approved 2/20/96

February 15, 1996

Alameda County Health Care Services 1131 Harbor Bay Parkway, 2nd Floor Alameda, CA 94502

Attention: Mr. Scott Seery

RE: Unocal Service Station #7376

4191 - 1st Street

Pleasanton, California

Dear Mr. Seery:

Per the request of Mr. Robert A. Boust of Unocal Corporation, enclosed please find our work plan/proposal dated February 12, 1996, for the above referenced site.

If you should have any questions, please feel free to call our office at (510) 602-5100.

Sincerely,

Kaprealian Engineering, Inc.

Judy A. Dewey

Executive Secretary

jad\82

Enclosure

cc: Robert A. Boust, Unocal Corporation

\$0:9 28 0283195 -- NOW TO COM -- NOW

KEI-P94-0903.P2R February 12, 1996

Unocal Corporation 2000 Crow Canyon Place, Suite 400 P.O. Box 5155 San Ramon, California 94583

Attention: Mr. Robert A. Boust

RE: Revised Work Plan/Proposal
Unocal Service Station #7376

4191 - 1st Street
Pleasanton, California

Dear Mr. Boust:

INTRODUCTION

Per your request, this revised work plan/proposal for the installation of additional wells at and in the vicinity of the subject site is presented for your review and consideration. The purpose of these wells is to further define the extent of contamination at the subject site. Site background information, recent field activities, and historical monitoring and sampling data is included in Kaprealian Engineering, Inc's. (KEI) report (KEI-P94-0903.R3) dated April 27, 1995, and MPDS Services, Inc's. (MPDS-UN7376-03) dated September 29, 1995.

PROPOSED FIELD WORK

DEFINING THE EXTENT OF SUBSURFACE CONTAMINATION

1. KEI proposes the installation of three additional two-inch diameter monitoring wells, designated as MW4, MW5, and MW6 on the attached Figure 1, by the use of hollow-stem auger equipment. Permits will be obtained from the Alameda County Flood Control and Water Conservation District, as necessary, prior to beginning work. An encroachment permit will be obtained from the County of Alameda Department of Public Works for the installation of MW5 and MW6.

The wells will be drilled about 10 feet into the saturated zone of the first encountered ground water. If a clay aquitard of at least 5 feet in thickness is encountered beneath the water table, drilling will be halted and the well will be constructed so as to terminate within the aquitard. Ground water is anticipated at approximately 77 feet below grade, based on the ground water levels measured in the three existing wells on December 12, 1995.

- 2. Soil samples will be collected at a maximum spacing of 5 foot intervals, at significant changes in lithology, at obvious areas of contamination, and at/or within the soil/ground water interface, beginning at a depth of about 4 to 5 feet below Sample intervals will be chosen so that an accurate profile of the subsurface soil conditions can be determined. Sampling for laboratory analyses and lithologic logging purposes will continue until the first water table is encoun-Sampling for lithologic logging purposes only will continue below the water table to the total depth drilled. Classification of soil will be done using the Unified Soils Classification System (USCS) by KEI's field geologist. Samples will be collected in a California-modified split-spoon sampler lined with two-inch diameter brass liners. sampler will be advanced ahead of the drilling augers at designated depths by dropping a 140 pound hammer 30 inches. Blow counts will be recorded. Samples will be removed from the sampler and retained in the brass liners. The liners will then be sealed with Teflon-lined plastic caps and placed in individually sealed plastic bags. They will be labeled and stored in a cooler, on crushed ice or "blue ice," for delivery to a state-certified laboratory. Properly executed Chain of Custody documentation will accompany all soil samples.
- 3. During drilling operations, all soil materials will be stored on-site in DOT-approved, 55-gallon drums, or else covered by visqueen. Each drum (if used) will be properly labeled and will include, at a minimum, the date, the well that the soil materials were obtained from, and the phone number at Unocal.
- 4. Finalized Boring Logs will be prepared from the field logs and submitted to the Alameda County Health Care Services (ACHCS) Agency and the Regional Water Quality Control Board (RWQCB), San Francisco Bay Region.

5. Well Construction:

The well casing will consist of two-inch diameter schedule 40 PVC with flush threaded joints and 0.010 inch factory slot. The screen will extend from the total depth of the well to approximately 5 feet above the depth of the first encountered ground water. Monterey sand (#2/12) will fill the annular space from total depth to 2 feet above the perforated casing interval. The choice of screen slot size and sand filter pack material is based on soils encountered in previous borings and particle size analysis. A 2-foot thick bentonite seal will be placed in the annular space on top of the sand pack. Neat cement grout will be placed on top of the bentonite seal to

the surface. A Proposed Well Construction Diagram is attached to this proposal.

The well casings will be secured with a waterproof cap and a padlock. A round, watertight, flush-mounted well cover will be concreted in place over the top of each casing. The elevations of the well casings will be surveyed by a licensed land surveyor to Mean Sea Level and to a vertical accuracy of 0.01 foot.

