

5900 Hollis Street, Suite A Emeryville, California 94608

www.CRAworld.com

Telephone: (510) 420-0700 Fax: (510) 420-9170

T	R	Δ	N	ISN	Л	IT	T	Δ	
		$\boldsymbol{-}$			78			\neg	

,		TR	RANSMITTAL		
DATE:	October 3, 2012		REFERENCE NO.:	240523	
_			Project Name:	4212 First Street, P	leasanton
То:	Jerry Wickham		·		
_	Alameda Count	ty Environmental l	Health	RE	CEIVED
_		y Parkway, Suite 2		11:00 am	, Oct 11, 2012
_		ornia 94502-6577			eda County
_					nental Health
Please find	andosad:	Draft	Final		
i lease illiu		Originals Prints	Other	w. 1848 (1946) 1867 (1946) 1867 (1946) 1867 (1946) 1867 (1946) 1867 (1946) 1867 (1946) 1867 (1946) 1867 (1946)	
Sent via:		Mail Overnight Courier	Same Day C	ourier eoTracker and Alameda	County FTP
QUANT	CITY		DESCRIP	TION	
1	Subsur	face Investigation	Report		
				ISAN BERNARA BARBARA B	
	equested our Use	⊠ Fo	r Review and Commen	t	
COMMEN	ITC.				
	e any questions	regarding the cont	ents of this documen	t, please call Peter Sch	aefer at
Copy to:		E. & Mary M. Safr	ducts US (electronic deno (property owner	copy) s), 1627 Vineyard Ave	nue, Pleasanton, CA
		Stefani, Livermore 566-6267	e-Pleasanton Fire De _f	partment, 3560 Nevada	Street, Pleasanton,
	Colleen \	Winey, Zone 7 Wa	ter Agency (electroni	c copy)	
	Clint Me	rcer (lessee), SC Fu	uels, 1800 West Katel	la Avenue, Orange, CA	A 92867
		•		ultants (electronic copy	·
Completed	d by: Peter Sch	naefer	Signed:	Peter Schau	fer
Filing: C	Correspondence F	ile	/	`	J

Denis L. Brown Shell Oil Products US

HSE – Environmental Services 20945 S. Wilmington Ave. Carson, CA 90810-1039 Tel (707) 865 0251 Fax (707) 865 2542 Email denis.1.brown@shell.com

Jerry Wickham Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re:

Shell-branded Service Station

4212 First Street Pleasanton, California SAP Code 135782 Incident No. 98995840 ACEH Case No. RO0000360

Dear Mr. Wickham:

The attached document is provided for your review and comment. Upon information and belief, I declare, under penalty of perjury, that the information contained in the attached document is true and correct.

If you have any questions or concerns, please call me at (707) 865-0251.

Sincerely,

Denis L. Brown

Senior Program Manager

SUBSURFACE INVESTIGATION REPORT

SHELL-BRANDED SERVICE STATION 4212 FIRST STREET PLEASANTON, CALIFORNIA

SAP CODE INCIDENT NO.

135782 98995840

AGENCY NO. RO0000360

Prepared by: Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, California U.S.A. 94608

Office: (510) 420-0700 Fax: (510) 420-9170

web: http://www.CRAworld.com

OCTOBER 3, 2012
REF. NO. 240523 (15)
This report is printed on recycled paper.

TABLE OF CONTENTS

			Page
EXEC	UTIVE SUN	/IMARY	i
1.0	INTRODU	JCTION	1
2.0	INVESTIC	GATION ACTIVITIES	1
	2.1	PERMIT	1
	2.2	FIELD DATES	1
	2.3	DRILLING COMPANY	1
	2.4	CRA PERSONNEL	2
	2.5	DRILLING METHOD	2
	2.6	NUMBER OF PROBES	2
	2.7	VAPOR PROBE MATERIALS	2
	2.8	SCREENED INTERVALS	2
	2.9	SOIL VAPOR SAMPLING PROCEDURE	2
	2.10	SOIL VAPOR SAMPLING ANALYSES	3
	2.11	WASTE DISPOSAL	3
3.0	FINDING	S	3
	3.1	SOIL VAPOR	3
	3.2	LEAK TESTING	3
4.0	CONCLU	SIONS	4
5.0	RECOMM	MENDATIONS	4

LIST OF FIGURES (Following Text)

FIGURE 1

VICINITY MAP

FIGURE 2

SOIL VAPOR CONCENTRATION MAP

LIST OF TABLES

(Following Text)

TABLE 1

SOIL VAPOR ANALYTICAL DATA

LIST OF APPENDICES

APPENDIX A

PERMIT

APPENDIX B

BORING LOGS

APPENDIX C

CERTIFIED ANALYTICAL REPORT

EXECUTIVE SUMMARY

- Eight soil vapor probes (SV-1 through SV-8) were installed.
- No constituents of concern were detected in any soil vapor samples, with the exception of up to 53 $\mu g/m^3$ toluene. All toluene concentrations are below residential ESLs.
- Based on these soil vapor results, no further soil vapor investigation is warranted.

1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA) prepared this report on behalf of Equilon Enterprises LLC dba Shell Oil Products US (Shell) to document the recent soil vapor probe installation and sampling. The purpose of the investigation was to assess the potential for soil gas migration to indoor air. CRA followed the scope of work and procedures presented in our May 8, 2012 Subsurface Investigation Work Plan, which was conditionally approved by Alameda County Environmental Health in their June 26, 2012 letter.

The subject site is an active Shell-branded Service Station located on the southeastern corner of the First Street and Vineyard Avenue intersection in a mixed residential and commercial area of Pleasanton, California (Figure 1). The site layout includes three current fuel underground storage tanks (USTs), a former fuel UST complex, two fuel dispenser islands, a former waste oil UST, and a station building (Figure 2).

A summary of previous work performed at the site and additional background information is contained in CRA's May 8, 2012 *Air Sparge/Soil Vapor Extraction Pilot Test Work Plan* and is not repeated herein.

2.0 <u>INVESTIGATION ACTIVITIES</u>

2.1 PERMIT

CRA obtained a drilling permit from Zone 7 Water Agency (Appendix A).

2.2 FIELD DATES

August 14 and 15, 2012 (soil vapor probe installation) and September 5, 2012 (soil vapor probe sampling).

2.3 <u>DRILLING COMPANY</u>

Gregg Drilling & Testing, Inc.

2.4 CRA PERSONNEL

Geologist Scott Lewis directed the probe installation working under the supervision of California Professional Geologist Peter Schaefer.

2.5 DRILLING METHOD

Air-knife.

2.6 NUMBER OF PROBES

CRA installed eight soil vapor probes (SV-1 through SV-8). The probe specifications and soil types encountered are described on the boring logs contained in Appendix B. The probe locations are shown on Figure 2.

2.7 VAPOR PROBE MATERIALS

CRA constructed the vapor probes using ¼-inch-diameter Teflon® tubing attached to 1-inch-length plastic screen intervals and #2/12 Monterey sand filter pack. Probe diagrams are provided with boring logs in Appendix B.

2.8 SCREENED INTERVALS

5.0 to 5.1 feet below grade.

2.9 <u>SOIL VAPOR SAMPLING PROCEDURE</u>

Prior to sampling, CRA purged at least three tubing volumes of air from each vapor probe using a vacuum pump. Immediately after purging, CRA collected a soil vapor sample using a laboratory-supplied Tedlar[®] bag. During sampling, CRA connected the Teflon[®] tubing for each vapor probe to a lung box containing the Tedlar[®] bag, and the lung box chamber was connected to the vacuum pump. CRA then drew the sample into the Tedlar[®] bag by reducing the pressure in the lung box with the vacuum pump. Each sample was labeled, documented on a chain-of-custody, and submitted to Calscience Environmental Laboratories, Inc. of Garden Grove, California for analysis within 72 hours.

To check the system for leaks, CRA placed a containment unit (or shroud) over the soil vapor probe surface casing and sampling manifold. Prior to soil vapor probe purging, CRA introduced helium into the containment unit to obtain a minimum 50 percent (%) helium content level. CRA confirmed the helium content within the containment unit using a helium meter. The helium meter readings are presented in Section 3.2. All samples were analyzed by the laboratory for helium, and CRA presents the results in Section 3.2 and on Table 1.

2.10 SOIL VAPOR SAMPLING ANALYSES

Soil vapor samples were analyzed for total petroleum hydrocarbons as gasoline (TPHg) by EPA Method TO-3M; for benzene, toluene, ethylbenzene, and total xylenes (BTEX) and methyl tertiary-butyl ether (MTBE) by EPA Method 8260B (M); for oxygen and argon, carbon dioxide, and methane by ASTM D-1946; and for helium by ASTM D-1946 (M).

2.11 WASTE DISPOSAL

Soil generated during field activities was stored on site in 55-gallon drums, sampled, and profiled for disposal. Waste disposal confirmation documentation is pending and will be provided by CRA upon request.

3.0 FINDINGS

3.1 SOIL VAPOR

The soil vapor chemical analytical data are summarized in Table 1, and TPHg, BTEX, and MTBE analytical results are presented on Figure 2. The laboratory analytical report is presented in Appendix C.

3.2 LEAK TESTING

CRA performed leak testing as described above, and helium was not detected in any of the samples. As shown in the following table, the reporting limit for helium (0.0100 percent by volume [%v]) is less than 10% of the concentration detected in the shroud, and the samples are considered valid.

Probe ID	Helium concentration in sample (%v)	Helium detected in shroud (%v)	Maximum acceptable helium concentration in sample (%v)
SV-1	<0.0100	66.7	6.67
SV-2	<0.0100	59.3	5.93
SV-3	< 0.0100	65.1	6.51
SV-4	< 0.0100	61.3	6.13
SV-5	<0.0100	61.5	6.15
SV-6	<0.0100	70.1	7.01
SV-7	< 0.0100	54.3	5.43
SV-8	< 0.0100	62.0	6.20

The laboratory analytical report for helium is presented in Appendix C, and CRA includes the results on Table 1.

4.0 CONCLUSIONS

TPHg, benzene, ethylbenzene, total xylenes, and MTBE were not detected in any soil vapor samples collected during this investigation. Toluene was detected in soil vapor samples from all the probes at concentrations ranging from 21 to 53 micrograms per cubic meter ($\mu g/m^3$). All toluene concentrations are below San Francisco Bay Regional Water Quality Control Board environmental screening levels¹ for residential land use (63,000 $\mu g/m^3$).

5.0 **RECOMMENDATIONS**

Based on soil vapor results, no further soil vapor investigation is warranted.

Screening for Environmental Concerns at Site With Contaminated Soil and Groundwater, California Regional Water Quality Control Board, Interim Final – November 2007 [Revised May 2008]

All of Which is Respectfully Submitted, CONESTOGA-ROVERS & ASSOCIATES

Peter Schaefer, CEG, CHG

Aubrey K. Cool, PG

FIGURES

Shell-branded Service Station

1/8

4212 First Street Pleasanton, California

SOURCE: TOPO! MAPS

1/2 SCALE : 1" = 1/4 MILE

Vicinity Map

FIGURE

TABLE

SOIL VAPOR ANALYTICAL DATA SHELL-BRANDED SERVICE STATION 4212 FIRST STREET, PLEASANTON, CALIFORNIA

Sample ID	Date	Depth (fbg)	TPHg (μg/m³)	Β (μg/m³)	Τ (μg/m³)	Ε (μg/m³)	X (μg/m³)	MTBE (μg/m³)	Methane (%v)	Carbon Dioxide (%v)	Oxygen + Argon (%v)	Helium (%v)
SV-1	9/5/2012	5	<3,800	<16	53	<22	<43	<36	<0.500	12.9	7.66	<0.0100
SV-2	9/5/2012	5	<3,800	<16	23	<22	<43	<36	<0.500	6.85	15.5	<0.0100
SV-3	9/5/2012	5	<3,800	<16	24	<22	<43	<36	<0.500	7.44	11.8	<0.0100
SV-4	9/5/2012	5	<3,800	<16	33	<22	<43	<36	<0.500	5.22	15.1	<0.0100
SV-5	9/5/2012	5	<3,800	<16	21	<22	<43	<36	<0.500	2.44	19.4	<0.0100
SV-6	9/5/2012	5	<3,800	<16	24	<22	<43	<36	<0.500	4.08	18.7	<0.0100
SV-7	9/5/2012	5	<3,800	<16	24	<22	<43	<36	<0.500	11.4	9.66	<0.0100
SV-8	9/5/2012	5	<3,800	<16	26	<22	<43	<36.	<0.500	5.50	15.5	<0.0100
	al land use l ial land use		10,000 29,000	84 280	63,000 180,000	980 3,300	21,000 58,000	9,400 31,000	NA NA	NA NA	NA NA	NA NA

Notes:

TPHg = Total petroleum hydrocarbons as gasoline analyzed by EPA Method TO-3M

BTEX = Benzene, toluene, ethylbenzene, and total xylenes by EPA Method 8260B (M)

MTBE = Methyl tertiary-butyl ether analyzed by EPA Method 8260B (M)

Methane, carbon dioxide, and oxygen + argon analyzed by ASTM D-1946 $\,$

Helium analyzed by ASTM D-1946 (M)

fbg = Feet below grade

 μ g/m³ = Micrograms per cubic meter

%v = Percent by volume

< x =Not detected at reporting limit x

ESL = Environmental screening level

NA = No applicable ESL

SOIL VAPOR ANALYTICAL DATA SHELL-BRANDED SERVICE STATION 4212 FIRST STREET, PLEASANTON, CALIFORNIA

a = San Francisco Bay Regional Water Quality Control Board (RWQCB) shallow soil gas screening level for evaluation of potential vapor intrusion concerns from RWQCB's *Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater*, California Regional Water Quality Control Board, Interim Final - November 2007 (Revised May 2008).

APPENDIX A
PERMIT

ZONE 7 WATER AGENCY

100 NORTH CANYONS PARKWAY, LIVERMORE, CALIFORNIA 94551 VOICE (925) 454-5000 FAX (925) 245-9306 E-MAIL whong@zone7water.com

> P-2, EW-1 AS-1 & SVE-5)

Revised: January 4, 2010

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE	FOR OFFICE USE
LOCATION OF PROJECT	PERMIT NUMBER 2012069
Plasanton, CA	WELL NUMBER <u>3S/1E-21C62 to 21C67 (P-1, P-2, APN 094-0095-025-03 EW-2, AS-1 & SV</u>
Coordinates Source ft. Accuracy∀ ft. LAT: ft. LONG; ft. APN 77-75-25-3	PERMIT CONDITIONS (Circled Permit Requirements Apply)
CLIENT Name Shell O'l Products US Address 20 745 South bilainstan Attorne 707-865-05 City Carson, CA Zip 708/n APPLICANT Name Constant Rows & Associate Email Stewis & murld, com Fax 707-935-6649 Address 19441 Carside Drive Suite 30 Phone 707-933-236 City Sonomy, CA Zip 95476	2. Submit to Zone 7 within 60 days after completion of permitted work the original <u>Department of Water Resources Water Well Drillers Report (DWR Form 188), signed by the driller.</u> 3. Permit is void if project not begun within 90 days of approval date. 4. Notify Zone 7 at least 24 hours before the start of work.
TYPE OF PROJECT: Well Construction Well Destruction Cathodic Protection PROPOSED WELL USE: Domestic Municipal Industrial Dewatering Type OF PROJECT: Geotechnical Investigation Contamination Inves	 WATER SUPPLY WELLS Minimum surface seal diameter is four inches greater than the well casing diameter. Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. Grout placed by tremte. An access port at least 0.5 inches in diameter is required on the wellhead for water level measurements. A sample port is required on the discharge pipe near the wellhead.
DRILLING METHOD: Mud Rotary Air Rotary Hollow Stem Auger, K Cable Tool Direct Push Other Air Knitz K DRILLING COMPANY Grees Drilling, 950 Hove Road Picture 2 CA 94559 DRILLER'S LICENSE NO. 18565	C. GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS 1. Minimum surface seal diameter is four inches greater than the well or piezometer casing diameter. 2. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet. 3. Grout placed by tremie.
WELL SPECIFICATIONS: Drill Hole Diameter \$ 10 in. Maximum Casing Diameter \$ 144" in. Depth 76 ft. Surface Seal Depth 8 228 ft. Number 6"	D. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout shall be used in place of compacted cuttings.
Number of Borings 8 Maximum Hole Diameter 3.5 in. Depth 5.5 ft.	E. CATHODIC. Fill hole above anode zone with concrete placed by tremie.
ESTIMATED STARTING DATE August 2012 ESTIMATED COMPLETION DATE August 2012	F. WELL DESTRUCTION. See attached. G. SPECIAL CONDITIONS. Submit to Zone 7 within 60 days after completion of permitted work the well installation report
I hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68.	including all soil and water laboratory analysis results.
APPLICANT'S SIGNATURE SIGNATURE Date 7-16-12	Approved Myman Hong Date 7/17/12 Wyman Hong
ATTACH SITE PLAN OR SKETCH	()

APPENDIX B
BORING LOGS

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA Telephone: 510-420-3300

Fax: 510-420-9170

CLIENT NAME Shell Oil Products US **BORING/WELL NAME** SV-1 **JOB/SITE NAME** Shell-Branded Service Station **DRILLING STARTED** 14-Aug-12 LOCATION 4212 First Street, Pleasanton, California 14-Aug-12 DRILLING COMPLETED PROJECT NUMBER 240523 WELL DEVELOPMENT DATE (YIELD) NA DRILLER Gregg Drilling **GROUND SURFACE ELEVATION** 372.96 ft above msl **DRILLING METHOD** Airknife TOP OF CASING ELEVATION NA **BORING DIAMETER** 3.5" **SCREENED INTERVALS** 5 to 5.1 fbg LOGGED BY S. Lewis **DEPTH TO WATER (First Encountered)** NA **REVIEWED BY** P. Schaefer PG 5612 **DEPTH TO WATER (Static)** NA

REMARKS ₽ CONTACT DEPTH (fbg) (mdd) BLOW U.S.C.S. GRAPHIC LOG EXTENT DEPTH (fbg) SAMPLE LITHOLOGIC DESCRIPTION WELL DIAGRAM <u>음</u> **ASPHALT** 0.3 Silty GRAVEL with Sand (GM); very dark grayish brown Portland Type I/II (10YR 3/2); dry; 20% silt, 25% fine to coarse sand, 55% GM fine gravel. 1.0 SILT (ML); brown (10YR 4/3); moist; 5% clay, 85% silt. 5% fine to medium sand, 5% fine gravel. @3' - 5% clay, 85% silt, 10% fine to medium sand. Bentonite Seal ML Monterey Sand #2/12 .5" diam., 0.26" Teflon Tubing 5 5.3 Bottom of Boring @ 5.25 fbg

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA Telephone: 510-420-3300

Fax: 510-420-9170

CLIENT NAME Shell Oil Products US **BORING/WELL NAME** SV-2 JOB/SITE NAME Shell-Branded Service Station 15-Aug-12 **DRILLING STARTED** LOCATION 4212 First Street, Pleasanton, California 15-Aug-12 DRILLING COMPLETED **PROJECT NUMBER** 240523 WELL DEVELOPMENT DATE (YIELD) NA DRILLER Gregg Drilling **GROUND SURFACE ELEVATION** 373.32 ft above msi **DRILLING METHOD** Airknife TOP OF CASING ELEVATION NA **BORING DIAMETER** 3.5" **SCREENED INTERVALS** 5 to 5.1 fbg LOGGED BY S. Lewis **DEPTH TO WATER (First Encountered)** NA REVIEWED BY P. Schaefer PG 5612 **DEPTH TO WATER (Static)** NA REMARKS

