND	0.50	μg/L μg/L	59	1.2-Dichlorobenzene	ND ND	1.0	µg/L
25	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	60	n-Butylbenzene	ND	1.0	µg/L
26	Dibromomethane	ND	1.0	μg/L	61	1,2-Dibromo-3-chloropropane (DBCF			µg/L
27	1,2-Dichloropropane	ND	1.0	µg/L	62	1,2,4-Trichlorobenzene	ND ND	3.0	µg/L
28	Trichloroethene	ND	1.0	µg/L	63	Naphthalene	ND ND	2.0	μg/L
29	Bromodichloromethane	ND	1.0	µg/L	64	Hexachlorobutadiene	ND ND	2.0	µg/L
30	cis-1,3-Dichloropropene	ND	1.0	µg/∟ µg/L	65	1,2,3-Trichlorobenzene		2.0	µg/L
31	trans-1,3-Dichloropropene	ND	1.0	µg/L	U.S	1,2,3-THURIOTODERZERE	ND	2.0	µg/L
32	1,1,2-Trichloroethane	ND	1.0	μg/L μg/L					
33	Toluene	ND	0.50	µg/L µg/L					
34	1,3-Dichloropropane	ND	1.0	µg/∟ µg/∟					
35	Dibromochloromethane	ND	1.0	µg/∟					

Sample results were calculated on a wet weight basis.

ND = Not Detected

35 Dibromochloromethane

Roger Scholl Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

ND

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples. Report Date

7/12/12



255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

#### **ANALYTICAL REPORT**

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 2120-1401-1/Haber Oil

Fax:

Attn:

Steve Carter Phone: (530) 676-6008

(530) 676-6005

Alpha Analytical Number: STR12070345-03A

Client I.D. Number: CPT-1-76-W

Sampled: 06/29/12 17:55 Received: 07/03/12 Extracted: 07/10/12 Analyzed: 07/10/12

### Volatile Organics by GC/MS EPA Method SW8260B

	Compound	Concentration	Reporting	Reporting Limit		Compound	Concentration	Reporting Limit	
1	Dichlorodifluoromethane	ND	1.0	μg/L	36	1,2-Dibromoethane (EDB)	ND	2.0	μg/L
2	Chloromethane	ND	2.0	µg/L	37	Tetrachioroethene	ND	1.0	μg/L
3	Vinyl chloride	ND	1.0	µg/L	38	1,1,1,2-Tetrachloroethane	ND	1.0	µg/L
4	Chloroethane	ND	1.0	µg/L	39	Chlorobenzene	ND	1.0	µg/L
5	Bromomethane	ND	2.0	μg/L	40	Ethylbenzene	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	1.0	μg/L	41	m,p-Xylene	ND	0.50	µg/L µg/L
7	Acrolein	ND	100	µg/L	42	Bromoform	ND	1.0	µg/L
8	1,1-Dichloroethene	ND	1.0	µg/⊾ µg/L	43	Styrene	ND	1.0	µg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	µg/L	44	o-Xylene	ND	0.50	µg/L
10	Dichloromethane	ND	2.0	µg/L	45	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L
11	trans-1,2-Dichloroethene	ND	1.0	μg/L	46	1,2,3-Trichloropropane	ND	2.0	µg/L
12	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	47	Isopropylbenzene	ND	1.0	µg/L
13	1,1-Dichloroethane	ND	1.0	μg/L	48	Bromobenzene	ND	1.0	µg/L
14	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L .	49	n-Propylbenzene	ND	1.0	μg/L
15	cis-1,2-Dichloroethene	ND	1.0	µg/L	50	4-Chlorotoluene	ND	1.0	μg/L μg/L
16	Bromochloromethane	ND	1.0	μg/L	51	2-Chlorotoluene	ND	1.0	µg/L µg/L
17	Chloroform	ND	1.0	μg/L	52	1,3,5-Trimethylbenzene	ND	1.0	µg/L
18	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	µg/L	53	tert-Butylbenzene	ND	1.0	μg/L
19	2,2-Dichloropropane	ND	1.0	μg/L	54	1,2,4-Trimethylbenzene	ND	1.0	
20	1,2-Dichloroethane	ND	1.0	μg/L	55	sec-Butylbenzene	ND	1.0	µg/L µg/L
21	1,1,1-Trichloroethane	ND	1.0	μg/L	56	1.3-Dichlorobenzene	ND ND	1.0	μg/L
22	1,1-Dichloropropene	ND	1.0	µg/L	57	1.4-Dichlorobenzene	ND	1.0	µg/L µg/L
23	Carbon tetrachloride	ND	1.0	μg/L	58	4-isopropyltoluene	ND	1.0	µg/L µg/L
24	Benzene	ND	0.50	µg/L	59	1.2-Dichlorobenzene	ND	1.0	μg/L
25	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	µg/L	60	n-Butylbenzene	ND	1.0	µg/L
26	Dibromomethane	ND	1.0	µg/L	61	1,2-Dibromo-3-chloropropane (DBCF		3.0	µg/L
27	1,2-Dichloropropane	ND	1.0	µg/L	62	1,2,4-Trichlorobenzene	ND ND	2.0	
28	Trichloroethene	ND	1.0	μg/L	63	Naphthalene	ND	2.0	µg/L
29	Bromodichloromethane	ND	1.0	µg/L	64	Hexachlorobutadiene	ND	2.0	µg/L
30	cis-1,3-Dichloropropene	ND	1.0	µg/L	65	1,2,3-Trichlorobenzene	ND	2.0	µg/L
31	trans-1,3-Dichloropropene	ND	1.0	µg/L	00	1,2,0 1 nomoroberizone	ND	2.0	µg/L
32	1,1,2-Trichloroethane	ND	1.0	µg/L					
33	Toluene	ND	0.50	µg/L					
34	1,3-Dichloropropane	ND	1.0	µg/L					
35	Dibramachlaramathana	A.m.	1.0	₩9, L					

Sample results were calculated on a wet weight basis. ND = Not Detected

35 Dibromochloromethane

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

1.0 µg/L

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples

Report Date



255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

#### **ANALYTICAL REPORT**

Stratus Environmental
3330 Cameron Park Drive
Cameron Park, CA 956828861
Job: 2120-1401-1/Haber Oil

Attn: Steve Carter
Phone: (530) 676-6008
Fax: (530) 676-6005

Alpha Analytical Number: STR12070345-04A

Client I.D. Number: CPT-1-80-W

Sampled: 06/29/12 18:36 Received: 07/03/12 Extracted: 07/10/12 Analyzed: 07/10/12

### Volatile Organics by GC/MS EPA Method SW8260B

	Compound	Concentration	Reporting	Limit		Compound	Concentration	Reporting Li	mit
1	Dichlorodifluoromethane	ND	1.0	μg/L	36	1,2-Dibromoethane (EDB)	ND	2.0	μg/L
2	Chloromethane	ND	2.0	µg/L	37	Tetrachloroethene	ND	1.0	µg/L
3	Vinyl chloride	ND	1.0	μg/L	38	1,1,1,2-Tetrachloroethane	ND	1.0	µg/L
4	Chloroethane	ND	1.0	μg/L	39	Chlorobenzene	ND	1.0	µg/L
5	Bromomethane	ND	2.0	µg/L	40	Ethylbenzene	ND	0:50	µg/L
6	Trichlorofluoromethane	ND	1.0	μg/L	41	m,p-Xylene	ND	0.50	µg/L
7	Acrolein	ND	100	µg/L	42	Bromoform	ND	1.0	µg/L
8	1,1-Dichloroethene	ND	1.0	µg/L	43	Styrene	ND	1.0	µg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	44		ND	0.50	µg/L
10	Dichloromethane	ND	2.0	μg/L	45	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L
11	trans-1,2-Dichloroethene	ND	1.0	μg/L	46	1,2,3-Trichloropropane	ND	2.0	µg/L
12	Methyl tert-butyl ether (MTBE)	ND	0.50	µg/L	47	Isopropylbenzene	ND	1.0	μg/L
13	1,1-Dichloroethane	ND	1.0	μg/L	48	Bromobenzene	ND	1.0	µg/L
14	Di-isopropyl Ether (DIPE)	ND	1.0	µg/L	49	n-Propylbenzene	ND	1.0	μg/L
15	cis-1,2-Dichloroethene	ND	1.0	µg/L	50	4-Chlorotoluene	ND	1.0	μg/L
16	Bromochloromethane	ND	1.0	µg/L	51	2-Chlorotoluene	ND	1.0	
17	Chloroform	ND	1.0	µg/L	52	1,3,5-Trimethylbenzene	ND	1.0	µg/L
18	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	µg/L	53	tert-Butylbenzene	ND	1.0	µg/L
19	2,2-Dichloropropane	ND	1.0	μg/L	54	1,2,4-Trimethylbenzene	ND	1.0	µg/L
20	1,2-Dichloroethane	ND	1.0	μg/L	55	sec-Butylbenzene	ND	1.0	µg/L
21	1,1,1-Trichloroethane	ND	1.0	µg/L	56	1.3-Dichlorobenzene	ND	1.0	µg/L
22	1,1-Dichioropropene	ND	1.0	µg/L	57	1,4-Dichlorobenzene	ND	1.0	µg/L
23	Carbon tetrachloride	ND	1.0	µg/L	58	4-isopropyitoluene	ND	1.0	µg/L
24	Benzene	ND	0.50	µg/L	59	1.2-Dichlorobenzene	ND	1.0	μg/L
25	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	µg/L	60	n-Butylbenzene	ND	1.0	µg/L µg/L
26	Dibromomethane	ND	1.0	ha/F	61	1,2-Dibromo-3-chloropropane (DBCF		3.0	
27	1,2-Dichloropropane	ND	1.0	μg/L	62	1.2.4-Trichlorobenzene	ND	2.0	µg/L
28	Trichloroethene	ND	1.0	µg/L	63	Naphthalene	ND	2.0	µg/L
29	Bromodichloromethane	ND	1.0	µg/L	64	Hexachlorobutadiene	ND		μg/L
30	cis-1,3-Dichloropropene	ND	1.0	μg/L		1,2,3-Trichlorobenzene	ND ND	2.0 2.0	µg/L
31	trans-1,3-Dichloropropene	ND	1.0	μg/L	00	1,2,0-1 Helifolobel IZE IE	ND	2.0	µg/L
32	1,1,2-Trichloroethane	ND	1.0	µg/L					
33	Toluene	ND	0.50	µg/L					
34	1,3-Dichloropropane	ND	1.0	µg/L					
35	Dibromochloromethane	ND	1.0	pg/L					

Sample results were calculated on a wet weight basis.

ND = Not Detected

35 Dibromochloromethane

Roger Scholl Kandy Souls

Walter Arrilan

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento. CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Page 1 of 1

7/12/12 Report Date

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.



255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

#### **ANALYTICAL REPORT**

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 2120-1401-1/Haber Oil

Attn: Steve Carter Phone: (530) 676-6008

Fax:

(530) 676-6005

Alpha Analytical Number: STR12070345-05A

Client I.D. Number: CPT-2-48-W

Sampled: 06/28/12 14:30 Received: 07/03/12 Extracted: 07/10/12 Analyzed: 07/10/12

### Volatile Organics by GC/MS EPA Method SW8260B

********	Compound	Concentration	Reporting	Limit		Compound	Concentration	Reporting Li	mit
1	Dichlorodifluoromethane	ND	1.0	μg/L	36	1,2-Dibromoethane (EDB)	ND	2.0	µg/L
2	Chloromethane	ND	2.0	μg/L	37	,	ND	1.0	µg/L
3	Vinyl chloride	ND	1.0	μg/L	38		ND	1.0	µg/L
4	Chloroethane	ND	1.0	µg/L	39	.,.,,	ND	1.0	µg/L
5	Bromomethane	ND	2.0	µg/L	40	Ethylbenzene	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	1.0	μg/L	41	m.p-Xylene	ND	0.50	µg/L
7	Acrolein	ND	100	μg/L	42		ND	1.0	µg/L
8	1,1-Dichloroethene	ND	1.0	µg/L	43	Styrene	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	µg/L	44	· •	ND	0.50	μg/L
10	Dichloromethane	ND	2.0	µg/L	45	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L
11	trans-1,2-Dichloroethene	ND	1.0	µg/L	46	1,2,3-Trichloropropane	ND	2.0	µg/L
12	Methyl tert-butyl ether (MTBE)	ND	0.50	µg/L	47	Isopropylbenzene	ND	1.0	µg/L
13	1,1-Dichloroethane	ND	1.0	µg/L	48	Bromobenzene	ND	1.0	µg/L
14	Di-isopropyl Ether (DIPE)	ND	1.0	µg/L	49	n-Propylbenzene	ND	1.0	μg/L
15	cis-1,2-Dichloroethene	ND	1.0	μg/L	50	4-Chlorotoluene	ND	1.0	μg/L
16	Bromochloromethane	ND	1.0	µg/L	51	2-Chlorotoluene	ND	1.0	μg/L
17	Chloroform	ND	1.0	µg/L	52	1,3,5-Trimethylbenzene	ND	1.0	μg/L
18	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	53	tert-Butylbenzene	ND	1.0	μg/L
19	2,2-Dichloropropane	ND	1.0	µg/L	54	1,2,4-Trimethylbenzene	ND	1.0	μg/L
20	1,2-Dichloroethane	ND	1.0	μg/L	55	sec-Butylbenzene	ND	1.0	µg/L
21	1,1,1-Trichloroethane	ND	1.0	µg/L	56	1.3-Dichlorobenzene	ND	1.0	µg/L
22	1,1-Dichloropropene	ND	1.0	μg/L	57	1,4-Dichlorobenzene	ND	1.0	µg/L
23	Carbon tetrachloride	ND	1.0	μg/L	58	4-Isopropyltoluene	ND	1.0	μg/L
24	Benzene	ND	0.50	μg/L	59	1.2-Dichlorobenzene	ND	1.0	μg/L
25	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	µg/L	60	n-Butylbenzene	ND	1.0	µg/L
26	Dibromomethane	ND	1.0	µg/L	61	1,2-Dibromo-3-chloropropane (DBCI	!	3.0	μg/L
27	1,2-Dichloropropane	ND	1.0	μg/L	62	1,2,4-Trichlorobenzene	ND	2.0	µg/L
28	Trichloroethene	ND	1.0	μg/L	63	Naphthalene	ND	2.0	μg/L μg/L
29	Bromodichloromethane	ND	1,0	μg/L	64	Hexachlorobutadiene	ND	2.0	
30	cis-1,3-Dichloropropene	ND	1.0	µg/L	65	1,2,3-Trichlorobenzene	ND	2.0	μg/L
31	trans-1,3-Dichloropropene	ND	1.0	µg/L	03	1,2,5-Therrotoberizerie	ND	2.0	µg/L
32	1,1,2-Trichloroethane	ND	1.0	µg/L					
33	Toluene	ND	0.50	μg/L					
34	1,3-Dichloropropane	ND	1.0	µg/L					
35	Dibromochloromethene	ND	1.0	µg/∟					

Sample results were calculated on a wet weight basis.

ND = Not Detected

35 Dibromochloromethane

Roger Scholl

ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

1.0 µg/L

Report Date



255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

### ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

2120-1401-1/Haber Oil

Attn: Steve Carter

Phone: (530) 676-6008 Fax:

(530) 676-6005

Alpha Analytical Number: STR12070345-06A

Client I.D. Number: CPT-2-58-W

Sampled: 06/28/12 15:11 Received: 07/03/12 Extracted: 07/10/12 Analyzed: 07/10/12

### Volatile Organics by GC/MS EPA Method SW8260B

	Compound	Concentration	Reporting	Limit		Compound	Concentration	Reporting Li	mit
1	Dichlorodifluoromethane	ND	1.0	μg/L	36	1,2-Dibromoethane (EDB)	ND	2.0	µg/L
2	Chloromethane	ND	2.0	µg/L	37	Tetrachloroethene	ND	1.0	μg/L
3	Vinyl chloride	ND	1.0	µg/L	38	1,1,1,2-Tetrachloroethane	ND	1.0	µg/L
4	Chloroethane	ND	1.0	μg/L	39	Chlorobenzene	ND	1.0	µg/L
5	Bromomethane	ND	2.0	µg/L	40	Ethylbenzene	ND	0.50	µg/L
6	Trichlorofluoromethane	ND	1.0	μg/L	41	m,p-Xylene	ND	0.50	µg/L
7	Acrolein	ND	100	µg/L	42	Bromoform	ND	1.0	µg/L
8	1,1-Dichloroethene	ND	1.0	µg/L	43	Styrene	ND	1.0	µg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	44	o-Xvlene	ND	0.50	μg/L
10	Dichloromethane	ND	2.0	μg/L	45	1.1.2.2-Tetrachloroethane	ND	1.0	µg/L
11	trans-1,2-Dichloroethene	ND	1.0	µg/L	46	1,2,3-Trichloropropane	ND	2.0	µg/L
12	Methyl tert-butyl ether (MTBE)	ND	0.50	µg/L	47	Isopropylbenzene	ND	1.0	µg/L
13	1,1-Dichloroethane	ND	1.0	µg/L	48	Bromobenzene	ND	1.0	µg/L
14	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	49	n-Propylbenzene	ND	1.0	µg/L
15	cis-1,2-Dichloroethene	ND	1.0	µg/L	50	4-Chlorotoluene	ND	1.0	μg/L
16	Bromochloromethane	ND	1.0	μg/L	51	2-Chlorotoluene	ND	1.0	μg/L
17	Chloroform	ND	1.0	µg/L	52	1,3,5-Trimethylbenzene	ND	1.0	µg/L
18	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	53	tert-Butylbenzene	ND	1.0	μg/L
19	2,2-Dichloropropane	ND	1.0	μg/L	54	1,2,4-Trimethylbenzene	ND	1.0	μg/L
20	1,2-Dichloroethane	ND	1.0	µg/L	55	sec-Butylbenzene	ND	1.0	μg/L
21	1,1,1-Trichloroethane	ND	1.0	μg/L	56	1.3-Dichlorobenzene	ND	1.0	µg/L
22	1,1-Dichloropropene	ND	1.0	µg/L	57	1,4-Dichlorobenzene	ND	1.0	µg/L
23	Carbon tetrachloride	ND	1.0	µg/L	58	4-isopropyltoluene	ND	1.0	µg/L
24	Benzene	ND	0.50	μg/L	59	1.2-Dichlorobenzene	ND	1.0	μg/L
25	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	60	n-Butylbenzene	ND	1.0	μg/L
26	Dibromomethane	ND	1.0	µg/L	61	1,2-Dibromo-3-chloropropane (DBCI		3.0	μg/L
27	1,2-Dichloropropane	ND	1.0	µg/L	62	1,2,4-Trichlorobenzene	ND	2.0	µg/L
28	Trichloroethene ·	ND	1.0	μg/L	63	Naphthalene	ND	2.0	μg/L
29	Bromodichloromethane	ND	1.0	µg/L	64	Hexachlorobutadiene	ND	2.0	μg/L
30	cis-1,3-Dichloropropene	ND	1.0	µg/L	65	1,2,3-Trichlorobenzene	ND	2.0	µg/L
31	trans-1,3-Dichloropropene	ND	1.0	μg/L			, ,,,,	2.0	H9/ -
32	1,1,2-Trichloroethane	ND	1.0	µg/L					
33	Toluene	ND	0.50	µg/L					

Sample results were calculated on a wet weight basis.

ND = Not Detected

34 1,3-Dichloropropane

35 Dibromochloromethane

Roger Scholl

ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Secramento. CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples

μg/L

μg/L

Report Date



255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

#### ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 Job: 2120-1401-1/Haber Oil

Attn: Steve Carter
Phone: (530) 676-6008
Fax: (530) 676-6005

Alpha Analytical Number: STR12070345-07A Client I.D. Number: CPT-2-68-W

770345-07A Sampled: 06/28/12 15:59 Received: 07/03/12 Extracted: 07/10/12 Analyzed: 07/10/12

#### Volatile Organics by GC/MS EPA Method SW8260B

	Compound	Concentration	Reporting	Limit		Compound	Concentration	Reporting Li	mit
1	Dichlorodifluoromethane	ND	1,0	µg/L	36	1,2-Dibromoethane (EDB)	ND	2.0	 μg/L
2	Chloromethane	ND	2.0	µg/L	37	Tetrachloroethene	ND	1.0	µg/L
3	Vinyl chloride	ND	1.0	μg/L	38	1,1,1,2-Tetrachloroethane	ND	1.0	μg/L
4	Chloroethane	ND	1.0	µg/L	39	Chlorobenzene	ND	1.0	µg/L
5	Bromomethane	ND	2.0	µg/L	40	Ethylbenzene	ND	0.50	µg/L
6	Trichlorofluoromethane	ND	1.0	µg/L	41	m,p-Xylene	ND	0.50	µg/L
7	Acrolein	ND	100	µg/L	42	Bromoform	ND	1.0	µg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	43	Styrene	ND	1.0	µg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	μg/L	44	o-Xvlene	ND	0.50	μg/L
10	Dichloromethane	ND	2.0	μg/L	45	1,1,2,2-Tetrachloroethane	ND	1.0	µg/L
11	trans-1,2-Dichloroethene	ND	1.0	μg/L	46	1,2,3-Trichloropropane	ND	2.0	µg/L
12	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	47	Isopropylbenzene	ND	1.0	µg/L
13	1,1-Dichloroethane	ND	1.0	μg/L	48	Bromobenzene	ND	1.0	µg/L
14	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	49	n-Propylbenzene	ND	1.0	μg/L
15	cis-1,2-Dichloroethene	ND	1.0	μg/L	50	4-Chlorotoluene	ND	1.0	µg/L
16	Bromochloromethane	ND	1.0	μg/L	51	2-Chlorotoluene	ND	1.0	µg/L
17	Chloroform	ND	1.0	μg/L	52	1,3,5-Trimethylbenzene	ND	1.0	µg/L
18	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	53	tert-Butvlbenzene	ND	1.0	μg/L
19	2,2-Dichloropropane	ND	1.0	μg/L	54	1,2,4-Trimethylbenzene	ND	1.0	μg/L
20	1,2-Dichloroethane	ND	1.0	µg/L	55	sec-Butylbenzene	ND	1.0	μg/L
21	1,1,1-Trichloroethane	ND	1.0	μg/L	56	1,3-Dichlorobenzene	ND	1.0	μg/L
22	1,1-Dichloropropene	ND	1.0	µg/L	57	1,4-Dichlorobenzene	ND	1.0	μg/L
23	Carbon tetrachloride	ND	1.0	µg/L	58	4-Isopropyltoluene	ND	1.0	µg/L
24	Benzene	ND	0.50	µg/L	59	1,2-Dichlorobenzene	ND	1.0	μg/L
25	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	60	n-Butylbenzene	ND	1.0	μg/L
26	Dibromomethane	ND	1.0	µg/L	61	1,2-Dibromo-3-chloropropane (DBCI	P) ND	3.0	μg/L
27	1,2-Dichloropropane	ND	1.0	μg/L	62	1,2,4-Trichlorobenzene	ND	2.0	μg/L
28	Trichloroethene	ND	1.0	µg/L	63	Naphthalene	ND	2.0	µg/L
29	Bromodichloromethane	ND	1.0	µg/L	64	Hexachlorobutadiene	ND	2.0	μg/L
30	cis-1,3-Dichloropropene	ND	1.0	μg/L	65	1,2,3-Trichlorobenzene	ND	2.0	μg/L
31	trans-1,3-Dichloropropene	ND	1.0	μg/L		, ,-			I-3 -
32	1,1,2-Trichloroethane	ND	1.0	μg/L					
33	Toluene	ND	0.50	μg/L					
34	1,3-Dichloropropane	ND	1.0	µg/L					
35	Dibromochloromethane	ND	1.0	µg/L					

Sample results were calculated on a wet weight basis.

ND = Not Detected

oger Scholl Kandy Saulner

Walter Findens

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento. CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise. Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

7/12/12

Report Date



255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

#### **ANALYTICAL REPORT**

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

2120-1401-1/Haber Oil

Attn: Steve Carter

Phone: (530) 676-6008 Fax: (530) 676-6005

Alpha Analytical Number: STR12070345-08A

Client I.D. Number: CPT-2-85-W

Sampled: 06/28/12 13:36 Received: 07/03/12 Extracted: 07/10/12

Analyzed: 07/10/12

### Volatile Organics by GC/MS EPA Method SW8260B

	Compound	Concentration	Reporting	Limit		Compound	Concentration	Reporting Li	mit
1	Dichlorodifluoromethane	ND	1.0	µg/L	36	1,2-Dibromoethane (EDB)	ND	2.0	µg/L
2	Chloromethane	ND	2.0	μg/L	37	Tetrachloroethene	ND	1.0	μg/L
3	Vinyl chloride	ND	1.0	µg/L	38	1,1,1,2-Tetrachloroethane	ND	1.0	μg/L
4	Chloroethane	ND	1.0	µg/L	39	Chlorobenzene	ND	1.0	µg/L
5	Bromomethane	ND	2.0	μg/L	40	Ethylbenzene	ND	0.50	μg/L
6	Trichlorofluoromethane	ND	1.0	µg/L	41	m,p-Xylene	ND	0.50	μg/L
7	Acrolein	ND	100	μg/L	42	Bromoform	ND	1.0	μg/L
8	1,1-Dichloroethene	ND	1.0	μg/L	43	Styrene	ND	1.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	µg/L	44	o-Xvlene	ND	0.50	µg/L
10	Dichloromethane	ND	2.0	μg/L	45	1.1.2.2-Tetrachloroethane	ND	1.0	μg/L
11	trans-1,2-Dichloroethene	ND	1.0	µg/L	46	1,2,3-Trichloropropane	ND	2.0	μg/L
12	Methyl tert-butyl ether (MTBE)	ND	0.50	µg/L	47	Isopropylbenzene	ND	1.0	µg/L
13	1,1-Dichloroethane	ND	1.0	μg/L	48	Bromobenzene	ND	1.0	μg/L
14	Di-isopropyl Ether (DIPE)	ND	1.0	µg/L	49	n-Propylbenzene	ND	1.0	µg/L
15	cis-1,2-Dichloroethene	ND	1.0	µg/L	50	4-Chiorotoluene	ND	1.0	µg/L
16	Bromochloromethane	ND	1.0	µg/L	51	2-Chlorotoluene	ND	1.0	µg/L
17	Chloroform	ND	1.0	µg/L	52	1,3,5-Trimethylbenzene	ND	1.0	µg/L
18	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	µg/L	53	tert-Butvibenzene	ND	1.0	µg/L
19	2,2-Dichloropropane	- ND	1.0	µg/L	54	1,2,4-Trimethylbenzene	ND	1.0	µg/L
20	1,2-Dichloroethane	ND	1.0	µg/L	55	sec-Butylbenzene	ND	1.0	µg/L
21	1,1,1-Trichloroethane	ND	1.0	µg/L	56	1,3-Dichlorobenzene	ND	1.0	μg/L
22	1,1-Dichloropropene	ND	1.0	μg/L	57	1,4-Dichlorobenzene	ND	1.0	μg/L
23	Carbon tetrachloride	ND	1.0	µg/L	58	4-Isopropyltoluene	ND	1.0	μg/L
24	Benzene	ND	0.50	μg/L	59	1.2-Dichlorobenzene	ND	1.0	µg/L
25	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	μg/L	60	n-Butylbenzene	ND	1.0	µg/L
26	Dibromomethane	ND	1.0	μg/L	61	1,2-Dibromo-3-chloropropane (DBC		3.0	μg/L
27	1,2-Dichloropropane	ND	1.0	μg/L	62	1.2.4-Trichlorobenzene	ND	2.0	μg/L
28	Trichloroethene	ND	1.0	μg/L	63	Naphthalene	ND	2.0	µg/L
29	Bromodichloromethane	ND	1.0	μg/L	64	Hexachlorobutadiene	ND	2.0	μg/L
30	cis-1,3-Dichloropropene	ND	1.0	μg/L	65	1,2,3-Trichlorobenzene	ND	2.0	µg/L
31	trans-1,3-Dichloropropene	ND	1.0	μg/L	00	1,2,5 Thomoroporteons	; 110	2.0	h8, -
32	1,1,2-Trichloroethane	ND	1.0	µg/L					
33	Toluene	NID	1.0	Pa, C					

Sample results were calculated on a wet weight basis.

ND = Not Detected

34 1,3-Dichloropropane

35 Dibromochloromethane

33 Toluene

Roger Scholl

ND

ND

Roger L. Scholl, Ph.D., Laboratory Director • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

0.50 μg/L

1.0 µg/L

μg/L

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise. Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

7/12/12

Report Date



255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

#### **ANALYTICAL REPORT**

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 2120-1401-1/Haber Oil

Steve Carter Attn: Phone: (530) 676-6008 Fax: (530) 676-6005

Alpha Analytical Number: STR12070345-09A

Client I.D. Number: CPT-1-10-S

Sampled: 06/29/12 09:48 Received: 07/03/12 Extracted: 07/10/12 13:16 Analyzed: 07/11/12