- 6. The wells will be developed approximately one week after well completion. Prior to development, the wells will be checked for depth to the water table (by the use of an electronic sounder), and the presence of free product (by the use of an interface probe or product gauging paste). After recording the monitoring data, the wells will be developed by the use of a surge block and a subsurface pump. Effluent generated during well development will be contained in DOT-approved drums and hauled from the site by a licensed hazardous materials hauler.
- 7. Ground Water Sampling (Performed by MPDS Services, Inc.):

The wells will be checked for free product (by the use of an interface probe and/or product gauging paste) prior to development and sampling. The wells will also be checked for the presence of a sheen prior to sampling.

The wells will be purged (by the use of a pump or bailer) of a minimum of four casing volumes. Purging will be conducted prior to sampling and at least 72 hours after development. During purging operations, the field parameters pH, temperature, and electrical conductivity will be recorded and presented in a tabular form. Once the field parameters are observed to stabilize and a minimum of approximately four casing volumes have been removed from each well, water samples will then be collected by the use of a clean Teflon bailer and promptly decanted into 40 ml VOA vials and/or one-liter amber bottles, as appropriate. The vials and/or bottles will then be sealed with Teflon-lined screw caps, labeled and stored, on ice, for delivery to a state-certified laboratory. The sampling bailer will be cleaned with non-phosphate soap and clean water rinses between uses.

Properly executed Chain of Custody documentation will accompany all water samples.

8. <u>Laboratory Analyses</u>:

Water and selected soil samples will be analyzed by Sequoia Analytical Laboratory, a state-certified laboratory, for total petroleum hydrocarbons (TPH) as gasoline by EPA method 5030/modified 8015, benzene, toluene, ethylbenzene, and xylenes by EPA method 8020, and TPH as diesel by EPA methods 3550/modified 8015 (soil) and 3510/modified 8015 (water).

The analytical results will be presented in tabular form, showing the sample depths, and results. The analytical results will be used to delineate the vertical and lateral extent of the contaminants in soil and ground water.

9. <u>Hydrology</u>:

The ground water flow direction and ground water gradient will be determined from the water level elevations measured in both the new and existing monitoring wells. The flow direction will be shown on the Site Plan.

10. Conclusions:

Conclusions and results of this work will be described in a technical report. The technical report will be submitted to the ACHCS, and to the RWQCB, San Francisco Bay Region.

LIMITATIONS

Soil deposits and rock formations may vary in thickness, lithology, saturation, strength and other properties across any site. In addition, environmental changes, either naturally-occurring or artificially-induced, may cause changes in the extent and concentration of any contaminants. Our studies assume that the field and laboratory data are reasonably representative of the site as a whole, and assume that subsurface conditions are reasonably conducive to interpolation and extrapolation.

The results of this study will be based on the data obtained from the field and laboratory analyses obtained from a state-certified laboratory. We will analyze this data using what we believe to be currently applicable engineering techniques and principles in the Northern California region. We make no warranty, either expressed or implied, regarding the above, including laboratory analyses, except that our services will be performed in accordance with generally accepted professional principles and practices existing for such work.

Should you have any questions regarding this revised work plan/proposal, please do not hesitate to call me at (510) 602-5100.

JOEL G. GREGER

No. EG 1633 CERTIFIED ENGINEERING

GEOLOGIST

Sincerely,

Kaprealian Engineering, Inc.

