

GETTLER-RYAN INC.

TRANSMITTAL

TO:

Mr. Scott Seery

Alameda County Health Care

Services Agency

1131 Harbor Bay Parkway

Alameda, CA 94502

FROM:

Deanna L. Harding

Project Manager Gettler-Ryan Inc.

6747 Sierra Court, Suite J Dublin, California 94568

DATE: March 6, 1998

G-R #: 180075

Tosco (Unocal) SS #7376

4191 First Street

Pleasanton, California

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
1	February 20, 1998	Groundwater Monitoring and Sampling Report Fourth Quarter 1997 - December 15, 1997

COMMENTS:

At the request of Tosco Marketing Company, we are providing you a copy of the above referenced report. The site is monitored and sampled on a quarterly basis in March, June, September, December. If you have questions please contact the Tosco Project Manager, Ms. Tina R. Berry at (510) 277-2321.

Enclosure

Mr. Dave Vossler, Gettler-Ryan Inc., Novato, CA 94945

agency/6436trb.qmt

Tosco Marketing Company 2000 Crow Canyon Place, Ste. 400 San Ramon, California 94583 Telephone: 510-277-2305 Facsimile: 510-277-2361

Environmental Compliance Department

To All Concerned:

The Environmental Compliance Group (San Ramon, CA Office) of Tosco Marketing Company (TMC) would like to provide information concerning the shifting of environmental projects from Kaprealian Engineering, Incorporated and MPDS Services, Incorporated of Concord, CA.

्रात सम्बद्धीतक वार साथ भूत्वाकी कार्यो ने किन्तुमा के कार्योग्य भीत्र के कार्योग्य समानित ने समानित ने समानि

grand the second of the second second second second

Friedry 1. 1909 and all world will be completed about his Spain -39 year, Spain

Projects (monitoring and sampling) and assets formerly with MPDS Services, Inc. have been purchased by Gettler-Ryan, Inc. (GRI) of Dublin, CA. GRI will continue to provide the same services to the Tosco Marketing Company. This transaction was effective January 1, 1998.

Environmental projects formerly with Kaprealian Engineering, Inc. (KEI) have been

transferred to GRI, effective January 1, 1998.

• It is TMC's understanding that the original environmental consulting portion of Gettler-Ryan, the subsidiary known as GeoStrategies, has been dissolved (effective January 1, 1998) and all work will be completed through Gettler-Ryan, Inc.

Gettler-Ryan, Inc. has been a consultant for TMC in the past and we do not anticipate

problems with continuity of the environmental projects.

Should there be questions, please feel free to call:

David Camille 510-277-2335

510-277-2321 Tina Berry

Ed Ralston 510-277-2335

Dave De Witt 510-277-2384

GETTLER-RYAN INC.

February 20, 1998 G-R Job #180075

Ms. Tina R. Berry Tosco Marketing Company 2000 Crow Canyon Place, Suite 200 San Ramon, California 94583

RE: Fourth Quarter 1997 Groundwater Monitoring & Sampling Report

Unocal Service Station #7376

4191 First Street Pleasanton, California

Dear Ms. Berry:

This report documents the quarterly groundwater monitoring and sampling event performed by MPDS Services, Inc. On December 15, 1997, MPDS field personnel monitored six wells (MW1, MW2B and MW3 through MW6) and sampled five wells (MW1, MW2B, MW3, MW4, and MW6) at the referenced site.

Static groundwater levels were measured and all wells were checked for the presence of separate-phase hydrocarbons. Separate-phase hydrocarbons were present in one well (MW5). Static water level data and groundwater elevations are summarized in Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells as specified by Standard Operating Procedure - Groundwater Sampling (attached). The field data sheets are also attached. The samples were analyzed by Sequoia Analytical. Analytical results are summarized in Table 2, and a Concentration Map is included as Figure 2. The chain of custody document and laboratory analytical reports are also attached.

Singerely,

Project Manager

Hagop Kevork, P.E.

