RECEIVED

2:18 pm, Feb 17, 2009

Alameda County Environmental Health

February 12, 2009 Project SCA421211 SAP No. 135782

Mr. Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway Alameda, California 94502

Shell-branded Service Station 4226 First Street Pleasanton, California

Dear Mr. Wickham:

Delta Consultants (Delta), on behalf of Shell Oil Products US (Shell), has prepared this report to document the dual-phase extraction (DPE) test performed on January 5 through 12, 2009 at the site referenced above. The tests were conducted in general accordance with the *Dual-Phase Extraction Feasibility Study and Batch Extraction Workplan*, dated March 12, 2008 and the *Technical Comments* from the Alameda County Health Care Services Agency (ACHCSA), in a letter to Shell dated September 9, 2008 (Attachment A). A technical report documenting the DPE tests was originally requested by January 14, 2009. Due to scheduling issues, the ACHCSA granted a request to extend the report deadline to February 13, 2009 through e-mail correspondence dated December 9, 2009.

SITE DESCRIPTION AND USE

The subject site is a Shell-branded service station located at the southern corner of First Street and Vineyard Avenue (Figure 1) in a mixed commercial and residential area of Pleasanton, California. