RECEIVED

2:25 pm, Dec 07, 2007

Alameda County Environmental Health Manmohan Chopra 29211 Marshbrook Dr. Hayward, CA 94545

February 20, 2007

Mr. Steven Plunkett Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

SUBJECT:

QUARTERLY GROUNDWATER MONITORING AND SAMPLING REPORT

(JANUARY 10-11, 2007 SAMPLING EVENT) CERTIFICATION

Former Haber Oil Station

1401 Grand Ave.

San Leandro, California

Dear Mr. Plunkett:

You will find enclosed one copy of the following report prepared by P&D Environmental, Inc.

• Quarterly Groundwater Monitoring and Sampling Report dated February 14, 2007 (document 0055.R28) for monitoring and sampling on January 10-11, 2007.

I declare, under penalty of perjury, that the information and/or recommendations contained in the above-mentioned report for the subject site is true and correct to the best of my knowledge.

Should you have any questions, please do not hesitate to contact me at (510) 785-0565.

Sincerely,

Manmohan Chopra

Enclosure

0055.L74

P&D ENVIRONMENTAL, INC.

55 Santa Clara Avenue, Suite 240 Oakland, CA 94610 (510) 658-6916

February 14, 2007 Report 0055.R28

Mr. Manmohan Chopra 29211 Marshbrook Drive Hayward, CA 94545

SUBJECT: QUARTERLY GROUNDWATER MONITORING AND SAMPLING REPORT

(JANUARY 10-11, 2007 SAMPLING EVENT)

Former Haber Oil Station 1401 Grand Avenue San Leandro, California

Dear Mr. Chopra:

P&D Environmental, Inc. (P&D) is pleased to present this report documenting the results of the most recent quarterly monitoring and sampling of the eight groundwater monitoring wells at or near the subject site. This work was performed in accordance with P&D's proposal 022698.P1 dated February 26, 1998. All of the wells were monitored and sampled on January 10 and 11, 2007. A Site Location Map (Figure 1) and Site Vicinity Map (Figure 2) are attached with this report.

BACKGROUND

The site is presently used as an active gasoline station. It is P&D's understanding that on April 24, 1991 Aegis Environmental, Inc. (Aegis) personnel drilled four soil borings, designated as B-1 through B-4, to a vertical depth of approximately 40 feet at the site. The locations of the borings are shown on Figure 2. A total of nine soil samples collected from the boreholes were analyzed for total petroleum hydrocarbons as gasoline (TPH-G); Benzene, Toluene, Ethylbenzene, and total Xylenes (BTEX) by EPA Method 8260; and for total lead by EPA Method 7420. TPH-G concentrations ranged from below detection limit to 66 milligram per kilogram (mg/kg). Benzene concentrations ranged from not detected to 0.94 mg/kg. Total lead concentrations ranged from not detected to 3 mg/kg. Documentation of the subsurface investigation and results are presented in a report prepared by Aegis titled, "Soil Boring Results Report," dated June 10, 1991.

It is P&D's understanding that on April 14, 1992 Aegis personnel returned to the site to drill three slant borings, designated as B5 through B7, to a total vertical depth of approximately 49 feet at the site. The borings were drilled at an angle of approximately 26 to 28 degrees to collect samples from beneath the underground storage tanks. The locations of the borings are shown on Figure 2. A total of twenty-two soil samples were analyzed for TPH-G using EPA Method 5030, and for BTEX using EPA Method 8240. In addition, one of the samples was analyzed for total lead using EPA Method 7420, and several of the soil samples were analyzed for soluble lead using the California Waste Extraction Test. TPH-G concentrations ranged from not detected to 4,000 mg/kg. Benzene, concentrations ranged from not detected to 11 mg/kg.

February 14, 2007 Report 0055.R28

Total lead was not detected, and soluble lead concentrations ranged from not detected to 0.061 mg/kg. Documentation of the subsurface investigation and results are presented in a report prepared by Aegis titled, "Initial Subsurface Investigation Results Report," dated June 22, 1992.

It is P&D's understanding that between September 15 and 18, 1992 Aegis personnel returned to the site to install five groundwater monitoring wells, designated as MW1 through MW5. The wells were drilled to total depths of between 50 and 55 feet, and were constructed using four-inch diameter PVC pipe. Wells MW1 and MW2 were constructed with perforated casing between the depths of approximately 15 and 55 feet. Wells MW3, MW4 and MW5 were constructed with perforated casing between the depths of approximately 35 and 55 feet. Groundwater was reported as first encountered at a depth of 42 feet. The well locations are shown in Figure 2.

A total of thirty-one soil samples were analyzed for TPH-G using EPA Method 5030/8015; and for BTEX using EPA Method 8020. In addition, three soil samples containing TPH-G were analyzed for total metals concentrations of cadmium, chromium, lead, and zinc using EPA Method 6010 and 7421. One soil sample was collected from each borehole from below the air-water interface and analyzed for petrophysical properties, including saturated permeability and grain size distribution.

TPH-G concentrations ranged from not detected to 39 mg/kg. Benzene concentrations ranged from not detected to 0.27 mg/kg. The total metals concentrations were all less than 10 times their respective STLC values. The subsurface materials encountered in the borings indicate that soil types vary across the site, but generally consist of silty clay, silt, clayey silt and sandy silt from the surface to a depth of between 30 and 35 feet. Below the depth of 30 to 35 feet, layers of sand and sandy silt were reported to have been encountered.

It is P&D's understanding that on September 29, 1992 Aegis personnel collected groundwater samples from wells MW1, MW2, MW4 and MW5 at the site. A sample was not collected from well MW3 due to the reported presence of 0.02 feet of floating hydrocarbons. The measured depth to water ranged from approximately 41.5 to 44.5 feet. The samples were analyzed for TPH-G using EPA Method 5030/8015; and for BTEX using EPA Method 8020. TPH-G concentrations ranged from 0.06 to 20 mg/L, and benzene concentrations ranged from 0.16 to 10 mg/L. Based upon the water level measurements in the wells, the groundwater flow direction was reported to be to the northwest. The water level measurements are summarized in Table 1. The analytical results are summarized in Table 2.

It is P&D's understanding that on October 7, 1992 Aegis personnel performed rising head slug tests wells MW1, MW2, and MW4 to estimate the saturated hydraulic conductivity at the site. In addition, two short-term soil vapor extraction tests were performed on wells MW1 and MW2. Wells MW3, MW4, and MW5 were used as vacuum influence monitoring points. Documentation of the monitoring well groundwater sample collection, slug test and vapor extraction tests are presented in a report prepared by Aegis titled, "Problem Assessment Report," dated December 16, 1992.

On February 18, 1994, P&D personnel monitored the five groundwater monitoring wells at the site for depth to water and the presence of free product or sheen. The depth to water was measured using an electric water level indicator, and the presence of free product and sheen was evaluated using a transparent bailer.

February 14, 2007 Report 0055.R28

The measured depth to water in the wells ranged from approximately 39.8 to 42.9 feet. No evidence of free product or sheen was detected in any of the wells. Based on the measured depth to water in the wells, the groundwater flow direction was calculated to be to the north with a gradient of 0.054. In a letter dated October 19, 1995 Mr. Scott Seery of the Alameda County Department of Environmental Health (ACDEH) requested that all of the onsite and offsite wells be monitored and sampled for the quarterly monitoring and sampling program. The measured depth to water in the wells is presented in Table 1.

On June 15 and 16, 1995 P&D installed three offsite monitoring wells, designated as MW6 through MW8. The locations of the wells are shown on Figure 2. Documentation of the well installation and sample results is presented in P&D's report 0055.R5 dated August 23, 1995.

The underground storage tanks at the subject site were replaced in the first half of 1997. Following removal of the tanks, excavation of soil was performed in the area surrounding well MW1. As a result of the excavation activities, the elevation at the top of well MW1 was altered. The present elevation for the top of well MW1 is unknown.

In January 2003 Ms. Eva Chu of the ACDEH requested that the wells be analyzed for fuel oxygenates using EPA Method 8260. In a letter dated June 20, 2003 Ms. Chu requested that the analysis be continued.

FIELD ACTIVITIES

On January 10 and 11, 2007, all eight of the wells in the groundwater monitoring network for the site were monitored, purged, and sampled by P&D personnel. The wells were monitored for depth to water and the presence of free product or sheen. Depth to water was measured to the nearest 0.01 foot using an electric water level indicator. The presence of sheen was evaluated using a transparent bailer. No free product or sheen was observed in any of the wells. Depth to water level measurements and monitoring well groundwater surface elevations are presented in Table 1.

Prior to sampling, the wells were purged of a minimum of three casing volumes of water. Petroleum hydrocarbon odors were detected in purge water from wells MW1, MW2, MW3, and MW4. During purging operations, the field parameters of electrical conductivity, temperature, and pH were monitored. Once the field parameters were observed to stabilize, and a minimum of approximately three casing volumes had been purged, water samples were collected using a clean Teflon bailer. The water samples were transferred to 40-milliliter glass Volatile Organic Analysis (VOA) vials, which were sealed with Teflon-lined screw caps. The VOA vials were overturned and tapped to ensure that no air bubbles were present.

The VOA vials were then transferred to a cooler with ice, and later were transported to McCampbell Analytical, Inc. in Pittsburg, California. McCampbell Analytical, Inc. is a State-certified hazardous waste testing laboratory. Chain of custody documentation accompanied the samples to the laboratory. Records of the field parameters measured during well purging are attached with this report.

GEOLOGY AND HYDROGEOLOGY

The subsurface materials encountered in the borings drilled by Aegis indicate that soil types vary across the site, but generally consist of silty clay, silt, clayer silt, and sandy silt from the surface to a depth of between 30 and 35 feet. Below the depth of 30 to 35 feet, layers of sand and sandy silt were reported to have been encountered. Groundwater has historically been encountered at the site at depths ranging from approximately 40 to 45 feet below grade.

Based upon the regional groundwater flow direction identified by Woodward-Clyde Consultants in a report titled, "Hydrogeology of Central San Leandro and Remedial Investigation of Regional Groundwater Contamination - San Leandro Plume - San Leandro, California - Volume I," prepared for the California Environmental Protection Agency and dated December 29, 1993 the regional groundwater flow direction to the west of the site appears to be to the southwest. However, based upon the measured depth to water in the five wells at the site on September 29, 1992 Aegis identified a northwesterly groundwater flow direction. Based upon water level measurements collected by P&D from the five wells at the site on February 18, July 5, and October 12, 1994, February 1, and May 4, 1995 the groundwater flow direction at the site was calculated to be to the north, towards San Leandro Creek. Based upon water level measurements collected in wells MW1 through MW8 by P&D personnel on June 23 and December 19, 1995, March 28 and June 21, 1996 the groundwater flow direction was calculated to be to the northwest.

Since the previous quarterly monitoring on June 14, 2006, groundwater elevations have decreased in all of the wells by amounts ranging from 1.47 to 3.88 feet. Based on the measured water levels in the wells, the groundwater flow direction on January 10, 2007 was to the northwest with a gradient of 0.073.

The northwesterly groundwater flow direction has remained relatively unchanged and the gradient has increased from 0.050 since the previous water level measurements on June 14, 2006. The groundwater monitoring data are presented in Table 1. The groundwater flow direction at the site on January 10, 2007 is shown on Figure 2.

LABORATORY RESULTS

All of the groundwater samples collected from the monitoring wells were analyzed for TPH-G using Modified EPA Method 8015C and for Volatile Organic Compounds (VOCs) including fuel oxygenates and lead scavengers using EPA Method 8260B in accordance with a request from Ms. Eva Chu of the ACDEH.

The laboratory analytical results for the groundwater samples from wells MW2, MW3 and MW4 show that TPH-G was detected at concentrations of 18, 0.24 and 0.069 mg/L, respectively. TPH-G was not detected in any of the other wells. MTBE was detected in wells MW1, MW2, MW3, MW4 and MW6 at concentrations of 0.092, 0.40, 0.86, 0.78 and 0.0077 mg/L, respectively. MTBE was not detected in wells MW5, MW7, or MW8.

BTEX compounds were not detected in any of the wells with the exception of well MW2 where concentrations ranged from 0.79 to 3.0 mg/L, and MW7 where toluene was detected at a concentration of 0.0097 mg/L.

No fuel oxygenates or lead scavengers other than MTBE were detected in any of the groundwater samples.