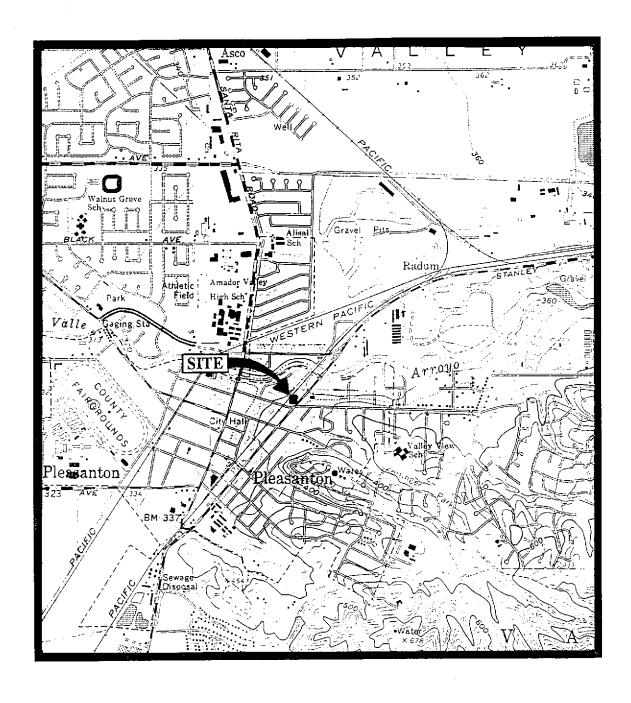
Doug Lee

Senior Geologist

Joel G. Greger, C.E.G. Senior Engineering Geologist

License No. EG 1633 Exp. Date 8/31/96

Robert H. Kezerian Project Manager


Khall I

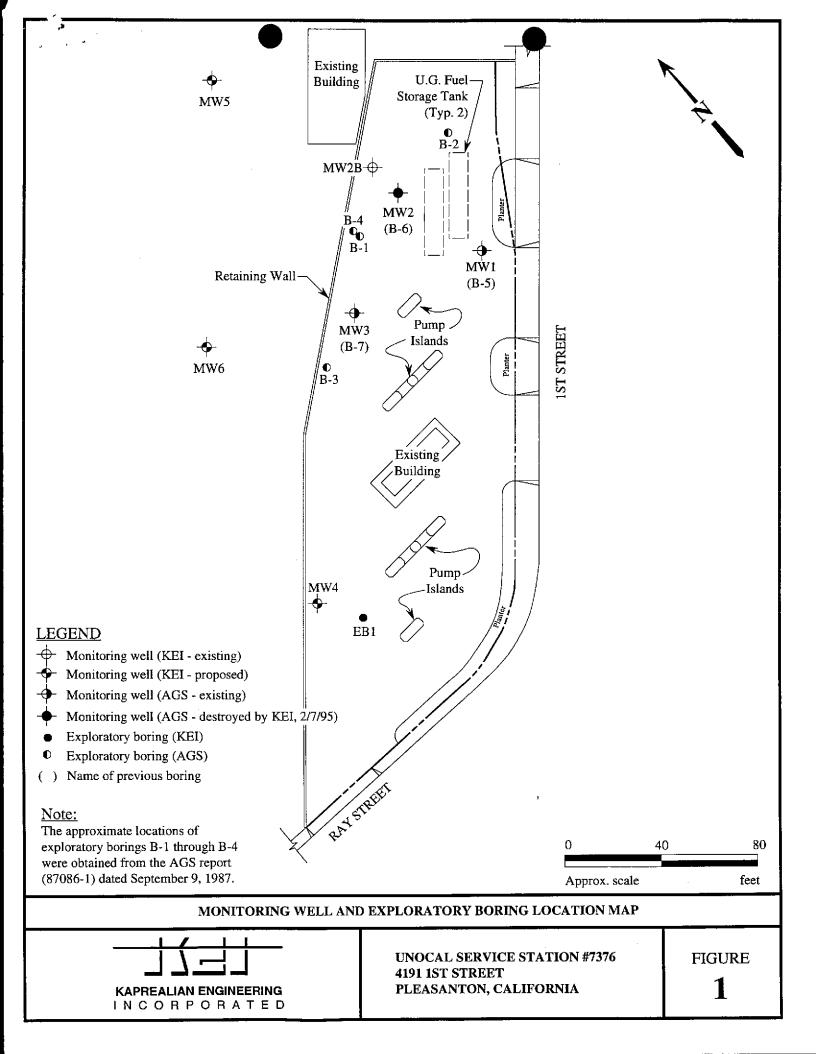
/jad

Attachments: Location Map

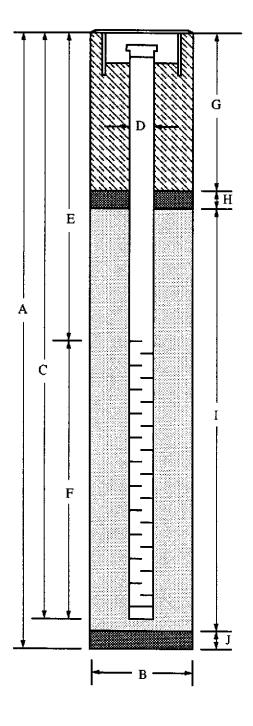
Figure 1

Proposed Well Construction Diagram

Base modified from 7.5 minute U.S.G.S. Dublin and Livermore Quadrangles
(both photorevised 1980)


Approx. scale

UNOCAL SERVICE STATION #7376 4191 1ST STREET PLEASANTON, CALIFORNIA LOCATION MAP


4000

feet

PROPOSED WELL CONSTRUCTION DIAGRAM

Flush-mounted Well Cover

TEST WELL DETAILS*

- Well will be terminated at a maximum of 20 feet into the first encountered ground water unless a five foot thick aquitard is encountered below the water table, in which case the aquitard will be backfilled with bentonite pellets and the well terminated at the top of this aquitard [A].
- 2. Boring diameter [B] is 9 inches for 2 inch wells and 12 inches for 4 to 6 inch wells.
- 3. Perforated interval [F] will extend from bottom of casing to five feet above the first encountered ground water table (unless water <5 feet deep).
- 4. Schedule 40 PVC casing, 6 inch in diameter [D], will be used [C]. Screen is 0.020 or 0.010 inch factory machined slots, depending on filter pack grain size.
- 5. Filter pack will be placed from bottom of casing to two feet above perforated interval [I]. (Bottom seal [J] is not installed unless required.) One to two feet of bentonite [H] will be placed above the filter pack. Concrete grout [G] will be placed from top of bentonite seal to the surface (unless modified due to shallow water). Blank casing [E] will extend from the top of the perforated casing to the top of the hole.
- 6. The well will be installed with a waterproof cap, padlock and a flush-mounted well cover.
- * See text for additional information.