CONTACT DEPTH (fbg) SAMPLE ID (mdd) BLOW COUNTS EXTENT DEPTH (fbg) U.S.C.S. GRAPHIC LOG LITHOLOGIC DESCRIPTION WELL DIAGRAM **ASPHALT** 0.3 Silty GRAVEL with Sand (GM); brown (10YR 5/3); dry; Portland Type I/II 20% silt, 25% fine to coarse sand, 55% fine gravel. GM 1.0 SILT (ML); dark grayish brown (10YR 4/2); dry to moist; 5% clay, 85% silt, 10% fine to medium sand. Bentonite Seal ML. C:DOCUME~1/MDUTRA/DESKTOP/240523-GINT, GPJ DEFAULT, GDT 9/18/12 Monterey Sand #2/12 .5" diam., 0.25" Teflon Tubing 5 5.3 **Bottom of Boring** @ 5.25 fbg WELL LOG (PID)

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A

BORING / WELL LOG

Emeryville, CA Telephone: 510-420-0700 Fax: 510-420-9170

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME SV-3		
JOB/SITE NAME	Shell-Branded Service Station	DRILLING STARTED 15-Aug-12		
LOCATION	4212 First Street, Pleasanton, California	DRILLING COMPLETED 15-Aug-12		
PROJECT NUMBER	240523	WELL DEVELOPMENT DATE (YIELD)	NA	
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION	373,25 ft above msl	
DRILLING METHOD	Airknife	TOP OF CASING ELEVATION	NA	
BORING DIAMETER	3.5"	SCREENED INTERVALS	5 to 5.1 fbg	
LOGGED BY	S. Lewis	DEPTH TO WATER (First Encountered)) NA	Ž
REVIEWED BY	P. Schaefer PG 5612	DEPTH TO WATER (Static)	NA	Ā

REMARKS CONTACT DEPTH (fbg) SAMPLE ID PID (ppm) BLOW U.S.C.S. GRAPHIC LOG DEPTH (fbg) EXTENT LITHOLOGIC DESCRIPTION WELL DIAGRAM <u>ASPHALT</u> 0.3 Silty GRAVEL with Sand (GM); very dark grayish brown (10YR 3/2); moist; 5% clay, 25% silt, 15% fine to coarse Portland Type I/II GM sand, 55% fine gravel. 1.0 SILT with Sand (ML); very dark gray (10YR 3/1); moist; 5% clay, 80% silt, 15% fine to medium sand. @2' - SILT (ML); brown (10YR 4/3); moist; 5% clay, 90% silt, 5% sand. Bentonite Seal ML. @4' - 10% clay, 85% silt, 5% fine to medium sand; low plasticity. WELL LOG (PID) C:DOCUME~1/MDUTRAIDESKTOP/240523-GINT.GPJ DEFAULT.GDT 9/27/12 Monterey Sand #2/12 .5" diam., 0:25" Teflon Tubing 5.3 Bottom of Boring @ 5.25 fbg

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA Telephone: 510-420-3300 Fax: 510-420-9170

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME SV-4	
JOB/SITE NAME	Shell-Branded Service Station	DRILLING STARTED 14-Aug-12	
LOCATION	4212 First Street, Pleasanton, California	DRILLING COMPLETED 14-Aug-12	
PROJECT NUMBER	240523	WELL DEVELOPMENT DATE (YIELD)	NA
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION	375.18 ft above msl
DRILLING METHOD	Airknife	TOP OF CASING ELEVATION	NA
BORING DIAMETER	4"	SCREENED INTERVALS	5 to 5.1 fbg
LOGGED BY	S. Lewis	DEPTH TO WATER (First Encountered	NA 🗸
REVIEWED BY	P. Schaefer PG 5612	DEPTH TO WATER (Static)	NA Y
		•	

REMARKS CONTACT DEPTH (fbg) SAMPLE ID BLOW PID (ppm) DEPTH (fbg) EXTENT U.S.C.S. GRAPHIC LOG LITHOLOGIC DESCRIPTION WELL DIAGRAM CONCRETE Portland Type I/II 0.5 SILT (Mi.); very dark grayish brown (10YR 3/2); moist; 5% clay, 85% silt, 10% fine to medium sand. Bentonite Seal ML WELL LOG (PID) C:DOCUME~1MDUTRAIDESKTOPI240523-GINT.GPJ DEFAULT.GDT 9/18/12 Monterey Sand #2/12
5" diam., 0.25"
Teflon Tubing
Bottom of Boring

0 5.2 fbg 5.2

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA Telephone: 510-420-3300

Fax: 510-420-9170

CLIENT NAME Shell Oil Products US **BORING/WELL NAME** SV-5 JOB/SITE NAME Shell-Branded Service Station 14-Aug-12 **DRILLING STARTED** LOCATION 4212 First Street, Pleasanton, California DRILLING COMPLETED 14-Aug-12 PROJECT NUMBER 240523 WELL DEVELOPMENT DATE (YIELD) NA DRILLER **Gregg Drilling GROUND SURFACE ELEVATION** 375.29 ft above msl **DRILLING METHOD** Airknife **TOP OF CASING ELEVATION** NA **BORING DIAMETER** 3.5" **SCREENED INTERVALS** 5 to 5.1 fbg LOGGED BY S. Lewis **DEPTH TO WATER (First Encountered)** NA REVIEWED BY P. Schaefer PG 5612 **DEPTH TO WATER (Static)** NA

REMARKS CONTACT DEPTH (fbg) ₽ (mdd) BLOW EXTENT GRAPHIC LOG DEPTH (fbg) U.S.C.S. SAMPLE LITHOLOGIC DESCRIPTION WELL DIAGRAM 딢 **ASPHALT** Portland Type I/II 0.5

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA Telephone: 510-420-0700 Fax: 510-420-9170

CLIENT NAME Shell Oil Products US SV-6 **BORING/WELL NAME JOB/SITE NAME** Shell-Branded Service Station **DRILLING STARTED** 15-Aug-12 15-Aug-12 LOCATION 4212 First Street, Pleasanton, California DRILLING COMPLETED PROJECT NUMBER 240523 WELL DEVELOPMENT DATE (YIELD) NA **DRILLER** Gregg Drilling 376.63 ft above msl **GROUND SURFACE ELEVATION DRILLING METHOD** Airknife TOP OF CASING ELEVATION NA **BORING DIAMETER** 3,5" SCREENED INTERVALS 5 to 5.1 fbg S. Lewis LOGGED BY **DEPTH TO WATER (First Encountered)** NA **REVIEWED BY** P. Schaefer PG 5612 **DEPTH TO WATER (Static)** NA

REMARKS

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA Telephone: 510-420-3300 Fax: 510-420-9170

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME SV-7	
JOB/SITE NAME	Shell-Branded Service Station	DRILLING STARTED 15-Aug-12	
LOCATION	4212 First Street, Pleasanton, California	DRILLING COMPLETED 15-Aug-12	
PROJECT NUMBER	240523	WELL DEVELOPMENT DATE (YIELD)	NA
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION	371.68 ft above msl
DRILLING METHOD	Airknife	TOP OF CASING ELEVATION	NA
BORING DIAMETER	3.5°	SCREENED INTERVALS	5 to 5.1 fbg
LOGGED BY	S. Lewis	DEPTH TO WATER (First Encountered)	T-7
REVIEWED BY	P. Schaefer PG 5612	DEPTH TO WATER (Static)	NA ¥
REMARKS		• •	

PID (ppm) BLOW COUNTS	SAMPLE ID EXTENT	DEPTH (fbg) U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
WELL COG (FID) CADOLOMENTWIDOLINANDESKIOFIZADSZA-GIN I.GFJ DEFAULI.GDI S/18/12		GM		ASPHALT Silty GRAVEL with Sand (GM); very dark grayish brown (10YR 3/2); dry to moist; 20% silt, 25% fine to coarse, 55% fine gravel. SILT (ML); dark brown (10YR 3/3); moist; 5% clay, 90% silt, 5% fine to medium sand.	5.3	Portland Type I/II Bentonite Seal Monterey Sand #3 .5" diam., 0.25" Tellon Tubling Bottom of Boring ② 5.25 fbg

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA

Telephone: 510-420-3300 Fax: 510-420-9170

CLIENT NAME	Shell Oil Products US	BOI
JOB/SITE NAME	Shell-Branded Service Station	DRI
LOCATION	4212 First Street, Pleasanton, California	DRI
PROJECT NUMBER	240523	WE
DRILLER	Gregg Drilling	GRO
DRILLING METHOD	Airknife	TOF
BORING DIAMETER	3,5"	SCF
LOGGED BY	S. Lewis	DEF
REVIEWED BY	P. Schaefer PG 5612	חבנ

 BORING/WELL NAME
 SV-8

 DRILLING STARTED
 14-Aug-12

 DRILLING COMPLETED
 14-Aug-12

 WELL DEVELOPMENT DATE (YIELD)
 NA

 GROUND SURFACE ELEVATION
 375.00 ft above msl

 TOP OF CASING ELEVATION
 NA

SCREENED INTERVALS 5 to 5.1 fbg

DEPTH TO WATER (First Encountered) NA

DEPTH TO WATER (Static) NA

▼

REMARKS CONTACT DEPTH (fbg) SAMPLE ID PID (ppm) BLOW U.S.C.S. GRAPHIC LOG DEPTH (fbg) EXTENT LITHOLOGIC DESCRIPTION WELL DIAGRAM **ASPHALT** 0.3 Silty GRAVEL with Sand (GM); dark grayish brown (10YR 4/2); dry; 20% silt, 25% fine to coarse sand, 55% Portland Type I/II GM fine gravel. 1.0 Silty SAND with Gravel (SM); dark grayish brown (10YR 4/2); dry to moist; 20% silt, 65% fine to coarse sand, 15% SM 2.0 SILT (ML); brown (10YR 4/3); moist; 5% clay, 85% silt, 10% fine to medium sand. Bentonite Seal ML WELL LOG (PID) C:\DOCUME~1\MDUTRA\DESKTOP\240523-GINT.GPJ DEFAULT.GDT 9/18/12 Monterey Sand #2/12 .5" diam., 0.25" Teflon Tubing Bottom of Boring 5.2 @ 5.2 fbg

APPENDIX C CERTIFIED ANALYTICAL REPORT

alscience
nvironmental
aboratories, Inc.