#### Volatile Organics by GC/MS EPA Method SW8260B

~~~~	Compound	Concentration	Reporting	Limit		Compound	Concentration	Reporting Li	imit
1	Dichlorodifluoromethane	ND	20	μg/Kg	36	1,2-Dibromoethane (EDB)	ND	40	μg/Kg
2	Chloromethane	ND	40	μg/Kg	37	Tetrachloroethene	ND	20	μg/Kg
3	Vinyl chloride	ND	20	μg/Kg	38	1.1.1.2-Tetrachloroethane	ND	20	µg/Kg
4	Chloroethane	ND	20	μg/Kg	39	Chlorobenzene	ND	20	μg/Kg
5	Bromomethane	ND	40	μg/Kg	40	Ethylbenzene	ND	5.0	μg/Kg
6	Trichlorofluoromethane	ND	20	μg/Kg	41	m,p-Xylene	ND	5.0	μg/Kg
7	Acrolein	ND	2,000	μg/Kg	42	Bromoform	ND	20	μg/Kg
8	1,1-Dichloroethene	ND	20	μg/Kg	43	Styrene	ND	20	μg/Kg
9	Tertiary Butyl Alcohol (TBA)	ND	500	μg/Kg	44	o-Xvlene	ND	5.0	μg/Kg
10	Dichloromethane	ND	40	µg/Kg	45	1,1,2,2-Tetrachloroethane	ND	20	μg/Kg
11	trans-1,2-Dichloroethene	ND	20	μg/Kg	46	1,2,3-Trichloropropane	ND	40	μg/Kg
12	Methyl tert-butyl ether (MTBE)	ND	5.0	μg/Kg	47	Isopropylbenzene	ND	20	μg/Kg
13	1,1-Dichloroethane	ND	20	μg/Kg	48	Bromobenzene	ND	20	μg/Kg
14	Di-isopropyl Ether (DIPE)	ND	20	µg/Kg	49	n-Propylbenzene	ND	20	μg/Kg
15	cis-1,2-Dichloroethene	ND	20	μg/Kg	50	4-Chlorotoluene	ND	20	μg/Kg
.16	Bromochloromethane	ND	20	μg/Kg	51	2-Chlorotoluene	ND	20	μg/Kg
17	Chloroform	ND	20	μg/Kg	52	1,3,5-Trimethylbenzene	ND	20	µg/Kg
18	Ethyl Tertiary Butyl Ether (ETBE)	ND	20	µg/Kg	53	tert-Butylbenzene	ND	20	μg/Kg
19	2,2-Dichloropropane	ND	20	μg/Kg	54	•	ND	20	μg/Kg
20	1,2-Dichloroethane	ND	20	μg/Kg	55	sec-Butylbenzene	ND	20	μg/Kg
21	1,1,1-Trichloroethane	ND	20	μg/Kg	56	1.3-Dichlorobenzene	ND	20	μg/Kg
22	1,1-Dichloropropene	ND	20	μg/Kg	57	1,4-Dichlorobenzene	ND	20	μg/Kg
23	Carbon tetrachloride	ND	20	μg/Kg	58	4-Isopropyltoluene	ND	20	μg/Kg
24	Benzene	ND	5.0	μg/Kg	59	1,2-Dichlorobenzene	ND	20	µg/Kg
25	Tertiary Amyl Methyl Ether (TAME)	ND	20	μg/Kg	60	n-Butylbenzene	ND	20	μg/Kg
26	Dibromomethane	ND	20	μg/Kg	61	1,2-Dibromo-3-chloropropane (DBCI	P) ND	60	µg/Kg
27	1,2-Dichloropropane	ND	20	μg/Kg	62	1,2,4-Trichlorobenzene	ND	40	µg/Kg
28	Trichloroethene	ND	20	μg/Kg	63	Naphthalene	ND	40	μg/Kg
29	Bromodichloromethane	ND	20	µg/Kg	64	Hexachlorobutadiene	ND	40	μg/Kg
30	cis-1,3-Dichloropropene	ND	20	µg/Kg	65	1,2,3-Trichlorobenzene	ND	40	μg/Kg
31	trans-1,3-Dichloropropene	ND	20	µg/Kg		•	1		
32	1,1,2-Trichloroethane	ND	20	µg/Kg					

Sample results were calculated on a wet weight basis.

ND = Not Detected

34 1,3-Dichloropropane

35 Dibromochloromethane

33 Toluene

Roger Scholl

ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

5.0 µg/Kg

μg/Kg

μg/Kg

0 7/12/12

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

2120-1401-1/Haber Oil

Steve Carter

Phone: (530) 676-6008 Fax: (530) 676-6005

Alpha Analytical Number: STR12070345-10A

Client I.D. Number: CPT-1-20-S

Sampled: 06/29/12 09:56 Received: 07/03/12 Extracted: 07/10/12 13:16 Analyzed: 07/11/12

Volatile Organics by GC/MS EPA Method SW8260B

	Compound	Concentration	Reporting	Limit		Compound	Concentration	Reporting Li	mit
1	Dichlorodifluoromethane	ND	20	µg/Kg	36	1,2-Dibromoethane (EDB)	ND	40	μg/Kg
2	Chloromethane	ND	40	μg/Kg	37	Tetrachioroethene	ND	20	μg/Kg
3	Vinyl chloride	ND	20	μg/Kg	38	1.1.1.2-Tetrachloroethane	ND	20	µg/Kg
4	Chloroethane	ND	20	μg/Kg	39	Chlorobenzene	ND	20	μg/Kg
5	Bromomethane	ND	40	μg/Kg	40	Ethylbenzene	ND	5.0	µg/Kg
6	Trichlorofluoromethane	ND	20	μg/Kg	41	m,p-Xylene	ND	5.0	μg/Kg
7	Acrolein	ND	2,000	μg/Kg	42	Bromoform	ND	20	μg/Kg
8	1,1-Dichloroethene	ND	20	μg/Kg	43	Styrene	ND	20	μg/Kg
9	Tertiary Butyl Alcohol (TBA)	ND	500	µg/Kg	44	o-Xviene	ND	5.0	µg/Kg
10	Dichloromethane	ND	40	µg/Kg	45	1,1,2,2-Tetrachloroethane	ND	20	μg/Kg
11	trans-1,2-Dichloroethene	ND	20	µg/Kg	46	1,2,3-Trichloropropane	ND	40	μg/Kg
12	Methyl tert-butyl ether (MTBE)	ND	5.0	µg/Kg	47	Isopropylbenzene	ND	20	µg/Kg
13	1,1-Dichloroethane	ND	20	μg/Kg	48	Bromobenzene	ND	20	μg/Kg
14	Di-isopropyl Ether (DIPE)	ND	20	μg/Kg	49	n-Propylbenzene	ND	20	μg/Kg
15	cis-1,2-Dichloroethene	ND	20	μg/Kg	50	4-Chlorotoluene	ND	20	μg/Kg
16	Bromochloromethane	ND	20	μg/Kg	51	2-Chlorotoluene	ND	20	μg/Kg
17	Chloroform	ND	20	μg/Kg	52	1,3,5-Trimethylbenzene	ND	20	μg/Kg
18	Ethyl Tertiary Butyl Ether (ETBE)	ND	20	μg/Kg	53	tert-Butylbenzene	ND	20	μg/Kg
19	2,2-Dichloropropane	ND	20	µg/Kg	54	1,2,4-Trimethylbenzene	ND	20	μg/Kg
20	1,2-Dichloroethane	ND	20	µg/Kg	55	sec-Butylbenzene	ND	20	μg/Kg
21	1,1,1-Trichloroethane	ND	20	μg/Kg	56	1,3-Dichlorobenzene	ND	20	μg/Kg
22	1,1-Dichloropropene	ND	20	μg/Kg	57	1,4-Dichlorobenzene	ND	20	μg/Kg
23	Carbon tetrachloride	ND	20	μg/Kg	58	4-isopropyltoluene	ND	20	μg/Kg
24	Benzene	ND	5.0	µg/Kg	59	1,2-Dichlorobenzene	ND	20	μg/Kg
25	Tertiary Amyl Methyl Ether (TAME)	ND	20	µg/Kg	60	n-Butylbenzene	ND	20	μg/Kg
26	Dibromomethane	ND	20	µg/Kg	61	1,2-Dibromo-3-chloropropane (DBC)	P) ND	60	μg/Kg
27	1,2-Dichloropropane	ND	20	μg/Kg	62	1,2,4-Trichlorobenzene	ND	40	μg/Kg
28	Trichloroethene	ND	20	µg/Kg	63	Naphthalene	ND	40	μg/Kg
29	Bromodichloromethane	ND	20	μg/Kg	64	Hexachlorobutadiene	ND	40	μg/Kg
30	cis-1,3-Dichloropropene	ND	20	µg/Kg	65	1,2,3-Trichlorobenzene	ND	40	μg/Kg
31	trans-1,3-Dichloropropene	ND	20	µg/Kg					
32	1,1,2-Trichloroethane	ND	20	µg/Kg					
33	Toluene	ND	5.0	µa/Ka					

Sample results were calculated on a wet weight basis.

ND = Not Detected

34 1,3-Dichloropropane

Dibromochloromethane

Roger Scholl

ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

μg/Kg

μg/Kg

7/12/12

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 Job: 2120-1401-1/Haber Oil

Attn: Steve Carter
Phone: (530) 676-6008
Fax: (530) 676-6005

Alpha Analytical Number: STR12070345-11A

Client I.D. Number: CPT-1-30-S

Sampled: 06/29/12 10:07 Received: 07/03/12 Extracted: 07/10/12 13:16 Analyzed: 07/11/12

Volatile Organics by GC/MS EPA Method SW8260B

	Compound	Concentration	Reporting	Limit		Compound	Concentration	Reporting Li	imit
1	Dichlorodifluoromethane	ND	20	μg/Kg	36	1.2-Dibromoethane (EDB)	ND	40	μg/Kg
2	Chloromethane	ND	40	μg/Kg	37	Tetrachioroethene	ND	20	µg/Kg
3	Vinyl chloride	ND	20	μg/Kg	38	1,1,1,2-Tetrachloroethane	ND	20	μg/Kg
4	Chloroethane	ND	20	μg/Kg	39	Chlorobenzene	ND	20	μg/Kg
5	Bromomethane	ND	40	μg/Kg	40	Ethylbenzene	ND	5.0	µg/Kg
6	Trichlorofluoromethane	ND	20	μg/Kg	41	m,p-Xylene	ND	5.0	μg/Kg
7	Acrolein	ND	2,000	μg/Kg	42	Bromoform	ND	20	μg/Kg
8	1,1-Dichloroethene	ND	20	μg/Kg	43	Styrene	ND	20	µg/Kg
9	Tertiary Butyl Alcohol (TBA)	ND	500	μg/Kg	44	o-Xvlene	ND	5.0	µg/Kg
10	Dichloromethane	ND	40	μg/Kg	45	1,1,2,2-Tetrachloroethane	ND	20	μg/Kg
11	trans-1,2-Dichloroethene	ND	20	μg/Kg	46	1,2,3-Trichloropropane	ND	40	μg/Kg
12	Methyl tert-butyl ether (MTBE)	ND	5.0	µg/Kg	47	Isopropylbenzene	44	20	µg/Kg
13	1,1-Dichloroethane	ND	20	μg/Kg	48	Bromobenzene	ND	20	μg/Kg
14	Di-isopropyl Ether (DIPE)	ND	20	μg/Kg	49	n-Propylbenzene	230	20	μg/Kg
15	cis-1,2-Dichloroethene	ND	20	μg/Kg	50	4-Chlorotoluene	ND	20	µg/Kg
16	Bromochloromethane	ND	20	μg/Kg	51	2-Chlorotoluene	ND	20	µg/Kg
17	Chloroform	ND	20	μg/Kg	52	1,3,5-Trimethylbenzene	ND	20	μg/Kg
18	Ethyl Tertiary Butyl Ether (ETBE)	ND	20	μg/Kg	53	tert-Butylbenzene	ND	20	μg/Kg μg/Kg
19	2,2-Dichloropropane	ND	20	µg/Kg	54	1,2,4-Trimethylbenzene	ND	20	μg/Kg
20	1,2-Dichloroethane	ND	20	µg/Kg	55	sec-Butylbenzene	65	20	μg/Kg μg/Kg
21	1,1,1-Trichloroethane	ND	20	µg/Kg	56	1.3-Dichlorobenzene	ND	20	μg/Kg
22	1,1-Dichloropropene	ND	20	μg/Kg	57	1.4-Dichlorobenzene	ND	20	μg/Kg
23	Carbon tetrachloride	ND	20	µg/Kg	58	4-Isopropyltoluene	ND	20	μg/Kg
24	Benzene	ND	5.0	μg/Kg	59	1,2-Dichlorobenzene	ND	20	μg/Kg
25	Tertiary Amyl Methyl Ether (TAME)	ND	20	μg/Kg	60	n-Butylbenzene	120	20	µg/Kg
26	Dibromomethane	ND	20	µg/Kg	61	1,2-Dibromo-3-chloropropane (DBCI		60	µg/Kg
27	1,2-Dichloropropane	ND	20	µg/Kg	62	1.2.4-Trichlorobenzene	ND	40	μg/Kg
28	Trichloroethene	ND	20	μg/Kg	63	Naphthalene	280	40	μg/Kg μg/Kg
29	Bromodichloromethane	ND	20	µg/Kg	64	Hexachlorobutadiene	ND	40	μg/Kg μg/Kg
30	cis-1,3-Dichloropropene	ND	20	µg/Kg	65	1,2,3-Trichlorobenzene	ND	40	µg/Kg
31	trans-1,3-Dichloropropene	ND	20	µg/Kg	00	1,2,0	, NO	40	H8/119
32	1,1,2-Trichloroethane	ND	20	µg/Kg					
33	Toluene	ND	5.0	µg/Kg					

Sample results were calculated on a wet weight basis.

ND = Not Detected

34 1,3-Dichloropropane

Dibromochloromethane

Roger Scholl Kandy

ND

Walter Hinkon

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-enalytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

μg/Kg

µg/Kg

7/12/12

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 Job: 2120-1401-1/Haber Oil

Attn: Steve Carter Phone: (530) 676-6008 Fax: (530) 676-6005

Alpha Analytical Number: STR12070345-12A

Client I.D. Number: CPT-1-40-S

Sampled: 06/29/12 10:24 Received: 07/03/12 Extracted: 07/10/12 13:16 Analyzed: 07/11/12

Volatile Organics by GC/MS EPA Method SW8260B

	Compound	Concentration	Reporting	Limit		Compound	Concentration	Reporting Li	imit
1	Dichlorodifluoromethane	ND	20	μg/Kg	36	1,2-Dibromoethane (EDB)	ND	40	µg/Kg
2	Chloromethane	ND	40	μg/Kg	37	Tetrachioroethene	ND	20	μg/Kg
3	Vinyl chloride	ND	20	μg/Kg	38	1.1.1.2-Tetrachloroethane	ND	20	μg/Kg
4	Chloroethane	ND	20	μg/Kg	39	Chlorobenzene	ND	20	μg/Kg
5	Bromomethane	ND	40	μg/Kg	40	Ethylbenzene	ND	5.0	μg/Kg
6	Trichlorofluoromethane	ND	20	μg/Kg	41	m.p-Xylene	ND	5.0	μg/Kg
7	Acrolein	ND	2,000	μg/Kg	42	Bromoform	ND	20	μg/Kg
8	1,1-Dichloroethene	ND	20	μg/Kg	43	Styrene	ND	20	μg/Kg
9	Tertiary Butyl Alcohol (TBA)	ND	500	µg/Kg	44	o-Xvlene	ND	5.0	μg/Kg
10	Dichloromethane	ND	40	μg/Kg	45	1,1,2,2-Tetrachloroethane	ND	20	μg/Kg
11	trans-1,2-Dichloroethene	ND	20	μg/Kg	46	1,2,3-Trichloropropane	ND	40	μg/Kg
12	Methyl tert-butyl ether (MTBE)	ND	5.0	μg/Kg	47	Isopropylbenzene	ND	20	μg/Kg
13	1,1-Dichloroethane	ND	20	μg/Kg	48	Bromobenzene	ND	20	µg/Kg
14	Di-isopropyl Ether (DIPE)	ND	20	μg/Kg	49	n-Propylbenzene	ND	20	µg/Kg
15	cis-1,2-Dichloroethene	ND	20	μg/Kg	50	4-Chlorotoluene	ND	20	μg/Kg
16	Bromochloromethane	ND	20	μg/Kg	51	2-Chlorotoluene	ND	20	μg/Kg
17	Chloroform	ND	20	μg/Kg	52	1,3,5-Trimethylbenzene	ND	20	µg/Kg
18	Ethyl Tertiary Butyl Ether (ETBE)	ND	20	μg/Kg	53	tert-Butylbenzene	ND	20	μg/Kg
19	2,2-Dichloropropane	ND	20	µg/Kg	54	•	ND	20	μg/Kg
20	1,2-Dichloroethane	ND	20	μg/Kg	55	sec-Butylbenzene	ND	20	µg/Kg
21	1,1,1-Trichloroethane	ND	20	µg/Kg	56	1,3-Dichlorobenzene	ND	20	μg/Kg
22	1,1-Dichloropropene	ND	20	μg/Kg	57	1,4-Dichlorobenzene	ND	20	μg/Kg
23	Carbon tetrachloride	ND	20	µg/Kg	58	4-Isopropyltoluene	ND	20	μg/Kg
24	Benzene	ND	5.0	µg/Kg	59	1.2-Dichlorobenzene	ND	20	μg/Kg
25	Tertiary Amyl Methyl Ether (TAME)	ND	20	µg/Kg	60	n-Butylbenzene	ND	20	μg/Kg
26	Dibromomethane	ND	20	μg/Kg	61	1,2-Dibromo-3-chloropropane (DBC	P) ND	60	μg/Kg
27	1,2-Dichloropropane	ND	20	µg/Kg	62	1,2,4-Trichlorobenzene	ND	40	μg/Kg
28	Trichloroethene	ND	20	µg/Kg	63	Naphthalene	ND	40	μg/Kg
29	Bromodichloromethane	ND	20	μg/Kg	64	Hexachlorobutadiene	ND	40	µg/Kg
30	cis-1,3-Dichloropropene	ND	20	µg/Kg	65		ND	40	μg/Kg
31	trans-1,3-Dichloropropene	ND	20	µg/Kg		.,-,-		,0	L.22
32	1,1,2-Trichloroethane	ND	20	μg/Kg					
33	Toluene	ND	5.0	µg/Kg					
34	1.2 Dichloropropopo	ND		F-G 13					

Sample results were calculated on a wet weight basis.

ND = Not Detected

34 1,3-Dichloropropane

35 Dibromochloromethane

Roger Scholl

ND

Kandg Saulser

Dalter Airihnor

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer
Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples

20 µg/Kg

µg/Kg

7/12/12 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

2120-1401-1/Haber Oil

Attn: Steve Carter

Phone: (530) 676-6008 Fax:

(530) 676-6005

Alpha Analytical Number: STR12070345-13A

Client I.D. Number: CPT-1-50-S

Sampled: 06/29/12 11:06 Received: 07/03/12 Extracted: 07/10/12 13:16 Analyzed: 07/11/12

Volatile Organics by GC/MS EPA Method SW8260B

	Compound	Concentration	Reporting	Limit		Compound	Concentration	Reporting Li	mit
1	Dichlorodifluoromethane	ND	20	μg/Kg	36	1,2-Dibromoethane (EDB)	ND	40	μg/Kg
2	Chloromethane	ND	40	μg/Kg	37	Tetrachioroethene	ND	20	µg/Kg
3	Vinyl chloride	ND	20	μg/Kg	38	1,1,1,2-Tetrachloroethane	ND	20	μg/Kg
4	Chloroethane	ND	20	μg/Kg	39	Chlorobenzene	ND	20	μg/Kg
5	Bromomethane	ND	40	μg/Kg	40	Ethylbenzene	ND	5.0	μg/Kg
6	Trichlorofluoromethane	ND	20	μg/Kg	41	m,p-Xylene	ND	5.0	μg/Kg
7	Acrolein	ND	2,000	μg/Kg	42	Bromoform	ND	20	µg/Kg
8	1,1-Dichloroethene	ND	20	μg/Kg	43	Styrene	ND	20	µg/Kg
9	Tertiary Butyl Alcohol (TBA)	ND	500	μg/Kg	44	o-Xylene	ND	5.0	µg/Kg
10	Dichloromethane	ND	40	μg/Kg	45	1,1,2,2-Tetrachloroethane	ND	20	μg/Kg
11	trans-1,2-Dichloroethene	ND	20	µg/Kg	46	1,2,3-Trichloropropane	ND	40	μg/Kg
12	Methyl tert-butyl ether (MTBE)	ND	5.0	μg/Kg	47	Isopropylbenzene	ND	20	µg/Kg
13	1,1-Dichloroethane	ND	20	μg/Kg	48	Bromobenzene	ND	20	μg/Kg
14	Di-isopropyl Ether (DIPE)	ND	20	μg/Kg	49	n-Propylbenzene	ND	20	μg/Kg
15	cis-1,2-Dichloroethene	ND	20	µg/Kg	50	4-Chlorotoluene	ND	20	μg/Kg
16	Bromochloromethane	ND	20	μg/Kg	51	2-Chlorotoluene	ND	20	μg/Kg
17	Chloroform	ND	20	μg/Kg	52	1,3,5-Trimethylbenzene	ND	20	μg/Kg
18	Ethyl Tertiary Butyl Ether (ETBE)	ND	20	μg/Kg	53	tert-Butvlbenzene	ND	20	μg/Kg
19	2,2-Dichloropropane	ND	20	μg/Kg	54	1,2,4-Trimethylbenzene	ND	20	μg/Kg
20	1,2-Dichloroethane	ND	20	μg/Kg	55	sec-Butylbenzene	ND	20	μg/Kg
21	1,1,1-Trichloroethane	ND	20	μg/Kg	56	1,3-Dichlorobenzene	ND	20	µg/Kg
22	1,1-Dichloropropene	ND	20	µg/Kg	57	1.4-Dichlorobenzene	ND	20	μg/Kg
23	Carbon tetrachloride	ND	20	µg/Kg	58	4-Isopropyltoluene	ND	20	μg/Kg
24	Benzene	ND	5.0	μg/Kg	59	1,2-Dichlorobenzene	ND	20	μg/Kg
25	Tertiary Amyl Methyl Ether (TAME)	ND	20	µg/Kg	60	n-Butylbenzene	ND	20	μg/Kg
26	Dibromomethane	ND	20	µg/Kg	61	1,2-Dibromo-3-chloropropane (DBC	P) ND	60	μg/Kg
27	1,2-Dichloropropane	ND	20	μg/Kg	62	1,2,4-Trichlorobenzene	ND	40	μg/Kg
28	Trichloroethene	ND	20	μg/Kg	63	Naphthalene	ND	40	μg/Kg
29	Bromodichloromethane	ND	20	μg/Kg	64	Hexachlorobutadiene	ND	40	μg/Kg
30	cis-1,3-Dichloropropene	ND	20	µg/Kg	65	1,2,3-Trichlorobenzene	ND	40	μg/Kg
31	trans-1,3-Dichloropropene	ND	20	µg/Kg			1		. 5 5
32	1,1,2-Trichloroethane	ND	20	µg/Kg		*			
33	Toluene	ND	5.0	μg/Kg					
34	1,3-Dichloropropane	ND	20	µg/Kg					
35	Dibramachlaramathana	ND		. 55					

Sample results were calculated on a wet weight basis.

ND = Not Detected

Dibromochloromethane

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

20 µg/Kg

O 7/12/12

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 2120-1401-1/Haber Oil

Attn: Steve Carter Phone: (530) 676-6008 Fax: (530) 676-6005

Alpha Analytical Number: STR12070345-14A

Client I.D. Number: CPT-1-60-S

Sampled: 06/29/12 11:31 Received: 07/03/12 Extracted: 07/10/12 13:16 Analyzed: 07/11/12

Volatile Organics by GC/MS EPA Method SW8260B

	Compound	Concentration	Reporting	Limit		Compound	Concentration	Reporting Li	imit
1	Dichlorodifluoromethane	ND	20	μg/Kg	36	1,2-Dibromoethane (EDB)	ND	40	μg/Kg
2	Chloromethane	ND	40	μg/Kg	37	Tetrachloroethene	ND	20	μg/Kg
3	Vinyl chloride	ND	20	μg/Kg	38	1,1,1,2-Tetrachloroethane	ND	20	μg/Kg
4	Chloroethane	ND	20	μg/Kg	39	Chlorobenzene	ND	20	μg/Kg
5	Bromomethane	ND	40	μg/Kg	40	Ethylbenzene	ND	5.0	μg/Kg
6	Trichlorofluoromethane	ND	20	µg/Kg	41	m,p-Xylene	ND	5.0	μg/Kg
7	Acrolein	ND	2,000	μg/Kg	42	Bromoform	ND	20	μg/Kg
8	1,1-Dichloroethene	ND	20	μg/Kg	43	Styrene	ND	20	µg/Kg
9	Tertiary Butyl Alcohol (TBA)	ND	500	μg/Kg	44	o-Xylene	ND	5.0	μg/Kg
10	Dichloromethane	ND	40	μ g /Kg	45	1.1.2.2-Tetrachloroethane	ND	20	μg/Kg
11	trans-1,2-Dichloroethene	ND	20	ug/Kg	46	1,2,3-Trichloropropane	ND	40	μg/Kg
12	Methyl tert-butyl ether (MTBE)	ND	5.0	μg/Kg	47	Isopropylbenzene	ND	20	μg/Kg
13	1,1-Dichloroethane	ND	20	μg/Kg	48	Bromobenzene	ND	20	μg/Kg
14	Di-isopropyl Ether (DIPE)	ND	20	μg/Kg	49	n-Propylbenzene	ND	20	μg/Kg
15	cis-1,2-Dichloroethene	ND	20	μg/Kg	50	4-Chlorotoluene	ND	20	μg/Kg
16	Bromochloromethane	ND	20	μg/Kg	51	2-Chlorotoluene	ND	20	μg/Kg
17	Chloroform	ND	20	μg/Kg	52	1,3,5-Trimethylbenzene	ND	20	μg/Kg
18	Ethyl Tertiary Butyl Ether (ETBE)	ND	20	μg/Kg	53	tert-Butylbenzene	ND	20	μg/Kg
19	2,2-Dichloropropane	ND	20	µg/Kg	54	1.2,4-Trimethylbenzene	ND	20	μg/Kg
20	1,2-Dichloroethane	ND	20	μg/Kg	55	sec-Butylbenzene	ND	20	μg/Kg
21	1,1,1-Trichloroethane	ND	20	μg/Kg	56	1.3-Dichlorobenzene	ND	20	μg/Kg
22	1,1-Dichloropropene	ND	20	μg/Kg	57	1,4-Dichlorobenzene	ND	20	μg/Kg
23	Carbon tetrachloride	ND	20	μg/Kg	58	4-isopropyitoluene	ND	20	μg/Kg
24	Benzene	ND	5.0	μg/Kg	59	1.2-Dichlorobenzene	ND	20	μg/Kg
25	Tertiary Amyl Methyl Ether (TAME)	ND	20	μg/Kg	60	n-Butylbenzene	ND	20	μg/Kg
26	Dibromomethane	ND	20	μg/Kg	61	1,2-Dibromo-3-chloropropane (DBC	P) ND	60	μg/Kg
27	1,2-Dichloropropane	ND	20	μg/Kg	62	1,2,4-Trichlorobenzene	ND	40	μg/Kg
28	Trichloroethene	ND	20	μg/Kg	63	Naphthalene	ND	40	μg/Kg
29	Bromodichloromethane	ND	20	μg/Kg	64	Hexachlorobutadiene	ND	40	μg/Kg
30	cis-1,3-Dichloropropene	ND	20	μg/Kg	65	1,2,3-Trichlorobenzene	ND	40	μg/Kg
31	trans-1,3-Dichloropropene	ND	20	μg/Kg			1		. • •
32	1,1,2-Trichloroethane	ND	20	µg/Kg					
33	Toluene	ND	5.0	μg/Kg					
~ 4		1		, 0					

Sample results were calculated on a wet weight basis.

ND = Not Detected

34 1,3-Dichloropropane

Dibromochloromethane

Roger Scholl

ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

µg/Kg

µg/Kg

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

2120-1401-1/Haber Oil

Attn: Steve Carter Phone: (530) 676-6008

Fax:

(530) 676-6005

Alpha Analytical Number: STR12070345-15A

Client I.D. Number: CPT-1-70-S

Sampled: 06/29/12 12:16

Received: 07/03/12 Extracted: 07/10/12 13:16

Analyzed: 07/11/12

Volatile Organics by GC/MS EPA Method SW8260B

The Contract of the Contract o	Compound	Concentration	Reporting	Limit		Compound	Concentration	Reporting Li	mit
1	Dichlorodifluoromethane	ND	20	µg/Kg	36	1,2-Dibromoethane (EDB)	ND	40	µg/Kg
2	Chloromethane	ND	40	μg/Kg	37	Tetrachloroethene	ND	20	μg/Kg
3	Vinyl chloride	ND	20	μg/Kg	38	1.1.1.2-Tetrachloroethane	ND	20	μg/Kg
4	Chloroethane	ND	20	μg/Kg	39	Chlorobenzene	ND	20	μg/Kg
5	Bromomethane	ND	40	μg/Kg	40	Ethylbenzene	ND	5.0	µg/Kg
6	Trichlorofluoromethane	ND	20	μg/Kg	41	m,p-Xylene	ND	5.0	μg/Kg
7	Acrolein	ND	2,000	μg/Kg	42	Bromoform	ND	20	μg/Kg
8	1,1-Dichloroethene	ND	20	μg/Kg	43	Styrene	ND	20	µg/Kg
9	Tertiary Butyl Alcohol (TBA)	ND	500	μg/Kg	44	o-Xviene	ND	5.0	μg/Kg
10	Dichloromethane	ND	40	μg/Kg	45	1,1,2,2-Tetrachloroethane	ND	20	µg/Kg
11	trans-1,2-Dichloroethene	ND	20	μg/Kg	46	1,2,3-Trichloropropane	ND	40	μg/Kg
12	Methyl tert-butyl ether (MTBE)	ND	5.0	μg/Kg	47	Isopropylbenzene	ND	20	μg/Kg
13	1,1-Dichloroethane	ND	20	μg/Kg	48	Bromobenzene	ND	20	µg/Kg
14	Di-isopropyl Ether (DIPE)	. ND	20	μg/Kg	49	n-Propylbenzene	ND	20	μg/Kg
15	cis-1,2-Dichloroethene	ND	20	μg/Kg	50	4-Chlorotoluene	ND	20	μg/Kg
16	Bromochloromethane	ND	20	μg/Kg	51	2-Chlorotoluene	ND	. 20	μg/Kg
17	Chloroform	ND	20	μg/Kg	52	1,3,5-Trimethylbenzene	ND	20	µg/Kg
18	Ethyl Tertiary Butyl Ether (ETBE)	ND	20	μg/Kg	53	tert-Butylbenzene	ND	20	μg/Kg
19	2,2-Dichloropropane	ND	20	μg/Kg	54	1,2,4-Trimethylbenzene	ND	20	μg/Kg
20	1,2-Dichloroethane	ND	20	μg/Kg	55	sec-Butylbenzene	ND	20	µg/Kg
21	1,1,1-Trichloroethane	ND ·	20	µg/Kg	56	1,3-Dichlorobenzene	ND	20	µg/Kg
22	1,1-Dichloropropene	ND	20	µg/Kg	57	1,4-Dichlorobenzene	ND	20	μg/Kg
23	Carbon tetrachloride	ND	20	µg/Kg	58	4-isopropyltoluene	,ND	20	μg/Kg
24	Benzene	ND	5.0	µg/Kg	59	1,2-Dichlorobenzene	ND	20	µg/Kg
25	Tertiary Amyl Methyl Ether (TAME)	ND	20	µg/Kg	60	n-Butylbenzene	ND	20	μg/Kg
26	Dibromomethane	ND	20	μg/Kg	61	1,2-Dibromo-3-chloropropane (DBC	P) ND	60	µg/Kg
27	1,2-Dichloropropane	ND	20	µg/Kg	62	1,2,4-Trichlorobenzene	ND	40	μg/Kg
28	Trichloroethene	ND	20	µg/Kg	63	Naphthalene	ND	40	μg/Kg
29	Bromodichloromethane	ND	20	μg/Kg	64	Hexachlorobutadiene	ND	40	μg/Kg
30	cis-1,3-Dichloropropene	ND	20	μg/Kg	65	1,2,3-Trichlorobenzene	ND	40	μg/Kg
31	trans-1,3-Dichloropropene	ND	20	µg/Kg	_		,		
32	1,1,2-Trichloroethane	ND	20	μg/Kg					
33	Toluene	ND	5.0	µg/Kg					
3.4	1.3-Dichloropropage	ND							

Sample results were calculated on a wet weight basis.

ND = Not Detected

1,3-Dichloropropane

35 Dibromochloromethane

Roger Scholl

ND

Kandy Saulmer

Dalter Atridium

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

µg/Kg

µg/Kg

7/12/12

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 2120-1401-1/Haber Oil

Attn: Steve Carter Phone: (530) 676-6008 Fax: (530) 676-6005

Alpha Analytical Number: STR12070345-16A Client I.D. Number: CPT-1-80-S

Sampled: 06/29/12 13:49 Received: 07/03/12 Extracted: 07/10/12 13:16 Analyzed: 07/11/12

Volatile Organics by GC/MS EPA Method SW8260B

	Compound	Concentration	Reporting	Limit		Compound	Concentration	Reporting Li	imit
1	Dichlorodifluoromethane	ND	20	μg/Kg	36	1,2-Dibromoethane (EDB)	ND	40	μg/Kg
2	Chloromethane	ND	40	μg/Kg	37	Tetrachloroethene	ND	20	μg/Kg
3	Vinyl chloride	ND	20	μg/Kg	38	1,1,1,2-Tetrachloroethane	ND	20	µg/Kg
4	Chloroethane	ND	20	μg/Kg	39	Chlorobenzene	ND	20	µg/Kg
5	Bromomethane	ND	40	μg/Kg	40	Ethylbenzene	ND	5.0	µg/Kg
6	Trichlorofluoromethane	ND	20	μg/Kg	41	m,p-Xylene	ND	5.0	μg/Kg
7	Acrolein	ND	2,000	µg/Kg	42	Bromoform	ND	20	µg/Kg
8	1,1-Dichloroethene	ND	20	μg/Kg	43	Styrene	ND	20	µg/Kg
9	Tertiary Butyl Alcohol (TBA)	ND	500	μg/Kg	44		ND	5.0	µg/Kg
10	Dichloromethane	ND	40	μg/Kg	45	1,1,2,2-Tetrachloroethane	ND	20	μg/Kg
11	trans-1,2-Dichloroethene	ND	20	µg/Kg	46	1,2,3-Trichloropropane	ND	40	μg/Kg
12	Methyl tert-butyl ether (MTBE)	ND	5.0	μg/Kg	47	Isopropylbenzene	ND	20	µg/Kg
13	1,1-Dichloroethane	ND	20	µg/Kg	48	Bromobenzene	ND	20	µg/Kg
14	Di-isopropyl Ether (DIPE)	ND	20	µg/Kg	49	n-Propvibenzene	ND	20	μg/Kg
15	cis-1,2-Dichloroethene	ND	20	μg/Kg	50	4-Chlorotoluene	ND	20	µg/Kg
16	Bromochloromethane	ND	20	μg/Kg	51	2-Chlorotoluene	ND	20	μg/Kg
17	Chloroform	ND	20	μg/Kg	52	1,3,5-Trimethylbenzene	ND	20	μg/Kg
18	Ethyl Tertiary Butyl Ether (ETBE)	ND	20	μg/Kg	53	tert-Butylbenzene	ND	20	µg/Kg
19	2,2-Dichloropropane	ND	20	μg/Kg	54	•	ND	20	µg/Kg
20	1,2-Dichloroethane	ND	20	μg/Kg	55	sec-Butylbenzene	ND	20	μg/Kg
21	1,1,1-Trichloroethane	ND	20	μg/Kg	56	1.3-Dichlorobenzene	ND	20	µg/Kg
22	1,1-Dichloropropene	ND	20	μg/Kg	57	1.4-Dichlorobenzene	ND	20	μg/Kg
23	Carbon tetrachloride	ND	20	μg/Kg	58	4-Isopropyltoluene	ND	20	μg/Kg
24	Benzene	ND	5.0	µg/Kg	59	1.2-Dichlorobenzene	ND	20	µg/Kg
25	Tertiary Amyl Methyl Ether (TAME)	ND	20	µg/Kg	60	n-Butylbenzene	ND	20	μg/Kg
26	Dibromomethane	ND	20	μg/Kg	61	1,2-Dibromo-3-chloropropane (DBCI		60	µg/Kg
27	1,2-Dichloropropane	ND	20	µg/Kg	62	1,2.4-Trichlorobenzene	ND	40	μg/Kg
28	Trichloroethene	ND	20	μg/Kg	63	Naphthalene	DND	40	μg/Kg
29	Bromodichloromethane	ND	20	μg/Kg	64	Hexachlorobutadiene	ND	40	μg/Kg
30	cis-1,3-Dichloropropene	ND	20	μg/Kg	65	1,2,3-Trichlorobenzene	ND	40	μg/Kg
31	trans-1,3-Dichloropropene	ND	20	µg/Kg	Ų.	1,2,0 Thomoroportzene	, ND	40	hand
32	1,1,2-Trichloroethane	ND	20	μg/Kg μg/Kg					
33	Toluene	ND	5.0	µg/Kg					

Sample results were calculated on a wet weight basis.

ND = Not Detected

34 1,3-Dichloropropane

35 Dibromochloromethane

Roger Scholl

ND

ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

μg/Kg

µg/Kg

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Attn: Steve Carter
Phone: (530) 676-6008
Fax: (530) 676-6005

Job: 2120-1401-1/Haber Oil

Alpha Analytical Number: STR12070345-17A

Client I.D. Number: CPT-1-90-S

Sampled: 06/29/12 14:33 Received: 07/03/12 Extracted: 07/10/12 13:16 Analyzed: 07/11/12

Volatile Organics by GC/MS EPA Method SW8260B

	Compound	Concentration	Reporting	Limit		Compound	Concentration	Reporting Li	mit
1	Dichlorodifluoromethane	ND	. 20	μg/Kg	36	1,2-Dibromoethane (EDB)	ND	40	μg/Kg
2	Chloromethane	ND	40	µg/Kg	37	Tetrachloroethene	ND	20	µg/Kg
3	Vinyl chloride	ND	20	µg/Kg	38	1,1,1,2-Tetrachloroethane	ND	20	µg/Kg
4	Chloroethane	ND	20	µg/Kg	39	Chlorobenzene	ND	20	µg/Kg
5	Bromomethane	ND	40	μg/Kg	40	Ethylbenzene	ND	5.0	µg/Kg
6	Trichlorofluoromethane	ND	20	μg/Kg	41	m,p-Xylene	ND	5.0	µg/Kg
7	Acrolein	ND	2,000	μg/Kg	42	Bromoform	ND	20	μg/Kg
8	1,1-Dichloroethene	ND	20	μg/Kg	43	Styrene	ND	20	µg/Kg
9	Tertiary Butyl Alcohol (TBA)	ND	500	μg/Kg	44	o-Xvlene	ND	5.0	µg/Kg
10	Dichloromethane	ND	40	μg/Kg	45	1,1,2,2-Tetrachloroethane	ND	20	µg/Kg
11	trans-1,2-Dichloroethene	ND	20	μg/Kg	46	1,2,3-Trichloropropane	ND	40	µg/Kg
12	Methyl tert-butyl ether (MTBE)	ND	5.0	µg/Kg	47	Isopropylbenzene	ND	20	µg/Kg
13	1,1-Dichloroethane	ND	20	ug/Kg	48	Bromobenzene	ND	20	µg/Kg
14	Di-isopropyl Ether (DIPE)	ND	20	μg/Kg	49	n-Propylbenzene	ND	20	μg/Kg
15	cis-1,2-Dichloroethene	ND	20	μg/Kg	50	4-Chlorotoluene	ND	20	μg/Kg
16	Bromochloromethane	ND	20	μg/Kg	51	2-Chlorotoluene	ND	20	µg/Kg
17	Chloroform	ND	20	μg/Kg	52	1,3,5-Trimethylbenzene	ND	20	µg/Kg
18	Ethyl Tertiary Butyl Ether (ETBE)	ND	20	μg/Kg	53	tert-Butylbenzene	ND	20	µg/Kg
19	2,2-Dichloropropane	ND	20	µg/Kg	54	1,2,4-Trimethylbenzene	ND	20	µg/Kg
20	1,2-Dichloroethane	ND	20	µg/Kg	55	sec-Butylbenzene	ND	20	µg/Kg
21	1,1,1-Trichloroethane	ND	20	µg/Kg	56	1.3-Dichlorobenzene	ND	20	μg/Kg
22	1,1-Dichloropropene	ND	20	μg/Kg	57	1.4-Dichlorobenzene	ND	20	μg/Kg
23	Carbon tetrachloride	ND	20	μg/Kg	58	4-isopropyltoluene	ND	20	µg/Kg
24	Benzene	ND	5.0	µg/Kg	59	1,2-Dichlorobenzene	ND	20	μg/Kg
25	Tertiary Amyl Methyl Ether (TAME)	ND	20	µg/Kg	60	n-Butylbenzene	ND	20	µg/Kg
26	Dibromomethane	ND	20	μg/Kg	61	1,2-Dibromo-3-chloropropane (DBC		60	µg/Kg
27	1,2-Dichloropropane	ND	20	μg/Kg	62	1,2,4-Trichlorobenzene	ND	40	µg/Kg
28	Trichloroethene	ND	20	µg/Kg	63	Naphthalene	ND	40	μg/Kg
29	Bromodichloromethane	ND	20	μg/Kg	64	Hexachlorobutadiene	ND	40	μg/Kg
30	cis-1,3-Dichloropropene	ND	20	μg/Kg	65	1,2,3-Trichlorobenzene	ND	40	μg/Kg
31	trans-1,3-Dichloropropene	ND	20	μg/Kg μg/Kg		Charles Control of Facility	1 110	40	פיייטיה
32	1,1,2-Trichloroethane	ND	20	μg/Kg					
33	Toluene	ND	5.0	µg/Kg					
24	1.2 Diablesessesses	1	0.0	F5'6					

Sample results were calculated on a wet weight basis.

ND = Not Detected

34 1,3-Dichloropropane

Dibromochloromethane

loger Scholl Kandy San

ND

Walter Hirkon

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento. CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

μg/Kg

μg/Kg

7/12/12

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

VOC Sample Preservation Report

Work Order: STR12070345

Job:

2120-1401-1/Haber Oil

Alpha's Sample ID	Client's Sample ID	Matrix	рН	
12070345-01A	CPT-1-56-W	Aqueous	2	
12070345-02A	CPT-1-66-W	Aqueous	4	
12070345-03A	CPT-1-76-W	Aqueous	4	
12070345-04A	CPT-1-80-W	Aqueous	2	
12070345-05A	CPT-2-48-W	Aqueous	5	
12070345-06A	CPT-2-58-W	Aqueous	7	
12070345-07A	CPT-2-68-W	Aqueous	2	
12070345-08A	CPT-2-85-W	Aqueous	2	

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 13-Jul-12	(QC Sι	ımmar	y Repor	t			Work Orde 12070345	
Method Blank File ID: 2A07041253.D		Type: M		est Code: El atch ID: 290		hod SW80	15B / E / SG Analysis Date:	07/05/2012 15:41	
Sample ID: MBLK-29021\$G	Units : µg/Kg			D_2_12070			Prep Date:	07/04/2012 12:02	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDRe	Val %RPD(Limit)	Qual
TPH-E (DRO), Silica Gel TPH-E (ORO), Silica Gel Surr: Nonane, Silica Gel	ND ND 6290	5000 10000	6000		105	62	161		
Laboratory Control Spike		Type: Lo	CS T	est Code: El	PA Met	hod SW80	15B / E / SG		
File ID: 2A07041252.D			Ва	atch ID: 290	21SG		Analysis Date:	07/05/2012 15:15	
Sample ID: LCS-29021SG	Units : µg/Kg		Run ID: FI	D_2_120704	ID		Prep Date:	07/04/2012 12:02	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual
TPH-E (DRO), Silica Gel Surr: Nonane, Silica Gel	173000 7640	5000	200000 6000		86 127	70 62	130 161		
Sample Matrix Spike		Type: M	S Te	est Code: El	A Met	hod SW80	15B / E / SG		
File ID: 2A07041267.D			Ва	atch ID: 290:	21 S G		Analysis Date:	07/05/2012 21:34	
Sample ID: 12070345-11AMS	Units : µg/Kg		Run ID: FII	D_2_120704	D		Prep Date:	07/04/2012 12:02	
Analyte	Result	PQL				LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual
TPH-E (DRO), Silica Gel Surr: Nonane, Silica Gel	170000 6940	5000	200000 6000	0	85 116	50 62	149 161		
Sample Matrix Spike Duplicate	-	Type: M	SD Te	est Code: El	A Met	hod SW80	15B / E / SG		
File ID: 2A07041268.D			Ва	atch ID: 290	21 S G		Analysis Date:	07/05/2012 21:59	
Sample ID: 12070345-11AMSD	Units : µg/Kg		Run ID: FII	2 120704	D		Prep Date:	07/04/2012 12:02	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual
TPH-E (DRO), Silica Gel Surr: Nonane, Silica Gel	173000 7920	5000	200000 6000	0	87 132	50 62	149 1702 161		-

Comments

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Reported in micrograms per Kilogram, per client request.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 13-Jul-12	(QC S	ummar	y Report				Work Orde 12070345	
Method Blank File ID: 2A07041205.D Sample ID: MBLK-29020	Units : µg/L	Type: N	Ва	est Code: EPA atch ID: 29020 D_2_120704C	SG	od SW80		e: 07/04/2012 11:34 07/04/2012 09:40	
Analyte	Result	PQL	SpkVal	SpkRefVal %	REC	LCL(ME)	UCL(ME) RPDR	efVal %RPD(Limit)	Qual
TPH-E (DRO), Silica Gel TPH-E (ORO), Silica Gel Surr: Nonane, Silica Gel	ND ND 168	500 500			112	49	145		
Laboratory Control Spike		Type: L	CS Te	est Code: EPA	Meth	od SW80	15B / E / SG		
File ID: 2A07041206.D			Ва	atch ID: 29020	SG		Analysis Date	e: 07/04/2012 11:59	
Sample ID: LCS-29020	Units : µg/L		Run ID: FII	D_2_120704C	:		Prep Date:	07/04/2012 09:40	
Analyte	Result	PQL	SpkVal	SpkRefVal %	REC	LCL(ME)	UCL(ME) RPDR	efVal %RPD(Limit)	Qual
TPH-E (DRO), Silica Gel Surr: Nonane, Silica Gel	2090 173	50	2500 150		84 115	70 49	130 145		
Sample Matrix Spike		Type: N	IS Te	est Code: EPA	Meth	od SW80	15B / E / SG		
File ID: 2A07041209.D			Ba	atch ID: 29020	SG		Analysis Date	: 07/04/2012 13:14	
Sample ID: 12070345-01AMS	Units : µg/L		Run ID: FII	D_2_120704C	;		Prep Date:	07/04/2012 09:40	
Analyte	Result	PQL	SpkVal	SpkRefVal %	REC	LCL(ME)	UCL(ME) RPDR	fVal %RPD(Limit)	Qual
TPH-E (DRO), Silica Gel Surr: Nonane, Silica Gel	2520 167	50	2500 150	-	101 111	53 49	150 145		
Sample Matrix Spike Duplicate		Type: M	ISD Te	est Code: EPA	Meth	od SW80	15B / E / SG		
File ID: 2A07041210.D			Ва	tch ID: 29020	SG		Analysis Date	e: 07/04/2012 13:40	
Sample ID: 12070345-01AMSD	Units : µg/L		Run ID: FI	2_120704C			Prep Date:	07/04/2012 09:40	
Analyte	Result	PQL				LCL(ME)	UCL(ME) RPDR	fVal %RPD(Limit)	Qual
TPH-E (DRO), Silica Gel Surr: Nonane, Silica Gel	2870 175	50	2500 150	_	115 117	53 49	150 25 145	16 13.0(47)	

Comments

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Reported in micrograms per Liter, per client request.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 13-Jul-12		QC Sı	ummar	y Report					Work Orde 12070345	
Method Blank		Type: M		est Code: EP .						
File ID: 12071122.D			В	atch ID: MS1	5S904	8B	Analysis	Date:	07/11/2012 17:46	
Sample ID: MBLK MS15S9048B	Units : µg/K	(g	Run ID: M	SD_15_1207 ²	11A		Prep Dat	e:	07/11/2012 17:46	
Analyte	Result	PQL	SpkVal	SpkRefVal 9	%REC	LCL(ME)	UCL(ME) RF	PDRefV	al %RPD(Limit)	Qual
TPH-P (GRO)	ND	1000								
Surr: 1,2-Dichloroethane-d4	185		200		93	70	130			
Surr: Toluene-d8	203		200		102	70	130			
Surr: 4-Bromofluorobenzene	184		200		92	70	130			
Laboratory Control Spike		Type: L	CS T	est Code: EP.	A Meti	nod SW80	15B/C			
File ID: 12071214.D			Ва	atch ID: MS15	59048	3B	Analysis	Date:	07/12/2012 14:58	
Sample ID: GLCS MS15S9048B	Units : µg/K	.g	Run ID: M	SD_15_12071	11A		Prep Dat	e:	07/12/2012 14:58	
Analyte	Result	PQL	SpkVal	SpkRefVal %	%REC	LCL(ME)	UCL(ME) RF	DRefV	al %RPD(Limit)	Qual
TPH-P (GRO)	19300	4000	32000		60	63	148			L50
Surr: 1,2-Dichloroethane-d4	798		800		99.7	70	130			
Surr: Toluene-d8	779		800		97	70	130			
Surr: 4-Bromofluorobenzene	774		800		97	70	130			
Sample Matrix Spike		Type: M	S Te	est Code: EP	A Meth	nod SW80	15B/C			
File ID: 12071127.D			Ba	etch ID: MS15	S9048	3B	Analysis	Date:	07/11/2012 19:34	
Sample ID: 12070345-09AGS	Units : µg/K	g	Run ID: MS	SD_15_12071	I1A		Prep Dat	e:	07/11/2012 19:34	
Analyte	Result	PQL	SpkVal	SpkRefVal %	6REC	LCL(ME)	UCL(ME) RP	DRefV	al %RPD(Limit)	Qual
TPH-P (GRO)	22300	2000	16000	0	139	35	166			
Surr: 1,2-Dichloroethane-d4	367		400		92	70	130			
Surr: Toluene-d8	395		400		99	70	130			
Surr: 4-Bromofluorobenzene	360		400		90	70	130			
Sample Matrix Spike Duplicate		Type: M	SD Te	st Code: EPA	4 Meth	od SW80	15B/C		*	
File ID: 12071128.D			Ba	tch ID: MS15	S9048	3B	Analysis	Date: 1	07/11/2012 19:56	
Sample ID: 12070345-09AGSD	Units : µg/K	g	Run ID: MS	SD_15_12071	1 A		Prep Dat	e: (07/11/2012 19:56	
Analyte	Result	PQL				LCL(ME)	UCL(ME) RP	DRefVa	al %RPD(Limit)	Qual
TPH-P (GRO)	20900	2000	16000		131	35	166	22260		
Surr: 1,2-Dichloroethane-d4	372		400	J	93	70	130			
Surr: Toluene-d8	395		400		99	70	130			
Surr: 4-Bromofluorobenzene	355		400		89	7 0	130			
Comments			·····							

Comments

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

L50 = Analyte recovery was below acceptance limits for the LCS, but was acceptable in the MS/MSD.

Reported in micrograms per Kilogram, per client request.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 13-Jul-12	(QC Sι	ımmar	y Report				Work Orde 12070345	
Method Blank		Туре: М	BLK T	est Code: EP.	A Met	hod SW80	15B/C		
File ID: 12071006.D			Ва	atch ID: MS15	5W071	10B	Analysis Date	: 07/10/2012 12:35	
Sample ID: MBLK MS15W0710B	Units : µg/L		Run ID: MS	SD_15_1207 ⁴	10A		Prep Date:	07/10/2012 12:35	
Analyte	Result	PQL	SpkVal	SpkRefVal 9	6REC	LCL(ME)	UCL(ME) RPDRe	fVal %RPD(Limit)	Qual
TPH-P (GRO)	ND	50					•		
Surr: 1,2-Dichloroethane-d4	6.86		10		69	70	130		S54
Surr: Toluene-d8	10.7		10		107	70	130		
Surr: 4-Bromofluorobenzene	10.3		10		103	70	130		
Laboratory Control Spike		Type: Lo	CS Te	est Code: EP	A Meti	hod SW80	15B/C		
File ID: 12071004.D			Ва	atch ID: MS15	W071	10B	Analysis Date	07/10/2012 11:52	
Sample ID: GLCS MS15W0710B	Units : µg/L		Run ID: MS	SD_15_1207 ²	I0A		Prep Date:	07/10/2012 11:52	
Analyte	Result	PQL	SpkVal	SpkRefVal %	6REC	LCL(ME)	UCL(ME) RPDRe	fVal %RPD(Limit)	Qual
TPH-P (GRO)	359	50	400	***************************************	90	70	130		
Surr: 1,2-Dichloroethane-d4	6.94		10		69	70	130		S54
Surr: Toluene-d8	10.7		10		107	70	130		
Surr: 4-Bromofluorobenzene	10.1		10		101	70	130		
Sample Matrix Spike		Type: M	S Te	est Code: EP	A Meti	hod SW80	15B/C		
File ID: 12071016.D			Ba	atch ID: MS15	W071	10B	Analysis Date	: 07/10/2012 16:32	
Sample ID: 12071041-04AGS	Units : µg/L		Run ID: MS	SD_15_1207 ⁴	IOA		Prep Date:	07/10/2012 16:32	
Analyte	Result	PQL	SpkVal	SpkRefVal %	6REC	LCL(ME)	UCL(ME) RPDRe	fVal %RPD(Limit)	Qual
TPH-P (GRO)	1950	250	2000	0	97	51	144		
Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8	35.7		50		71	70	130		
Surr: 4-Bromofluorobenzene	53.1 50.8		50 50		106 102	70 70	130 130		
Sample Matrix Spike Duplicate File ID: 12071017.D		Type: M		est Code: EP					
				itch ID: MS15		0B	•	: 07/10/2012 16:54	
Sample ID: 12071041-04AGSD	Units : µg/L			SD_15_12071			Prep Date:	07/10/2012 16:54	
Analyte	Result	PQL	SpkVal	SpkRefVal %	6REC	LCL(ME)	UCL(ME) RPDRe	fVal_%RPD(Limit)	Qual
TPH-P (GRO)	2040	250	2000	0	102	51	144 194	4.9(29)	
Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8	35.7		50		71	70	130		
Surr: 4-Bromofluorobenzene	53.4 50.4		50 50		107 101	70 70	130 130		
			30		101	70	100		

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

S54 = Surrogate recovery was below laboratory acceptance limits.

Reported in micrograms per Liter, per client request.

Alpha Analytical, Inc.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 		QC Su	ımmary Report Work Order: 12070345
Method Blank		Type: M	BLK Test Code: EPA Method SW8260B
File ID: 12071122.D			Batch ID: MS15S9048A Analysis Date: 07/11/2012 17:46
Sample ID: MBLK MS15S9048A	Units : μg/Κο		Run ID: MSD_15_120711A Prep Date: 07/11/2012 17:46
Analyte	Result	PQL	SpkVal SpkRefVal %REC LCL(ME) UCL(ME) RPDRefVal %RPD(Limit) Q
Dichlorodifluoromethane	ND	20	
Chloromethane Vinvl chloride	ND	40	
Chloroethane	ND ND	20 20	
Bromomethane	ND	40	
Trichlorofluoromethane	ND	20	
Acrolein	ND	2000	
1,1-Dichloroethene	ND	20	
Tertiary Butyl Alcohol (TBA) Dichloromethane	ND	500	
trans-1,2-Dichloroethene	ND	40	
Methyl tert-butyl ether (MTBE)	ND ND	20 5	
1,1-Dichloroethane	ND	20	
Di-isopropyl Ether (DIPE)	ND	20	
cis-1,2-Dichloroethene	ND	20	
Bromochloromethane	ND	20	
Chloroform Ethyl Tertiary Butyl Ether (ETBE)	ND	20	
2,2-Dichloropropane	ND	20	
1,2-Dichloroethane	ND ND	20 20	
1,1,1-Trichloroethane	ND	20	
1,1-Dichloropropene	ND	20	
Carbon tetrachloride	ND	20	
Benzene	ND	5	
Tertiary Amyl Methyl Ether (TAME)	ND	20	
Dibromomethane	ND	20	
1,2-Dichloropropane Trichloroethene	ND	20	
Bromodichloromethane	ND ND	20 20	
cis-1,3-Dichloropropene	ND	20	
trans-1,3-Dichloropropene	ND	20	
1,1,2-Trichloroethane	ND	20	
Toluene	ND	5	
1,3-Dichloropropane Dibromochloromethane	ND	20	
1,2-Dibromoethane (EDB)	ND ND	20	
Tetrachioroethene	ND	40 20	
1,1,1,2-Tetrachloroethane	ND	20	
Chlorobenzene	ND	20	
Ethylbenzene	ND 1	5	
m,p-Xylene	ND	5	
Bromoform Styrene	ND	20	
o-Xvlene	ND ND	20 5	
1,1,2,2-Tetrachloroethane	ND	20	
1,2,3-Trichloropropane	ND	40	
Isopropylbenzene	ND	20	·
Bromobenzene	ND	20	
n-Propylbenzene	ND	20	
4-Chlorotoluene 2-Chlorotoluene	ND	20	
1,3.5-Trimethylbenzene	ND ND	20 20	
tert-Butylbenzene	ND ND	20	
1,2,4-Trimethylbenzene	ND	20	
sec-Butylbenzene	ND	20	
1,3-Dichlorobenzene	ND	20	
1,4-Dichlorobenzene	ND	20	
4-Isopropyltoluene 1,2-Dichlorobenzene	ND	20	
n-Butylbenzene	ND ND	20	
1,2-Dibromo-3-chloropropane (DBCP)	ND ND	20 60	
1,2,4-Trichlorobenzene	ND	40	
Naphthalene	ND	40	
Hexachlorobutadiene	ND	40	
1,2,3-Trichlorobenzene	ND	40	

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 13-Jul-12		QC Sur	nmar	y Repoi	t				Work Ord 1207034	
Surr: 1,2-Dichloroethane-d4	185		200		93	70	130			
Surr: Toluene-d8	203		200		102	70	130			
Surr: 4-Bromofluorobenzene	184	-	200		92	70	130			
Laboratory Control Spike	-	Type: LCS	3 T	est Code: E	PA Meti	nod SW82	260B			
File ID: 12071123.D		,,		atch ID: MS				sis Date:	07/11/2012 18:07	
Sample ID: LCS MS15S9048A	Units : µg/K	'm D		SD_15_120			•	Date:	07/11/2012 18:07	
Analyte	Result	_				LOLONE				Ouni
		PQL		SpkReival				RPDReit	/al %RPD(Limit)	Qual
1,1-Dichloroethene Methyl tert-butyl ether (MTBE)	42.8	20	400		11	10	132			
Benzene	469 548	10	400		117	61	147			
Trichloroethene	576	10 20	400 400		137 144	70 70	138 150			
Toluene	548	10	400		137	70	137			
Chlorobenzene	561	20	400		140	10	137			L1
Ethylbenzene	543	10	400		136	70	138			
m,p-Xylene	553	10	400		138	70	145			
o-Xylene	554	10	400		138	70	145			
Surr: 1,2-Dichloroethane-d4	369		400		92	70	130			
Surr: Toluene-d8	400		400		100	70	130			
Surr: 4-Bromofluorobenzene	376		400		94	70	130			
Sample Matrix Spike		Type: MS	T.	est Code: El	PA Meti	nod SW82	60B			
File ID: 12071124.D		•	Ва	atch ID: MS	15S904	3A	Analy	sis Date:	07/11/2012 18:29	
Sample ID: 12070345-09AMS	Units : µg/K	a Ri		SD_15_120				Date:	07/11/2012 18:29	
Analyte	Result	PQL				LOL/MEN	•		al %RPD(Limit)	Ouel
				·				RPUReiv	ai %RPD(Limit)	Qual
1,1-Dichloroethene Methyl tert-butyl ether (MTBE)	90.5	20	400	0	23	10	132			
Benzene	493	10	400	0	123	42	157			
Trichloroethene	552 578	10	400	0	138	53	150			
Toluene	576 556	20 10	400 400	0	144 139	48 51	165 149			
Chlorobenzene	573	20	400	0	143	51 51	149			
Ethylbenzene	552	10	400	0	138	54	150			
m,p-Xylene	563	10	400	o o	141	50	161			
o-Xylene	566	10	400	Ö	142	35	177			
Surr: 1,2-Dichloroethane-d4	375		400	_	94	70	130			
Surr: Toluene-d8	402		400		101	70	130			
Surr: 4-Bromofluorobenzene	375		400		94	70	130			
Sample Matrix Spike Duplicate		Type: MSI) Te	est Code: Ef	A Meth	od SW82	60B			
File ID: 12071125.D			Ba	atch ID: MS1	5S9048	BA	Analy	sis Date:	07/11/2012 18:51	
Sample ID: 12070345-09AMSD	Units : µg/Kg	n Ri		SD 15 1207			Prep		07/11/2012 18:51	
Analyte	Result	-				i CL/MEN	•		al %RPD(Limit)	Qual
1,1-Dichloroethene										
Methyl tert-butyl ether (MTBE)	82.5	20	400	0	21	10	132	90.45		
Benzene	528 609	10 10	400	0	132	42	157	492.5		1.14
Trichloroethene			400	0	152	53	150	551.8		M1
Toluene	649 623	20	400	0	162	48	165	577.5		1.44
Chlorobenzene		10	400	0	156	51	149	556.2		M1
Ethylbenzene	637	20	400	0	159	51	147	573.3		M55
	617	10	400	0	154	54	150	552.3		M1
m,p-Xylene	628	10	400	0	157	50	161	562.8		
0-Xylene	633	10	400	0	158	35	177	566.2	11.1(40)	
Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8	364		400		91	70	130			
Surr: 4-Bromofluorobenzene	402 279		400		101	70	130			
	378		400		95	70	130			
Comments	3/0		400		95	70	130		···	

Comments

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

L1 = The associated blank spike recovery was above laboratory acceptance limits.

M1 = Matrix spike recovery was high, the method control sample recovery was acceptable.

M55 = Matrix spike recovery was above laboratory acceptance limits.

Alpha Analytical, Inc.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 13-Jul-12	(QC Si	ummary Report Work Order: 12070345	
Method Blank		Type: M		
File ID: 12071006.D			Batch ID: MS15W0710A Analysis Date: 07/10/2012 12:35	
Sample ID: MBLK MS15W0710A	Units : µg/L		Run ID: MSD_15_120710A Prep Date: 07/10/2012 12:35	_
Analyte	Result	PQL	SpkVal SpkRefVal %REC LCL(ME) UCL(ME) RPDRefVal %RPD(Limit) C	Qual
Dichlorodifluoromethane Chloromethane	ND	1		
Vinyl chloride	ND ND	2		
Chloroethane	ND ND	1		
Bromomethane	ND	2		
Trichlorofluoromethane	ND	1		
Acrolein 1.1-Dichloroethene	ND	100		
Tertiary Butyl Alcohol (TBA)	ND ND	1		
Dichloromethane	ND	10 2		
trans-1,2-Dichloroethene	ND	1		
Methyl tert-butyl ether (MTBE)	ND	0.5		
1,1-Dichloroethane	ND	1		
Di-isopropyl Ether (DIPE) cis-1,2-Dichloroethene	ND	1		
Bromochloromethane	ND ND	1 1		
Chloroform	ND ND	1		
Ethyl Tertiary Butyl Ether (ETBE)	ND	1		
2,2-Dichloropropane	ND	1		
1,2-Dichloroethane	ND	1		
1,1,1-Trichloroethane 1,1-Dichloropropene	ND	1		
Carbon tetrachloride	ND ND	1		
Benzene	ND ND	0.5		
Tertiary Amyl Methyl Ether (TAME)	ND	1		
Dibromomethane	ND	1		
1,2-Dichloropropane	ND	1		
Trichloroethene Bromodichloromethane	ND	1		
cis-1,3-Dichloropropene	ND ND	1		
trans-1,3-Dichloropropene	ND	1		
1,1,2-Trichloroethane	ND	i		
Toluene	ND	0.5		
1,3-Dichloropropane	ND	1		
Dibromochloromethane 1,2-Dibromoethane (EDB)	ND	1		
Tetrachloroethene	ND ND	2		
1,1,1,2-Tetrachloroethane	ND	1		
Chlorobenzene	ND	1		
Ethylbenzene	ND	0.5		
m,p-Xylene	ND	0.5		
Bromoform Styrene	ND	1		
o-Xvlene	ND ND	1 0.5		
1,1,2,2-Tetrachloroethane	ND	1		
1,2,3-Trichloropropane	ND	2		
Isopropylbenzene	ND	1		
Bromobenzene n-Propylbenzene	ND	1		
4-Chlorotoluene	ND ND	1		
2-Chlorotoluene	ND	1		
1,3,5-Trimethylbenzene	ND	1		
tert-Butylbenzene	ND	1		
1,2,4-Trimethylbenzene	ND	1		
sec-Butylbenzene 1,3-Dichlorobenzene	ND ND	1		
1,4-Dichlorobenzene	ND ND	1 1		
4-Isopropyltoluene	ND ND	1		
1,2-Dichlorobenzene	ND	1		
n-Butylbenzene	ND	1		
1,2-Dibromo-3-chloropropane (DBCP)	ND	3		
1,2,4-Trichlorobenzene Naphthalene	ND	2		
Hexachlorobutadiene	ND ND	2 2		
1,2,3-Trichlorobenzene	ND	2		
		_		

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 13-Jul-12	(QC Su	ımmarı	y Repor	t				Work Ord 1207034	
Surr: 1,2-Dichloroethane-d4	6.86		10		69	70	130			S54
Surr: Toluene-d8	10.7		10		107	70	130			
Surr: 4-Bromofluorobenzene	10.3		10		103	70	130			
Laboratory Control Spike		Type: LC	S Te	est Code: El	PA Met	hod SW82	260B			
File ID: 12071005.D		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		tch ID: MS1				sis Date	07/10/2012 12:14	
Sample ID: LCS MS15W0710A	Units : µg/L			SD_15_1207			Prep D		07/10/2012 12:14	
Analyte	Result	PQL				LCL/MEN	•			0
				Spkreival				KPUKen	Val %RPD(Limit)	Qua
1,1-Dichloroethene Methyl tert-butyl ether (MTBE)	10.6	1	10		106	80	120			
Benzene	8.21 9.88	0.5	10		82	65	140			
Trichloroethene	9.93	0.5 1	10 10		99 99	70 65	130 144			
Toluene	10.4	0.5	10		104	80	120			
Chlorobenzene	10.4	0.3	10		104	70	130			
Ethylbenzene	10.1	0.5	10		101	80	120			
m,p-Xylene	10.4	0.5	10		104	70	130			
o-Xylene	10	0.5	10		100	70	130			
Surr: 1,2-Dichloroethane-d4	7.61		10		76	70	130			
Surr: Toluene-d8	10.9		10		109	70	130			
Surr: 4-Bromofluorobenzene	10.2		10		102	70	130			
Sample Matrix Spike		Type: M5	S Te	st Code: EF	A Meti	nod SW82	60B			_
File ID: 12071014.D			Ва	tch ID: MS1	5W071	0 A	Analys	is Date:	07/10/2012 15:48	
Sample ID: 12071041-04AMS	Units: µg/L	F		D_15_1207			Prep D		07/10/2012 15:48	
Analyte	Result	PQL .				LOLAMEN	•			0
1,1-Dichloroethene				·				KPDRen	/al %RPD(Limit)	Qua
Methyl tert-butyl ether (MTBE)	61.6	2.5	50	0	123	64	130			
Benzene	103	1.3	50	51.42	102	47	150			
Trichloroethene	58 58.1	1.3	50	0	116	59 65	138			
Toluene	59.8	2.5 1.3	50 50	0	116 120	65 68	144 130			
Chlorobenzene	60.9	2.5	50 50	0	122	70	130			
Ethylbenzene	58.7	1.3	50	0	117	68	130			
m.p-Xylene	62	1.3	50	0	124	68	131			
o-Xylene	58.8	1.3	50	0	118	70	130			
Surr: 1,2-Dichloroethane-d4	35.3		50	·	71	70	130			
Surr: Toluene-d8	54.7		50		109	70	130			
Surr: 4-Bromofluorobenzene	51.7		50		103	70	130			
Sample Matrix Spike Duplicate		Type: MS	D Te	st Code: EF	A Meth	od SW82	60B			
File ID: 12071015.D			Ba	tch ID: MS1	5W071	0A	Analys	is Date:	07/10/2012 16:10	
Sample ID: 12071041-04AMSD	Units : µg/L	F	Run ID: MS	D_15_1207	10A		Prep D	ate:	07/10/2012 16:10	
Analyte	Result	PQL				LCL(ME)	•		/al %RPD(Limit)	Qua
1,1-Dichloroethene	72.6	2.5	50		145	64	130	61.63		M1
Methyl tert-butyl ether (MTBE)	112	1.3	50	51.42	121	47	150	102.6	, ,	
Benzene	67.5	1.3	50	0	135	59	138	57.95		
Trichloroethene	67.7	2.5	50	Õ	135	65	144	58.12		
Toluene	70	1.3	50	Õ	140	68	130	59.79		M1
Chlorobenzene	70.8	2.5	50	0	142	70	130	60.89		M1
Ethylbenzene	68	1.3	50	0	136	68	130	58.67		M1
m,p-Xylene	69.5	1.3	50 50		139		131		• •	
o-Xylene				0		68		61.96		M1
Surr: 1,2-Dichloroethane-d4	68.3	1.3	50	0	137	70	130	58.75	15.0(20)	M1
Sur: Toluene-d8	35.1		50		70	70	130			
Surr: 4-Bromofluorobenzene	54.5		50 50		109	70 70	130			
	51.7		50		103	70	130			
Comments:			****							

Comments

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

M1 = Matrix spike recovery was high, the method control sample recovery was acceptable.

S54 = Surrogate recovery was below laboratory acceptance limits.

Billing Information:

Stratus Environmental

3330 Cameron Park Drive

Cameron Park, CA 95682-8861

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc. WorkOrder: STR12070345

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

Report Attention Phone Number **EMail Address**

Steve Carter (530) 676-6008 x scarter@stratusinc.net

EDD Required: Yes

Sampled by : Shane Edmunds

Report Due By: 5:00 PM On: 11-Jul-12

Cooler Temp

0°C

Samples Received 03-Jul-12

Date Printed 10-Jul-12

PO:

Client:

Client's COC #: 58272, 58274, 58275

Job: 2120-1401-1/Haber Oil

QC Level: S3

Suite 550

= Final Rpt, MBLK, LCS, MS/MSD With Surrogates

		•				Requested Tests								
Alpha	Client	Colle	ction N	No. of	Bottles	;		TPH/E_SG_	TPH/P_S	TPH/P_W	VOC_S	VOCW	i	
Sample ID	Sample ID	Matrix Da	te Al	lpha	Sub	TAT	S	W					1	Sample Remarks
STR12070345-01A	CPT-1-56-W	AQ 06/29 16:	,	6	0	5		Silica Gel (C)		GAS-C		8260_C +Acrolein/OX YS		
STR12070345-02A	CPT-1-66-W	AQ 06/29 16:		6	0	5		Silica Gel (C)	•	GAS-C		8260_C +Acrolein OX YS		!
STR12070345-03A	CPT-1-76-W	AQ 06/29 17:		6	0	5		Silica Gel (C)		GAS-C		8260_C +Acrolein OX YS		
STR12070345-04A	CPT-1-80-W	AQ 06/29 18:		6	0	5		Silica Gel (C)		GAS-C		8260_C Acrolein/OX		
STR12070345-05A	CPT-2-48-W	AQ 06/28 14:		6	0	5		Silica Gel (C)		GAS-C	- 4000	8260_C +Acrolein OX		:
STR12070345-06A	CPT-2-58-W	AQ 06/28 15:	i	6	0	5		Silica Gel (C)		GAS-C		8260_C +Acrolein/OX YS	1	
STR12070345-07A	CPT-2-68-W	AQ 06/28 15:	j j	6	0	5		Silica Gel (C)		GAS-C		8260_C +Acrolein/OX YS	7	
STR12070345-08A	CPT-2-85-W	AQ 06/28		6	0	5		Silica Gel (C)		GAS-C		8260_C +Acrolein OX		

Comments:

Security seals intact. Frozen ice. Report w/Silica Gel for DRO/ORO on all TPH/E samples. per phone call with Scott. Propenal=Acrolein reference workorder #12051843. Amended 7/10/12 to change samples 18A-22A test group matrix, due to login error, SN:

Signature Logged in by:

Company Alpha Analytical, Inc. Date/Time

7/10/12

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other) Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

Billing Information:

Suite 550

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

Report Attention Phone Number (530) 676-6008 x EMail Address

Steve Carter

scarter@stratusinc.net

EDD Required: Yes

Sampled by : Shane Edmunds

WorkOrder: STR12070345

Report Due By: 5:00 PM On: 11-Jul-12

Cooler Temp 0°C

Samples Received 03-Jul-12

Date Printed 10-Jul-12

Page: 2 of 3

PO:

Client:

Cameron Park, CA 95682-8861

Stratus Environmental

3330 Cameron Park Drive

Client's COC #: 58272, 58274, 58275

2120-1401-1/Haber Oil

QC Level: S3 = Final Rpt, MBLK, LCS, MS/MSD With Surrogates

Requested Tests Alpha Client Collection No. of Bottles TPH/E_SG_ TPH/E_SG_ TPH/P S TPH/P_W voc_s VOC W Sample ID Sample ID Matrix Date Alpha Sub TAT Sample Remarks STR12070345-09A CPT-1-10-S SO 06/29/12 0 5 Silica Gel (C) GAS-C 8260_C 09:48 Acrolein/OX YS STR12070345-10A CPT-1-20-S SO 06/29/12 0 Silica Gel (C) GAS-C 8260_C 09:56 +Acrolein/OX YS STR12070345-11A CPT-1-30-S SO 06/29/12 0 Silica Gel (C) GAS-C 8260_C 10:07 +Acrolein/OX YS STR12070345-12A CPT-1-40-S SO 06/29/12 0 5 Silica Gel (C) GAS-C 8260. C 10:24 Acrolein/OX STR12070345-13A CPT-1-50-S SO 06/29/12 0 5 Silica Gel (C) GAS-C 8260_C 11:06 +Acrolein/OX STR12070345-14A CPT-1-60-S SO 06/29/12 0 5 Silica Gel (C) GAS-C 8260 C 11:31 Acrolein/OX YS STR12070345-15A CPT-1-70-S 06/29/12 0 5 Silica Gel (C) GAS-C 8260 C 12:16 Acrolein/OX YS STR12070345-16A CPT-1-80-S SO 06/29/12 Silica Gel (C) GAS-C 8260_C 13:49 Acrolein/OX

Comments:

Security seals intact. Frozen ice. Report w/Silica Gel for DRO/ORO on all TPH/E samples, per phone call with Scott. Propenal=Acrolein reference workorder #12051843. Amended 7/10/12 to change samples 18A-22A test group matrix, due to login error. SN:

Logged in by:

Print Name

Company Alpha Analytical, Inc. Date/Time

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report.

Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

Signature

Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

Billing I	Information	:
-----------	-------------	---

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

Report Attention Phone Number EMail Address

(530) 676-6008 x

Steve Carter scarter@stratusinc.net 3330 Cameron Park Drive Suite 550

EDD Required: Yes

0 °C

Sampled by : Shane Edmunds

WorkOrder: STR12070345

Report Due By: 5:00 PM On: 11-Jul-12

Cooler Temp Samples Received **Date Printed**

03-Jul-12

10-Jul-12

PO:

OC Level: S3

Client:

Client's COC #: 58272, 58274, 58275

Cameron Park, CA 95682-8861

Stratus Environmental

Job : 2120-1401-1/Haber Oil = Final Rpt, MBLK, LCS, MS/MSD With Surrogates

Requested Tests Alpha Client Collection No. of Bottles TPH/E_SG_ TPH/E_SG_ TPH/P_S TPHP W voc s VOC W Sample ID Sample ID Matrix Date Alpha Sub TAT Sample Remarks STR12070345-17A CPT-1-90-S SO 06/29/12 0 5 Silica Gel (C) GAS-C 8260 C Acrolein OX 14:33 YS STR12070345-18A CPT-2-40-S 06/28/12 5 GAS-C BTEX OXY I 10:48 DCA/EDB_C STR12070345-19A CPT-2-50-S SO 06/28/12 GAS-C BTEX OXY 1 5 11.13 DCA/EDB (STR12070345-20A CPT-2-60-S SO 06/28/12 0 GAS-C BTEX/OXY 1 5 11:42 DCA/EDB_C STR12070345-21A CPT-2-70-S SO 06/28/12 GAS-C BTEX/OXY I 0 5 12:16 DCA/EDB_C STR12070345-22A CPT-2-80-S 06/28/12 GAS-C BTEX/OXY/I 0 5 12:40 DCA/EDB. C

Comments:

Security seals intact. Frozen ice, Report w/Silica Gel for DRO/ORO on all TPH/E samples, per phone call with Scott. Propenal=Acrolein reference workorder #12051843, Amended 7/10/12 to change samples 18A-22A test group matrix, due to login error. SN:

Signature **Print Name** Company Date/Time 0720 7/10/12 Logged in by: Alpha Analytical, Inc.

Suite 550

Stratus Environmental

3330 Cameron Park Drive

Cameron Park, CA 95682-8861

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

Report Attention Phone Number

EMail Address

Steve Carter

(530) 676-6008 x

scarter@stratusinc.net

EDD Required: Yes

Sampled by: Shane Edmunds

WorkOrder: STR12070345

Report Due By: 5:00 PM On: 11-Jul-12

PO:

Client:

Client's COC #: 58272, 58274, 58275

Job: 2120-1401-1/Haber Oil

Cooler Temp

Samples Received 03-Jul-12 Date Printed 03-Jul-12

Page: 2 of 3

QC Level: S3 = Final Rpt, MBLK, LCS, MS/MSD With Surrogates

							L			Request	ed Tests		
Alpha	Client	Co	ollection	No. of	Bottles	i	TPH/E_SG_		TPH/P_S	TPH/P_W	VOC_S	VOC_W	
Sample ID	Sample ID	Matrix	Date	Alpha	Sub	TAT	S	w					Sample Remarks
STR12070345-09A	CPT-1-10-S	, ,	6/29/12 09:48	1	0	5	Silica Gel (C)		GAS-C		8260_C +Acrolein/OX YS		. ,
STR12070345-10A	CPT-1-20-S		5/29/12 09:56	1	0	5	Silica Gel (C)		GAS-C		8260_C +Acrolein/OX		A Market American
STR12070345-11A	CPT-1-30-S	" "	5/29/12 10:07	1	0	5	Silica Gel (C)		GAS-C		8260_C +Acrolein/OX VS		
STR12070345-12A	CPT-1-40-S		6/29/12 10:24	1	0	5	Silica Gel (C)		GAS-C		8260_C +Acrolein/OX YS		
STR12070345-13A	CPT-1-50-S	1	5/29/12 11:06	1	0	5	Silica Gel (C)	:	GAS-C		8260_C +Acrolem/OX YS		
STR12070345-14A	CPT-1-60-S	i I	5/29/12 11:31	1	0	5	Silica Gel (C)		GAS-C		8260_C +Acrolein/OX YS		
STR12070345-15A	CPT-1-70-S		5/29/12 12:16	1	0	5	Silica Gel (C)		GAS-C		8260_C +Acrolein/OX YS		
TR12070345-16A	CPT-1-80-S	1 1	5/29/12 13:49	1	0	5	Silica Gel (C)		GAS-C		8260_C +Acrolein/OX		

-						
ൂ	m	m	o	n	te	•

Security seals intact. Frozen ice. Report w/Silica Gel for DRO/ORO on all TPH/E samples, per phone call with Scott. Propenal=Acrolein reference workorder #12051843.:

	Signature	Print Name	Company	Date/Time
Logged in by:		Sand Den	Alpha Analytical, Inc.	7/3/12 1155

Suite 550

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

Report Attention Phone Number

Steve Carter (530) 676-6008 x

scarter@stratusinc.net

EMail Address

EDD Required: Yes

Sampled by : Shane Edmunds

WorkOrder: STR12070345

Report Due By: 5:00 PM On: 11-Jul-12

Cooler Temp 0 °C Samples Received 03-Jul-12 Date Printed 03-Jul-12

Page: 3 of 3

PO:

Client:

Stratus Environmental

3330 Cameron Park Drive

Cameron Park, CA 95682-8861

Client's COC #: 58272, 58274, 58275

Job: 2120-1401-1/Haber Oil

QC Level: S3 = Final Rpt, MBLK, LCS, MS/MSD With Surrogates

									Request	ed Tests		
Alpha	Client	Collection	No. of	Bottles	3	TPH/E_SG_	TPH/E_SG_	TPH/P_S	TPH/P_W	voc_s	voc_w	
Sample ID	Sample ID	Matrix Date	Alpha	Sub	TAT	S	w					Sample Rema
STR12070345-17A	CPT-1-90-S	SO 06/29/12 14:33	1	0	5	Silica Gel (C)		GAS-C		8260_C +Acrolein/OX YS		
STR12070345-18A	CPT-2-40-S	SO 06/28/12 10:48	1	0	5			GAS-C			BTEX:OXY/ 1,2- DCA:EDB_C	
