RECEIVED

By lopprojectop at 4:02 pm, Mar 22, 2006

March 15, 2006

Letter 0055.L65

Mr. Amir Gholami

Alameda County Department of Environmental Health

1131 Harbor Bay Parkway, Suite 250

Alameda, CA 94502

SUBJECT: QUARTERLY GROUNDWATER MONITORING AND SAMPLING REPORT

(February 15, 2006 SAMPLING EVENT) CERTIFICATION

Former Haber Oil Station

1401 Grand Ave.

San Leandro, California

Dear Mr. Gholami:

You will find enclosed one copy of the following report prepared by P&D Environmental, Inc.

 Quarterly Groundwater Monitoring and Sampling Report dated March 14, 2006 (document 0055.R26) for monitoring and sampling on February 15, 2006

I declare, under penalty of perjury, that the information and/or recommendations contained in the above-mentioned report for the subject site is true and correct to the best of my knowledge.

Should you have any questions, please do not hesitate to contact me at (510) 785-0565.

Sincerel

Manmohan Chopra

Enclosure

0055.L65

P & D ENVIRONMENTAL, INC.

55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916

March 20, 2006 Letter 0055,L67

Mr. Manmohan Chopra 29211 Marshbrook Drive Hayward, CA 94545 RECEIVED

By lopprojectop at 4:02 pm, Mar 22, 2006

SUBJECT:

QUARTERLY GROUNDWATER MONITORING AND SAMPLING

REPORT (February 15, 2006 SAMPLING EVENT) TRANSMITTAL

Former Haber Oil Station

1401 Grand Ave.

San Leandro, California

Dear Mr. Chopra:

You will find enclosed two copies of the quarterly groundwater monitoring and sampling report 0055.R26 dated March 14, 2006 for the subject site. All of the wells were monitored and sampled on February 15, 2006.

One copy of the report is for your use to include in a reimbursement request submittal to the California State Water Resources Control Board Underground Storage Tank Cleanup Fund. A second copy is for your records.

In addition, one copy of the report has been forwarded by P&D Environmental, Inc. to the City of San Leandro with a copy of the completed Environmental Report Deposit Refund Form to satisfy City permit requirements.

Effective January 31, 2006, the Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's FTP site. Paper copies of reports will no longer be accepted.

Submission of reports to the Alameda county FTP site is in addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) GeoTracker website. Submission of reports to the GeoTracker website does not fulfill the requirement to submit documents to the Alameda County FTP site.

The Alameda County Environmental Cleanup Oversight Program still requires a certification letter to accompany the submittal of the report. A copy of the suggested transmittal letter was sent to you by e-mail for your convenience (Letter 0055.L65).

P&D Environmental, Inc. will upload a PDF copy of Report 0055.R26 with your certification letter to both the Alameda County FTP site as well as the SWRCB GeoTracker website within the next few business days.

March 20, 2006 0055.L67

Should you have any questions or comments, please do not hesitate to contact us at (510) 658-6916.

Sincerely,

P&D Environmental, Inc.

Paul H. King

President
Professional Goole

Professional Geologist #5901

Fend W. King

Expires 12/31/07

Enclosures

PHK/eal 0055.L67

P & D ENVIRONMENTAL, INC.

55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916

March 14, 2006 Report 0055.R26

Mr. Manmohan Chopra 29211 Marshbrook Drive Hayward, CA 94545

SUBJECT: QUARTERLY GROUNDWATER MONITORING AND SAMPLING REPORT

(FEBRUARY 15, 2006 SAMPLING EVENT)

Former Haber Oil Station 1401 Grand Avenue San Leandro, California

Dear Mr. Chopra:

P&D Environmental, Inc. (P&D) is pleased to present this report documenting the results of the most recent quarterly monitoring and sampling of the eight groundwater monitoring wells at or near the subject site. This work was performed in accordance with P&D's proposal 022698.P1 dated February 26, 1998. All of the wells were monitored and sampled on February 15, 2006. A Site Location Map (Figure 1) and Site Vicinity Map (Figure 2) are attached with this report.

BACKGROUND

The site is presently used as an active gasoline station. It is P&D's understanding that on April 24, 1991 Aegis Environmental, Inc. (Aegis) personnel drilled four soil borings, designated as B-1 through B-4, to a vertical depth of approximately 40 feet at the site. The locations of the borings are shown on Figure 2. A total of nine soil samples collected from the boreholes were analyzed for total petroleum hydrocarbons as gasoline (TPH-G); Benzene, Toluene, Ethylbenzene, and total Xylenes (BTEX) by EPA Method 8260; and for total lead by EPA Method 7420. TPH-G concentrations ranged from below detection limit to 66 milligram per kilogram (mg/kg). Benzene concentrations ranged from not detected to 0.94 mg/kg. Total lead concentrations ranged from not detected to 3 mg/kg. Documentation of the subsurface investigation and results are presented in a report prepared by Aegis titled, "Soil Boring Results Report," dated June 10, 1991.

It is P&D's understanding that on April 14, 1992 Aegis personnel returned to the site to drill three slant borings, designated as B5 through B7, to a total vertical depth of approximately 49 feet at the site. The borings were drilled at an angle of approximately 26 to 28 degrees to collect samples from beneath the underground storage tanks. The locations of the borings are shown on Figure 2. A total of twenty-two soil samples were analyzed for TPH-G using EPA Method 5030, and for BTEX using EPA Method 8240. In addition, one of the samples was analyzed for total lead using EPA Method 7420, and several of the soil samples were analyzed for soluble lead using the California Waste Extraction Test. TPH-G concentrations ranged from not detected to 4,000 mg/kg. Benzene, concentrations ranged from not detected to 11 mg/kg. Total lead was not detected, and soluble lead concentrations ranged from not detected to 0.061 mg/kg. Documentation of the subsurface investigation and results are presented in a report prepared by Aegis titled, "Initial Subsurface Investigation Results Report," dated June 22, 1992.

It is P&D's understanding that between September 15 and 18, 1992 Aegis personnel returned to the site to install five groundwater monitoring wells, designated as MW1 through MW5. The wells were drilled to total depths of between 50 and 55 feet, and were constructed using four-inch diameter PVC pipe. Wells MW1 and MW2 were constructed with perforated casing between the depths of approximately 15 and 55 feet. Wells MW3, MW4 and MW5 were constructed with perforated casing between the depths of approximately 35 and 55 feet. Groundwater was reported as first encountered at a depth of 42 feet. The well locations are shown in Figure 2.

A total of thirty-one soil samples were analyzed for TPH-G using EPA Method 5030/8015; and for BTEX using EPA Method 8020. In addition, three soil samples containing TPH-G were analyzed for total metals concentrations of cadmium, chromium, lead, and zinc using EPA Method 6010 and 7421. One soil sample was collected from each borehole from below the airwater interface and analyzed for petrophysical properties, including saturated permeability and grain size distribution.

TPH-G concentrations ranged from not detected to 39 mg/kg. Benzene concentrations ranged from not detected to 0.27 mg/kg. The total metals concentrations were all less than 10 times their respective STLC values. The subsurface materials encountered in the borings indicate that soil types vary across the site, but generally consist of silty clay, silt, clayey silt and sandy silt from the surface to a depth of between 30 and 35 feet. Below the depth of 30 to 35 feet, layers of sand and sandy silt were reported to have been encountered.

It is P&D's understanding that on September 29, 1992 Aegis personnel collected groundwater samples from wells MW1, MW2, MW4 and MW5 at the site. A sample was not collected from well MW3 due to the reported presence of 0.02 feet of floating hydrocarbons. The measured depth to water ranged from approximately 41.5 to 44.5 feet. The samples were analyzed for TPH-G using EPA Method 5030/8015; and for BTEX using EPA Method 8020. TPH-G concentrations ranged from 0.06 to 20 mg/L, and benzene concentrations ranged from 0.16 to 10 mg/L. Based upon the water level measurements in the wells, the groundwater flow direction was reported to be to the northwest. The water level measurements are summarized in Table 1. The analytical results are summarized in Table 2.

It is P&D's understanding that on October 7, 1992 Aegis personnel performed rising head slug tests wells MW1, MW2, and MW4 to estimate the saturated hydraulic conductivity at the site. In addition, two short-term soil vapor extraction tests were performed on wells MW1 and MW2. Wells MW3, MW4, and MW5 were used as vacuum influence monitoring points. Documentation of the monitoring well groundwater sample collection, slug test and vapor extraction tests are presented in a report prepared by Aegis titled, "Problem Assessment Report," dated December 16, 1992.

On February 18, 1994 P&D personnel monitored the five groundwater monitoring wells at the site for depth to water and the presence of free product or sheen. The depth to water was measured using an electric water level indicator, and the presence of free product and sheen was evaluated using a transparent bailer. The measured depth to water in the wells ranged from approximately 39.8 to 42.9 feet. No evidence of free product or sheen was detected in any of the wells. Based on the measured depth to water in the wells, the groundwater flow direction was calculated to be to the north with a gradient of 0.054. In a letter dated October 19, 1995 Mr.

Scott Seery of the Alameda County Department of Environmental Health (ACDEH) requested that all of the onsite and offsite wells be monitored and sampled for the quarterly monitoring and sampling program. The measured depth to water in the wells is presented in Table 1.

On June 15 and 16, 1995 P&D installed three offsite monitoring wells, designated as MW6 through MW8. The locations of the wells are shown on Figure 2. Documentation of the well installation and sample results is presented in P&D's report 0055.R5 dated August 23, 1995.

The underground storage tanks at the subject site were replaced in the first half of 1997. Following removal of the tanks, excavation of soil was performed in the area surrounding well MW1. As a result of the excavation activities, the elevation at the top of well MW1 was altered. The present elevation for the top of well MW1 is unknown.

In January 2003 Ms. Eva Chu of the ACDEH requested that the wells be analyzed for fuel oxygenates using EPA Method 8260. In a letter dated June 20, 2003 Ms. Chu requested that the analysis be continued.

FIELD ACTIVITIES

On February 15, 2006 all eight of the wells in the groundwater monitoring network for the site were monitored, purged, and sampled by P&D personnel. The wells were monitored for depth to water and the presence of free product or sheen. Depth to water was measured to the nearest 0.01 foot using an electric water level indicator. The presence of sheen was evaluated using a transparent bailer. No free product or sheen was observed in any of the wells. Depth to water level measurements and monitoring well groundwater surface elevations are presented in Table 1.

Prior to sampling, the wells were purged of a minimum of approximately three casing volumes of water. Slight to strong petroleum hydrocarbon odors were detected in purge water from wells MW2, MW3, and MW4. During purging operations, the field parameters of electrical conductivity, temperature and pH were monitored. Once the field parameters were observed to stabilize, and a minimum of approximately three casing volumes had been purged, water samples were collected using a clean Teflon bailer. The water samples were transferred to 40-milliliter glass Volatile Organic Analysis (VOA) vials, which were sealed with Teflon-lined screw caps. The VOA vials were overturned and tapped to ensure that no air bubbles were present.

The VOA vials were then transferred to a cooler with ice, and later were transported to McCampbell Analytical, Inc. in Pacheco, California. McCampbell Analytical, Inc. is a Statecertified hazardous waste testing laboratory. Chain of custody documentation accompanied the samples to the laboratory. Records of the field parameters measured during well purging are attached with this report.

GEOLOGY AND HYDROGEOLOGY

The subsurface materials encountered in the borings drilled by Aegis indicate that soil types vary across the site, but generally consist of silty clay, silt, clayer silt, and sandy silt from the surface to a depth of between 30 and 35 feet. Below the depth of 30 to 35 feet, layers of sand and sandy silt

were reported to have been encountered. Groundwater has historically been encountered at the site at depths ranging from approximately 40 to 45 feet below grade.