Senior Staff Engineer, P.E. No. C55734

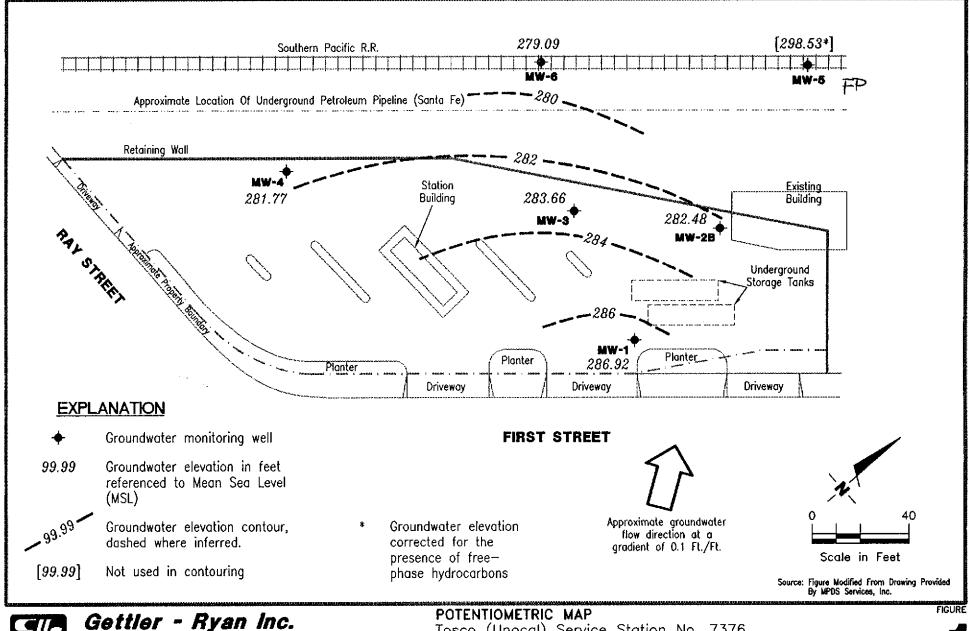
Figure 1:

Potentiometric Map

Figure 2:

Concentration Map

Table 1: Table 2:


Summary of Monitoring Data Summary of Laboratory Analyses

Attachments:

Standard Operating Procedure - Groundwater Sampling

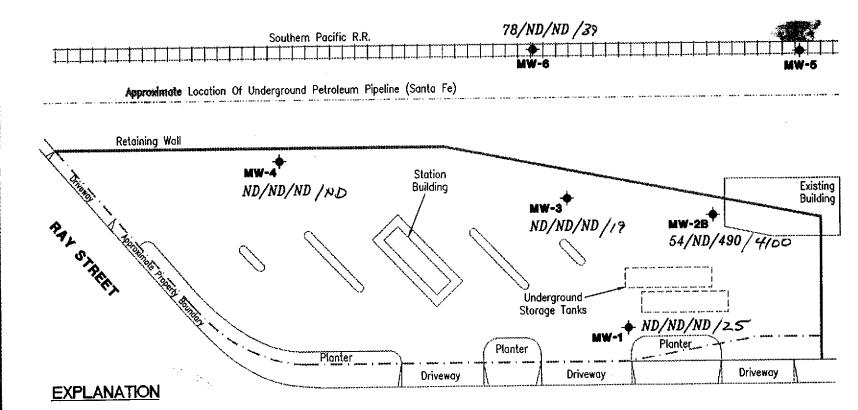
Field Data Sheets

Chain of Custody Document and Laboratory Analytical Reports

Gettler - Ryan Inc.

6747 Sierra Ct., Suite J **Dublin, CA 94568**

(510) 551-7555

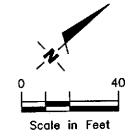

Tosco (Unocal) Service Station No. 7376 4191 First Street Pleasanton, California

DATE

REVISED DATE

JOB NUMBER REVIEWED BY 180075

December 15, 1997


Groundwater monitoring well

A/B/C/O TPH(G) (Total Petroleum Hydrocarbons as Gasoline)/Benzene/TPH(D) (Total Petroleum Hydrocarbons as Diesel) concentrations in ppb/MEBE

Not Detected ND

Free Product FP

FIRST STREET

Source: Figure Modified From Drawing Provided By MPDS Services, Inc.

Gettler - Ryan Inc.

