P & D ENVIRONMENTAL

A Division of Paul H. King, Inc. 55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916 Ro370

July 25, 2005 Report 0055.R23

Mr. Manmohan Chopra 29211 Marshbrook Drive Hayward, CA 94545

SUBJECT: QUARTERLY GROUNDWATER MONITORING AND SAMPLING REPORT

Former Haber Oil Station 1401 Grand Avenue San Leandro, California

Dear Mr. Chopra:

P&D Environmental (P&D) is pleased to present this report documenting the results of the most recent quarterly monitoring and sampling of the eight groundwater monitoring wells at or near the subject site. This work was performed in accordance with P&D's proposal 022698.P1 dated February 26, 1998. All of the wells were monitored and sampled on June 22, 2005. A Site Location Map (Figure 1) and Site Vicinity Map (Figure 2) are attached with this report.

BACKGROUND

The site is presently used as an active gasoline station. It is P&D's understanding that on April 24, 1991 Aegis Environmental, Inc. (Aegis) personnel drilled four soil borings, designated as B-1 through B-4, to a vertical depth of approximately 40 feet at the site. The locations of the borings are shown on Figure 2. A total of nine soil samples collected from the boreholes were analyzed for total petroleum hydrocarbons as gasoline (TPH-G); Benzene, Toluene, Ethylbenzene, and total Xylenes (BTEX) by EPA Method 8260; and for total lead by EPA Method 7420. TPH-G concentrations ranged from below detection limit to 66 milligram per kilogram (mg/kg). Benzene concentrations ranged from not detected to 0.94 mg/kg. Total lead concentrations ranged from not detected to 3 mg/kg. Documentation of the subsurface investigation and results are presented in a report prepared by Aegis titled, "Soil Boring Results Report," dated June 10, 1991.

It is P&D's understanding that on April 14, 1992 Aegis personnel returned to the site to drill three slant borings, designated as B5 through B7, to a total vertical depth of approximately 49 feet at the site. The borings were drilled at an angle of approximately 26 to 28 degrees to collect samples from beneath the underground storage tanks. The locations of the borings are shown on Figure 2. A total of twenty-two soil samples were analyzed for TPH-G using EPA Method 5030, and for BTEX using EPA Method 8240. In addition, one of the samples was analyzed for total lead using EPA Method 7420, and several of the soil samples were analyzed for soluble lead using the California Waste Extraction Test. TPH-G concentrations ranged from not detected to 4,000 mg/kg. Benzene, concentrations ranged from not detected to 11 mg/kg. Total lead was not detected, and soluble lead concentrations ranged from not detected to 0.061 mg/kg. Documentation of the subsurface investigation and results are presented in a report prepared by Aegis titled, "Initial Subsurface Investigation Results Report," dated June 22, 1992.

It is P&D's understanding that between September 15 and 18, 1992 Aegis personnel returned to the site to install five groundwater monitoring wells, designated as MW1 through MW5. The wells were drilled to total depths of between 50 and 55 feet, and were constructed using four-inch diameter PVC pipe. Wells MW1 and MW2 were constructed with perforated casing between the depths of approximately 15 and 55 feet. Wells MW3, MW4 and MW5 were constructed with perforated casing between the depths of approximately 35 and 55 feet. Groundwater was reported as first encountered at a depth of 42 feet. The well locations are shown in Figure 2.

A total of thirty-one soil samples were analyzed for TPH-G using EPA Method 5030/8015; and for BTEX using EPA Method 8020. In addition, three soil samples containing TPH-G were analyzed for total metals concentrations of cadmium, chromium, lead, and zinc using EPA Method 6010 and 7421. One soil sample was collected from each borehole from below the airwater interface and analyzed for petrophysical properties, including saturated permeability and grain size distribution.

TPH-G concentrations ranged from not detected to 39 mg/kg. Benzene concentrations ranged from not detected to 0.27 mg/kg. The total metals concentrations were all less than 10 times their respective STLC values. The subsurface materials encountered in the borings indicate that soil types vary across the site, but generally consist of silty clay, silt, clayer silt and sandy silt from the surface to a depth of between 30 and 35 feet. Below the depth of 30 to 35 feet, layers of sand and sandy silt were reported to have been encountered.

It is P&D's understanding that on September 29, 1992 Aegis personnel collected groundwater samples from wells MW1, MW2, MW4 and MW5 at the site. A sample was not collected from well MW3 due to the reported presence of 0.02 feet of floating hydrocarbons. The measured depth to water ranged from approximately 41.5 to 44.5 feet. The samples were analyzed for TPH-G using EPA Method 5030/8015; and for BTEX using EPA Method 8020. TPH-G concentrations ranged from 0.06 to 20 mg/L, and benzene concentrations ranged from 0.16 to 10 mg/L. Based upon the water level measurements in the wells, the groundwater flow direction was reported to be to the northwest. The water level measurements are summarized in Table 1. The analytical results are summarized in Table 2.

It is P&D's understanding that on October 7, 1992 Aegis personnel performed rising head slug tests wells MW1, MW2, and MW4 to estimate the saturated hydraulic conductivity at the site. In addition, two short-term soil vapor extraction tests were performed on wells MW1 and MW2. Wells MW3, MW4, and MW5 were used as vacuum influence monitoring points. Documentation of the monitoring well groundwater sample collection, slug test and vapor extraction tests are presented in a report prepared by Aegis titled, "Problem Assessment Report," dated December 16, 1992.

On February 18, 1994 P&D personnel monitored the five-groundwater monitoring wells at the site for depth to water and the presence of free product or sheen. The depth to water was measured using an electric water level indicator, and the presence of free product and sheen was

evaluated using a transparent bailer. The measured depth to water in the wells ranged from approximately 39.8 to 42.9 feet. No evidence of free product or sheen was detected in any of the wells. Based on the measured depth to water in the wells, the groundwater flow direction was calculated to be to the north with a gradient of 0.054. In a letter dated October 19, 1995 Mr. Scott Seery of the Alameda County Department of Environmental Health (ACDEH) requested that all of the onsite and offsite wells be monitored and sampled for the quarterly monitoring and sampling program. The measured depth to water in the wells is presented in Table 1.

On June 15 and 16, 1995 P&D installed three offsite monitoring wells, designated as MW6 through MW8. The locations of the wells are shown on Figure 2. Documentation of the well installation and sample results is presented in P&D's report 0055.R5 dated August 23, 1995.

The underground storage tanks at the subject site were replaced in the first half of 1997. Following removal of the tanks, excavation of soil was performed in the area surrounding well MW1. As a result of the excavation activities, the elevation at the top of well MW1 was altered. The present elevation for the top of well MW1 is unknown.

In January 2003 Ms. Eva Chu of the ACDEH requested that the wells be analyzed for fuel oxygenates using EPA Method 8260. In a letter dated June 20, 2003 Ms. Chu requested that the analysis be continued.

FIELD ACTIVITIES

On June 22, 2005 all eight of the wells in the groundwater monitoring network for the site were monitored, purged, and sampled by P&D personnel. The wells were monitored for depth to water and the presence of free product or sheen. Depth to water was measured to the nearest 0.01 foot using an electric water level indicator. The presence of sheen was evaluated using a transparent bailer. No free product or sheen was observed in any of the wells. Depth to water level measurements and monitoring well groundwater surface elevations are presented in Table 1.

Prior to sampling, the wells were purged of a minimum of three casing volumes of water. Petroleum hydrocarbon odors were detected in purge water from wells MW1 through MW4. During purging operations, the field parameters of electrical conductivity, temperature and pH were monitored. Once the field parameters were observed to stabilize, and a minimum of three casing volumes had been purged, water samples were collected using a clean Teflon bailer. The water samples were transferred to 40-milliliter glass Volatile Organic Analysis (VOA) vials, which were sealed with Teflon-lined screw caps. The VOA vials were overturned and tapped to ensure that no air bubbles were present.

The VOA vials were then transferred to a cooler with ice, and later were transported to McCampbell Analytical, Inc. in Pacheco, California. McCampbell Analytical, Inc. is a State-certified hazardous waste testing laboratory. Chain of custody documentation accompanied the

samples to the laboratory. Records of the field parameters measured during well purging are attached with this report.

GEOLOGY AND HYDROGEOLOGY

The subsurface materials encountered in the borings drilled by Aegis indicate that soil types vary across the site, but generally consist of silty clay, silt, clayey silt, and sandy silt from the surface to a depth of between 30 and 35 feet. Below the depth of 30 to 35 feet, layers of sand and sandy silt were reported to have been encountered. Groundwater has historically been encountered at the site at depths ranging from approximately 40 to 45 feet below grade.

Based upon the regional groundwater flow direction identified by Woodward-Clyde Consultants in a report titled, "Hydrogeology of Central San Leandro and Remedial Investigation of Regional Groundwater Contamination - San Leandro Plume - San Leandro, California - Volume I," prepared for the California Environmental Protection Agency and dated December 29, 1993 the regional groundwater flow direction to the west of the site appears to be to the southwest. However, based upon the measured depth to water in the five wells at the site on September 29, 1992 Aegis identified a northwesterly groundwater flow direction. Based upon water level measurements collected by P&D from the five wells at the site on February 18, July 5, and October 12, 1994, February 1, and May 4, 1995 the groundwater flow direction at the site was calculated to be to the north, towards San Leandro Creek. Based upon water level measurements collected in wells MW1 through MW8 by P&D personnel on June 23 and December 19, 1995, March 28 and June 21, 1996 the groundwater flow direction was calculated to be to the northwest.

The measured depth to water at or near the site on June 22, 2005 for all of the wells ranged from 36.54 to 39.85 feet. Since the previous monitoring on February 9 and 10, 2005, groundwater elevations have increased in all of the wells by amounts ranging from 0.11 to 0.50 feet. The groundwater flow direction on June 22, 2005 was to the northwest with a gradient of 0.036.

The northwesterly groundwater flow direction has remained relatively unchanged and the gradient has decreased since the previous water level measurements on February 9 and 10, 2005. The groundwater monitoring data are presented in Table 1. The groundwater flow direction at the site on June 22, 2005 is shown on Figure 2.

LABORATORY RESULTS

All of the groundwater samples collected from the monitoring wells were analyzed for TPH-G using Modified EPA Method 8015C and for Volatile Organic Compounds (VOCs), including fuel oxygenates using EPA Method 8260B in accordance with a request from Ms. Eva Chu of the ACDEH.

The laboratory analytical results for the groundwater samples from wells MW2, MW3 and MW4 showed that TPH-G was detected at concentrations of 37, 3.9, and 0.059 mg/L, respectively. TPH-G was not detected in any of the other wells. MTBE was detected in wells MW1, MW2, MW3, MW4, MW5 and MW6 at concentrations of 0.32, 3.9, 5.6, 0.0022 and 0.00080 mg/L, respectively. MTBE was not detected in wells MW7 and MW8.

BTEX compounds were not detected in any of the wells with the exception of well MW2 where concentrations ranged from 1.4 to 8.6 mg/L, and well MW3 where 0.69 mg/L xylenes were detected. No fuel oxygenates other than MTBE were detected in any of the groundwater samples.

Chloroform was detected in wells MW5 and MW8 at concentrations of 0.00052 and 0.00093 mg/L, respectively. Tetrachloroethene (PCE) was detected in wells MW6 and MW7 at concentrations of 0.00053 and 0.00093 mg/L, respectively.

Since the previous sampling event in February 2005, TPH-G concentrations have decreased in wells MW1, MW2, and MW4, increased in well MW3, and remained not detected in the remaining wells. MTBE concentrations have decreased in wells MW1, MW2, MW4 and MW6, increased in wells MW3 and MW5, and remained not detected in wells MW7 and MW8. The benzene concentration decreased in well MW2 and remained not detected in all other wells.

The laboratory analytical results are summarized in Table 2. Copies of the laboratory analytical report and chain of custody documentation are attached with this report.

DISCUSSION AND RECOMMENDATIONS

Based on the depth to water measurements on June 22, 2005 for monitoring wells MW4, MW6, MW7, and MW8, the groundwater flow direction at the subject site has remained northwesterly and the gradient has decreased since the previous monitoring and sampling event in February 2005.

Since the previous sampling event in February 2005, TPH-G concentrations have decreased in wells MW1, MW2 and MW4, increased in well MW3, and remained not detected in wells MW5 through MW8. MTBE concentrations have decreased in wells MW1, MW2, MW4 and MW6, increased in well MW5, and remained not detected in the remaining wells. The benzene concentration decreased in well MW2 and remained not detected in all other wells. No fuel oxygenates other than MTBE were detected in any of the groundwater samples.

The near-detection limit concentrations of halogenated volatile organic compounds detected in wells MW5 through MW8 are consistent with historic results detected in these wells and are interpreted to be associated with sources not related to the subject site.

Based on the sample results P&D recommends that the quarterly groundwater monitoring and sampling program be continued.

DISTRIBUTION

A copy of this report should be forwarded to Mr. Amir Gholami at the ACDEH.

LIMITATIONS

This report was prepared solely for the use of Mr. Manmohan Chopra. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and pits and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities, which is used in this report. This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

Should you have any questions, please do not hesitate to contact us at (510) 658-6916.

Sincerely,

P&D Environmental

Paul H. King

President

Professional Geologist #5901

and H. King

Expires: 12/31/05

Attachments: Tables 1 & 2

Site Location Map (Figure 1) Site Vicinity Map (Figure 2) Field Parameter Forms

Laboratory Analytical Reports Chain of Custody Documentation

PHK/efo 0055.R23

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elevation (ft.)	Depth to Water (ft.)	Water Table Elevation (ft.)
MW1	6/22/05 2/09/05 8/31/04 6/03/04 2/20/04 11/25/03 7/15/03 4/16/03 1/20/03 2/16/99 1/25/98 7/14/97 3/11/97 6/21/96 3/28/96 12/19/95 6/23/95 5/04/95 2/01/95 10/12/94 7/05/94	Not Available 87.98+	37.91 38.02 40.35 39.59 38.45 40.00 39.60 38.91 38.21 34.58 33.70 39.45 36.90 38.56 37.10 40.16 38.54 37.65 38.46 42.01 41.36	Not Available Solution Not Available Not Available Not Available Not Available Solution 108 49.42 50.88 47.82 49.44 50.33 49.52 45.97 46.62
	2/18/94 9/29/92		41.02 42.77	46.96 45.21

NOTES:

ft. = Feet.

^{+ =} Indicates survey data provided by Kier & Wright dated June 26, 1995.

^{++ =} Indicates survey data provided by Aegis Environmental

TABLE 1 (Continued)
WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elevation (ft.)	Depth to Water (ft.)	Water Table Elevation (ft.)
MW2	6/22/05 2/10/05 8/31/04 6/03/04 2/20/04 11/25/03 7/15/03 4/16/03 1/20/03 2/16/99 1/25/98 7/14/97 3/11/97 6/21/96 3/28/96 12/19/95 6/23/95 5/04/95 2/01/95 10/12/94	86.61+ 86.60++	36.76 37.15 39.07 38.32 37.27 38.68 38.15 37.50 37.04 33.51 32.80 38.46 35.71 37.30 35.97 38.80 37.40 36.54 37.27 40.77	49.85 49.46 47.54 48.29 49.34 47.93 48.46 49.11 49.57 53.10 53.81 48.15 50.90 49.31 50.64 47.81 49.21 50.07 49.34 45.84
	7/05/94 2/18/94 9/29/92		40.13 39.81 41.55	46.48 46.80 45.06

NOTES:

ft. = Feet.

^{+ =} Indicates survey data provided by Kier & Wright dated June 26, 1995.

^{++ =} Indicates survey data provided by Aegis Environmental

TABLE 1 (Continued) WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elevation (ft.)	Depth to Water (ft.)	Water Table Elevation (ft.)
MW3	6/22/05	87.48+	39.78	47.70
	2/10/05		40.11	47.37
	8/31/04		42.03	45.45
	6/03/04		41.34	46.14
	2/20/04		40.23	47.25
	11/25/03		41.70	45,78
	7/15/03		41.34	46.14
	4/16/03		40.60	46.88
	1/20/03		39.81	47.67
	2/16/99		34.91	52.57
	1/25/98		33.91	53.57
	7/14/97		40.61	46.87
	3/11/97		38.71	48.77
	6/21/96		40.61	46.87
	3/28/96		38.75	48.73
	12/19/95		42.20	45.28
	6/23/95		40.65	46,83
	5/04/95	87,50++	39.61	47.87
	2/01/95		40.13	47.35
	10/12/94		43.92	43.56
	7/05/94		43.32	44.16
	2/18/94		43.09	44.39
	9/29/92		44.60	42.88*

NOTES:

ft. = Feet

^{+ =} Indicates survey data provided by Kier & Wright dated June 26, 1995.

^{++ =} Indicates survey data provided by Aegis Environmental, Inc.

^{** =} Indicates depth to water measurements prior to groundwater monitoring well development.

TABLE 1 (Continued) WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elevation (ft.)	Depth to Water (ft.)	Water Table Elevation (ft.)
MW4	6/22/05	86.21+	36.54	49.67
	2/10/05		36.99	49.22
	8/31/04		38.68	47.53
	6/03/04		38.01	48.20
	2/20/04		36.91	49.30
	11/25/03		38.43	47.78
	7/15/03		38.04	48.17
	4/16/03		37.32	48.89
	1/20/03		36.70	49,51
	2/16/99		33.43	52.78
	1/25/98		32,96	53.25
	7/14/97		38.10	48.11
	3/11/97		33.24	52.97
	6/21/96		37.12	49.09
	3/28/96		35.00	51.21
	12/19/95		38,45	47.76
	6/23/95		37.40	48.81
	5/04/95	86.20++	36,33	49.88
	2/01/95		36.96	49.25
	10/12/94		40.48	45.73
	7/05/94		39.69	46.52
	2/18/94		39.36	46.85
	9/29/92		44.29	41.92

NOTES:

ft = Feet

^{+ =} Indicates survey data provided by Kier & Wright dated June 26, 1995.

^{++ =} Indicates survey data provided by Aegis Environmental, Inc.

TABLE 1 (Continued)
WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elevation (ft.)	Depth to Water (ft.)	Water Table Elevation (ft.)
MW5	6/22/05	89.10+	39.28	49.82
	2/09/05		39.49	49.61
	8/31/04		41.75	47.35
	6/03/04		40.95	48.15
	2/20/04		39.69	49.41
	11/25/03		41.41	47.69
	7/15/03		41.06	48.04
	4/16/03		39.92	49.18
	1/20/03		39.50	49.60
	2/16/99		35.08	54.02
	1/25/98		34.08	55.02
	7/14/97		41.20	47.90
	3/11/97		38.02	51.08
	6/21/96		40.03	49.07
	3/28/96		38.30	50.80
	12/19/95		41.79	47.31
	6/23/95		39.87	49.23
	5/04/95	89.06++	38.94	50.16
	2/01/95		39,94	49.16
	10/12/94		43.81	45.29
	7/05/94		43.08	46.02
	2/18/94		42.88	46.22
	9/29/92		44.53	44.57

NOTES:

Elevations are in feet above Mean Sea Level.

 \mathbf{ft} . = \mathbf{Feet} .

^{+ =} Indicates survey data provided by Kier & Wright dated June 26, 1995.

^{++ =} Indicates survey data provided by Aegis Environmental, Inc.

TABLE 1 (Continued) WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elevation (ft.)	Depth to Water (ft.)	Water Table Elevation (ft.)
MW6	6/22/05	84.02+	37.30	46.72
	2/09/05		37.51	46.51
	8/31/04		39.27	44,75
	6/03/04		38.64	45.38
	2/20/04		37.61	46.41
	11/25/03		38.97	45.05
	7/15/03		38.61	45.41
	4/16/03		38.00	46.02
	1/20/03		37.21	46.81
	2/16/99		32.82	51.20
	1/25/98		31.64	52.38
	7/14/97		39.04	44.98
	3/11/97		36.32	47.70
	6/21/96		38.00	46.02
	3/28/96		36.18	47.84
	12/19/95		39.25	44.77
	6/23/95		38.17	45.85
	6/21/95**		38.11	45.91

NOTES:

ft. = Feet.

^{+ =} Indicates survey data provided by Kier & Wright dated June 26, 1995.

^{++ =} Indicates survey data provided by Aegis Environmental, Inc.

^{** =} Indicates depth to water measurements prior to groundwater monitoring well development.

TABLE 1 (Continued) WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elevation (ft.)	Depth to Water (ft.)	Water Table Elevation (ft.)
MW7	6/22/05	87.11+	39.85	47.26
	2/09/05		40.03	47.08
	8/31/04		41.94	45.17
	6/03/04		41.33	45.78
	2/20/04		40.21	46.90
	11/25/03		41,68	45.43
	7/15/03		41.30	45.81
	4/16/03		40.63	46,48
	1/20/03		39.77	47.34
	2/16/99		34.59	52.52
	1/25/98		33.47	53.64
	7/14/97		41.97	45.14
	3/11/97		38.96	48.15
	6/21/96		40.80	46.31
	3/28/96		38.94	48.17
	12/19/95		42.26	44.85
	6/23/95		41.00	46.11
	6/21/95**		40.30	46.81
MW8	6/22/05	89.70+	38.43	51.27
	2/09/05		38.93	50.77
	8/31/04		41.19	48.51
	6/03/04		40.36	49.34
	2/20/04		39.15	50,55
	11/25/03		40.92	48.78
	7/15/03		40.50	49.20
	4/16/03		39.52	50.18
	1/20/03		38.94	50.76
	2/16/99		33.92	55.78
	1/25/98		32.73	56.97
	7/14/97		39.98	49.72
	3/11/97		36.74	52.96
	6/21/96		38.69	51.01
	3/28/96		36.98	52,72
	12/19/95		40.35	49.35
	6/23/95		38.36	51.34
	6/21/95**		38.20	51.50

NOTES:

ft. = Feet.

^{+ =} Indicates survey data provided by Kier & Wright dated June 26, 1995.

^{** =} Indicates depth to water measurements prior to groundwater monitoring well development.

TABLE 2 GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW1)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
06/22/05	ND<0.05	0.32	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW1 Continued)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
02/09/05	0.13	0.79	ND<0.01	ND<0.01	ND<0.01	ND<0.01	ND
08/31/04	ND<0.05	0.031	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
06/03/04	0.059	0.13	ND<0.0025	ND<0.0025	ND<0.0025	ND<	ND
02/20/04	0.22	0.18	0.0085	ND<0.005	ND<0.005	0.00 25 0.0098	ND
11/25/03	0.140	0.032	0.0025	ND<0.001	ND<0.001	ND<0.001	ND
07/15/03	0.060	0.053	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND, except t-Butyl Alcohol (TBA) = 0.012
04/17/03	0.052	0.056	0.0011	ND<0.001	ND<0.001	ND<0.001	ND, except t-Butyl Alcohol (TBA) = 0.013
01/20/03	0.17	0.085	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND
02/17/99	0.97	0.29	0.067	0.12	0.0093	0.058	
01/25/98	0.30	ND<0.014	0.021	0.00073	0.0076	0.0010	
07/14/97	0.20	0.035	0.020	0.0055	0.0012	0.0023	
03/11/97	0.60	0.014	0.053	0.00095	0.003	0.0015	
06/21/96	1.4	0.019	0.30	0.0087	0.033	0.0098	
03/28/96	1.3	0.022	0.32	0.0023	0.034	0.0046	
12/19/95	0.50	0.0081	0.087	0.0015	0.011	0.0035	
06/23/95	3.5 .						
	Not	Sampled					
05/4/95	Not 2.4	Sampled 	0.67	0.0028	0.076	0.0060	
05/4/95 02/01/95		Sampled 	0.67 1.8	0.0028 0.0099	0.076 0.23	0.0060 0.030	
	2.4						
02/01/95	2.4 4.6		1.8	0.0099	0.23	0.030	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

-- = Sample not analyzed for this compound during this sampling event.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW2)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
06/22/05	37	3.9	5.5	1.4	2.5	8.6	ND, except 1,2,4-Trimethylbenzene = 1.5 Naphthalene = 0.33 n-Propyl benzene = 0.22 1,3,5-Trimethylbenzene = 0.32
02/10/05	46	5.6	5.8	3.6	1.8	7.9	ND, except 1,2,4-Trimethylbenzene = 1.3 Naphthalene = 0.30 n-Propyl benzene = 0.13 1,3,5-Trimethylbenzene = 0.29

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW2 Continued)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
08/31/04	43	2.7	4.4	2.3	2.3	8.2	ND, except Isopropylbenzene = 0.061 1,2,4-Trimethylbenzene = 1.9 Naphthalene = 0.57 n-Propyl benzene = 0.20 1,3,5-Trimethylbenzene = 0.4
06/03/04	50	3.9	5.4	4.2	2.2	8.8	ND, except Naphthalene = 0.36 n-Propyl benzene = 0.14 1,2,4-Trimethylbenzene = 1.3 1,3,5-Trimethylbenzene = 0.3
02/20/04	61	2.7	5.9	3.5	2.4	10	ND, except tert-Butyl benzene = 0.15 Naphthalene = 0.23 n-Propyl benzene = 0.15 1,2,4-Trimethylbenzene = 1.3 1,3,5-Trimethylbenzene = 0.33
11/25/03	65	2.7	6.8	8.8	2.9	16	ND, except Naphthalene = 0.54 1,2,4-Trimethylbenzene = 1.8 1,3,5-Trimethylbenzene = 0.42
07/15/03	78	4.1	3.3	4.4	1.8	9.3	ND, except Naphthalene = 0.29 1,2,4-Trimethylbenzene = 1.3 1,3,5-Trimethylbenzene = 0.32 n-Propyl benzene = 0.15
04/17/03	57	5,6	3.4	5.1	2.8	10	ND, except Naphthalene = 0.43 1,2,4-Trimethylbenzene = 2.2 n-Propyl benzene = 0.26 1,3,5-Trimethylbenzene = 0.55

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW2 Continued)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
01/20/03	48	3.8	2.9	3.0	2.0	11	ND, except Naphthalene = 0.35 1,2,4-Trimethylbenzene = 1.4 1,3,5-Trimethylbenzene = 0.32 Isopropylbenzene = 0.069 n-Propyl benzene = 0.16
02/17/99	7.3	0.29	0.067	0.12	0.0093	0.058	
01/25/98	24	2.7	2.7	4.9	0.70	4.0	~~
07/14/97	43	1.6	6.2	8.9	1.5	7.4	
03/11/97	28	0.71	4.0	4.5	0.99	4.3	
06/21/96	49	0,53	6,6	6.3	1.4	6.2	w.m.
03/28/96	38	0.45	5.8	4.7	1.1	5.1	
12/19/95	25	0.45	5.2	3.8	0.86	3.8	
06/23/95	Not Sampled						
05/4/95	63		10	11	1.6	8.8	
02/01/95	45		7.0	5.1	1.2	6.1	
10/12/94	24		4.4	2.8	0.73	3.5	
07/05/94	46		9.1	7.0	1.4	7,3	
09/29/92	20		4.6	3.8	0.26	3.3	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

-- = Sample not analyzed for this compound during this sampling event.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW3)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
06/22/05	3.9	5.6	ND<0.10	ND<0.10	ND<0.10	0.69	ND, except 1,2,4- Trimethylbenzene = 0.36

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

-- = Sample not analyzed for this compound during this sampling event.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW3 Continued)

Date	ТРН-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
02/10/05	1.0	2.7	ND<0.050	ND<0.050	ND<0.050	0.27	ND, except t-butyl alcohol = 0.83
08/31/04	0.11	0.86	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
06/03/04	0.11,a	1.4	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND
02/20/04	0.090	0.73	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND
11/25/03	0.11	0.33	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND
07/15/03	0.16	0.66	ND<0.0012	ND<0.0012	ND<0.0012	ND<0.0012	ND
04/17/03	0.18	0.34	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
01/20/03	0.12	0.25	ND<0.005	ND<0.005	ND<0.005	0.0052	ND
02/17/99	ND	0.29	0.067	0.12	0.0093	0.058	P.
01/25/98	0.49	0.71	0.0079	0.0061	0.0053	0.029	
07/14/97	0.40	0.11	0.00093	0.010	0.0013	88000.0	
03/11/97	1.1	0.68	0.053	0.013	0.063	0.017	
06/21/96	1.3	0.3	0.094	0.0021	0.039	0.002	
03/28/96	4.6	1. i	1.4	0.012	0.17	0.020	
12/19/95	0.95	0.12	0.16	0.0023	0.015	0.0016	
06/23/95	Not Sampled						
05/4/95	7.2		3.1	0.038	0.20	0.062	
02/01/95	11		4.2	0.031	0.33	0.29	
10/12/94	1.7		0.39	0.00090	0.018	0.0057	grasp
07/05/94	3.6		1.6	0.0083	0.076	0.047	
09/29/92	Not Sampled						

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

^{-- =} Sample not analyzed for this compound during this sampling event.

b = heavier gasoline range compounds are significant (aged gasoline?)

c = lighter gasoline range compounds (the most notable faction) are significant Results are reported in milligrams per liter (mg/L), unless otherwise specified.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW4)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
06/22/05	0.059	1.0	ND<0.025	ND<0.025	ND<0.025	ND<0,025	ND
02/10/05	0.39	6.6	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND
08/31/04	ND<0.250	3.9	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
06/03/04	0.32	6.2	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND
02/20/04	ND<0.25,a	6.6	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND
11/25/03	ND<1.0,a	8.8	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND
07/15/03	0.44	6.8	ND<0.12	ND<0.12	ND<0.12	ND<0.12	ND
04/17/03	0.38	5.4	ND<0.12	ND<0.12	ND<0.12	ND<0.12	ND
01/20/03	0.21	3.0	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND
02/17/99	0.23	0.20	0.065	0.0022	0.0096	0.033	
01/25/98	0.91	0.23	0.15	0.019	0.31	0.14	
07/14/97	0.98	0.40	0.21	0.0017	0.090	0.046	
03/11/97	3.8	1.1	1.1	0.053	0.24	0.26	
06/21/96	11	1.2	2.4	0.083	0.53	0.91	
03/28/96	5.6	0.64	1.4	0.038	0.31	0.30	
12/19/95	2.0	0.21	0.70	0.029	0.089	0.15	
06/23/95	Not	Sampled					
05/4/95	3.3		0.89	0.068	0.15	0.30	
02/01/95	1.4		0.39	0.055	0.049	0.18	
10/12/94	0.68		0.14	0.0087	0.014	0.052	
07/05/94	2.6		0.47	0.045	0.084	0.25	
09/29/92	0.63		0.17	0.06	0.0073	0.65	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

-- = Sample not analyzed for this compound during this sampling event.

a = Laboratory Report Note: reporting limit raised due to high MTBE content

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW5)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
06/22/05	ND<0.05	0.0022	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00052
02/09/05	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
08/31/04	ND<0.05	0.0025	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
06/03/04	ND<0.05	0.0072	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001
02/20/04	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND
11/25/03	ND<0.05	0.00084	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND
07/15/03	ND<0.05	0.0014	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
04/17/03	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
01/20/03	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
02/17/99	0.17	ND	ND	0.00074	ND	ND	
01/25/98	ND	ND	ND	ND	ND	ND	
07/14/97	ND	ND	ND	ND	ND	ND	••
03/11/97	ND	ND	ND	ND	ND	0.00077	
06/21/96	ND	ND	ND	ND	ND	ND	
03/28/96	ND	ND	ND	ND	ND	ND	
12/19/95	ND	ND	ND	ND	ND	ND	
06/23/95	Not	Sampled					
05/4/95	ND		ND	ND	ND	ND	
02/01/95	ND	••	ND	ND	ND	ND	
10/12/94	ND		ND	ND	ND	ND	
07/05/94	ND		ND	ND	ND	0.0010	
09/29/92	0.06		10	0.0071	ND	0.0069	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

-- = Sample not analyzed for this compound during this sampling event.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW6)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
06/22/05	ND<0.05	0.00080	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Tetrachloroethene = 0.00053
02/09/05	ND<0.05	0.002	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00059
08/31/04	ND<0.05	0.00051	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00084 Tetrachloroethene=0.00051
06/03/04	ND<0.05	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001
02/20/04	ND<0.05	0.0011	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND
11/25/03	ND<0.05	0.00084	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND, except Chloroform = 0.00089
07/15/03	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00084 1,2-Dibromo- 3-chloropropane = 0.00066 Tetrachloroethene = 0.00067
04/17/03	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.0012
01/20/03	ND<0.05	0.0012	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.0011
02/17/99	ND	ND	ND	ND	ND	ND	
01/25/98	ND	ND	ND	ND	ND	ND	
07/14/97	ND	0.019	ND	ND	ND	ND	
03/11/97	ND	ND	ND	ND	ND	ND	
06/21/96	ND	ND	ND	ND	ND	ND	
03/28/96	ND	ND	ND	ND	ND	ND	
12/19/95	ND	0.01	ND	ND	ND	ND	
06/23/95	ND	0.003	ND	ND	ND	ND	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

-- = Sample not analyzed for this compound during this sampling event.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW7)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
06/22/05	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0,0005	ND, except Tetrachloroethene = 0.0016
02/09/05	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00064 Tetrachloroethene = 0.0025

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW7 Continued)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
08/31/04	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Tetrachloroethane = 0.00073
06/03/04	ND<0.05	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND, except Tetrachloroethane = 0.00098
02/20/04	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND, except Tetrachloroethane = 0.0013
11/25/03	ND<0.05	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND, except Chloroform = 0.00076 Tetrachloroethene = 0.00078
07/15/03	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00061 1,2-Dibromo- 3-chloropropane = 0.00064 Tetrachloroethene = 0.0012
04/17/03	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00075 Tetrachloroethene = 0.0012
01/20/03	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00056
02/17/99	ND	ND	ND	ND	ND	ND	
01/25/98	ND	ND	ND	ND	ND	ND	
07/14/97	ND	ND	ND	ND	ND	ND	
03/11/97	ND	ND	ND	ND	ND	ND	
06/21/96	ND	ND	ND	ND	ND	ND	
03/28/96	ND	ND	ND	ND	ND	ND	
12/19/95	ND	ND	ND	ND	ND	ND	B1 40
06/23/95	ND	ND	ND	ND	ND	ND	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

-- = Sample not analyzed for this compound during this sampling event.

TABLE 2 (Continued) GROUNDWATER LABORATORY ANALYTICAL RESULTS (MW8)

Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other VOCs by EPA 8260
06/22/05	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.00093
02/09/05	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.0011
08/31/04	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.0013
06/03/04	ND<0.05	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND, except Chloroform = 0.001
02/20/04	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND, except Chloroform = 0.00078
11/25/03	ND<0.05	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND<0.001	ND, except Chloroform = 0.0014
07/15/03	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	0.00066	ND, except Chloroform = 0.0014 1,2-Dibromo- 3-chloropropane = 0.00052
04/17/03	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.0018
01/20/03	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, except Chloroform = 0.0013
02/17/99	ND	ND	ND	ND	ND	ND	
01/25/98	ND	ND	ND	ND	ND	ND	
07/14/97	ND	ND	ND	ND	ND	ND	
03/11/97	ND	ND	ND	ND	ND	ND	
06/21/96	ND	ND	ND	ND	ND	ND	
03/28/96	ND	ND	ND	ND	ND	ND	
12/19/95	ND	ND	ND	ND	ND	ND	
06/23/95	ND	ND	ND	ND	ND	ND	

NOTES

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = Methyl Tert Butyl Ether.

VOCs = Volatile Organic Compounds

ND = Not Detected.

-- = Sample not analyzed for this compound during this sampling event.

P & D ENVIRONMENTAL

A Division of Paul H. King, Inc. 55 Santa Clara Avenue, Suite 240 Oakland, CA 94610 (510) 658-6916

Base Map from: U.S. Geological Survey San Leandro, Calif. 7.5 Minute Quadrangle Photorevised 1980

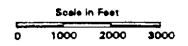
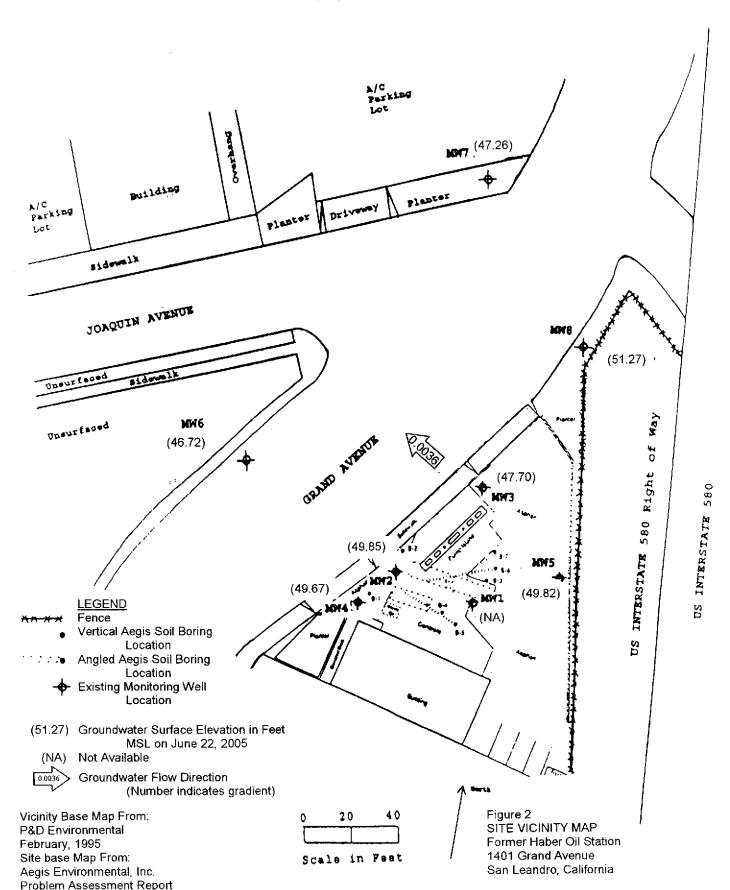



Figure 1 SITE LOCATION MAP Former Haber Oil Station 1401 Grand Avenue San Leandro, California

P & D ENVIRONMENTAL

A Division of Paul H. King, Inc. 55 Santa Clara Avenue, Suite 240 Oakland, CA 94610 (510) 658-6916

dated December 16, 1992

Site Name Farmer takes Oil	Well No. MW1
Job No. 0055	Date 6/22/05
TOC to Water (ft.) 37.41	Sheen None
Well Depth (ft.) 55	Free Product Thickness
Well Diameter U_{in}	Sample Collection Method
Gal./Casing Vol.	Teflon pyler
£ = 53.0	(of) ELECTRICAL (MS/En)
TIME GAL. PURGED DH	TYO 93
F:O(1)	73 1 0.95
5.52	73.1 895
15.00	$\frac{7}{750}$ $\frac{0}{100}$
$\frac{15.10}{15.10} = \frac{5.12}{5.42}$	755
$\frac{1}{100}$ $\frac{1}$	7/3
15:50	76,2
Dis sampling The	
<u> </u>	
	<u> </u>
· · · · · · · · · · · · · · · · · · ·	
NOTES: Slight PHC	odor but no shoop
- Dago nate	odor but no sheen r. Small white fobrons red on water surface ab.
PURGE10.92 600 0050.00	red on water surface
dual voll st	oli
vocable will)	~v. v .

Site Name For mer Haver Oil	Well No. MW2
Job No. 0055	Date 6/22/05
TOC to Water (ft.) 36.76	Sheen None
Well Depth (ft.) 55	Free Product Thickness
Well Diameter	Sample Collection Method
Gal./Casing Vol. 1.8	Teflon bailen
TIME GAL. PURGED DH	TEMPERATURE ELECTRICAL 1/05/ca.
17.30 5 5.67	[,31
17:37 +48 5.07	178 134
17:36 +512 5.05	67,9
17:39 2016 5,77	67.5 1,39
17:43 7422 5.04	691 117
17.48 3626 5.01	69,2 1,110
17:55 Samply Mine	
NOTES: Strong PHC odor	hart is strain to process
I de libil	Int no Swen on purge
PURGE10.92 WINT to 3x	parameters stabilized, Cosing volume.
purge10.92 Will to 3x	Casing volume.

Site Name Corner Haber Oil	Well No. hu u 3
Job No. <u>6055</u>	Date 6/22/05
TOC to Water (ft.) 39.78	Sheen Von o
Well Depth (ft.) 55	Free Product Thickness
Well Diameter	Sample Collection Method
Gal./Casing Vol. 98	Tetton lader
TIME GAL. PURGED DH	ELECTRICAL TEMPERATURE CONDUCTIVITY
15.45 5.5	6 77.8 1.19
15:49 10 5.5	760
15:53 15 514	(a 75.a 1.13.
15:58 20 5.4	75.9
16:02 25 5.4	FS 76.4 1.15
16:07 30 5.5	76.6
16:10 Sampling In	ue .
	