Based upon the regional groundwater flow direction identified by Woodward-Clyde Consultants in a report titled, "Hydrogeology of Central San Leandro and Remedial Investigation of Regional Groundwater Contamination - San Leandro Plume - San Leandro, California - Volume I," prepared for the California Environmental Protection Agency and dated December 29, 1993 the regional groundwater flow direction to the west of the site appears to be to the southwest. However, based upon the measured depth to water in the five wells at the site on September 29, 1992 Aegis identified a northwesterly groundwater flow direction. Based upon water level measurements collected by P&D from the five wells at the site on February 18, July 5, and October 12, 1994, February 1, and May 4, 1995 the groundwater flow direction at the site was calculated to be to the north, towards San Leandro Creek. Based upon water level measurements collected in wells MW1 through MW8 by P&D personnel on June 23 and December 19, 1995, March 28 and June 21, 1996 the groundwater flow direction was calculated to be to the northwest.

Since the previous quarterly monitoring on November 14, 2005, groundwater elevations have increased in all of the wells by amounts ranging from 2.59 to 3.03 feet. Based on the measured water levels in the wells, the groundwater flow direction on February 15, 2006 was to the northwest with a gradient of 0.050.

The northwesterly groundwater flow direction has remained relatively unchanged and the gradient has decreased from 0.055 since the previous water level measurements on November 14, 2005. The groundwater monitoring data are presented in Table 1. The groundwater flow direction at the site on November 14, 2005 is shown on Figure 2.

LABORATORY RESULTS

All of the groundwater samples collected from the monitoring wells were analyzed for TPH-G using Modified EPA Method 8015C and for Volatile Organic Compounds (VOCs), including fuel oxygenates and lead scavengers using EPA Method 8260B in accordance with a request from Ms. Eva Chu of the ACDEH.

The laboratory analytical results for the groundwater samples from wells MW1, MW2, MW3 and MW4 show that TPH-G was detected at concentrations of 0.095, 38, 0.56 and 0.22 mg/L, respectively. TPH-G was not detected in any of the other wells. MTBE was detected in wells MW1, MW2, MW3, MW4 and MW6 at concentrations of 0.18, 2, 2.6, 1.1 and 0.0025 mg/L, respectively. MTBE was not detected in wells MW5, MW7, or MW8.

BTEX compounds were not detected in any of the wells with the exception of well MW2 where concentrations ranged from 2 to 6.6 mg/L. No fuel oxygenates or lead scavengers other than MTBE were detected in any of the groundwater samples.

In well MW2, 1,2,4-trimethylbenzene, naphthalene and 1,3,5-trimethylbenzene were detected at concentrations of 1.8, 0.24 and 0.36 mg/L, respectively. None of these compounds were detected in any of the other wells. Chloroform was detected in well MW8 at a concentration of 0.00098

mg/L and was not detected in any of the other wells. Tetrachloroethene (PCE) was detected in wells MW1, MW2, MW3, MW4, MW5, MW6 and MW7 at concentrations of 0.016, 0.24, 0.1, 0.024, 0.012, 0.00075 and 0.0043 mg/L, respectively, and was not detected in well MW8.

Since the previous sampling event on November 14, 2005, TPH-G concentrations have decreased in wells MW2, increased in wells MW1, MW3 and MW4, and remained not detected in the remaining wells. MTBE concentrations have decreased in wells MW4 and MW5, increased in wells MW1, MW3, and MW6, remained the same in well MW2, and remained not detected in wells MW7 and MW8. The benzene concentration decreased in well MW2 and remained not detected in all other wells. PCE was detected for the first time in wells MW1 through MW5 since EPA method 8260 analysis began on January 20, 2003.

The laboratory analytical results are summarized in Table 2. Copies of the laboratory analytical report and chain of custody documentation are attached with this report.

DISCUSSION AND RECOMMENDATIONS

Based on the depth to water measurements on February 15, 2006 for monitoring wells MW4, MW6, MW7, and MW8, the groundwater flow direction at the subject site has remained northwesterly and the gradient has decreased since the previous monitoring and sampling event on November 14, 2005.

Since the previous sampling event, TPH-G concentrations have decreased in well MW2, increased in wells MW1, MW3 and MW4, and remained not detected in the remaining wells. MTBE concentrations have decreased in wells MW4 and MW5, increased in wells MW1, MW3 and MW6, remained the same in well MW2 and remained not detected in the remaining wells. The benzene concentration decreased in well MW2 and remained not detected in all other wells. No fuel oxygenates or lead scavengers other than MTBE were detected in any of the groundwater samples.

PCE was detected for the first time in wells MW1 through MW5 since EPA method 8260 analysis began on January 20, 2003. The near-detection limit concentrations of halogenated volatile organic compounds (HVOCs) detected in wells MW5 through MW8 are consistent with historic results detected in these wells. The detected HVOCs are interpreted to be associated with sources not related to the subject site.

Based on the sample results P&D recommends that the quarterly groundwater monitoring and sampling program be continued.

DISTRIBUTION

A copy of this report will be uploaded to the ACDEH and State Water Resources Control Board GeoTracker databases.

LIMITATIONS

This report was prepared solely for the use of Mr. Manmohan Chopra. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and pits and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities, which is used in this report. This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

Should you have any questions, please do not hesitate to contact us at (510) 658-6916.

Sincerely,

P&D Environmental, Inc.

Paul H. King President

Professional Geologist #5901

1) and H. King

Expires: 12/31/07

Attachments: Tables 1 & 2

Site Location Map (Figure 1) Site Vicinity Map (Figure 2) Field Parameter Forms

Laboratory Analytical Reports Chain of Custody Documentation

PHK/efo 0055.R26

TABLE 1 WELL MONITORING DATA

Well	Date	- Top of Casing	Depth to	Water Table
No.	Monitored	Elevation (ft.)	Water (ft.)	Elevation (ft.)
MW1	2/15/06	Not Available	36.88	Not Available
	11/14/05	Not Available	39.77	Not Available
	8/31/05	Not Available	39.27	Not Available
	6/22/05	Not Available	37.91	Not Available
	2/09/05	Not Available	38.02	Not Available
	8/31/04	Not Available	40.35	Not Available
	6/03/04	Not Available	39.59	Not Available
	2/20/04	Not Available	38.45	Not Available
	11/25/03	Not Available	40.00	Not Available
	7/15/03	Not Available	39.60	Not Available
	4/16/03	Not Available	38.91	Not Available
	1/20/03	Not Available	38.21	Not Available
	2/16/99	Not Available	34.58	Not Available
	1/25/98	Not Available	33.70	Not Available
	7/14/97	Not Available	39.45	Not Available
	3/11/97	87.98+	36.90	51.08
	6/21/96		38.56	49.42
	3/28/96		37.10	50.88
	12/19/95		40.16	47.82
	6/23/95		38.54	49,44
	5/04/95	87.96++	37.65	50.33
	2/01/95		38.46	49.52
	10/12/94		42.01	45.97
	7/05/94		41.36	46.62
	2/18/94		41.02	46.96
	9/29/92		42.77	45.21
	1141114		· / /	

NOTES:

ft. = Feet.

^{+ =} Indicates survey data provided by Kier & Wright dated June 26, 1995.

^{++ =} Indicates survey data provided by Aegis Environmental

Well	Date	Top of Casing	Depth to	Water Table
No.	Monitored	Elevation (ft.)	Water (ft.)	Elevation (ft.)
MW2	2/15/06	86.61+	35.78	50.83
IVI VV Z		60.01 ⁺	38.50	48.11
	11/14/05 8/31/05		38.00	48.61
			36.76	49.85
	6/22/05			
	2/10/05		37.15	49.46
	8/31/04		39.07	47.54
	6/03/04		38.32	48.29
	2/20/04		37.27	49.34
	11/25/03		38.68	47.93
	7/15/03		38.15	48.46
	4/16/03		37.50	49.11
	1/20/03		37.04	49.57
	2/16/99		33.51	53.10
	1/25/98		32.80	53.81
	7/14/97		38.46	48.15
	3/11/97		35.71	50.90
	6/21/96		37.30	49.31
	3/28/96		35.97	50.64
	12/19/95		38.80	47.81
	6/23/95		37.40	49.21
	5/04/95	86.60++	36.54	50.07
	2/01/95	00.00	37.27	49.34
	10/12/94		40.77	45.84
	7/05/94		40.13	46.48
			39.81	46.80
	2/18/94			
	9/29/92		41.55	45.06

NOTES:

Elevations are in feet above Mean Sea Level.

ft. = Feet.

^{+ =} Indicates survey data provided by Kier & Wright dated June 26, 1995.

^{+++ =} Indicates survey data provided by Aegis Environmental

Well	Date	Top of Casing	Depth to	Water Table
No.	Monitored	Elevation (ft.)	Water (ft.)	Elevation (ft.)
MW3	2/15/06	87.48+	38.56	48.92
	11/14/05		41.51	45.97
	8/31/05		41.12	46.36
	6/22/05		39.78	47.70
	2/10/05		40.11	47.37
	8/31/04		42.03	45.45
	6/03/04		41.34	46.14
	2/20/04		40.23	47.25
	11/25/03		41.70	45.78
	7/15/03		41.34	46.14
	4/16/03		40.60	46.88
	1/20/03		39.81	47.67
	2/16/99		34.91	52.57
	1/25/98		33.91	53.57
	7/14/97		40.61	46.87
	3/11/97		38.71	48.77
	6/21/96		40.61	46.87
	3/28/96		38.75	48.73
	12/19/95		42.20	45.28
	6/23/95		40.65	46.83
	5/04/95	87.50++	39.61	47.87
	2/01/95		40.13	47.35
	10/12/94		43.92	43.56
	7/05/94		43.32	44.16
	2/18/94		43.09	44.39
	9/29/92		44.60	42.88*

NOTES:

ft. = Feet.

^{+ =} Indicates survey data provided by Kier & Wright dated June 26, 1995.

^{++ =} Indicates survey data provided by Aegis Environmental, Inc.

^{** =} Indicates depth to water measurements prior to groundwater monitoring well development.

Well	Date	Top of Casing	Depth to	Water Table
No.	Monitored	Elevation (ft.)	Water (ft.)	Elevation (ft.)
MW4	2/15/06	86,21+	35.57	50.64
	11/14/05	00.21	38.26	47.95
	8/31/05		37.81	48.40
	6/22/05		36,54	49.67
	2/10/05		36,99	49.22
	8/31/04		38.68	47.53
	6/03/04		38.01	48.20
	2/20/04		36.91	49.30
	11/25/03		38.43	47.78
	7/15/03		38.04	48.17
	4/16/03		37.32	48.89
	1/20/03		36.70	49.51
	2/16/99		33.43	52.78
	1/25/98		32.96	53.25
	7/14/97		38.10	48.11
	3/11/97		33.24	52.97
	6/21/96		37.12	49.09
	3/28/96		35.00	51.21
	12/19/95		38.45	47.76
	6/23/95		37.40	48.81
	5/04/95	86.20++	36.33	49.88
	2/01/95		36.96	49.25
	10/12/94		40.48	45.73
	7/05/94		39.69	46.52
	2/18/94		39.36	46.85
	9/29/92		44.29	41.92

NOTES:

ft. = Feet.

^{+ =} Indicates survey data provided by Kier & Wright dated June 26, 1995.

^{++ =} Indicates survey data provided by Aegis Environmental, Inc.

Well	Date	Top of Casing	Depth to	Water Table
No.	Monitored	Elevation (ft.)	Water (ft.)	Elevation (ft.)
MW5	2/15/06	89.10+	38.08	51.02
	11/14/05		41.11	47.99
	8/31/05		40.68	48.42
	6/22/05		39.28	49.82
	2/09/05		39.49	49.61
	8/31/04		41.75	47.35
	6/03/04		40.95	48.15
	2/20/04		39.69	49.41
	11/25/03		41.41	47.69
	7/15/03		41.06	48.04
	4/16/03		39.92	49.18
	1/20/03		39.50	49.60
	2/16/99		35.08	54.02
	1/25/98		34.08	55.02
	7/14/97		41.20	47.90
	3/11/97		38.02	51.08
	6/21/96		40.03	49.07
	3/28/96		38.30	50.80
	12/19/95		41.79	47.31
	6/23/95		39.87	49.23
	5/04/95	89.06++	38.94	50.16
	2/01/95		39.94	49.16
	10/12/94		43.81	45.29
	7/05/94		43.08	46.02
	2/18/94		42.88	46.22
	9/29/92		44.53	44.57

NOTES:

ft. = Feet.