In well MW2, 1,2,4-trimethylbenzene, naphthalene, n-Propyl benzene and 1,3,5-trimethylbenzene were detected at concentrations of 0.44, 0.077, 0.056 and 0.091 mg/L, respectively. None of these compounds were detected in any of the other wells. Chloroform was detected in wells MW6, MW7, and MW8 at concentrations of 0.00058, 0.00086, and 0.00068 mg/L, respectively. Tetrachloroethene (PCE), Styrene, and Acrolein (Propanol) were detected in well MW7 at concentrations of 0.0011, 0.0016, and 0.037 mg/L, respectively.

Since the previous sampling event on June 14, 2006, all analyte concentrations have increased in well MW2, except for Toluene and other VOCs which have decreased. All analyte concentrations in well MW1 remained not detected above the laboratory reporting limits, except MTBE, which decreased. No analytes were detected in well MW3 above their respective laboratory reporting limits, except MTBE and TPH-G, which decreased. All analyte concentrations in well MW4 remained not detected above laboratory reporting limits, except for TPH-G, which decreased, and MTBE, which increased. All analyte concentrations in well MW6 remained not detected above laboratory reporting limits, except for MTBE, which decreased, and Chloroform, which increased. All analyte concentrations in well MW5 remained not detected above laboratory reporting limits, except for Toluene, Chloroform, Styrene, and Acrolein (Propanol), which increased, and Tetrachloroethene, which increased. All analyte concentrations in well MW8 remained not detected above laboratory reporting limits, except Chloroform, which increased.

The laboratory analytical results are summarized in Table 2. Copies of the laboratory analytical report and chain of custody documentation are attached with this report.

DISCUSSION AND RECOMMENDATIONS

Based on the depth to water measurements on January 10, 2007 for monitoring wells MW4, MW6, and MW8, the groundwater flow direction at the subject site has remained northwesterly and the gradient has increased since the previous monitoring and sampling event on June 14, 2006.

Since the previous sampling event on June 14, 2006, all analyte concentrations have increased in well MW2, except Toluene and VOCs, and have decreased in all of the other wells with the exception of MTBE in well MW4, Toluene in well MW7, Chloroform in wells MW6, MW7, and MW8, and Styrene, Acrolein (Propanol), and Tetrachloroethene in well MW7, which have increased. No fuel oxygenates or lead scavengers other than MTBE were detected in any of the groundwater samples.

The near-detection limit concentrations of halogenated volatile organic compounds (HVOCs) detected in the wells were not detected during this sampling event with the exception of chloroform in wells MW6, MW7, and MW8. Also, 1, 2, 4-Trimethylbenzene, Naphthalene, 1, 3, 5-Trimethylbenzene, and n-Propyl Benzene were detected in MW2, and Styrene, Acrolein (Propanol), and Tetrachloroethene were detected in MW7.

February 14, 2007 Report 0055.R28

The detected HVOCs have been interpreted to be associated with sources not related to the subject site.

Based on the TPH-G results, the extent of TPH-G impact appears to be limited to the vicinity of well MW2. Similarly, the highest concentrations of MTBE are encountered in wells MW3 and MW4. However, the presence of MTBE in well MW6 suggests that it is unclear if the downgradient extent of petroleum hydrocarbons to the northwest (between wells MW6 and MW7) has been defined. P&D recommends that the delineation of the downgradient extent of petroleum hydrocarbons be confirmed by drilling exploratory boreholes on the north side of Joaquin Avenue between wells MW6 and MW7 for the collection of groundwater grab samples. In addition, P&D recommends that petroleum hydrocarbon concentrations at wells MW2 and MW3 be reduced to below Regional Water Quality Control Board Environmental Screening Levels to obtain case closure. Based on the sample results P&D recommends that the quarterly groundwater monitoring and sampling program be continued.

DISTRIBUTION

A copy of this report will be uploaded to the ACDEH and State Water Resources Control Board GeoTracker databases.

LIMITATIONS

This report was prepared solely for the use of Mr. Manmohan Chopra. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and pits and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities, which is used in this report. This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

February 14, 2007 Report 0055.R28

Should you have any questions, please do not hesitate to contact us at (510) 658-6916.

Sincerely,

P&D Environmental, Inc.

Paul H. King

Professional Geologist #5901

Expires: 12/31/07

Attachments: Tables 1 & 2

Site Location Map (Figure 1) Site Vicinity Map (Figure 2) Field Parameter Forms

Laboratory Analytical Reports and Chain of Custody Documentation

PAUL H. KING No. 5901

PHK/DMG/sjc 0055.R28

TABLES

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elevation (ft.)	Depth to Water (ft.)	Water Table Elevation (ft.)
MW1	1/11/07	Not Available	38.87	Not Available
	6/14/06	Not Available	36.37	Not Available
	2/15/06	Not Available	36.88	Not Available
	11/14/05	Not Available	39.77	Not Available
	8/31/05	Not Available	39.27	Not Available
	6/22/05	Not Available	37.91	Not Available
	2/09/05	Not Available	38.02	Not Available
	8/31/04	Not Available	40.35	Not Available
	6/03/04	Not Available	39.59	Not Available
	2/20/04	Not Available	38.45	Not Available
	11/25/03	Not Available	40.00	Not Available
	7/15/03	Not Available	39.60	Not Available
	4/16/03	Not Available	38.91	Not Available
	1/20/03	Not Available	38.21	Not Available
	2/16/99	Not Available	34.58	Not Available
	1/25/98	Not Available	33.70	Not Available
	7/14/97	Not Available ¹	39.45	Not Available
	3/11/97	87.98+	36.90	51.08
	6/21/96		38.56	49.42
	3/28/96		37.10	50.88
	12/19/95		40.16	47.82
	6/23/95		38.54	49.44
	5/04/95	87.96++	37.65	50.33
	2/01/95		38.46	49.52
	10/12/94		42.01	45.97
	7/05/94		41.36	46.62
	2/18/94		41.02	46.96
	9/29/92		42.77	45.21

NOTES:

Elevations are in feet above Mean Sea Level.

ft. = Feet.

¹Top of casing elevation modified and not re-surveyed.

^{+ =} Indicates survey data provided by Kier & Wright dated June 26, 1995.

^{++ =} Indicates survey data provided by Aegis Environmental

Well No.	Date Monitored	Top of Casing Elevation (ft.)	Depth to Water (ft.)	Water Table Elevation (ft.)
	Monitored 1/11/07 6/14/06 2/15/06 11/14/05 8/31/05 6/22/05 2/10/05 8/31/04 6/03/04 2/20/04 11/25/03 7/15/03 4/16/03 1/20/03 2/16/99 1/25/98 7/14/97 3/11/97 6/21/96 3/28/96 12/19/95	1 0	Water (ft.) 37.51 35.22 35.78 38.50 38.00 36.76 37.15 39.07 38.32 37.27 38.68 38.15 37.50 37.04 33.51 32.80 38.46 35.71 37.30 35.97 38.80	Elevation (ft.) 49.10 51.39 50.83 48.11 48.61 49.85 49.46 47.54 48.29 49.34 47.93 48.46 49.11 49.57 53.10 53.81 48.15 50.90 49.31 50.64 47.81
	6/23/95 5/04/95 2/01/95 10/12/94 7/05/94 2/18/94 9/29/92	86.60++	37.40 36.54 37.27 40.77 40.13 39.81 41.55	49.21 50.07 49.34 45.84 46.48 46.80 45.06

NOTES:

Elevations are in feet above Mean Sea Level.

^{+ =} Indicates survey data provided by Kier & Wright dated June 26, 1995.

^{++ =} Indicates survey data provided by Aegis Environmental

Well	Date	Top of Casing	Depth to	Water Table
No.	Monitored	Elevation (ft.)	Water (ft.)	Elevation (ft.)
			100	
MW3	1/11/07	87.48+	40.68	46.80
	6/14/06		38.12	49.36
	2/15/06		38.56	48.92
	11/14/05		41.51	45.97
	8/31/05		41.12	46.36
	6/22/05		39.78	47.70
	2/10/05		40.11	47.37
	8/31/04		42.03	45.45
	6/03/04		41.34	46.14
	2/20/04		40.23	47.25
	11/25/03		41.70	45.78
	7/15/03		41.34	46.14
	4/16/03		40.60	46.88
	1/20/03		39.81	47.67
	2/16/99		34.91	52.57
	1/25/98		33.91	53.57
	7/14/97		40.61	46.87
	3/11/97		38.71	48.77
	6/21/96		40.61	46.87
	3/28/96		38.75	48.73
	12/19/95		42.20	45.28
	6/23/95		40.65	46.83
	5/04/95	87.50++	39.61	47.87
	2/01/95		40.13	47.35
	10/12/94		43.92	43.56
	7/05/94		43.32	44.16
	2/18/94		43.09	44.39
	9/29/92		44.60	42.88*
	J1 431 34		77.00	72.00

NOTES:

Elevations are in feet above Mean Sea Level.

ft. = Feet.

^{+ =} Indicates survey data provided by Kier & Wright dated June 26, 1995.

^{++ =} Indicates survey data provided by Aegis Environmental, Inc.

^{** =} Indicates depth to water measurements prior to groundwater monitoring well development.

MW4 1/11/07 86.21+ 37.38 48.83 6/14/06 35.17 51.04 2/15/06 35.57 50.64 11/14/05 38.26 47.95 8/31/05 37.81 48.40 6/22/05 36.54 49.67	MW4 1/11/07 96.21 27.29 49.92
2/10/05 36.99 49.22 8/31/04 38.68 47.53 6/03/04 38.01 48.20 2/20/04 36.91 49.30	6/14/06 35.17 51.04 2/15/06 35.57 50.64 11/14/05 38.26 47.95 8/31/05 37.81 48.40 6/22/05 36.54 49.67
7/15/03 38.04 48.17 4/16/03 37.32 48.89 1/20/03 36.70 49.51 2/16/99 33.43 52.78 1/25/98 32.96 53.25 7/14/97 38.10 48.11 3/11/97 33.24 52.97 6/21/96 37.12 49.09 3/28/96 35.00 51.21 12/19/95 38.45 47.76 6/23/95 37.40 48.81	8/31/04 38.68 47.53 6/03/04 38.01 48.20 2/20/04 36.91 49.30 11/25/03 38.43 47.78 7/15/03 38.04 48.17 4/16/03 37.32 48.89 1/20/03 36.70 49.51 2/16/99 33.43 52.78 1/25/98 32.96 53.25 7/14/97 38.10 48.11 3/11/97 33.24 52.97 6/21/96 37.12 49.09 3/28/96 35.00 51.21 12/19/95 38.45 47.76
2/10/05 36.99 49.22	8/31/05 37.81 48.40 6/22/05 36.54 49.67
	8/31/04 38.68 47.53
2/15/06 35.57 50.64 11/14/05 38.26 47.95 8/31/05 37.81 48.40	

NOTES:

Elevations are in feet above Mean Sea Level.

^{+ =} Indicates survey data provided by Kier & Wright dated June 26, 1995.

^{++ =} Indicates survey data provided by Aegis Environmental, Inc.

Well No.	Date Monitored	Top of Casing Elevation (ft.)	Depth to Water (ft.)	Water Table Elevation (ft.)
		()	(-11)	(
MW5	1/11/07	89.10+	40.55	48.55
	6/14/06		37.46	51.64
	2/15/06		38.08	51.02
	11/14/05		41.11	47.99
	8/31/05		40.68	48.42
	6/22/05		39.28	49.82
	2/09/05		39.49	49.61
	8/31/04		41.75	47.35
	6/03/04		40.95	48.15
	2/20/04		39.69	49.41
	11/25/03		41.41	47.69
	7/15/03		41.06	48.04
	4/16/03		39.92	49.18
	1/20/03		39.50	49.60
	2/16/99		35.08	54.02
	1/25/98		34.08	55.02
	7/14/97		41.20	47.90
	3/11/97		38.02	51.08
	6/21/96		40.03	49.07
	3/28/96		38.30	50.80
	12/19/95		41.79	47.31
	6/23/95		39.87	49.23
	5/04/95	89.06++	38.94	50.16
	2/01/95		39.94	49.16
	10/12/94		43.81	45.29
	7/05/94		43.08	46.02
	2/18/94		42.88	46.22
	9/29/92		44.53	44.57

NOTES:

Elevations are in feet above Mean Sea Level.

^{+ =} Indicates survey data provided by Kier & Wright dated June 26, 1995.

^{++ =} Indicates survey data provided by Aegis Environmental, Inc.