CALSCIENCE

WORK ORDER NUMBER: 12-09-0219

The difference is service

AIR SOIL WATER MARINE CHEMISTRY

Analytical Report For

Client: Conestoga-Rovers & Associates

Client Project Name: 4212 First Street, Pleasanton, CA

Attention: Peter Schaefer

5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Yheely

Approved for release on 09/12/2012 by: Xuan Dang Project Manager

Email your PM 🛌

ResultLink):

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: 4212 First Street, Pleasanton, CA

Work Order Number: 12-09-0219

1	Case Narrative(s)	3
2	Detections Summary	4
3	Client Sample Data	6 8 10 13
4	Quality Control Sample Data	15 15 16
5	Glossary of Terms and Qualifiers	20
6	Chain of Custody/Sample Receipt Form	21

Case Narrative

Work Order # 12-09-0219 Modified EPA 8260 in Air

This method is used to determine the concentration of BTEX/Oxygenates/Naphthalene having a vapor pressure greater than 10⁻¹ torr at 25°C at standard pressure in an air matrix. The method is similar to EPA TO-15 and uses air standards for calibration. Method specifics are listed in the table below. A known volume of sample is directed from the container (Summa® canister or Tedlar™ bag) through a solid multi-module (glass beads, tenex, cryofocuser) concentrator. Following concentration, the VOCs are thermally desorbed onto a gas chromatographic column for separation and then detected on a mass selective detector.

Comparison of CalscienceTO-15(Modified) versus EPA 8260 (Modified) in Air

Requirement	Calscience TO-15(M)	Calscience EPA 8260(M) in Air
BFB Acceptance Criteria	SW846 Protocol	SW846 Protocol
Initial Calibration	Allowable % RSD for each Target Analyte <= 30%, 10% of analytes allowed <=40%	Allowable % RSD for each Target Analyte <= 30%, 10% of analytes allowed <= 40%
Initial Calibration Verification (ICV) - Second Source Standard (LCS)	Analytes contained in the LCS standard evaluated against historical control limits for the LCS	BTEX and MTBE only - <= 30%D
Daily Calibration Verification (CCV)	Full List Analysis: Allowable % Difference for each CCC analyte is <= 30%	BTEX and MTBE only - <= 30%D
	Target List Analysis: Allowable % Difference for each target analytes is <= 30%	
Daily Calibration Verification (CCV) - Internal Standard Area Response	Allowable +/- 50% (Range: 50% to 150%)	Allowable +/- 50% (Range: 50% to 150%)
Method Blank, Laboratory Control Sample and Sample - Internal Standard Area Response	Allowable +/- 50% of the mean area response of most recent Calibration Verification (Range: 50% to 150%)	Allowable +/- 50% of the mean area response of the most recent Calibration Verification (Range: 50% to 150%)
Surrogates	1,4-Bromoflurobenzene, 1,2-Dichloroethane-d4 and Toluene-d8 - % Recoveries based upon historical control limits +/-3S	1,4-Bromoflurobenzene, 1,2-Dichloroethane-d4 and Toluene-d8 - % Recoveries based upon historical control limits +/-3S

Client:

Conestoga-Rovers & Associates

5900 Hollis Street, Suite A

Emeryville, CA 94608-2008

Attn:

Peter Schaefer

Work Order: Project name:

12-09-0219

4212 First Street, Pleasanton, CA

Received: 09/06/12 10:30

DETECTIONS SUMMARY

Client Sample ID		Decertion	Donartine			, , , , , , , , , , , , , , , , , , ,
Analyte	Result	Qualifiers	Reporting Limit	Units	Method	Extraction
SV-1 (12-09-0219-1)						
Carbon Dioxide	12.9		0.500	%v	ASTM D-1946	N/A
Oxygen + Argon	7.66		0.500	%v	ASTM D-1946	N/A
Toluene	53		19	ug/m3	EPA 8260B (M)	N/A
SV-2 (12-09-0219-2)						
Carbon Dioxide	6.85		0.500	%v	ASTM D-1946	N/A
Oxygen + Argon	15.5		0.500	%v	ASTM D-1946	N/A
Toluene	23		19	ug/m3	EPA 8260B (M)	N/A
SV-3 (12-09-0219-3)						
Carbon Dioxide	7.44		0.500	%v	ASTM D-1946	N/A
Oxygen + Argon	11.8		0.500	%v	ASTM D-1946	N/A
Toluene	21		19	ug/m3	EPA 8260B (M)	N/A
SV-4 (12-09-0219-4)						
Carbon Dioxide	5.22		0.500	%v	ASTM D-1946	N/A
Oxygen + Argon	15.1		0.500	%v	ASTM D-1946	N/A
Toluene	33		19	ug/m3	EPA 8260B (M)	N/A
SV-5 (12-09-0219-5)						
Carbon Dioxide	2.44		0.500	%v	ASTM D-1946	N/A
Oxygen + Argon	19.4		0.500	%v	ASTM D-1946	N/A
Toluene	21		19	ug/m3	EPA 8260B (M)	N/A
SV-6 (12-09-0219-6)						
Carbon Dioxide	4.08	•	0.500	%v	ASTM D-1946	N/A
Oxygen + Argon	18.7		0.500	%v	ASTM D-1946	N/A
Toluene	27		19	ug/m3	EPA 8260B (M)	N/A
SV-7 (12-09-0219-7)						
Carbon Dioxide	11.4		0.500	%v	ASTM D-1946	N/A
Oxygen + Argon	9.66		0.500	%v	ASTM D-1946	N/A
Toluene	24		19	ug/m3	EPA 8260B (M)	N/A

*MDL is shown.

Client:

Conestoga-Rovers & Associates

5900 Hollis Street, Suite A

Emeryville, CA 94608-2008

Attn: Peter Schaefer

Work Order:

12-09-0219

Project name: 4212 First Street, Pleasanton, CA

Received:

09/06/12 10:30

DETECTIONS SUMMARY

Client Sample ID		Qualifiers	Reporting Limit	Units	Method	Extraction
Analyte	Result					
SV-8 (12-09-0219-8)						
Carbon Dioxide	5.50		0.500	%v	ASTM D-1946	N/A
Oxygen + Argon	15.5		0.500	%v	ASTM D-1946	N/A
Toluene	26		19	ug/m3	EPA 8260B (M)	N/A

Subcontracted analyses, if any, are not included in this summary.

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: Units: 09/06/12 12-09-0219

N/A

ASTM D-1946 %v

Project: 4212 First Street, Pleasanton, CA

Page 1 of 2

			L	ab Sample	Date/Time			Date	Date/		000 1115
Client Sample Number			APPROXIMATE CONTRACTOR	Number	Collected	Matrix	Instrument	Prepared	Anal	yzed	QC Batch ID
SV-1			12-09	-0219-1-A	09/05/12 12:26	Air	GC 34	N/A	09/0 12:		120906L01
Parameter	Result	RL	DF	<u>Qual</u>	Parameter			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Methane	ND	0.500	1		Oxygen + Argo	n		7.66	0.500	1	
Carbon Dioxide	12.9	0.500	1								
SV-2			12-09	-0219-2-A	09/05/12 11:46	Air	GC 34	N/A	09/0 12		120906L01
<u>Parameter</u>	<u>Result</u>	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Methane	ND	0.500	1		Oxygen + Argo	n		15.5	0.500	1	
Carbon Dioxide	6.85	0.500	1								
SV-3			12-09	-0219-3-A	09/05/12 13:22	Air -	GC 34	N/A	09/0 13	6/12 :29	120906L01
<u>Parameter</u>	Result	RL	DF	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Methane	ND	0.500	1		Oxygen + Argo	n		11.8	0.500	1	
Carbon Dioxide	7.44	0.500	1	200 with a constitution only to a 1 years and							7
SV-4			12-09	-0219-4-A	09/05/12 13:44	Air	GC 34	N/A	09/0 14	6/12 :05	120906L01
<u>Parameter</u>	<u>Result</u>	RL	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF	Qual
Methane	ND	0.500	1		Oxygen + Argo	n		15.1	0.500	1	
Carbon Dioxide	5.22	0.500	1								
SV-5			12-09	-0219-5-A	09/05/12 11:25	Air	GC 34	N/A		6/12 :38	120906L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	RL	DF	Qual
Methane	ND	0.500	1		Oxygen + Argo	n		19.4	0.500	1	
Carbon Dioxide	2.44	0.500	1			Name and Associated States	i pares i confinciatore manusi i con	New York Control of Manager		anne variou	
SV-6			12-09	-0219-6-A	09/05/12 14:06	Air	GC 34	N/A		6/12 :11	120906L01
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter	· · · · · · · · · · · · · · · · · · ·		Result	RL	<u>DF</u>	Qual
Methane	ND	0.500	1		Oxygen + Argo	n		18.7	0.500	1	
Carbon Dioxide	4.08	0.500	1		_				lan and a control of	owner a real	10-00-00-00-00-00-00-00-00-00-00-00-00-0
SV-7			12-09	-0219-7-A	09/05/12 12:44	Air	GC 34	N/A		6/12 :00	120906L01
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>			Result	RL	<u>DF</u>	Qual
Methane	ND	0.500	1		Oxygen + Argo	on		9.66	0.500	1	
Carbon Dioxide	11.4	0.500	1								

DF - Dilution Factor ,

Qual - Qualifiers

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: Units: 09/06/12 12-09-0219 N/A