6747 Sierra Ct., Suite J Dublin, CA 94568

(510) 551-7555

CONCENTRATION MAP

Tosco (Unocal) Service Station No. 7376 4191 First Street Pleasanton, California

DATE

December 15, 1997

FIGURE

JOB NUMBER 180075

REVIEWED BY

REVISED DATE

Table 1
Summary of Monitoring Data

	Ground Water Elevation	Depth to Water	Total Well Depth	Product Thickness		Water Purged
Well#	(feet)	(feet)◆	(feet)◆	(feet)	Sheen	(gallons)
		(Monitored an	d Sampled on De	cember 15, 1997	7)	
MW1	286.92	80.07	86.43	0	No	3.5
MW2B	282.48	82.57	85.25	0	No	1.5
MW3	283.66	83.35	94.11	0	No	5.5
MW4	281.77	87.26	93.01	0	No	3
MW5	298.53**	64.92	72.52	0.30	N/A	0
MW6	279.09	84.03	88.00	0	No	2.5
		(Monitored an	d Sampled on Sep	ptember 29, 199	7)	
MW1	286.95	80.04	86.41	0	No	3.5
MW2B	282.33	82.72	85.20	0	No	1.5
MW3	283.68	83.33	94.11	0	No	3.5
MW4	283.20	85.83	93.01	0	No	4
MW5	294.02**	69.47	72.65	0.35	N/A	0
MW6	277.10	86.02	88.00	0	No	1
		(Monitored	and Sampled on	June 27, 1997)		
MW1	286.94	80.05	86.42	0	No	3.5
MW2B	282.65	82.40	85.26	0	No	1.5
MW3	283.74	83.27	94.12	0	No	6
MW4	289.97	79.06	93.06	0	No	7.5
MW5	295.03**	68.88	72.52	0.90	N/A	0 (18)
MW6	282.67	80.45	88.00	0	No	4
	(Monitored and Sampled on March 7, 1997)					
MW1	295.50	71.49	86.40	0	No	8
MW2B	295.38	69.67	85.25	0	Yes	8
MW3	295.43	71.58	94.09	o	No	12
MW4	300.99	68.04	94.95	o	No	13.5
MW5	306.93	56.30	72.59	o	Yes	9
MW6	295.51	67.61	88.09	o	No	11

Table 1
Summary of Monitoring Data

	WellCasing
	Elevation
Well#	(feet)*
MW1	366.99
MW2B	365.05
MW3	367.01
MW4	369.03
MW5	363.23
MW6	363.12

- (#) Product purged in ounces.
- The depth to water level and total well depth measurements were taken from the top of the well casings.
- * The elevations of the top of the well casings were surveyed relative to City of Pleasanton Benchmark V1, a brass disk on the north curb of Ray Street, approximately 200 feet northwest of the centerline of First Street (elevation = 367.17 feet Mean Sea Level).
- ** Ground water elevation corrected for the presence of free product (correction factor = 0.75).

. ! .

Table 2
Summary of Laboratory Analyses
Water

		TPH as	TPH as			Ethyl-		
Well#	Date	Diesel	Gasoline	Benzene	Toluene	Benzene	Xylenes	MTBE

MW1	12/8/87*	2,100**	50+	58	8	ND	10	-
	12/7/94		ND	ND	ND	ND	ND	
	3/1/95	120	ND	ND	1.1	ND	1.3	_
	6/1/95	54##	130	1.0	2.9	0.79	4.5	
	9/6/95	690	ND	ND	ND	ND	ND	§
	12/12/95	190##	ND	ND	ND	ND	ND	
	3/1/96	56	ND	ND	ND	ND	ND	370
	6/15/96	ND	ND	ND	ND	ND	ND	270
	9/18/96	130##	ND	ND	ND	ND	ND	590
	12/21/96	ND	ND	ND	ND	ND	ND	150
	3/7/97	ND	ND	ND	ND	ND	ND	220
	6/27/97	ND	ND	ND	ND	ND	ND	17
	9/29/97	ND	ND	ND	ND	ND	ND	24
	12/15/97	ND	ND	ND	ND	ND	ND	25
	4.545.45							
MW2	12/8/87	620**	1,800♦	910	800	260	1,200	
	12/7/94	WELL WAS						
	2/7/95	WELL WAS	DESTROYED)				
MW2B	3/1/95	320	ND	ND	ND	ND	ND	
191 W 2.D	6/1/95	280	350	19	5.8	ND	7.7	
	9/6/95	ND	ND	90	ND	ND	ND	<u></u> §
	12/12/95	850#	1,200	630	ND	15	57	3 §§
	3/1/96	870#	1,000	620	ND	ND	5.3	4,300
	6/15/96	420	910	350	ND	ND	ND	3,700
	9/18/96	600	1,200	95	ND	ND	ND	5,200
	12/21/96	470	330*#	57	ND	ND	ND	2,900
	3/7/97	870#	190	28	0.64	ND	1.5	4,300
	6/27/97	680#	98	3.4	1.0	0.53	ND	3,100
	9/29/97	430	ND	ND	ND	ND	ND	3,000
	12/15/97	490	54**#	ND	ND	ND	ND	4,100
MW3	12/8/87	2300**	24,000+	2,600	1,300	160	660	
	12/7/94		ND	ND	ND	ND	ND	
	3/1/95	140#	ND	ND	1.1	ND	1.1	
	6/1/95	140##	62	7.8	0.90	ND	1.6	
	9/6/95	880##	4,100	380	490	130	710	§
	12/12/95	3,100#	19,000	600	380	2,100	5,300	§ §
	3/1/96	1,500##	3,400	950	3.2	1,900	290	59
	6/15/96	400#	780	190	8.8	3.8	4.0	630
	9/18/96	170	2,800	340	12	11	110	2,500
	12/21/96	64#	51	1.3	ND	ND	0.53	20
	3/7/97	570#	1,400	53 ND	14	29	68 ND	220
	6/27/97	ND	ND	ND	ND.	ND	ND	27
	9/29/97	ND	ND	ND	ND	ND ND	ND ND	11
	12/15/97	ND	ND	ND	ND	ND	ND	19