Well No.	Date Monitored	Top of Casing Elevation (ft.)	Depth to Water (ft.)	Water Table Elevation (ft.)
MW6	1/10/07 6/14/06 2/15/06 11/14/05 8/31/05 6/22/05 2/09/05 8/31/04 6/03/04 2/20/04 11/25/03 7/15/03 4/16/03 1/20/03 2/16/99 1/25/98 7/14/97 3/11/97 6/21/96 3/28/96 12/19/95	84.02+	39.74 35.86 36.13 38.83 38.51 37.30 37.51 39.27 38.64 37.61 38.97 38.61 38.90 37.21 32.82 31.64 39.04 36.32 38.00 36.18 39.25	44.28 48.16 47.89 45.19 45.51 46.72 46.51 44.75 45.38 46.41 45.05 45.41 46.02 46.81 51.20 52.38 44.98 47.70 46.02 47.84 44.77
	6/23/95 6/21/95**		38.17 38.11	45.85 45.91

NOTES:

Elevations are in feet above Mean Sea Level.

^{+ =} Indicates survey data provided by Kier & Wright dated June 26, 1995.

^{++ =} Indicates survey data provided by Aegis Environmental, Inc.

^{** =} Indicates depth to water measurements prior to groundwater monitoring well development.

Well No.	Date Monitored	Top of Casing Elevation (ft.)	Depth to Water (ft.)	Water Table Elevation (ft.)
MW7	1/10/07 6/14/06 2/15/06 11/14/05 8/31/05 6/22/05 2/09/05 8/31/04 6/03/04 2/20/04 11/25/03 7/15/03 4/16/03 1/20/03 2/16/99 1/25/98 7/14/97 3/11/97 6/21/96 3/28/96	87.11+	40.73 38.59 38.59 41.48 41.16 39.85 40.03 41.94 41.33 40.21 41.68 41.30 40.63 39.77 34.59 33.47 41.97 38.96 40.80 38.94	46.38 48.52 48.52 45.93 45.95 47.26 47.08 45.17 45.78 46.90 45.43 45.81 46.48 47.34 52.52 53.64 45.14 48.15 46.31 48.17
	12/19/95 6/23/95 6/21/95**		42.26 41.00 40.30	44.85 46.11 46.81

NOTES:

Elevations are in feet above Mean Sea Level.

^{+ =} Indicates survey data provided by Kier & Wright dated June 26, 1995.

^{** =} Indicates depth to water measurements prior to groundwater monitoring well development

Well No.	Date Monitored	Top of Casing Elevation (ft.)	Depth to Water (ft.)	Water Table Elevation (ft.)
MW8	1/10/07 6/14/06 2/15/06 11/14/05 8/31/05 6/22/05 2/09/05 8/31/04 6/03/04 2/20/04 11/25/03 7/15/03 4/16/03 1/20/03 2/16/99 1/25/98 7/14/97 3/11/97 6/21/96 3/28/96 12/19/95	89.70+	38.00 36.53 37.44 40.40 39.95 38.43 38.93 41.19 40.36 39.15 40.92 40.50 39.52 38.94 33.92 32.73 39.98 36.74 38.69 36.98 40.35	51.70 53.17 52.26 49.30 49.75 51.27 50.77 48.51 49.34 50.55 48.78 49.20 50.18 50.76 55.78 56.97 49.72 52.96 51.01 52.72 49.35
	6/23/95 6/21/95**		38.36 38.20	51.34 51.50

NOTES:

Elevations are in feet above Mean Sea Level.

^{+ =} Indicates survey data provided by Kier & Wright dated June 26, 1995.

^{** =} Indicates depth to water measurements prior to groundwater monitoring well development.

TABLE 2 GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW1)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
01/11/07	ND<0.05	0.092	ND<0.0025	ND<0.0025	ND<0.0025	ND<0.0025	ND
06/15/06	ND<0.05	0.28	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND
02/15/06	0.095,a	0.18	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND, except Tetrachloroethene = 0.016
11/14/05	ND<0.05	0.049	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005
08/31/05	ND<0.05	0.14	ND<0.0025	ND<0.0025	ND<0.0025	ND<0.0025	ND
06/22/05	ND<0.05	0.32	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

 $MTBE = Methyl \ Tert \ Butyl \ Ether.$

VOCs = Volatile Organic Compounds

ND = Not Detected.

a = No recognizable pattern.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW1 Continued)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
02/09/05	0.13	0.79	ND<0.01	ND<0.01	ND<0.01	ND<0.01	ND
08/31/04	ND<0.05	0.031	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
06/03/04	0.059	0.13	ND<0.0025	ND<0.0025	ND<0.0025	ND<	ND
02/20/04	0.22	0.18	0.0085	ND<0.005	ND<0.005	0.0025 0.0098	ND
11/25/03	0.140	0.032	0.0025	ND<0.001	ND<0.001	ND<0.001	ND
07/15/03	0.060	0.053	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND, except t-Butyl Alcohol (TBA) = 0.012
04/17/03	0.052	0.056	0.0011	ND<0.001	ND<0.001	ND<0.001	ND, except t-Butyl Alcohol (TBA) = 0.013
01/20/03	0.17	0.085	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND
02/17/99	0.97	0.29	0.067	0.12	0.0093	0.058	
01/25/98	0.30	ND<0.014	0.021	0.00073	0.0076	0.0010	
07/14/97	0.20	0.035	0.020	0.0055	0.0012	0.0023	
03/11/97	0.60	0.014	0.053	0.00095	0.003	0.0015	
06/21/96	1.4	0.019	0.30	0.0087	0.033	0.0098	
03/28/96	1.3	0.022	0.32	0.0023	0.034	0.0046	
12/19/95	0.50	0.0081	0.087	0.0015	0.011	0.0035	
06/23/95	Not	Sampled					
05/4/95	2.4		0.67	0.0028	0.076	0.0060	
02/01/95	4.6		1.8	0.0099	0.23	0.030	
10/12/94	2.5		0.82	0.0039	0.10	0.020	
07/05/94	3.0		1.3	0.0038	0.035	0.0025	
09/29/92	3.1		0.16	ND	ND	0.0060	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

 $MTBE = Methyl \ Tert \ Butyl \ Ether.$

VOCs = Volatile Organic Compounds

ND = Not Detected.

-- = Sample not analyzed for this compound during this sampling event.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW2)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
01/11/07	18	0.40	1.3	0.79	0.79	3.0	ND, except 1,2,4-Trimethylbenzene = 0.44 Naphthalene = 0.077 1,3,5-Trimethylbenzene = 0.091 n-Propyl Benzene = 0.056
06/15/06	12	0.26	1.1	1.1	0.74	2.6	ND, except 1,2,4-Trimethylbenzene = 0.56 Naphthalene = 0.10 n-Propyl benzene = 0.064 1,3,5-Trimethylbenzene = 0.12
02/15/06	38	2	3.7	2.7	2	6.6	ND, except 1,2,4-Trimethylbenzene = 1.8 Naphthalene = 0.24 Tetrachloroethene = 0.24 1,3,5-Trimethylbenzene = 0.36
11/14/05	42	2	4.5	2.1	1.5	6.3	ND, except Isopropylbenzene = 0.051 1,2,4-Trimethylbenzene = 1.1 Naphthalene = 0.29 n-Propyl benzene = 0.13 1,3,5-Trimethylbenzene = 0.22
08/31/05	43	3.6	5.8	2.3	2.3	8.3	ND, except 1,2,4-Trimethylbenzene = 1.9 Naphthalene = 0.65 n-Propyl benzene = 0.26 1,3,5-Trimethylbenzene = 0.43
06/22/05	37	3.9	5.5	1.4	2.5	8.6	ND, except 1,2,4-Trimethylbenzene = 1.5 Naphthalene = 0.33 n-Propyl benzene = 0.22 1,3,5-Trimethylbenzene = 0.32
02/10/05	46	5.6	5.8	3.6	1.8	7.9	ND, except 1,2,4-Trimethylbenzene = 1.3 Naphthalene = 0.30 n-Propyl benzene = 0.13 1,3,5-Trimethylbenzene = 0.29

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

 $MTBE = Methyl \ Tert \ Butyl \ Ether.$

VOCs = Volatile Organic Compounds

ND = Not Detected.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW2 Continued)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
08/31/04	43	2.7	4.4	2.3	2.3	8.2	ND, except Isopropylbenzene = 0.061 1,2,4-Trimethylbenzene = 1.9 Naphthalene = 0.57 n-Propyl benzene = 0.20 1,3,5-Trimethylbenzene = 0.4
06/03/04	50	3.9	5.4	4.2	2.2	8.8	ND, except Naphthalene = 0.36 n-Propyl benzene = 0.14 1,2,4-Trimethylbenzene = 1.3 1,3,5-Trimethylbenzene = 0.3
02/20/04	61	2.7	5.9	3.5	2.4	10	ND, except tert-Butyl benzene = 0.15 Naphthalene = 0.23 n-Propyl benzene = 0.15 1,2,4-Trimethylbenzene = 1.3 1,3,5-Trimethylbenzene = 0.33
11/25/03	65	2.7	6.8	8.8	2.9	16	ND, except Naphthalene = 0.54 1,2,4-Trimethylbenzene = 1.8 1,3,5-Trimethylbenzene = 0.42
07/15/03	78	4.1	3.3	4.4	1.8	9.3	ND, except Naphthalene = 0.29 1,2,4-Trimethylbenzene = 1.3 1,3,5-Trimethylbenzene = 0.32 n-Propyl benzene = 0.15
04/17/03	57	5.6	3.4	5.1	2.8	10	ND, except Naphthalene = 0.43 1,2,4-Trimethylbenzene = 2.2 n-Propyl benzene = 0.26 1,3,5-Trimethylbenzene = 0.55

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW2 Continued)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
01/20/03	48	3.8	2.9	3.0	2.0	11	ND, except Naphthalene = 0.35 1,2,4-Trimethylbenzene = 1.4 1,3,5-Trimethylbenzene = 0.32 Isopropylbenzene = 0.069 n-Propyl benzene = 0.16
02/17/99	7.3	0.29	0.067	0.12	0.0093	0.058	
01/25/98	24	2.7	2.7	4.9	0.70	4.0	
07/14/97	43	1.6	6.2	8.9	1.5	7.4	
03/11/97	28	0.71	4.0	4.5	0.99	4.3	
06/21/96	49	0.53	6.6	6.3	1.4	6.2	
03/28/96	38	0.45	5.8	4.7	1.1	5.1	
12/19/95	25	0.45	5.2	3.8	0.86	3.8	
06/23/95	Not Sampled						
05/4/95	63		10	11	1.6	8.8	
02/01/95	45		7.0	5.1	1.2	6.1	
10/12/94	24		4.4	2.8	0.73	3.5	
07/05/94	46		9.1	7.0	1.4	7.3	
09/29/92	20		4.6	3.8	0.26	3.3	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

-- = Sample not analyzed for this compound during this sampling event.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW3)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
01/11/07	0.24, b	0.86	ND<0.01	ND<0.01	ND<0.01	ND<0.01	ND
06/15/06	2.7	4.3	ND<0.10	ND<0.10	0.12	0.61	ND, except 1,2,4- Trimethylbenzene = 0.34
02/15/06	0.56,a,b	2.6	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND, except Tetrachloroethene = 0.1
11/14/05	0.21,a	1.5	ND<0.025	ND<0.025	ND<0.025	ND<0.025	ND
08/31/05	0.49,a,b	2.5	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND
06/22/05	3.9	5.6	ND<0.10	ND<0.10	ND<0.10	0.69	ND, except 1,2,4- Trimethylbenzene = 0.36

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

 $MTBE = Methyl \ Tert \ Butyl \ Ether.$

VOCs = Volatile Organic Compounds

ND = Not Detected.

a = No recognizable pattern.

b = Heavier gasoline range compounds are significant (aged gasoline?)