ASTM D-1946 %v

Project: 4212 First Street, Pleasanton, CA

Page 2 of 2

Client Sample Number				ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Anal		QC Batch ID
SV-8			12-09-	-0219-8-A	09/05/12 11:03	Air	GC 34	N/A	09/0 16:	CONTRACTOR CONTRACTOR	120906L01
Parameter Methane Carbon Dioxide	Result ND 5.50	<u>RL</u> 0.500 0.500	<u>DF</u> 1 1	Qual	Parameter Oxygen + Argor	ו		Result 15.5	<u>RL</u> 0.500	<u>DF</u> 1	Qual
Method Blank			099-0	3-002-1,638	N/A	Air	GC 34	N/A	09/0 11:		120906L01
Parameter Methane Carbon Dioxide	<u>Result</u> ND ND	<u>RL</u> 0.500 0.500	<u>DF</u> 1 1	Qual	Parameter Oxygen + Argor	า		<u>Result</u> ND	<u>RL</u> 0.500	<u>DF</u> 1	<u>Qual</u>

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received:

09/06/12

Work Order No:

12-09-0219

Preparation:

N/A

Method:

ASTM D-1946 (M)

Project: 4212 First Street, Pleasanton, CA

Page 1 of 2

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SV-1		12-09-0219-1-A	09/05/12 12:26	Air	GC 55	N/A	09/06/12 13:52	120906L01
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Helium	ND	0.0100	1		%v			
SV-2		12-09-0219-2-A	09/05/12 11:46	Air	GC 55	N/A	09/06/12 14:14	120906L01
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
Helium	ND	0.0100	1		%v			
SV-3		12-09-0219-3-A	09/05/12 13:22	Air	GC 55	N/A	09/06/12 14:38	120906L01
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Helium	ND	0.0100	1		%v			
SV-4		12-09-0219-4-A	09/05/12 13:44	Air	GC 55	N/A	09/06/12 15:06	120906L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Helium	ND	0.0100	1		%v			
SV-5		12-09-0219-5-A	09/05/12 11:25	Air	GC 55	N/A	09/06/12 15:30	120906L01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Helium	ND	0.0100	1		%v			
SV-6		12-09-0219-6-A	09/05/12 14:06	Air	GC 55	N/A	09/06/12 15:57	120906L01
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Helium	ND	0.0100	1		%v			

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A

Date Received:

09/06/12

Work Order No:

12-09-0219

N/A

Emeryville, CA 94608-2008

Preparation: Method:

ASTM D-1946 (M)

Project: 4212 First Street, Pleasanton, CA

Page 2 of 2

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SV-7		12-09-0219-7-A	09/05/12 12:44	Air -	GC 55	N/A	09/06/12 16:24	120906L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Helium	ND	0.0100	1	er ne sakilin karatilak sed	%v			
SV-8		12-09-0219-8-A	09/05/12 11:03	Air	GC 55	N/A	09/06/12 16:48	120906L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Helium	ND	0.0100	1		%v			
Method Blank		099-12-872-321		Air	GC 55	N/A	09/06/12 13:27	- 120906L01
<u>Parameter</u> Helium	<u>Result</u> ND	<u>RL</u> 0.0100	<u>DF</u> 1	Qual	<u>Units</u> %v			
, ,	110	0.0100	•		70 V			

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: Units: 09/06/12 12-09-0219 N/A

EPA 8260B (M) ug/m3

Project: 4212 First Street, Pleasanton, CA

Page 1 of 3

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/1 Analy		QC Batch ID
SV-1			12-09-0)219-1-A	09/05/12 12:26	Air	GC/MS YY	N/A	09/06 19:4		120906L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	16	1		Xylenes (total)			ND	43	1	
Toluene	53	19	1		Methyl-t-Butyl	Ether (MT	BE)	ND	36	1	
Ethylbenzene	ND	22	1								
<u>Surrogates:</u>	REC (%)	Control Limits	Qua	<u>l</u>	Surrogates:			REC (%)	Control Limits	<u>C</u>	<u>)ual</u>
1,4-Bromofluorobenzene	102	47-156			1,2-Dichloroetl	nane-d4		103	47-156		
Toluene-d8	100	47-156									
SV-2			12-09-0)219-2-A	09/05/12 11:46	Air	GC/MS YY	NA	09/06 20:		120906L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	RL	DF	Qual
Benzene	ND	16	1		Xylenes (total)			ND	43	1	
Toluene	23	19	1		Methyl-t-Butyl	Ether (MT	BE)	ND	36	1	
Ethylbenzene	ND	22	1								
Surrogates:	REC (%)	Control Limits	<u>Qua</u>	<u>al</u>	Surrogates:			<u>REC (%)</u>	Control Limits	<u>C</u>	<u>Qual</u>
1,4-Bromofluorobenzene	105	47-156			1,2-Dichloroet	hane-d4		101	47-156		
Toluene-d8	100	47-156									
SV-3			12-09-0	0219-3-A	09/05/12 13:22	Air	GC/MS YY	N/A	09/06 21:		120906L01
Parameter	Result	DI	DF								Qual
<u>i arameter</u>	TYCSUIL	<u>RL</u>	<u> </u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	
Benzene	ND ND	16	1	Qual	Parameter Xylenes (total)			<u>Result</u> ND	<u>RL</u> 43	<u>DF</u> 1	<u></u>
				Qual			BE)				
Benzene	ND	16	1	<u>Qual</u>	Xylenes (total)		BE)	ND	43	1	
Benzene Toluene	ND 21	16 19	1 1		Xylenes (total)		BE)	ND	43 36	1 1	Qual
Benzene Toluene Ethylbenzene	ND 21 ND	16 19 22 <u>Control</u>	1 1 1		Xylenes (total) Methyl-t-Butyl	Ether (MT	BE)	ND ND	43 36 Control	1 1	_
Benzene Toluene Ethylbenzene Surrogates:	ND 21 ND REC (%)	16 19 22 Control Limits	1 1 1		Xylenes (total) Methyl-t-Butyl Surrogates:	Ether (MT	BE)	ND ND REC (%)	43 36 Control Limits	1 1	
Benzene Toluene Ethylbenzene Surrogates: 1,4-Bromofluorobenzene	ND 21 ND REC (%)	16 19 22 <u>Control</u> <u>Limits</u> 47-156	1 1 1 Qua		Xylenes (total) Methyl-t-Butyl Surrogates:	Ether (MT	BE) GC/MS YY	ND ND REC (%)	43 36 Control Limits	1 1 <u>C</u>	
Benzene Toluene Ethylbenzene Surrogates: 1,4-Bromofluorobenzene Toluene-d8	ND 21 ND REC (%)	16 19 22 <u>Control</u> <u>Limits</u> 47-156	1 1 1 Qua	al	Xylenes (total) Methyl-t-Butyl Surrogates: 1,2-Dichloroet	Ether (MT	en 4-15-ra con Con pagnishi	ND ND REC (%) 101	43 36 <u>Control</u> <u>Limits</u> 47-156	1 1 <u>C</u>	Qual
Benzene Toluene Ethylbenzene Surrogates: 1,4-Bromofluorobenzene Toluene-d8 SV-4	ND 21 ND REC (%) 104 100	16 19 22 Control Limits 47-156 47-156	1 1 1 Qua	al 0219-4-A	Xylenes (total) Methyl-t-Butyl Surrogates: 1,2-Dichloroet 09/05/12 13:44	Ether (MT hane-d4 Air	en 4-15-re con Con pagnish	ND ND REC (%) 101	43 36 <u>Control</u> <u>Limits</u> 47-156 <u>09/00</u> 22:	1 1 2 6/12	Qual 120906L01
Benzene Toluene Ethylbenzene Surrogates: 1,4-Bromofluorobenzene Toluene-d8 SV-4 Parameter	ND 21 ND REC (%) 104 100	16 19 22 Control Limits 47-156 47-156	1 1 1 Qua	al 0219-4-A	Xylenes (total) Methyl-t-Butyl Surrogates: 1,2-Dichloroet 09/05/12 13:44 Parameter	Ether (MT hane-d4 Air	GC/MS YY	ND ND REC (%) 101 N/A Result	43 36 Control Limits 47-156	1 1 <u>0</u> 6/12 14	Qual 120906L01
Benzene Toluene Ethylbenzene Surrogates: 1,4-Bromofluorobenzene Toluene-d8 SV-4 Parameter Benzene	ND 21 ND REC (%) 104 100 Result ND	16 19 22 Control Limits 47-156 47-156	1 1 1 Que	al 0219-4-A	Xylenes (total) Methyl-t-Butyl Surrogates: 1,2-Dichloroet 09/05/12 13:44 Parameter Xylenes (total)	Ether (MT hane-d4 Air	GC/MS YY	ND ND REC (%) 101 N/A Result ND ND	43 36 Control Limits 47-156 09/00 22: RL 43 36	1 1 2 6/12 14 DF 1 1	Qual 120906L01 Qual
Benzene Toluene Ethylbenzene Surrogates: 1,4-Bromofluorobenzene Toluene-d8 SV-4 Parameter Benzene Toluene	ND 21 ND REC (%) 104 100 Result ND 33	16 19 22 Control Limits 47-156 47-156 RL 16 19 22	1 1 1 Que	0219-4-A Qual	Xylenes (total) Methyl-t-Butyl Surrogates: 1,2-Dichloroet 09/05/12 13:44 Parameter Xylenes (total)	Ether (MT hane-d4 Air	GC/MS YY	ND ND REC (%) 101 N/A Result ND	43 36 Control Limits 47-156 09/00 22: RL 43 36	1 1 2 6/12 14 DF 1 1	Qual 120906L01
Benzene Toluene Ethylbenzene Surrogates: 1,4-Bromofluorobenzene Toluene-d8 SV-4 Parameter Benzene Toluene Ethylbenzene	ND 21 ND REC (%) 104 100 Result ND 33 ND	16 19 22 Control Limits 47-156 47-156 RL 16 19 22 Control	1 1 1 Que 12-09-1 DF 1 1 1	0219-4-A Qual	Xylenes (total) Methyl-t-Butyl Surrogates: 1,2-Dichloroet 09/05/12 13:44 Parameter Xylenes (total) Methyl-t-Butyl	Ether (MT hane-d4 Air Ether (MT	GC/MS YY	ND ND REC (%) 101 N/A Result ND ND	43 36 Control Limits 47-156 09/00 22: RL 43 36 Control	1 1 2 6/12 14 DF 1 1	Qual 120906L01