Table 2
Summary of Laboratory Analyses
Water

		TPH as	TPH as			Ethyl-		
Well#	Date	Diesel	Gasoline	Benzene	Toluene	Benzene	Xylenes	MTBE
MW4	9/18/96	200	160	14	ND	ND	1.6	ND
	12/21/96	ND	ND	ND	ND	ND	ND	ND
	3/7/97	ND	ND	1.9	0.99	ND	1.5	ND
	6/27/97	ND	ND	ND	ND	ND	ND	ND
	9/29/97	ND	ND	ND	ND	ND	ND	ND
	12/15/97	ND	ND	ND	ND	ND	ND	ND
MW5	9/18/96	4,700##	36,000	6,700	410	730	6,500	4,100
	12/21/96	4,700#	25,000	3,200	300	780	3,600	2,600
	3/7/97	2,100#	14,000	1,300	120	410	1,200	1,700
	6/27/97	NOT SAMPI	ED DUE TO	THE PRESEN	NCE OF FRE	E PRODUCT	•	-,
	9/29/97	NOT SAMPI	ED DUE TO	THE PRESE	NCE OF FRE	E PRODUCT		
	12/15/97	NOT SAMPI	ED DUE TO	THE PRESE	NCE OF FRE	E PRODUCT		
MW6	9/18/96	ND	160	5,4	ND	ND	ND	ND
	12/21/96	ND	300*#	96	1.3	ND	1.7	21
	3/7/97	190#	1,800*#	920	18	ND	31	290
	6/27/97	73##	ND	0.73	ND	ND	38	38
	9/29/97	ND	62**#	ND	ND	ND	ND	43
	12/15/97	ND	78**#	ND	ND	ND	ND	39

- * 1,2 Dichloroethene was detected at a concentration of 18 μg/L.
- ** Reported as Total Extractable Hydrocarbons (TEH).
- Reported as Total Petroleum Hydrocarbons (TPH).
- # Sequoia Analytical Laboratory reported that the hydrocarbons detected appeared to be a diesel and non-diesel mixture.
- ## Sequoia Analytical Laboratory reported that the hydrocarbons detected did not appear to be diesel.
- *# Sequoia Analytical Laboratory reported that the hydrocarbons detected appeared to be a gasoline and non-gasoline mixture.
- **# Sequoia Analytical Laboratory reported that the hydrocarbons detected did not appear to be gasoline.
- § Sequoia Analytical Laboratory has potentially identified the presence of MTBE at reportable levels in the ground water sample collected from this well.
- §§ Sequoia Analytical Laboratory has identified the presence of MTBE at a level above or equal to the taste and odor threshold of 40 μg/L in the sample collected from this well.

MTBE = Methyl tert butyl ether.

Table 2 Summary of Laboratory Analyses Water

ND = Non-detectable.

-- Indicates analysis was not performed.

Results are in micrograms per liter (µg/L), unless otherwise indicated.

Note:

The detection limit for results reported as ND by Sequoia Analytical Laboratory is equal to the stated detection limit times the dilution factor indicated on the laboratory analytical sheets.

Prior to August 1, 1995, the total purgeable petroleum hydrocarbon (TPH as gasoline) quantification range used by Sequoia Analytical Laboratory was C4 - C12. Since August 1, 1995, the quantification range used by Sequoia Analytical Laboratory is C6 - C12.