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW3 Continued)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
02/10/05	1.0	2.7	ND<0.050	ND<0.050	ND<0.050	0.27	ND, except t-butyl alcohol = 0.83
08/31/04	0.11	0.86	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
06/03/04	0.11,a	1.4	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND
02/20/04	0.090	0.73	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND
11/25/03	0.11	0.33	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND
07/15/03	0.16	0.66	ND<0.0012	ND<0.0012	ND<0.0012	ND<0.0012	ND
04/17/03	0.18	0.34	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
01/20/03	0.12	0.25	ND<0.005	ND<0.005	ND<0.005	0.0052	ND
02/17/99	ND	0.29	0.067	0.12	0.0093	0.058	
01/25/98	0.49	0.71	0.0079	0.0061	0.0053	0.029	
07/14/97	0.40	0.11	0.00093	0.010	0.0013	0.00068	
03/11/97	1.1	0.68	0.053	0.013	0.063	0.017	
06/21/96	1.3	0.3	0.094	0.0021	0.039	0.002	
03/28/96	4.6	1.1	1.4	0.012	0.17	0.020	
12/19/95	0.95	0.12	0.16	0.0023	0.015	0.0016	
06/23/95	Not Sampled						
05/4/95	7.2		3.1	0.038	0.20	0.062	
02/01/95	11		4.2	0.031	0.33	0.29	
10/12/94	1.7		0.39	0.00090	0.018	0.0057	
07/05/94	3.6		1.6	0.0083	0.076	0.047	
09/29/92	Not Sampled						

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

^{-- =} Sample not analyzed for this compound during this sampling event.

a = No recognizable pattern.

b = heavier gasoline range compounds are significant (aged gasoline?)

c = lighter gasoline range compounds (the most notable fraction) are significant

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW4)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
01/11/07	0.069	0.78	ND<0.01	ND<0.01	ND<0.01	ND<0.01	ND
06/15/06	0.075	0.55	ND<0.025	ND<0.025	ND<0.025	ND<0.025	ND
02/15/06	0.22	1.1	ND<0.017	ND<0.017	ND<0.017	ND<0.017	ND, except Tetrachloroethene = 0.024
11/14/05	0.13	1.7	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND
08/31/05	0.064	1.5	ND<0.025	ND<0.025	ND<0.025	ND<0.025	ND
06/22/05	0.059	1.0	ND<0.025	ND<0.025	ND<0.025	ND<0.025	ND
02/10/05	0.39	6.6	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND
08/31/04	ND<0.250	3.9	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
06/03/04	0.32	6.2	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND
02/20/04	ND<0.25,d	6.6	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND
11/25/03	ND<1.0,d	8.8	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND
07/15/03	0.44	6.8	ND<0.12	ND<0.12	ND<0.12	ND<0.12	ND
04/17/03	0.38	5.4	ND<0.12	ND<0.12	ND<0.12	ND<0.12	ND
01/20/03	0.21	3.0	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND
02/17/99	0.23	0.20	0.065	0.0022	0.0096	0.033	
01/25/98	0.91	0.23	0.15	0.019	0.31	0.14	
07/14/97	0.98	0.40	0.21	0.0017	0.090	0.046	
03/11/97	3.8	1.1	1.1	0.053	0.24	0.26	
06/21/96	11	1.2	2.4	0.083	0.53	0.91	
03/28/96	5.6	0.64	1.4	0.038	0.31	0.30	
12/19/95	2.0	0.21	0.70	0.029	0.089	0.15	
06/23/95	Not	Sampled					
05/4/95	3.3		0.89	0.068	0.15	0.30	
02/01/95	1.4		0.39	0.055	0.049	0.18	
10/12/94	0.68		0.14	0.0087	0.014	0.052	
07/05/94	2.6		0.47	0.045	0.084	0.25	
09/29/92	0.63		0.17	0.06	0.0073	0.65	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether. VOCs = Volatile Organic Compounds

ND = Not Detected.

^{-- =} Sample not analyzed for this compound during this sampling event.

d = Laboratory Report Note: reporting limit raised due to high MTBE content Results are reported in milligrams per liter (mg/L), unless otherwise specified.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW5)

01/11/07 ND<0.05 ND<0.0005 ND<0.0005 ND<0.0005 ND<0.0005 ND<0.0005 ND	
OCHANGE AND GOOD AND GOOD AND GOOD AND GOOD AND GOOD AND	
06/14/06 ND<0.05 ND<0.0005 ND<0.0005 ND<0.0005 ND<0.0005 ND<0.0005 ND<0.0005 ND	
02/15/06 ND<0.05 ND<0.0005	cept loroethene =
11/14/05 ND<0.05 0.00051 ND<0.0005 ND<0.0005 ND<0.0005 ND<0.0005 ND<0.0005 ND<0.0005 Chlorofo	cept corm = 0.00063
08/31/05 ND<0.05 0.0027 ND<0.0005 ND<0.0005 ND<0.0005 ND<0.0005 ND<0.0005 ND<0.0005 ND, exce	eept orm = 0.00063
06/22/05 ND<0.05 0.0022 ND<0.0005 ND<0.0005 ND<0.0005 ND<0.0005 ND<0.0005 ND<0.0005	
02/09/05 ND<0.05 ND<0.0005 ND<0.0005 ND<0.0005 ND<0.0005 ND<0.0005 ND<0.0005 ND	
08/31/04 ND<0.05 0.0025 ND<0.0005 ND<0.0005 ND<0.0005 ND<0.0005 ND	
06/03/04 ND<0.05 0.0072 ND<0.001 ND<0.001 ND<0.001 ND<0.001 ND<0.001	01
02/20/04 ND<0.05 ND<0.005 ND<0.005 ND<0.005 ND<0.005 ND<0.005 ND<0.005 ND	
11/25/03 ND<0.05 0.00084 ND<0.001 ND<0.001 ND<0.001 ND<0.001 ND	
07/15/03 ND<0.05 0.0014 ND<0.0005 ND<0.0005 ND<0.0005 ND<0.0005 ND	
04/17/03 ND<0.05 ND<0.0005 ND<0.0005 ND<0.0005 ND<0.0005 ND<0.0005 ND<0.0005 ND	
01/20/03 ND<0.05 ND<0.0005 ND<0.0005 ND<0.0005 ND<0.0005 ND<0.0005 ND<0.0005 ND	
02/17/99 0.17 ND ND 0.00074 ND ND	
01/25/98 ND ND ND ND ND	
07/14/97 ND ND ND ND ND	
03/11/97 ND ND ND ND ND 0.00077	
06/21/96 ND ND ND ND ND	
03/28/96 ND ND ND ND ND	
12/19/95 ND ND ND ND ND	
06/23/95 Not Sampled	
05/4/95 ND ND ND ND	
02/01/95 ND ND ND ND ND	
10/12/94 ND ND ND ND ND	
07/05/94 ND ND ND ND 0.0010	
09/29/92 0.06 10 0.0071 ND 0.0069	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

 $MTBE = Methyl \ Tert \ Butyl \ Ether.$

VOCs = Volatile Organic Compounds

ND = Not Detected.

-- = Sample not analyzed for this compound during this sampling event.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW6)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
01/11/07	ND<0.05	0.0077	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform= 0.00058
06/14/06	ND<0.05	0.072	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
02/15/06	ND<0.05	0.0025	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Tetrachloroethene = 0.00075
11/14/05	ND<0.05	0.00073	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00067,
08/31/05	ND<0.05	0.0014	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	Tetrachloroethene = 0.0005 ND, except Chloroform = 0.00062

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW6 Continued)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl-	Total	Other VOCs
					benzene	Xylenes	by EPA 8260
06/22/05	ND<0.05	0.00080	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except
02/09/05	ND<0.05	0.002	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	Tetrachloroethene = 0.00053 ND, except Chloroform = 0.00059
08/31/04	ND<0.05	0.00051	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00084 Tetrachloroethene=0.00051
06/03/04	ND<0.05	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001
02/20/04	ND<0.05	0.0011	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND
11/25/03	ND<0.05	0.00084	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND, except Chloroform = 0.00089
07/15/03	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00084 1,2-Dibromo- 3-chloropropane = 0.00066 Tetrachloroethene = 0.00067
04/17/03	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.0012
01/20/03	ND<0.05	0.0012	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.0011
02/17/99	ND	ND	ND	ND	ND	ND	
01/25/98	ND	ND	ND	ND	ND	ND	
07/14/97	ND	0.019	ND	ND	ND	ND	
03/11/97	ND	ND	ND	ND	ND	ND	
06/21/96	ND	ND	ND	ND	ND	ND	
03/28/96	ND	ND	ND	ND	ND	ND	
12/19/95	ND	0.01	ND	ND	ND	ND	
06/23/95	ND	0.003	ND	ND	ND	ND	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

-- = Sample not analyzed for this compound during this sampling event.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW7)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
01/11/07	ND<0.05	ND<0.0005	ND<0.0005	0.0097	ND<0.0005	ND<0.0005	ND, except Chloroform= 0.00086, Styrene= 0.0016, Acrolein (Propanol)= 0.037, Tetrachloroethene= 0.0011
06/14/06	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Tetrachloroethene = 0.0028
02/15/06	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Tetrachloroethene = 0.0043
11/14/05	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00082 Tetrachloroethene = 0.0068
08/31/05	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.0011
06/22/05	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Tetrachloroethene = 0.0016
02/09/05	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00064 Tetrachloroethene = 0.0025

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

 $MTBE = Methyl \ Tert \ Butyl \ Ether.$

VOCs = Volatile Organic Compounds

ND = Not Detected.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW7 Continued)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
08/31/04	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except
06/03/04	ND<0.05	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	Tetrachloroethene = 0.00073 ND, except Tetrachloroethene = 0.00098
02/20/04	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND, except
11/25/03	ND<0.05	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	Tetrachloroethene = 0.0013 ND, except Chloroform = 0.00076 Tetrachloroethene = 0.00078
07/15/03	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00061 1,2-Dibromo- 3-chloropropane = 0.00064
04/17/03	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	Tetrachloroethene = 0.0012 ND, except Chloroform = 0.00075 Tetrachloroethene = 0.0012
01/20/03	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00056
02/17/99	ND	ND	ND	ND	ND	ND	
01/25/98	ND	ND	ND	ND	ND	ND	
07/14/97	ND	ND	ND	ND	ND	ND	
03/11/97	ND	ND	ND	ND	ND	ND	
06/21/96	ND	ND	ND	ND	ND	ND	
03/28/96	ND	ND	ND	ND	ND	ND	
12/19/95	ND	ND	ND	ND	ND	ND	
06/23/95	ND	ND	ND	ND	ND	ND	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

-- = Sample not analyzed for this compound during this sampling event.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW8)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
01/11/07	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00068
06/14/06	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00062
02/15/06	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00098
11/14/05	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00094
08/31/05	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00067 Tetrachloroethene = 0.002

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW8 Continued)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
06/22/05	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00093
02/09/05	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.0011
08/31/04	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.0013
06/03/04	ND<0.05	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND, except Chloroform = 0.001
02/20/04	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND, except Chloroform = 0.00078
11/25/03	ND<0.05	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND, except Chloroform = 0.0014
07/15/03	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	0.00066	ND, except Chloroform = 0.0014 1,2-Dibromo- 3-chloropropane = 0.00052
04/17/03	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.0018
01/20/03	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.0013
02/17/99	ND	ND	ND	ND	ND	ND	
01/25/98	ND	ND	ND	ND	ND	ND	
07/14/97	ND	ND	ND	ND	ND	ND	
03/11/97	ND	ND	ND	ND	ND	ND	
06/21/96	ND	ND	ND	ND	ND	ND	
03/28/96	ND	ND	ND	ND	ND	ND	
12/19/95	ND	ND	ND	ND	ND	ND	
06/23/95	ND	ND	ND	ND	ND	ND	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

-- = Sample not analyzed for this compound during this sampling event.

FIGURES

P & D ENVIRONMENTAL, INC.

55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916

Base Map From: U.S. Geological Survey San Leandro, Calif. 7.5 Minute Quadrangle Photorevised 1980

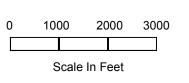
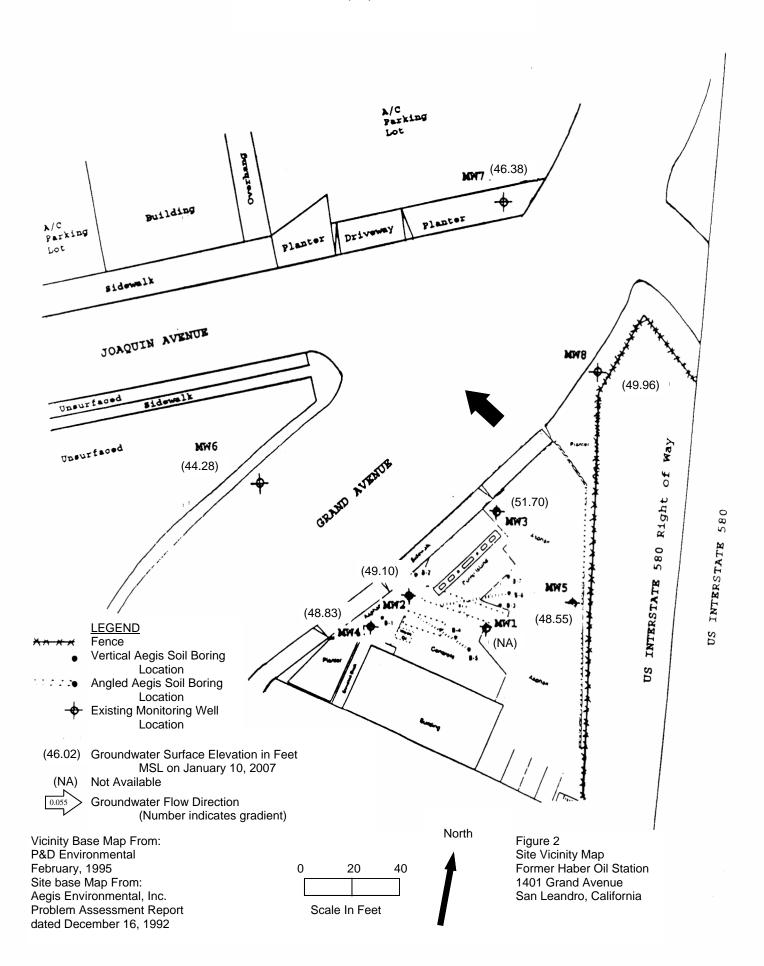



Figure 1 SITE LOCATION MAP Former Haber Oil Station 1401 Grand Avenue San Leandro, California

P & D ENVIRONMENTAL, INC.