-	
NOTES: W. A. (D)	
Mode at THC,	odor, but no shoen on
prige water	
PURGE10.92	

Site Name torne take oil	Well No. MUY
Job No. 0055	Date 6/22/05
TOC to Water (ft.) 36,54	Sheen None
Well Depth (ft.) 55	Free Product Thickness
Well Diameter (in ,	Sample Collection Method
Gal./Casing Vol 9	Tetton biles
52 35.7 TIME GAL PURGED DH	ELECTRICAL
IC. 3/ S SIS	TEMPERATURE CONDUCTIVITY
10.40 10 531	183
1(-1/3) 6	$\frac{0}{12}$ $\frac{1}{9}$ $\frac{1}{9}$
(CY8 70 5)4	(13)
16.52 7.8 6.24	103
16:51 26 525	1-03
17-80	1,69
17.00 sampling the	
NOTES: NA A	
Molorate PHC odor Phage water	, but no Sheen on
Physe water	,
PURGE10.92	

Site Name torner take Oil	Well No. MwS
Job No. 0055	Date 6/22/05
TOC to Water (ft.) 39,28	Sheen None
Well Depth (ft.) 5'5	Free Product Thickness
Well Diameter (h.	Sample Collection Method
Gal./Casing Vol.	_ Tetlen baile
TIME GAL. PURGED PH	TEMPERATURE CONDUCTIVITY
14:07 5 5.75	74.5 1.26
14:10 10 5.57	73.5
14:15 5:43	72.2 1.08.
14:19 20 5.56	72, 2 1.03
14:24 25 5.47	71.8 1.01
14:30 31 546	72,2 1.01
11:35 Sumpling true	
NOTES: 1 Dilc-	
NOTES: No PHC odor or s	shoen on furge water
	V

Site Name formen teken 0,1	Well No. MW6
Job No. 0055	Date 6 / 22/05
TOC to Water (ft.) 37.30	Sheen None
Well Depth (ft.)	Free Product Thickness
Well Diameter 211.	Sample Collection, Method
Gal./Casing Vol	Tetlon bailen
€ 6.3	(of) ELECTRICAL (MSC)
TIME GAL. PURGED PH	TEMPERATURE CONDUCTIVITY
13.20 1.0 2.99	<u>-78,8</u> <u>1.16</u>
13.21 2.0 3.50	76.4
3.22 3.0 3.14	75.6 1.09
15:23 4.0 313	74.3 1.09
13:24 5.0 3.14	74.7
B:35 6.5 3.10	71.5 1.08
13:40 Sampling time	
NOTES: Water in Christie	bex share TOC
N. PHC alas as	box above 7.00. sheen on purge water.
PURGE10.92	a cer or purge war.

Site Name Former Hoher Oil	Well No. MW7
Job No. <u>6055</u>	Date 8/27/05
TOC to Water (ft.) 39,85	Sheen
Well Depth (ft.) 50	Free Product Thickness
Well Diameter Zin	Sample Collection Method
Gal./Casing Vol.	letton bades
TIME GAL. PURGED DH T	ELECTRICAL
TIME GAL. PURGED DH T	EMPERATURE CONDUCTIVITY 79 7
12:17	71.1 <u>0.06</u> 23.6 A.E.
12:48 20 268 -	730
12:49 20 2.67	72.7
12:49 4.0 2.4.7	72,4 0,83
12:50 5.5 267	72.1 0.82
12:55 Sampling True	
NOTES: Water in Christie hox	also TOC
NOTES: Water in Christie hox No PH (odor or	Loon A lune Water
	The proof of

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING

DATA SHE	ET
site Name tomer Haber O.	Well No. MW8
Job No. 0055	Date 6/22/05
TOC to Water (ft.) <u>48.43</u>	Sheen None
Well Depth (ft.) 50	Free Product Thickness
Well Diameter Zin	Sample Collection Method
Gal./Casing Vol. 1.9	Teflon hallo
€= 3.7	ELECTRICAL (MS/Cm)
TIME GAL. PURGED DH	remperature / conductivity / CONDUCTIVITY / CONDUCTIVITY
17:10 20 217	\(\langle 0 \)
$\frac{12.11}{12.11} = \frac{2.0}{2.0} = \frac{2.07}{7.73}$	69.0 0.77
12:17	08.7
12.12 4.0 2.80	08.8
12/13 50 282	68.8 0.82
12.5 <u>N.O</u> 2.83	68,8 O182
12:20 Sampling the	
	<u> </u>
NOTES: No PHC odor or	A. A
water	Sheen on purshe
<u>uutor</u>	

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

P & D Environmental	Client Project ID: #0055; Former Haber	Date Sampled: 06/22/05
55 Santa Clara, Ste.240	Oil	Date Received: 06/23/05
0.11 1.01.04610	Client Contact: Wilhelm Welzenbach	Date Extracted: 06/26/05-06/29/05
Oakland, CA 94610	Client P.O.:	Date Analyzed: 06/26/05-06/29/05

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline*

raction method: SW5030B			Analytical methods: SW8015Cm	Work Order:	0506452
Lab ID	Client ID	Matrix	TPH(g)	DF	% SS
001A	MW I	w	ND	1	101
002A	MW 2	w	37,000,a	100	98
003A	MW 3	w	3900,a	1	104
004A	MW 4	w	59,a	1	99
005A	MW 5	w	ND,i	1	98
006A	MW 6	w	ND,i	l	95
007A	MW 7	W	ND,i	1	96
008A	MW 8	w	ND	i 1	97

Reporting Limit for DF =1;	W	50	μg/L
ND means not detected at or above the reporting limit	S	NA	NA

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coclutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

P & D Environmental	Client Project ID: #0055; Former Haber	Date Sampled: 06/22/05
65 C + C1 - C+ 242	Oil	Date Received: 06/23/05
55 Santa Clara, Ste.240	Client Contact: Wilhelm Welzenbach	Date Extracted: 06/28/05
Oakland, CA 94610	Client P.O.:	Date Analyzed: 06/28/05

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B

Analytical Method: SW8260B

Work Order: 0506452

Lab ID				0506452-001C			
Client ID				MW 1			
Matrix				Water			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND<50	10	5.0	Acrolein (Propenal)	ND<50	10	5.0
Acrylonitrile	ND<20	10	2.0	tert-Amyl methyl ether (TAME)	ND<5.0	10	0.5
Benzene	ND<5.0	10	0.5	Bromobenzene	ND<5.0	10	0.5
Bromochloromethane	ND<5.0	10	0.5	Bromodichloromethane	ND<5.0	10	0.5
Bromoform	ND<5.0	10	0.5	Bromomethane	ND<5.0	10	0.5
2-Butanone (MEK)	ND<20	10	2.0	t-Butyl alcohol (TBA)	ND<50	10	5.0
n-Butyl benzene	ND<5.0	10	0.5	sec-Butyl benzene	ND<5.0	10	0.5
tert-Butyl benzene	ND<5.0	10	0.5	Carbon Disulfide	ND<5.0	10	0.5
Carbon Tetrachloride	ND<5.0	10	0.5	Chlorobenzene	ND<5.0	10	0.5
Chloroethane	ND<5.0	10	0.5	2-Chloroethyl Vinyl Ether	ND<10	. 10	1.0
Chloroform	ND<5.0	10	0.5	Chloromethane	ND<5.0	10	0.5
2-Chlorotoluene	ND<5.0	10	0.5	4-Chlorotoluene	ND<5.0	10	0.5
Dibromochloromethane	ND<5.0	10	0.5	1,2-Dibromo-3-chloropropane	ND<5.0	10	0.5
1,2-Dibromoethane (EDB)	ND<5.0	10	0.5	Dibromomethane	ND<5.0	10	0.5
1,2-Dichlorobenzene	ND<5.0	10	0.5	1,3-Dichlorobenzene	ND<5.0	10	0.5
1,4-Dichlorobenzene	ND<5.0	10	0.5	Dichlorodifluoromethane	ND<5.0	10	0.5
1,1-Dichloroethane	ND<5.0	10	0.5	1,2-Dichloroethane (1,2-DCA)	ND<5.0	10	0.5
1,1-Dichloroethene	ND<5.0	10	0.5	cis-1,2-Dichloroethene	ND<5.0	10	0.5
trans-1,2-Dichloroethene	ND<5.0	10	0.5	1,2-Dichloropropane	ND<5.0	10	0.5
1,3-Dichloropropane	ND<5.0	10	0.5	2,2-Dichloropropane	ND<5.0	10	0.5
1,1-Dichloropropene	ND<5.0	10	0.5	cis-1,3-Dichloropropene	ND<5.0	10	0.5
trans-1,3-Dichloropropene	ND<5.0	10	; 0.5	Diisopropyl ether (DIPE)	ND<5.0	10	0.5
Ethylbenzene	ND<5.0	10	0.5	Ethyl tert-butyl ether (ETBE)	ND<5.0	10	0.5
Freon 113	ND<100	10	10	Hexachlorobutadiene	ND<5.0	10	0.5
Hexachloroethane	ND<5.0	10	0.5	2-Hexanone	ND<5.0	10	0.5
Isopropylbenzene	ND<5.0	10	0.5	4-Isopropyl toluene	ND<5.0	10	0.5
Methyl-t-butyl ether (MTBE)	320	10	0.5	Methylene chloride	ND<5.0	10	0.5
4-Methyl-2-pentanone (MIBK)	ND<5.0	10	0.5	Naphthalene	ND<5.0	10	0.5
Nitrobenzene	ND<100	10	10	n-Propyl benzene	ND<5.0	10	0.5
Styrene	ND<5.0	10	0.5	1,1,1,2-Tetrachloroethane	ND<5.0	10	0.5
1,1,2,2-Tetrachloroethane	ND<5.0	10	0.5	Tetrachloroethene	ND<5.0	10	0.5
Toluene	ND<5.0	10	0.5	1,2,3-Trichlorobenzene	ND<5.0	10	0.5
1,2,4-Trichlorobenzene	ND<5.0	10	0.5	1,1,1-Trichloroethane	ND<5.0	10	0.5
1.1.2-Trichlorocthane	ND<5.0	10	0.5	Trichloroethene	ND<5.0	10	i 0.5
Trichlorofluoromethane	ND<5.0	10	0.5	1,2,3-Trichloropropane	ND<5.0	10	0.5
1,2,4-Trimethylbenzene	ND<5.0	10	0.5	1,3,5-Trimethylbenzene	ND<5.0	10	0.5
Vinyl Chloride	ND<5.0	10	0.5	Xylenes	ND<5.0	10	0.5
				ecoveries (%)			
%SS1:	10			%SS2:	10	0	
%\$\$3:	94			, , , , , , , , , , , , , , , , , , , ,			
Comments:	<u>i</u>	•		<u> </u>			