Laboratory analyses data prior to March 1, 1995 were provided by Kaprealian Engineering, Inc.

STANDARD OPERATING PROCEDURE - GROUNDWATER SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using a MMC flexi-dip interface probe or equivalent. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, static water level measurements are collected with the interface probe and are also recorded in the field notes.

After water levels are collected and prior to sampling, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or polyvinyl chloride bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging. Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

As requested by Tosco Marketing Company, the purge water and decontamination water generated during sampling activities is transported to Tosco - San Francisco Area Refinery, located in Rodeo, California.

N;\tosco\\forms\standard.pro.1/98

Tel: (510) 602-5120 Fax: (510) 689-1918

SAMPLING LOCATION: # 7376 PLEASANTON	DATE & A.M. TIME SAMPLED 12-15-97 12:00 (P.M.)
4/9/ FIRST STREET	FIELD TECHNICIAN STEVE BALLAN
PURGE METHOD BATC	DATE(S) PURGED/2_/5_97
WELL NUMBER	_
WATER LEVEL-INITIAL 80.07	SAMPLING METHOD BAIC
WATER LEVEL-FINAL 80.21	CONTAINERS 3
WELL DEPTH	PRESERVATIVES _ #-l
WELL CASING VOLUME	tCASING DIAMETER 2

TIME	GALLONS PURGED	TEMPERATURE (°F)	ELECTRICAL CONDUCTIVITY (µmhos/cmx100) or µS/cm	рН
11:25	0	67.1	43000	6.73
	1	68.8	424 02	6.69
	2.5	70.0	418 00	6.68
11:40	3.5	70.5	430 UV	6.70

† Conversion Factors: <u>W</u>	Vell Diameter	Factor	S = Siemens = mhos
	2"	0.17	Stabilization Criteria:
	3"	0.37	Temperature = ± 1 °F
	4"	0.65	Conductivity = \pm 10% of total
	4.5"	0.82	$pH = \pm 0.2$
	6"	1.46	
	8"	2.60	
	12"	5.87	

Tel: (510) 602-5120 Fax: (510) 689-1918

SAMPLING LOCATION: #7376 PLEASANTON	DATE & A.M. TIME SAMPLED /2-/5-77 /3:20 P.M.
4191 FIRST STREET	FIELD TECHNICIAN STEVE BAUAN
PURGE METHOD BAIL	DATE(S) PURGED _/2-15-97
WELL NUMBER NW- 2B	
WATER LEVEL-INITIAL 82.57	SAMPLING METHOD Bic
WATER LEVEL-FINAL 82.64	CONTAINERS 3
WELL DEPTH 85.25	PRESERVATIVES Hd
WELL CASING VOLUME 0.46	tCASING DIAMETER 2"

TIME	GALLONS PURGED	TEMPERATURE (°F)	ELECTRICAL CONDUCTIVITY (μmhos/cmx100) or μS/cm	рН
12:22	0	65.7	515 00	6.87
	0.5	67.1	514 02	6.81
		67.0	526 ov	6.86
13:05.	1.5	66.7	514 00	6.87

† Conversion Factors: Well Diameter	r <u>Factor</u>	S = Siemens = mhos
2"	0.17	Stabilization Criteria:
3"	0.37	Temperature = \pm 1 °F
4"	0.65	Conductivity = \pm 10% of total
4.5*	0.82	$pH = \pm 0.2$
6"	1,46	
8"	2.60	
12"	5.87	

Tel: (510) 602-5120 Fax: (510) 689-1918

SAMPLING LOCATION: #7376 PLEASANTON	DATE & (A.M.) TIME SAMPLED /2-/5-92 /1:15 P.M.
4/91 FIRST STREET	FIELD TECHNICIAN STEVE BALLAN
PURGE METHOD BALL	DATE(S) PURGED /2-15-97
WELL NUMBER _Mw_ 3	
WATER LEVEL-INITIAL 83.35	SAMPLING METHOD BAIL
WATER LEVEL-FINAL 83.60	CONTAINERS 3
WELL DEPTH	PRESERVATIVES Hel
WELL CASING VOLUME /. 83	tCASING DIAMETER _2 *

TIME	GALLONS PURGED	TEMPERATURE (°F)	ELECTRICAL CONDUCTIVITY (µmhos/cmx100) or µS/cm	рН
10:40	0	65.0	450 u~	6.81
	2	65.8	466 ur	6.87
V	4	66.5	47102	6.77
11:00	5.5	66.6	475 UN	6.75