55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916

WELL MONITORING AND PURGE DATA SHEETS

	,	DATA SI	KEET	1
Site Name	forner Haber C	U Station	Well No.	MWI
Job No			Date_	10/07 /11/07
TOC to Wate	er (ft.) 38,87	<u>}</u>	Sheen	None
Well Depth	(ft.) <u>55</u>	_ (, \	Free Produ	ict Thickness
Well Diame	ter4" (1	J.646 gal/Ft)	Sample Col	llection Method
Gal./Casing	1 . (7	ellon builer
	3001=31.)	of.	ELECTRICAL MS/cm
TIME	GAL, PURGED	<u>pH</u>	TEMPERATURE /	CONDUCTIVITY
1296	313 313	6.60	91.2	354
1054	1134	bitt	<u>55,0</u>	248
1100	515/1015	6.7d	57.3	342
1107	14.0	6,75	5L. L	5)/
1114	17.3	6.16	51, 1	330
1127	21.0	6.75	49.6	327
1133	24.5	6.13	48.0	373
1138	Z 8 .0	673	48.7	329
<u> 1153</u>	31.5	6.72	49.0	329
	- 77.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.			
		•		
			-	
NOTES:	Yater 11 "	1	. 0	of very
Stat-	tel out grey - bulk w	was hur nost	I have water Bend w	as claire . It bound part
		* Y Y		

PURGE10.92 Sande Tine - 1200

		DATA S	SHEET		
Site Name _	torner Haber	Ul Station	Well No.	MWZ	
Job No	0055		Date	10/07-sic 1/11/07	2_
TOC to Wate	er (ft.) <u>37.51</u>	- 	Sheen	None	
Well Depth	(ft.) <u>55</u>		Free Prod	luct Thickness Ø	
Well Diamet	er(O 6.76501/1	Sample Co	ollection Method	
Gal./Casing	y vol		Te-	flor Boiler	
m=1.10	3vol = 336	\	of	ELECTRICAL MAS	lem
TIME 1456	GAL. PURGED 4,0	6.40 640	TEMPERATURE 48, Z	CONDUCTIVITY 67	
1459	8.0	6.46	48.6	11.950	
1502	17.0	6.46	49.0	13,860	
1509	16.0	6,69	49.6	#5 CGO	
1515	20. €	6-86	50.0	720,000 6	tuns c
1517	Z4.0	6.80	50.8	770,000	1 4 1
1519	28.0	6.65	51,4	720,000	
1521	32.0	6.78	51.3	720,000	
1523	33.9	6.80	51.4	720,000	
					
			·	-	
				<u> </u>	
****		-			
	*				
		· · · · · · · · · · · · · · · · · · ·			
NOTES:	No Sheen	- mod. pho	odor		
		-			
			2 (

PURGE10.92 Sample Time = 1535

TOC to Water (ft.) 40,68 Well Depth (ft.) 55 Well Diameter 4" (0.646 y.1/4) Sample Collection Method Time GAL, PURGED DH G.2 6.58 45.9 3,170 1401 6.2 6.58 45.9 3,170 1407 15.5 6.67 45.9 4,800 1409 18.6 6.68 45.7 5,720 1411 21.7 6.68 45.7 5,720 1412 2.7.9 6.71 44.5 5,370 1422 2.7.9 6.71 44.5 5,370		 -	DATA	SHEET	7
Job No	Site Name	torner Haber	al Station	Well No.	MW ?
Well Depth (ft.) 55 Well Diameter 4" (0.646 y. 1/4) Gal./Casing Vol. 9.3 TIME GAL. PURGED DH TEMPERATURE CONDUCTIVITY 1355 3.1 6.48 45.8 194 1401 6.2 6.58 45.9 3,170 1403 9.3 6.62 46.0 5,270 1407 15.5 6.67 45.9 4,800 1409 18.6 6.68 45.8 5,350 1411 21.7 6.68 45.7 5,720 1410 24.8 6.73 45.1 5,520 NOTES: No skie Lt-and she color	Job No			1	10/0751 1/11/07
Well Diameter 4" (0.646 g). (4) Gal. / Casing Vol. 9. (4) \$\frac{3\lambda{1}}{3\lambda{1}\cappa_2\gamma}\$ \[\frac{3\lambda{1}\lambda{2}\lambda	TOC to Wat	ter (ft.) 40,68		Sheen_/	one
Gal./Casing Vol. 9.3 311-279 TIME 1359 3.1 4.48 45.8 194 1901 6.2 6.58 45.9 3.170 1403 14.5 12.4 6.65 46.0 5,270 1407 1407 15.5 6.67 45.9 44.800 1411 21.7 6.68 45.7 5,320 1411 24.8 6.73 45.1 5,350 1412 24.8 6.73 45.1 5,370 NOTES: No shie Lt-ad phe odor	Well Depth	n (ft.) 55		Pree Pro	duct_Thickness
TIME GAL. PURGED DH TEMPERATURE CONDUCTIVITY 1359 3.1 1401 6.2 6.58 45.9 3.170 1403 9.3 6.62 46.0 5.270 1407 15.5 6.67 45.9 1409 186 6.68 45.8 5,350 1411 21.7 6.68 45.7 7,16 24.8 6.73 45.1 5,520 1422 27.9 2.71 140,5 5,370	Well Diame	eter4'' (0.646 galf	(4) Sample C	ollection Method
TIME 1359 3.1 6.48 45.8 194 194 1958 194 1958 194 1958 194 1958 194 1958 194 1958 194 1958 194 1958 196 1958 196 196 196 196 196 196 196 196 196 196	Gal./Casin	ng vol. 4.5			Etlen Berler
TIME GAL. PURGED DH (48 45.8 194 194 195) 3.1 (.48 45.8 194 194 195) 4.3 (.48 45.8 46.0 5.270 190) 19.5 (.65 46.0 5.270 190) 18.6 (.68 45.7 5.720 191) 21.7 (.68 45.7 5.720 191) 21.7 (.68 45.7 5.720 191) 24.8 (.71 49.5 5.370 192) 24.8 (.71 49.5 5.370 192) 27.9 (.71 49.5 5.370 192) 3.14		· ·	1.9	ot	
1401 6.2 6.58 45.9 3,170 1403 9.3 6.62 46.1 5,890 1405 12.4 6.65 46.0 5,270 1407 15.5 6.67 45.9 4,800 1409 186 6.68 45.7 5,720 1411 21.7 6.68 45.7 5,720 1416 24.8 6.73 45.1 5,520 1422 27.9 6.71 44.5 5,370	TIME 17 (9	- i	DH 18	TEMPERATURE	CONDUCTIVITY'
1403 9.3 6.62 46.1 5,890 1445 12.4 6.65 46.0 5,270 1407 15.5 6.67 45.9 4,800 1409 18.6 6.68 45.7 5,720 1411 21.7 6.68 45.7 5,720 1416 24.8 6.73 45.1 5,520 1422 27.9 6.71 44.5 5,370			<u></u>	15.8	7/7
14.5 12.4 6.65 46.0 5,270 14.07 15.5 6.67 45.9 4,800 14.09 18.6 6.68 45.7 5,720 1411 21.7 6.68 45.7 5,720 1416 24.8 6.73 45.1 5,520 1422 27.9 6.71 44.5 5,370		6.2		73.1	
1409 18.6 6.67 45.9 4,800 1409 18.6 6.68 45.7 5,720 1416 24.8 6.73 45.1 5,520 1422 7.9 2.71 44.5 5,370 NOTES: No shie Lt-and placedor		12 H		46.0	
1409 18.6 6.68 45.8 5,350 1411 21.7 6.68 45.7 5,720 1416 24.8 6.73 45.1 5,520 1422 27.9 2014 5.71 1415 5,370		16.7			
1411 21.7 6.68 45.7 5,720 1416 24.8 6.73 45.1 5,520 1422 27.9 6.71 44.5 5,370 3-314				45 8	-/-/
1416 248 6.73 45.1 5,520 1422 27.9 6.71 44,5 5,370 3014 NOTES: No shie Lt-mak pho odor			(10	145 7	
1422 27.9 3-316 NOTES: No shie Lt-mat phe odor			127	$\frac{40.7}{4<1}$	
NOTES: No shee Lt-mat phe odor		24.8	6.7)	73.1-	
NOTES: No sheer Lt-mak phe odor	1926	27.9	E. 71	47,5	5,370
100 Shee Lit - Aut pac odor		<u>-511</u>			-
100 Shee Lit - Aut pac odor					
100 Shee Lit - Aut pac odor	· · · · · · · · · · · · · · · · · · ·		*		
100 Shee Lit - Aut pac odor					
100 Shee Lit - Aut pac odor					•
100 Shee Lit - Aut pac odor				-	
100 Shee Lit - Aut pac odor					the second secon
100 Shee Lit - Aut pac odor				-	
100 Shee Lit - Aut pac odor					
100 Shee Lit - Aut pac odor					**************************************
1	NOTES:	No she 1+-	and che al		
S. I. T. WILLIAM		The same of	THE CH	<i>y</i> ,	
		< 1 T		2	

PURGE10.92 Sample Time > 1440

DATA SHE	18T
site Name <u>former Haber-Oll Station</u>	Well No. MW4
Job No. 0055	Date 4/10/07 1/11/06
TOC to Water (ft.) 37.38	Sheen None
Well Depth (ft.) 55	Free Product Thickness
Well Diameter 4" (0.64694/ft)	Sample Collection Method
Gal./Casing Vol	Tetlon bailer
3.1234.7	of electrical hs/cm
TIME GAL. PURGED DH	TEMPERATURE CONDUCTIVITY
1222 4.0 6.66	366
1224 8.0 6.79	<u>99.9</u> <u>36.7</u>
1938 153 6.85	45,2 -369
1231 16.0 6.85	44.8 654
1235 20.0 6.85	44.3 936 ,936
13/5 24.0 6.89	44.3 936 46.8 975 900 diestor
1377 58.7 7.74	47.8 1001
1324 32.0 6.85	47.9 1000
1326 34.2 6.87	48.1 1000
7,77	10
· · · · · · · · · · · · · · · · · · ·	
The second secon	<u> </u>
NOTES: No Shear Do very It phe of	o ~
7. 0. 2. 0. 7. 1	
Numaria de S. J. T. a. 2 17/10	
PURGE10.92 Sande Time > 1340	

		DATA SI	HEET	
Site Name	former Haber	O. 1 Station	Well No	MW-5
Job No			Date	10/07 sic 1/11/07
TOC to Wate	er (ft.) 40.5	55	Sheen	Vole
Well Depth	The same of the sa		Free Prod	luct Thickness
Well Diamet	ter4"	(0,646 gulfer)		ollection Method
Gal./Casing	g vol. 9,-		Totlo	
·	3101=28	1.2	05	ELECTRICAL MS/cm
TIME	GAL. PURGED	рΉ	TEMPERATURE	CONDUCTIVITY
0915	3.0	6.63	74.2	153
0919	6.0	6.85	36.8	379
0927	9.0	6.96	36.8	382
0930	12.0	7.01	36.6	384
0734	15.0	7.08	36.4	386
0936	18 · U	7.07	36.4	383
0941 -	21.0	6.97707516	36.4	380
0948	24.0	7,02 7.H3/K	36.8	381
0957	27.0	7.08 7.74 sh	37.0	384
	282	7.04	37.4	389
1001		7.01		
	·			
				
NOTES: Pu	or, H20 stentul	grey - black the	en eleved up after	1 1 well casing un
	Nashan	No ode -	, , ,	2 1 st well casing usl.
PUPGELO 92	~ 1 ~	1 336		