DF - Dilution Factor ,

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: Units: 09/06/12 12-09-0219

N/A EPA 8260B (M) ug/m3

Project: 4212 First Street, Pleasanton, CA

Page 2 of 3

Client Sample Number				o Sample lumber	Date/Time Collected	//atrix	Instrument	Date Prepared	Date/T Analy		QC Batch ID
SV-5		10.00	12-09-0	219-5-A	09/05/12 11:25	Air	GC/MS YY	N/A	09/06 23:0		120906L01
Parameter	Result	RL	DF	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	DF	<u>Qual</u>
Benzene	ND	16	1		Xylenes (total)			ND	43	1	
Toluene	21	19	1		Methyl-t-Butyl Ethe	er (MTBE	≣)	ND	36	1	
Ethylbenzene	ND	22	1 _	_				550 (0/)		_	
Surrogates:	<u>REC (%)</u>	Control	Qua	<u>l</u>	Surrogates:			REC (%)	<u>Control</u> Limits	Q	<u>tual</u>
4.4.	102	<u>Limits</u> 47-156			1,2-Dichloroethan	o d4		98	47-156		
1,4-Bromofluorobenzene	100	47-156			1,2-Dichloroethan	le-u4		50	47-100		
Toluene-d8	100	47-100	tonick gazacije	The state of the s			togash-bookstark		00/00		
SV-6		14 TA	12-09-0)219-6-A	09/05/12 14:06	Air	GC/MS YY	N/A	09/06 23:		120906L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	16	1		Xylenes (total)			ND	43	1	
Toluene	27	19	1		Methyl-t-Butyl Eth	ner (MTBE	Ξ)	ND	36	1	
Ethylbenzene	ND	22	1								
Surrogates:	REC (%)	Control Limits	<u>Qua</u>	<u>il</u>	Surrogates:			REC (%)	Control Limits	<u>C</u>	<u>}ual</u>
1,4-Bromofluorobenzene	102	47-156			1,2-Dichloroethan	ne-d4		98	47-156		
Toluene-d8	101	47-156									
, 0.00.10 00											
SV-7			12-09-0)219-7-A	09/05/12 12:44	Air	GC/MS YY	N/A	09/07 00:		120906L01
and a characteristic waters in a conservation of the conservation	Result	<u>RL</u>	12-09-0	0219-7-A Qual		Air	GC/MS YY	N/A Result			120906L01
SV-7	ND	16			12:44 Parameter Xylenes (total)			Result ND	RL 43	45 <u>DF</u> 1	
SV-7 Parameter Benzene Toluene	ND 24	16 19	<u>DF</u> 1 1		12:44 Parameter			Result	00:4	45 DF	
Parameter Benzene Toluene Ethylbenzene	ND 24 ND	16 19 22	DF 1 1 1	Qual	Parameter Xylenes (total) Methyl-t-Butyl Eth			Result ND ND	RL 43 36	DF 1 1	Qual
SV-7 Parameter Benzene Toluene	ND 24	16 19 22 Control	<u>DF</u> 1 1	Qual	12:44 Parameter Xylenes (total)			Result ND	RL 43 36 Control	DF 1 1	
Parameter Benzene Toluene Ethylbenzene Surrogates:	ND 24 ND REC (%)	16 19 22 Control Limits	DF 1 1 1	Qual	Parameter Xylenes (total) Methyl-t-Butyl Eth Surrogates:	ner (MTBB		Result ND ND ND REC (%)	RL 43 36 Control Limits	DF 1 1	Qual
Parameter Benzene Toluene Ethylbenzene Surrogates: 1,4-Bromofluorobenzene	ND 24 ND REC (%)	16 19 22 <u>Control</u> <u>Limits</u> 47-156	DF 1 1 1	Qual	Parameter Xylenes (total) Methyl-t-Butyl Eth	ner (MTBB		Result ND ND	RL 43 36 Control	DF 1 1	Qual
Parameter Benzene Toluene Ethylbenzene Surrogates:	ND 24 ND REC (%)	16 19 22 Control Limits	DF 1 1 1 Qua	Qual	Parameter Xylenes (total) Methyl-t-Butyl Eth Surrogates:	ner (MTBI		Result ND ND ND REC (%)	RL 43 36 Control Limits	DF 1 1 0	Qual
Parameter Benzene Toluene Ethylbenzene Surrogates: 1,4-Bromofluorobenzene Toluene-d8	ND 24 ND REC (%)	16 19 22 <u>Control</u> <u>Limits</u> 47-156	DF 1 1 1 Qua	Qual	Parameter Xylenes (total) Methyl-t-Butyl Eth Surrogates: 1,2-Dichloroethan	ner (MTBE	≡)	Result ND ND REC (%) 100	00: RL 43 36 Control Limits 47-156 09/07 01:	DF 1 1 0	Qual Qual
Parameter Benzene Toluene Ethylbenzene Surrogates: 1,4-Bromofluorobenzene Toluene-d8 SV-8	ND 24 ND REC (%) 103 100 Result ND	16 19 22 <u>Control</u> <u>Limits</u> 47-156 47-156	DF 1 1 1 1 Qua 12-09-1 DF 1	Qual	Parameter Xylenes (total) Methyl-t-Butyl Eth Surrogates: 1,2-Dichloroethan 09/05/12 11:03 Parameter Xylenes (total)	ner (MTBE	Ē)	Result ND ND REC (%) 100 N/A Result ND	00: RL 43 36 Control Limits 47-156 09/07 01: RL 43	#5 DF 1 1 1 <u>C</u> //12 36	Qual Qual 120906L01
Parameter Benzene Toluene Ethylbenzene Surrogates: 1,4-Bromofluorobenzene Toluene-d8 SV-8 Parameter Benzene Toluene	ND 24 ND REC (%) 103 100 Result ND 26	16 19 22 <u>Control</u> <u>Limits</u> 47-156 47-156	DF 1 1 1 1 Qua 12-09-1 DF 1 1	Qual	Parameter Xylenes (total) Methyl-t-Butyl Eth Surrogates: 1,2-Dichloroethan 09/05/12 11:03	ner (MTBE	Ē)	Result ND ND REC (%) 100	00: RL 43 36 Control Limits 47-156 09/07 01:	DF 1 1 1 G	Qual Qual 120906L01
Parameter Benzene Toluene Ethylbenzene Surrogates: 1,4-Bromofluorobenzene Toluene-d8 SV-3 Parameter Benzene Toluene Ethylbenzene Ethylbenzene	ND 24 ND REC (%) 103 100 Result ND 26 ND	16 19 22 Control Limits 47-156 47-156 RL 16 19 22	DF 1 1 1 Qua 12-09-1 DF 1 1 1	Qual al 0219-8-A Qual	Parameter Xylenes (total) Methyl-t-Butyl Eth Surrogates: 1,2-Dichloroethan 09/05/12 11:03 Parameter Xylenes (total) Methyl-t-Butyl Eth	ner (MTBE	Ē)	Result ND ND REC (%) 100 N/A Result ND ND	00: RL 43 36 Control Limits 47-156 09/0: 01: RL 43 36	DF 1 1 C	Qual Qual 120906L01 Qual
Parameter Benzene Toluene Ethylbenzene Surrogates: 1,4-Bromofluorobenzene Toluene-d8 SV-8 Parameter Benzene Toluene	ND 24 ND REC (%) 103 100 Result ND 26	16 19 22 Control Limits 47-156 47-156 RL 16 19 22 Control	DF 1 1 1 1 Qua 12-09-1 DF 1 1	Qual al 0219-8-A Qual	Parameter Xylenes (total) Methyl-t-Butyl Eth Surrogates: 1,2-Dichloroethan 09/05/12 11:03 Parameter Xylenes (total)	ner (MTBE	Ē)	Result ND ND REC (%) 100 N/A Result ND	00: RL 43 36 Control Limits 47-156 09/0: 01: RL 43 36 Control	DF 1 1 C	Qual Qual 120906L01
Parameter Benzene Toluene Ethylbenzene Surrogates: 1,4-Bromofluorobenzene Toluene-d8 SV-8 Parameter Benzene Toluene Ethylbenzene Surrogates:	ND 24 ND REC (%) 103 100 Result ND 26 ND REC (%)	16 19 22 Control Limits 47-156 47-156 RL 16 19 22 Control Limits	DF 1 1 1 Qua 12-09-1 DF 1 1 1	Qual al 0219-8-A Qual	Parameter Xylenes (total) Methyl-t-Butyl Eth Surrogates: 1,2-Dichloroethan 09/05/12 11:03 Parameter Xylenes (total) Methyl-t-Butyl Eth Surrogates:	ner (MTBI	Ē)	Result ND ND REC (%) 100 N/A Result ND ND	RL 43 36 Control Limits 47-156 09/0: 01: RL 43 36 Control Limits	DF 1 1 C	Qual Qual 120906L01 Qual
Parameter Benzene Toluene Ethylbenzene Surrogates: 1,4-Bromofluorobenzene Toluene-d8 SV-8 Parameter Benzene Toluene Ethylbenzene Surrogates: 1,4-Bromofluorobenzene	ND 24 ND REC (%) 103 100 Result ND 26 ND REC (%) 103	16 19 22 Control Limits 47-156 47-156 RL 16 19 22 Control Limits 47-156	DF 1 1 1 Qua 12-09-1 DF 1 1 1	Qual al 0219-8-A Qual	Parameter Xylenes (total) Methyl-t-Butyl Eth Surrogates: 1,2-Dichloroethan 09/05/12 11:03 Parameter Xylenes (total) Methyl-t-Butyl Eth	ner (MTBI	Ē)	Result ND ND REC (%) 100 N/A Result ND ND	00: RL 43 36 Control Limits 47-156 09/0: 01: RL 43 36 Control	DF 1 1 C	Qual Qual 120906L01 Qual
Parameter Benzene Toluene Ethylbenzene Surrogates: 1,4-Bromofluorobenzene Toluene-d8 SV-8 Parameter Benzene Toluene Ethylbenzene Surrogates:	ND 24 ND REC (%) 103 100 Result ND 26 ND REC (%)	16 19 22 Control Limits 47-156 47-156 RL 16 19 22 Control Limits	DF 1 1 1 Qua 12-09-1 DF 1 1 1	Qual D219-8-A Qual	Parameter Xylenes (total) Methyl-t-Butyl Eth Surrogates: 1,2-Dichloroethan 09/05/12 11:03 Parameter Xylenes (total) Methyl-t-Butyl Eth Surrogates:	ner (MTBI	Ē)	Result ND ND REC (%) 100 N/A Result ND ND	RL 43 36 Control Limits 47-156 09/0: 01: RL 43 36 Control Limits	DF 1 1 C	Qual Qual 120906L01 Qual