† Conversion Factors: Well	<u>Diameter</u> <u>Factor</u>	S = Siemens = mhos	
	2" 0.17	Stabilization Criteria:	
	3" 0.37	Temperature = \pm	1 °F
	4" 0.65	Conductivity = ±	10% of total
	4.5" 0.82	$pH = \pm 0.2$	
	6" 1.46		
	8" 2.60		
	12" 5.87		

Tel: (510) 602-5120 Fax: (510) 689-1918

SAMPLING LOCATION: #7376 PLEASANTON	DATE & A.M. _ TIME SAMPLED _/2_/5-97
4191 FIRST STREET	FIELD TECHNICIAN STEVE BALLAN
PURGE METHOD BAIL	_ DATE(S) PURGED _/2-/5-97
WELL NUMBER	
WATER LEVEL-INITIAL 87.26	_ SAMPLING METHOD BAIL
WATER LEVEL-FINAL 87.50	CONTAINERS 3
WELL DEPTH93. □ /	PRESERVATIVES Hel
WELL CASING VOLUME 0.98	tCASING DIAMETER 2°

TIME	GALLONS PURGED	TEMPERATURE (°F)	ELECTRICAL CONDUCTIVITY (μmhos/cmx100) or μS/cm	рН
10:00	Ð	6/.0	280 00	7.09
	.	65.8	315 04	7.41
\downarrow	2	66.3	32/ 00-	7.46
10:10	3	66.5	319 02	7.46

† Conversion Factors: Well Dian	neter <u>Factor</u>	S = Siemens = mhos
2*	0.17	Stabilization Criteria:
3"	0.37	Temperature = ± 1 °F
4"	0.65	Conductivity = \pm 10% of total
4.5"	0.82	$pH = \pm 0.2$
6"	1.46	
8"	2.60	
12"	5.87	

Tel: (510) 602-5120 Fax: (510) 689-1918

SAMPLING LOCATION: #7376 PLEASANT ON	DATE & A.M. TIME SAMPLED /2-15-97 /2:45 PM
4191 FIRST STREET	FIELD TECHNICIAN STENE BACIAN
PURGE METHOD BAIL	DATE(S) PURGED _/2 -/5 -9 7
WELL NUMBER6	· -
WATER LEVEL-INITIAL 84.03	SAMPLING METHOD BAIL
WATER LEVEL-FINAL 84.29	CONTAINERS 3
WELL DEPTH 88.00	PRESERVATIVES Hell
WELL CASING VOLUME 0.67	†CASING DIAMETER _ 2*

TIME	GALLONS PURGED	TEMPERATURE (°F)	ELECTRICAL CONDUCTIVITY (μmhos/cmx100) or μS/cm	рН
12:15	0	67.4	487 02	6.81
		67.6	498 UV	6.81
V	2	67.1	501 00	6.82
12:25	2.5	67.1	498 02	6.81
-				

† Conversion Factors:	Well Diameter	<u>Factor</u>	S = Siemens = mhos
	2"	0.17	Stabilization Criteria:
	3"	0.37	Temperature = ± 1 °F
	4"	0.65	Conductivity = \pm 10% of total
	4.5"	0.82	$pH = \pm 0.2$
	6"	1.46	
	8"	2.60	
	12"	5.87	

M P D S Services, Inc.

2401 Stanwell Drive, Suite 400, Concord, CA 94520 Tel: (510) 602-5120 Fax: (510) 689-1918

CHAIN OF CUSTODY

17 (220)