PURGE10.92 Sample Time > 1015

	ENVIRON		
GROUNDWATER	MONITORI	NG/WELL	PURGING
	DAMA CUE		

	GROUND	ATER MONITOR DATA S	RING/WELL PURGING	516
Site Name	Former Hater Oil		Well No	MW-8-6
Job No	1		Date	10/07
	er (ft.) 39.74		Sheen	None
	(ft.) 50		Free Prod	uct Thickness
	cer	C0.16350/1	Sample Co	llection Method
Gal./Casing	17	., ,		lon tailer
	3001=5.1	· ·····	e F	ELECTRICAL MS/cm
TIME	GAL. PURGED	728	TEMPERATURE	CONDUCTIVITY
1405	0.5		<u>bled</u>	$\frac{21.7}{21.2}$
1409	1.0	7.31	6/4	21.6
141)	<u> </u>	7:12	6(.>	31.4
	3.2 →	$\frac{7\cdot 7}{2\cdot 10}$	62.0	214
1415	3.0	7.52 2.12	67.1	21.3
1117	7.0	7.57	67 4	
11119	11.0	7.51	10/	F('
1711	7.4	7.50	62.9	19.0
1423	777.	7.35	67.7	13.47
176)		7.30	<u> </u>	13.77
				
	*	•	· · · · · · · · · · · · · · · · · · ·	

			 	No.
NOTES:	11	•••	;	The state of the s
	ldy It. branish	no odo-	nosheen	

PURGE10.92 Sample Time > 1435

	ر ان سسم	DATA SH	EE1	4
Site Name	torner Haber i	1 Station	Well No	MW-7
Job No	00 <i>55</i>		Date	110/07
TOC to Wate	er (ft.) 40.7	<u> </u>	Sheen	None
Well Depth	_ ^		Free Prod	uct Thickness
Well Diame	ter	(0.163 griffs)		llection Method
Gal./Casing	g Vol. 1.6	. V	and the second	n bader
	3001 = 4.8)		ELECTRICAL MS/cr
TIME	GAL, PURGED	рН	TEMPERATURE	CONDUCTIVITY
1315	0,5	7.20	64.5	0.76
1316	1.0	7.31	63.3	0.77
1319	1.5	7.33	63.8	0.77
1322	<u>Z.o</u>	7.32	64.0	0.77
1324	2.5	7.33	63.8	0.77
1336	3.0	7.39	63.4	0.78
1228	3,5	737	63.0	0.78
1370	4.0	7.38	63.8	0.78
1338	4.8	7.41	625	0.78
				
		* inima is a second		<u> </u>
		·		
				
				
	· · · · · · · · · · · · · · · · · · ·			
		-		
		• • •		
NOTES:	lay toroun, no 5h	in ander		
	VI V	TEN THUNDS		

		DATA S	SHEET	
Site Name _	Former Haber 1	il Station	Well No	MW + 8
Job No.	00 37		Date/	10/07
TOC to Wate	r (ft.) 38.00	_	Sheen	None
Well Depth	182 1 5 0	_ ,,	Pree Produ	uct Thickness
Well Diamet	er	5,113 5 1/4	Sample Co	llection Method
Gal./Casing	Vol. 2.0	_	10	flo-bailer
	3001 = 6.0		of.	ELECTRICAL Mylen
TIME	GAL. PURGED	<u> </u>	TEMPERATURÉ	CONDUCTIVITY
1443	0.75	7,36	65.4	5.21
1445	1.50	7.42	69.5	4.49
1447	7.25	7.48	63,7	3.03
1449	3.00	749	63.0	2.91
1451	7.75	7.52	61.0	2,72
1453	4.50	7.54	60.3	2.68
1455	5.35	7.56	59.6	7.64
1457	6.05.75	755	58.8	2.57
		7.55	58.4	7 4 5
1459	6.0	7,16	20:1	<u>d</u> , 1)
		-		
		· · · · · · · · · · · · · · · · · · ·		
		•		
	•			*

		N		***************************************
NOTES:	day 14. brownish	h : No chee	No odo-	
		- /	1	
	- Tarana da La Cara da			

PURGE10.92

LABORATORY REPORTS AND CHAIN OF CUSTODY DOCUMENTATION

P & D Environmental	Client Project ID: #0055 Former Haber Oil	Date Sampled: 01/11/07
55 Santa Clara, Ste.240	Station	Date Received: 01/12/07
Oakland, CA 94610	Client Contact: Steve Carmack	Date Reported: 01/19/07
	Client P.O.:	Date Completed: 01/19/07

WorkOrder: 0701261

January 19, 2007

Dear Steve:

Enclosed are:

- 1). the results of 8 analyzed samples from your #0055 Former Haber Oil Station project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

P & D ENVIRONMENTAL, INC.

55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916

PROJECT NUMBER: PROJECT NAME: Former Haber Oil Station SAMPLED BY: (PRINTED AND SIGNATURE) REMARKS Steven Sarmack SAMPLE LOCATION SAMPLE NUMBER DATE TIME TYPE 1200 1/11/07 MWI Vornal Twoward Time MW7 MW MW 1015 MWS 1/10/07 1435 MW 6 MW7 MW & 1500 APPROPRIATE HEAD SPACE ABSENT CONTAINERS DECHLORINATED IN LAB VOAS | O&G | METALS | OTHER RESERVATION RELINQUISHED BY (SCHATURE) TOTAL NO. OF SAMPLES RECEIVED BY: (SIGNATURE) DATE TIME LABORATORY: (THIS SHIPWOIT) TOTAL NO. OF CONTAINERS (THES SHIPMOIT) RELINQUISHED BY: (SIGNATURE) DATE RECEIVED BY: (SIGNATURE) LABORATORY CONTACT: LABORATORY PHONE NUMBER: 9500 925-252-9262 RELINQUISHED BY: (SIGNATURE) RECEIVED FOR LABORATORY BY: (SIGNATURE) Ship Confirm SAMPLE ANALYSIS REQUEST SH ATTACHED: () YES SONO REMARKS: VOAS preserved W/ HEL SAMPLE ANALYSIS REQUEST SHEET

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder:	0701261	ClientID:	PDEO

			∐ EDF			Fax		✓ Emai	l	□⊦	lardCop	l	Third	Part		
Report to: Steve Carmack Email:					Bill t Reques Accounts Payable						uested	ested TAT: 5 days				
P & D Environmental 55 Santa Clara, Ste.240 Oakland, CA 94610		Email: TEL: (510) 658-691 FAX: 510-834-0152 ProjectNo: #0055 Former Haber Oil Station PO:			-					Date Received 01/12/ Date Printed: 01/19/						
								Rea	uested	Tests (See leg	end be	low)			
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0701261-001	MW1	Water	1/11/2007		В	Α										
0701261-002	MW2	Water	1/11/2007 3:35:00		В	Α										
0701261-003	MW3	Water	1/11/2007 2:40:00		В	Α										
0701261-004	MW4	Water	1/11/2007 1:40:00		В	Α										
0701261-005	MW5	Water	1/11/2007		В	Α										
0701261-006	MW6	Water	1/11/2007 2:35:00		В	Α										
0701261-007	MW7	Water	1/11/2007 1:35:00		В	Α										
0701261-008	MW8	Water	1/11/2007 3:00:00		В	Α										
Test Legend:								•				_				
1 8260	B_W 2	G-MBTEX_W	3				4	.				L	5			
6	7		8				9)				1	10			
11	12															
											I	Prepare	ed by:	Sheli C	ryderm	ıan

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

P & D Environmental	Client Project ID: #0055 Former Haber	Date Sampled: 01/11/07
55 Santa Clara, Ste.240	Oil Station	Date Received: 01/12/07
	Client Contact: Steve Carmack	Date Extracted: 01/18/07
Oakland, CA 94610	Client P.O.:	Date Analyzed 01/18/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0701261

Lab ID	0701261-001B						
Client ID		MW1					
Matrix		Water					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND<50	5.0	10	Acrolein (Propenal)	ND<25	5.0	5.0
Acrylonitrile	ND<10	5.0	2.0	tert-Amyl methyl ether (TAME)	ND<2.5	5.0	0.5
Benzene	ND<2.5	5.0	0.5	Bromobenzene	ND<2.5	5.0	0.5
Bromochloromethane	ND<2.5	5.0	0.5	Bromodichloromethane	ND<2.5	5.0	0.5
Bromoform	ND<2.5	5.0	0.5	Bromomethane	ND<2.5	5.0	0.5
2-Butanone (MEK)	ND<10	5.0	2.0	t-Butyl alcohol (TBA)	ND<25	5.0	5.0
n-Butyl benzene	ND<2.5	5.0	0.5	sec-Butyl benzene	ND<2.5	5.0	0.5
tert-Butyl benzene	ND<2.5	5.0	0.5	Carbon Disulfide	ND<2.5	5.0	0.5
Carbon Tetrachloride	ND<2.5	5.0	0.5	Chlorobenzene	ND<2.5	5.0	0.5
Chloroethane	ND<2.5	5.0	0.5	2-Chloroethyl Vinyl Ether	ND<5.0	5.0	1.0
Chloroform	ND<2.5	5.0	0.5	Chloromethane	ND<2.5	5.0	0.5
2-Chlorotoluene	ND<2.5	5.0	0.5	4-Chlorotoluene	ND<2.5	5.0	0.5
Dibromochloromethane	ND<2.5	5.0	0.5	1,2-Dibromo-3-chloropropane	ND<2.5	5.0	0.5
1,2-Dibromoethane (EDB)	ND<2.5	5.0	0.5	Dibromomethane	ND<2.5	5.0	0.5
1,2-Dichlorobenzene	ND<2.5	5.0	0.5	1,3-Dichlorobenzene	ND<2.5	5.0	0.5
1,4-Dichlorobenzene	ND<2.5	5.0	0.5	Dichlorodifluoromethane	ND<2.5	5.0	0.5
1,1-Dichloroethane	ND<2.5	5.0	0.5	1,2-Dichloroethane (1,2-DCA)	ND<2.5	5.0	0.5
1,1-Dichloroethene	ND<2.5	5.0	0.5	cis-1,2-Dichloroethene	ND<2.5	5.0	0.5
trans-1,2-Dichloroethene	ND<2.5	5.0	0.5	1,2-Dichloropropane	ND<2.5	5.0	0.5
1,3-Dichloropropane	ND<2.5	5.0	0.5	2,2-Dichloropropane	ND<2.5	5.0	0.5
1,1-Dichloropropene	ND<2.5	5.0	0.5	cis-1,3-Dichloropropene	ND<2.5	5.0	0.5
trans-1,3-Dichloropropene	ND<2.5	5.0	0.5	Diisopropyl ether (DIPE)	ND<2.5	5.0	0.5
Ethylbenzene	ND<2.5	5.0	0.5	Ethyl tert-butyl ether (ETBE)	ND<2.5	5.0	0.5
Freon 113	ND<50	5.0	10	Hexachlorobutadiene	ND<2.5	5.0	0.5
Hexachloroethane	ND<2.5	5.0	0.5	2-Hexanone	ND<2.5	5.0	0.5
Isopropylbenzene	ND<2.5	5.0	0.5	4-Isopropyl toluene	ND<2.5	5.0	0.5
Methyl-t-butyl ether (MTBE)	92	5.0	0.5	Methylene chloride	ND<2.5	5.0	0.5
4-Methyl-2-pentanone (MIBK)	ND<2.5	5.0	0.5	Naphthalene	ND<2.5	5.0	0.5
Nitrobenzene	ND<50	5.0	10	n-Propyl benzene	ND<2.5	5.0	0.5
Styrene	ND<2.5	5.0	0.5	1,1,1,2-Tetrachloroethane	ND<2.5	5.0	0.5
1,1,2,2-Tetrachloroethane	ND<2.5	5.0	0.5	Tetrachloroethene	ND<2.5	5.0	0.5
Toluene	ND<2.5	5.0	0.5	1,2,3-Trichlorobenzene	ND<2.5	5.0	0.5
1,2,4-Trichlorobenzene	ND<2.5	5.0	0.5	1,1,1-Trichloroethane	ND<2.5	5.0	0.5
1,1,2-Trichloroethane	ND<2.5	5.0	0.5	Trichloroethene	ND<2.5	5.0	0.5
Trichlorofluoromethane	ND<2.5	5.0	0.5	1,2,3-Trichloropropane	ND<2.5	5.0	0.5
1,2,4-Trimethylbenzene	ND<2.5	5.0	0.5	1,3,5-Trimethylbenzene	ND<2.5	5.0	0.5
Vinvl Chloride	ND<2.5	5.0	0.5	Xvlenes	ND<2.5	5.0	0.5
		Surr	ogate Re	coveries (%)			
%SS1:	102			%SS2:	93		
0/ 553:	99				, , , , ,		