STR12070345-19A	CPT-2-50-S	SO 06/28/12 11:13	1	0	5			GAS-C			BTEX OXY 1.2- DCA EDB C	
STR12070345-20A	CPT-2-60-S	SO 06/28/12 11:42	1	0	5			GAS-C			BTEX OXY 1.2- DCA EDB_C	
STR12070345-21A	CPT-2-70-S	SO 06/28/12 12:16	1	0	5	The state of the s		GAS-C	YMT - 1		BTEX/OXY/ 1,2- DCA/EDB C	
STR12070345-22A	CPT-2-80-S	SO 06/28/12 12:40	1	0	5			GAS-C			BTEX-OXY/ 1,2- DCA/EDB_C	

Comments: Security seals intact. Frozen ice. Report w/Silica Gel for DRO/ORO on all TPH/E samples, per phone call with Scott. Propenal=Acrolein reference workorder #12051843 :

Signature	Print Name	Company	Date/Time
Logged in by:	Sauch Dei	Alpha Analytical, Inc.	7/3/12

Stratus Environmental

3330 Cameron Park Drive

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

Phone Number

Steve Carter (530) 676-6008 x

scarter@stratusinc.net

EMail Address

EDD Required: Yes

Sampled by: Shane Edmunds

WorkOrder: STR12070345

Report Due By: 5:00 PM On: 11-Jul-12

Cooler Temp 0°C

Samples Received 03-Jul-12

Date Printed 03-Jul-12

Page: 1 of 3

Cameron Park, CA 95682-8861 PO:

Suite 550

Client:

Client's COC #: 58272, 58274, 58275

Job: 2120-1401-1/Haber Oil

Report Attention

QC Level: S3 = Final Rpt, MBLK, LCS, MS/MSD With Surrogates

At In	· ·	_								Request	ed Tests		
Alpha Sample ID	Client Sample ID		Collection		Bottles		TPH/E_SG_ S	TPH/E_SG_ W	TPH/P_S	TPH/P_W	voc_s	voc_w	
Sample ID	Sample ID	Walrix	Date	Alpha	Sub	TAT							Sample Remarks
STR12070345-01A	CPT-1-56-W	AQ	06/29/12 16:09	6	0	5		Silica Gel (C)		GAS-C		8260_C +Acrolein/OX YS	
STR12070345-02A	CPT-1-66-W	AQ	06/29/12 16:52	6	0	5		Silica Gel (C)		GAS-C		8260_C +Acrolein-OX YS	
STR12070345-03A	CPT-1-76-W	AQ	06/29/12 17:55	6	0	5		Silica Gel (C)		GAS-C		8260_C +Acrolein: OX YS	
STR12070345-04A	CPT-1-80-W	AQ	06/29/12 18:36	6	0	5		Silica Gel (C)		GAS-C		8260_C +Acrolein OX YS	
STR12070345-05A	CPT-2-48-W	AQ	06/28/12 14:30	6	0	5		Silica Gel (C)	. It's all a residents to the second	GAS-C		8260_C +Acrolein/OX YS	
STR12070345-06A	CPT-2-58-W	AQ	06/28/12 15:11	6	0	5		Silica Gel (C)		GAS-C		8260_C +Acrolein OX YS	
STR12070345-07A	CPT-2-68-W	AQ	06/28/12 15:59	6	0	5		Silica Gel (C)		GAS-C		8260_C +Acrolein/OX YS	
STR12070345-08A	CPT-2-85-W	AQ	06/28/12 13:36	6	0	5		Silica Gel (C)		GAS-C		8260_C +Acrolein OX YS	

_			
r_{\sim}	mn		40.
U	mn	161	LS:

Security seals intact. Frozen ice. Report w/Silica Gel for DRO/ORO on all TPH/E samples, per phone call with Scott. Propenal=Acrolein reference workorder #12051843.

Signature	Print Name	Company	Date/Time
Logged in by:	- Sand Den	Alpha Analytical, Inc.	7/3/12 1/59
			,(,

Billing Information: Company Name	Alpha Analy 255 Glendale Ave Sparks, Nevada 8 Phone (775) 355-	nue, Suite 21 9431-5778 -1044	Samples AZ ID	Collecte CA	ed From W NV _ OTHER	Vhich State WA	e? 58272 DOD Site Page # of3_
City, State, Zip	Fax (775) 355-04	06	<i></i>				7
Phone Number Fax			/~	Analy	rses Be qu	ired	
Consultant / Client Name Haber Oil Job # 2120 - IL	Job Name	e	- / 2 ,	3/	1 🗐 -	7 57	Data Validation
Address Ittel Control	Papert Attention / Project Manage			3/	/ S / /	/ उर्दें] /	/ Level: III or IV
City, State, Zip San Leandre Email:	Report Attention / Project Manag	jer		freshment !		1 /E	J
Time Date Matrix* P.O. # Phone:	Mobile:		- /54/4	H.Y.		S GIG	DD/EDF? YES X NO
	Description TA	AT Field # Contai	iners"	パケント			REMARKS
1609 424 AQ STR 2078345 DIA CPT-Z-	-56 N ST		7 1 1	XX	SIV	12	HEIWAHRO
1652 1 , OZA (197-1-							
	-76-W			+ 		+	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-80-6						
1430 428 CPT-2-	. 48-6						
1511 DUA CRT-2-				111		 	
1551 DA CIT-2-				+++		 	
1551 DA CIT-2- 1336 V DSA CAT-2-	- 85-22		- V	1/4	14 14	W -	
ADDITIONAL INSTRUCTIONS:							
						- VIII V	
I, (field sampler), attest to the validity and authenticity of this sample. I am awa grounds for legal action. Sampled By:	are that tampering with or intenti	ionally mislabeling	the sample locatio	n, date or ti	me of collect	ion is conside	red fraud and may be
Relinquished by: (Signature/Affiliation)	Received by: (Signature/Affiliation)	The second secon		Date:	02.12	Time:
Relinquished by: (Signature/Affiliation)	Received by: (Signature/Affiliation)		na		Date:	3/12	Time: 1035
Relinquished by: (Signature/Affiliation)	Received by: (Signature/Affiliation))		, , , , , , , , , , , , , , , , , , , ,	Date:		Time:
Key: AQ - Aqueous SO - Soil WA - Waste OT - Other		V-Voa S-Soil	Jar O-Orbo	T-Tedlar	B-Bras	ss P-Plas	stic OT-Other

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this coc. The liability of the laboratory is limited to the amount paid for the report.

Billing Information: Company Name Street Cricing as Attn: Rayabla Address City, State, Zip				<u>fa/</u>	(%)	Alpha A 255 Glendai Sparks, Nev Phone (775 Fax (775) 3	le Avenue, vada 89431 5) 355-1044	Suite 2 1-5778	21	Sar AZ ID	nples	Coll CA OR	lecte	d Fro N . OT	om W V HER	hich W	State? 'A P	5827 DOD Site age # 2 of	4 _3
Phone	Numbei		Fax								/	Δ	naly	ses F	Requi	red	/		
Consu	Itant / Cli	ent Name	Hater Oil	Job# 2120 14	to las i	Jo	b Name	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	/	'			, —	,			Data Validation	
Addres	SS		Marie 1	467	Report Atte	ention / Project	Mananan			/		~		图/	/ ليز	3	$-\sqrt{1}$.evel: III or IV	′
City, S	tate, Zip		1401 Gard Are San Leandro	Name: Steve (arter	miloti / Project	wanager				DRO, CA	$I/\sqrt{2}$	2/ 4	BITEX TOB	E /:	Extractical	EDD Globa ID#	~	
Time	Date	Matrix*	P.O. #	1		Mobile:				/,3	10	500	₹ 7 \	?/ _{[X}	$\frac{1}{2}$	ئے ک	Globa	/EDF? YES _XN	
	Sampled	See Key Below	Lab ID Number (Use Only)	Samp	le Description		TAT	Field Filtered	# Containers**	56	/움	シ	12	12 A	12	1.5		TOGODICI 82 REMARKS	<u> </u>
0448	6/29	50	TOGA	CPT-1-1	ช -5		STD	, moreo	155	又	×	X	X	X	×			HEMARKS	`
0956			LO _A	CPT-1-3	20-5		1		j		$\frac{1}{i}$			1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
1007			lllA	CPT-1-	30-5														
1024			124		10-5							\Box	\top	\vdash					
1106			134	CPT-1-	50-5							$\top \top$	\top	\vdash					
1131			14A	CPT-1-															
1216			15A	CPT-1-		and the second s						$\exists \exists$	Table 1						
1349			16A		80-5	And the second s						+							·
1433	V		17A	COT-1-						+++	V	+							
1048	11		18A	CPT-2-								+	1						
1113			194	CPT-2-		***	.:					+	1						
1142	,		20A									+							
1216	V	V	214	CPT-Z-	70-5		 		$\overline{}$	$ \downarrow\rangle$		V	V	V					
	TION	AL IN	STRUCTIONS:		1			1		l			1			1			
			A NORTH AND A STATE OF THE STAT		7.45											·			
I, (field	sample	er), attes	st to the validity and authenticity on. Sampled By:	of this sample. I am av	vare that tamp	pering with or	intentionall	y misla	abeling the s	ample I	ocatio	n, date	or tim	ne of c	ollectio	on is co	onsidere	fraud and may	be
			e/Affiliation) Sizu	Edmo	Received	by: (Signature/Af	filiation)			· · · · · · · · · · · · · · · · · · ·		***************************************		D	ate:	ハフ	12	Time: 152	
Relingu	shed by:	(Signature	e/Affiliation)		Received	by: (Signature/Af	filiation)		11000	,				Di	7/3	111	.,	Time:	
Relinqui	shed by: ((Signature	p/Affiliation)		Received	by: (Signature/Aft	filiation)		4ymi					Da	ate:	114		(035 Fime:	
,	Q - Aqu Sample		SO - Soil WA - Waste		AR - Air	**: L-Lite			S-Soil Jar		Orbo	T- T	edlar		-Brass	 ;	P-Plastic	OT-Other	

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this coc. The liability of the laboratory is limited to the amount paid for the report.

Billing Compai	J Infoi	rmatic e	in: Stratus Environn it Payable	nental (Alpha Ai 255 Glendal Sparks, Nev	e Avenue,	ie, Suite 21 AZ CA Z NV WA DOD Site										
Address					$\langle \mathcal{O}_{\mathcal{O}} \rangle$	Phone (775	355-1044		l									
						Fax (775) 3	55-0406 				$\overline{}$						7	
Phone f	Number	-	Fax								/	P	Inalys	ses R	equi	red	/	
Consul	ant / Clie	ent Nam	Haber Oil	Job# 2120-	1401-01	Joi	b Name		· · · · · · · · · · · · · · · · · · ·	-/	7		411	45/	/	7		Data Validation evel: III or IV
Addres City, St	5		1401 Grand Ave	Name: Steve		tion / Project	Manager			\neg		ST VIII						
City, St	ate, zip		an Leandro	Email:			***			. /	10	ୁ / ∙	₹/ 2	<u> </u>			EDD/	EDF? YES 🔀 NO
Time	Date	Matrix* See Key	P.O. #	Phone:	*	Mobile:				- /29	ي/رخ	3/ >	7/2	6/			Global	15600101827
Sampled	Sampled	Below	Lab ID Number (Use Only)		nple Description	···	TAT	Field Filtered	# Containers**	19	560	/ de	12	/ ,		/ ,	 	REMARKS
1240	428	8	-22A	CFT-2-	-80-S		STD		155	X	X	X	X					
			general forms										-				****	
					VIII													
			CARLEST CONTROL OF THE CONTROL OF TH	100000000000000000000000000000000000000			 											
			2 V 10 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1								***************************************							
			in the second second				<u> </u>											
									*									
			Example 1															
			20 No. 32 1 1 1															
		,																
ADDI	TION	AL IN	STRUCTIONS:															
I, (field	sample s for le	er), atte gal actio	st to the validity and authenticity on. Sampled By:	of this sample. Lam Edincels	aware that tamp	ering with or	intentional	ly misl	abeling the	sample	locatio	on, dat	e or tin	ne of c	ollecti	on is co	nsidered	fraud and may be
Relinqui	shed by:	(Signatur	e/Affiliation) Shu Sa	<u>\</u>	Received b	y: (Signature/A	ffiliation)									72.		Time: 752
Relingui	shed by:	(Signatur	e/Affiliation)		Received b	y: (Signature/Al	ffiliation)		Alp	one			-	Da	ate H	31 12	_ 1	Time:
Relinqui	shed by:	(Signatur	e/Affiliation)		Received b	y: (Signature/Al	filiation)				· · · · · · · · · · · · · · · · · · ·				ate:			lime:
																	i_	

*Key: AQ - Aqueous SO - Soil WA - Waste OT - Other AR - Air **: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this coc. The liability of the laboratory is limited to the amount paid for the report.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Attn: Steve Carter Phone: (530) 676-6008

Fax: (530) 676-6005 Date Received: 08/11/12

Job:

2120-1400-01/ Haber Oil

Total Petroleum Hydrocarbons - Purgeable (TPH-P) EPA Method SW8015B

		Parameter	Concentration	Reporting Limit	Date Extracted	Date Analyzed
Client ID : Lab ID : Date Sampled	MW-9 STR12081311-01A 08/09/12 17:44	TPH-P (GRO)	ND	50 μg/L	08/17/12	08/17/12
Client ID : Lab ID : Date Sampled	MW-10 STR12081311-02A 08/09/12 18:24	TPH-P (GRO)	ND	50 μg/L	08/17/12	08/17/12
Client ID : Lab ID : Date Sampled	MW-1R STR12081311-03A 08/09/12 18:53	TPH-P (GRO)	4,000	200 μg/L	08/17/12	08/17/12
Client ID : Lab ID : Date Sampled	MW-2R STR12081311-04A 08/09/12 19:45	TPH-P (GRO)	30,000	4,000 μg/L	08/17/12	08/17/12

Gasoline Range Organics (GRO) C4-C13

This replaces the report originally signed 8/20/12, due to a change in the job name, due to lab error.

ND = Not Detected

Reported in micrograms per Liter, per client request.

Roger Scholl Kandy Saulaur

Dalter Airchan

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise. Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

2120-1400-01/ Haber Oil

Attn: Steve Carter

Phone: (530) 676-6008

Fax: (530) 676-6005

Alpha Analytical Number: STR12081311-01A

Client I.D. Number: MW-9

Sampled: 08/09/12 17:44 Received: 08/11/12 Extracted: 08/17/12

Analyzed: 08/17/12

Volatile Organics by GC/MS EPA Method SW8260B

	Compound	Concentration	Reporting	Limit		Compound	Concentration	Reporting Li	imit
1	Dichlorodifluoromethane	ND	1.0	μg/L	26	1.2 Diberrando (500)		1	
2	Chloromethane	ND	2.0	µg/L µg/L	36 37	1,2-Dibromoethane (EDB) Tetrachloroethene	ND	2.0	µg/L
3	Vinyl chloride	ND	1.0				2.7	1.0	µg/L
4	Chloroethane	ND	1.0	µg/L	38	1,1,1,2-Tetrachloroethane	ND	1.0	µg/L
5	Bromomethane	ND	2.0	µg/L	39	Chlorobenzene	ND	1.0	μg/L
6	Trichlorofluoromethane	ND	1	μg/L	40	Ethylbenzene	ND	0.50	µg/L
7	Acrolein	ND	1.0	µg/L	41	m,p-Xylene	ND	0.50	µg/L
8	1,1-Dichloroethene	ND	100 1.0	µg/L	42	Bromoform	ND	1.0	µg/L
9	Tertiary Butyl Alcohol (TBA)	ND	1	µg/L	43	Styrene	ND	1.0	µg/L
10	Dichloromethane	2.4	10	µg/L	44	o-Xylene	ND	0.50	μg/L
11	trans-1,2-Dichloroethene	ND ND	2.0	μg/L	45	1,1,2,2-Tetrachioroethane	ND	1.0	μg/L
12	Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	46	1,2,3-Trichloropropane	ND	2.0	μg/L
13	1,1-Dichloroethane	ND	0.50	µg/L	47	Isopropylbenzene	ND	1.0	μg/L
14	Di-isopropyl Ether (DIPE)	ND	1.0	μg/L	48	Bromobenzene	ND	1.0	μg/L
15	cis-1,2-Dichloroethene	ND ND	1.0	µg/L	49	n-Propylbenzene	ND	1.0	μg/L
16	Bromochloromethane	ND	1.0	µg/L	50	4-Chlorotoluene	ND	1.0	μg/L
17	Chloroform	ND	1.0	µg/L	51	2-Chlorotoluene	ND	1.0	μg/L
18	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	μg/L	52	1,3,5-Trimethylbenzene	ND	1.0	μg/L
19	2,2-Dichloropropane	ND	1.0	µg/L	53	tert-Butylbenzene	ND	1.0	μg/L
20	1,2-Dichloroethane	ND	1.0	µg/L	54	1,2,4-Trimethylbenzene	ND	1.0	μg/L
21	1,1,1-Trichloroethane	ND ND	1.0	µg/L	55	sec-Butylbenzene	ND	1.0	μg/L
22	1,1-Dichloropropene	ND	1.0	µg/L	56	1,3-Dichlorobenzene	ND	1.0	µg/L
23	Carbon tetrachloride	ND ND	1.0	µg/L	57	1,4-Dichlorobenzene	ND	1.0	μg/L
24	Benzene	1	1.0	µg/L	58	4-Isopropyltoluene	ND	1.0	μg/L
25	Tertiary Amyl Methyl Ether (TAME)	1.1	0.50	µg/L	59	1,2-Dichlorobenzene	ND	1.0	μg/L
26	Dibromomethane	ND	1.0	µg/L	60	n-Butylbenzene	ND	1.0	μg/L
27	1,2-Dichloropropane	ND	1.0	µg/L	61	1,2-Dibromo-3-chloropropane (DBCF	P) ND	3.0	µg/L
28	Trichloroethene	ND	1.0	μg/L	62	1,2,4-Trichlorobenzene	ND	2.0	μg/L
29	Bromodichloromethane	ND	1.0	µg/L	63	Naphthalene	ND	2.0	μg/L
30	cis-1,3-Dichloropropene	ND	1.0	µg/L	64	Hexachlorobutadiene	ND	2.0	µg/L
31	trans-1,3-Dichloropropene	ND	1.0	µg/L	65	1,2,3-Trichlorobenzene	ND	2.0	μg/L
32	1,1,2-Trichloroethane	ND	1.0	µg/L			•	,	
33	Toluene	ND	1.0	µg/L		•			
34	1,3-Dichloropropane	ND	0.50	µg/L					
	Dibromochloromethane	ND	1.0	µg/L					
UU	Signaturaling	ND	1.0	na/l					

This replaces the report originally signed 8/20/12, due to a change in the job name, due to lab error.

ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

2120-1400-01/ Haber Oil

Attn: Steve Carter

Phone: (530) 676-6008 Fax: (530) 676-6005

Alpha Analytical Number: STR12081311-02A

Client I.D. Number: MW-10

Sampled: 08/09/12 18:24

Received: 08/11/12 Extracted: 08/17/12 Analyzed: 08/17/12

Volatile Organics by GC/MS EPA Method SW8260B

	Compound	Concentration	Reporting	Limit		Compound	Concentration	Reporting Li	mit
1	Dichlorodifluoromethane	ND	1.0	µg/L	36	1,2-Dibromoethane (EDB)	ND	2.0	
2	Chloromethane	ND	2.0	µg/L	37	Tetrachloroethene	1.0	1.0	µg/L
3	Vinyl chloride	ND	1.0	µg/L	38		ND	1.0	μg/L
4	Chloroethane	ND	1.0	µg/L	39		ND	1.0	μg/L
5	Bromomethane	ND	2.0	µg/L	40	Ethylbenzene	ND	0.50	µg/L
6	Trichlorofluoromethane	ND	1.0	µg/L	41	m,p-Xylene	ND ND	0.50	µg/L
7	Acrolein	ND	100	µg/L	42	Bromoform	ND	1.0	µg/L
8	1,1-Dichloroethene	ND	1.0	µg/L	43	Styrene	ND	1.0	µg/L
9	Tertiary Butyl Alcohol (TBA)	ND	10	µg/L	44	•	ND	1	µg/L
10	Dichloromethane	ND	2.0	µg/L	45	1,1,2,2-Tetrachloroethane	ND	0.50	μg/L
11	trans-1,2-Dichloroethene	ND	1.0	µg/L	46	1,2,3-Trichloropropane	ND	1.0 2.0	μg/L
12	Methyl tert-butyl ether (MTBE)	ND	0.50	µg/L	47	Isopropylbenzene	ND	i	μg/L
13	1,1-Dichloroethane	ND	1.0	µg/L	48	Bromobenzene	ND	1.0	µg/L
14	Di-isopropyl Ether (DIPE)	ND	1.0	µg/L	49	n-Propylbenzene	ND	1.0	μg/L
15	cis-1,2-Dichloroethene	ND	1.0	µg/L	50	4-Chlorotoluene	ND	1.0	µg/L
16	Bromochloromethane	ND	1.0	µg/L	51	2-Chlorotoluene	ND	1.0	μg/L
17	Chloroform	1.2	1.0	µg/L	52	1,3,5-Trimethylbenzene	ND ND	1.0	µg/L
18	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0	ug/L	53	tert-Butylbenzene	ND	1.0	µg/L
19	2,2-Dichloropropane	ND	1.0	µg/L µg/L	54	1,2,4-Trimethylbenzene	1	1.0	μg/L
20	1,2-Dichloroethane	ND	1.0	μg/L	55	sec-Butylbenzene	ND	1.0	μg/L
21	1,1,1-Trichloroethane	ND	1.0	µg/L	56	1,3-Dichlorobenzene	ND ND	1.0	µg/L
22	1,1-Dichloropropene	ND	1.0	μg/L	57	1,4-Dichlorobenzene	1	1.0	μg/L
23	Carbon tetrachloride	ND	1.0	μg/L μg/L		•	ND	1.0	μg/L
24	Benzene	ND	0.50	µg/L µg/L	58 59	4-isopropyitoluene	ND	1.0	µg/L
25	Tertiary Amyl Methyl Ether (TAME)	ND	1.0	µg/L µg/L	60	1,2-Dichlorobenzene n-Butylbenzene	ND	1.0	μg/L
26	Dibromomethane	ND	1.0	µg/L		•	ND ND	1.0	μg/L
27	1,2-Dichloropropane	ND	1.0	µg/L µg/L	61 62	1,2-Dibromo-3-chloropropane (DBCF	, I	3.0	μg/L
28	Trichloroethene	ND	1.0	µg/L µg/L		1,2,4-Trichlorobenzene	ND	2.0	μg/L
29	Bromodichloromethane	ND	1.0	. •	63	Naphthalene Hexachlorobutadiene	ND	2.0	μg/L
30	cis-1,3-Dichloropropene	ND	1.0	µg/L µg/L	64 65		ND	2.0	µg/L
31	trans-1,3-Dichloropropene	ND	1.0	. •	00	1,2,3-Trichlorobenzene	ND	2.0	µg/L
32	1,1,2-Trichloroethane	ND	1.0	µg/L					
33	Toluene	ND	0.50	µg/L					
34	1,3-Dichloropropane	ND	1.0	μg/L μg/L					
35	Dibromochloromethane	ND	1.0	pg/L un/l					

This replaces the report originally signed 8/20/12, due to a change in the job name, due to lab error.

ND = Not Detected

Roger Scholl

Roger L, Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Page 1 of 1

Report Date

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 Job: 2120-1400-01/ Haber Oil

Attn: Steve Carter
Phone: (530) 676-6008
Fax: (530) 676-6005

Alpha Analytical Number: STR12081311-03A

Client I.D. Number: MW-1R

Sampled: 08/09/12 18:53 Received: 08/11/12 Extracted: 08/17/12 Analyzed: 08/17/12

Volatile Organics by GC/MS EPA Method SW8260B

	Compound	Concentration	Reporting	J Limit		Compound	Concentration	Reporting Li	mit
1	Dichlorodifluoromethane	ND ND	2.0	µg/L	36	1,2-Dibromoethane (EDB)	ND	4.0	μg/L
2	Chloromethane	ND	8.0		37	Tetrachloroethene	ND	2.0	μg/L
3	Vinyl chloride	ND	2.0		38	1.1.1.2-Tetrachloroethane	ND	2.0	µg/L
4	Chloroethane	ND	2.0		39		ND	2.0	μg/L
5	Bromomethane	ND	8.0	. •	40	Ethylbenzene	4.6	1.0	μg/L
6	Trichlorofluoromethane	ND	2.0		41	m,p-Xylene	1.4	1.0	μg/L
7	Acrolein	ND	200		42	•	ND	2.0	μg/L
8	1,1-Dichloroethene	ND	2.0		43	Styrene	ND	2.0	μg/L
9	Tertiary Butyl Alcohol (TBA)	ND	20		44	•	ND	1.0	µg/L
10	Dichloromethane	ND	8.0		45	1,1,2,2-Tetrachloroethane	ND	2.0	μg/L
11	trans-1,2-Dichloroethene	ND	2.0	. •	46	1,2,3-Trichloropropane	ND	8.0	μg/L
12	Methyl tert-butyl ether (MTBE)	63	1.0	µg/L	47	Isopropylbenzene	6.6	2.0	µg/L
13	1,1-Dichloroethane	ND	2.0	µg/L	48	Bromobenzene	ND	2.0	µg/L
14	Di-isopropyl Ether (DIPE)	ND .	2.0	µg/L	49	n-Propvibenzene	19	2.0	μg/L
15	cis-1,2-Dichloroethene	ND	2.0	ua/L	50	4-Chlorotoluene	ND	2.0	μg/L
16	Bromochloromethane	ND	2.0	µg/L	51	2-Chlorotoluene	ND	2.0	μg/L
17	Chloroform	ND	2.0	µg/L	52	1,3,5-Trimethylbenzene	ND	2.0	μg/L
18	Ethyl Tertiary Butyl Ether (ETBE)	ND	2.0	µg/L	53	tert-Butylbenzene	ND	2.0	μg/L μg/L
19	2,2-Dichloropropane	ND	2.0	µg/L	54		ND	2.0	
20	1,2-Dichloroethane	ND	2.0	µg/L	55	sec-Butylbenzene	17	2.0	μg/L μg/L
21	1,1,1-Trichloroethane	ND	2.0	μg/L	56	1.3-Dichlorobenzene	ND	2.0	µg/L
22	1,1-Dichloropropene	ND	2.0	μg/L	57	1,4-Dichlorobenzene	ND	2.0	
23	Carbon tetrachloride	ND	2.0	μg/L	58	4-Isopropyitoluene	4.4	2.0	µg/L
24	Benzene	ND	1.0	µg/L	59	1.2-Dichlorobenzene	ND ND	2.0	µg/L
25	Tertiary Amyl Methyl Ether (TAME)	5.3	2.0	µg/L	60	n-Butylbenzene	17	2.0	μg/L
26	Dibromomethane	ND	2.0	µg/L	61	1,2-Dibromo-3-chloropropane (DBC)		12	µg/L
27	1,2-Dichloropropane	ND	2.0	μg/L	62		ND ND	8.0	μg/L
28	Trichloroethene	ND	2.0	μg/L	63	Naphthalene	ND		μg/L
29	Bromodichloromethane	ND	2.0	μg/L	64	Hexachlorobutadiene	ND	8.0	μg/L
30	cis-1,3-Dichloropropene	ND	2.0		•		1	8.0	μg/L
31	trans-1,3-Dichloropropene	ND	2.0	µg/L	65	1,2,3-Trichlorobenzene	ND	8.0	µg/L
32	1,1,2-Trichloroethane	ND	2.0	μg/L					
33	Toluene	ND ND	1.0	μg/L					
34	1,3-Dichloropropane	ND		μg/L					
35	Dibromochloromethane	ND	2.0	μg/L					
		ן אט	2.0	μg/L					

Reporting Limits were increased due to high concentrations of target analytes.

This replaces the report originally signed 8/20/12, due to a change in the job name, due to lab error.

ND = Not Detected

Joger Scholl Kandy Danlown

Dalter Hirihan

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise. Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

8/21/12

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 2120-1400-01/ Haber Oil

Attn: Steve Carter Phone: (530) 676-6008

Fax: (530) 676-6005

Alpha Analytical Number: STR12081311-04A

Sampled: 08/09/12 19:45

Client I.D. Number: MW-2R

Received: 08/11/12 Extracted: 08/17/12 Analyzed: 08/17/12

Volatile Organics by GC/MS EPA Method SW8260B

Dichlorodifluoromethane		Compound	Concentration	Reporting	Limit		Compound	Concentration	Reporting Li	mit
Chloromethane	1	Dichlorodifluoromethane	ND	40	ua/l	36	1.2-Dihromoethane (EDB)	L ND		
Vinyt chloride	2	Chloromethane	ND					T .		
Chloroethane	3	Vinyl chloride	ND					–		
Bromomethane	4	Chloroethane	ND	1				1	1	
Trichlorofluoromethane	5		ND					1	1	
Acrolein	6	Trichlorofluoromethane	ND				•		1	
1,1-Dichloroethene	7	Acrolein	ND	1			,, ,	1 '	1	
Tertiary Butyl Alcohol (TBA) ND 400 μg/L 44 o-Xylene 1,100 20 μg/L	8	,	ND	1					1	
Dichloromethane	9	Tertiary Butyl Alcohol (TBA)	ND	,				1	1	
1	10			1			•	•	l l	
Methyl tert-butyl ether (MTBE) 340 20 μg/L 47 Isopropylbenzene ND 40 μg/L	11	trans-1,2-Dichloroethene	1	1					1	
1,1-Dichloroethane	12	Methyl tert-butyl ether (MTBE)								
Di-isopropyl Ether (DIPE)	13							4		
15 cis-1,2-Dichloroethene	14	Di-isopropyl Ether (DIPE)		1	. •					
16 Bromochloromethane	15	cis-1,2-Dichloroethene		1	. •			li de la companya de	1	
17 Chloroform	16	Bromochloromethane	3				·	1		
Ethyl Tertiary Butyl Ether (ETBE)	17	Chloroform			. •				i i	
19 2,2-Dichloropropane	18	Ethyl Tertiary Butyl Ether (ETBE)	1	1	. •		•		1	
1,2-Dichloroethane	19			ŧ			=	1 -		
1,1,1-Trichloroethane	20	1,2-Dichloroethane	1	1	µg/L			3		
22 1,1-Dichloropropene	21	1,1,1-Trichloroethane		1				B	1	
23 Carbon tetrachloride	22	1,1-Dichloropropene		1						
24 Benzene 1,500 20 µg/L 59 1,2-Dichlorobenzene ND 40 µg/L 25 Tertiary Amyl Methyl Ether (TAME) ND 40 µg/L 60 n-Butylbenzene ND 40 µg/L 26 Dibromomethane ND 40 µg/L 61 1,2-Dibromo-3-chloropropane (DBCP) ND 240 µg/L 27 1,2-Dichloroperopane ND 40 µg/L 62 1,2,4-Trichlorobenzene ND 160 µg/L 28 Trichloroethane ND 40 µg/L 63 Naphthalene 200 160 µg/L	23	Carbon tetrachloride	_				•			
25 Tertiary Amyl Methyl Ether (TAME)	24	Benzene	1 '							
26 Dibromomethane ND 40 µg/L 61 1,2-Dibromo-3-chloropropane (DBCP) ND 240 µg/L 27 1,2-Dichloropropane ND 40 µg/L 62 1,2,4-Trichlorobenzene ND 160 µg/L 28 Trichloroethane ND 40 µg/L 63 Naphthalene 320 160 µg/L	25	Tertiary Amyl Methyl Ether (TAMF)						1	1	
27 1,2-Dichloropropane ND 40 µg/L 62 1,2-Dichlorobenzene ND 160 µg/L 28 Trichloroethene ND 40 µg/L 62 1,2,4-Trichlorobenzene ND 160 µg/L	26		1 "	i	. •					. •
28 Trichloroethene ND 40 unit 63 Naphthalene ND 160 µg/L	27	1,2-Dichloropropane		1					1	
40 UG/I h3 Naphinalene 1 220 1 460/i	28	Trichloroethene		ı	. •		• •	1	1	
29 Bromodichloromethane	29	Bromodichloromethane	1					220	160	µg/L
30 cis-1.3-Dichloropropene	30	cis-1,3-Dichloropropene	E .	1		٠,				µg/L
31 trans-1 3 Dighterrorgone ND 160 µg/L	31		4	1		65	1,2,3-Trichlorobenzene	I ND	160	μg/L
20 110 Turbian Harris	32		2	1						
33 Toluono	33	Toluene		1						
34 13 Diableronroppe	34	1,3-Dichloropropane	1 '	i						
35 Dibromochloromethane ND 40 µg/L 40 µg/L	35		•	1						

Reporting Limits were increased due to high concentrations of target analytes.

This replaces the report originally signed 8/20/12, due to a change in the job name, due to lab error.

ND = Not Detected

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer $Sacramento, CA \bullet (916)\ 366-9089\ /\ Las\ Vegas, NV \bullet (702)\ 281-4848\ /\ Carson, CA \bullet (714)\ 386-2901\ /\ info@alpha-analytical.com$

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise. Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

VOC Sample Preservation Report

Work Order: STR12081311

Job:

2120-1400-01/ Haber Oil

Alpha's Sample ID	Client's Sample ID	Matrix	pH	
12081311-01A	MW-9	Aqueous	2	Market A
12081311-02A	MW-10	Aqueous	2	
12081311-03A	MW-1R	Aqueous	2	
12081311-04A	MW-2R	Aqueous	2	

This replaces the pH report issued 8/20/12, due to a change in the job name, due to lab error.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 20-Aug-12		QC S	ummar	y Report			Work Ord 1208131	
Method Blank File ID: 12081705.D		Type: N		est Code: EPA M atch ID: MS15W0			: 08/17/2012 12:47	
Sample ID: MBLK MS15W0817B	Units : µg/L		Run ID: M	SD_15_120817A		Prep Date:	08/17/2012 12:47	
Analyte	Result	PQL	SpkVal	SpkRefVal %RE	C LCL(ME) UCL(ME) RPDRe	Val %RPD(Limit)	Quai
TPH-P (GRO)	ND	50						
Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8	10.3		10	103		130		
Surr: 4-Bromofluorobenzene	9.62		10	96		130		
MACHINE THE PROPERTY OF THE PR	9.76		10	98	70	130		
Laboratory Control Spike		Type: L	CS Te	est Code: EPA M	ethod SW8	015B/C		
File ID: 12081703.D			Ba	itch ID: MS15W0	817B	Analysis Date:	08/17/2012 12:04	
Sample ID: GLCS MS15W0817B	Units : µg/L		Run ID: MS	SD_15_120817A		Prep Date:	08/17/2012 12:04	
Analyte	Result	PQL	SpkVal	SpkRefVal %RE	C LCL(ME)	UCL(ME) RPDRet	Val %RPD(Limit)	Qual
TPH-P (GRO)	410	50		103		130		
Surr: 1,2-Dichloroethane-d4	10.5		10	105	70	130		
Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	9.3		10	93		130		
	9.47		10	95	70	130	····	
Sample Matrix Spike		Type: N	S Te	st Code: EPA Me	ethod SW8	015B/C		
File ID: 12081716.D			Ва	tch ID: MS15W0	817B	Analysis Date:	08/17/2012 16:45	
Sample ID: 12081311-01AGS	Units : µg/L		Run ID: MS	D_15_120817A		Prep Date:	08/17/2012 16:45	
Analyte	Result	PQL			C LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual
TPH-P (GRO)	2340	250	***************************************	0 117		144		
Surr: 1,2-Dichloroethane-d4	51.6		50	103		130		
Surr: Toluene-d8	46.4		50	93	70	130		
Surr: 4-Bromofluorobenzene	47.5		50	95	70	130		
Sample Matrix Spike Duplicate		Type: M	SD Te	st Code: EPA Me	thod SW8)15B/C		
File ID: 12081717.D			Ва	tch ID: MS15W0	817B	Analysis Date:	08/17/2012 17:07	
Sample ID: 12081311-01AGSD	Units : µg/L		Run ID: MS	D_15_120817A		Prep Date:	08/17/2012 17:07	
Analyte	Result	PQL			C LCL(ME)	UCL(ME) RPDRef		Qual
TPH-P (GRO)	2290	250	2000	0 114		144 234		
Surr: 1,2-Dichloroethane-d4	51,6	200	50	103		130	+ 2.3(29)	
Surr: Toluene-d8	46.8		50	94	70	130		
Surr: 4-Bromofluorobenzene	47.9		50	96	70	130		

Comments

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Reported in micrograms per Liter, per client request.

Alpha Analytical, Inc.

Date: 21-Aug-12		(Work Order: 12081311					
Method Blan			Type: N	/BLK	Test Code: EPA Method SW82	260B		
File ID: 12081					Batch ID: MS15W0817A	Analysis Date:	08/17/2012 12:47	
Sample ID:	MBLK MS15W0817A	Units : µg/L		Run ID	: MSD_15_120817A	Prep Date:	08/17/2012 12:47	
Analyte		Result	PQL	Spk'	Val SpkRefVal %REC LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qua
Dichlorodifluore		ND						-
Chloromethane Vinyl chloride	9	ND	2					
Chloroethane		ND	1					
Bromomethane	9	ND ND	1					
Trichlorofluoro	nethane	ND	1			•		
Acrolein		ND	100					
1,1-Dichloroeth	iene	ND	1					
Tertiary Butyl A Dichloromethan		ND	10					
trans-1,2-Dichle		ND ND	1					
Methyl tert-buty	/I ether (MTBE)	ND ·	0.5					
1,1-Dichloroeth	ane	ND	1					
Di-isopropyl Etl		ND	1					
cis-1,2-Dichloro		ND	1					
Chloroform	ou idile	ND ND	1					
Ethyl Tertiary B	Sutyl Ether (ETBE)	ND	1					
2,2-Dichloropro	pane	ND	1					
1,2-Dichloroeth		ND	1					
1,1,1-Trichloroe		ND	1					
Carbon tetrachi	•	ND ND	1					
Benzene	ondo	ND	1 0.5					
Tertiary Amyl M	fethyl Ether (TAME)	ND	0.5					