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

P & D Environmental	Client Project ID: #0055; Former Haber	Date Sampled: 06/22/05
75 C + C1	Oil	Date Received: 06/23/05
55 Santa Clara, Ste.240	Client Contact: Wilhelm Welzenbach	Date Extracted: 06/29/05
Oakland, CA 94610	Client P.O.:	Date Analyzed: 06/29/05

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW3030B	Analytical Method: SW8260B	Work Order: 0306452
Lab ID	050645 2- 002C	
Client ID	MW 2	
Matrix	Water	

Client ID				MW 2			
Matrix				Water			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND<1000	200	5.0	Acrolein (Propenal)	ND<1000	200	5.0
Acrylonitrile	ND<400	200	2.0	tert-Amyl methyl ether (TAME)	ND<100	200	0.5
Benzene	5500	200	0.5	Bromobenzene	ND<100	200	0.5
Bromochloromethane	ND<100	200	0.5	Bromodichloromethane	ND<100	200	0.5
Bromoform	ND<100	200	0.5	Bromomethane	ND<100	200	0.5
2-Butanone (MEK)	ND<400	200	2.0	t-Butyl alcohol (TBA)	ND<1000	200	5.0
n-Butyl benzene	ND<100	200	0.5	sec-Butyl benzene	ND<100	200	0.5
tert-Butyl benzene	ND<100	200	0.5	Carbon Disulfide	ND<100	200	0.5
Carbon Tetrachloride	ND<100	200	0.5	Chlorobenzene	ND<100	200	0.5
Chloroethane	ND<100	200	0.5	2-Chloroethyl Vinyl Ether	ND<200	200	1.0
Chloroform	ND<100	200	0.5	Chloromethane	ND<100	200	0.5
2-Chlorotoluene	ND<100	200	0.5	4-Chlorotoluene	ND<100	200	0.5
Dibromochloromethane	ND<100	200	0.5	1,2-Dibromo-3-chloropropane	ND<100	200	0.5
1,2-Dibromoethane (EDB)	ND<100	200	0.5	Dibromomethane	ND<100	200	0.5
1,2-Dichlorobenzene	ND<100	200	0.5	1,3-Dichlorobenzene	ND<100	200	0.5
1,4-Dichlorobenzene	ND<100	200	0.5	Dichlorodifluoromethane	ND<100	200	0.5
1,1-Dichloroethane	ND<100	200	0.5	1,2-Dichloroethane (1,2-DCA)	ND<100	200	0.5
1,1-Dichloroethene	ND<100	200	0.5	cis-1,2-Dichloroethene	ND<100	200	0.5
trans-1,2-Dichloroethene	ND<100	200	0.5	1,2-Dichloropropane	ND<100	200	0.5
1,3-Dichloropropane	ND<100	200	0.5	2,2-Dichloropropane	ND<100	200	0.5
1,1-Dichloropropene	ND<100	200	0.5	cis-1,3-Dichloropropene	ND<100	200	0.5
trans-1,3-Dichloropropene	ND<100	200	0.5	Diisopropyl ether (DIPE)	ND<100	200	0.5
Ethylbenzene	2500	200	0.5	Ethyl tert-butyl ether (ETBE)	ND<100	200	0.5
Freon 113	ND<2000	200	10	Hexachlorobutadiene	ND<100	200	0.5
Hexachloroethane	ND<100	200	0.5	2-Hexanone	ND<100	200	0.5
Isopropylbenzene	ND<100	200	0.5	4-Isopropyl toluene	ND<100	200	0.5
Methyl-t-butyl ether (MTBE)	3900	200	0.5	Methylene chloride	ND<100	200	0.5
4-Methyl-2-pentanone (MIBK)	ND<100	200	0.5	Naphthalene	330	200	0.5
Nitrobenzene	ND<2000	200	10	n-Propyl benzene	220	200	0.5
Styrene	ND<100	200	0.5	1,1,1,2-Tetrachloroethane	ND<100	200	0.5
1,1,2,2-Tetrachloroethane	ND<100	200	0.5	Tetrachloroethene	ND<100	200	0.5
Toluene	1400	200	0.5	1.2.3-Trichlorobenzene	ND<100	200	0.5
1,2,4-Trichlorobenzene	ND<100	200	0.5	1,1,1-Trichloroethane	ND<100	200	0.5
1,1,2-Trichloroethane	ND<100	200	0.5	Trichloroethene	ND<100	200	0.5
Trichlorofluoromethane	ND<100	200	0.5	1,2,3-Trichloropropane	ND<100	200	0.5
1.2.4-Trimethylbenzene	1500	200	0.5	1,3,5-Trimethylbenzene	320	200	0.5
Vinyl Chloride	ND<100	200	0.5	Xylenes	8600	200	0.5
		Sui	ггоgate R	Lecoveries (%)			
%SS1: 100 %SS2: 95							

	Surrog	ate Recoveries (%)	
%SS1:	100	%SS2:	95
%SS3:	94		
0			

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

P & D Environmental	Client Project ID: #0055; Former Haber	Date Sampled: 06/22/05
55 G . G . Q . Q . Q . Q	Oil	Date Received: 06/23/05
55 Santa Clara, Ste.240	Client Contact: Wilhelm Welzenbach	Date Extracted: 06/29/05
Oakland, CA 94610	Client P.O.:	Date Analyzed: 06/29/05

Extraction Method: SW5030B		Ana	lytical Met	thod: SW8260B	Work	Order: 05	06452
Lab ID				0506452-003C			
Client ID	[MW 3			
Matrix				Water			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND<1000	200	5.0	Acrolein (Propenal)	ND<1000	200	5.0
Acrylonitrile	ND<400	200	2.0	tert-Amyl methyl ether (TAME)	ND<100	200	0.5
Benzene	ND<100	200	0.5	Вготоветие	ND<100	200	0.5
Bromochloromethane	ND<100	200	0.5	Bromodichloromethane	ND<100	200	0.5
Bromoform	ND<100	200	0.5	Bromomethane	ND<100	200	0.5
2-Butanone (MEK)	ND<400	200	2.0	t-Butyl alcohol (TBA)	ND<1000	200	5.0
n-Butyl benzene	ND<100	200	0.5	sec-Butyl benzene	ND<100	200	0.5
tert-Butyl benzene	ND<100	200	0.5	Carbon Disulfide	ND<100	200	0.5
Carbon Tetrachloride	ND<100	200	0.5	Chlorobenzene	ND<100	200	0.5
Chloroethane	ND<100	200	0.5	2-Chloroethyl Vinyl Ether	ND<200	200	1.0
Chloroform	ND<100	200	0.5	Chloromethane	ND<100	200	0.5
2-Chlorotoluene	ND<100	200	0.5	4-Chlorotoluene	ND<100	200	0.5
Dibromochloromethane	ND<100	200	0.5	1,2-Dibromo-3-chloropropane	ND<100	200	0.5
1,2-Dibromoethane (EDB)	ND<100	200	0.5	Dibromomethane	ND<100	200	0.5
1.2-Dichlorobenzene	ND<100	200	0.5	1,3-Dichlorobenzene	ND<100	200	0.5
1.4-Dichlorobenzene	ND<100	200	0.5	Dichlorodifluoromethane	ND<100	200	0.5
1.1-Dichloroethane	ND<100	200	0.5	1.2-Dichloroethane (1.2-DCA)	ND<100	200	0.5
1.1-Dichloroethene	ND<100	200	0.5	cis-1.2-Dichloroethene	ND<100	200	0.5
trans-1,2-Dichloroethene	ND<100	200	0.5	1,2-Dichloropropane	ND<100	200	0.5
1,3-Dichloropropane	ND<100	200	0.5	2,2-Dichloropropane	ND<100	200	0.5
1,1-Dichloropropene	ND<100	200	0.5	cis-1,3-Dichloropropene	ND<100	200	0.5
trans-1,3-Dichloropropene	ND<100	200	0.5	Diisopropyl ether (DIPE)	ND<100	200	0.5
Ethylbenzene	ND<100	200	0.5	Ethyl tert-butyl ether (ETBE)	ND<100	200	0.5
Freon 113	ND<2000	200	10	Hexachlorobutadiene	ND<100	200	0.5
Hexachloroethane	ND<100	200	0.5	2-Hexanone	ND<100	200	0.5
Isopropylbenzene	ND<100	200	0.5	4-Isopropyl toluene	ND<100	200	0.5
Methyl-t-butyl ether (MTBE)	5600	200	0.5	Methylene chloride	ND<100	200	0.5
4-Methyl-2-pentanone (MIBK)	ND<100	200	0.5	Naphthalene	ND<100	200	0.5
Nitrobenzene	ND<2000	200	10	n-Propyl benzene	ND<100	200	0.5
Styrene	ND<100	200	0.5	1,1,1,2-Tetrachloroethane	ND<100	200	0.5
1,1,2,2-Tetrachloroethane	ND<100	200	0.5	Tetrachloroethene	ND<100	200	0.5
Toluene	ND<100	200	0.5	1,2,3-Trichlorobenzene	ND<100	200	0.5
1,2,4-Trichlorobenzene	ND<100	200	0.5	1.1.1-Trichloroethane	ND<100	200	0.5
1,1,2-Trichloroethane	ND<100	200	0.5	Trichloroethene	ND<100	200	0.5
Trichlorofluoromethane	ND<100	200	0.5	1,2,3-Trichloropropane	ND<100	200	0.5
1,2,4-Trimethylbenzene	360	200	0.5	1,3,5-Trimethylbenzene	ND<100	200	0.5
Vinyl Chloride	ND<100	200	0.5	Xylenes	690	200	: 0.5
, my Charac	112-100			ecoveries (%)			, 0.0
0/551.	10		ogate K	%SS2:	90	6	
%\$\$1: %\$\$3:	9/	T		/0334.			
9/L C C '7 ·	; Q Z	1		I			