Comments:

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

Lab ID

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

0701261-002B

P & D Environmental	Client Project ID: #0055 Former Haber	Date Sampled: 01/11/07
55 Santa Clara, Ste.240	Oil Station	Date Received: 01/12/07
	Client Contact: Steve Carmack	Date Extracted: 01/16/07
Oakland, CA 94610	Client P.O.:	Date Analyzed 01/16/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0701261

Lab ID	0/01201-002B						
Client ID		MW2					
Matrix		Water					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND<1000	100	10	Acrolein (Propenal)	ND<500	100	5.0
Acrylonitrile	ND<200	100	2.0	tert-Amyl methyl ether (TAME)	ND<50	100	0.5
Benzene	1300	100	0.5	Bromobenzene	ND<50	100	0.5
Bromochloromethane	ND<50	100	0.5	Bromodichloromethane	ND<50	100	0.5
Bromoform	ND<50	100	0.5	Bromomethane	ND<50	100	0.5
2-Butanone (MEK)	ND<200	100	2.0	t-Butyl alcohol (TBA)	ND<500	100	5.0
n-Butyl benzene	ND<50	100	0.5	sec-Butyl benzene	ND<50	100	0.5
tert-Butyl benzene	ND<50	100	0.5	Carbon Disulfide	ND<50	100	0.5
Carbon Tetrachloride	ND<50	100	0.5	Chlorobenzene	ND<50	100	0.5
Chloroethane	ND<50	100	0.5	2-Chloroethyl Vinyl Ether	ND<100	100	1.0
Chloroform	ND<50	100	0.5	Chloromethane	ND<50	100	0.5
2-Chlorotoluene	ND<50	100	0.5	4-Chlorotoluene	ND<50	100	0.5
Dibromochloromethane	ND<50	100	0.5	1,2-Dibromo-3-chloropropane	ND<50	100	0.5
1,2-Dibromoethane (EDB)	ND<50	100	0.5	Dibromomethane	ND<50	100	0.5
1,2-Dichlorobenzene	ND<50	100	0.5	1,3-Dichlorobenzene	ND<50	100	0.5
1,4-Dichlorobenzene	ND<50	100	0.5	Dichlorodifluoromethane	ND<50	100	0.5
1,1-Dichloroethane	ND<50	100	0.5	1,2-Dichloroethane (1,2-DCA)	ND<50	100	0.5
1,1-Dichloroethene	ND<50	100	0.5	cis-1,2-Dichloroethene	ND<50	100	0.5
trans-1,2-Dichloroethene	ND<50	100	0.5	1,2-Dichloropropane	ND<50	100	0.5
1,3-Dichloropropane	ND<50	100	0.5	2,2-Dichloropropane	ND<50	100	0.5
1,1-Dichloropropene	ND<50	100	0.5	cis-1,3-Dichloropropene	ND<50	100	0.5
trans-1,3-Dichloropropene	ND<50	100	0.5	Diisopropyl ether (DIPE)	ND<50	100	0.5
Ethylbenzene	790	100	0.5	Ethyl tert-butyl ether (ETBE)	ND<50	100	0.5
Freon 113	ND<1000	100	10	Hexachlorobutadiene	ND<50	100	0.5
Hexachloroethane	ND<50	100	0.5	2-Hexanone	ND<50	100	0.5
Isopropylbenzene	ND<50	100	0.5	4-Isopropyl toluene	ND<50	100	0.5
Methyl-t-butyl ether (MTBE)	400	100	0.5	Methylene chloride	ND<50	100	0.5
4-Methyl-2-pentanone (MIBK)	ND<50	100	0.5	Naphthalene	77	100	0.5
Nitrobenzene	ND<1000	100	10	n-Propyl benzene	56	100	0.5
Styrene	ND<50	100	0.5	1,1,1,2-Tetrachloroethane	ND<50	100	0.5
1,1,2,2-Tetrachloroethane	ND<50	100	0.5	Tetrachloroethene	ND<50	100	0.5
m 1	500	400	0.5	4.0.0 m : 11	115 50	400	0.5

 Surrogate Recoveries (%)

 %SS1:
 104
 %SS2:
 97

 %SS3:
 83
 97

0.5

0.5

0.5

0.5

1,2,3-Trichlorobenzene

1,2,3-Trichloropropane

1,3,5-Trimethylbenzene

1,1,1-Trichloroethane

Trichloroethene

Xvlenes

Comments:

Vinvl Chloride

1,2,4-Trichlorobenzene

1,1,2-Trichloroethane

Trichlorofluoromethane

1,2,4-Trimethylbenzene

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

790

440

ND<50

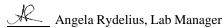
ND<50

ND<50

ND<50

100

100


100

100

100

100

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm

ND<50

ND<50

ND<50

ND<50

91

3000

100

100

100

100

100

100

0.5

0.5

0.5

0.5

0.5

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

P & D Environmental	Client Project ID: #0055 Former Haber	Date Sampled: 01/11/07
55 Santa Clara, Ste.240	Oil Station	Date Received: 01/12/07
	Client Contact: Steve Carmack	Date Extracted: 01/16/07
Oakland, CA 94610	Client P.O.:	Date Analyzed 01/16/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0701261

Lab ID		0701261-003B					
Client ID		MW3					
Matrix		Water					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND<200	20	10	Acrolein (Propenal)	ND<100	20	5.0
Acrylonitrile	ND<40	20	2.0	tert-Amyl methyl ether (TAME)	ND<10	20	0.5
Benzene	ND<10	20	0.5	Bromobenzene	ND<10	20	0.5
Bromochloromethane	ND<10	20	0.5	Bromodichloromethane	ND<10	20	0.5
Bromoform	ND<10	20	0.5	Bromomethane	ND<10	20	0.5
2-Butanone (MEK)	ND<40	20	2.0	t-Butyl alcohol (TBA)	ND<100	20	5.0
n-Butyl benzene	ND<10	20	0.5	sec-Butyl benzene	ND<10	20	0.5
tert-Butyl benzene	ND<10	20	0.5	Carbon Disulfide	ND<10	20	0.5
Carbon Tetrachloride	ND<10	20	0.5	Chlorobenzene	ND<10	20	0.5
Chloroethane	ND<10	20	0.5	2-Chloroethyl Vinyl Ether	ND<20	20	1.0
Chloroform	ND<10	20	0.5	Chloromethane	ND<10	20	0.5
2-Chlorotoluene	ND<10	20	0.5	4-Chlorotoluene	ND<10	20	0.5
Dibromochloromethane	ND<10	20	0.5	1,2-Dibromo-3-chloropropane	ND<10	20	0.5
1,2-Dibromoethane (EDB)	ND<10	20	0.5	Dibromomethane	ND<10	20	0.5
1,2-Dichlorobenzene	ND<10	20	0.5	1,3-Dichlorobenzene	ND<10	20	0.5
1,4-Dichlorobenzene	ND<10	20	0.5	Dichlorodifluoromethane	ND<10	20	0.5
1,1-Dichloroethane	ND<10	20	0.5	1,2-Dichloroethane (1,2-DCA)	ND<10	20	0.5
1,1-Dichloroethene	ND<10	20	0.5	cis-1,2-Dichloroethene	ND<10	20	0.5
trans-1,2-Dichloroethene	ND<10	20	0.5	1,2-Dichloropropane	ND<10	20	0.5
1,3-Dichloropropane	ND<10	20	0.5	2,2-Dichloropropane	ND<10	20	0.5
1,1-Dichloropropene	ND<10	20	0.5	cis-1,3-Dichloropropene	ND<10	20	0.5
trans-1,3-Dichloropropene	ND<10	20	0.5	Diisopropyl ether (DIPE)	ND<10	20	0.5
Ethylbenzene	ND<10	20	0.5	Ethyl tert-butyl ether (ETBE)	ND<10	20	0.5
Freon 113	ND<200	20	10	Hexachlorobutadiene	ND<10	20	0.5
Hexachloroethane	ND<10	20	0.5	2-Hexanone	ND<10	20	0.5
Isopropylbenzene	ND<10	20	0.5	4-Isopropyl toluene	ND<10	20	0.5
Methyl-t-butyl ether (MTBE)	860	20	0.5	Methylene chloride	ND<10	20	0.5
4-Methyl-2-pentanone (MIBK)	ND<10	20	0.5	Naphthalene	ND<10	20	0.5
Nitrobenzene	ND<200	20	10	n-Propyl benzene	ND<10	20	0.5
Styrene	ND<10	20	0.5	1,1,1,2-Tetrachloroethane	ND<10	20	0.5
1,1,2,2-Tetrachloroethane	ND<10	20	0.5	Tetrachloroethene	ND<10	20	0.5
Toluene	ND<10	20	0.5	1,2,3-Trichlorobenzene	ND<10	20	0.5
1,2,4-Trichlorobenzene	ND<10	20	0.5	1,1,1-Trichloroethane	ND<10	20	0.5
		1	•	1	i i		

 Surrogate Recoveries (%)

 %SS1:
 104
 %SS2:
 97

 %SS3:
 86
 97

0.5

0.5

Trichloroethene

Xvlenes

1,2,3-Trichloropropane

1,3,5-Trimethylbenzene

20

20

20

Comments:

Vinvl Chloride

1,1,2-Trichloroethane

Trichlorofluoromethane

1,2,4-Trimethylbenzene

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

ND<10

ND<10

ND<10

ND<10

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm

ND<10

ND<10

ND<10

ND<10

0.5

0.5

0.5

0.5

2.0

2.0

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

P & D Environmental	Client Project ID: #0055 Former Haber	Date Sampled: 01/11/07
55 Santa Clara, Ste.240	Oil Station	Date Received: 01/12/07
	Client Contact: Steve Carmack	Date Extracted: 01/16/07
Oakland, CA 94610	Client P.O.:	Date Analyzed 01/16/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0701261

Lab ID				0701261-004B			
Client ID		MW4					
Matrix		Water					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND<200	20	10	Acrolein (Propenal)	ND<100	20	5.0
Acrylonitrile	ND<40	20	2.0	tert-Amyl methyl ether (TAME)	ND<10	20	0.5
Benzene	ND<10	20	0.5	Bromobenzene	ND<10	20	0.5
Bromochloromethane	ND<10	20	0.5	Bromodichloromethane	ND<10	20	0.5
Bromoform	ND<10	20	0.5	Bromomethane	ND<10	20	0.5
2-Butanone (MEK)	ND<40	20	2.0	t-Butyl alcohol (TBA)	ND<100	20	5.0
n-Butyl benzene	ND<10	20	0.5	sec-Butyl benzene	ND<10	20	0.5
tert-Butyl benzene	ND<10	20	0.5	Carbon Disulfide	ND<10	20	0.5
Carbon Tetrachloride	ND<10	20	0.5	Chlorobenzene	ND<10	20	0.5
Chloroethane	ND<10	20	0.5	2-Chloroethyl Vinyl Ether	ND<20	20	1.0
Chloroform	ND<10	20	0.5	Chloromethane	ND<10	20	0.5
2-Chlorotoluene	ND<10	20	0.5	4-Chlorotoluene	ND<10	20	0.5
Dibromochloromethane	ND<10	20	0.5	1,2-Dibromo-3-chloropropane	ND<10	20	0.5
1,2-Dibromoethane (EDB)	ND<10	20	0.5	Dibromomethane	ND<10	20	0.5
1,2-Dichlorobenzene	ND<10	20	0.5	1,3-Dichlorobenzene	ND<10	20	0.5
1,4-Dichlorobenzene	ND<10	20	0.5	Dichlorodifluoromethane	ND<10	20	0.5
1,1-Dichloroethane	ND<10	20	0.5	1,2-Dichloroethane (1,2-DCA)	ND<10	20	0.5
1,1-Dichloroethene	ND<10	20	0.5	cis-1,2-Dichloroethene	ND<10	20	0.5
trans-1,2-Dichloroethene	ND<10	20	0.5	1,2-Dichloropropane	ND<10	20	0.5
1,3-Dichloropropane	ND<10	20	0.5	2,2-Dichloropropane	ND<10	20	0.5
1,1-Dichloropropene	ND<10	20	0.5	cis-1,3-Dichloropropene	ND<10	20	0.5
trans-1,3-Dichloropropene	ND<10	20	0.5	Diisopropyl ether (DIPE)	ND<10	20	0.5
Ethylbenzene	ND<10	20	0.5	Ethyl tert-butyl ether (ETBE)	ND<10	20	0.5
Freon 113	ND<200	20	10	Hexachlorobutadiene	ND<10	20	0.5
Hexachloroethane	ND<10	20	0.5	2-Hexanone	ND<10	20	0.5
Isopropylbenzene	ND<10	20	0.5	4-Isopropyl toluene	ND<10	20	0.5
Methyl-t-butyl ether (MTBE)	780	20	0.5	Methylene chloride	ND<10	20	0.5
4-Methyl-2-pentanone (MIBK)	ND<10	20	0.5	Naphthalene	ND<10	20	0.5
Nitrobenzene	ND<200	20	10	n-Propyl benzene	ND<10	20	0.5
Styrene	ND<10	20	0.5	1,1,1,2-Tetrachloroethane	ND<10	20	0.5
1,1,2,2-Tetrachloroethane	ND<10	20	0.5	Tetrachloroethene	ND<10	20	0.5
Toluene	ND<10	20	0.5	1,2,3-Trichlorobenzene	ND<10	20	0.5
1,2,4-Trichlorobenzene	ND<10	20	0.5	1,1,1-Trichloroethane	ND<10	20	0.5
1,1,2-Trichloroethane	ND<10	20	0.5	Trichloroethene	ND<10	20	0.5
Trichlorofluoromethane	ND<10	20	0.5	1,2,3-Trichloropropane	ND<10	20	0.5
1,2,4-Trimethylbenzene	ND<10	20	0.5	1,3,5-Trimethylbenzene	ND<10	20	0.5
Vinvl Chloride	ND<10	20	0.5	Xvlenes	ND<10	20	0.5
		Surre	ogate Re	coveries (%)			

%SS3: Comments:

104

%SS1:

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm

97

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μg /wipe.