^{+ =} Indicates survey data provided by Kier & Wright dated June 26, 1995.

^{++ =} Indicates survey data provided by Aegis Environmental, Inc.

Well No.	Date Monitored	Top of Casing Elevation (ft.)	Depth to Water (ft.)	Water Table Elevation (ft.)
MW6	2/15/06	84.02+	36.13	47.89
	11/14/05		38.83	45.19
	8/31/05		38.51	45.51
	6/22/05		37.30	46.72
	2/09/05		37.51	46.51
	8/31/04		39.27	44.75
	6/03/04		38.64	45.38
	2/20/04		37.61	46.41
	11/25/03		38.97	45.05
	7/15/03		38.61	45.41
	4/16/03		38.00	46.02
	1/20/03		37.21	46.81
	2/16/99		32.82	51.20
	1/25/98		31.64	52.38
	7/14/97		39.04	44.98
	3/11/97		36.32	47.70
	6/21/96		38.00	46.02
	3/28/96		36.18	47.84
	12/19/95		39.25	44.77
	6/23/95		38.17	45.85
	6/21/95**		38.11	45.91

NOTES:

ft = Feet

^{+ =} Indicates survey data provided by Kier & Wright dated June 26, 1995.

^{++ =} Indicates survey data provided by Aegis Environmental, Inc.

^{** =} Indicates depth to water measurements prior to groundwater monitoring well development.

Well No.	Date Monitored	Top of Casing Elevation (ft.)	Depth to Water (ft.)	Water Table Elevation (ft.)
MW7	2/15/06	87.11+	38.59	48.52
	11/14/05		41.48	45.93
	8/31/05		41.16	45.95
	6/22/05		39.85	47.26
	2/09/05		40.03	47.08
	8/31/04		41.94	45.17
	6/03/04		41.33	45.78
	2/20/04		40.21	46.90
	11/25/03		41.68	45.43
	7/15/03		41.30	45.81
	4/16/03		40.63	46.48
	1/20/03		39.77	47.34
	2/16/99		34.59	52.52
	1/25/98		33.47	53.64
	7/14/97		41.97	45.14
	3/11/97		38.96	48.15
	6/21/96		40.80	46.31
	3/28/96		38.94	48.17
	12/19/95		42.26	44.85
	6/23/95		41.00	46.11
	6/21/95**		40.30	46.81

NOTES:

ft = Feet

^{+ =} Indicates survey data provided by Kier & Wright dated June 26, 1995.

^{** =} Indicates depth to water measurements prior to groundwater monitoring well development

Well No.	Date Monitored	Top of Casing Elevation (ft.)	Depth to Water (ft.)	Water Table Elevation (ft.)
		, ,		
MW8	2/15/06	89.70+	37.44	52.26
	11/14/05		40.40	49.30
	8/31/05		39.95	49.75
	6/22/05		38.43	51.27
	2/09/05		38.93	50.77
	8/31/04		41.19	48.51
	6/03/04		40.36	49.34
	2/20/04		39.15	50.55
	11/25/03		40.92	48.78
	7/15/03		40.50	49.20
	4/16/03		39.52	50.18
	1/20/03		38.94	50.76
	2/16/99		33.92	55.78
	1/25/98		32.73	56.97
	7/14/97		39.98	49.72
	3/11/97		36.74	52.96
	6/21/96		38.69	51.01
	3/28/96		36.98	52.72
	12/19/95		40.35	49.35
	6/23/95		38.36	51.34
	6/21/95**		38.20	51.50

NOTES:

Elevations are in feet above Mean Sea Level.

Ft = Feet

^{+ =} Indicates survey data provided by Kier & Wright dated June 26, 1995.

^{** =} Indicates depth to water measurements prior to groundwater monitoring well development.

TABLE 2 GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW1)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
02/15/06	0.095,a	0.18	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND, except Tetrachloroethene = 0.016
11/14/05	ND<0.05	0.049	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005
08/31/05	ND<0.05	0.14	ND<0.0025	ND<0.0025	ND<0.0025	ND<0.0025	ND
06/22/05	ND<0.05	0.32	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

a = No recognizable pattern.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW1 Continued)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
02/09/05	0.13	0.79	ND<0.01	ND<0.01	ND<0.01	ND<0.01	ND
08/31/04	ND<0.05	0.031	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
06/03/04	0.059	0.13	ND<0.0025	ND<0.0025	ND<0.0025	ND<	ND
02/20/04	0.22	0.18	0.0085	ND<0.005	ND<0.005	0.0025	ND
11/25/03	0.140	0.032	0.0025	ND<0.001	ND<0.001	ND<0.001	ND
07/15/03	0.060	0.053	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND, except t-Butyl Alcohol (TBA) = 0.012
04/17/03	0.052	0.056	0.0011	ND<0.001	ND<0.001	ND<0.001	ND, except t-Butyl Alcohol (TBA) = 0.013
01/20/03	0.17	0.085	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND
02/17/99	0.97	0.29	0.067	0.12	0.0093	0.058	
01/25/98	0.30	ND<0.014	0.021	0.00073	0.0076	0.0010	
07/14/97	0.20	0.035	0.020	0.0055	0.0012	0.0023	
03/11/97	0.60	0.014	0.053	0.00095	0.003	0.0015	
06/21/96	1.4	0.019	0.30	0.0087	0.033	0.0098	
03/28/96	1.3	0.022	0.32	0.0023	0.034	0.0046	
12/19/95	0.50	0.0081	0.087	0.0015	0.011	0.0035	
06/23/95	Not	Sampled					
05/4/95	2.4		0.67	0.0028	0.076	0.0060	
	4.7		0.07	0.0020	0.070		
02/01/95	4.6		1.8	0.0028	0.23	0.030	
02/01/95 10/12/94							
	4.6		1.8	0.0099	0.23	0.030	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

-- = Sample not analyzed for this compound during this sampling event.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW2)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
02/15/06	38	2	3.7	2.7	2	6.6	ND, except 1,2,4-Trimethylbenzene = 1.8 Naphthalene = 0.24 Tetrachloroethene = 0.24 1,3,5-Trimethylbenzene = 0.36
11/14/05	42	2	4.5	2.1	1.5	6.3	ND, except Isopropylbenzene = 0.051 1,2,4-Trimethylbenzene = 1.1 Naphthalene = 0.29 n-Propyl benzene = 0.13 1,3,5-Trimethylbenzene = 0.22
08/31/05	43	3.6	5.8	2.3	2.3	8.3	ND, except 1,2,4-Trimethylbenzene = 1.9 Naphthalene = 0.65 n-Propyl benzene = 0.26 1,3,5-Trimethylbenzene = 0.43
06/22/05	37	3.9	5.5	1.4	2.5	8.6	ND, except 1,2,4-Trimethylbenzene = 1.5 Naphthalene = 0.33 n-Propyl benzene = 0.22 1,3,5-Trimethylbenzene = 0.32
02/10/05	46	5.6	5.8	3.6	1.8	7.9	ND, except 1,2,4-Trimethylbenzene = 1.3 Naphthalene = 0.30 n-Propyl benzene = 0.13 1,3,5-Trimethylbenzene = 0.29

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW2 Continued)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
08/31/04	43	2.7	4.4	2.3	2.3	8.2	ND, except Isopropylbenzene = 0.061 1,2,4-Trimethylbenzene = 1.9 Naphthalene = 0.57 n-Propyl benzene = 0.20 1,3,5-Trimethylbenzene = 0.4
06/03/04	50	3.9	5.4	4.2	2.2	8.8	ND, except Naphthalene = 0.36 n-Propyl benzene = 0.14 1,2,4-Trimethylbenzene = 1.3 1,3,5-Trimethylbenzene = 0.3
02/20/04	61	2.7	5.9	3.5	2.4	10	ND, except tert-Butyl benzene = 0.15 Naphthalene = 0.23 n-Propyl benzene = 0.15 1,2,4-Trimethylbenzene = 1.3 1,3,5-Trimethylbenzene = 0.33
11/25/03	65	2.7	6.8	8.8	2.9	16	ND, except Naphthalene = 0.54 1,2,4-Trimethylbenzene = 1.8 1,3,5-Trimethylbenzene = 0.42
07/15/03	78	4.1	3.3	4.4	1.8	9.3	ND, except Naphthalene = 0.29 1,2,4-Trimethylbenzene = 1.3 1,3,5-Trimethylbenzene = 0.32 n-Propyl benzene = 0.15
04/17/03	57	5.6	3.4	5.1	2.8	10	ND, except Naphthalene = 0.43 1,2,4-Trimethylbenzene = 2.2 n-Propyl benzene = 0.26 1,3,5-Trimethylbenzene = 0.55

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW2 Continued)

Date 01/20/03	TPH-G 48	MTBE 3.8	Benzene 2.9	Toluene 3.0	Ethylbenzene 2.0	Total Xylenes 11	Other VOCs by EPA 8260 ND, except Naphthalene = 0.35 1,2,4-Trimethylbenzene = 1.4 1,3,5-Trimethylbenzene = 0.32 Isopropylbenzene = 0.069 n-Propyl benzene = 0.16
02/17/99	7.3	0.29	0.067	0.12	0.0093	0.058	
01/25/98	24	2.7	2.7	4.9	0.70	4.0	
07/14/97	43	1.6	6.2	8.9	1.5	7.4	
03/11/97	28	0.71	4.0	4.5	0.99	4.3	
06/21/96	49	0.53	6.6	6.3	1.4	6.2	
03/28/96	38	0.45	5.8	4.7	1.1	5.1	
12/19/95	25	0.45	5.2	3.8	0.86	3.8	
06/23/95	Not Sampled						
05/4/95	63		10	11	1.6	8.8	
02/01/95	45		7.0	5.1	1.2	6.1	
10/12/94	24		4.4	2.8	0.73	3.5	
07/05/94	46		9.1	7.0	1.4	7.3	
09/29/92	20		4.6	3.8	0.26	3.3	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

-- = Sample not analyzed for this compound during this sampling event.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW3)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
02/15/06	0.56,a,b	2.6	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND, except Tetrachloroethene = 0.1
11/14/05	0. 21,a	1.5	ND<0.025	ND<0.025	ND<0.025	ND<0.025	ND
08/31/05	0.49,a,b	2.5	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND
06/22/05	3.9	5.6	ND<0.10	ND<0.10	ND<0.10	0.69	ND, except 1,2,4- Trimethylbenzene = 0.36

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

a = No recognizable pattern.

b = Heavier gasoline range compounds are significant (aged gasoline?)

