CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD SAN FRANCISCO BAY REGION

INTERNAL MEMO

TO: PWJ

FROM GSZ

WRCE

LPC Section Leader

DATE: 4/11/88

SIGNATURE

SUBJECT: Shell Service Station, Hopyard and Los Positas,

Pleasanton

NOTE: This site is less than 1/2 mile upgradient of municipal wells operated by Zone 7 and the City of Pleasanton.

We've recently received Shell's second report on this site (the memo detailing actions taken pursuant to their first report is attached). Shell has drilled 3 more wells, all on-site. Water and soil sampling reports, as well as a site map are attached. Of interest are 1) Groundwater contamination at the furthest downgradient well; 2) a soil sample showing 4500 ppm of TPH at 20 feet in that well. All wells were finished at aproximately 36 feet; the wells are screened entirely in clay. The well logs from Well 7 (City of Pleasanton well) show a permeable unit at aproximately 38 feet. I have prepared a letter for RBJ's signature that requests that Shell expand their investigation to include wells screened in any permeable unit underlying the site, both on and off site, and provide us with be monthy reports on their efforts to define, and abate the effects of, the groundwater pollution.

RWI

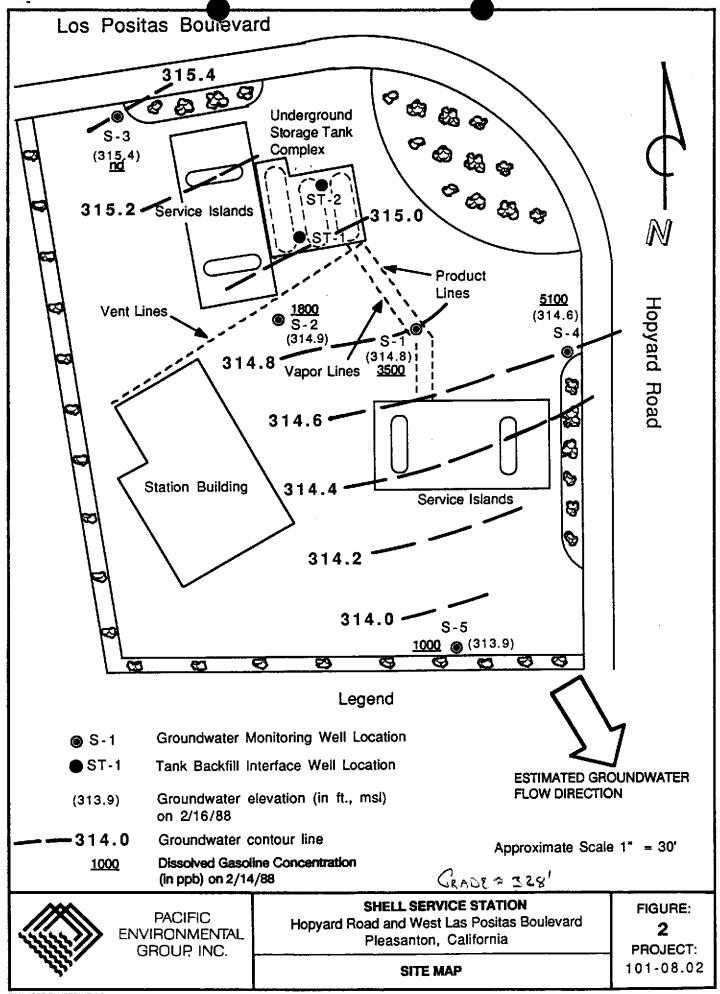


TABLE 1

Summary of Analytical Results Soil Samples

Boring		Dep		Gaso	line om)		zene		uene	Xyle	enes
S-3	19	to	20-1/2	1	nd		nd		nd		nd
	19	to	20-1/2	e estate estate de la constante de la constant	(I	6	.2	a para para Para Baran Sanda Para San	nd	nietze.	5.9
S - 5	19	to	20-1/2	470	00		50		170		900
Detection	ı Li	imit	cs		5	0	.05		0.1		0.4

Groundwater Samples (Sample Date: 02/14/88)

<u>Well</u>	Gasoline (ppb)	Benzene (ppb)	Toluene (ppb)	Xylenes (ppb)
S-1	3,500	1,300	<40	500
S-2	1,800	440	<10	140
S-3	nd	nd	nd	nd
S-4	5,100	160	8	730
S-5	1,000	40	86	180
Detection Limits	50	0.5	1	4

Notes: nd - not detected

ppb - parts per billion
ppm - parts per million

KET! SHELL STATION RECTANGLES ARE 2000 x 3000 FT. FOR CONTINUATION SEE WAR 434, COPYRIGHT, © 1986 BY 428, 65 FOR CONTINUENCY SEE MAP