Dibromomethan		ND	1					
1,2-Dichloropro	•	ND	1					
Trichloroethene Bromodichloron		ND	1					
cis-1,3-Dichloro		ND ND	1 1					
trans-1,3-Dichlo		ND ND	1					
1,1,2-Trichloroe	thane	ND	1					
Toluene		ND	0.5					
1,3-Dichloropro Dibromochloron		ND	1					
1,2-Dibromoeth		ND ND	1 2					
Tetrachloroethe		ND	1					
1,1,1,2-Tetrachi	oroethane	ND	1					
Chlorobenzene		ND	1					
Ethylbenzene m,p-Xylene		ND	0.5					
Bromoform		ND ND	0.5					
Styrene		ND	1 1					
o-Xylene		ND	0.5					
1,1,2,2-Tetrachi		ND	1					
1,2,3-Trichlorop Isopropylbenzer		ND	2					
Bromobenzene	16	ND ND	1 1					
n-Propylbenzen	е	ND	1					
4-Chlorotoluene		ND	1					
2-Chlorotoluene		ND	1					
1,3,5-Trimethylb ert-Butylbenzen		ND	1					
1,2,4-Trimethylb		ND ND	1					
sec-Butylbenzer		ND	1					
1,3-Dichloroben:		ND	1					
1,4-Dichloroben		ND	1					
1-Isopropyltolue		ND	1					
l,2-Dichloroben: n-Butylbenzene	cerie.	ND	1			r		
	hloropropane (DBCP)	ND ND	1 3					
1,2,4-Trichlorobe		ND	2			*		
		ND	2					
Naphthalene Hexachlorobutad 1,2,3-Trichlorobe		ND ND	2 2					

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 21-Aug-12		QC Sı	ımmar	y Repo	rt			Work Ord 1208131	
Surr: 1,2-Dichloroethane-d4	10.3		10		103	70	130		
Surr: Toluene-d8	9.62		10		96	70	130		
Surr: 4-Bromofluorobenzene	9.76		10		98	70	130		
Laboratory Control Spike		Type: L0	CS T	est Code: E	PA Mei	hod SW82	260B		
File ID: 12081702.D			В	atch ID: MS	15W08	17A	Analysis Date	: 08/17/2012 11:42	
Sample ID: LCS MS15W0817A	Units : µg/L			SD_15_120		••••	Prep Date:	08/17/2012 11:42	
Analyte	Result	PQL				CLOME	•	fVal %RPD(Limit)	Qual
1,1-Dichloroethene	9.19	• 1	10	Opin torval	92		120	ival /ora D(Lillic)	Quai
Methyl tert-butyl ether (MTBE)	9.11	0.5	10		92 91	80 65	140		
Benzene	9.09	0.5	10		91	70	130		
Trichloroethene	8.56	1	10		86	65	144		
Toluene	9.31	0.5	10		93	80	120		
Chlorobenzene	9.52	1	10		95	70	130		
Ethylbenzene	9.37	0.5	10		94	80	120		
m,p-Xylene	10.2	0.5	10		102	70	130		
o-Xylene	10.3	0.5	10		103	70	130		
Surr: 1,2-Dichloroethane-d4	11.8	0.0	10		118	70	130		
Surr: Toluene-d8	9.84		10		98	70	130		
Surr: 4-Bromofluorobenzene	9.57		10		96	70	130		
Sample Matrix Spike File ID: 12081714.D		Type: MS		est Code: E	PA Met	hod SW82	60B		
			Ba	atch ID: MS	15W081	17A	Analysis Date	08/17/2012 16:02	
Sample ID: 12081311-01AMS	Units : µg/L	F	Run ID: MS	SD_15_120	817A		Prep Date:	08/17/2012 16:02	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDRe	Val %RPD(Limit)	Qual
1,1-Dichloroethene	50	2.5	50	0	100	64	130		
Methyl tert-butyl ether (MTBE)	54.9	1.3	50	0	110	47	150		
Benzene	51.2	1.3	50	1.05	100	59	138		
Trichloroethene	46.5	2.5	50	0.00	93	65	144		
Toluene	52.4	1.3	50	0	105	68	130		
Chlorobenzene	52.5	2.5	50	0	105	70	130		
Ethylbenzene	51.2	1.3	50	0	102	68	130		
m,p-Xylene	56.5	1.3	50	0	113	68	131		
o-Xylene	56.4	1.3	50	0	113	70	130		
Surr: 1,2-Dichloroethane-d4	58		50	·	116	70	130		
Surr: Toluene-d8	49.4		50		99	70	130		
Surr: 4-Bromofluorobenzene	46.9		50		94	70	130		
Sample Matrix Spike Duplicate		Type: MS		st Code: EF			·····		
File ID: 12081715.D			Ва	tch ID: MS1	5W081	7A	Analysis Date:	08/17/2012 16:24	
Sample ID: 12081311-01AMSD	Units : µg/L	F		D_15_1208			Prep Date:	08/17/2012 16:24	
Analyte	Result	PQL				LCL(ME)	UCL(ME) RPDRef		Qual
1,1-Dichloroethene	56.8	2.5	50	0	114	64			
Methyl tert-butyl ether (MTBE)	63.3	1.3	50 50	0	127	64 47	130 49.9 150 54.9	, ,	
Benzene	57.9	1.3	50 50	1.05	114	47 59			
Trichloroethene	53	2.5	50	0.05	106	59 65	138 51.2 144 46.4		
Toluene	59.2	1.3	50 50	0	118	68		, ,	
Chlorobenzene	60.2	2.5	50 50	0	120	70	130 52.4 130 52.5		
Ethylbenzene	58.4	1.3	50 50	0	117	68	130 52.5		
m,p-Xylene	63.1	1.3	50 50	0	126	68	130 51.2		
o-Xylene	64	1.3	50	0	128	70	130 56.3		
Surr: 1,2-Dichloroethane-d4	48.5	1.0	50	U	97	70	130 56.3	6 12.6(20)	
Surr: Toluene-d8	49.8		50		99.7	70 70	130		
Surr: 4-Bromofluorobenzene	47.2		50 50		94	70 70	130		
Comments:								***************************************	_

Comments

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

Report Attention Phone Number **EMail Address**

(530) 676-6008 x

3330 Cameron Park Drive Suite 550

Stratus Environmental

Cameron Park, CA 95682-8861

scarter@stratusinc.net EDD Required: Yes

Sampled by : Allan Dudding

0°C

WorkOrder: STR12081311

Report Due By: 5:00 PM On: 20-Aug-12

Cooler Temp

Samples Received 11-Aug-12

AMENDED #2

Date Printed 21-Aug-12

PO: Client's COC #: 58288

Client:

Steve Carter

Job: 2120-1400-01/ Haber Oil

QC Level: S3 = Final Rpt, MBLK, LCS, MS/MSD With Surrogates

Alpha Sample ID	Client Sample ID	Co Matrix	llection Date		Bottles Sub		TPH/P_W	voc_w				Sample Remarks
STR12081311-01A	MW-9	1 1	/09/12 17:44	7	0	5	GAS-C	8260/OXYS_ C +Acrolein				
STR12081311-02A	MW-10	1 1	3/09/12 18:24	7	0	5	GAS-C	8260/OXYS_ C +Acrolein				
STR12081311-03A	MW-1R		/09/12 18:53	7	0	5	GAS-C	8260/OXYS_ C +Acrolein	T	1		
STR12081311-04A	MW-2R		/09/12 19:45	7	0	5	GAS-C	8260/OXYS C +Acrolein				

Comments:

Security seals intact. Frozen Ice. Saturday delivery. Samples kept cold and secure until login Monday. Amended 8/13/12 to remove TPH/E analysis from all samples per ammended chain from Steve. Amended 8/21/12 to correct job name, due to login error. SN:

	Signature	Print Name	Company	Date/Time
Logged in by:		Sarah Nevi	Alpha Analytical, Inc.	8/21/12 0900

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

EMail Address Steve Carter (530) 676-6008 x scarter@stratusinc.net

Phone Number

EDD Required: Yes

0 °C

Sampled by : Allan Dudding

AMENDED

WorkOrder: STR12081311

Report Due By: 5:00 PM On: 20-Aug-12

Cooler Temp

Samples Received 11-Aug-12

Date Printed 13-Aug-12

Page: 1 of 1

PO:

Client:

Client's COC #: 58288

Suite 550

Stratus Environmental

3330 Cameron Park Drive

Cameron Park, CA 95682-8861

Job: 2120-1400-01/ Harber Oil

Report Attention

QC Level: S3 = Final Rpt, MBLK, LCS, MS/MSD With Surrogates

Alpha	Client			N60-W		Requested Tests								
Sample ID	Sample ID		Collection x Date	No. of Alpha		TAT	TPH/P_W	voc_w						Sample Remarks
		AQ	08/09/12 17:44	7	0	5	GAS-C	8260/OXYS_ C +Acrolein						
		AQ	08/09/12 18:24	7	0	5	GAS-C	8260/OXYS_ C +Acrolein			Ì			
	MW-1R	AQ	08/09/12 18:53	7	0	5	GAS-C	8260/OXYS_ C +Acrolein			Ī	<u>. </u>		
STR12081311-04A	MW-2R	AQ	08/09/12 19:45	7	0	5	GAS-C	8260/OXYS_ C +Acrolein			<u> </u>	<u>.</u>	İ	

Comments:	Security seals intact. Frozen Ice. Saturday delivery. S	Samples kept cold and secure until login Monday. Amended 8/13/12 to rem	ove TPH/E analysis from all samples per	ammended chain from Stev
	Signature	Print Name	Company	Date/Time
Logged in by:	· Navaloffee	Sara Coffee	Alpha Analytical, Inc.	8 13 12 15:17

Suite 550

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

EMail Address

TEL: (775) 355-1044 FAX: (775) 355-0406

Steve Carter (530) 676-6008 x scarter@stratusinc.net

Phone Number

EDD Required : Yes

Sampled by : Allan Dudding

WorkOrder: STR12081311

Report Due By: 5:00 PM On: 20-Aug-12

Cooler Temp

0 °C

Samples Received 11-Aug-12 Date Printed
13-Aug-12

Page: 1 of 1

PO:

Client:

Client's COC #: 58288

Stratus Environmental

3330 Cameron Park Drive

Cameron Park, CA 95682-8861

Job: 2120-1400-01/ Harber Oil

Report Attention

QC Level: S3 = Final Rpt, MBLK, LCS, MS/MSD With Surrogates

	 pr, mber, eoc	S, MONVIOL V	viiii Surrogates

Alpha	Client		.							Request	ed Tests	
Sample ID	Sample ID		Collection x Date	No. of Alpha		TAT	TPH/E_SG_ W	TPH/E_W	TPH/P_W	VOC_W		
CTD40004044 044							<u> </u>	<u> </u>	<u> </u>			Sample Remarks
		AQ	08/09/12 17:44	7	0	5		TPH/E_C	GAS-C	8260/OXYS_ C +Acrolein		
		AQ	08/09/12 18:24	7	0	5		TPH/E_C	GAS-C	8260/OXYS_ C +Acrolein		
		AQ	08/09/12 18:53	7	0	5		TPH/E_C	GAS-C	8260/OXYS_ C +Acrolein		
STR12081311-04A	MW-2R	AQ	08/09/12 19:45	7	0	5	Silica Gel (C)	TPH/E_C	GAS-C	8260/OXYS_ C +Acrolein		

Comments:

Security seals intact. Frozen Ice. Saturday delivery. Samples kept cold and secure until login Monday. :

Signature	Print Name	Company	Date/Time
Logged in by:	Saralottee	Alpha Analytical, Inc.	8/13/18/10:58

Billing Information:					MIVI	ENU E	
Company Name Stratus ENV.		Alpha Analyti	cal, Inc.	Samp	les Collecte	d From Which	State? 58288
Attn:		255 Glendale Avenu Sparks, Nevada 894		AZ	CA X	_ NV W	VA DOD Site
Address		Phone (775) 355-10		787) INEH	- Page # _ (_ df _)
City, State, Zip		Fax (775) 355-0406) r	7 0/		
Phone Number Fax			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	· / ·	Analys	ses Required	
Consultant / Client Name	Job# 2120-14W-01	Job Name	chin at	/- ,	1-1-4	<u> </u>	Data Validation
Address 1400 Grand Avt.	, Report Atte	ention / Project Manager	1667 -1	/ }	7)/跳		Level: III or IV
City, State, Zip Suy Lawndy, CA	Name: Steve Carter Email: Scarter P Stratus it	all		— /£	/ \$/ /手度	\$[
Time Date Matrix* P.O. #	Phone:	Mobile:		一/封			EDD / EDF? YES NO
Sampled Sampled See Key Below Lab ID Number (Use Only)	Sample Description	TAT	Field # Conta	iners"		750 /	Global 70600 101827
1744 8/9 AQ STRIBOSIBILI-DIA	MW-9	Stat		V Y			REMARKS
1824	MW-10		1 1 1	T V	ΗŶ		
(85)	MW-1R			Ŷ			
1945 - OUA	4M-36			X X			
					13 13		
baced a family							
							and the second s
							And the second s
to the law							
ADDITIONAL INCOME							
ADDITIONAL INSTRUCTIONS:	1	1		100	1 .	8/13/12	2:54 pr
Please Ourer and	ulyses as No	Ted apo	ve.	XICas	Mi	Charle	Zee Marine to
I, (field sampler), attest to the validity and authenticity of grounds for legal action. Sampled By:	f this sample. I am aware that tamp	pering with or intention	ally mislabeling	the sample loca	tion, date or time	of collection is a	onsidered fraud and may be
Relinquished by: (Signature/Affiliation)	Received	by: (Signature/Affiliation)		100			······································
Relinquished by: (Signature/Affiliation)		(Soud	Lilva		Da® -10-,	
Son de	Shu 8-10-12 Received	py: (Signature/Attitation)	Leo. 11	al ala	<u>ر</u>	Date: 13 12	Time: (0:52
Relinquished by: (Signature/Affiliation)	Received t	y: (Signature/Affiliation)		7		Date:	Time:
Key AO Aguague SO Seil WA W.		aralogy	لك		······································	18/13/12	15:10

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this coc. The liability of the laboratory is limited to the amount paid for the report.

Billing Information: Company Name Structure Address City State 7	Alpha Analytical, Inc. 255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 Phone (775) 355-1044 Fax (775) 355-0406	Samples Collected From Which State? 58288 AZ CAX NV WA DOD Site ID OR OTHER Page # df
City, State, Zip Fax		Analyses Required
Consultant / Client Name Hable 0: Address 1460 Grand Art. City, State, Zip Sun Linndri, CA Time Sampled Sampled See Key Below Lab ID Number (Use Only) 1744 8/9 At STRIADSIST OIA 1824 1853 1945 DYA	Job Name Job Name Huber (1) Name: Stew Curter (2 Structus in L. 18th Phone: Mobile: Sample Description TAT Field Filtered # Containers** MW-9 MW-10 MW-1R MW-2R	Data Validation Level: III or IV EDD/EDF? YES & NO Global To GW 10 18 27 REMARKS X X X X X X X X X X X X X X X X X X
ADDITIONAL INSTRUCTIONS: I, (field sampler), attest to the validity and authenticity grounds for legal action. Sampled By: Allen Dudd Relinquished by: (Signature/Affiliation) Relinquished by: (Signature/Affiliation) *Key: AQ - Aqueous SO - Soil WA - Wast	f this sample. I am aware that tampering with or intentionally mislabeling the same sample. I am aware that tampering with or intentionally mislabeling the same sample. I am aware that tampering with or intentionally mislabeling the same sample. I am aware that tampering with or intentionally mislabeling the same sample. I am aware that tampering with or intentionally mislabeling the same sample. I am aware that tampering with or intentionally mislabeling the sample. I am aware that tampering with or intentionally mislabeling the sample. I am aware that tampering with or intentionally mislabeling the sample. I am aware that tampering with or intentionally mislabeling the sample. I am aware that tampering with or intentionally mislabeling the sample. I am aware that tampering with or intentionally mislabeling the sample. I am aware that tampering with or intentionally mislabeling the sample. I am aware that tampering with or intentionally mislabeling the sample. I am aware that tampering with or intentionally mislabeling the sample. I am aware that tampering with or intentionally mislabeling the sample. I am aware that tampering with or intentionally mislabeling the sample. I am aware that tampering with or intentionally mislabeling the sample. I am aware that tampering with or intentionally mislabeling the sample. I am aware that tampering with or intentionally mislabeling the sample. I am aware that tampering with or intentionally mislabeling the sample. I am aware that tampering with or intentionally mislabeling the sample. I am aware that tampering with or intentionally mislabeling the sample. I am aware that tampering with or intentionally mislabeling the sample. I am aware that tampering with or intentionally mislabeling the sample. I am aware that tampering with or intentionally mislabeling the sample. I am aware that tampering with a sample with the sample with the sample with the sample with the sample with the sample with the sample with the sample with the sample with the sample with the sample with t	ample location, date or time of collection is considered fraud and may be Date: Time: Date: C:52 Date: Time:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this coc. The liability of the laboratory is limited to the amount paid for the report.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Attn: Steve Carter

Phone: (530) 676-6008 Fax: (530) 676-6005

Fax: (530) 676-6005 Date Received: 07/17/12

Job: 2120-1401-01/Haber Oil

Total Petroleum Hydrocarbons - Extractable (TPH-E) EPA Method SW8015B Total Petroleum Hydrocarbons - Purgeable (TPH-P) EPA Method SW8015B Volatile Organic Compounds (VOCs) EPA Method SW8260B

		Parameter	Concentration		Reporting Limit	Date Extracted	Date Analyzed
Client ID:	B-11-10						
Lab ID:	STR12071742-01A	TDV: F (F- c)					
		TPH-E (DRO)	ND .		5,000 μg/Kg	07/17/12	07/18/12
Date Sampled	07/09/12 09:06	TPH-E (ORO)	ND		10,000 µg/Kg	07/17/12	07/18/12
		TPH-P (GRO)	ND		1,000 µg/Kg	07/17/12	07/20/12
Client ID:	B-11-15						
Lab ID:	STR12071742-02A	TPH-E (DRO)	ND		5,000 µg/Kg	07/17/12	07/18/12
Date Sampled	07/09/12 09:11	TPH-E (ORO)	ND		10,000 μg/Kg	07/17/12	07/18/12
		TPH-P (GRO)	ND		1,000 μg/Kg	07/17/12	07/20/12
Client ID:	B-11-20				-,	07/12//12	07120/12
Lab ID :	STR12071742-03A	TENLE (DRO)					
	07/09/12 09:16	TPH-E (DRO)	ND		5,000 μg/Kg	07/17/12	07/18/12
Date Sampled	07/09/12 09:16	TPH-E (ORO)	ND		10,000 μg/Kg	07/17/12	07/18/12
		TPH-P (GRO)	ND		1,000 µg/Kg	07/17/12	07/20/12
Client ID:	B-11-25						
Lab ID :	STR12071742-04A	TPH-E (DRO)	ND		5,000 µg/Kg	07/17/12	07/18/12
Date Sampled	07/09/12 09:22	TPII-E (ORO)	ND		10,000 µg/Kg	07/17/12	07/18/12
		TPH-P (GRO)	ND		1,000 µg/Kg	07/17/12	07/20/12
Client ID:	B-11-30			•	,	V	07/20/12
Lab ID :	STR12071742-05A	TDU F (DDO)					
	07/09/12 09:26	TPH-E (DRO) TPH-E (ORO)	140,000 K		5,000 μg/Kg	07/17/12	07/18/12
Date Sampled	07/09/12 09:20	TPH-P (GRO)	ND		10,000 μg/Kg	07/17/12	07/18/12
		IIII-I (OKO)	8,000,000	41	00,000 μg/Kg	07/17/12	07/20/12
Client ID:	B-11-35						
Lab ID :	STR12071742-06A	TPH-E (DRO)	ND		5,000 μg/Kg	07/17/12	07/19/12
Date Sampled	07/09/12 09:31	TPH-E (ORO)	ND		10,000 μg/Kg	07/17/12	07/19/12
		TPH-P (GRO)	1,300		1,000 µg/Kg	07/17/12	07/20/12
Client ID:	MW-1R-10						
Lab ID:	STR12071742-07A	TPH-P (GRO)	ND		1.000 /17 -	07/17/10	07/00/10
Date Sampled	07/09/12 13:43	Tertiary Butyl Alcohol (TBA)	ND		1,000 μg/Kg 500 μg/Kg	07/17/12	07/20/12
•		Methyl tert-butyl ether (MTBE)	ND		5.0 μg/Kg 5.0 μg/Kg	07/17/12 07/17/12	07/20/12
		Di-isopropyl Ether (DIPE)	ND		3.0 μg/Kg 20 μg/Kg	07/17/12	07/20/12 07/20/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND		20 μg/Kg 20 μg/Kg	07/17/12	07/20/12
		1,2-Dichloroethane	ND		20 μg/Kg 20 μg/Kg	07/17/12	07/20/12
		Benzene	ND		5.0 μg/Kg	07/17/12	07/20/12
		Tertiary Amyl Methyl Ether (TAME)	ND		20 μg/Kg	07/17/12	07/20/12
		Toluene	ND		5.0 μg/Kg	07/17/12	07/20/12
		I,2-Dibromoethane (EDB)	ND		40 μg/Kg	07/17/12	07/20/12
		Ethylbenzene	ND		5.0 μg/Kg	07/17/12	07/20/12
		m,p-Xylene	ND		5.0 μg/Kg	07/17/12	07/20/12
		o-Xylene	ND		5.0 μg/Kg	07/17/12	07/20/12
					-		

Client ID:	MW-1R-15					
Lab ID:	STR12071742-08A	TPH-P (GRO)	ND	1,000 μg/Kg	07/17/10	07/20/12
Date Sample	ed 07/09/12 13:45	Tertiary Butyl Alcohol (TBA)	ND	1,000 μg/Kg 500 μg/Kg	07/17/12	07/20/12
		Methyl tert-butyl ether (MTBE)	ND	5.0 μg/Kg 5.0 μg/Kg	07/17/12 07/17/12	07/20/12 07/20/12
		Di-isopropyl Ether (DIPE)	ND	3.0 μg/Kg 20 μg/Kg	07/17/12	
		Ethyl Tertiary Butyl Ether (ETBE)	ND	20 μg/Kg 20 μg/Kg	07/17/12	07/20/12 07/20/12
		1,2-Dichloroethane	ND			
		Benzene	ND	20 μg/Kg 5 0 μg/Kg	07/17/12	07/20/12
		Tertiary Amyl Methyl Ether (TAME)	ND	5.0 μg/Kg	07/17/12	07/20/12
		Toluene	ND	20 μg/Kg	07/17/12	07/20/12
		1,2-Dibromoethane (EDB)	ND	5.0 μg/Kg	07/17/12	07/20/12
		Ethylbenzene	ND	40 μg/Kg	07/17/12	07/20/12
		m,p-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
		o-Xylene	ND ND	5.0 μg/Kg	07/17/12	07/20/12
CILL TO		o regione	ND	5.0 μg/Kg	07/17/12	07/20/12
Client ID:	MW-1R-20					
Lab ID :	STR12071742-09A	TPH-P (GRO)	ND	1,000 μg/Kg	07/17/12	07/20/12
Date Sample	d 07/09/12 13:52	Tertiary Butyl Alcohol (TBA)	ND	500 μg/Kg	07/17/12	07/20/12
		Methyl tert-butyl ether (MTBE)	ND	5.0 μg/Kg	07/17/12	07/20/12
		Di-isopropyl Ether (DIPE)	ND	20 μg/Kg	07/17/12	07/20/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND	20 μg/Kg	07/17/12	07/20/12
		1,2-Dichloroethane	ND	20 μg/Kg	07/17/12	07/20/12
		Benzene	ND	5.0 µg/Kg	07/17/12	07/20/12
		Tertiary Amyl Methyl Ether (TAME)	ND	20 µg/Kg	07/17/12	07/20/12
		Toluene	ND	5.0 μg/Kg	07/17/12	07/20/12
		1,2-Dibromoethane (EDB)	ND	40 μg/Kg	07/17/12	07/20/12
		Ethylbenzene	ND	5.0 μg/Kg	07/17/12	07/20/12
		m,p-Xylene	ND	5.0 µg/Kg	07/17/12	07/20/12
		o-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
Client ID:	MW-1R-25			, , ,		
Lab ID:	STR12071742-10A	TPH-P (GRO)				
	1 07/09/12 13:57	Tertiary Butyl Alcohol (TBA)	ND	1,000 µg/Kg	07/17/12	07/20/12
oute bumple	1 07/09/12 15:57		ND	500 μg/Kg	07/17/12	07/20/12
		Methyl tert-butyl ether (MTBE)	ND	5.0 μg/Kg	07/17/12	07/20/12
		Di-isopropyl Ether (DIPE)	ND	20 μg/Kg	07/17/12	07/20/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND	20 μg/Kg	07/17/12	07/20/12
		1,2-Dichloroethane	ND	20 μg/Kg	07/17/12	07/20/12
		Benzene	ND	5.0 μ g/K g	07/17/12	07/20/12
		Tertiary Amyl Methyl Ether (TAME)	ND	20 μg/Kg	07/17/12	07/20/12
		Toluene	ND	5.0 μg/Kg	07/17/12	07/20/12
		1,2-Dibromoethane (EDB)	ND	40 μg/Kg	07/17/12	07/20/12
		Ethylbenzene	ND	5.0 μg/Kg	07/17/12	07/20/12
		m,p-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
		o-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
Client ID:	MW-1R-30					
Lab ID:	STR12071742-11A	TPH-P (GRO)	ND	1,000 µg/Kg	07/17/12	07/30/13
Date Sampled	07/09/12 14:02	Tertiary Butyl Alcohol (TBA)	ND	7,000 μg/Kg 500 μg/Kg		07/20/12
-		Methyl tert-butyl ether (MTBE)	150		07/17/12	07/20/12
		Di-isopropyl Ether (DIPE)	ND	5.0 μg/Kg 20 μg/Kg	07/17/12	07/20/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND	20 μg/Kg 20 μg/Kg	07/17/12	07/20/12
		1,2-Dichloroethane	ND		07/17/12	07/20/12
		Benzene	ND	20 μg/Kg 5.0 μg/Kg	07/17/12	07/20/12
		Tertiary Amyl Methyl Ether (TAME)	ND ND	3.0 μg/Kg 20 μg/Kg	07/17/12	07/20/12
		Toluene	ND ND		07/17/12	07/20/12
		1,2-Dibromoethane (EDB)	ND	5.0 μg/Kg 40 μg/Kg	07/17/12	07/20/12
		Ethylbenzene	ND ND	40 μg/Kg	07/17/12	07/20/12
		m,p-Xylene	ND ND	5.0 μg/Kg	07/17/12	07/20/12
		o-Xylene	ND ND	5.0 μg/Kg	07/17/12	07/20/12
		-	110	5.0 μg/Kg	07/17/12	07/20/12

Client ID:	MW-1R-35					
Lab ID:	STR12071742-12A	TPH-P (GRO)	ND	1,000 µg/Kg	07/17/12	07/20/12
Date Sample	d 07/09/12 14:07	Tertiary Butyl Alcohol (TBA)	ND	500 μg/Kg	07/17/12	07/20/12
		Methyl tert-butyl ether (MTBE)	790	5.0 μg/Kg	07/17/12	07/20/12
		Di-isopropyl Ether (DIPE)	ND	20 μg/Kg	07/17/12	07/20/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND	20 μg/Kg	07/17/12	07/20/12
		1,2-Dichloroethane	ND	20 μg/Kg	07/17/12	
		Benzenc	ND	20 μg/Kg 5.0 μg/Kg		07/20/12
		Tertiary Amyl Methyl Ether (TAME)	ND		07/17/12	07/20/12
		Toluene	ND	20 μg/Kg 5.0 μg/Kg	07/17/12	07/20/12
		1,2-Dibromoethane (EDB)	ND		07/17/12	07/20/12
		Ethylbenzene	ND	40 μg/Kg	07/17/12	07/20/12
		m,p-Xylene	ND ND	5.0 μg/Kg	07/17/12	07/20/12
		o-Xylene	ND	5.0 μg/ K g	07/17/12	07/20/12
OV . TD		o rigione	ND	5.0 μg/ K g	07/17/12	07/20/12
Client ID :	MW-1R-40					
Lab ID:	STR12071742-13A	TPH-P (GRO)	ND	1,000 µg/Kg	07/17/12	07/20/12
Date Sampled	07/09/12 14:11	Tertiary Butyl Alcohol (TBA)	ND	500 µg/Kg	07/17/12	07/20/12
		Methyl tert-butyl ether (MTBE)	580	5.0 µg/Kg	07/17/12	
		Di-isopropyl Ether (DIPE)	ND-	20 μg/Kg		07/20/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND		07/17/12	07/20/12
		1,2-Dichloroethane	ND	20 μg/Kg	07/17/12	07/20/12
		Benzene	ND	20 μg/Kg	07/17/12	07/20/12
		Tertiary Amyl Methyl Ether (TAME)	ND ND	5.0 μg/Kg	07/17/12	07/20/12
		Toluene	ND	20 μg/Kg	07/17/12	07/20/12
		1,2-Dibromoethane (EDB)		5.0 μg/Kg	07/17/12	07/20/12
		Ethylbenzene	ND ND	40 μg/Kg	07/17/12	07/20/12
		m,p-Xylene		5.0 μg/Kg	07/17/12	07/20/12
		o-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
		0-Aylene	ND	5.0 μg/ K g	07/17/12	07/20/12
Client ID:	VE-1-15					
Lab ID :	STR12071742-14A	TPH-P (GRO)	ND	1,000 µg/Kg	07/17/12	07/20/12
Date Sampled	07/09/12 14:51	Tertiary Butyl Alcohol (TBA)	ND	500 μg/Kg		07/20/12
		Methyl tert-butyl ether (MTBE)	ND		07/17/12	07/20/12
		Di-isopropyl Ether (DIPE)	ND	5.0 μg/Kg	07/17/12	07/20/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND	20 μg/Kg	07/17/12	07/20/12
		1,2-Dichloroethane	ND	20 μg/Kg	07/17/12	07/20/12
		Benzene	ND	20 μg/Kg	07/17/12	07/20/12
		Tertiary Amyl Methyl Ether (TAME)	ND	5.0 μg/Kg	07/17/12	07/20/12
		Toluene	ND	20 μg/Kg	07/17/12	07/20/12
		1,2-Dibromoethane (EDB)	ND ND	5.0 μg/Kg	07/17/12	07/20/12
		Ethylbenzene		40 μg/Kg	07/17/12	07/20/12
		m,p-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
		o-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
C111		o regione	ND	5.0 μg/Kg	07/17/12	07/20/12
	VE-1-20					
Lab ID:	STR12071742-15A	TPH-P (GRO)	ND	1,000 μg/Kg	07/17/12	07/20/12
Date Sampled	07/09/12 14:54	Tertiary Butyl Alcohol (TBA)	ND	1,000 μg/Kg 500 μg/Kg		07/20/12
		Methyl tert-butyl ether (MTBE)	ND		07/17/12	07/20/12
		Di-isopropyl Ether (DIPE)	ND	5.0 μg/Kg	07/17/12	07/20/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND	20 μg/Kg	07/17/12	07/20/12
		1,2-Dichloroethane	ND	20 μg/Kg	07/17/12	07/20/12
		Benzene	ND ND	20 μg/Kg	07/17/12	07/20/12
		Tertiary Amyl Methyl Ether (TAME)	ND ND	5.0 μg/Kg	07/17/12	07/20/12
		Toluene (TAME)		20 μg/Kg	07/17/12	07/20/12
		1,2-Dibromoethane (EDB)	ND ND	5.0 μg/Kg	07/17/12	07/20/12
		Ethylbenzene	ND	40 μg/Kg	07/17/12	07/20/12
		m,p-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
		o-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
		o stylene	ND	5.0 μg/Kg	07/17/12	07/20/12

Client ID:	VE-1-25						
Lab ID:	STR12071742-16A	TPH-P (GRO)	ND		1,000 μg/Kg	07/17/12	07/20/12
Date Samples	1 07/09/12 14:58	Tertiary Butyl Alcohol (TBA)	ND		500 μg/Kg	07/17/12	07/20/12
		Methyl tert-butyl ether (MTBE)	ND		5.0 μg/Kg	07/17/12	07/20/12
		Di-isopropyl Ether (DIPE)	ND		20 μg/Kg	07/17/12	07/20/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND		20 μg/Kg	07/17/12	07/20/12
		1,2-Dichloroethane	ND		20 μg/Kg	07/17/12	07/20/12
		Benzene	ND		5.0 μg/Kg	07/17/12	07/20/12
		Tertiary Amyl Methyl Ether (TAME)	ND		20 μg/Kg	07/17/12	07/20/12
		Toluene	ND		5.0 μg/Kg	07/17/12	07/20/12
		1,2-Dibromoethane (EDB)	ND		40 μg/Kg	07/17/12	07/20/12
		Ethylbenzene	ND		5.0 μg/Kg	07/17/12	07/20/12
		m,p-Xylene	ND		5.0 μg/Kg	07/17/12	07/20/12
		o-Xylene	ND		5.0 μg/Kg	07/17/12	07/20/12
Client ID:	VE-1-30				P-GB	V// V// 1=	07/20,12
Lab ID:	STR12071742-17A	Thu n (Cno)					
	07/09/12 15:02	TPH-P (GRO)	ND		1,000 µg/Kg	07/17/12	07/20/12
Date Sampled	07/09/12 15:02	Tertiary Butyl Alcohol (TBA)	ND		500 μg/Kg	07/17/12	07/20/12
		Methyl tert-butyl ether (MTBE)	260		5.0 μg/Kg	07/17/12	07/20/12
		Di-isopropyl Ether (DIPE)	ND		20 μg/Kg	07/17/12	07/20/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND		20 μg/Kg	07/17/12	07/20/12
		1,2-Dichloroethane	ND		20 μg/Kg	07/17/12	07/20/12
	•	Benzene	ND		5.0 μg/Kg	07/17/12	07/20/12
		Tertiary Amyl Methyl Ether (TAME)	ND		20 μg/Kg	07/17/12	07/20/12
		Toluene	ND		5.0 μg/Kg	07/17/12	07/20/12
		1,2-Dibromoethane (EDB)	ND		40 μg/Kg	07/17/12	07/20/12
		Ethylbenzene	ND		5.0 µg/Kg	07/17/12	07/20/12
		m,p-Xylene	ND		5.0 μg/Kg	07/17/12	07/20/12
		o-Xylene	ND		5.0 μg/Kg	07/17/12	07/20/12
Client ID:	MW-9-11						
Lab ID :	STR12071742-18A	TPH-P (GRO)	NID	0	4.000 //2	0.00	
Date Sampled	07/11/12 08:59	Tertiary Butyl Alcohol (TBA)	ND	0	4,000 μg/Kg	07/17/12	07/20/12
	07/11/12 00:57	Methyl tert-butyl ether (MTBE)	ND	0	2,000 μg/Kg	07/17/12	07/20/12
		Di-isopropyl Ether (DIPE)	ND	0	20 μg/Kg	07/17/12	07/20/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND	0	40 μg/Kg	07/17/12	07/20/12
		1,2-Dichloroethane	ND	0	40 μg/Kg	07/17/12	07/20/12
		Benzene	ND	0	40 μg/Kg	07/17/12	07/20/12
			ND	0	20 μg/Kg	07/17/12	07/20/12
		Tertiary Amyl Methyl Ether (TAME) Toluene	ND	0	40 μg/Kg	07/17/12	07/20/12
			26		20 μg/Kg	07/17/12	07/20/12
		1,2-Dibromoethane (EDB)	ND	O	160 µg/Kg	07/17/12	07/20/12
		Ethylbenzene	ND	O	20 μg/Kg	07/17/12	07/20/12
		m,p-Xylene	21		20 μg/Kg	07/17/12	07/20/12
		o-Xylene	ND	O	20 μg/Kg	07/17/12	07/20/12
Client ID:	MW-9-21						
Lab ID:	STR12071742-19A	TPH-P (GRO)	ND	0	2,000 µg/Kg	07/17/10	07/20/22
Date Sampled	07/11/12 09:06	Tertiary Butyl Alcohol (TBA)	ND	o		07/17/12	07/20/12
•		Methyl tert-butyl ether (MTBE)	ND	0	1,000 μg/Kg	07/17/12	07/20/12
		Di-isopropyl Ether (DIPE)	ND ND	U	10 μg/Kg	07/17/12	07/20/12
		Ethyl Tertiary Butyl Ether (ETBE)			20 μg/Kg	07/17/12	07/20/12
		1,2-Dichloroethane	ND ND		20 μg/Kg	07/17/12	07/20/12
		Benzene	ND ND	0	20 μg/Kg	07/17/12	07/20/12
		Tertiary Amyl Methyl Ether (TAME)	ND ND	O	10 μg/Kg	07/17/12	07/20/12
		Toluene	ND		20 μg/Kg	07/17/12	07/20/12
		1,2-Dibromoethane (EDB)	ND	0	10 μg/Kg	07/17/12	07/20/12
		Ethylbenzene (EDB)	ND	0	80 μg/Kg	07/17/12	07/20/12
			ND	0	10 μg/Kg	07/17/12	07/20/12
		m,p-Xylene	ND	0	10 μg/Kg	07/17/12	07/20/12
		o-Xylene	ND	О	10 μg/Kg	07/17/12	07/20/12

Client ID:	MW-9-31					
Lab ID:	STR12071742-20A	TPH-P (GRO)	NID	4.000		
	d 07/11/12 09:12	Tertiary Butyl Alcohol (TBA)	ND	1,000 µg/Kg	07/17/12	07/20/12
Date Sample	u 07/11/12 09:12		ND	500 μg/Kg	07/17/12	07/20/12
		Methyl tert-butyl ether (MTBE) Di-isopropyl Ether (DIPE)	ND	5.0 μg/Kg	07/17/12	07/20/12
			ND	20 μg/Kg	07/17/12	07/20/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND	20 μg/Kg	07/17/12	07/20/12
		1,2-Dichloroethane	ND	20 μg/Kg	07/17/12	07/20/12
		Benzene	ND	5.0 μg/Kg	07/17/12	07/20/12
		Tertiary Amyl Methyl Ether (TAME)	ND	20 μg/Kg	07/17/12	07/20/12
		Toluene	ND	5.0 μg/ K g	07/17/12	07/20/12
		1,2-Dibromoethane (EDB)	ND	40 μg/Kg	07/17/12	07/20/12