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW3 Continued)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
02/10/05	1.0	2.7	ND<0.050	ND<0.050	ND<0.050	0.27	ND, except t-butyl alcohol = 0.83
08/31/04	0.11	0.86	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
06/03/04	0.11,a	1.4	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND
02/20/04	0.090	0.73	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND
11/25/03	0.11	0.33	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND
07/15/03	0.16	0.66	ND<0.0012	ND<0.0012	ND<0.0012	ND<0.0012	ND
04/17/03	0.18	0.34	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
01/20/03	0.12	0.25	ND<0.005	ND<0.005	ND<0.005	0.0052	ND
02/17/99	ND	0.29	0.067	0.12	0.0093	0.058	
01/25/98	0.49	0.71	0.0079	0.0061	0.0053	0.029	
07/14/97	0.40	0.11	0.00093	0.010	0.0013	0.00068	
03/11/97	1.1	0.68	0.053	0.013	0.063	0.017	
06/21/96	1.3	0.3	0.094	0.0021	0.039	0.002	
03/28/96	4.6	1.1	1.4	0.012	0.17	0.020	
12/19/95	0.95	0.12	0.16	0.0023	0.015	0.0016	
06/23/95	Not Sampled						
05/4/95	7.2		3.1	0.038	0.20	0.062	
02/01/95	11		4.2	0.031	0.33	0.29	
10/12/94	1.7		0.39	0.00090	0.018	0.0057	
07/05/94	3.6		1.6	0.0083	0.076	0.047	
09/29/92	Not Sampled						

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

^{-- =} Sample not analyzed for this compound during this sampling event.

b = heavier gasoline range compounds are significant (aged gasoline?)

c = lighter gasoline range compounds (the most notable faction) are significant Results are reported in milligrams per liter (mg/L), unless otherwise specified.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW4)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
02/15/06	0.22	1.1	ND<0.017	ND<0.017	ND<0.017	ND<0.017	ND, except Tetrachloroethene = 0.024
11/14/05	0.13	1.7	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND
08/31/05	0.064	1.5	ND<0.025	ND<0.025	ND<0.025	ND<0.025	ND
06/22/05	0.059	1.0	ND<0.025	ND<0.025	ND<0.025	ND<0.025	ND
02/10/05	0.39	6.6	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND
08/31/04	ND<0.250	3.9	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.000 5	ND
06/03/04	0.32	6.2	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND
02/20/04	ND<0.25,d	6.6	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND
11/25/03	ND<1.0,d	8.8	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND
07/15/03	0.44	6.8	ND<0.12	ND<0.12	ND<0.12	ND<0.12	ND
04/17/03	0.38	5.4	ND<0.12	ND<0.12	ND<0.12	ND<0.12	ND
01/20/03	0.21	3.0	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND
02/17/99	0.23	0.20	0.065	0.0022	0.0096	0.033	
01/25/98	0.91	0.23	0.15	0.019	0.31	0.14	
07/14/97	0.98	0.40	0.21	0.0017	0.090	0.046	
03/11/97	3.8	1.1	1.1	0.053	0.24	0.26	
06/21/96	11	1.2	2.4	0.083	0.53	0.91	
03/28/96	5.6	0.64	1.4	0.038	0.31	0.30	
12/19/95	2.0	0.21	0.70	0.029	0.089	0.15	
06/23/95	Not	Sampled					
05/4/95	3.3		0.89	0.068	0.15	0.30	
02/01/95	1.4		0.39	0.055	0.049	0.18	
10/12/94	0.68		0.14	0.0087	0.014	0.052	
07/05/94	2.6		0.47	0.045	0.084	0.25	
09/29/92	0.63		0.17	0.06	0.0073	0.65	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

^{-- =} Sample not analyzed for this compound during this sampling event.

d = Laboratory Report Note: reporting limit raised due to high MTBE content Results are reported in milligrams per liter (mg/L), unless otherwise specified.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW5)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
02/15/06	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Tetrachloroethene = 0.0012
11/14/05	ND<0.05	0.00051	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00063
08/31/05	ND<0.05	0.0027	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00063
06/22/05	ND<0.05	0.0022	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00052
02/09/05	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
08/31/04	ND<0.05	0.0025	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
06/03/04	ND<0.05	0.0072	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001
02/20/04	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND
11/25/03	ND<0.05	0.00084	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND
07/15/03	ND<0.05	0.0014	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
04/17/03	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
01/20/03	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
02/17/99	0.17	ND	ND	0.00074	ND	ND	
01/25/98	ND	ND	ND	ND	ND	ND	
07/14/97	ND	ND	ND	ND	ND	ND	
03/11/97	ND	ND	ND	ND	ND	0.00077	
06/21/96	ND	ND	ND	ND	ND	ND	
03/28/96	ND	ND	ND	ND	ND	ND	
12/19/95	ND	ND	ND	ND	ND	ND	
06/23/95	Not	Sampled					
05/4/95	ND		ND	ND	ND	ND	
02/01/95	ND		ND	ND	ND	ND	
10/12/94	ND		ND	ND	ND	ND	
07/05/94	ND		ND	ND	ND	0.0010	
09/29/92	0.06		10	0.0071	ND	0.0069	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

-- = Sample not analyzed for this compound during this sampling event.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW6)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
02/15/06	ND<0.05	0.0025	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Tetrachloroethene = 0.00075
11/14/05	ND<0.05	0.00073	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00067, Tetrachloroethene = 0.0005
08/31/05	ND<0.05	0.0014	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00062

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW6 Continued)

Date	TPH-G	МТВЕ	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
06/22/05	ND<0.05	0.00080	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Tetrachloroethene = 0.00053
02/09/05	ND<0.05	0.002	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00059
08/31/04	ND<0.05	0.00051	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00084 Tetrachloroethene=0.00051
06/03/04	ND<0.05	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001
02/20/04	ND<0.05	0.0011	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND
11/25/03	ND<0.05	0.00084	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND, except Chloroform = 0.00089
07/15/03	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00084 1,2-Dibromo- 3-chloropropane = 0.00066 Tetrachloroethene = 0.00067
04/17/03	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.0012
01/20/03	ND<0.05	0.0012	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.0011
02/17/99	ND	ND	ND	ND	ND	ND	
01/25/98	ND	ND	ND	ND	ND	ND	
07/14/97	ND	0.019	ND	ND	ND	ND	
03/11/97	ND	ND	ND	ND	ND	ND	
06/21/96	ND	ND	ND	ND	ND	ND	
03/28/96	ND	ND	ND	ND	ND	ND	
12/19/95	ND	0.01	ND	ND	ND	ND	
06/23/95	ND	0.003	ND	ND	ND	ND	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

-- = Sample not analyzed for this compound during this sampling event.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW7)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
02/15/06	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Tetrachloroethene = 0.0043
11/14/05	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00082 Tetrachloroethene = 0.0068
08/31/05	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.0011
06/22/05	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Tetrachloroethene = 0.0016
02/09/05	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00064 Tetrachloroethene = 0.0025

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW7 Continued)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
08/31/04	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Tetrachloroethene = 0.00073
06/03/04	ND<0.05	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND, except Tetrachloroethene = 0.00098
02/20/04	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND, except Tetrachloroethene = 0.0013
11/25/03	ND<0.05	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND, except Chloroform = 0.00076 Tetrachloroethene = 0.00078
07/15/03	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00061 1,2-Dibromo- 3-chloropropane = 0.00064 Tetrachloroethene = 0.0012
04/17/03	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00075 Tetrachloroethene = 0.0012
01/20/03	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00056
02/17/99	ND	ND	ND	ND	ND	ND	
01/25/98	ND	ND	ND	ND	ND	ND	
07/14/97	ND	ND	ND	ND	ND	ND	
03/11/97	ND	ND	ND	ND	ND	ND	au 100
06/21/96	ND	ND	ND	ND	ND	ND	
03/28/96	ND	ND	ND	ND	ND	ND	
12/19/95	ND	ND	ND	ND	ND	ND	
06/23/95	ND	ND	ND	ND	ND	ND	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

-- = Sample not analyzed for this compound during this sampling event.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW8)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
02/15/06	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00098
11/14/05	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00094
08/31/05	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00067 Tetrachloroethene = 0.002

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW8 Continued)

Date	ТРН-С	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
06/22/05	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00093
02/09/05	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.0011
08/31/04	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.0013
06/03/04	ND<0.05	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND, except Chloroform = 0.001
02/20/04	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND, except Chloroform = 0.00078
11/25/03	ND<0.05	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND, except Chloroform = 0.0014
07/15/03	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	0.00066	ND, except Chloroform = 0.0014 1,2-Dibromo- 3-chloropropane = 0.00052
04/17/03	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.0018
01/20/03	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.0013
02/17/99	ND	ND	ND	ND	ND	ND	
01/25/98	ND	ND	ND	ND	ND	ND	
07/14/97	ND	ND	ND	ND	ND	ND	
03/11/97	ND	ND	ND	ND	ND	ND	
06/21/96	ND	ND	ND	ND	ND	ND	
03/28/96	ND	ND	ND	ND	ND	ND	
12/19/95	ND	ND	ND	ND	ND	ND	
06/23/95	ND	ND	ND	ND	ND	ND	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

-- = Sample not analyzed for this compound during this sampling event.

P & D ENVIRONMENTAL, INC.

55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916

Base Map From: U.S. Geological Survey San Leandro, Calif. 7.5 Minute Quadrangle Photorevised 1980

Figure 1 SITE LOCATION MAP Former Haber Oil Station 1401 Grand Avenue San Leandro, California

P & D ENVIRONMENTAL, INC.

55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING DATA SHEET

Site Name Forme Haber 01		Well No.	UWI
Job No. 0055	_	Date	2-15-06
TOC to Water (ft.) 36.86	_	Sheen/	3 W
Well Depth (ft.) 55	_	Free Product	Thickness
Well Diameter 4 M.	(0.646 gol/FT)		ection Method
Gal./Casing Vol		Tepl	on Bailer
5=30		OF	ELECTRICAL CONDUCTIVITY CM
GAL. PURGED	512 TEM	PERATURE /	CONDUCTIVITY CO.
1401 6	$\frac{5.29}{5.29}$	3.0	C. UO
14 mg 17	5.32	27.1	6.09
14/11	$\frac{\sqrt{3}}{\sqrt{3}}$	619	293
1418 24	5.33	7-1	6.12
1424 3A	S03 6	3(7)	6.08
1430 Sarple	Time		

		····	· · · · · · · · · · · · · · · · · · ·
			
			
Notes: No Sheer or oder. Fibrous portides presa	on purse in	oter, bus	white.
Figrous purides prese			
PURGE10.92	.		

Site Name Former Haber C)/(Well No	MW2
Job No. 0055		Date2	/
TOC to Water (ft.) 35,48		Sheen	
Well Depth (ft.) 55			t Thickness
Well Diameter 4 in.	(01646 gal/FT)	Sample Colle	ection Method
Gal./Casing Vol. 10	_	Test	on Bailer
£=30		(of)	ELECTRICAL MS/cm)
TIME GAL, PURGED	5.2\$ TEMP	eraturė	CONDUCTIVITY
17/2	5.28 G	· <u> </u>	<u>61</u>
110 <u>6</u>	5.08 G).) ??	6.7
1120	501 6	<u> </u>	1249
1773 18	<u> </u>	7 d	6 (19
1779 701	$\frac{3.48}{624}$	2.6	623
1734 27		43	0-25
1134 - 21	3,4	<u>'</u>	
171101 5			
1/90	16 Time	 	
			·
		·····	the state of the s
		**	
			
NOTES:			
Strong fite odor,	10 Sheen an	purge wo	res
		·	**************************************

Sice Name Former Hober O	2/	Well No	MW3
Job No. <u>0055</u>	<u></u>	Date	2-15-06
TOC to Water (ft.) 38.36	_	Sheen_	none
Well Depth (ft.) 55	_	Free Produ	uct Thickness
Well Diameter 4in. (o	1646 gol (FT)	Sample Co	llection Method
Gal./Casing Vol			la boler
TIME GAL, PURGED	-11 ·	TEMPERATURE	ELECTRICAL CONDUCTIVITY
TIME GAL, PURGED	DH 5,27	60. 4	603
11/19	5,27	60.5	508
1620 9	508	61.1	3.27
1625 15	529	57. 3	5.79
1629	5.29	59.9	5-76
24			
16:75 Saple T	me		

	-		
we will be a second of the sec			
	***************************************		-
	-		
	-		
***************************************		The section of the se	
NOTEC			
NOTES: 51,5h T PHC ode	or, noster	n or page u	WTC
		· .	