SAMPLER	BALIX	4N	TOS S/S #	CO 737	<u>6</u> c	CITY: <u>PLEASAN</u>]	<u> </u>	ANALYSES REQUESTED				Τ	TURN AROUND TIME:			
WITNESSING AGENCY			ADDRE	ss: <u>4/</u>	7/	FIRST STR	<u>eet</u>	/3- X	4-D	.BE	0/	\cdot				REGULAR
SAMPLE ID NO.	DATE	TIME	WATER	GRAÐ	СОМР	NO. OF CONT.	SAMPLING LOCATION	TPH-G BTEX	ТРН	MTB	80	1				REMARKS
Mw-/	12-15-97	/2:00	X	Χ		3	MECC	X	X	X		712	1225			MTBE
MW-2B	11	13:20	X	X		3	ø	X	X	X		712	1226			5-886
MW_ 3	"	11:15	X	Х		3	"	X	X	X			1227			
MW- 4	1.1	lo:30	乂	X		3	11	Х	X	X		<u> </u>	1228	3		
MW- 6	"	/2:45	X	X		3	ν,	X	X	X	-	7121	229			
					<u>-</u>				,							
3.																
									_							
RELINGUISH	ED BY:	DATE/1			RE	ECEIVED BY:	DA	TE/TIME								TING SAMPLES FOR ANALYSES:
STEVE BALL	4~	/4:5 /2-15-											IALYSIS BE		D ON ICE?	
(SIGNATURE)				(SIGNA	TURE)								OUNTIL AN			
(SIGNATURE)				(SIGNA	TURE)				3. DID AN	NY SAMPLE	s receive	D FOR ANA	ALYSIS HAV	Æ HEAD S	PACE?	/
(SIGNATURE)				(SIGNA						_	/		TAINERS A			DATE: 10/15/97
(SIGNATURE)				(SIGNA	TURE	nece	13/	440.	SIGNAT	URE:	190 sm			TITLE(<u>\{</u>	nel y	DATE: 10113 / 1

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (650) 364-9600 (510) 988-9600 (916) 921-9600 FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services 2401 Stanwell Dr., Ste. 300

Client Project ID:

): Tosco#7376, 4191 First St., Pleasanton Sampled:

Sampled: Received: Dec 15, 1997 Dec 15, 1997

Concord, CA 94520 Attention: Jarrel Crider Matrix Descript: Analysis Method: Water EPA 5030/8015 Mod./8020

Reported:

Dec 31, 1997

First Sample #:

712-1225

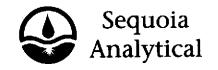
TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Sample Number	Sample Description	Purgeable Hydrocarbons $\mu { m g/L}$	Benzene μg/L	Toluene μg/L	Ethyl Benzene µg/L	Total Xylenes μg/L
712-1225	MW-1	ND	ND	ND	ND	ND
712-1226	MW-2B	54*	ND	ND	ND	ND
712-1227	мw-з	ND	ND	ND	ND	ND
712-1228	MW-4	ND	ND	ND	ND	ND
712-1229	MW-6	78*	ND	ND	ND	ND

^{*} Hydrocarbons detected did not appear to be gasoline.

Detection Limits:	50	0.50	0.50	0.50	0.50	

Total Purgeable Petroleum Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as ND were not present above the stated limit of detection.


SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B. Kemp Project Manager

Page 1 of 2

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(650) 364-9600 (510) 988-9600 (916) 921-9600

FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services 2401 Stanwell Dr., Ste. 300

Concord, CA 94520 Attention: Jarrel Crider Client Project ID: Matrix Descript:

ject ID: Tosco#7376, 4191 First St., Pleasanton Water

Sampled: Dec 15, 1997 Received: Dec 15, 1997

Analysis Method: First Sample #:

EPA 5030/8015 Mod./8020

Reported:

Dec 31, 1997

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

712-1225

Sample Number	Sample Description	Chromatogram Pattern	DL Mult. Factor	Date Analyzed	Instrument ID	Surrogate Recovery, % QC Limits: 70-130
712-1225	MW-1		1.0	12/18/97	HP-5	113
712-1226	MW-2B	Unidentified Hydrocarbons < C7*	1.0	12/18/97	HP-5	86
712-1227	мw-з		1.0	12/18/97	HP-5	118
712-1228	MW-4		1.0	12/18/97	HP-5	120
712-1229	MW-6	Unidentified Hydrocarbons < C7*	1.0	12/18/97	HP-5	97

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B. Kemp Project Manager Please Note:

* "Unidentified Hydrocarbons < C7" refers to unidentified peaks in the EPA 8010 range."

Page 2 of 2

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(650) 364-9600 (510) 988-9600 (916) 921-9600 FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services 2401 Stanwell Dr., Ste. 300 Concord, CA 94520 Attention: Jarrel Crider

Client Project ID: Sample Descript: Analysis for:

First Sample #:

Tosco#7376, 4191 First St., Pleasanton

Water

712-1225

MTBE (Modified EPA 8020)

Dec 15, 1997 Dec 15, 1997

Analyzed:

Dec 18, 1997

Reported:

Sampled:

Received:

Dec 31, 1997

LABORATORY ANALYSIS FOR:

MTBE (Modified EPA 8020)