0/002	96
76332.	96

Comments:

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

P & D Environmental	Client Project ID: #0055; Former Haber	Date Sampled: 06/22/05
55 Santa Clara, Ste.240	Oil	Date Received: 06/23/05
	Client Contact: Wilhelm Welzenbach	Date Extracted: 06/29/05
Oakland, CA 94610	Client P.O.:	Date Analyzed: 06/29/05

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B

Analytical Method: SW8260B

Work Order: 0506452

Lab ID				0506452-004C			
Client ID				MW 4			
Matrix				Water			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND<250	50	5.0	Acrolein (Propenal)	ND<250	50	5.0
Acrylonitrile	ND<100	50	2.0	tert-Amyl methyl ether (TAME)	ND<25	50	0.5
Benzene	ND<25	50	0.5	Bromobenzene	ND<25	50	1 0.5
Bromochloromethane	ND<25	50	0.5	Bromodichloromethane	ND<25	50	0.5
Bromoform	ND<25	50	0.5	Bromomethane	ND<25	50	0.5
2-Butanone (MEK)	ND<100	50	2.0	t-Butyl alcohol (TBA)	ND<250	50	5.0
n-Butyl benzene	ND<25	50	0.5	sec-Butyl benzene	ND<25	50	0.5
tert-Butyl benzene	ND<25	50	0.5	Carbon Disulfide	ND<25	50	0.5
Carbon Tetrachloride	ND<25	50	0.5	Chlorobenzene	ND<25	50	0.5
Chloroethane	ND<25	50	0.5	2-Chloroethyl Vinyl Ether	ND<50	50	1.0
Chloroform	ND<25	50	0.5	Chloromethane	ND<25	50	0.5
2-Chlorotoluene	ND<25	50	0.5	4-Chlorotoluene	ND<25	50	0.5
Dibromochloromethane	ND<25	50	0.5	1,2-Dibromo-3-chloropropane	ND<25	50	0.5
1,2-Dibromoethane (EDB)	ND<25	50	0.5	Dibromomethane	ND<25	50	0.5
1,2-Dichlorobenzene	ND<25	50	0.5	1,3-Dichlorobenzene	ND<25	50	0.5
1,4-Dichlorobenzene	ND<25	50	0.5	Dichlorodifluoromethane	ND<25	50	0.5
1,1-Dichloroethane	ND<25	50	0.5	1,2-Dichloroethane (1,2-DCA)	ND<25	50	0.5
1,1-Dichloroethene	ND<25	50	0.5	cis-1,2-Dichloroethene	ND<25	50	0.5
trans-1,2-Dichloroethene	ND<25	50	0.5	1,2-Dichloropropane	ND<25	50	0.5
1,3-Dichloropropane	ND<25	50	0.5	2,2-Dichloropropane	ND<25	50	0.5
1,1-Dichloropropene	ND<25	50	0.5	cis-1,3-Dichloropropene	ND<25	50	0.5
trans-1,3-Dichloropropene	ND<25	50	0.5	Diisopropyl ether (DIPE)	ND<25	50	0.5
Ethylbenzene	ND<25	50	0.5	Ethyl tert-butyl ether (ETBE)	ND<25	50	0.5
Freon 113	ND<500	50	10	Hexachlorobutadiene	ND<25	50	0.5
Hexachloroethane	ND<25	50	0.5	2-Hexanone	ND<25	50	0.5
Isopropylbenzene	ND<25	50	0.5	4-Isopropyl toluene	ND<25	50	0.5
Methyl-t-butyl ether (MTBE)	1000	50	0.5	Methylene chloride	ND<25	50	0.5
4-Methyl-2-pentanone (MIBK)	ND<25	50	0.5	Naphthalene	ND<25	50	0.5
Nitrobenzene	ND<500	50	10	n-Propyl benzene	ND<25	50	0.5
Styrene	ND<25	50	0.5	1,1,1,2-Tetrachloroethane	ND<25	50	0.5
1,1,2,2-Tetrachloroethane	ND<25	50	0.5	Tetrachloroethene	ND<25	50	0.5
Toluene	ND<25	50	0.5	1,2,3-Trichlorobenzene	ND<25	50	0.5
1,2,4-Trichlorobenzene	ND<25	50	0.5	1,1,1-Trichloroethane	ND<25	50	0.5
1.1.2-Trichloroethane	ND<25	50	0.5	Trichloroethene	ND<25	50	0.5
Trichlorofluoromethane	ND<25	50	0.5	1,2,3-Trichloropropane	ND<25	50	0.5
1,2,4-Trimethylbenzene	ND<25	50	0.5	1,3,5-Trimethylbenzene	ND<25	50	0.5
Vinyl Chloride	ND<25	50	0.5	Xylenes	ND<25	50	0.5
				ecoveries (%)		<u> </u>	
%SS1:	10		- vgan N	%SS2:	98		
%SS3:	10		_	70002.			
%883: Comments:	.!	· · ·		<u> </u>			

Comments:

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622

Website: www.mccampbell.com E-mail: main@mccampbell.com

P & D Environmental	Client Project ID: #0055; Former Haber	Date Sampled: 06/22/05
55 0 4 01 4 04 040	Oil	Date Received: 06/23/05
55 Santa Clara, Ste.240	Client Contact: Wilhelm Welzenbach	Date Extracted: 06/29/05
Oakland, CA 94610	Client P.O.:	Date Analyzed: 06/29/05

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B		Analytical Method: SW8260B Work Order: 0506452				506452	
Lab ID		0506452-005C					
Client ID		MW 5					
Matrix		Water					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	5.0	Acrolein (Propenal)	ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Benzene	ND	0.1	0.5	Вготовеплене	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	5.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	1.0
Chloroform	0.52	1.0	0.5	Chloromethane	ND	1.0	0.5
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane	ND	1.0	0.5
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	ND	1.0	0.5
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND	1.0	0.5
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	0.5
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND	1.0	0.5
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5
Hexachloroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene	ND	1.0	0.5
Methyl-t-butyl ether (MTBE)	2.2	1.0	0.5	Methylene chloride	ND	1.0	0.5
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	ND	1.0	0.5
Nitrobenzene	ND	1.0	10	n-Propyl benzene	ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5
Toluene	ND	1.0	0.5	1.2.3-Trichlorobenzene	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND ND	1.0	0.5
1,2,4-Trimethylbenzene	ND ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5
	ND ND	1.0	0.5	Xylenes	ND	1.0	0.5
Vinyl Chloride	; IATY			L. Congregation and the control of t	, ND	1 1.0	1 0.3
0,001	10		rrogate R	ecoveries (%)			
%SS1:	104			%SS2:	94	+	
%SS3:	95						
Comments: i							

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

P & D Environmental	Client Project ID: #0055; Former Haber	Date Sampled: 06/22/05
55 Santa Clara, Ste.240	Oil	Date Received: 06/23/05
	Client Contact: Wilhelm Welzenbach	Date Extracted: 06/29/05
Oakland, CA 94610	Client P.O.:	Date Analyzed: 06/29/05

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B

Analytical Method: SW8260B

Work Order: 0506452

Lab ID		0506452-006C					
Client ID				MW 6			
Matrix				Water			
Сотроилд	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	5.0	Acrolein (Propenal)	ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	5.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	1.0
Chloroform	ND	1.0	0.5	Chloromethane	ND	1.0	0.5
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane	ND	1.0	0.5
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5
1.2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5
1.1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	ND	1.0	0.5
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND	1.0	0.5
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	0.5
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND	1.0	0.5
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5
Hexachloroethane	ND ND	1.0	0.5	2-Hexanone	ND	1.0	0.5
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene	ND ND	1.0	0.5
Methyl-t-butyl ether (MTBE)	0.80	1.0	0.5	Methylene chloride	ND	1.0	0.5
4-Methyl-2-pentanone (MIBK)	ND ND	1.0	0.5	Naphthalene	ND ND	1.0	0.5
Nitrobenzene	ND ND	1.0	10	n-Propyl benzene	ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	0.53	1.0	0.5
Toluene	ND ND	1.0	0.5	1.2.3-Trichlorobenzene	ND ND	1.0	0.5
1.2.4-Trichlorobenzene	ND ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5
1,1,2-Trichloroethane	ND ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5
Vinyl Chloride	ND	1.0	0.5	Xylenes	ND	1.0	0.5
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1		ecoveries (%)	;		<u> </u>
%SS1:	10		.vgate N	%SS2:	10	0	
%SS3:	96			70552.		·	
%SS3: Comments: i	1 90						

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

P & D Environmental	Client Project ID: #0055; Former Haber	Date Sampled: 06/22/05
55 Santa Clara, Ste.240	Oil	Date Received: 06/23/05
	Client Contact: Wilhelm Welzenbach	Date Extracted: 06/29/05
Oakland, CA 94610	Client P.O.:	Date Analyzed: 06/29/05

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B	Analytical Method: SW8260B	Work Order: 0506452

Lab ID				0506452-007C			
Client ID				MW 7			
Matrix	1		>	Water			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	5.0	Acrolein (Propenal)	ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Вготоветие	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	5.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	1.0
Chloroform	ND	1.0	0.5	Chloromethane	ND	1.0	0.5
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane	ND	1.0	0.5
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	ND	1.0	0.5
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND	1.0	0.5
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	0.5
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND	1.0	0.5
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5
Hexachloroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene	ND	1.0	0.5
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride	ND	1.0	0.5
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	ND	1.0	0.5
Nitrobenzene	ND	1.0	10	n-Propyl benzene	ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	1.6	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5
Vinyl Chloride	ND	1.0	0.5	Xylenes	ND	1.0	0.5
		J		ecoveries (%)			<u> </u>
%SS1:	10			1 %SS2:	99	······································	
0/ CC3.	9.			70000			

Surrogate Recoveries (%)					
%SS1:	104	%SS2:	99		
%SS3:	94				
O			·		

Comments: i

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μg/wipe.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

P & D Environmental	Client Project ID: #0055; Former Haber	Date Sampled: 06/22/05
55 Santa Clara, Ste.240	Oil	Date Received: 06/23/05
	Client Contact: Wilhelm Welzenbach	Date Extracted: 06/29/05
Oakland, CA 94610	Client P.O.:	Date Analyzed: 06/29/05