Site Name	orner Haker	011	Well No	MW4 2+15-06
Job No.			Date	2+15.06
	(ft.) 38.86	- -35.57	Sheen	
Well Depth (fr.) 55		Free Produ	ct Thickness
Well Diamete	r 411. (0,646 901/8	Sample Col	lection Method
Gal./Casing	1.6			In Boiler
	2=30		(OF)	ELECTRICAL (MS/CM)
150	GAL PURGED	525	TEMPERATURE	7.2 i
15.11		267 (87	61.2	7.15
1517	<u>a</u>	523	67.0	7.07
1524	18	5.47	62.7	757
1528	711	5.44	68.8	7.68
,				
1535	San	de Time		
17				
,		***************************************		

		•		
	·····			
NOTES: W P	HC Sheen.	but sligh	- PHC slow	n furse worer
	, , , , , , , , , , , , , , , , , , , 			

Site Name Former Hober	oil Baix sin		MW5
Job No. 0055		Date 2	-15-06
TOC to Water (ft.) 3808)	Sheen_ 15	
Well Depth (ft.) 55			ct Thickness_
11.0	(264Lauli		
well Diameter 91/1.	10,010901	Sample Col	lection Method Flex Soler
Gal./Casing Vol. 10		(0)	(MS/
TIME GAL. PURGED 753 7255 6	5.31 8.31	S9, 1	ELECTRICAL CONDUCTIVITY Q72 G93
1309 1313 1317 25 1317 30	5.32 5.32	61.5	6.21 6.21 6.14
			
1325 Sompl	e Time		
			
			4 - A - A - A - A - A - A - A - A - A -

		*	
NOTES: No Szon or oder	on purse i	when	
•	, ,		

		DATA S		
Site Name	Former Hober	<u>0</u> 1	Well No	MW6
Job No	DO 55		Date2	-15-06
	er (ft.) 36,13)	Sheen	ime
Well Depth	(ft.) 50		Free Produc	t Thickness 💋
Well Diamer	ter2 <i>in</i> =	- (0.646 g.,1/ (0.163	$\langle \mathcal{F}_{\tau} \rangle$ Sample Coli	lection Method
Gal./Casing	g vol. 224	(0.163	161	lon Boiler
	8=6		(OF)	ELECTRICAL
TIME // 27	GAL, PURGED	<u>대</u>	TEMPERATURE /	CONDUCTIVITY
1120	<u></u>	\$129	67.0	165
1120		11.71	60.0	6.93
1128		5.77	64.8	<u> </u>
1/31		5.45	649	G 99
			0 1	<u> </u>
1175	<u> </u>	740		
1121	Sample	112		

	<u></u>			
NOTES: NE	PHC Deer o	- Oder on	grzera	
			V	

Site Name Forme Hober Cil	Well No. MW7
Job No. 0055	Date 2-15-06
TOC to Water (ft.) 38.59	Sheen Nove
	Free Product Thickness
Well Depth (ft.) 50	Sample Collection Method
Well Diameter 211. (Tepla Boiler
Gal./Casing Vol. /r8	(OF) BLECTRICAL M/
TIME GAL, PURGED PH	TEMPERATURE CONDUCTIVITY
KUS 2 5.27	<u>589</u> <u>5,27</u>
7)46 3 5.26	61:4 5,17
1047 4 5.28	62.5 5.26
1048 5.29	62.8 5.79
1015+ Couply 1	Cont
10.70	
NOTES: No PHC Steen avoide	- Discoluen
No pic sit a so obe	-organization and e-

Site Name	Former Hoberc	21	Well No	
Job No.	055		Date 2	-15-06
	(ft.) 37,44		Sheen	
Well Depth ((ft.) 50		Free Produc	t Thickness
Well Diamete	er 211.	(0167901/cs)	Sample Coll	ection Method
Gal./Casing	vol. 2		Ter	lon Boiler
	2 = 6 g	,(OF	ELECTRICAL MS/CM
TIME GUA	GAL PURGED		PERATURE SS:7	5.77
940		5:65 _	5); 	5.64
a.49	<u> </u>	5.75	607	5.93
9:50		S-78	61.3	1.03
<u>, , , , , , , , , , , , , , , , , , , </u>	<u> </u>	582	61.4	6,15
				-
9:55		SupleTine		
1122		Jan I I		
,				
				
				A
NOTES: 1	DHC Sh	0	,	
<u> </u>	AHC Sheers.	roderongu	ge have	

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

P & D Environmental	Client Project ID: #0055; Former Haber Oil	Date Sampled: 02/15/06		
55 Santa Clara, Ste.240	Traver On	Date Received: 02/16/06		
Oakland, CA 94610	Client Contact: Eric Olson	Date Extracted: 02/17/06-02/23/06		
,	Client P.O.:	Date Analyzed: 02/17/06-02/23/06		

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline*

Extraction method: SW5020B

Extraction method: SW5030B		Analytical methods: SW8015Cm		Work Order: 060229
Lab ID	Client ID	Matrix	TPH(g)	DF % SS
001A	MW1	w	95,m	1 108
002A	MW2	W	38,000,a	100 111
003A	MW3	W	560,b,m	1 96
004A	MW4	W	220,a	1 113
005A	MW5	W	ND	1 97
006A	MW6	W	ND	1 104
007A	MW7	W	ND	1 102
008A	MW8	w	ND	1 97
ND mea	ng Limit for DF =1; ns not detected at or the reporting limit	W S	50 NA	μg/L NA

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe.	÷.
product/oil/non-aqueous liquid samples in mg/L	1

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

DHS Certification No. 1644

Angela Rydelius, Lab Manager

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

P & D Environmental	Client Project ID: #0055; Former	Date Sampled: 02/15/06
55 Santa Clara, Ste.240	Haber Oil	Date Received: 02/16/06
55 Suna Giara, Sic.240	Client Contact: Eric Olson	Date Extracted: 02/17/06
Oakland, CA 94610	Client P.O.:	Date Analyzed: 02/17/06

Extraction Method: SW5030B Lab ID Client ID Matrix	Concentration * ND<50 ND<20 ND<5.0 ND<5.0 ND<5.0 ND<5.0			d GC/MS (Basic Target Listhod: SW8260B 0602296-001B MW1 Water Compound	•	k Order: 0)602296
Lab ID Client ID Matrix Compound Acetone Acrylonitrile Benzene Bromochloromethane Bromoform 2-Butanone (MEK) n-Butyl benzene tert-Butyl benzene Carbon Tetrachloride Chloroethane Chloroform 2-Chlorotoluene Dibromochloromethane 1,2-Dibromoethane (EDB)	ND<50 ND<20 ND<5.0 ND<5.0 ND<5.0	DF 10	Reporting Limit	0602296-001B MW1 Water		k Order: (0602296
Client ID Matrix Compound Acetone Acrylonitrile Benzene Bromochloromethane Bromoform 2-Butanone (MEK) n-Butyl benzene tert-Butyl benzene Carbon Tetrachloride Chloroethane Chloroform 2-Chlorotoluene Dibromochloromethane 1,2-Dibromoethane (EDB)	ND<50 ND<20 ND<5.0 ND<5.0 ND<5.0	10 10	Limit	MW1 Water	Concentration *		
Compound Acetone Acrylonitrile Benzene Bromochloromethane Bromoform 2-Butanone (MEK) n-Butyl benzene tert-Butyl benzene Carbon Tetrachloride Chloroethane Chloroform 2-Chlorotoluene Dibromochloromethane 1,2-Dibromoethane (EDB)	ND<50 ND<20 ND<5.0 ND<5.0 ND<5.0	10 10	Limit	Water	Concentration *		
Compound Acetone Acrylonitrile Benzene Bromochloromethane Bromoform 2-Butanone (MEK) n-Butyl benzene tert-Butyl benzene Carbon Tetrachloride Chloroethane Chloroform 2-Chlorotoluene Dibromochloromethane 1,2-Dibromoethane (EDB)	ND<50 ND<20 ND<5.0 ND<5.0 ND<5.0	10 10	Limit	T T T T T T T T T T T T T T T T T T T	Concentration *		
Acetone Acrylonitrile Benzene Bromochloromethane Bromoform 2-Butanone (MEK) n-Butyl benzene tert-Butyl benzene Carbon Tetrachloride Chloroethane Chloroform 2-Chlorotoluene Dibromochloromethane 1,2-Dibromoethane (EDB)	ND<50 ND<20 ND<5.0 ND<5.0 ND<5.0	10 10	Limit	Compound	Concentration *		
Acrylonitrile Benzene Bromochloromethane Bromoform 2-Butanone (MEK) n-Butyl benzene tert-Butyl benzene Carbon Tetrachloride Chloroethane Chloroform 2-Chlorotoluene Dibromochloromethane 1,2-Dibromoethane (EDB)	ND<20 ND<5.0 ND<5.0 ND<5.0	10	5.0		,	DF	Reportir Limit
Benzene Bromochloromethane Bromoform 2-Butanone (MEK) n-Butyl benzene tert-Butyl benzene Carbon Tetrachloride Chloroethane Chloroform 2-Chlorotoluene Dibromochloromethane 1,2-Dibromoethane (EDB)	ND<5.0 ND<5.0 ND<5.0			Acrolein (Propenal)	ND<50	10	5.0
Bromochloromethane Bromoform 2-Butanone (MEK) n-Butyl benzene tert-Butyl benzene Carbon Tetrachloride Chloroethane Chloroform 2-Chlorotoluene Dibromochloromethane 1,2-Dibromoethane (EDB)	ND<5.0 ND<5.0		2.0	tert-Amyl methyl ether (TAME)	ND<5.0	10	0.5
Bromoform 2-Butanone (MEK) n-Butyl benzene tert-Butyl benzene Carbon Tetrachloride Chloroethane Chloroform 2-Chlorotoluene Dibromochloromethane 1,2-Dibromoethane (EDB)	ND<5.0	10	0.5	Bromobenzene	ND<5.0	10	0.:
2-Butanone (MEK) n-Butyl benzene tert-Butyl benzene Carbon Tetrachloride Chloroethane Chloroform 2-Chlorotoluene Dibromochloromethane 1,2-Dibromoethane (EDB)		10	0.5	Bromodichloromethane	ND<5.0	10	0
n-Butyl benzene tert-Butyl benzene Carbon Tetrachloride Chloroethane Chloroform 2-Chlorotoluene Dibromochloromethane 1,2-Dibromoethane (EDB)	ND-20	10	0.5	Bromomethane	ND<5.0	10	0.5
tert-Butyl benzene Carbon Tetrachloride Chloroethane Chloroform 2-Chlorotoluene Dibromochloromethane 1,2-Dibromoethane (EDB)	ND<20	10	2.0	t-Butyl alcohol (TBA)	ND<50	10	5.0
tert-Butyl benzene Carbon Tetrachloride Chloroethane Chloroform 2-Chlorotoluene Dibromochloromethane 1,2-Dibromoethane (EDB)	ND<5.0	10	0.5	sec-Butyl benzene	ND<5.0	10	0
Carbon Tetrachloride Chloroethane Chloroform 2-Chlorotoluene Dibromochloromethane 1,2-Dibromoethane (EDB)	ND<5.0	10	0.5	Carbon Disulfide	ND<5.0	10	0
Chloroform 2-Chlorotoluene Dibromochloromethane 1,2-Dibromoethane (EDB)	ND<5.0	10	0.5	Chlorobenzene	ND<5.0	10	0.
2-Chlorotoluene Dibromochloromethane 1,2-Dibromoethane (EDB)	ND<5.0	10	0.5	2-Chloroethyl Vinyl Ether	ND<10	10	1.
2-Chlorotoluene Dibromochloromethane 1,2-Dibromoethane (EDB)	ND<5.0	10	0.5	Chloromethane	ND<10	10	0.
Dibromochloromethane 1,2-Dibromoethane (EDB)	ND<5.0	10	0.5	4-Chlorotoluene	ND<5.0	10	0.
	ND<5.0	10	0.5	1,2-Dibromo-3-chloropropane	ND<5.0	10	0.
	ND<5.0	10	0.5	Dibromomethane	ND<5.0	10	0.
TIE DIE	ND<5.0	10	0.5	1,3-Dichlorobenzene	ND<5.0	10	0.
1,4-Dichlorobenzene	ND<5.0	10	0.5	Dichlorodifluoromethane	ND<5.0	10	0.
1,1-Dichloroethane	ND<5.0	10	0.5	1,2-Dichloroethane (1,2-DCA)	ND<5.0	10	0.
1,1-Dichloroethene	ND<5.0	10	0.5	cis-1,2-Dichloroethene	ND<5.0	10	0.
trans-1,2-Dichloroethene	ND<5.0	10	0.5	1,2-Dichloropropane	ND<5.0	10	0.
1,3-Dichloropropane	ND<5.0	10	0.5	2,2-Dichloropropane	ND<5.0	10	0.
1,1-Dichloropropene	ND<5.0	10	0.5	cis-1,3-Dichloropropene	ND<5.0	10	0.
trans-1,3-Dichloropropene	ND<5.0	10	0.5	Diisopropyl ether (DIPE)	ND<5.0	10	0.
Ethylbenzene	ND<5.0	10	0.5	Ethyl tert-butyl ether (ETBE)	ND<5.0	10	0.
Freon 113	ND<100	10	10	Hexachlorobutadiene	ND<5.0	10	1 0.
Hexachloroethane	ND<5.0	10	0.5	2-Hexanone	ND<5.0	10	0.
Isopropylbenzene	ND<5.0	10	- 0.5	-4-Isopropyl toluene	ND<5.0	10	- 0.
Methyl-t-butyl ether (MTBE)	180	10	0.5	Methylene chloride	ND<5.0	10	0.
4-Methyl-2-pentanone (MIBK)	ND<5.0	10	0.5	Naphthalene	ND<5.0	10	0.
Nitrobenzene	ND<100	10	10	n-Propyl benzene	ND<5.0	10	0.
Styrene	ND<5.0	10	0.5	1,1,1,2-Tetrachloroethane	ND<5.0	10	0.
1,1,2,2-Tetrachloroethane	ND<5.0	10	0.5	Tetrachloroethene	16	10	0.
Toluene	ND<5.0	10	0.5	1,2,3-Trichlorobenzene	ND<5.0	10	0.
1,2,4-Trichlorobenzene	ND<5.0	10	0.5	1,1,1-Trichloroethane	ND<5.0	10	0.
1,1,2-Trichloroethane	ND<5.0	10	0.5	Trichloroethene	ND<5.0	10	0.
Trichlorofluoromethane	ND<5.0	10	0.5	1,2,3-Trichloropropane	ND<5.0	10	0.
1,2,4-Trimethylbenzene	ND<5.0	10		1,3,5-Trimethylbenzene	ND<5.0	10	0.
Vinyl Chloride	ND<5.0	10		Xylenes	ND<5.0	10	0.
					1NID~3.0		