Sample Number	Sample Description	Detection Limit $\mu \mathrm{g/L}$	Sample Result µg/L
712-1225	MW-1	5.0	25
712-1226	MW-2B	250	4,100
712-1227	мw-з	5.0	19
712-1228	MW-4	5.0	N.D.
712-1229	MW-6	5.0	39

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B. Kemp **Project Manager**

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063 Walnut Creek, CA 94598

(650) 364-9600 (510) 988-9600 (916) 921-9600 FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services 2401 Stanwell Dr., Ste. 300 Client Project ID:

First St., Pleasanton Sampled: Tosco#7376, 4191 First St., Pleasanton Water

Received:

Dec 15, 1997

Concord, CA 94520 Attention: Jarrel Crider Sample Matrix: Analysis Method: First Sample #:

EPA 3510/8015 Mod.

Reported:

Dec 15, 1997 Dec 31, 1997

TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

712-1125

Analyte	Reporting Limit μg/L	Sample I.D. 712-1125 MW-1	Sample I.D. 712-1126 MW-2B	Sample I.D. 712-1127 MW-3	Sample I.D. 712-1128 MW-4	Sample I.D. 712-1129 MW-6	
Extractable Hydrocarbons	50	N.D.	490	N.D.	N.D.	N.D.	
Chromatogram Pa	ttern:		Diesel				

Quality Control Data

Report Limit Multiplication Factor:	1.0	1.0	1.0	1.1	1.1
Date Extracted:	12/19/97	12/19/97	12/19/97	12/19/97	12/19/97
Date Analyzed:	12/23/97	12/23/97	12/23/97	12/22/97	12/22/97
Instrument Identification:	HP-3A	HP-3A	HP-3B	HP-3B	HP-3B

Extractable Hydrocarbons are quantitated against a fresh diesel standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B. Kemp Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(650) 364-9600 (510) 988-9600 (916) 921-9600

FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services

2401 Stanwell Dr., Ste. 300 Concord, CA 94520

Attention: Jarrel Crider

Client Project ID:

Tosco#7376, 4191 First St., Pleasanton

Matrix:

Liquid

QC Sample Group: 7121225-229

Reported:

Dec 31, 1997

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl	Xylenes	
			Benzene		
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Analyst:	D. Newcomb	D. Newcomb	D. Newcomb	D. Newcomb	
MS/MSD					
Batch#:	7121228	7121228	7121228	7121228	
Date Prepared:	12/18/97	12/18/97	12/18/97	12/18/97	
Date Analyzed:	12/18/97	12/18/97	12/18/97	12/18/97	
nstrument I.D.#:	HP-5	HP-5	HP-5	HP-5	
Conc. Spiked:	20 μg/L	20 μg/L	$20\mu\mathrm{g/L}$	60 μg/L	
Matrix Spike					
% Recovery:	90	85	90	92	
Matrix Spike Duplicate %					
Recovery:	90	90	90	93	
Relative %					
Difference:	0.0	5.7	0.0	1.8	

LCS Batch#:	5LCS121897	5LCS121897	5LCS121897	5LCS121897
Date Prepared:	12/18/97	12/18/97	12/18/97	12/18/97
Date Analyzed:	12/18/97	12/18/97	12/18/97	12/18/97
Instrument I.D.#:	HP-5	HP-5	HP-5	HP-5
LCS %				
Recovery:	90	90	90	93
% Recovery				
Control Limits:	70-130	70-130	70-130	70-130

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B. Kemp Project Manager Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (650) 364-9600 (510) 988-9600 (916) 921-9600 FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services

2401 Stanwell Dr., Ste. 300 Concord, CA 94520 Attention: Jarrel Crider Client Project ID:

Tosco#7376, 4191 First St., Pleasanton

Matrix:

QC Sample Group: 7121225-229

Reported:

Dec 31, 1997

QUALITY CONTROL DATA REPORT

Liquid

ANALYTE

Diesel

Method:

EPA 8015M

Analyst:

K. Grub

MS/MSD

Batch#:

BLK121997A

Date Prepared:

12/19/97

Date Analyzed:

12/22/97

Instrument I.D.#: Conc. Spiked:

HP-3A 500 μg/L

Matrix Spike

% Recovery:

73

Matrix Spike

Duplicate %

Recovery: 59

Relative %

Difference:

22

LCS Batch#:

LCS121997

Date Prepared:

12/19/97

Date Analyzed:

12/22/97

instrument I.D.#:

HP-3A

LCS %

Recovery:

69

% Recovery

Control Limits:

60-140

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B. Kemp Project Manager Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.