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B

Analytical Method: SW8260B

Work Order: 0506452

Lab ID				0506452-008C			
Client ID				MW 8			
Matrix				Water			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	5.0	Acrolein (Propenal)	ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Веплепе	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	5.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	1.0
Chloroform	0.93	1.0	0.5	Chloromethane	ND	1.0	0.5
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane	ND	1.0	0.5
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	ND	1.0	0.5
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND	1.0	0.5
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	0.5
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND	1.0	0.5
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5
Hexachloroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene	ND	1.0	0.5
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride	ND	1.0	0.5
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	ND	1.0	0.5
Nitrobenzene	ND	1.0	10	n-Propyl benzene	ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5
Vinyl Chloride	ND	1.0	0.5	Xylenes	ND	1.0	0.5
		Su	rrogate R	ecoveries (%)			
%SS1:	10			%SS2:	99)	
%\$\$3:	90			1			
Comments:						•	

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0506452

EPA Method: SW8021B/	8015Cm E	xtraction:	SW5030B	3	Bato	hID: 1682	0	Spiked Sample ID: 0506449-014A				
A 1: - 4-	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)		
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD		
TPH(btex) [£]	ND	60	99.3	92	7.67	97.9	97.6	0.302	70 - 130	70 - 130		
МТВЕ	ND	10	105	107	1.11	115	118	2.36	70 - 130	70 - 130		
Benzene	ND	10	99.7	85.3	15.6	98.4	98.3	0.151	70 - 130	70 - 130		
Toluene	ND	10	100	86.6	14.8	100	98.7	1.33	70 - 130	70 - 130		
Ethylbenzene	ND	10	104	103	0.304	102	101	1.09	70 - 130	70 - 130		
Xylenes	ND	30	107	103	3.17	107	103	3.17	70 - 130	70 - 130		
%SS:	96	10	97	97	0	84	85	1.49	70 - 130	70 - 130		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 16820 SUMMARY

Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
6/22/05	6/26/05	6/26/05 6:40 AM	0506452-002A	6/22/05	6/28/05	6/28/05 4:00 AM
6/22/05	6/27/05	6/27/05 8:04 PM	0506452-003A	6/22/05	6/29/05	6/29/05 11:10 AM
¥	6/27/05	6/27/05 8:37 PM	0506452-004A	6/22/05	6/29/05	6/29/05 1:23 PM
	6/27/05	6/27/05 9:10 PM	0506452-006A	6/22/05	6/27/05	6/27/05 9:43 PM
	• • • • • • • • • • • • • • • • • • • •	6/27/05 10:16 PM	0506452-008A	6/22/05	6/27/05	6/27/05 11:22 PM
	6/22/05	6/22/05 6/26/05 6/22/05 6/27/05 6/22/05 6/27/05 6/22/05 6/27/05	6/22/05 6/26/05 6/26/05 6:40 AM 6/22/05 6/27/05 6/27/05 8:04 PM 6/22/05 6/27/05 6/27/05 8:37 PM 6/22/05 6/27/05 6/27/05 9:10 PM	6/22/05 6/26/05 6/26/05 6:40 AM 0506452-002A 6/22/05 6/27/05 6/27/05 8:04 PM 0506452-003A 6/22/05 6/27/05 6/27/05 8:37 PM 0506452-004A 6/22/05 6/27/05 6/27/05 9:10 PM 0506452-006A	6/22/05 6/26/05 6/26/05 6:40 AM 0506452-002A 6/22/05 6/22/05 6/27/05 6/27/05 8:04 PM 0506452-003A 6/22/05 6/22/05 6/27/05 6/27/05 8:37 PM 0506452-004A 6/22/05 6/22/05 6/27/05 6/27/05 9:10 PM 0506452-006A 6/22/05 6/22/05	6/22/05 6/26/05 6/26/05 6/26/05 6:40 AM 0506452-002A 6/22/05 6/29/05 6/22/05 6/27/05 6/27/05 8:04 PM 0506452-003A 6/22/05 6/29/05 6/22/05 6/27/05 6/27/05 8:37 PM 0506452-004A 6/22/05 6/29/05 6/22/05 6/27/05 6/27/05 9:10 PM 0506452-006A 6/22/05 6/27/05 6/27/05

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

M QA/QC Officer

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0506452

EPA Method: SW8260B	E	xtraction:	SW5030E	1	Batc	hID: 1682	3	Spiked Sample ID: 0506450-004A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)		
Analyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS/LCSD		
tert-Amyl methyl ether (TAME)	ND	10	107	109	2.52	105	108	3.34	70 - 130	70 - 130		
Benzene	ND	10	104	106	1.92	106	104	1.90	70 - 130	70 - 130		
t-Butyl alcohol (TBA)	ND	50	106	107	1.34	92.6	94.9	2.48	70 - 130	70 - 130		
Chlorobenzene	ND	10	112	115	3.37	108	111	2.04	70 - 130	70 - 130		
1,2-Dibromoethane (EDB)	ND	10	107	109	1.32	102	103	1.10	70 - 130	70 - 130		
1,2-Dichloroethane (1,2-DCA)	ND	10	112	113	1.15	110	109	0.804	70 - 130	70 - 130		
1,1-Dichloroethene	ND	10	105	106	0.403	111	107	3.69	70 - 130	70 - 130		
Diisopropyl ether (DIPE)	ND	10	118	117	0.313	118	115	2.71	70 - 130	70 - 130		
Ethyl tert-butyl ether (ETBE)	ND	10	106	108	1.60	106	106	0	70 - 130	70 - 130		
Methyl-t-butyl ether (MTBE)	ND	10	102	102	0	101	99.7	0.973	70 - 130	70 - 130		
Toluene	ND	10	103	105	2.24	101	102	0.622	70 - 130	70 - 130		
Trichloroethene	1.1	10	77.4	77.6	0.259	90.4	88.2	2.37	70 - 130	70 - 130		
%SS1:	102	10	101	98	3.31	104	100	3.81	70 - 130	70 - 130		
%SS2:	99	10	98	97	0.982	98	98	0	70 - 130	70 - 130		
%SS3:	92	10	102	98	4.13	100	99	0.612	70 - 130	70 - 130		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 16823 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0506452-001C	6/22/05	6/28/05	6/28/05 8:46 PM	0506452-002C	6/22/05	6/29/05	6/29/05 12:22 PM
0506452-003C	6/22/05	6/29/05	6/29/05 1:05 PM	0506452-004C	6/22/05	6/29/05	6/29/05 9:48 PM
0506452-005C	6/22/05	6/29/05	6/29/05 6:11 PM	0506452-006C	6/22/05	6/29/05	6/29/05 12:20 AM
0506452-007C	6/22/05	6/29/05	6/29/05 2:28 AM	0506452-008C	6/22/05	6/29/05	6/29/05 3:10 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked), RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QA/QC Officer

P & D ENVIRONMENTAL

A Division of Paul H. King, Inc. 55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916 pollo 0506452

GOOD CONDITION
HEAD SPACE ABSENT
DECHLORINATED IN LAB

APPROPRIATE CONTAINERS PRESERVED IN LAB

CHAIN OF CUSTAGERATION ECOR PROPERTY OF THE CHAIN OF CUSTAGER ATTOR ESCRIPTION OF CUSTAGER ATTOR ESCRIP

	(510) 658-	6916			, , , , , ,							. 	N.			P	AGE	OF _	
	PROJECT NUMBER: 5055 SAMPLED BY: (PRI WILLOW SAMPLE NUMBER	NTED AND S	SIGNATI	ire) En ba	ver !	Haber P SAMPLE	LOCATIO	Sell-	NUMBER OF CONTAINERS	AWAL ISISES.	10 10 10 10 10 10 10 10 10 10 10 10 10 1			<i>//</i> /	PRESERVIT	3AU K.	R	EWARKS	
(1) (1) (1)	MW1 MW2 MW3	6240		ude						X X	X				LCE 	New	nal	Turna	ons
シャー	MWY NWS MW6									X X	X X Y								
3	mwz mw8	<u></u>		1						X X	У У				¥	N.	<u> </u>		
					•														
	RELINQUISHED BY:	Prah	-6	DAJE 33/	TIME	-		IGNATURE)		TOTAL (THES SH L NO. C THES SH	OF SAMP BRIGHT) OF CONTA IPMENT)	JHERS.	8	う M	ORATORY Claup	bell	Analyti	
	RELINQUISHED BY:	\sim	16	DATE	TIME,	Des	O FOR L	OM- RBORATORY		<u> </u>	h al	SAMP	Fy.	O W	YSIS RE	EQUEST (X)N	98 SHEE	1 - (65c) - (80d)	
			<u> </u>	<u> </u>		REMARK	s: U	DA 5	fr	i Ch	ev	· U	ed)	w. Wil	th t	16	l.	

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

A

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

WorkOrder: 0506452

ClientID: PDEO

Report to:

Wilhelm Welzenbach

Oakland, CA 94610

P & D Environmental 55 Santa Clara, Ste.240 TEL: FAX: (510) 658-6916

510-834-0152

ProjectNo: #0055; Former Haber Oil

PO:

Bill to:

Accounts Payable

P & D Environmental

55 Santa Clara, Ste.240 Oakland, CA 94610 Date Received:

Requested TAT:

06/23/2005

5 days

Date Printed:

06/24/2005

	•			. [•				F	≷equ	este	d Te	sts	(See	lege	nd b	elow)						
Sample ID	ClientSamplD	Matrix	Collection Date	Hold	1	2	3		4		5		3	7		8		9	10	11	1	12	13	14	15
0506452-001	MW 1	Water	06/22/2005		В	A]			T			:						<u> </u>	T					
0506452-002	MW 2	Water	06/22/2005		В	Α]		1				\perp
0506452-003	MW 3	Water	06/22/2005		В	Α														1	:			<u> </u>	
0506452-004	MW 4	Water	06/22/2005		В	Α															1			1	
0506452-005	MW 5	Water	06/22/2005		В	Α		Ţ												<u> </u>					\perp
0506452-006	MW 6	Water	06/22/2005		В	Α					_						į				Ĺ			<u> </u>	
0506452-007	MW 7	Water	06/22/2005		В	Α													ì			****			
0506452-008	MW 8	Water	06/22/2005		В	Α													Ţ					;	

Test Legend:

1	5-OXYS+PBSCV_W	
6		
11		

2	G-MBTEX_W
7	
12	

3	
8	
13	

4	
9	
14]

5	 ·	 	
10	 	 	
15	 	 	

Prepared by: Rosa Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.