		Ethylbenzenc	ND	5.0 μg/Kg	07/17/12	07/20/12
		m,p-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
		o-Xylene	ND	5.0 μg/ K g	07/17/12	07/20/12
Client ID:	MW-9-36					
Lab ID:	STR12071742-21A	TPH-P (GRO)	ND	1,000 μg/Kg	07/17/12	07/20/12
Date Sampled	07/11/12 09:22	Tertiary Butyl Alcohol (TBA)	ND	500 µg/Kg	07/17/12	07/20/12
		Methyl tert-butyl ether (MTBE)	ND	5.0 µg/Kg	07/17/12	07/20/12
		Di-isopropyl Ether (DIPE)	ND	20 μg/Kg	07/17/12	
		Ethyl Tertiary Butyl Ether (ETBE)	ND			07/20/12
		1,2-Dichloroethane	ND	20 μg/Kg	07/17/12	07/20/12
		Benzene	ND ND	20 µg/Kg	07/17/12	07/20/12
		Tertiary Amyl Methyl Ether (TAME)	ND ND	5.0 µg/Kg	07/17/12	07/20/12
		Toluene		20 µg/Kg	07/17/12	07/20/12
		1,2-Dibromoethane (EDB)	ND	5.0 μg/Kg	07/17/12	07/20/12
		Ethylbenzene	ND	40 μg/Kg	07/17/12	07/20/12
		m,p-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
		o-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
		0-Aylene	ND	5.0 μg/Kg	07/17/12	07/20/12
Client ID:	MW-9-41					
Lab ID :	STR12071742-22A	TPH-P (GRO)	ND	$1,000~\mu\mathrm{g/Kg}$	07/17/12	07/20/12
Date Sampled	07/11/12 09:28	Tertiary Butyl Alcohol (TBA)	ND	500 μg/Kg	07/17/12	07/20/12
		Methyl tert-butyl ether (MTBE)	ND	5.0 μg/Kg	07/17/12	07/20/12
		Di-isopropyl Ether (DIPE)	ND	20 μg/Kg	07/17/12	07/20/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND	20 μg/Kg	07/17/12	07/20/12
		1,2-Dichloroethane	ND	20 μg/Kg	07/17/12	07/20/12
		Benzene	ND	5.0 µg/Kg	07/17/12	07/20/12
		Tertiary Amyl Methyl Ether (TAME)	ND	20 μg/Kg	07/17/12	07/20/12
		Toluene	ND	5.0 μg/Kg	07/17/12	07/20/12
		1,2-Dibromoethane (EDB)	ND	40 μg/Kg	07/17/12	07/20/12
		Ethylbenzene	ND	5.0 μg/Kg	07/17/12	
		m,p-Xylene	ND	5.0 μg/Kg 5.0 μg/Kg		07/20/12
		o-Xylene	ND	5.0 μg/Kg 5.0 μg/Kg	07/17/12 07/17/12	07/20/12
Client ID:	M31/ 0 45	·	1112	3.0 μg/ N g	07/17/12	07/20/12
	MW-9-45					
Lab ID:	STR12071742-23A	TPH-P (GRO)	ND	1,000 µg/Kg	07/17/12	07/20/12
Date Sampled	07/11/12 09:31	Tertiary Butyl Alcohol (TBA)	ND	500 μg/Kg	07/17/12	07/20/12
		Methyl tert-butyl ether (MTBE)	ND	5.0 μg/Kg	07/17/12	07/20/12
		Di-isopropyl Ether (DIPE)	ND	20 μg/Kg	07/17/12	07/20/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND	20 μg/Kg	07/17/12	07/20/12
		1,2-Dichloroethane	ND	20 μg/Kg	07/17/12	07/20/12
		Benzene	ND	5.0 μg/Kg	07/17/12	07/20/12
		Tertiary Amyl Methyl Ether (TAME)	ND	20 μg/Kg	07/17/12	07/20/12
		Toluene	ND	5.0 µg/Kg	07/17/12	07/20/12
		1,2-Dibromoethane (EDB)	ND	40 μg/Kg	07/17/12	07/20/12
		Ethylbenzene	ND	5.0 μg/Kg	07/17/12	07/20/12
		m,p-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
		o-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12

Client ID:	MW-10-11					
Lab ID:	STR12071742-24A	TPH-P (GRO)	ND	1,000 µg/Kg	07/17/12	07/20/12
Date Sampleo	1 07/11/12 12:36	Tertiary Butyl Alcohol (TBA)	ND	500 µg/Kg	07/17/12	07/20/12
		Methyl tert-butyl ether (MTBE)	ND	5.0 μg/Kg	07/17/12	07/20/12
		Di-isopropyl Ether (DIPE)	ND	20 μ g/K g	07/17/12	07/20/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND	20 μg/Kg	07/17/12	07/20/12
		1,2-Dichloroethane	ND	20 μg/Kg	07/17/12	07/20/12
		Benzene	ND	5.0 μg/Kg	07/17/12	07/20/12
		Tertiary Amyl Methyl Ether (TAME)	ND	20 μg/Kg	07/17/12	07/20/12
		Toluene	ND	5.0 μg/Kg	07/17/12	07/20/12
		1,2-Dibromoethane (EDB)	ND	40 μg/ K g	07/17/12	07/20/12
		Ethylbenzene	ND	5.0 µg/Kg	07/17/12	07/20/12
		m,p-Xylene	ND	5.0 µg/Kg	07/17/12	07/20/12
		o-Xylenc	ND	5.0 μg/Kg	07/17/12	07/20/12
Client ID:	MW-10-21			, 5		
Lab ID:	STR12071742-25A	TPH-P (GRO)	NID	1.000 ///		
Date Sampled	07/11/12 12:44	Tertiary Butyl Alcohol (TBA)	ND	1,000 μg/Kg	07/17/12	07/20/12
outo sumpreu	07/11/12 12.44	Methyl tert-butyl ether (MTBE)	ND	500 μg/Kg	07/17/12	07/20/12
		Di-isopropyl Ether (DIPE)	ND	5.0 μg/Kg	07/17/12	07/20/12
			ND	20 μg/Kg	07/17/12	07/20/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND	20 μg/Kg	07/17/12	07/20/12
		1,2-Dichloroethane	ND	20 μg/Kg	07/17/12	07/20/12
		Benzene	ND	5.0 μg/Kg	07/17/12	07/20/12
		Tertiary Amyl Methyl Ether (TAME)	ND	20 μg/Kg	07/17/12	07/20/12
		Toluene	ND	5.0 μg/Kg	07/17/12	07/20/12
		1,2-Dibromoethane (EDB)	ND	40 μg/Kg	07/17/12	07/20/12
		Ethylbenzene	ND	5.0 μg/Kg	07/17/12	07/20/12
		m,p-Xylene	ND	5.0 μ g/K g	07/17/12	07/20/12
		o-Xylene	ND	5.0 μg/ K g	07/17/12	07/20/12
Client ID :	MW-10-26					
Lab ID :	STR12071742-26A	TPH-P (GRO)	ND	1,000 µg/Kg	07/17/12	07/20/12
Date Sampled	07/11/12 12:51	Tertiary Butyl Alcohol (TBA)	ND	500 μg/Kg	07/17/12	07/20/12
		Methyl tert-butyl ether (MTBE)	ND	5.0 μg/Kg	07/17/12	07/20/12
		Di-isopropyl Ether (DIPE)	ND	20 μg/Kg	07/17/12	07/20/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND	20 μg/Kg	07/17/12	07/20/12
		1,2-Dichloroethane	ND	20 μg/Kg	07/17/12	07/20/12
		Benzene	ND	5.0 μg/Kg	07/17/12	07/20/12
,		Tertiary Amyl Methyl Ether (TAME)	ND	20 μg/Kg	07/17/12	07/20/12
		Toluene	ND	5.0 μg/Kg	07/17/12	07/20/12
		1,2-Dibromoethane (EDB)	ND	40 μg/Kg	07/17/12	07/20/12
		Ethylbenzene	ND	5.0 μg/Kg	07/17/12	07/20/12
		m,p-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
		o-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
Client ID:	MW-10-36			3.0 μg/Kg	07/17/12	07/20/12
	STR12071742-27A	Thu D (CDC)				
		TPH-P (GRO)	ND	1,000 µg/Kg	07/17/12	07/20/12
Date Sampled	07/11/12 13:00	Tertiary Butyl Alcohol (TBA)	ND	500 μg/Kg	07/17/12	07/20/12
		Methyl tert-butyl ether (MTBE)	ND	5.0 μg/Kg	07/17/12	07/20/12
		Di-isopropyl Ether (DIPE)	ND	20 μg/Kg	07/17/12	07/20/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND	20 μg/Kg	07/17/12	07/20/12
		1,2-Dichloroethane	ND	20 μg/Kg	07/17/12	07/20/12
		Benzene	ND	5.0 μg/Kg	07/17/12	07/20/12
		Tertiary Amyl Methyl Ether (TAME)	ND	20 μg/Kg	07/17/12	07/20/12
		Toluene	ND	5.0 μg/Kg	07/17/12	07/20/12
		1,2-Dibromoethane (EDB)	ND	40 μg/Kg	07/17/12	07/20/12
		Ethylbenzene	ND	5.0 μg/Kg	07/17/12	07/20/12
		m,p-Xylene	ND	5.0 µg/Kg	07/17/12	07/20/12
		o-Xylene	ND	5.0 µg/Kg	07/17/12	07/20/12

Client ID:	MW-10-40					
Lab ID:	STR12071742-28A	TPH-P (GRO)	ND	1,000 µg/Kg	07/17/12	07/20/12
Date Sample	d 07/11/12 13:03	Tertiary Butyl Alcohol (TBA)	ND	500 μg/Kg	07/17/12	07/20/12
		Methyl tert-butyl ether (MTBE)	ND	5.0 μg/Kg	07/17/12	07/20/12
		Di-isopropyl Ether (DIPE)	ND	20 μg/Kg	07/17/12	07/20/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND	20 μg/Kg	07/17/12	07/20/12
		1,2-Dichloroethane	ND	20 μg/Kg	07/17/12	07/20/12
		Benzene	ND	5.0 μg/Kg	07/17/12	07/20/12
		Tertiary Amyl Methyl Ether (TAME)	ND	20 μg/Kg	07/17/12	07/20/12
		Toluene	ND	5.0 µg/Kg	07/17/12	07/20/12
		1,2-Dibromoethane (EDB)	ND	40 μg/Kg	07/17/12	07/20/12
		Ethylbenzene	ND	5.0 μg/Kg	07/17/12	07/20/12
		m,p-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
		o-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
Client ID:	MW-2R-10			2.0 pg 11g	07/17/12	07/20/12
Lab ID:	STR12071742-29A	TRUE D (CID O)				
		TPH-P (GRO)	ND	1,000 μg/ K g	07/17/12	07/20/12
Date Sampled	07/12/12 08:37	Tertiary Butyl Alcohol (TBA)	ND	500 μg/Kg	07/17/12	07/20/12
		Methyl tert-butyl ether (MTBE)	ND	5.0 μg/Kg	07/17/12	07/20/12
		Di-isopropyl Ether (DIPE)	ND	20 μg/Kg	07/17/12	07/20/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND	20 μg/Kg	07/17/12	07/20/12
		1,2-Dichloroethane	ND	20 μg/Kg	07/17/12	07/20/12
		Benzene	ND	5.0 μg/Kg	07/17/12	07/20/12
		Tertiary Amyl Methyl Ether (TAME)	ND	20 μg/Kg	07/17/12	07/20/12
		Toluene	ND -	5.0 μg/Kg	07/17/12	07/20/12
		1,2-Dibromoethane (EDB)	ND	40 μg/Kg	07/17/12	07/20/12
		Ethylbenzene	ND	5.0 μg/Kg	07/17/12	07/20/12
		m,p-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
		o-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
Client ID:	MW-2R-15					
Lab ID:	STR12071742-30A	TPH-P (GRO)	ND	1.000 #7	05/15/10	
Date Sampled	07/12/12 08:43	Tertiary Butyl Alcohol (TBA)	ND	1,000 µg/Kg	07/17/12	07/20/12
	0.7.12 00.15	Methyl tert-butyl ether (MTBE)	ND ND	500 μg/Kg	07/17/12	07/20/12
		Di-isopropyl Ether (DIPE)		5.0 μg/Kg	07/17/12	07/20/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND	20 μg/Kg	07/17/12	07/20/12
		1,2-Dichloroethane	ND ND	20 μg/Kg	07/17/12	07/20/12
		Benzene	ND ND	20 μg/Kg	07/17/12	07/20/12
		Tertiary Amyl Methyl Ether (TAME)	ND	5.0 μg/Kg	07/17/12	07/20/12
		Toluene	ND	20 μg/Kg	07/17/12	07/20/12
		1,2-Dibromoethane (EDB)		5.0 μg/Kg	07/17/12	07/20/12
		Ethylbenzene	ND ND	40 μg/Kg	07/17/12	07/20/12
		m,p-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
		o-Xylene	ND ND	5.0 μg/Kg	07/17/12	07/20/12
G1: Y=		0-Ayrene	ND	5.0 μg/Kg	07/17/12	07/20/12
Client ID:	MW-2R-20					
Lab ID:	STR12071742-31A	TPH-P (GRO)	ND	1,000 µg/Kg	07/17/12	07/20/12
Date Sampled	07/12/12 08:46	Tertiary Butyl Alcohol (TBA)	ND	500 μg/Kg	07/17/12	07/20/12
		Methyl tert-butyl ether (MTBE)	ND	5.0 μg/Kg	07/17/12	07/20/12
		Di-isopropyl Ether (DIPE)	ND	20 μg/Kg	07/17/12	07/20/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND	20 µg/Kg	07/17/12	07/20/12
		1,2-Dichloroethane	ND	20 µg/Kg	07/17/12	07/20/12
		Benzene	ND	5.0 μg/Kg	07/17/12	07/20/12
		Tertiary Amyl Methyl Ether (TAME)	ND	20 μg/Kg	07/17/12	07/20/12
		Toluene	ND	5.0 μg/Kg	07/17/12	07/20/12
		1,2-Dibromoethane (EDB)	ND	40 μg/Kg	07/17/12	07/20/12
		Ethylbenzene	ND	5.0 μg/Kg	07/17/12	07/20/12
		m,p-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
		o-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
						5

Client ID:	MW-2R-25					
Lab ID:	STR12071742-32A	TPH-P (GRO)	ND	1,000 μg/ K g	07/17/12	07/20/12
Date Sample	d 07/12/12 08:53	Tertiary Butyl Alcohol (TBA)	ND	1,000 μg/ K g 500 μg/ K g		07/20/12
•		Methyl tert-butyl ether (MTBE)	ND	5.0 μg/Kg 5.0 μg/Kg	07/17/12 07/17/12	07/20/12 07/20/12
		Di-isopropyl Ether (DIPE)	ND	20 μg/Kg	07/17/12	07/20/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND	20 μg/Kg 20 μg/Kg	07/17/12	07/20/12
		1,2-Dichloroethane	ND	20 μg/Kg	07/17/12	07/20/12
		Benzene	ND	20 μg/Kg 5.0 μg/Kg	07/17/12	07/20/12
		Tertiary Amyl Methyl Ether (TAME)	ND	20 μg/Kg	07/17/12	07/20/12
		Toluene	ND	5.0 μg/Kg	07/17/12	07/20/12
		1,2-Dibromoethane (EDB)	ND	40 μg/Kg	07/17/12	07/20/12
		Ethylbenzene (EBB)	ND			
		m,p-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
		o-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
Client ID:	MW-2R-30	y	ND	5.0 μg/Kg	07/17/12	07/20/12
Lab ID:	STR12071742-33A	TRILL D. (CD.C.)				
		TPH-P (GRO)	2,300	1,000 µg/Kg	07/17/12	07/20/12
Date Sampled	07/12/12 08:59	Tertiary Butyl Alcohol (TBA)	ND	500 μg/Kg	07/17/12	07/20/12
		Methyl tert-butyl ether (MTBE)	ND	5.0 μg/Kg	07/17/12	07/20/12
		Di-isopropyl Ether (DIPE)	ND	20 μg/Kg	07/17/12	07/20/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND	20 μg/Kg	07/17/12	07/20/12
		1,2-Dichloroethane	ND	20 μg/Kg	07/17/12	07/20/12
		Benzene	5.9	5.0 μg/Kg	07/17/12	07/20/12
		Tertiary Amyl Methyl Ether (TAME)	ND	20 μg/Kg	07/17/12	07/20/12
		Toluene	ND	5.0 μg/Kg	07/17/12	07/20/12
		1,2-Dibromoethane (EDB)	ND	40 μg/Kg	07/17/12	07/20/12
		Ethylbenzene	ND	5.0 μg/Kg	07/17/12	07/20/12
		m,p-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
		o-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
Client ID:	MW-2R-35					
Lab ID :	STR12071742-34A	TPH-P (GRO)	ND	1.000		
Date Sampled	07/12/12 09:05	Tertiary Butyl Alcohol (TBA)	ND	1,000 μg/Kg	07/17/12	07/20/12
- are sampled	07/12/12 09:03	Methyl tert-butyl ether (MTBE)	ND	500 μg/Kg	07/17/12	07/20/12
		Di-isopropyl Ether (DIPE)	ND	5.0 μg/Kg	07/17/12	07/20/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND	20 μg/Kg	07/17/12	07/20/12
		1,2-Dichloroethane	ND	20 μg/Kg	07/17/12	07/20/12
			ND	20 μg/Kg	07/17/12	07/20/12
		Benzene	ND	5.0 μg/Kg	07/17/12	07/20/12
		Tertiary Amyl Methyl Ether (TAME)	ND	20 μg/Kg	07/17/12	07/20/12
		Toluene	ND	5.0 μg/Kg	07/17/12	07/20/12
		1,2-Dibromoethane (EDB)	ND	40 μg/Kg	07/17/12	07/20/12
		Ethylbenzene	ND	5.0 μg/Kg	07/17/12	07/20/12
		m,p-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
		o-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
Client ID:	MW-2R-40					
Lab ID:	STR12071742-35A	TPH-P (GRO)	ND	1,000 µg/Kg	07/17/12	07/20/12
Date Sampled	07/12/12 09:12	Tertiary Butyl Alcohol (TBA)	ND		07/17/12	07/20/12
•		Methyl tert-butyl ether (MTBE)	32	500 μg/Kg	07/17/12	07/20/12
		Di-isopropyl Ether (DIPE)		5.0 μg/Kg	07/17/12	07/20/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND	20 μg/Kg	07/17/12	07/20/12
		1,2-Dichloroethane	ND	20 μg/Kg	07/17/12	07/20/12
		Benzene	ND	20 μg/Kg	07/17/12	07/20/12
			22	5.0 μg/Kg	07/17/12	07/20/12
		Tertiary Amyl Methyl Ether (TAME) Toluene	ND	20 μg/Kg	07/17/12	07/20/12
			ND	5.0 μg/Kg	07/17/12	07/20/12
		1,2-Dibromoethane (EDB)	ND	40 μg/Kg	07/17/12	07/20/12
		Ethylbenzene	23	5.0 μg/Kg	07/17/12	07/20/12
		m,p-Xylene	23	5.0 μg/Kg	07/17/12	07/20/12
		o-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12

Client ID:	VE-2-10					
Lab ID:	STR12071742-36A	TPH-P (GRO)	ND	1,000 μ g/K g	07/17/12	07/20/12
Date Sampled	1 07/12/12 11:56	Tertiary Butyl Alcohol (TBA)	ND	500 µg/Kg	07/17/12	07/20/12
		Methyl tert-butyl ether (MTBE)	ND	5.0 µg/Kg	07/17/12	07/20/12
		Di-isopropyl Ether (DIPE)	ND	20 μg/Kg	07/17/12	07/20/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND	20 μg/Kg	07/17/12	07/20/12
		1,2-Dichloroethane	ND	20 μg/ K g	07/17/12	07/20/12
		Benzene	ND	5.0 μg/Kg	07/17/12	07/20/12
		Tertiary Amyl Methyl Ether (TAME)	ND	20 μg/Kg	07/17/12	07/20/12
		Toluene	ND	5.0 μ g/K g	07/17/12	07/20/12
		1,2-Dibromoethane (EDB)	ND	40 μ g/K g	07/17/12	07/20/12
		Ethylhenzene	ND	5.0 μ g/K g	07/17/12	07/20/12
		m,p-Xylene	ND	5.0 μ g/K g	07/17/12	07/20/12
		o-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
Client ID:	VE-2-15					
Lab ID:	STR12071742-37A	TPH-P (GRO)	ND	1,000 µg/Kg	07/17/12	07/20/12
Date Sampled	07/12/12 12:00	Tertiary Butyl Alcohol (TBA)	ND	500 μg/Kg	07/17/12	07/20/12
		Methyl tert-butyl ether (MTBE)	ND	5.0 μg/Kg	07/17/12	07/20/12
		Di-isopropyl Ether (DIPE)	ND	20 μg/Kg	07/17/12	07/20/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND	20 μg/Kg	07/17/12	07/20/12
		1,2-Dichloroethane	ND	20 μg/Kg	07/17/12	07/20/12
		Benzene	ND	5.0 μg/Kg	07/17/12	07/20/12
		Tertiary Amyl Methyl Ether (TAME)	ND	20 μg/Kg	07/17/12	07/20/12
		Toluene	ND	5.0 μg/Kg	07/17/12	07/20/12
		1,2-Dibromoethane (EDB)	ND	40 μg/ K g	07/17/12	07/20/12
		Ethylbenzene	ND	5.0 μg/Kg	07/17/12	07/20/12
		m,p-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
		o-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
Client ID:	VE-2-20					
Lab ID :	STR12071742-38A	TPH-P (GRO)	ND	1,000 µg/Kg	07/17/12	07/20/12
Date Sampled	07/12/12 12:04	Tertiary Butyl Alcohol (TBA)	ND	500 μg/Kg	07/17/12	07/20/12
		Methyl tert-butyl ether (MTBE)	ND	5.0 µg/Kg	07/17/12	07/20/12
		Di-isopropyl Ether (DIPE)	ND	20 μg/Kg	07/17/12	07/20/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND	20 μg/Kg	07/17/12	07/20/12
		1,2-Dichloroethane	ND	20 μg/Kg	07/17/12	07/20/12
		Benzene	ND	5.0 μg/ K g	07/17/12	07/20/12
		Tertiary Amyl Methyl Ether (TAME)	ND	20 μg/ K g	07/17/12	07/20/12
		Toluene	ND	5.0 μg/ K g	07/17/12	07/20/12
		1,2-Dibromoethane (EDB)	ND	40 μg/Kg	07/17/12	07/20/12
		Ethylbenzene	ND	5.0 μg/Kg	07/17/12	07/20/12
		m,p-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
		o-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
Client ID:	VE-2-25					
Lab ID:	STR12071742-39A	TPH-P (GRO)	ND	1,000 µg/Kg	07/17/12	07/20/12
Date Sampled	07/12/12 12:11	Tertiary Butyl Alcohol (TBA)	ND	500 μg/Kg	07/17/12	07/20/12
		Methyl tert-butyl ether (MTBE)	ND	5.0 µg/Kg	07/17/12	07/20/12
		Di-isopropyl Ether (DIPE)	ND	20 μg/Kg	07/17/12	07/20/12
		Ethyl Tertiary Butyl Ether (ETBE)	ND	20 μg/Kg	07/17/12	07/20/12
		1,2-Dichloroethane	ND	20 μg/Kg	07/17/12	07/20/12
		Benzene	ND	5.0 μg/Kg	07/17/12	07/20/12
		Tertiary Amyl Methyl Ether (TAME)	ND	20 μg/Kg	07/17/12	07/20/12
		Toluene	ND	5.0 μg/Kg	07/17/12	07/20/12
		1,2-Dibromoethane (EDB)	ND	40 µg/Kg	07/17/12	07/20/12
		Ethylbenzene	ND	5.0 μg/Kg	07/17/12	07/20/12
		m,p-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12
		o-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID:

Lab ID:

STR12071742-40A

Date Sampled 07/12/12 12:15

TPH-P (GRO)	8,200	1,000 µg/Kg	07/17/12	07/20/12
Tertiary Butyl Alcohol (TBA)	ND	500 μg/Kg	07/17/12	07/20/12
Methyl tert-butyl ether (MTBE)	ND	5.0 μg/Kg	07/17/12	07/20/12
Di-isopropyl Ether (DIPE)	ND	20 μg/Kg	07/17/12	07/20/12
Ethyl Tertiary Butyl Ether (ETBE)	ND	20 μg/Kg	07/17/12	07/20/12
1,2-Dichloroethane	ND	20 μg/Kg	07/17/12	07/20/12
Benzene	15	5.0 µg/Kg	07/17/12	07/20/12
Tertiary Amyl Methyl Ether (TAME)	ND	20 μg/Kg	07/17/12	07/20/12
Toluene	ND	5.0 μg/Kg	07/17/12	07/20/12
1,2-Dibromoethane (EDB)	ND	40 μg/Kg	07/17/12	07/20/12
Ethylbenzene	7.1	5.0 μ g/K g	07/17/12	07/20/12
m,p-Xylene	ND	5.0 µg/Kg	07/17/12	07/20/12
o-Xylene	ND	5.0 μg/Kg	07/17/12	07/20/12

Diesel Range Organics (DRO) C13-C22

Gasoline Range Organics (GRO) C4-C13

K = DRO concentration may include contributions from lighter-end hydrocarbons that elute in the DRO range.

O = Reporting Limits were increased due to sample foaming.

Oil Range Organics (ORO) C22-C40+

Sample results were calculated on a wet weight basis.

ND = Not Detected

Reported in micrograms per Kilogram, per client request.

Roger L. Scholl, Ph.D., Lahoratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise. Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

2120-1401-01/Haber Oil

Attn: Steve Carter

Phone: (530) 676-6008

Fax: (530) 676-6005

Alpha Analytical Number: STR12071742-01A

Client I.D. Number: B-11-10

Sampled: 07/09/12 09:06 Received: 07/17/12

Extracted: 07/17/12 13:57 Analyzed: 07/20/12

Volatile Organics by GC/MS EPA Method SW8260B

	Compound	Concentration	Reporting	Limit		Compound	Concentration	Reporting L	imit
1	Dichlorodifluoromethane	ND	20	µg/Kg	36	1,2-Dibromoethane (EDB)	ND	40	µg/Kg
2	Chloromethane	ND	40	μg/Kg	37	Tetrachloroethene	ND	20	μg/Kg μg/Kg
3	Vinyl chloride	ND	20	µg/Kg	38	1,1,1,2-Tetrachloroethane	ND	20	µg/Kg
4	Chloroethane	ND	20	μg/Kg	39	Chlorobenzene	ND	20	µg/Kg
5	Bromomethane	ND	40	μg/Kg	40	Ethylbenzene	ND	5.0	µg/Kg µg/Kg
6	Trichlorofluoromethane	ND	20	µg/Kg	41	m,p-Xviene	ND	5.0	μg/Kg μg/Kg
7	Acrolein	ND	2,000	µg/Kg	42	Bromoform	ND	20	μg/Kg μg/Kg
8	1,1-Dichloroethene	ND	20	μg/Kg	43	Styrene	ND	20	μg/Kg μg/Kg
9	Tertiary Butyl Alcohol (TBA)	ND	500	µg/Kg	44	o-Xviene	ND	5.0	μg/Kg μg/Kg
10	Dichloromethane	ND	40	μg/Kg	45	1,1,2,2-Tetrachloroethane	ND	20	
11	trans-1,2-Dichloroethene	ND	20	µg/Kg	46	1,2,3-Trichloropropane	ND	40	µg/Kg
12	Methyl tert-butyl ether (MTBE)	ND	5.0	µg/Kg	47	Isopropylbenzene	ND	20	µg/Kg
13	1,1-Dichloroethane	ND	20	µg/Kg	48	Bromobenzene	ND	20	µg/Kg
14	Di-isopropyl Ether (DIPE)	ND	20	µg/Kg	49	n-Propylbenzene	ND	20	µg/Kg
15	cis-1,2-Dichloroethene	ND	20	µg/Kg	50	4-Chlorotoluene	ND	20	μg/Kg
16	Bromochloromethane	ND	20	µg/Kg	51	2-Chlorotoluene	ND	20	μg/Kg
17	Chloroform	ND	20	μg/Kg	52	1,3,5-Trimethylbenzene	ND	20	µg/Kg
18	Ethyl Tertiary Butyl Ether (ETBE)	ND	20	μg/Kg	53	tert-Butvlbenzene	ND		μg/Kg
19	2,2-Dichloropropane	ND	20	μg/Kg	5/	1,2,4-Trimethylbenzene	ND	20	µg/Kg
20	1,2-Dichloroethane	ND	20	μg/Kg μg/Kg	55	sec-Butylbenzene	ND	20	µg/Kg
21	1,1,1-Trichloroethane	ND	20	μg/Kg μg/Kg	56	1.3-Dichlorobenzene		20	μg/Kg
22	1,1-Dichloropropene	ND	20	μg/Kg μg/Kg	57	1,4-Dichlorobenzene	ND ND	20	µg/Kg
23	Carbon tetrachloride	ND	20	µg/Kg µg/Kg	58	4-Isopropyltoluene		20	µg/Kg
24	Benzene	ND	5.0	µg/Kg µg/Kg	59	1.2-Dichlorobenzene	ND	20	µg/Kg
25	Tertiary Amyl Methyl Ether (TAME)	ND	20	µg/Kg µg/Kg	60	n-Butvibenzene	ND	20	µg/Kg
26	Dibromomethane	ND	20			•	ND ND	20	µg/Kg
27	1,2-Dichloropropane	ND	20	µg/Kg	61	1,2-Dibromo-3-chloropropane (DBCF	* 1	60	µg/Kg
28	Trichloroethene	ND	20	µg/Kg	62	1,2,4-Trichlorobenzene	ND	40	µg/Kg
29	Bromodichloromethane	ND		μg/Kg	63	Naphthalene	ND	40	µg/Kg
30	cis-1,3-Dichloropropene	ND	20	μg/Kg	64	Hexachlorobutadiene	ND	40	µg/Kg
31	trans-1,3-Dichloropropene	ND	20	μg/Kg	65	1,2,3-Trichlorobenzene	ND	40	µg/Kg
32	1,1,2-Trichloroethane	ND ND	20	µg/Kg					
33	Toluene	ND ND	20	µg/Kg					
		שאו	5.0	ца/Ка					

Sample results were calculated on a wet weight basis. ND = Not Detected

1,3-Dichloropropane

35 Dibromochloromethane

Roger Scholl

ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento. CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

μg/Kg

μg/Kg

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise. Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Report Date

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

2120-1401-01/Haber Oil

Attn: Steve Carter

Phone: (530) 676-6008

Fax: (530) 676-6005

Alpha Analytical Number: STR12071742-02A

Client I.D. Number: B-11-15

Sampled: 07/09/12 09:11 Received: 07/17/12

Extracted: 07/17/12 13:57 Analyzed: 07/20/12

Volatile Organics by GC/MS EPA Method SW8260B

	Compound	Concentration	Reporting	Limit		Compound	Concentration	Reporting L	imit
1	Dichlorodifluoromethane	ND	20	µg/Kg	36	1,2-Dibromoethane (EDB)	ND	40	
2	Chloromethane	ND	40	μg/Kg	37		ND	20	µg/Kg µg/Kg
3	Vinyl chloride	ND	20	µg/Kg	38		ND	20	
4	Chloroethane	ND	20	µg/Kg	39		ND	20	µg/Kg
5	Bromomethane	ND	40	μg/Kg	40		ND	5.0	µg/Kg
6	Trichlorofluoromethane	ND	20	µg/Kg	41	m,p-Xylene	ND		µg/Kg
7	Acrolein	ND	2,000	µg/Kg µg/Kg	42		ND ND	5.0 20	µg/Kg
8	1,1-Dichloroethene	ND	20	μg/Kg	43		ND ND		µg/Kg
9	Tertiary Butyl Alcohol (TBA)	ND	500	µg/Kg µg/Kg	44	·	ND ND	20	μg/Kg
10	Dichloromethane	ND	40	µg/Kg	45	•	į.	5.0	µg/Kg
11	trans-1,2-Dichloroethene	ND	20	µg/Kg µg/Kg	46	1,2,3-Trichloropropane	ND	20	µg/Kg
12	Methyl tert-butyl ether (MTBE)	ND	5.0	µg/Kg µg/Kg	47	• •	ND	40	μg/Kg
13	1,1-Dichloroethane	ND	20	µg/Kg µg/Kg	48	Isopropylbenzene Bromobenzene	ND	20	µg/Kg
14	Di-isopropyl Ether (DIPE)	ND	20	μg/Kg μg/Kg			ND	20	µg/Kg
15	cis-1,2-Dichloroethene	ND	20		49	n-Propylbenzene	ND	20	µg/Kg
16	Bromochloromethane	ND	20	µg/Kg	50	4-Chlorotoluene	ND	20	µg/Kg
17	Chloroform	ND	20	µg/Kg	51	2-Chlorotoluene	ND	20	µg/Kg
18	Ethyl Tertiary Butyl Ether (ETBE)	ND		µg/Kg	52	1,3,5-Trimethylbenzene	ND	20	µg/Kg
19	2,2-Dichloropropane	ND	20	µg/Kg	53	tert-Butylbenzene	ND	20	µg/Kg
20	1,2-Dichloroethane	ND	20	µg/Kg	54	1,2,4-Trimethylbenzene	ND	20	µg/Kg
21	1,1,1-Trichloroethane	ND	20	µg/Kg	55	sec-Butylbenzene	ND	20	µg/Kg
22	1,1-Dichloropropene	ND	20	µg/Kg	56	1,3-Dichlorobenzene	ND	20	µg/Kg
23	Carbon tetrachloride	ND ND	20	μg/Kg	57	1,4-Dichlorobenzene	ND	20	µg/Kg
24	Benzene	ND	20	µg/Kg	58	4-Isopropyltoluene	ND	20	µg/Kg
25	Tertiary Amyl Methyl Ether (TAME)	ND	5.0	µg/Kg	59	1,2-Dichlorobenzene	ND	20	µg/Kg
26	Dibromomethane	ND ND	20	µg/Kg	60	n-Butylbenzene	ND	20	µg/Kg
27	1,2-Dichloropropane	ND	20	µg/Kg	61	1,2-Dibromo-3-chloropropane (DBCI	•	60	μg/Kg
28	Trichloroethene	i	20	µg/Kg	62	1,2,4-Trichlorobenzene	ND	40	µg/Kg
29	Bromodichloromethane	ND	20	µg/Kg	63	Naphthalene	ND	40	µg/Kg
30	cis-1,3-Dichloropropene	ND	20	µg/Kg	64	Hexachlorobutadiene	ND	40	µg/Kg
31	trans-1,3-Dichloropropene	ND	20	µg/Kg	65	1,2,3-Trichlorobenzene	ND	40	µg/Kg
32	1,1,2-Trichloroethane	ND	20	µg/Kg					
33	Toluene	ND	20	µg/Kg					
34		ND	5.0	µg/Kg					
J4	1,3-Dichloropropane	ND	20	μg/Kg					

Sample results were calculated on a wet weight basis. ND = Not Detected

35 Dibromochloromethane

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

µg/Kg

7/24/12 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental
3330 Cameron Park Drive
Cameron Park, CA 956828861

2120-1401-01/Haber Oil

Attn: Steve Carter

Phone: (530) 676-6008

Fax: (530) 676-6005

Alpha Analytical Number: STR12071742-04A

Client I.D. Number: B-11-25

Sampled: 07/09/12 09:22

Received: 07/17/12 Extracted: 07/17/12 13:57 Analyzed: 07/20/12

Volatile Organics by GC/MS EPA Method SW8260B

	Compound	Concentration	Reporting	Limit		Compound	Concentration	Reporting Li	imit
1	Dichlorodifluoromethane	ND	20	µg/Kg	36	1,2-Dibromoethane (EDB)	ND	40	ualVa
2	Chloromethane	ND	40	μg/Kg	37	Tetrachloroethene	ND	20	µg/Kg µg/Kg
3	Vinyl chloride	ND	20	µg/Kg	38		ND	20	µg/Kg µg/Kg
4	Chloroethane	ND	20	µg/Kg	39		ND	20	
5	Bromomethane	ND	40	µg/Kg	40		ND	5.0	μg/Kg
6	Trichlorofluoromethane	ND	20	µg/Kg	41	•	ND	5.0	µg/Kg
7	Acrolein	ND	2,000	µg/Kg	42		ND	20	µg/Kg
8	1,1-Dichloroethene	ND	20	μg/Kg	43		ND	20	µg/Kg
9	Tertiary Butyl Alcohol (TBA)	ND	500	µg/Kg µg/Kg	44	•	ND		µg/Kg
10	Dichloromethane	ND	40	µg/Kg	45	•	ND	5.0	µg/Kg
11	trans-1,2-Dichloroethene	ND	20	µg/Kg	46		ND	20	µg/Kg
12	Methyl tert-butyl ether (MTBE)	ND	5.0	µg/Kg µg/Kg	47	Isopropylbenzene	ND	40	µg/Kg
13	1,1-Dichloroethane	ND	20	μg/Kg μg/Kg	48	Bromobenzene		20	μg/Kg
14	Di-isopropyl Ether (DIPE)	ND	20	μg/Kg μg/Kg	49	n-Propylbenzene	ND	20	µg/Kg
15	cis-1,2-Dichloroethene	ND	20	μg/Kg μg/Kg	50	4-Chlorotoluene	ND	20	µg/Kg
16	Bromochloromethane	ND	20	μg/Kg μg/Kg	51	2-Chlorotoluene	ND	20	μg/Kg
17	Chloroform	ND	20	μg/Kg μg/Kg	52		ND ND	20	µg/Kg
18	Ethyl Tertiary Butyl Ether (ETBE)	ND	20	μg/Kg μg/Kg	53	,-,-	ND	20	µg/Kg
19	2,2-Dichloropropane	ND	20	µg/Kg µg/Kg		tert-Butylbenzene	ND	20	µg/Kg
20	1,2-Dichloroethane	ND	20		54	, , , , , , , , , , , , , , , , , , , ,	ND	20	µg/Kg
21	1,1,1-Trichloroethane	ND	20	µg/Kg	55 56	sec-Butylbenzene	ND	20	µg/Kg
22	1,1-Dichloropropene	ND	20	µg/Kg		1,3-Dichlorobenzene	ND	20	µg/Kg
23	Carbon tetrachloride	ND	20	μg/Kg	57	1,4-Dichlorobenzene	ND	20	µg/Kg
24	Benzene	ND	5.0	µg/Kg µg/Kg	58 59	4-isopropyltoluene	ND	20	µg/Kg
25	Tertiary Amyl Methyl Ether (TAME)	ND	20			1,2-Dichlorobenzene	ND	20	µg/Kg
26	Dibromomethane	ND	20	μg/Kg	60	n-Butylbenzene	! ND	20	µg/Kg
27	1,2-Dichloropropane	ND		µg/Kg	61	1,2-Dibromo-3-chloropropane (DBCF		60	µg/Kg
28	Trichloroethene	ND	20	μg/Kg	62	1,2,4-Trichlorobenzene	ND	40	µg/Kg
29	Bromodichloromethane	ND	20	µg/Kg	63	Naphthalene	ND	40	µg/Kg
30	cis-1,3-Dichloropropene	ND	20	µg/Kg	64	Hexachlorobutadiene	ND	40	µg/Kg
31	trans-1,3-Dichloropropene	ND	20	µg/Kg	65	1,2,3-Trichlorobenzene	ND	40	µg/Kg
32	1.1.2-Trichloroethane	ND	20	µg/Kg					
33	Toluene	ND ND	20	µg/Kg					
34	1,3-Dichloropropane	ND ND	5.0	µg/Kg					
	Dibromochloromethane	ND	20	μg/Kg					

Sample results were calculated on a wet weight basis.

ND = Not Detected

35 Dibromochloromethane

Roger Scholl

Kandy Saulmer

Walter Hirkon

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

µg/Kg

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise. Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

7/24/12

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

2120-1401-01/Haber Oil

Attn: Steve Carter

Phone: (530) 676-6008

(530) 676-6005 Fax:

Alpha Analytical Number: STR12071742-03A

Client I.D. Number: B-11-20

Sampled: 07/09/12 09:16 Received: 07/17/12 Extracted: 07/17/12 13:57

Analyzed: 07/20/12

Volatile Organics by GC/MS EPA Method SW8260B

Dichlorodifluoromethane	mpound	Cor	mpound	Concentration	Reporting	Limit		Compound	Conce	ntration	Reporting L	imit
Chloromethane	rodifluoromethane	Dichlo	rodifluoromethane	ND	20	ua/Ka	36	1.2-Dibromoethane (FDR)	i	ND		
Vinyl chloride	methane	Chloro	methane	ND				. ,	1			
Chloroethane	:hloride	Vinyl c	hloride	ND								
Bromomethane	ethane	Chloro	ethane	ND								
Trichlorofluoromethane	methane	Bromo	methane	;					Ì			
Acrolein	orofluoromethane	Trichlo	profluoromethane	1				•				
1,1-Dichloroethene	in	Acrolei	in	ND					1			