	Surrogate	Recoveries (%)	
%SS1:	108	%SS2:	101
%SS3:	117		
Comments:			

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to_our_standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Work Order: 0602296

P & D Environmental		Date Sampled: 02/15/06
55 Santa Clara, Ste.240	Haber Oil	Date Received: 02/16/06
	Client Contact: Eric Olson	Date Extracted: 02/17/06
Oakland, CA 94610	Client P.O.:	Date Analyzed: 02/17/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B

 Lab ID
 0602296-002B

 Client ID
 MW2

Matrix				Water			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND<1000	200	5.0	Acrolein (Propenal)	ND<1000	200	5.0
Acrylonitrile	ND<400	200	2.0	tert-Amyl methyl ether (TAME)	ND<100	200	0.5
Benzene	3700	200	0.5	Bromobenzene	ND<100	200	0.5
Bromochloromethane	ND<100	200	0.5	Bromodichloromethane	ND<100	200	0.5
Bromoform	ND<100	200	0.5	Bromomethane	ND<100	200	0.5
2-Butanone (MEK)	ND<400	200	2.0	t-Butyl alcohol (TBA)	ND<1000	200	5.0
n-Butyl benzene	ND<100	200	0.5	sec-Butyl benzene	ND<100	200	0.5
tert-Butyl benzene	ND<100	200	0.5	Carbon Disulfide	ND<100	200	0.5
Carbon Tetrachloride	ND<100	200	0.5	Chlorobenzene	ND<100	200	0.5
Chloroethane	ND<100	200	0.5	2-Chloroethyl Vinyl Ether	ND<200	200	1.0
Chloroform	ND<100	200	0.5	Chloromethane	ND<100	200	0.5
2-Chlorotoluene	ND<100	200	0.5	4-Chlorotoluene	ND<100	200	0.5
Dibromochloromethane	ND<100	200	0.5	1,2-Dibromo-3-chloropropane	ND<100	200	0.5
1,2-Dibromoethane (EDB)	ND<100	200	0.5	Dibromomethane	ND<100	200	0.5
1,2-Dichlorobenzene	ND<100	200	0.5	1,3-Dichlorobenzene	ND<100	200	0.5
1,4-Dichlorobenzene	ND<100	200	0.5	Dichlorodifluoromethane	ND<100	200	0.5
1,1-Dichloroethane	ND<100	200	0.5	1,2-Dichloroethane (1,2-DCA)	ND<100	200	0.5
1,1-Dichloroethene	ND<100	200	0.5	cis-1,2-Dichloroethene	ND<100	200	0.5
trans-1,2-Dichloroethene	ND<100	200	0.5	1,2-Dichloropropane	ND<100	200	0.5
1,3-Dichloropropane	ND<100	200	0.5	2,2-Dichloropropane	ND<100	200	0.5
1,1-Dichloropropene	ND<100	200	0.5	cis-1,3-Dichloropropene	ND<100	200	0.5
trans-1,3-Dichloropropene	ND<100	200	0.5	Diisopropyl ether (DIPE)	ND<100	200	0.5
Ethylbenzene	2000	200	0.5	Ethyl tert-butyl ether (ETBE)	ND<100	200	0.5
Freon 113	ND<2000	200	10	Hexachlorobutadiene	ND<100	200	0.5
Hexachloroethane	ND<100	200	0.5	2-Hexanone	ND<100	200	0.5
Isopropylbenzene	ND<100	200	0.5	4-Isopropyl toluene	ND<100	200	0.5
Methyl-t-butyl ether (MTBE)	2000	200	0.5	Methylene chloride	ND<100	200	0.5
4-Methyl-2-pentanone (MIBK)	ND<100	200	0.5	Naphthalene	240	200	0.5
Nitrobenzene	ND<2000	200	10	n-Propyl benzene	ND<100	200	0.5
Styrene	ND<100	200	0.5	1,1,1,2-Tetrachloroethane	ND<100	200	0.5
1,1,2,2-Tetrachloroethane	ND<100	200	0.5	Tetrachloroethene	240	200	0.5
Toluene	2700	200	0.5	1,2,3-Trichlorobenzene	ND<100	200	0.5
1,2,4-Trichlorobenzene	ND<100	200	0.5	1,1,1-Trichloroethane	ND<100	200	0.5
1,1,2-Trichloroethane	ND<100	200	0.5	Trichloroethene	ND<100	200	0.5
Trichlorofluoromethane	ND<100	200	0.5	1,2,3-Trichloropropane	ND<100	200	0.5
1,2,4-Trimethylbenzene	1800	200	0.5	1,3,5-Trimethylbenzene	360	200	0.5
Vinyl Chloride	ND<100	200	0.5	Xylenes	6600	200	0.5
			rogate Re	ecoveries (%)			
%SS1:	103	}		%SS2:	100)	

			gate Recoveries (%)	
%SS1:	i	103	%SS2:	100
%SS3:		116		

Comments:

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

[#] surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

P & D Environmental		Date Sampled: 02/15/06
55 Santa Clara, Ste.240	Haber Oil	Date Received: 02/16/06
	Client Contact: Eric Olson	Date Extracted: 02/17/06
Oakland, CA 94610	Client P.O.:	Date Analyzed: 02/17/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B

Analytical Method: SW8260B

Extraction Method: SW5030B		Ar	alytical Me	thod: SW8260B	Work	Order: 0	602296
Lab ID				0602296-003B			
Client ID				MW3			
Matrix				Water			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Report
Acetone	ND<500	100	5.0	Acrolein (Propenal)	ND<500	100	5.0
Acrylonitrile	ND<200	100	2.0	tert-Amyl methyl ether (TAME)	ND<50	100	0
Benzene	ND<50	100	0.5	Bromobenzene	ND<50	100	0.
Bromochloromethane	ND<50	100	0.5	Bromodichloromethane	ND<50	100	0.
Bromoform	ND<50	100	0.5	Bromomethane	ND<50	100	0.
2-Butanone (MEK)	ND<200	100	2.0	t-Butyl alcohol (TBA)	ND<500	100	5.
n-Butyl benzene	ND<50	100	0.5	sec-Butyl benzene	ND<50	100	0.
tert-Butyl benzene	ND<50	100	0.5	Carbon Disulfide	ND<50	100	0
Carbon Tetrachloride	ND<50	100	0.5	Chlorobenzene	ND<50	100	0.
Chloroethane	ND<50	100	0.5	2-Chloroethyl Vinyl Ether	ND<100	100	1.0
Chloroform	ND<50	100	0.5	Chloromethane	ND<50	100	0.
2-Chlorotoluene	ND<50	100	0.5	4-Chlorotoluene	ND<50	100	0.
Dibromochloromethane	ND<50	100	0.5	1,2-Dibromo-3-chloropropane	ND<50	100	0.
1,2-Dibromoethane (EDB)	ND<50	100	0.5	Dibromomethane	ND<50	100	0.
1,2-Dichlorobenzene	ND<50	100	0.5	1,3-Dichlorobenzene	ND<50	100	0.
1,4-Dichlorobenzene	ND<50	100	0.5	Dichlorodifluoromethane	ND<50	100	0.
1,1-Dichloroethane	ND<50	100	0.5	1,2-Dichloroethane (1,2-DCA)	ND<50	100	0.
1,1-Dichloroethene	ND<50	100	0.5	cis-1,2-Dichloroethene	ND<50	100	0.
trans-1,2-Dichloroethene	ND<50	100	0.5	1,2-Dichloropropane	ND<50	100	0.
1,3-Dichloropropane	ND<50	100	0.5	2,2-Dichloropropane	ND<50	100	0.
1,1-Dichloropropene	ND<50	100	0.5	cis-1,3-Dichloropropene	ND<50	100	0.
rans-1,3-Dichloropropene	ND<50	100	0.5	Diisopropyl ether (DIPE)	ND<50	100	0.
Ethylbenzene	ND<50	100	0.5	Ethyl tert-butyl ether (ETBE)	ND<50	100	0.
Freon 113	ND<1000	100	10	Hexachlorobutadiene	ND<50	100	0.:
Hexachloroethane	ND<50	100	0.5	2-Hexanone	ND<50	100	0.:
Isopropylbenzene	ND<50	100	0.5	4-Isopropyl toluene	ND<50	100	- 0.
Methyl-t-butyl ether (MTBE)	2600	100	0.5	Methylene chloride	ND<50	100	0
4-Methyl-2-pentanone (MIBK)	ND<50	100	0.5	Naphthalene	ND<50	100	0
Nitrobenzene	ND<1000	100	10	n-Propyl benzene	ND<50	100	0
Styrene	ND<50	100	0.5	1,1,1,2-Tetrachloroethane	ND<50	100	0.:
1,1,2,2-Tetrachloroethane	ND<50	100	0.5	Tetrachloroethene	100	100	0.
Toluene	ND<50	100	0.5	1,2,3-Trichlorobenzene	ND<50	100	0.
1,2,4-Trichlorobenzene	ND<50	100	0.5	1,1,1-Trichloroethane	ND<50		0.:
1,1,2-Trichloroethane	ND<50	100	0.5	Trichloroethene	ND<50	100	0.:
Trichlorofluoromethane	ND<50	100	0.5	1,2,3-Trichloropropane	ND<50	100	0.
1,2,4-Trimethylbenzene	ND<50	100	0.5	1,3,5-Trimethylbenzene	ND<50	100	0.:
Vinyl Chloride	ND<50	100	0.5	Xylenes	ND<50	100	0.:
		Sur	rogate Re	ecoveries (%)			-
%SS1:	119		_	%SS2:	98		
%SS3:	98						

		ecoveries (%)	
%SS1:	119	%SS2:	98
%SS3:	98		

Comments:

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

P & D Environmental	Client Project ID: #0055; Former	Date Sampled: 02/15/06
55 Santa Clara, Ste.240	Haber Oil	Date Received: 02/16/06
	Client Contact: Eric Olson	Date Extracted: 02/17/06
Oakland, CA 94610	Client P.O.:	Date Analyzed: 02/17/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B		An	alytical Me	thod: SW8260B	Worl	k Order: 0	602296
Lab ID				0602296-004B			
Client ID				MW4			
Matrix	Ĺ			Water			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting
Acetone	ND<170	33	5.0	Acrolein (Propenal)	ND<170	33	5.0
Acrylonitrile	ND<67	33	2.0	tert-Amyl methyl ether (TAME)	ND<17	33	0.5
Benzene	ND<17	33	0.5	Bromobenzene	ND<17	33	0.5
Bromochloromethane	ND<17	-33	0.5	Bromodichloromethane	ND<17	33	0.5
Bromoform	ND<17	33	0.5	Bromomethane	ND<17	33	0.5
2-Butanone (MEK)	ND<67	33	2.0	t-Butyl alcohol (TBA)	ND<170	33	5.0
n-Butyl benzene	ND<17	33	0.5	sec-Butyl benzene	ND<17	33	0.5
tert-Butyl benzene	ND<17	33	0.5	Carbon Disulfide	ND<17	33	0.5
Carbon Tetrachloride	ND<17	33	0.5	Chlorobenzene	ND<17	33	0.5
Chloroethane	ND<17	33	0.5	2-Chloroethyl Vinyl Ether	ND<33	33	1.0
Chloroform	ND<17	33	0.5	Chloromethane	ND<17	33	0.5
2-Chlorotoluene	ND<17	33	0.5	4-Chlorotoluene	ND<17	33	0.5
Dibromochloromethane	ND<17	33	0.5	1,2-Dibromo-3-chloropropane	ND<17	33	0.5
1,2-Dibromoethane (EDB)	ND<17	33	0.5	Dibromomethane	ND<17	33	0.5
1,2-Dichlorobenzene	ND<17	33	0.5	1,3-Dichlorobenzene	ND<17	33	0.5
1,4-Dichlorobenzene	ND<17	33	0.5	Dichlorodifluoromethane	ND<17	33	0.5
1,1-Dichloroethane	ND<17	33	0.5	1,2-Dichloroethane (1,2-DCA)	ND<17	33	0.5
1,1-Dichloroethene	ND<17	33	0.5	cis-1,2-Dichloroethene	ND<17	33	0.5
trans-1,2-Dichloroethene	ND<17	33	0.5	1,2-Dichloropropane	ND<17	33	0.5
1,3-Dichloropropane	ND<17	33	0.5	2,2-Dichloropropane	ND<17	33	0.5
1,1-Dichloropropene	ND<17	33	0.5	cis-1,3-Dichloropropene	ND<17	33	0.5
trans-1,3-Dichloropropene	ND<17	33	0.5	Diisopropyl ether (DIPE)	ND<17	33	0.5
Ethylbenzene	ND<17	33	0.5	Ethyl tert-butyl ether (ETBE)	ND<17	33	0.5
Freon 113	ND<330	33	10	Hexachlorobutadiene	ND<17	33	0.5
Hexachloroethane	ND<17	33	0.5	2-Hexanone	ND<17	33	0.5
Isopropylbenzene	ND<17	33	0.5	4-Isopropyl toluene	ND<17	33	0.5
Methyl-t-butyl ether (MTBE)	1100	33	0.5	Methylene chloride	ND<17	33	0.5
4-Methyl-2-pentanone (MIBK)	ND<17	33	0.5	Naphthalene	ND<17	33	0.5
Nitrobenzene	ND<330	33	10	n-Propyl benzene	ND<17	33	0.5
Styrene	ND<17	33	0.5	1,1,1,2-Tetrachloroethane	ND<17	33	0.5
1,1,2,2-Tetrachloroethane	ND<17	33	0.5	Tetrachloroethene	24	33	0.5
Toluene	ND<17	33	0.5	1,2,3-Trichlorobenzene	ND<17	33	0.5
1,2,4-Trichlorobenzene	ND<17	33	0.5	1,1,1-Trichloroethane	ND<17	33	0.5
1,1,2-Trichloroethane	ND<17	33	0.5	Trichloroethene	ND<17	33	0.5
Trichlorofluoromethane	ND<17	33	0.5	1,2,3-Trichloropropane	ND<17	33	0.5
1,2,4-Trimethylbenzene	ND<17	33	0.5	1,3,5-Trimethylbenzene	ND<17	33	0.5
Vinyl Chloride	ND<17	33	0.5	Xylenes	ND<17	33	0.5
		Sur	rogate Re	ecoveries (%)			
%SS1:	118			%SS2:	97		
%SS3:	100						

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

P & D Environmental	Client Project ID: #0055; Former	Date Sampled: 02/15/06
55 Santa Clara, Ste.240	Haber Oil	Date Received: 02/16/06
	Client Contact: Eric Olson	Date Extracted: 02/17/06
Oakland, CA 94610	Client P.O.:	Date Analyzed: 02/17/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B	Analytical Method: SW8260B	Work Order: 0602296
		

Lab ID	0602296-005B
Client ID	MW5
Matrix	Water
	Perceting

Matrix		Water							
Compound	Concentration *	Concentration * DF Reporting Limit		Compound	Concentration *	DF	Reportin Limit		
Acetone	ND	1.0	5.0	Acrolein (Propenal)	ND	1.0	5.0		
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5		
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5		
Bromochloromethane	ND	1.0	1.0 0.5 Bromodichloromethane		ND	1.0	0.5		
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5		
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	5.0		
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5		
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5		
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5		
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	1.0		
Chloroform	ND	1.0	0.5	Chloromethane	ND	1.0	0.5		
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5		
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane	ND	1.0	0.5		
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5		
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5		
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5		
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5		
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	ND	1.0	0.5		
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND	1.0	0.5		
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	0.5		
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5		
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND I	1.0	0.5		
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5		
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5		
Hexachloroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5		
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene	ND	1.0	0.5		
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride	ND	1.0	0.5		
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	ND	1.0	0.5		
Nitrobenzene	ND	1.0	10	n-Propyl benzene	ND	1.0	0.5		
Styrene	ND	1.0	0.5	1,1,2-Tetrachloroethane	ND	1.0	0.5		
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	1.2	1.0	0.5		
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5		
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5		
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5		
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5		
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5		
Vinyl Chloride	ND	1.0	0.5	Xylenes	ND I	1.0	0.5		

Surrogate Recoveries (%)									
%SS1:	118	%SS2:	97						
%SS3:	99								
Comments									

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

D

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

P & D Environmental	Client Project ID: #0055; Former	Date Sampled: 02/15/06
55 Santa Clara, Ste.240	Haber Oil	Date Received: 02/16/06
oo ounta chara, Sto.240	Client Contact: Eric Olson	Date Extracted: 02/17/06
Oakland, CA 94610	Client P.O.:	Date Analyzed: 02/17/06

Extraction Method: SW5030B	Volatile Organic			d GC/MS (Basic Target List thod: SW8260B	•	Order: 0	0602296			
Lab ID		0602296-006B								
Client ID				MW6						
Matrix		Water								
Compound	Concentration *	DF Reporting		Compound	Concentration *	DF Report				
Acetone	ND	1.0	5.0	Acrolein (Propenal)	ND	1.0	Limit 5.0			
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5			
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5			
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5			
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5			
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	5.0			
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5			
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5			
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5			
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND ND	1.0	1.0			
Chloroform	ND	1.0	0.5	Chloromethane	ND	1.0	0.5			
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5			
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane	ND	1.0	0.5			
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0				
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5			
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND ND		0.5			
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA)	ND ND	1.0	0.5			
1,1-Dichloroethene	ND ND	1.0	0.5	cis-1,2-Dichloroethene		1.0	0.5			
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND ND	1.0	0.5			
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	0.5			
1,1-Dichloropropene	ND ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5			
trans-1,3-Dichloropropene	ND ND		0.5		ND	1.0	0.5			
Ethylbenzene	ND ND	1.0		Diisopropyl ether (DIPE)	ND	1.0	0.5			
Freon 113	ND ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5			
Hexachloroethane		1.0	10	Hexachlorobutadiene	ND	1.0	0.5			
Isopropylbenzene	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5			
	ND 2.5	1.0	0.5	4-Isopropyl toluene	ND	1.0	0.5			
Methyl-t-butyl ether (MTBE)	2.5	1.0	0.5	Methylene chloride	ND	1.0	0.5			
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	ND	1.0	0.5			
Nitrobenzene	ND	1.0	10	n-Propyl benzene	ND	1.0	0.5			
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5			
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	0.75	1.0	0.5			
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5			
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5			
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5			
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5			
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5			
Vinyl Chloride	ND	1.0	0.5	Xylenes	ND	1.0	0.5			
			rogate Re	coveries (%)						
%SS1:	105			%SS2:	101					
%SS3:	116									
Comments:										

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP
extracts are reported in mg/L, wine samples in ug/wine

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

Angela Rydelius, Lab Manager

[#] surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

P & D Environmental	Client Project ID: #0055; Former	Date Sampled: 02/15/06
55 Santa Clara, Ste.240	Haber Oil	Date Received: 02/16/06
55 Sunta Clara, Stc.240	Client Contact: Eric Olson	Date Extracted: 02/21/06
Oakland, CA 94610	Client P.O.:	Date Analyzed: 02/21/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0602296

Lab ID	0602296-007B
Client ID	MW7
Matrix	Water

Matrix		Water								
Compound	Concentration *	oncentration * DF Reporting Limit Compound		Compound	Concentration *	DF	Reporting Limit			
Acetone	ND	1.0	5.0	Acrolein (Propenal)	ND	1.0	5.0			
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5			
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5			
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5			
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5			
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	5.0			
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5			
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5			
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5			
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	1.0			
Chloroform	ND	1.0	0.5	Chloromethane	ND	1.0	0.5			
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5			
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane	ND	1.0	0.5			
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5			
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5			
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5			
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5			
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	ND	1.0	0.5			
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND	1.0	0.5			
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	0.5			
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5			
rans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND	1.0	0.5			
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5			
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5			
Hexachloroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5			
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene	ND	1.0	0.5			
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride	ND	1.0	0.5			
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	ND	1.0	0.5			
Nitrobenzene	ND	1.0	10	n-Propyl benzene	ND	1.0	0.5			
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5			
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	4.3	1.0	0.5			
Гoluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5			
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5			
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5			
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5			
,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5			
Vinyl Chloride	ND	1.0	0.5	Xylenes	ND	1.0	0.5			

Surrogate Recoveries (%)									
%SS1:	115	%SS2:	97						
%SS3:	97	,	the state of the s						
~									

Comments

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/\mu$ wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