P & D Environmental	Client Project ID: #0055 Former Haber	Date Sampled: 01/11/07
55 Santa Clara, Ste.240	Oil Station	Date Received: 01/12/07
	Client Contact: Steve Carmack	Date Extracted: 01/18/07
Oakland, CA 94610	Client P.O.:	Date Analyzed 01/18/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0701261

Lab ID		0701261-005B					
Client ID		MW5					
Matrix		Water					
	C*	DF	Reporting		C*	DF	Reporting
Compound	Concentration *	DF	Limit	Compound	Concentration *	DF	Limit
Acetone	ND	1.0	10	Acrolein (Propenal)	ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	5.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	1.0
Chloroform	ND	1.0	0.5	Chloromethane	ND	1.0	0.5
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane	ND	1.0	0.5
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	ND	1.0	0.5
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND	1.0	0.5
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	0.5
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND	1.0	0.5
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5
Hexachloroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene	ND	1.0	0.5
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride	ND	1.0	0.5
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	ND	1.0	0.5
Nitrobenzene	ND	1.0	10	n-Propyl benzene	ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5

 Surrogate Recoveries (%)

 %SS1:
 102
 %SS2:
 94

 %SS3:
 88
 94

0.5

0.5

1.0

1.0

1,2,3-Trichloropropane

1,3,5-Trimethylbenzene

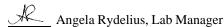
Xvlenes

Comments:

Vinvl Chloride

<u>Trichlorofluoromethane</u> 1,2,4-Trimethylbenzene

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.


ND

ND

ND

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm

ND

ND

ND

1.0

1.0

0.5

0.5

0.5

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

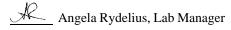
P & D Environmental	Client Project ID: #0055 Former Haber	Date Sampled: 01/11/07
55 Santa Clara, Ste.240	Oil Station	Date Received: 01/12/07
	Client Contact: Steve Carmack	Date Extracted: 01/17/07
Oakland, CA 94610	Client P.O.:	Date Analyzed 01/17/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0701261

7 1 75	1	,		0501041 0045		-	
Lab ID		0701261-006B					
Client ID		MW6					
Matrix				Water			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	10	Acrolein (Propenal)	ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	5.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	1.0
Chloroform	0.58	1.0	0.5	Chloromethane	ND	1.0	0.5
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane	ND	1.0	0.5
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	ND	1.0	0.5
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND	1.0	0.5
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	0.5
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND	1.0	0.5
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5
Hexachloroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene	ND	1.0	0.5
Methyl-t-butyl ether (MTBE)	7.7	1.0	0.5	Methylene chloride	ND	1.0	0.5
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	ND	1.0	0.5
Nitrobenzene	ND	1.0	10	n-Propyl benzene	ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5
Vinvl Chloride	ND	1.0	0.5	Xvlenes	ND	1.0	0.5

 %SS1:
 106
 %SS2:
 96


 %SS3:
 87

Surrogate Recoveries (%)

Comments:

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

P & D Environmental	Client Project ID: #0055 Former Haber	Date Sampled: 01/11/07
55 Santa Clara, Ste.240	Oil Station	Date Received: 01/12/07
55 Santa Ciara, Stc.240	Client Contact: Steve Carmack	Date Extracted: 01/17/07
Oakland, CA 94610	Client P.O.:	Date Analyzed 01/17/07

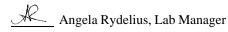
Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0701261

Lab ID				0701261-007B			
Client ID				MW7			
Matrix				Water			
Compound	Concentration *	DF	Reporting Limit	Commound		DF	Reporting Limit
Acetone	ND	1.0	10	Acrolein (Propenal)	37	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5

	1	1	1	1	ſ		
Acetone	ND	1.0	10	Acrolein (Propenal)	37	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	5.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	1.0
Chloroform	0.86	1.0	0.5	Chloromethane	ND	1.0	0.5
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane	ND	1.0	0.5
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	ND	1.0	0.5
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND	1.0	0.5
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	0.5
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND	1.0	0.5
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5
Hexachloroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene	ND	1.0	0.5
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride	ND	1.0	0.5
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	ND	1.0	0.5
Nitrobenzene	ND	1.0	10	n-Propyl benzene	ND	1.0	0.5
Styrene	1.6	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	1.1	1.0	0.5
Toluene	9.7	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5

Surrogate Recoveries (%)								
%SS1:	106	%SS2:	96					
%SS3:	87							


Comments:

Vinvl Chloride

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

ND

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

P & D Environmental	Client Project ID: #0055 Former Haber	Date Sampled: 01/11/07
55 Santa Clara, Ste.240	Oil Station	Date Received: 01/12/07
	Client Contact: Steve Carmack	Date Extracted: 01/17/07
Oakland, CA 94610	Client P.O.:	Date Analyzed 01/17/07

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0701261

Lab ID		0701261-008B							
Client ID				MW8					
Matrix				Water					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit		
Acetone	ND	1.0	10	Acrolein (Propenal)	ND	1.0	5.0		
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5		
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5		
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5		
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5		
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	5.0		
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5		
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5		
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5		
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	1.0		
Chloroform	0.68	1.0	0.5	Chloromethane	ND	1.0	0.5		
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5		
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane	ND	1.0	0.5		
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5		
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5		
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5		
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5		
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	ND	1.0	0.5		
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND	1.0	0.5		
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	0.5		
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5		
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND	1.0	0.5		
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5		
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5		
Hexachloroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5		
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene	ND	1.0	0.5		
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride	ND	1.0	0.5		
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	ND	1.0	0.5		
Nitrobenzene	ND	1.0	10	n-Propyl benzene	ND	1.0	0.5		
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5		
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5		
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5		
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5		
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5		
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5		
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5		
Vinvl Chloride	ND	1.0	0.5	Xvlenes	ND	1.0	0.5		
		Surr	ogate Re	ecoveries (%)					
%SS1:	106			%SS2:	96				
	1								

Comments:

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

P & D Environmental	Client Project ID: #0055 Former Haber Oil Station	Date Sampled:	01/11/07
55 Santa Clara, Ste.240	On Station	Date Received:	01/12/07
Oakland, CA 94610	Client Contact: Steve Carmack	Date Extracted:	01/13/07-01/19/07
Guidane, C.17 1010	Client P.O.:	Date Analyzed	01/13/07-01/19/07
Gasoline Ra	ange (C6-C12) Volatile Hydrocarbons as Ga	asoline *	
Extraction method SW5020B	Analytical methods SW/9015Cm		Work Order: 0701261

	Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline *											
Extraction method SW50	30B	Analytical meth	ods SW8015Cm	Work Order: 070	01261							
Lab ID	Client ID	Matrix	TPH(g)	DF	% SS							
001A	MW1	w	ND	1	99							
002A	MW2	w	18,000,a	10	96							
003A	MW3	w	240,b	1	103							
004A	MW4	w	69,a	1	104							
005A	MW5	W	ND	1	96							
006A	MW6	w	ND	1	93							
007A	MW7	w	ND	1	100							
008A	MW8	W	ND	1	98							
	g Limit for DF =1; s not detected at or	W	50	με	g/L							
	s not detected at or	S	NA	N	Α							

Reporting Limit for Dr =1,	W	50	μg/L
ND means not detected at or	9	NΑ	NΑ
above the reporting limit	5	IVA	IVA

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

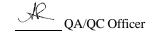
QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0701261

EPA Method SW8260B	E	xtraction	SW5030)B		BatchID: 25710 Spiked Sample ID: 0701260-001A						
Analyte	Sample	Spiked	MS	MSD	MS-MSD LCS LCSD LCS-LCSD			LCS-LCSD	Acceptance Criteria (%)			
Allaryto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME	ND	10	92.2	90.9	1.35	88.7	95.7	7.61	70 - 130	30	70 - 130	30
Benzene	ND	10	124	117	5.30	117	123	4.92	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	91.1	107	16.3	92.4	104	11.8	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	105	100	5.05	102	109	6.58	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	105	100	4.29	101	105	3.91	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	115	112	2.62	107	118	9.97	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	85.7	80.3	6.42	82.3	90.1	9.01	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	109	103	5.67	103	111	7.09	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	101	97	4.11	95.6	103	7.15	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	102	99.8	1.87	96.1	105	9.05	70 - 130	30	70 - 130	30
Toluene	ND	10	108	98.5	9.34	107	109	2.36	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	78.3	75.2	4.01	74.8	83	10.5	70 - 130	30	70 - 130	30
%SS1:	114	10	111	110	1.17	110	109	1.11	70 - 130	30	70 - 130	30
%SS2:	101	10	99	94	5.06	100	95	5.66	70 - 130	30	70 - 130	30
%SS3:	104	10	104	101	2.85	101	100	1.16	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 25710 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0701261-001	1/11/07 12:00 PM	1/18/07	1/18/07 12:49 AM	0701261-002	1/11/07 3:35 PM	1/16/07	1/16/07 5:35 PM
0701261-003	1/11/07 2:40 PM	1/16/07	1/16/07 6:19 PM	0701261-004	1/11/07 1:40 PM	1/16/07	1/16/07 7:03 PM
0701261-005	1/11/07 10:15 AM	1/18/07	1/18/07 1:35 AM	0701261-006	1/11/07 2:35 PM	1/17/07	1/17/07 12:58 AM
0701261-007	1/11/07 1:35 PM	1/17/07	1/17/07 1:42 AM	0701261-008	1/11/07 3:00 PM	1/17/07	1/17/07 2:26 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com

Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8021B/8015Cm

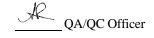
W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0701261

EPA Method SW8015Cm	E	xtraction	0B	BatchID: 25712 Spiked Sample ID: 0701261-008					A80			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Ad	cceptan	ce Criteria (º	%)
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex [£]	ND	60	104	99.4	4.04	86.1	103	17.7	70 - 130	30	70 - 130	30
MTBE	ND	10	80.9	89.2	9.76	91.7	81.7	11.5	70 - 130	30	70 - 130	30
Benzene	ND	10	98.5	112	13.2	91.8	110	17.9	70 - 130	30	70 - 130	30
Toluene	ND	10	90.4	101	11.0	84.2	103	19.9	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	91.6	107	15.6	92.2	109	16.4	70 - 130	30	70 - 130	30
Xylenes	ND	30	96	103	7.36	91	110	18.9	70 - 130	30	70 - 130	30
%SS:	98	10	100	114	13.4	94	116	20.8	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 25712 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0701261-001	1/11/07 12:00 PM	1/16/07	1/16/07 3:20 PM	0701261-002	1/11/07 3:35 PM	1/17/07	1/17/07 2:52 AM
0701261-003	1/11/07 2:40 PM	1/13/07	1/13/07 2:24 AM	0701261-004	1/11/07 1:40 PM	1/13/07	1/13/07 2:56 AM
0701261-005	1/11/07 10:15 AM	1/13/07	1/13/07 3:28 AM	0701261-006	1/11/07 2:35 PM	1/13/07	1/13/07 4:00 AM
0701261-007	1/11/07 1:35 PM	1/13/07	1/13/07 4:32 AM	0701261-008	1/11/07 3:00 PM	1/13/07	1/13/07 5:04 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