DF - Dilution Factor ,

Qual - Qualifiers

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: Units: 09/06/12 12-09-0219

N/A

EPA 8260B (M) ug/m3

Project: 4212 First Street, Pleasanton, CA

Page 3 of 3

Client Sample Number				ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/1 Analy		QC Batch ID
Method Blank			099-13	3-041-989	NA	Air	GC/MS YY	N/A	09/06 13:4		120906L01
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	16	1		Xylenes (total)			ND	43	1	
Toluene	ND	19	1		Methyl-t-Butyl I	Ether (MTI	3E)	ND	36	1	
Ethylbenzene	ND	22	1								
Surrogates:	<u>REC (%)</u>	Control Limits	<u>Qu</u>	<u>al</u>	Surrogates:			REC (%)	Control Limits	<u>C</u>	<u>Qual</u>
1,4-Bromofluorobenzene	101	47-156			1,2-Dichloroeth	nane-d4		98	47-156		
Toluene-d8	96	47-156									

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation:

09/06/12 12-09-0219 N/A

Method:

EPA TO-3M

Project: 4212 First Street, Pleasanton, CA

Page 1 of 2

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SV-1		12-09-0219-1-A	09/05/12 12:26	Air	GC 38	N/A	09/06/12 13:55	120906L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	3800	1		ug/m3			
SV-2		12-09-0219-2-A	09/05/12 11:46	Air	GC 38	N/A	09/06/12 14:42	120906L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	3800	1		ug/m3			
SV-3		., 12-09-0219-3-A	09/05/12 13:22	Air	GC 38	N/A	09/06/12 15:28	120906L01
Parameter_	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	3800	1		ug/m3			
sv-4		12-09-0219-4-A	09/05/12 13:44	Air	GC 38	N/A	09/06/12 16:10	120906L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	3800	1		ug/m3			•
SV-5		12-09-0219-5-A	09/05/12 11:25	Air	GC 38	N/A 🔩	09/06/12 16:52	120906L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	3800	1		ug/m3			
SV-6	The first of the second	12-09-0219-6-A	09/05/12 14:06	Air	GC 38	N/A	09/06/12 18:12	120906L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	3800	1		ug/m3			

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation:

09/06/12 12-09-0219 N/A

Method:

EPA TO-3M

Project: 4212 First Street, Pleasanton, CA

Page 2 of 2

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SV-7	Tall.	12-09-0219-7-A	09/05/12 12:44	Air	GC 38	N/A	09/06/12 18:59	120906L01
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	3800	1		ug/m3			
SV-8		12-09-0219-8-A	09/05/12 11:03	Air	GC 38	N/A	09/06/12 19:47	120906L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	3800	1		ug/m3			
Method Blank		099-14-431-70	N/A	Air	GC 38	N/A	09/06/12 13:14	120906L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	3800	1		ug/m3			

Quality Control - Duplicate

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method:

09/06/12 12-09-0219 N/A EPA TO-3M

Quality Control Sample ID	Matrix	Instrument	Date Prepared:	Date Analyzed:	Duplicate Batch Number
SV-8	Air	GC 38	N/A	09/06/12	120906D01
<u>Parameter</u>	Sample Conc	DUP Conc	<u>RPD</u>	RPD CL	Qualifiers
Gasoline Range Organics (C6-C12)	ND	ND	NA	0-20	×

nvironmental Quality Control - LCS/LCS Duplicate

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 12-09-0219 N/A ASTM D-1946

Quality Control Sample ID	Matrix	Matrix		Date Prepared N/A		Date Analyzed	I	LCS/LCSD Batch Number	
099-03-002-1,638	Air		GC 34			09/06/12		120906L01	
<u>Parameter</u>	SPIKE ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Methane	10.12	9.211	91	9.162	91	80-120	1	0-30	
Carbon Dioxide	10.07	9.855	98	9.820	98	80-120	0	0-30	
Carbon Monoxide	9.930	10.43	105	10.40	105	80-120	0	0-30	
Oxygen + Argon	3.500	3.494	100	3.481	99	80-120	0	0-30	
Nitrogen	10.02	9.758	97	9.715	97	80-120	0	0-30	

Quality Control - LCS/LCS Duplicate

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 12-09-0219 N/A ASTM D-1946 (M)

Quality Control Sample ID 099-12-872-321	Matrix Air		Instrument GC 55	Date Prepared N/A		Date Analyzed 09/06/12		LCS/LCSD Batch Number 120906L01	
<u>Parameter</u>	SPIKE ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Helium Hydrogen	1.000 1.000	0.9729 1.032	97 103	0.9846 1.042	98 104	80-120 80-120	1 1	0-30 0-30	

Quality Control - LCS/LCS Duplicate

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 12-09-0219 N/A EPA 8260B (M)

Project: 4212 First Street, Pleasanton, CA

Quality Control Sample ID	M	1 atrix	Instrument	t	Date Prepared		ate llyzed	LCS		
099-13-041-989		Vir	GC/MS YY		N/A	09/06	5/12		120906L01	
<u>Parameter</u>	SPIKE ADDED	LCS CONC	<u>LCS</u> %REC	LCSD CONC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	79.87	78.52	98	76.70	96	60-156	44-172	2	0-40	
Toluene	94.21	92.27	98	92.06	98	56-146	41-161	0	0-43	
Ethylbenzene	108.6	102.1	94	99.74	92	52-154	35-171	2	0-38	
Xylenes (total)	325.7	315.1	97	315.5	97	42-156	23-175	0	0-41	
Methyl-t-Butyl Ether (MTBE)	90.13	88.33	98	91.57	102	45-147	28-164	4	0-25	
Tert-Butyl Alcohol (TBA)	151.6	158.3	104	159.2	105	60-140	47-153	1	0-35	
Diisopropyl Ether (DIPE)	104.5	101.9	98	93.47	89	60-140	47-153	9	0-35	
Ethyl-t-Butyl Ether (ETBE)	104.5	107.6	103	108.1	103	60-140	47-153	0	0-35	
Tert-Amyl-Methyl Ether (TAME)	104.5	109.8	105	99.37	95	60-140	47-153	10	0-35	
Ethanol	188.4	164.3	87	168.4	89	47-137	32-152	2	0-35	
1,1-Difluoroethane	67.54	67.12	99	66.34	98	78-156	65-169	1	0-35	
Isopropanol	61.45	63.20	103	63.46	103	78-156	65-169	0	0-35	

Total number of LCS compounds: 12

Total number of ME compounds: 0

Total number of ME compounds allowed:

LCS ME CL validation result: Pass

nvironmental Quality Control - Laboratory Control Sample aboratories, Inc.

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation:

Method:

N/A 12-09-0219 N/A EPA TO-3M

Quality Control Sample ID	Matrix	Instrument	Date Analyzed	Lab File ID	LCS	Batch Number
099-14-431-70	Air	GC 38	09/06/12	12090602	14.12.12.35 14.12.12.35	120906L01
<u>Parameter</u>	<u>C</u>	onc Added	Conc Recovered	LCS %Rec	%Rec CL	Qualifiers
Gasoline Range Organics (C6-C	:12)	382400	406000	106	80-120	

Glossary of Terms and Qualifiers

Work Order Number: 12-09-0219

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
·<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS/LCSD Recovery Percentage is within Marginal Exceedance (ME) Control Limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis. MPN - Most Probable Number