P & D Environmental	Client Project ID: #0055; Former	Date Sampled: 02/15/06
55 Santa Clara, Ste.240	Haber Oil	Date Received: 02/16/06
55 Santa Clara, Stc.240	Client Contact: Eric Olson	Date Extracted: 02/18/06
Oakland, CA 94610	Client P.O.:	Date Analyzed: 02/18/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Volatile Organics by P&T and GC/MS (Basic Target List)* Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0											
Lab ID	0602296-008B										
Client ID											
Matrix		MW8 Water									
	C	DE			Reporting						
Compound	Concentration *	DF	Limit	Compound	Concentration *	DF	Limit				
Acetone	ND	1.0	5.0	Acrolein (Propenal)	ND	1.0	5.0				
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5				
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5				
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5				
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5				
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	5.0				
n-Butyl benzene	ND	1.0	the control of the co		ND	1.0	0.5				
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5				
Carbon Tetrachloride	ND 1.0 0.5 Chlorobenzene		ND	1.0	0.5						
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	1.0				
Chloroform	0.98	1.0	0.5	Chloromethane	ND	1.0	0.5				
2-Chlorotoluene	ND -	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5				
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane	ND	1.0	0.5				
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5				
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5				
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5				
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5				
1,1-Dichloroethene	ND	1.0	- 0.5	cis-1,2-Dichloroethene	··· ND	1.0	0.5				
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND	1.0	0.5				
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	0.5				
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5				
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND	1.0	0.5				
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5				
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5				
Hexachloroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5				
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene	ND	1.0	0.5				
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride	ND	1.0	0.5				
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	ND	1.0	0.5				
Nitrobenzene	ND	1.0	10	n-Propyl benzene	ND	1.0	0.5				
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5				
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5				
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5				
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5				
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND ND	1.0	0.5				
Trichlorofluoromethane	ND ND	1.0	0.5	1,2,3-Trichloropropane	ND ND	1.0	0.5				
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5				
Vinyl Chloride	ND	1.0	0.5	Xylenes	ND	1.0	0.5				
				coveries (%)	110	1.0	. 0.0				
%SS1:	106		. ogute Itt	%SS2:	100						
%SS3:	118										
Comments:	1.0										

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0602296

EPA Method: SW8015Cm Analyte	Extraction: SW5030B				BatchID: 20344			Spiked Sample ID: 0602277-001A			
	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)	
	µg/L	μg/L μg/L % Red	% Rec.	Rec. % Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
TPH(btex) [£]	ND	60	103	113	9.36	99.5	101	1.34	70 - 130	70 - 130	
MTBE	ND	10	96.6	104	7.29	96	89.7	6.76	70 - 130	70 - 130	
Benzene	ND	10	102	101	0.885	99.9	101	1.16	70 - 130	70 - 130	
Toluene	ND	10	94.8	95.4	0.683	95.2	93.7	1.60	70 - 130	70 - 130	
Ethylbenzene	ND	10	101	101	0	105	94.8	9.93	70 - 130	70 - 130	
Xylenes	ND	30	91	95	4.30	95.3	91	4.65	70 - 130	70 - 130	
%SS:	101	10	98	101	2.45	103	101	2.06	70 - 130	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 20344 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sample	ed [Date Extracted	Date Analyzed
0602296-001A	2/15/06	2/17/06	2/17/06 10:02 AM	0602296-002A	2/1:	5/06	2/17/06	2/17/06 10:31 AM
0602296-003A	2/15/06	2/17/06	2/17/06 11:01 AM	0602296-003A	2/1:	5/06	2/23/06	2/23/06 2:00 PM
0602296-004A	2/15/06	2/17/06	2/17/06 9:57 AM	0602296-004A	2/1:	5/06	2/21/06	2/21/06 4:34 PM
0602296-005A	2/15/06	2/21/06	2/21/06 5:07 PM	0602296-006A	2/1:	5/06	2/17/06	2/17/06 11:01 AM
0602296-007A	2/15/06	2/17/06	2/17/06 11:34 AM	0602296-008A	2/1:	5/06	2/21/06	2/21/06 11:10 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

[£] TPH(btex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560

Telephone: 925-798-1620 Fax: 925-798-1622

Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0602296

EPA Method: SW8260B	E	xtraction	SW5030	В	Batcl	hID: 20341		Spiked Sample ID: 0602277-001C				
Analyte	Sample Spiked		MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)		
	μg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD		
tert-Amyl methyl ether (TAME)	ND	10	96.8	95.1	1.81	101	98.8	2.50	70 - 130	70 - 130		
Benzene	ND	10	109	112	3.26	116	116	0	70 - 130	70 - 130		
t-Butyl alcohol (TBA)	ND	50	88.2	86.6	1.89	88.7	88.3	. 0.430	70 - 130	70 - 130		
Chlorobenzene	ND	10	113	115	1.95	123	119	2.81	70 - 130	70 - 130		
1,2-Dibromoethane (EDB)	ND	10	105	110	4.62	.113	109	3.52	70 - 130	70 - 130		
1,2-Dichloroethane (1,2-DCA)	ND	10	102	102	0	102	104	1.39	70 - 130	70 - 130		
1,1-Dichloroethene	ND	10	103	113	9.79	111	111	0	70 - 130	70 - 130		
Diisopropyl ether (DIPE)	ND	10	103	104	1.09	106	102	3.42	70 - 130	70 - 130		
Ethyl tert-butyl ether (ETBE)	ND	10	97.3	97.6	0.359	101	98.6	2.25	70 - 130	70 - 130		
Methyl-t-butyl ether (MTBE)	ND	10	95.4	001	4.88	99.6	98.9	0.767	70 - 130	70 - 130		
Toluene	ND	10	104	106	1.89	107	106	1.25	70 - 130	70 - 130		
Trichloroethene	ND	10	112	116	3.74	119	117	1.72	70 - 130	70 - 130		
%SS1:	105	10	104	101	3.37	100	100	0	70 - 130	70 - 130		
%SS2:	100	10	96	93	2.72	94	94	0	70 - 130	70 - 130		
%SS3:	118	10	97	96	1.60	95	89	6.36	70 - 130	70 - 130		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 2034	1 SUMMARY
DATIONIZOUT	1 OOIVINVICAL C

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0602296-001B	2/15/06	2/17/06	2/17/06 6:39 PM	0602296-002B	2/15/06	2/17/06	2/17/06 7:22 PM
0602296-003B	2/15/06	2/17/06	2/17/06 8:04 PM	0602296-004B	2/15/06	2/17/06	2/17/06 8:57 PM
0602296-005B	2/15/06	2/17/06	2/17/06 9:40 PM				

MS = Matrix Spike, MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QA/QC Officer

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0602296

EPA Method: SW8260B	SW5030	Batcl	nID: 20369)	Spiked Sample ID: 0602296-007B					
Analyte	Sample	Sample Spiked		MS MSD		LCS	LCSD	LCS-LCSD	Acceptanc	e Criteria (%)
,	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec:	% Rec.	% RPD	MS/MSD	-LCS/ECSD
tert-Amyl methyl ether (TAME)	ND	10	97	100	3.05	104	105	1.18	70 - 130	70 - 130
Benzene	ND	10	113	119	4.76	119	118	0.846	70 - 130	70 - 130
t-Butyl alcohol (TBA)	ND	50	86.8	88.3	1.73	90.6	93.2	2.83	70 - 130	70 - 130
Chlorobenzene	ND	10	109	113	3.93	117	119	1.87	70 - 130	70 - 130
1,2-Dibromoethane (EDB)	ND	10	101	109	7.64	109	118	8.04	70 - 130	70 - 130
1,2-Dichloroethane (1,2-DCA)	ND	10	101	107	5.43	109	107	1.11	70 - 130	70 - 130
1,1-Dichloroethene	ND	10	99.5	107	7.21	117	120	2.57	70 - 130	70 - 130
Diisopropyl ether (DIPE)	ND	10	105	110	4.76	115	114	1.06	70 - 130	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	10	101	103	1.83	105	106	1.04	70 - 130	70 - 130
Methyl-t-butyl ether (MTBE)	ND	10	99.1	99.7	0.534	107	111	3.02	70 - 130	70 - 130
Toluene	ND	10	96.9	104	7.45	111	119	6.44	70 - 130	70 - 130
Trichloroethene	ND	10	108	114	5.57	120	119	0.339	70 - 130	70 - 130
%SS1:	115	10	107	104	2.50	102	99	2.96	70 - 130	70 - 130
%SS2:	97	10	94	94	0	93	98-	4.71	70 - 130	70 - 130
%SS3:	97	10	98	. 88	10.0	96	96	. 0	70 - 130	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 20369 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0602296-006B	2/15/06	2/17/06	2/17/06 11:37 PM	0602296-007B	2/15/06	2/21/06	2/21/06 12:31 PM
0602296-008B	2/15/06	2/18/06	2/18/06 1:02 AM				

MS = Matrix Spike, MSD = Matrix Spike Duplicate, LCS = Laboratory Control Sample, LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QA/QC Officer

P & D ENVIRONMENTAL, INC.

55 Sente Clera Ave, Sulte 240
Onkland, CA 94610
(510) 658-6916

Pde0 0602296

CHAIN OF CUSTODY RECORDS ECU SUBSTITUTE OF THE PROPERTY PAGE __ OF __ PROJECT HAME: Former Haber oil PROJECT NUMBER: SAMPLED BY: (PRINTED AND SIGNATURE) NUMBER OF REMARKS SAMPLE LOCATION TYPE SAMPLE NUMBER DATE TIME ICE Normal Turnaround 5 5 5 5 5 Live MWI 2-15-06 MWZ MW3 MW4 MW5 MW6 MW7 NWB OOD CONDITION APPROPRIATE

BEND SPACE RESERVE CONTAINERS

DECREOQUINATED IN LAR. PRESERVED IN LAR.

PRESERVATION WORLD GARD

OTHER

PRESERVATION OF GARD

OTHER INITIAL IND OF LANCES S LABORATORY:

THE SEMBLY OF LANCES AND MCCOMPACT ANALYSIS ALBORATORY PHONE NUMBER:

MCCOMPACTORY CONTACT: LABORATORY PHONE NUMBER:

475 798-1620

SAMPLE ANALYSIS REQUEST SHEET

ATTACHED () YES COM DATE TIME RECEIVED BY: (SIGNATURE)

Z. IL OG / 24/5

DAJE TIME RECEIVED BY: (SIGNATURE)

DAJE TIME RECEIVED FOR LABORATORY BY: (SIGNATURE) REMARKS: VOAS presend u/ HCL

McCampbell Analytical, Inc.
110 Second Avenue South, #D7
Pricheco, CA 94553-3540
(925) 798-1620

CHAIN-OF-CUSTODY RECORD

ClientID: PDEO

EDF: NO

Report to: Eric Olson YEL: (510) 658-6916					Bill to: Accounts Pavable							Requested TAT:					5 days						
P & D Environme 55 Santa Clara, S Oakland, CA 94	Ste.240	FAX: ProjectNo: PO:	510-834-0152 #0055; Forme								Date Received: Date Printed:					02/16/2006 02/16/2006							
					[Requested Tests (See legend below)											-	- 00000					
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	T.	4	5	1	6	Ť	7	1	8]	9		10	j 11	[12
0602296-001	MW1		Water	2/15/08	701	В	A				ı	-		7-							1	ī	
0602296-002	MW2		Water	2/15/06	7 6	В	A	1	-	_	1	-		Ť		_	-i	_				+	_
0602296-003	MW3		Water	2/15/06	7 77 1	В	A	1		_	1	+		+		-	+						
0802296-004	MW4		Water	2/15/06		8	A				† · · · ·	-+		†··-		•				- 1611	*		
0602296-005	MW5		Water	2/15/06	· 🛅	В		-			•	7		+		•							
0602296-006	MW6		Water	2/15/06	- ō:	В	A	-			+	_		+									BB: 78-04-04
0602296-007	MW7		Water	2/15/06	- 77	В	A	7				1		*									
0602296-008	MW8		Water	2/15/06	- Fig.	В	A				***	~		-4-		• • • •			···· †				

Test Legend:

1 8260B	 2 G-MBTEX_W	3	7 7 7	4		5
6	 7	8		9		10
11	12					

Prepared by: Melissa Valles