9 Tertiary Butyl Alcohol (TBA) ND 500 μg/Kg 44 o-Xylene ND 5.0 μg/K 10 Dichloromethane ND 40 μg/Kg 45 1,1,2,2-Tetrachloroethane ND 20 μg/Kg 11 trans-1,2-Dichloroethene ND 20 μg/Kg 46 1,2,3-Trichloropropane ND 40 μg/Kg 12 Methyl tert-butyl ether (MTBE) ND 5.0 μg/Kg 47 Isopropylbenzene ND 20 μg/Kg 13 1,1-Dichloroethane ND 20 μg/Kg 48 Bromobenzene ND 20 μg/Kg 14 Di-isopropyl Ether (DIPE) ND 20 μg/Kg 49 n-Propylbenzene ND 20 μg/Kg 15 cis-1,2-Dichloroethene ND 20 μg/Kg 50 4-Chlorotoluene ND 20 μg/Kg 16 Bromochloromethane ND 20 μg/Kg 51 2-Chlorotoluene ND 20 μg/Kg 17 Chloroform ND 20 μg/Kg 51 2-Chlorotoluene ND 20 μg/Kg 18 Ethyl Tertiary Butyl Ether (ETBE) ND 20 μg/Kg 53 tert-Butylbenzene ND 20 μg/Kg 19 2,2-Dichloroethane ND 20 μg/Kg 54 1,2,4-Trimethylbenzene ND 20 μg/Kg 20 1,2-Dichloroethane ND 20 μg/Kg 55 sec-Butylbenzene ND 20 μg/Kg 21 1,1 1,1-Trichloroethane ND 20 μg/Kg 55 sec-Butylbenzene ND 20 μg/Kg	chloroethene	1,1-Dic	chloroethene	ND					-			
Dichloromethane	y Butyl Alcohol (TBA)	Tertiar	y Butyl Alcohol (TBA)									
11 trans-1,2-Dichloroethene ND 20 μg/Kg 46 1,2,3-Trichloropropane ND 40 μg/Kg 12 Methyl tert-butyl ether (MTBE) ND 5.0 μg/Kg 47 Isopropylbenzene ND 20 μg/Kg 13 1,1-Dichloroethane ND 20 μg/Kg 48 Bromobenzene ND 20 μg/Kg 14 Di-isopropyl Ether (DIPE) ND 20 μg/Kg 49 n-Propylbenzene ND 20 μg/Kg 15 cis-1,2-Dichloroethene ND 20 μg/Kg 50 4-Chlorotoluene ND 20 μg/Kg 16 Bromochloromethane ND 20 μg/Kg 51 2-Chlorotoluene ND 20 μg/Kg 17 Chloroform ND 20 μg/Kg 52 1,3,5-Trimethylbenzene ND 20 μg/Kg 18 Ethyl Tertiary Butyl Ether (ETBE) ND 20 μg/Kg 53 tert-Butylbenzene ND 2	romethane	Dichlor	romethane					•	!			
Methyl tert-butyl ether (MTBE) ND 5.0 μg/Kg 47 Isopropylbenzene ND 20 μg/Kg 1,1-Dichloroethane ND 20 μg/Kg 48 Bromobenzene ND 20 μg/Kg 49 n-Propylbenzene ND 20 μg/Kg 40 n-Propylbenzene ND 20 μg/Kg 40 n-Propylbenzene ND 20 μg/Kg 40 n-Propylbenzene ND 20 μg/Kg 40 n-Propylbenzene ND 20 μg/Kg 40 n-Propylbenzene ND 20 μg/Kg 40 n-Propylbenzene ND 20 μg/Kg 40 n-Propylbenzene ND 20 μg/Kg 40 n-Propylbenzene ND 20 μg/Kg 40 n-Propylbenzene ND 20 μg/Kg 40 n-Propylbenzene ND 20 μg/Kg 40 n-Propylbenzene ND 20 μg/Kg	,2-Dichloroethene	rans-1	,2-Dichloroethene	ND								
13 1,1-Dichloroethane ND 20 μg/Kg 48 Bromobenzene ND 20 μg/kg 14 Di-isopropyl Ether (DIPE) ND 20 μg/Kg 49 n-Propylbenzene ND 20 μg/kg 15 cis-1,2-Dichloroethene ND 20 μg/Kg 50 4-Chlorotoluene ND 20 μg/kg 16 Bromochloromethane ND 20 μg/Kg 51 2-Chlorotoluene ND 20 μg/kg 17 Chloroform ND 20 μg/Kg 52 1,3,5-Trimethylbenzene ND 20 μg/kg 18 Ethyl Tertiary Butyl Ether (ETBE) ND 20 μg/Kg 53 tert-Butylbenzene ND 20 μg/kg 19 2,2-Dichloropropane ND 20 μg/Kg 54 1,2,4-Trimethylbenzene ND 20 μg/kg 20 1,2-Dichloroethane ND 20 μg/Kg 55 sec-Butylbenzene ND 20 μg/kg 21 1,1 1-Trichloroethane	tert-butyl ether (MTBF	Methyl	tert-butyl ether (MTBE)									
14 Di-isopropyl Ether (DIPE) ND 20 μg/Kg 49 n-Propylbenzene ND 20 μg/Kg 15 cis-1,2-Dichloroethene ND 20 μg/Kg 50 4-Chlorotoluene ND 20 μg/Kg 16 Bromochloromethane ND 20 μg/Kg 51 2-Chlorotoluene ND 20 μg/Kg 17 Chloroform ND 20 μg/Kg 52 1,3,5-Trimethylbenzene ND 20 μg/Kg 18 Ethyl Tertiary Butyl Ether (ETBE) ND 20 μg/Kg 53 tert-Butylbenzene ND 20 μg/Kg 19 2,2-Dichloropropane ND 20 μg/Kg 54 1,2,4-Trimethylbenzene ND 20 μg/Kg 20 1,2-Dichloroethane ND 20 μg/Kg 55 sec-Butylbenzene ND 20 μg/Kg 21 1,1 1-Trichloroethane	chloroethane	,1-Dic	chloroethane	ND								
15 cls-1,2-Dichloroethene ND 20 μg/Kg 50 4-Chlorotoluene ND 20 μg/Kg 16 Bromochloromethane ND 20 μg/Kg 51 2-Chlorotoluene ND 20 μg/Kg 17 Chloroform ND 20 μg/Kg 52 1,3,5-Trimethylbenzene ND 20 μg/Kg 18 Ethyl Tertiary Butyl Ether (ETBE) ND 20 μg/Kg 53 tert-Butylbenzene ND 20 μg/Kg 19 2,2-Dichloropropane ND 20 μg/Kg 54 1,2,4-Trimethylbenzene ND 20 μg/Kg 20 1,2-Dichloroethane ND 20 μg/Kg 55 sec-Butylbenzene ND 20 μg/Kg 21 1,1 1-Trichloroethane	propyl Ether (DIPE)	Di-isop	propyl Ether (DIPE)	ND								
ND ND ND ND ND ND ND ND	-Dichloroethene	is-1,2	-Dichloroethene	ND								
17 Chloroform ND 20 μg/Kg 52 1,3,5-Timethylbenzene ND 20 μg/Kg 18 Ethyl Tertiary Butyl Ether (ETBE) ND 20 μg/Kg 53 tert-Butylbenzene ND 20 μg/Kg 19 2,2-Dichloropropane ND 20 μg/Kg 54 1,2,4-Trimethylbenzene ND 20 μg/Kg 20 1,2-Dichloroethane ND 20 μg/Kg 55 sec-Butylbenzene ND 20 μg/Kg 21 1,1 1,1-Trichloroethane	chloromethane	3romo	chloromethane	j.								
18 Ethyl Tertiary Butyl Ether (ETBE) ND 20 μg/Kg 53 tert-Butylbenzene ND 20 μg/Kg 19 2,2-Dichloropropane ND 20 μg/Kg 54 1,2,4-Trimethylbenzene ND 20 μg/Kg 20 1,2-Dichloroethane ND 20 μg/Kg 55 sec-Butylbenzene ND 20 μg/Kg 21 1,1 1,1-Trichloroethane	for m	Chlorof	form	ND								
19 2,2-Dichloropropane ND 20 μg/Kg 54 1,2,4-Trimethylbenzene ND 20 μg/Kg 20 1,2-Dichloroethane ND 20 μg/Kg 55 sec-Butylbenzene ND 20 μg/Kg 21 1.1 1.Trichloroethane	ertiary Butyl Ether (ET	Ethyl T	ertiary Butyl Ether (ETBE)	ND				· · ·				
20 1,2-Dichloroethane ND 20 µg/Kg 55 sec-Butylbenzene ND 20 µg/Kg	hloropropane	2,2-Dic	chloropropane	ND				•				
21 111-Trichloroethane	hloroethane	,2-Dic	chloroethane	ND			-					
	richloroethane	,1,1-T	richloroethane	ND	20	μg/Kg	56	1,3-Dichlorobenzene		ND	20	μg/Kg μg/Kg
22 11-Dichloropropens	:hloropropene	,1-Dic	chloropropene	ND				· ·				μg/Kg μg/Kg
23 Carbon tetrachloride	n tetrachloride	Carbon	n tetrachloride					•				µg/Kg µg/Kg
24 Benzene	ne	Benzer	ne	ND								μg/Kg μg/Kg
25 Lettigty Amyl Mothyl Ether (TAME) Line and the second s	y Amyl Methyl Ether (T	ertiary	y Amyl Methyl Ether (TAME)	ND				•				μg/Kg
26 Dibromomethane	iomethane)ibrom	omethane	ND				•	D)			µg/Kg µg/Kg
27 12-Dichloropropage	:hloropropane	,2-Dic	hloropropane	ND					,			µg/Kg µg/Kg
28 Trichloroethene	roethene	richlor	roethene	ND		_						μg/Kg μg/Kg
29 Bramodichloromethans	dichloromethane	romoc	dichloromethane	ND			-	•				μg/Kg
30 cic 13 Dichloropropers	-Dichloropropene	is-1,3-	-Dichloropropene	ND								
31 trans-1,3-Dichloropropene ND 20 µg/Kg	,3-Dichloropropene	ans-1,	,3-Dichloropropene				30	1,2,0 Thomoroper Edite	!	ND	40	µg/Kg
32 1,1,2-Trichloroethane ND 20 µg/Kg	richloroethane	,1,2-T	richloroethane	ND	_							
33 Toluene ND 5.0 µg/Kg	e	oluene	e	ND								
34 1,3-Dichloropropane ND 20 µg/Kg	hioropropane	,3-Dicl	hioropropane	ND								

Sample results were calculated on a wet weight basis. ND = Not Detected

35 Dibromochloromethane

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

20 µg/Kg

μg/Kg

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

7/24/12

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

2120-1401-01/Haber Oil

Attn: Steve Carter

Phone: (530) 676-6008

Fax: (530) 676-6005

Alpha Analytical Number: STR12071742-05A

Client I.D. Number: B-11-30

Sampled: 07/09/12 09:26 Received: 07/17/12

Extracted: 07/17/12 13:57 Analyzed: 07/20/12

Volatile Organics by GC/MS EPA Method SW8260B

Compound		Concentration	Reporting	Limit		Compound	Concentration	Reporting Limit	
1	Dichlorodifluoromethane	ND	4.000	μg/Kg	36	1,2-Dibromoethane (EDB)	L ND		
2	Chloromethane	ND	16,000	μg/Kg μg/Kg	37		ND	16,000	
3	Vinyl chloride	ND	4,000	µg/Kg µg/Kg	38		ND	4,000	µg/Kg
4	Chloroethane	ND	4,000	µg/Kg µg/Kg	39	.,.,.,	ND	4,000	µg/Kg
5	Bromomethane	ND	16,000	μg/Kg μg/Kg	40	***************************************	ND	4,000	µg/Kg
6	Trichlorofluoromethane	ND	4,000		-	Ethylbenzene	44,000	2,000	µg/Kg
7	Acrolein	ND	800,000	µg/Kg	41	m,p-Xylene	250,000	2,000	µg/Kg
8	1,1-Dichloroethene	ND	4,000	µg/Kg	42	Bromoform	ND	4,000	µg/Kg
9	Tertiary Butyl Alcohol (TBA)	ND	•	µg/Kg	43	Styrene	ND	4,000	µg/Kg
10	Dichloromethane	ND	200,000	µg/Kg	44	o-Xylene	100,000	2,000	µg/Kg
11	trans-1,2-Dichloroethene	ND	. 16,000	μg/Kg	45	1,1,2,2-Tetrachloroethane	ND	4,000	µg/Kg
12	Methyl tert-butyl ether (MTBE)	ND	4,000	μg/Kg	46	1,2,3-Trichloropropane	ND	16,000	µg/Kg
13	1,1-Dichloroethane	ND ND	2,000	µg/Kg	47	Isopropylbenzene	12,000	4,000	µg/Kg
14	Di-isopropyl Ether (DIPE)	ND ND	4,000	µg/Kg	48	Bromobenzene	ND	4,000	µg/Kg
15	cis-1,2-Dichloroethene	ND	4,000	μg/Kg	49	n-Propylbenzene	61,000	4,000	µg/Kg
16	Bromochloromethane		4,000	µg/Kg	50	4-Chlorotoluene	ND	4,000	μg/Kg
17	Chloroform	ND	4,000	µg/Kg	51	2-Chlorotoluene	ND	4,000	μg/Kg
18	Ethyl Tertiary Butyl Ether (ETBE)	ND	4,000	µg/Kg	52	1,3,5-Trimethylbenzene	170,000	4,000	μg/Kg
19	2,2-Dichloropropane	ND	4,000	µg/Kg	53	tert-Butylbenzene	ND	4,000	µg/Kg
20	1.2-Dichloroethane	. ND	4,000	µg/Kg	54	1,2,4-Trimethylbenzene	440,000	4,000	µg/Kg
21	1,1,1-Trichloroethane	ND	4,000	µg/Kg	55	sec-Butylbenzene	20,000	4,000	μg/Kg
22	1,1-Dichloropropene	ND	4,000	µg/Kg	56	1,3-Dichlorobenzene	ND	4,000	µg/Kg
23	Carbon tetrachloride	ND	4,000	μg/Kg	57	1,4-Dichlorobenzene	ND	4,000	μg/Kg
24	Benzene	ND	4,000	µg/Kg	58	4-Isopropyltoluene	29,000	4,000	μg/Kg
		ND	2,000	μg/Kg	59	1,2-Dichlorobenzene	ND	4.000	μg/Kg
25 26	Tertiary Amyl Methyl Ether (TAME) Dibromomethane	ND	4,000	µg/Kg	60	n-Butylbenzene	36,000	4,000	μg/Kg
27		ND	4,000	μg/Kg	61	1,2-Dibromo-3-chloropropane (DBCF) ND	24,000	µg/Kg
	1,2-Dichloropropane	ND	4,000	µg/Kg	62	1,2,4-Trichlorobenzene	ND	16,000	µg/Kg
28	Trichloroethene	ND	4,000	µg/Kg	63	Naphthalene	100.000	16,000	μg/Kg
29	Bromodichloromethane	ND	4,000	µg/Kg	64	Hexachlorobutadiene	ND	16,000	μg/Kg
30	cis-1,3-Dichloropropene	ND	4,000	μg/Kg	65	1,2,3-Trichlorobenzene	ND	16,000	µg/Kg
31	trans-1,3-Dichloropropene	ND	4,000	μg/Kg			,,_	10,000	H31118
32	1,1,2-Trichloroethane	ND	4,000	μg/Kg					
33	Toluene	l ND		ualka					

Reporting Limits were increased due to high concentrations of target analytes.

Sample results were calculated on a wet weight basis.

ND = Not Detected

34 1,3-Dichloropropane

35 Dibromochloromethane

Roger Scholl

NΩ

Roger L. Scholl, Ph.D., Laboratory Director • • Kandy Gardner, Laboratory Manager • • Waiter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

4,000 µg/Kg

μg/Kg

4,000

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

7/24/12 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

2120-1401-01/Haber Oil

Attn: Steve Carter

Phone: (530) 676-6008

Fax: (530) 676-6005

Alpha Analytical Number: STR12071742-06A

Client I.D. Number: B-11-35

Sampled: 07/09/12 09:31

Received: 07/17/12 Extracted: 07/17/12 13:57 Analyzed: 07/20/12

Volatile Organics by GC/MS EPA Method SW8260B

	Compound	Concentration	Reporting	Limit		Compound	Concentration	Reporting L	imit
1	Dichlorodifluoromethane	ND	20	µg/Kg	36	1,2-Dibromoethane (EDB)	ND	40	μg/Kg
2	Chloromethane	ND .	40	µg/Kg	37		ND	20	µg/Kg
3	Vinyl chloride	ND	20	μg/Kg	38		ND	20	µg/Kg
4	Chloroethane	ND	20	μg/Kg	39		ND	20	µg/Kg
5	Bromomethane	ND	40	μg/Kg	40		15	5.0	µg/Kg µg/Kg
6	Trichlorofluoromethane	ND	20	μg/Kg	41	m,p-Xylene	69	5.0	µg/Kg µg/Kg
7	Acrolein	ND	2,000	µg/Kg	42		ND ND	20	µg/Kg
8	1,1-Dichloroethene	ND	20	μg/Kg	43		ND	20	µg/Kg µg/Kg
9	Tertiary Butyl Alcohol (TBA)	ND	500	μg/Kg	44	•	34	5.0	µg/Kg
10	Dichloromethane	ND	40	µg/Kg	45		ND	20	µg/Kg
11	trans-1,2-Dichloroethene	ND	20	μg/Kg	46	.,.,	ND	40	µg/Kg µg/Kg
12	Methyl tert-butyl ether (MTBE)	12	5.0	μg/Kg	47	Isopropylbenzene	ND	20	µg/Kg
13	1,1-Dichloroethane	ND	20	μg/Kg	48	Bromobenzene	ND	20	µg/Kg
14	Di-isopropyl Ether (DIPE)	ND	20	µg/Kg	49	n-Propylbenzene	ND	20	μg/Kg
15	cis-1,2-Dichloroethene	ND	20	µg/Kg	50	4-Chlorotoluene	ND	20	μg/Kg
16	Bromochloromethane	ND	20	µg/Kg	51	2-Chlorotoluene	ND	20	μg/Kg
17	Chloroform	ND	20	μg/Kg	52	1,3,5-Trimethylbenzene	26	20	μg/Kg μg/Kg
18	Ethyl Tertiary Butyl Ether (ETBE)	ND	20	μg/Kg	53	tert-Butylbenzene	ND	20	µg/Kg
19	2,2-Dichloropropane	ND	20	μg/Kg	54	· · · · · · · · · · · · · · · · · · ·	99	20	µg/Kg
20	1,2-Dichloroethane	ND	20	μg/Kg	55	sec-Butylbenzene	ND	20	µg/Kg
21	1,1,1-Trichloroethane	ND	20	µg/Kg	56	1.3-Dichlorobenzene	ND	20	µg/Kg
22	1,1-Dichloropropene	ND	20	μg/Kg	57	1.4-Dichlorobenzene	ND	20	μg/Kg
23	Carbon tetrachloride	ND	20	µg/Kg	58	4-isopropyltoluene	ND	20	μg/Kg μg/Kg
24	Benzene	ND	5.0	μg/Kg	59	1,2-Dichlorobenzene	ND	20	µg/Kg
25	Tertiary Amyl Methyl Ether (TAME)	ND	20	µg/Kg	60	n-Butylbenzene	ND	20	μg/Kg
26	Dibromomethane	ND	20	μg/Kg	61	1,2-Dibromo-3-chloropropane (DBCI		60	μg/Kg
27	1,2-Dichloropropane	ND	20	µg/Kg	62	1,2,4-Trichlorobenzene	ND	40	µg/Kg
28	Trichloroethene	ND	20	μg/Kg	63	Naphthalene	ND	40	μg/Kg
29	Bromodichloromethane	ND	20	μg/Kg	64	Hexachlorobutadiene	ND	40	μg/Kg
30	cis-1,3-Dichloropropene	ND	20	μg/Kg	65	1,2,3-Trichlorobenzene	ND	40	μg/Kg μg/Kg
31	trans-1,3-Dichloropropene	ND	20	μg/Kg			1 110	40	pgrivg
32	1,1,2-Trichloroethane	ND	20	µg/Kg					
33	Toluene	ND	5.0	μg/Kg					
34	1,3-Dichloropropane	ND	20	µg/Kg					
35	Dibromochloromethane	ND							

Sample results were calculated on a wet weight basis.

ND = Not Detected

35 Dibromochloromethane

Roger Scholl Kandys

Walter Findner

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

20 µg/Kg

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

Report Date

Report Date

Page 1 of 1

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 24-Jul-12	THE CONTRACTOR OF THE CONTRACT	rk Order: 2071742
Method Blank File ID: 2A07161263.D Sample ID: MBLK-29082 Analyte	Type: MBLK Test Code: EPA Method SW8015B/C Ext Batch ID: 29082 Analysis Date: 07/18/2012 Units: µg/Kg Run ID: FID_2_120717A Prep Date: 07/17/2012 Result PQL SpkVal SpkRefVal %REC LCL(ME) UCL(ME) RPDRefVal %RPD(L	10:53 11:17
TPH-E (DRO) TPH-E (ORO) Surr: Nonane	ND 5000 ND 10000 6700 6000 112 62 161	,
Laboratory Control Spike File ID: 2A07161264.D Sample ID: LCS-29082 Analyte	Type: LCS Test Code: EPA Method SW8015B/C Ext Batch ID: 29082 Analysis Date: 07/18/2012 Units: µg/Kg Run ID: FID_2_120717A Prep Date: 07/17/2012 Result PQL SpkVal SpkRefVal %REC LCL(ME) UCL(ME) RPDRefVal %RPD(Li	11:17
TPH-E (DRO) Surr: Nonane	90700 5000 100000 91 70 130 7500 6000 125 62 161	
Sample Matrix Spike File ID: 2A07161272.D Sample ID: 12071644-01AMS Analyte	Type: MS Test Code: EPA Method SW8015B/C Ext Batch ID: 29082 Analysis Date: 07/18/2012 Units: µg/Kg Run ID: FID_2_120717A Prep Date: 07/17/2012 Result PQL SpkVal SpkRefVal %REC LCL(ME) UCL(ME) RPDRefVal %RPD(Li	11:17
TPH-E (DRO) Surr: Nonane	119000 5000 100000 54650 64 50 149 0 6000 0 62 161	S50
Sample Matrix Spike Duplicate File ID: 2A07161273.D Sample ID: 12071644-01AMSD Analyte	Type: MSD Test Code: EPA Method SW8015B/C Ext	11:17
TPH-E (DRO) Surr: Nonane	145000 5000 100000 54650 91 50 149 118700 20.0(44 0 6000 0 62 161	

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

S50 = The analysis of the sample required a dilution such that the surrogate concentration was diluted below the laboratory acceptance criteria. The laboratory control sample recovery was acceptable.

Reported in micrograms per Kilogram, per client request.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 24-Jul-12		QC Sı	ımmar	y Repoi	:t				Work Ord 12071742	
Method Blank File ID: 12071935.D Sample ID: MBLK MS08S9086B Analyte	Units : µg/K Result	•	Barring Barrin	est Code: E atch ID: MS SD_08_120	08 S 908 719B	6B	Analys Prep D	ate:	07/19/2012 23:42 07/19/2012 23:42	
TPH-P (GRO) Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	ND 151 229 180	1000	200 200 200	<u> </u>	76 114 90	70 70 70 70	130 130 130 130	RPDRef\	/al %RPD(Limit)	Qua
Laboratory Control Spike File ID: 12071939.D		Type: Lo	CS To	est Code: E	PA Met	hod SW80	15B/C			
Sample ID: LCS MS08S9086B Analyte	Units : µg/K Result	g PQL	Run ID: M	atch ID: MS(SD_08_120	719B		Prep D	ate:	07/20/2012 01:14 07/20/2012 01:14	
TPH-P (GRO) Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	13600 304 405 395	2000	16000 400 400 400	Opkrei vai	85 76 101 99	63 70 70 70	148 130 130 130	Croreiv	/al %RPD(Limit)	Qual
Sample Matrix Spike	***************************************	Type: M:	S Te	est Code: El	PA Meti	nod SW80	15B/C			
File ID: 12071940.D Sample ID: 12071742-21AGS Analyte	Units : μg/K g Result	g PQL	Run ID: MS	otch ID: MS(SD_08_1207 SokRef\/al	19B	_	Prep Da	ate:	07/20/2012 01:37 07/20/2012 01:37 al %RPD(Limit)	Qual
TPH-P (GRO) Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	15600 304 400 408	2000	16000 400 400 400	0	98 76 100 102	35 70 70 70	166 130 130 130	u Diteiv	ar with Dictimity	Quai
Sample Matrix Spike Duplicate		Type: MS		st Code: EF						
File ID: 12071941.D Sample ID: 12071742-21AGSD Analyte	Units : μg/Κ ζ Result	pQL	Ba Run ID: MS	tch ID: MS0 5 D_08_120 7	8S9086 19B	B	Analysi Prep Da	ate:	07/20/2012 02:00 07/20/2012 02:00	
TPH-P (GRO) Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	14000 313 401 399	2000	16000 400 400 400 400	0	87 78 100 99.9	35 70 70 70	166 130 130 130	15640	al %RPD(Limit) 11.2(33)	Qual

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Reported in micrograms per Kilogram, per client request.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 24-Jul-12		QC Su	ımmar	y Repoi	t				Work Ord 1207174	
Method Blank File ID: 12072006.D		Type: M		est Code: E				iolo Doto		
Sample ID: MBLK MS15S9085B Analyte	Units : µg/l Result	-	Run ID: M	SD_15_120	720A	-	Prep	Date:	07/20/2012 11:27 07/20/2012 11:27	
TPH-P (GRO)	ND	PQL	Spkvai	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef	Val %RPD(Limit)	Qua
Surr: 1,2-Dichloroethane-d4	193	1000	200		97	70	400			
Surr: Toluene-d8	196		200		97 98	70 70	130			
Surr: 4-Bromofluorobenzene	219		200		110	70 70	130 130			
Laboratory Control Spike		Type: L(est Code: Ei						
File ID: 12072325.D			Ва	atch ID: MS	15S908	5B	Analy	sis Date:	07/23/2012 21:23	
Sample ID: LCS MS15S9085B	Units : µg/M	(g	Run ID: M	SD_15_120	720A		Prep I		07/23/2012 21:23	
Analyte	Result	PQL				LCL(ME)	•		Val %RPD(Limit)	Qua
TPH-P (GRO)	19000	2000	16000		119	63	148			
Surr: 1,2-Dichloroethane-d4	412		400		103	70	130			
Surr: Toluene-d8	372		400		93	70	130			
Surr: 4-Bromofluorobenzene	414		400		104	70	130			
Sample Matrix Spike		Type: MS	5 Te	est Code: El	A Meti	nod SW80	15B/C			**********
File ID: 12072014.D			Ba	tch ID: MS1	58908	5B	Analys	sis Date:	07/20/2012 14:21	
Sample ID: 12071742-16AGS	Units : µg/K	ig f	Run ID: MS	SD_15_1207	720A		Prep [07/20/2012 14:21	
Analyte	Result	PQL				LCL(ME)	•		/al %RPD(Limit)	Qua
TPH-P (GRO)	18800	2000	16000	. 0	117	35	166			
Surr: 1,2-Dichloroethane-d4	388		400	Ū	97	70	130			
Surr: Toluene-d8	383		400		96	70	130			
Surr: 4-Bromofluorobenzene	396		400		99	70	130			
Sample Matrix Spike Duplicate		Type: MS	D Te	st Code: EF	A Meth	nod SW80	15B/C			
File ID: 12072033.D				tch ID: MS1				sis Date:	07/20/2012 21:13	
Sample ID: 12071742-16AGSD	Units : µg/K	a F	Run ID: MS	D_15_1207	204		Prep D		07/20/2012 21:13	
Analyte	Result	PQL				LCL(ME)	•		/al %RPD(Limit)	Qual
TPH-P (GRO)	16300	2000	16000	0	102	35	166	18800		
Surr: 1,2-Dichloroethane-d4	401	2000	400	U	100	70	130	10000	14.2(33)	
Surr: Toluene-d8	378		400		94	70	130			
Surr: 4-Bromofluorobenzene	405		400		101	70	130			

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Reported in micrograms per Kilogram, per client request.

Alpha Analytical, Inc.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 24-Jul-12		QC S	ummary Report Work Order: 12071742						
Method Blank		Type: MBLK Test Code: EPA Method SW8260B							
File ID: 12071935.D			Batch ID: MS08S9086A Analysis Date: 07/19/2012 23:42						
Sample ID: MBLK MS08S9086A	Units : µg/Kg	İ	Run ID: MSD_08_120719B						
Analyte	Result	PQL	SpkVal SpkRefVal %REC LCL(ME) UCL(ME) RPDRefVal %RPD(Limit) Q						
Dichlorodifluoromethane	ND	20							
Chloromethane	ND	40							
Vinyl chloride Chloroethane	ND	20							
Bromomethane	ND ND	20							
Trichlorofluoromethane	ND	40 20							
Acrolein	ND	2000							
1,1-Dichloroethene	ND	20							
Tertiary Butyl Alcohol (TBA)	ND	500							
Dichloromethane trans-1,2-Dichloroethene	ND	40							
Methyl tert-butyl ether (MTBE)	ND	20							
1,1-Dichloroethane	ND ND	5							
Di-isopropyl Ether (DIPE)	ND ND	20 20							
cis-1,2-Dichloroethene	ND	20							
Bromochloromethane	ND	20							
Chloroform	ND	20							
Ethyl Tertiary Butyl Ether (ETBE)	ND	20							
2,2-Dichloropropane 1,2-Dichloroethane	ND ND	20							
1,1,1-Trichloroethane	ND	20							
1,1-Dichloropropene	ND ND	20 20							
Carbon tetrachloride	ND	20							
Benzene	ND	5							
Tertiary Amyl Methyl Ether (TAME)	ND	20							
Dibromomethane	ND	20							
1,2-Dichloropropane Trichloroethene	ND	20							
Bromodichloromethane	ND	20							
cis-1,3-Dichloropropene	ND ND	20 20							
trans-1,3-Dichloropropene	ND	20							
1,1,2-Trichloroethane	ND	20							
Toluene	ND	5							
1,3-Dichloropropane	ND	20							
Dibromochloromethane 1,2-Dibromoethane (EDB)	ND	20							
Tetrachloroethene	ND	40							
1,1,1,2-Tetrachloroethane	ND ND	20 20							
Chlorobenzene	ND	20							
Ethylbenzene	ND	5							
m,p-Xylene	ND	5							
Sturana	ND	20							
Styrene o-Xylene	ND	20							
1,1,2,2-Tetrachloroethane	ND ND	5							
1,2,3-Trichloropropane	ND	20 40							
sopropylbenzene	ND	20							
Bromobenzene	ND	20							
n-Propylbenzene	ND	20							
4-Chlorotoluene 2-Chlorotoluene	ND	20							
I,3,5-Trimethylbenzene	ND ND	20							
ert-Butylbenzene	ND ND	20 20							
,2,4-Trimethylbenzene	ND	20							
ec-Butylbenzene	ND	20							
,3-Dichlorobenzene	ND	20							
,4-Dichlorobenzene	ND	20							
l-Isopropyltoluene ,2-Dichlorobenzene	ND	20							
,z-Dichlorobenzene i-Butylbenzene	ND	20							
,2-Dibromo-3-chloropropane (DBCP)	ND ND	20							
,2,4-Trichlorobenzene	ND UND	60 40							
laphthalene	ND	40							
lexachlorobutadiene	ND	40							
,2,3-Trichlorobenzene	ND	40							

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 24-Jul-12		QC Si	ımmaı	y Repo	rt				Work Ord 1207174	
Surr: 1,2-Dichloroethane-d4	151		200)	76	70	130		120/1/4	
Surr: Toluene-d8	229		200		114		130			
Surr: 4-Bromofluorobenzene	180		200		90	70	130			
Laboratory Control Spike		Type: L	cs 7	est Code: I	EDA Ma	thad SM/81				
File ID: 12071936.D		· , po. <u></u> .						'- B1		
Sample ID: LCS MS08S9086A	l Inita :	_		Batch ID: MS		BBA			07/20/2012 00:05	
Analyte	Units : µg/K	_		ISD_08_12			•	Date:	07/20/2012 00:05	
	Result	PQL	SpkVal	SpkRefVa	I %REC	C LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual
1,1-Dichloroethene	96.4	20	400		24	10	132			
Methyl tert-butyl ether (MTBE) Benzene	443	10	400		111	61	147			
Trichloroethene	400	10	400		99.9	70	138			
Toluene	448	20	400		112	70	150			
Chlorobenzene	397	10	400		99	70	137			
Ethylbenzene	417	20	400		104	10	137			
m,p-Xylene	438 468	10	400		109	7 0	138			
o-Xylene	481	10	400		117	70	145			
Surr: 1,2-Dichloroethane-d4	353	10	400		120	70	145			
Surr: Toluene-d8	376		400		88	70	130			
Surr: 4-Bromofluorobenzene	430		400 400		94	70 70	130			
Sample Matrix C. 11	400				107	70	130			
Sample Matrix Spike File ID: 12071937.D		Type: MS	5 T	est Code: E	PA Met	thod SW82	60B			
			В	atch ID: MS	08\$908	6A	Analy	sis Date:	07/20/2012 00:28	
Sample ID: 12071742-21AMS	Units : µg/Kg	3 1	Run ID: M	SD_08_120	719B			Date:	07/20/2012 00:28	
Analyte	Result	PQL				: LCL/ME)	•		/al %RPD(Limit)	Oual
1,1-Dichloroethene	270							INFUNEI	Vai 76KFD(LIIIIII)	Qual
Methyl tert-butyl ether (MTBE)	395	20	400	0		10	132			
Benzene	363	10 10	400	0		42	157			
Trichloroethene	405	20	400 400	0		53	150			
Toluene	358	10	400	0		48	165			
Chlorobenzene	379	20	400	0		51 51	149			
Ethylbenzene	400	10	400	0		51 54	147			
m.p-Xylene	425	10	400	0		50	150 161			
o-Xylene	431	10	400	0		35	177			
Surr: 1,2-Dichloroethane-d4	336		400	· ·	84	70	130			
Surr: Toluene-d8	373		400		93	70	130			
Surr: 4-Bromofluorobenzene	430		400		107	70	130			
Sample Matrix Spike Duplicate		Type: MS	D To	est Code: El	DA BRAN	had CM(no)				
File ID: 12071938.D		rype. wie								
Sample ID: 12071742-21AMSD	Hatta ne	_		tch ID: MS		δA	Analy	sis Date:	07/20/2012 00:51	
Analyte	Units : µg/Kg			D_08_1207			Prep I		07/20/2012 00:51	
	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	JCL(ME)	RPDRefV	al %RPD(Limit)	Qual
1,1-Dichloroethene	218	20	400	0	55	10	132	270.4		
Methyl tert-butyl ether (MTBE)	449	10	400	Ō	112	42	157	394.7		
Benzene Triable as attacks	415	10	400	0	104	53	150	363.3		
Trichloroethene	455	20	400	0	114	48	165	405.4		
Toluene	417	10	400	0	104	51	149	358.5		
Chlorobenzene Ethylbenzene	437	20	400	0	109	51	147	379	14.2(40)	
m,p-Xylene	459	10	400	0	115	54	150	400.3		
D-Xylene	489	10	400	0	122	50	161	425	14.0(38)	
Surr: 1,2-Dichloroethane-d4	507	10	400	0	127	35	177	430.7	16.2(40)	
Surr: Toluene-d8	344		400		86	7 0	130		7.71	
Surr: 4-Bromofluorobenzene	374		400		94	70	130			
	439		400		110	70	130			
Comments:										

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 24-Jul-12		Work Order: 12071742							
Method Blank		Type: MBLK Test Code: EPA Method SW8260B							
File ID: 12072006.D			Batch ID: MS15S9085A	Analysis Date:	07/20/2012 11:27				
Sample ID: MBLK MS15S9085A	Units : µg/K	g	Run ID: MSD_15_120720A	Prep Date:	07/20/2012 11:27				
Analyte	Result	PQL	SpkVal SpkRefVal %REC LCL(ME) U	ICL(ME) RPDRef	Val %RPD(Limit)	Qua			
Dichlorodifluoromethane	ND	20							
Chloromethane	ND	40							
Vinyl chloride	ND	20							
Chloroethane	ND	20							
Bromomethane	ND	40							
Trichlorofluoromethane Acrolein	ND	20							
1.1-Dichloroethene	ND	2000							
Tertiary Butyl Alcohol (TBA)	ND	20							
Dichloromethane	ND ND	500							
trans-1,2-Dichloroethene	ND ND	40 20							
Methyl tert-butyl ether (MTBE)	ND	5							
1,1-Dichloroethane	ND	20							
Di-isopropyl Ether (DIPE)	ND	20							
cis-1,2-Dichloroethene	ND	20							
Bromochloromethane	ND	20							
Chloroform	ND	20							
Ethyl Tertiary Butyl Ether (ETBE)	ND	20							
2,2-Dichloropropane	ND	20							
1,2-Dichloroethane 1,1,1-Trichloroethane	ND	20							
1,1,1-11ichloroemane 1,1-Dichloropropene	ND	20							
Carbon tetrachloride	ND	20							
Benzene	ND	20							
Tertiary Amyl Methyl Ether (TAME)	ND ND	5							
Dibromomethane	ND	20							
1,2-Dichloropropane	ND	20 20							
Trichloroethene	ND	20							
Bromodichloromethane	ND	20							
cis-1,3-Dichloropropene	ND	20							
rans-1,3-Dichloropropene	ND	20			*				
1,1,2-Trichloroethane	ND	20			`				
Toluene	ND	5							
1,3-Dichloropropane	ND	20							
Dibromochloromethane	ND	20							
1,2-Dibromoethane (EDB)	ND	40							
「etrachloroethene Ⅰ,1,1,2-Tetrachloroethane	ND	20							
Chlorobenzene	ND	20							
Ethylbenzene	ND	20							
n,p-Xylene	ND ND	5							
Bromoform	ND	5 20							
Styrene	ND	20							
-Xylene	ND	5							
.1,2,2-Tetrachloroethane	ND	20							
,2,3-Trichloropropane	ND	40							
sopropylbenzene	ND	20							
Bromobenzene	ND	20							
-Propylbenzene	ND	20							
-Chlorotoluene	ND	20							
-Chlorotoluene	ND	20							
,3,5-Trimethylbenzene ert-Butylbenzene	ND	20							
,2,4-Trimethylbenzene	ND	20							
ec-Butylbenzene	ND	20							
,3-Dichlorobenzene	ND	20							
,4-Dichlorobenzene	.ND ND	20 20							
-Isopropyltoluene	ND ND	20							
,2-Dichlorobenzene	ND	20 20							
-Butylbenzene	ND ND	20 20							
,2-Dibromo-3-chloropropane (DBCP)	ND ND	20 60							
,2,4-Trichlorobenzene	ND	40							
aphthalene	ND	40							
exachlorobutadiene	ND	40							
2,3-Trichlorobenzene	ND	40							

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date:	(QC Su	ımmar	y Report	t				Work Ord 12071742	
Surr: 1,2-Dichloroethane-d4	193		200		97	70	130		120,114	
Surr: Toluene-d8	196		200		98	70	130			
Surr: 4-Bromofluorobenzene	219		200		110	70	130			
Laboratory Control Spike		Type: LC	S T	est Code: EP	A Met	hod SW8	260B			
File ID: 12072324.D			В	atch ID: MS1	55908	5A	Analy	sis Date:	07/23/2012 21:01	
Sample ID: LCS MS15S9085A	Units : µg/Kg	. 1		SD_15_1207			Prep I		07/23/2012 21:01	
Analyte	Result	PQL				· I CL/MEY	•		√al %RPD(Limit)	Qua
1,1-Dichloroethene		***************************************		Spkreival				KEDKer	vai %RPD(Limit)	Qua
Methyl tert-butyl ether (MTBE)	43.4 363	20	400		11	10	132			
Benzene	384	10	400		91	61	147			
Trichloroethene	367	10 20	400		96	70	138			
Toluene	352	10	400 400		92 88	70 70	150 137			
Chlorobenzene	365	20	400		91		137			
Ethylbenzene	366	10	400		91	10 70	137 138			
m,p-Xylene	353	10	400		88	70	145			
o-Xylene	357	10	400		89	70	145			
Surr: 1,2-Dichloroethane-d4	419	10	400		105	70 70	130			
Surr: Toluene-d8	371		400		93	70	130			
Surr: 4-Bromofluorobenzene	422		400		106	70 70	130			
Sample Matrix Spike	· · · · · · · · · · · · · · · · · · ·	Type: MS		est Code: EP						
File ID: 12072011.D		ype. wie		atch ID: MS1				nic Data:	07/20/2012 13:15	
Sample ID: 12071742-16AMS	Unite : walke					JM				
Analyte	Units : µg/Kg			SD_15_1207			Prep [07/20/2012 13:15	
	Result	PQL	SpkVai	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef\	/al %RPD(Limit)	Qua
1,1-Dichloroethene	57.6	20	400	0	14	10	132			
Methyl tert-butyl ether (MTBE) Benzene	345	10	400	0	86	42	157			
Trichloroethene	384	10	400	0	96	53	. 150			
Toluene	371	20	400	0	93	48	165			
Chlorobenzene	357	10	400	0	89	51	149			
Ethylbenzene	365	20	400	0	91	51	147			
m,p-Xylene	375	10	400	0	94	54	150			
o-Xylene	353	10	400	0	88	50	161			
Surr: 1,2-Dichloroethane-d4	356	10	400	0	89	35	177			
Surr: Toluene-d8	415 275		400		104	7 0	130			
Surr: 4-Bromofluorobenzene	375 433		400 400		94 108	70 70	130			
		T 180					130			
Sample Matrix Spike Duplicate File ID: 12072012.D		Type: MS		est Code: EP					a=#å=#a==	
Sample ID: 12071742-16AMSD	Units : µg/Kg	-		atch ID: MS15		ЬА	•		07/20/2012 13:37	
Analyte	Result	PQL		SD_15_12072		LCL(ME)	Prep E		07/20/2012 13:37	0
1.1-Dichloroethene									/al %RPD(Limit)	Qua
Methyl tert-butyl ether (MTBE)	45.1	20	400	0	11	10	132	57.57		
Benzene	328	10	400	0	82	42	157	345.2		
Trichloroethene	368	10	400	0	92	53	150	383.7		
Toluene	356 347	20	400	0	89	48	165	371	4.2(26)	
Chlorobenzene	354	10	400	0	87	51	149	356.8		
	362	20	400	0	88	51 54	147	365.5		
Eurobenzene		10 10	400	0	91	54	150	374.7		
=	2/11		400	0	85	50	161	353.3		
m,p-Xylene	341 345		400	^	06				0.0/401	
m,p-Xylene o-Xylene	345	10	400	0	86 100	35 70	177	356.4	3.2(40)	
Ethylbenzene m,p-Xylene o-Xylene Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8			400 400 400	0	86 109 95	35 70 70	177 130 130	356.4	3.2(40)	

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Suite 550

Stratus Environmental

3330 Cameron Park Drive

Cameron Park, CA 95682-8861

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

Report Attention Phone Number EMail Address Steve Carter (530) 676-6008 x scarter@stratusinc.net

Page: 1 of 5

WorkOrder: STR12071742

Report Due By: 5:00 PM On: 24-Jul-12

EDD Required: Yes

Sampled by : Allan Dudding

PO:

Client:

Client's COC #: 58281 58282 58283 58284 Job: 2120-1401-01/Haber Oil

Cooler Temp 2°C

Samples Received 17-Jul-12

Date Printed 17-Jul-12

QC Level: S3 = Final Rpt, MBLK, LCS, MS/MSD With Surrogates

Alpha	Client	Collectio	n Noo	f Bottles		TRIVE			quested Tests	Total Control of the	
Sample ID	Sample ID	Matrix Date	Alpha		TAT	TPH/E_S	TPH/P_S	voc_s			Sample Demants
STR12071742-01A	B-11-10	SO 07/09/12 09:06	1	0	5	TPH/E_C	GAS-C	8260/OXYS/ ACROLEIN_			Sample Remarks
STR12071742-02A	B-11-15	SO 07/09/12 09:11	1	0	5	TPH/E_C	GAS-C	8260/OXYS/ ACROLEIN_			
STR12071742-03A	B-11-20	SO 07/09/12 09:16	1	0	5	TPH/E_C	GAS-C	8260/OXYS/ ACROLEIN_			
STR12071742-04A	B-11-25	SO 07/09/12 09:22	1	0	5	TPH/E_C	GAS-C	8260/OXYS/ ACROLEIN_			
STR12071742-05A	B-11-30	SO 07/09/12 09:26	1	0	5	TPH/E_C	GAS-C	8260/OXYS/ ACROLEIN_			
STR12071742-06A	B-11-35	SO 07/09/12 09:31	1	0	5	TPH/E_C	GAS-C	8260/OXYS/ ACROLEIN_			
STR12071742-07A	MW-1R-10	SO 07/09/12 13:43	1	0	5		GAS-C	BTEX/OXY/ 1,2 DCA/EDB_C			
STR12071742-08A	MW-1R-15	SO 07/09/12 13:45	1	0	5			BTEX/OXY/ 1,2 DCA/EDB_C			

Comments:	
-----------	--

Security seals intact. Frozen ice.:

-Signature Logged in by:

Print Name

Company Alpha Analytical, Inc.

Date/Time

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

scarter@stratusinc.net

Report Attention Phone Number **EMail Address** (530) 676-6008 x

Suite 550

Cameron Park, CA 95682-8861

Stratus Environmental

3330 Cameron Park Drive

EDD Required: Yes

Sampled by : Allan Dudding

WorkOrder: STR12071742

Report Due By: 5:00 PM On: 24-Jul-12

Cooler Temp 2°C

Samples Received 17-Jul-12

Date Printed 17-Jul-12

Page: 2 of 5

PO:

Client:

Client's COC #: 58281 58282 58283 58284 Job: 2120-1401-01/Haber Oil

Steve Carter

QC Level: S3 = Final Rpt, MBLK, LCS, MS/MSD With Surrogates

Alpha	Client							Red	quested Tests		
Sample ID	Sample ID	Collection Matrix Date	No. of Alpha		TAT	TPH/E_S	TPH/P_S	voc_s			
			Aipila	Jub	IAI						Sample Remarks
STR12071742-09A	MW-1R-20	SO 07/09/12 13:52	1	0	5		GAS-C	BTEX/OXY/ 1,2 DCA/EDB_C			
STR12071742-10A	MW-1R-25	SO 07/09/12 13:57	1	0	5		GAS-C	BTEX/OXY/ 1,2 DCA/EDB_C			
STR12071742-11A	MW-1R-30	SO 07/09/12 14:02	1	0	5		GAS-C	BTEX/OXY/ 1,2 DCA/EDB C			
STR12071742-12A	MW-1R-35	SO 07/09/12 14:07	1	0	5		GAS-C	BTEX/OXY/ 1,2 DCA/EDB_C			
STR12071742-13A	MW-1R-40	SO 07/09/12 14:11	1	0	5		GAS-C	BTEX/OXY/ 1,2 DCA/EDB_C		T	
STR12071742-14A	VE-1-1 5	SO 07/09/12 14:51	1	0	5		GAS-C	BTEX/OXY/ 1,2 DCA/EDB C			
STR12071742-15A	VE-1-20	SO 07/09/12 14:54	1	0	5		GAS-C	BTEX/OXY/ 1,2 DCA/EDB C			
STR12071742-16A	VE-1-25	SO 07/09/12 14:58	1	0	5			BTEX/OXY/ 1,2 DCA/EDB_C			

Co	m	m	a	n	fc	

Security seals intact. Frozen ice.:

Signature **Print Name** Company Date/Time Logged in by: Alpha Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

Report Attention Phone Number **EMail Address** Steve Carter (530) 676-6008 x scarter@stratusinc.net

EDD Required: Yes

Cooler Temp

2°C

Sampled by: Allan Dudding

WorkOrder: STR12071742

Report Due By: 5:00 PM On: 24-Jul-12

Samples Received 17-Jul-12

Date Printed 17-Jul-12

Page: 3 of 5

Cameron Park, CA 95682-8861 PO:

Client:

Suite 550

Stratus Environmental

3330 Cameron Park Drive

Client's COC #: 58281 58282 58283 58284 Job: 2120-1401-01/Haber Oil

QC Level: S3 - Final Rot MRIK I CC MC/MCD M/sh Comments

Almba	All							Requ	ested Tests	
Alpha	Client	Collection	No. of	Bottles	3	TPH/E_S	TPH/P_S			-
Sample ID	Sample ID	Matrix Date	Alpha	Sub	TAT					Sample Remarks
STR12071742-17A	VE-1-30	SO 07/09/12 15:02	1	0	5		GAS-C	BTEX/OXY/ 1,2 DCA/EDB_C		
STR12071742-18A	MW-9-11	SO 07/11/12 08:59	1	0	5		GAS-C	BTEX/OXY/ 1,2 DCA/EDB_C		
STR12071742-19A	MW-9-21	SO 07/11/12 09:06	1	0	5		GAS-C	BTEX/OXY/ 1,2 DCA/EDB C		
STR12071742-20A	MW-9-31	SO 07/11/12 09:12	1	0	5		GAS-C	BTEX/OXY/ 1.2 DCA/EDB C		
STR12071742-21A	MW-9-36	SO 07/11/12 09:22	1	0	5		GAS-C	BTEX/OXY/ 1,2 DCA/EDB C		
STR12071742-22A	MW-9-41	SO 07/11/12 09:28	1	0	5		GAS-C	BTEX/OXY/ 1,2 DCA/EDB_C		
STR12071742-23A	MW-9-45	SO 07/11/12 09:31	1	0	5			BTEX/OXY/ 1.2 DCA/EDB C		
STR12071742-24A	MW-10-11	SO 07/11/12 12:36	1	0	5		GAS-C	BTEX/OXY/ 1.2 DCA/EDB C		

Comments:	:
-----------	---

Security seals intact. Frozen ice. :

Signature Company Date/Time Logged in by: Alpha Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

scarter@stratusinc.net

TEL: (775) 355-1044 FAX: (775) 355-0406

Report Attention Phone Number EMail Address (530) 676-6008 x

Suite 550

Stratus Environmental

3330 Cameron Park Drive

Cameron Park, CA 95682-8861

EDD Required: Yes

Sampled by : Allan Dudding

WorkOrder: STR12071742

Report Due By: 5:00 PM On: 24-Jul-12

Cooler Temp 2°C

Samples Received 17-Jul-12

Date Printed 17-Jul-12

Page: 4 of 5

PO:

Client:

Client's COC #: 58281 58282 58283 58284 Job: 2120-1401-01/Haber Oil

Steve Carter

QC Level: S3 = Final Rpt, MBLK, LCS, MS/MSD With Surrogates

Alpha	Client		n - 11							Requested To	ests		
Sample ID	Sample ID		Collection Date	No. of		; TAT	TPH/E_S	TPH/P_S	voc_s				
				7 mprc.	-	יחי							Sample Remarks
STR12071742-25A	MW-10-21	so	07/11/12 12:44	1	0	5		GAS-C	BTEX/OXY/ 1,2 DCA/EDB_C				
STR12071742-26A	MW-10-26	SO	07/11/12 12:51	1	0	5		GAS-C	BTEX/OXY/ 1,2 DCA/EDB C				
STR12071742-27A	MW-10-36	so	07/11/12 13:00	1	0	5		GAS-C	BTEX/OXY/ 1.2 DCA/EDB_C				
STR12071742-28A	MW-10-40	SO	07/11/12 13:03	1	0	5		GAS-C	BTEX/OXY/ 1,2 DCA/EDB_C				
STR12071742-29A	MW-2R-10	SO	07/12/12 08:37	1	0	5		GAS-C	BTEX/OXY/ 1.2 DCA/EDB_C				
STR12071742-30A	MW-2R-15	SO	07/12/12 08:43	1	0	5		GAS-C	BTEX/OXY/ 1,2 DCA/EDB C				
STR12071742-31A	MW-2R-20	SO	07/12/12 08:46	1	0	5		GAS-C	BTEX/OXY/ 1,2 DCA/EDB_C				
STR12071742-32A	MW-2R-25	SO (07/12/12 08:53	1	0	5		GAS-C	BTEX/OXY/ 1,2 DCA/EDB_C	N. O. C. Access of the Control of th			

Co	mn	ents:
----	----	-------

Security seals intact. Frozen ice. :

Signature Logged in by:

Company Alpha Analytical, Inc. Date/Time

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report.

Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

Stratus Environmental

3330 Cameron Park Drive

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

Phone Number

EMail Address

Steve Carter (530) 676-6008 x

Report Attention

scarter@stratusinc.net

EDD Required: Yes

Cooler Temp

2°C

Sampled by : Allan Dudding

WorkOrder: STR12071742

Report Due By: 5:00 PM On: 24-Jul-12

Samples Received 17-Jul-12

Date Printed 17-Jul-12

Date/Time

Page: 5 of 5

Suite 550 Cameron Park, CA 95682-8861

Client:

PO:

Client's COC #: 58281 58282 58283 58284 Job: 2120-1401-01/Haber Oil

QC Level: S3 = Final Rpt, MBLK, LCS, MS/MSD With Surrogates

Alpha	Client	Collection	No of	Dattle	_		T	Request	ed Tests		
Sample ID	Sample ID	Matrix Date	Alpha		TAT	TPH/E_S	TPH/P_S	VOC_S			Sample Remarks
STR12071742-33A	MW-2R-30	SO 07/12/12 08:59	1	0	5		GAS-C	BTEX/OXY/ 1,2 DCA/EDB C			
STR12071742-34A	MW-2R-35	SO 07/12/12 09:05	1	0	5		GAS-C	BTEX/OXY/ 1,2 DCA/EDB_C			
STR12071742-35A	MW-2R-40	SO 07/12/12 09:12	1	0	5		GAS-C	BTEX/OXY/ 1,2 DCA/EDB_C			
STR12071742-36A	VE-2-10	SO 07/12/12 11:56	1	0	5		GAS-C	BTEX/OXY/ 1,2 DCA/EDB_C			
STR12071742-37A	VE-2-15	SO 07/12/12 12:00	1	0	5		GAS-C	BTEX/OXY/ 1,2 DCA/EDB C			
STR12071742-38A	VE-2-20	SO 07/12/12 12:04	1	0	5		GAS-C	BTEX/OXY/ 1,2 DCA/EDB_C			
STR12071742-39A	VE-2-25	SO 07/12/12 12:11	1	0	5		GAS-C	BTEX/OXY' 1,2 DCA/EDB_C			
STR12071742-40A	VE-2-30	SO 07/12/12 12:15	1	0	5		GAS-C	BTEX/OXY/ 1,2 DCA/EDB C			TOTAL STATE OF THE

C				

Security seals intact. Frozen ice. :

	Signature	On Pr	rint Name	Company
Logged in by:		<i>SWa</i>	ch Nevi	Alpha Analytical, Inc.
			•	

Compa Attn: Addres	Billing Information: Company Name			Alpha Analytical, Inc. 255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 Phone (775) 355-1044 Fax (775) 355-0406						AZ		C	4 <u> </u>	ected From Which State? 58281 NV WA DOD Site _ OTHER Page #L of _							
• .	•		Fax		•)		/	,	4naly	ses F	Requi	red			
Consul Hu	itant / Cli	ent Name)	Job# 2120-140	,-U	Jo	ob Nam	ne Ha	g ber	0)[<u> </u> 			1 Care		7	,	ita Validation vel: III or IV	
City, Si	Date Sampled	Matrix' See Key Below	P.O. # Lab ID Number (Use Only)	Name: Steve (a Email: *(a nten) Phone: 534-676	Stratusin	C.n.(f Mobile: _		ger ————————————————————————————————————	Field Filtered	# Con	tainers**	DROGIA	0)0	Brek, Sale	1	3 4 6260 5			Global "	DF? YES X NO	
0906	7/9	50	STP12071742 TOLA	B-11-10			Яd	Ī,	/ mareu	 	P	X	V		X				п	EIVIANNO	
09/1			ΩA	8-11-15			l					ì	ì		Î				· · · · · · · · · · · · · · · · · · ·		
0916			034	B-11-20																	
0922			DHA	B-11-25							· · · · · · · · · · · · · · · · · · ·										
0926			054	8-11-30																7.0	
0931			App.	B-11-35										<u> </u>							
343			OtA.	MW-1R-10			11		ļ	\Box		<u> </u>		X						A 11111	
1345			08A	MW-18-15			11							1						· · · · · · · · · · · · · · · · · · ·	
1352			04A	MU-18-20										H							
1357			10Å	MW-R. 25			1 1		ļ				-	H					· · · · · · · · · · · · · · · · · · ·		
1402				MW-19-30			\Box													*	
1407			12A										\top	-							
1411				MW-18-40	***************************************																
	TION	AL IN	STRUCTIONS: $V_0\zeta_1$	Extended 13+ +	Propena	1 64 8)	La A	}		<u> </u>		L		<u> </u>	<u> </u>	L		I			
			BIEX, 5 0 kgs EDB, I et to the validity and authenticity on. Sampled By:						v tr fy	ofl	ur p	ealcs	why	rd p	ussi	ble,	-111:				
ground	is for le	gal actic	on. Sampled By: Alan Dudo	iy		penny with or	mem	uona	1y 111151	abelli.	ig ine s	ampie	iocan	on, dat	e or ur	ne or c	onectio	on is co	nsidered ti	aud and may b	Эе
Relinqu	ished by:	(Signatur	e/Affiliation)		Received	by: (Signature/A	Affiliation	\searrow	Ba	$^{\prime}$ [يك	lu						16,		nd 2 25	
Relinquished by: (Signature/Affiliation) 150 150 150 150						12 Received by: (Signature/Affiliation) Hamber Date: Time: Hamber Date: Time: Date: Hamber Date							le: 025								
Relinqui	shed by:	(Signatur	e/Affiliation)		Received by: (Signature/Affiliation) Date: Time:																
*Key: A	.Q - Aqu	ieous	SO - Soil WA - Wa	ste OT - Other	AR - Air	**: L-Lit	er	V-V	oa′	S-Sc	il Jar	0-(Orbo	T-	Tedlar		B-Brass	 S F	P-Plastic	OT-Other	

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this coc. The liability of the laboratory is limited to the amount paid for the report.

Billing Information: Company Name Stratus En., Attn:	255 Glendal Sparks, New Phone (775								e? 58282 DOD Site Page # of
Phone Number Fax				/	A	nalyse	s Requi	red	/
Consultant / Client Name Haber 0/ Address,		b Name Hq	ber oil	\int	/ /	7	7	/ / /	Data Validation Level: III or IV
City State, Zip Say Lean dro (A Email: 5canter R	Stratuling, all				Sorri		//		EDD/EDF? YES X NO
I ICon You!	, 600 8 Mobile: _			/ 3/	Z5/	1 1	/ /	, ,	obal To 602 10 1827
Sampled Below Lab ID Number (Use Only) Sam	ple Description	TAT F	Field # Containers**		<u> </u>	/ /	/	/ / / / / / /	REMARKS
1451 7/9 50 -14A VE-1-15		540.	91	 	V				TEIMITTO
1454 VE-1-20		i			7				
1458 NOT -1-72									
1502 1 17A VE-1-30									V
0859 7/11 BA Mb-9-11			\$18						
906 1 19A MW-9-21	- VALUE AND AND AND AND AND AND AND AND AND AND		713						
on 20A MU-9-31				1 11-					
0922 21A MW-9-36				1-11-					
0928 ZIA MW-9-41				 					
0931 22A MW-9-45				$\dagger \dagger \dagger$					
1236 24A MV-10-11	, , , , , , , , , , , , , , , , , , ,			1-11-					
1244 25Amw 20-21				 					
1251 26A MINYU-26									
ADDITIONAL INSTRUCTIONS:		- i - ! -	1 1	<u> </u>	1	J			
	(1)			***	, y				
l, (field sampler), attest to the validity and authenticity of this sample. I am a grounds for legal action. Sampled By: ભૂમિલ પ્રાથમિક પ્રાથમિક	ware that tampering with or	intentionally	mislabeling the	sample loc	ation, date	or time	of collecti	on is conside	red fraud and may be
Relinquished by: (Signature/Affiliation)	Received by: (Signature/Affiliation) Date: Market Time: 13								Time: 12.2S
Relinquished by: (Signature/Affiliation)	Received by: (Signature/Af	fillation)	- 4	Olan			Date:	17/12	Time: 1026
Relinquished by: (Signature/Affiliation)	Received by: (Signature/Affiliation) Date: Time:								
							1		

*Key: AQ - Aqueous SO - Soil WA - Waste OT - Other AR - Air **: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this coc. The liability of the laboratory is limited to the amount paid for the report.

Billing Information: Company Name 14 min. Chr. Attn:		Alpha Ar 255 Glendale Sparks, Nev Phone (775	AZ		CA	3 <u>X</u>	_ N	<i>y</i>	hich \$ W.	State? 58283 A DOD Site Page # of			
Address City State 7ia		Fax (775) 3		4			Γ						
City, State, Zip Fax			~				/	A	Analys	ses R	equi	red	/
Consultant / Client Name	Job# \$1.	I Job	Name	1		/						, ,	Data Validation
Address Address	Job # 1120-140; -01		Name H	aber c). [/	/	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/	/		'/	Level: III or IV
City, State, Zip	Name: SHE VE GATER	ttention / Project I	Manager				Blex Mer E	7	/				
Say Lehndro CA	Email: Scanter D stradu	y, heinet				. / .	. F		/				EDD / EDF? YES NO
Time Date See Key P.O. #		Mobile:				100	/ * }	<u>5</u> /	/			/	Global To 600 10 1827
Below Lab ID Number (Use C	enly) Sample Description	ו	TAT	Field Filtered	# Containers**	79	3		/ ,	/ .	/	/ /	REMARKS
1300 7/11 50 -23	A MW-10-36		Std.		18	X	Y						
1303	A MW-10-40				Ì								
0867 7/12 20	A MW-2R-10				18								
0843 1 2)A MW-2R-15												
0846 3	H MW-2R-20									**			
\$100 m 100 m	2A MV-2R-25												4
	33A MW-ZR-30					111							
	24A MW-2R-35					111							
OTA Comment	35A MW-2R-40												
	[DA VZ-2-10	· · · · · · · · · · · · · · · · · · ·											THE COLUMN THE COLUMN
	37A Ve-2-15	····				$\dagger\dagger\dagger$	\Box						
	36A 1/2-2-20												
	39A VE-1-25						+						
ADDITIONAL INSTRUCTIONS:												L	
												`	
ا, (field sampler), attest to the validity and author grounds for legal action. Sampled By: الماء الماء	ticity of this sample. I am aware that ta	ampering with or i	intentiona	lly misla	abeling the s	sample	locatio	n, date	e or tim	ne of c	ollecti	on is co	nsidered fraud and may be
Relinquished by: (Signature/Affiliation)		red by: (Signature/All		150	des	len				Da	ate:	7//6	1/2 Time 2,25
Relinquished by: (Signature/Affiliation)	7-16-12 Receive	red by: (Signature/Af	iliation)			And	tha.				7/1	7/17	7 Time: 1025
Relinquished by: (Signature/Affiliation)	Receive	ed by: (Signature/Aff	filiation)			1				Da	ate:	, ,	Time:
*Key: AQ - Aqueous SO - Soil WA -	Waste OT - Other AR - Aiı	ir **: - ite	ır V-1	/na	S-Soil Jar	O-(Orho		Tedlar		l-Brac	c 1	P.Plactic OT Other

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this coc. The liability of the laboratory is limited to the amount paid for the report.

Compa Attn: Addres	Billing Information: Company Name Journal En v. City, State, Zip Fax			255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 Phone (775) 355-1044 Fax (775) 355-0406						Sa AZ ID	mple:	s Col Col OR	llecte A <u>X</u>	d Fro N _ OT	om W V HER	hich St WA	tate? 58284 DOD Site _ Page #_4 of _	4
												,	Analy:	ses F	Requi	red	/	
Consu	tant / Cl	ient Nam	aber oil	Job# 2120	idar a i	Jo	ob Name	. 1	Cir 1		/ 	r		/	/	/ /	Data Validation	
Addres	s lu) (erand Ave.	2.20.	Report Att	ention / Project	η Manager	aller	U ₁ /	$-\!\!\!\!-\!\!\!\!\!-$	/		' /				Level: III or IV	
City, S	ate, Zip	<u>ر</u> کر	and Ar.	Name: Steve	Report Att	- al				- /		, sol				/		
T	T 5	Matrix*	n Leardon, CA	Phone: 530-6	er@stratus	Mobile:	777.57400000			- / _	1,50	الو	/				EDD/EDF? YES A NO	
Time Sampled	Date Sample	See Key Below	Lab ID Number (Use Only)		Sample Description		TAT	Field		- - - - - - - - - - - - - - - - - - -	12 3	<u> </u>				1 1	Global TOGOUIUI827	
1215	 		-40A	NE-5-30	Cample Description		Stdi	Filtered	# Containers*	$\frac{1}{x}$		7				-	REMARKS	
1.5.7	7712	-	TOA	100 6-30		· · · · · · · · · · · · · · · · · · ·	3741		18	12	X		 					
		 	The state of the s					-			 	ļ	ļ					
		 		<u> </u>							<u> </u>							
		 	\$ \$ 300°4.		· · · · · · · · · · · · · · · · · · ·					_								
-		ļ		 			<u> </u>											
			WARE TO STATE OF THE STATE OF T								-							
 		-					ļ	_			-			ļ	ļ			
		<u> </u>					ļ	ļ		_								
			Mary of Control Reserve		······································		ļ				ļ							
										<u> </u>								
-	ļ	-					ļ											
-		-			***************************************													
<u></u>		<u> </u>		<u> </u>			<u> </u>		·*····································							<u> </u>		
ADDI	TION	IAL IN	ISTRUCTIONS:				**************************************											
I, (field	l sampi	ler), atte	st to the validity and authenticity on. Sampled By: Alfay Dadii	of this sample. I	am aware that tan	npering with or	intentiona	lly misl	abeling the	sample	locatio	on, dat	e or tin	ne of c	ollecti	on is con	sidered fraud and may b	
			re/Affiliation)			d by: (Signature/A			<i>D</i>	0 0								
			John Hels		Heceiver	u by: (Signature/A	miliation)*		sa de	Lil					ate:	16/1	1 Tite 2.25	
Relinqu	ished by	: (Signatu	e/Affiliation) block 7-	-16-12 1500		d by: (Signature/A	(iliation)			Ali	Ohr				ato.	17/12	Timo	
Relinqu	shed by	: (Signatu	e/Affiliation)		Received	d by: (Signature/A	ffiliation)							D	ate:		Time:	
*Key: A			SO - Soil WA - Wast			**: L-Lite			S-Soil Jar		Orbo		Tedlar		3-Bras		Plastic OT-Other	

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this coc. The liability of the laboratory is limited to the amount paid for the report.

APPENDIX H GEOTRACKER DATA UPLOAD CONFIRMATION SHEETS

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:

EDF - Site Investigation

Submittal Title:

CPT-boring soil and groundwater results

Facility Global ID:

T0600101827

Facility Name:

HABER OIL PRODUCT

File Name:

12070345_EDF.zip Stratus Environmental, Inc.

Organization Name: Username:

STRATUS NOCAL

IP Address:

12.186.106.98

Submittal Date/Time:

7/16/2012 4:26:34 PM

Confirmation Number:

1672545671

VIEW QC REPORT

VIEW DETECTIONS REPORT

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:

EDF - Site Assessment Report

Submittal Title:

soil analytical results, July 2012 well installation work

Facility Global ID:

T0600101827

Facility Name:

HABER OIL PRODUCT

File Name:

12071742 EDF.zip

Organization Name:

Stratus Environmental, Inc.

Username: IP Address: STRATUS NOCAL 12.186.106.98

Submittal Date/Time:

7/25/2012 3:02:05 PM

Confirmation Number:

8844165861

VIEW QC REPORT

VIEW DETECTIONS REPORT

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: EDF

Report Title: Site Investigation Report Report Type: Site Assessment Report

Facility Global ID: T0600101827

Facility Name: HABER OIL PRODUCT File Name: 12081311_EDF.zip

Organization Name: Stratus Environmental, Inc.

<u>Username:</u> STRATUS NOCAL <u>IP Address:</u> 12.186.106.98

Submittal Date/Time: 8/22/2012 6:54:35 AM

Confirmation Number: 2322950243

VIEW QC REPORT

VIEW DETECTIONS REPORT

GEOTRACKER ESI

UPLOADING A GEO_BORE FILE

SUCCESS

Your GEO_BORE file has been successfully submitted!

Submittal Type: GEO_BORE Facility Global ID: T0600101827

Field Point: B-11

Facility Name: HABER OIL PRODUCT

<u>File Name:</u> SKMBT_C35312080812220.pdf

Organization Name: Stratus Environmental, Inc.
Username: STRATUS NOCAL

IP Address: 12.186.106.98

<u>Submittal Date/Time:</u> 8/8/2012 12:33:39 PM

Confirmation Number: 8063842058

GEOTRACKER ESI

UPLOADING A GEO_BORE FILE

SUCCESS

Your GEO_BORE file has been successfully submitted!

Submittal Type:

GEO_BORE

Facility Global ID:

T0600101827

Field Point:

MW-1R

Facility Name:

HABER OIL PRODUCT

File Name:

SKMBT_C35312080812230.pdf

Organization Name:

Stratus Environmental, Inc.

<u>Username:</u>

STRATUS NOCAL

IP Address:

12.186.106.98

Submittal Date/Time:

8/8/2012 12:34:26 PM

Confirmation Number:

6510114550

GEOTRACKER ESI

UPLOADING A GEO_BORE FILE

SUCCESS

Your GEO_BORE file has been successfully submitted!

Submittal Type:

GEO_BORE

Facility Global ID:

T0600101827

Field Point:

MW-2R

Facility Name:

HABER OIL PRODUCT

File Name:

SKMBT_C35312080812231.pdf

Organization Name:

Stratus Environmental, Inc.

<u>Username:</u>

STRATUS NOCAL

IP Address:

12.186.106.98

Submittal Date/Time:

8/8/2012 12:35:12 PM

Confirmation Number:

2472364306

GEOTRACKER ESI

UPLOADING A GEO_BORE FILE

SUCCESS

Your GEO_BORE file has been successfully submitted!

Submittal Type:

GEO_BORE

Facility Global ID:

T0600101827

Field Point:

MW-9

Facility Name:

HABER OIL PRODUCT

File Name:

SKMBT_C35312080812232.pdf

Organization Name:

Stratus Environmental, Inc.

Username: IP Address:

STRATUS NOCAL 12.186.106.98

Submittal Date/Time:

8/8/2012 12:35:56 PM

Confirmation Number:

6628443419

GEOTRACKER ESI

UPLOADING A GEO_BORE FILE

SUCCESS

Your GEO_BORE file has been successfully submitted!

Submittal Type:

GEO_BORE

Facility Global ID:

T0600101827

Field Point:

MW-10

Facility Name:

HABER OIL PRODUCT

File Name:

SKMBT_C35312080812240.pdf

Organization Name:

Stratus Environmental, Inc.

<u>Username:</u>

STRATUS NOCAL

IP Address: Submittal Date/Time:

8/8/2012 12:36:46 PM

Confirmation Number:

1143985807

12.186.106.98

GEOTRACKER ESI

UPLOADING A GEO_BORE FILE

SUCCESS

Your GEO_BORE file has been successfully submitted!

Submittal Type:

GEO_BORE

Facility Global ID:

T0600101827

Field Point:

VF-1

Facility Name:

HABER OIL PRODUCT

File Name:

SKMBT_C35312080812250.pdf

Organization Name:

Stratus Environmental, Inc.

<u>Username:</u>

STRATUS NOCAL

IP Address:

12.186.106.98

Submittal Date/Time:

8/8/2012 12:37:23 PM

Confirmation Number:

8159030973

GEOTRACKER ESI

UPLOADING A GEO_BORE FILE

SUCCESS

Your GEO_BORE file has been successfully submitted!

Submittal Type:

GEO_BORE

Facility Global ID:

T0600101827

Field Point:

VE-2

Facility Name:

HABER OIL PRODUCT

File Name:

SKMBT_C35312080812251.pdf

Organization Name:

Stratus Environmental, Inc.

<u>Username:</u>

STRATUS NOCAL 12.186.106.98

IP Address:

8/8/2012 12:37:57 PM

Submittal Date/Time:
Confirmation Number:

9831878602

GEOTRACKER ESI

UPLOADING A GEO_BORE FILE

SUCCESS

Your GEO_BORE file has been successfully submitted!

Submittal Type:

GEO_BORE

Facility Global ID:

T0600101827

Field Point:

CPT-1

Facility Name:

HABER OIL PRODUCT

File Name:

SKMBT_C35312092507140.pdf

Organization Name:

Stratus Environmental, Inc.

<u>Username:</u>

STRATUS NOCAL 12.186.106.98

IP Address:

9/25/2012 7:23:01 AM

Submittal Date/Time:
Confirmation Number:

4577605485

GEOTRACKER ESI

UPLOADING A GEO_BORE FILE

SUCCESS

Your GEO_BORE file has been successfully submitted!

Submittal Type:

GEO_BORE

Facility Global ID:

T0600101827

Field Point:

CPT-2

Facility Name:

HABER OIL PRODUCT

File Name:

SKMBT_C35312092507141.pdf

Organization Name:

Stratus Environmental, Inc.

Username:

STRATUS NOCAL

IP Address:

12.186.106.98

Submittal Date/Time:

9/25/2012 7:23:31 AM

Confirmation Number:

8357059538

GEOTRACKER ESI

UPLOADING A GEO XY FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:

GEO_XY

Report Title:

Well Installation Report and Site Assessment

Facility Global ID:

T0600101827

Facility Name:

HABER OIL PRODUCT

File Name:

Geo XY.zip

Organization Name:

Stratus Environmental, Inc.

<u>Username:</u>

STRATUS NOCAL

IP Address:

12.186.106.98

Submittal Date/Time:

9/19/2012 2:29:25 PM

Confirmation Number:

6481460511

VIEW GEO XY SUBMITTAL DATA ON MAP

GEOTRACKER ESI

UPLOADING A GEO_MAP FILE

SUCCESS

Your GEO_MAP file has been successfully submitted!

Submittal Type: GEO_MAP
Facility Global ID: T0600101827

Facility Name: HABER OIL PRODUCT

File Name: 7502-107 Model (JULY-2012).pdf

Organization Name: Stratus Environmental, Inc.
Username: STRATUS NOCAL

IP Address: 12.186.106.98

Submittal Date/Time: 9/19/2012 2:30:21 PM

Confirmation Number: 6341754972

GEOTRACKER ESI

UPLOADING A GEO_Z FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:

GEO Z

Report Title:

Well Installation Report and Site Assessment

Facility Global ID:

T0600101827

Facility Name:

HABER OIL PRODUCT

File Name:

Geo Z.zip

Organization Name:

Stratus Environmental, Inc.

<u>Username:</u>

STRATUS NOCAL

IP Address:
Submittal Date/Time:

12.186.106.98 9/19/2012 2:52:03 PM

Confirmation Number:

5125974535