	LAB (LOCATION)							CONT.	?		٤									ain (UT (Cus	Sto													
	ALSCIENCE (Ple		e Check Appropriate Box: Print Bill To Contact Name: INCID								IDE	NT # (ENV SERVICES) : CHECK IF NO INCIDENT # APPLIES																				
☐ SP	ľ			ENV.	, SERVICES		AVITON	RETAI			SHELL	RETAIL	Pet	ter S	cha	efer 2	2415	01											\perp			DA	TE: 9/5/2012			
	ENÇO (□мот	TVA SD&CM	Ū c	ONSUL	TANT			LUBES		::::	:::::				PC):#:								SAP	#	::::			D.4.	os. 4 4 1			
	EST AMERICA (∏ SHE	LL PIPELINE		THER						屵∸	' ' ' '	<u> </u>	Ť	m	Ť		1	Ť	T				Т				П		PA	GE:1 of1_			
OTHER (SITE	ADDR	ESS: S	Street an	nd City			1				State		\dashv	GLOS	T ID NO	λ:												
	stoga-Rovers & Associa	ites					CRA	W					421	12 Fi	rst S	Stree	t, Ple	asa	ntor	1				CA	T0600101259 E-MAIL: CONSULTANT PROJECT NO.:											
ADDRE	SS:	EDF DELIVERABLE TO Name. Company. Office Location): PHONE NO.: reat, Suite A, Emeryville, CA 94608										ľ	E-MAIL:						CONSULTANT PROJECT NO.																	
	T CONTACT (Hardcopy or PDF Report to		CA 94606													r, CR	A, Em	eryvi	lle			10-42	0-3343	<u> </u>			shell.	em.e	df@c	rawo	ld.co	m	240523-95-12.05			
			F	eter Sch	e-MAIL:								1	IPLER NA		(Print):	ń:													1	1	Ė				
	510-420-3319 510-420-9170 pschaefer@craworid.com												A ABB A BLA																							
TURN ST.	VAROUND TIME (CALENDAR I CANDARD (14 DAY)	DAYS): 5 DAYS	☐3 DAYS		2 DAYS	☐ 24 HO	URS		∐R	ESULTS ON	NEEDE	D END	╙		,								KEQ	JEST	ED A	VAL	1313				- 1	-т	·			
	A - RWQCB REPORT FORMAT	. 🗆 u	ST AGENCY:										1					ļ										ı				ŀ	TEMPERATURE ON RECEIPT C°			
SE	PECIAL INSTRUCTIONS	OR NOTE	s:			☑ SHELL							l	1					ı	ME,									ı							
						☐ STATE			ENT RA	ATE APP	LIES		8							DIPE, TAME,		8					- 1		- 1							
Co	opy final report to Shell.La	ab.Billing@	craworld.com	1		☐ EDD N			TON DE	OHECT	en.		826	(F						튭		(8260B)			.							T				
Re	eport results in µg/m³					[4] KECEI	IPI VER	urica i	ION RE	QUEST	LU .		C6-C12 (8260B)	(8015M)				.	6	TBA,							٠									
				SAM	PLING			PR	RESERV	ATIVE		-	able C					@	BTEX + MTBE + TBA (TO-15)	BTEX + 5 OXYs (MTBE, TBA, ETBE) 8260B	e						02 + Argon ASTMD 1946	Helium ASTMD 1946 (M)				1				
													rgeat	PH -DRO, Extractable				BTEX + MTBE (8260B)	F	S (M	Full VOC list (8260B)	ğ	6		a	946	STMI	19	946							
	Field Sample	Identific	ation	DATE	TIME	MATRIX						NO. OF CONT.	TPH -GRO, Pu	Ę,	TPHg (8015M)	1	(B08)	置	ᆲ	OXY 60B	list (Single Compound:	1,2-DCA (8260B)	(g)	Ethanol (8260B)	CH4 ASTMD 1946	on A	STM	CO2 ASTMD 1946				Container PID Readings or Laboratory Notes			
				DATE	INVE								ĕ	PR	8		BTEX (8260B)	÷	± ×	X + 5 E) 82	Š	a o	ŠČ	EDB (8260B)	jou (AST	Arg	A E	AST				or Euroratory Hotos			
LAB USE DALY							HCL	ниоз	H2SO4	NONE	OTHER		E	HE H	Ŧ		BTE	BTE	BTE	BTE ETB	Full	Sing	1,24	9	Eth	A A	8	Hei	ŝ							
ONLY				01			1	1					1	T				х								х	х	х	х							
1	SV-1			9/5	1226	Vapor						1	×					^							,		^									
1	34-1			T	7000	vapor	T	T	<u> </u>	†			١			T		Ţ,								х	х	х	х							
2	SV-2			9/5	1146	Vapor						1	×					х									_	_								
				70		, vapo.							Т	Т																		l				
3				9/5-	1322								×					х								x	Х	Х	X	l						
	SV-3			13	1,50	Vapor	+	╁	-	+	┼─	1_	╁	╁	\vdash	+	\vdash	\dashv	\neg					\vdash						一	\dashv	_				
,				9/									×					×								×	×	¥	×							
4	SV-4			15	1344	Vapor	_	_				1	\perp	_	\perp	1-	_										-			\dashv		\dashv				
				91			İ						x					x								х	х	х	х							
5	SV-5			1/	1125	Vapor						1	L																		_					
	00-0			ai	9		1	Ī					Tx					х								х	х	х	x		1					
Ĺ	SV-6			1/5	1401	, Vapor		<u></u>			1	1	L^		1_											_					_					
				9/									x					x								х	х	х	x							
7	SV-7			15	1244	Vapor						1	Ĺ																							
				a/			T						l _x					х								x	х	х	х			ŀ				
8	SV-8			1/5-	1103	Vapor						1	<u> </u>		\perp			L^					<u> </u>								_	_				
	0.0			T						T																						- 1	.ak			
					-		+-	+	-	+	+	+	╁	+	+	+	+				\vdash		\vdash	\Box							\neg		, P			
							حل		_	L.	1			\perp	_						L		<u> </u>			Date		<u> </u>	L		_	Time:				
Received by: (Signature)											\wedge	i	. ,							-	7		_	-			157-									
Suy Jan 1							\leq	2_			<u></u>	F	<u>/</u> _							Date	-	<u>ح</u>		12	_	Time:	1220									
Relin	quished by: (Signature)	-7.	5	2151	112	Received by: (5)													L/ale:							1530			
کے		1~	20	~~~	130			PX	li	î	21	<u>1</u>	h	ž												9	1	6/1				7	0~70			
Relin	igual bed by: (Signature)		ω			Received by: (Signature	1		2																Date						ııme:				
- 4	()					1	,																			ł					- 1					

<WebShip>>>>>

800-322-5555 www.gso.com

Ship From: ALAN KEMP CAL SCIENCE- CONCORD 5063 COMMERCIAL CIRCLE #H CONCORD, CA 94520

Ship To: SAMPLE RECEIVING 7440 LINCOLN WAY GARDEN GROVE, CA 92841

COD: \$0.00

Reference: ERI, CRA

Delivery Instructions:

Signature Type: SIGNATURE REQUIRED Tracking #: 519919177

GARDEN GROVE

D92841A

Print Date: 09/05/12 15:34 PM

Package 1 of 1

Send Label To Printer

Print All

Edit Shipment

Finish

LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode.

STEP 1 - Use the "Send Label to Printer" button on this page to print the shipping label on a laser or inkjet printer.

STEP 2 - Fold this page in half.

STEP 3 - Securely attach this label to your package, do not cover the barcode.

STEP 4 - Request an on-call pickup for your package, if you do not have scheduled daily pickup service or Drop-off your package at the nearest GSO drop box. Locate nearest GSO dropbox locations using this link.

ADDITIONAL OPTIONS:

Send Label Via Email

Create Return Label

TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all the service terms and conditions described in this section. Our liability for loss or damage to any package is limited to your actual damages or \$100 whichever is less, unless you pay for and declare a higher authorized value. If you declare a higher value and pay the additional charge, our liability will be the lesser of your declared value or the actual value of your loss or damage. In any event, we will not be liable for any damage, whether direct, incidental, special or consequential, in excess of the declared value of a shipment whether or not we had knowledge that such damage might be incurred including but not limited to loss of income or profit. We will not be liable for your acts or omissions, including but not limited to improper or insufficient packaging, securing, marking or addressing. Also, we will not be liable if you or the recipient violates any of the terms of our agreement. We will not be liable for loss, damage or delay caused by events we cannot control, including but not limited to acts of God, perils of the air, weather conditions, act of public enemies, war, strikes, or civil commotion. The highest declared value for our GSO Priority Letter or GSO Priority Package is \$500. For other shipments the highest declared value is \$10,000 unless your package contains items of "extraordinary value", in which case the highest declared value we allow is \$500. Items of "extraordinary value" include, but or not limited to, artwork, jewelry, furs, precious metals, tickets, negotiable instruments and other items with intrinsic value.

WORK ORDER #: **12-09-** □ □ □ □

SAMPLE RECEIPT FORM

Box __/ of _/_

DATE:	09/06/12
TEMPERATURE: Thermometer ID: SC2 (Criteria: 0.0 °C – 6.0 °C, not frozen)	
Temperature • °C - 0.3 °C (CF) = °C □ Blank	☐ Sample
☐ Sample(s) outside temperature criteria (PM/APM contacted by:).	•
☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling	na.
☐ Received at ambient temperature, placed on ice for transport by Courier.	•
Ambient Temperature: ☑ Air ☐ Filter	Initial: <u> </u>
CUSTODY SEALS INTACT:	
☑ Box □ □ No (Not Intact) □ Not Present □ N/A	Initial:
☐ Sample ☐ ☐ No (Not Intact) ☑ Not Present	Initial: N
SAMPLE CONDITION: Yes	No N/A
Chain-Of-Custody (COC) document(s) received with samples	
COC document(s) received complete	
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.	
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.	•
Sampler's name indicated on COC	
Sample container label(s) consistent with COC	
Sample container(s) intact and good condition	
Proper containers and sufficient volume for analyses requested 🗹	
Analyses received within holding time	
pH / Res. Chlorine / Diss. Sulfide / Diss. Oxygen received within 24 hours □	
Proper preservation noted on COC or sample container □	
☐ Unpreserved vials received for Volatiles analysis	•
Volatile analysis container(s) free of headspace	
Tedlar bag(s) free of condensation CONTAINER TYPE:	
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCores® □Terra@	Cores [®] □
Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp □1AGB □	□1AGB na₂ □1AGB s
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □1PB □	□1PB na □500PB
□250PB,□250PB n □125PB □125PB znna □100PJ □100PJ na₂ □ □	
Air: DTedlar® Summa® Other: Trip Blank Lot#: Labeled/Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envelope F Preservative: h: HCL n: HNO3 na2:Na2S2O3 na: NaOH p: H3PO4 s: H2SO4 u: Ultra-pure znna: ZnAc2+NaOH f: Filtered	Reviewed by: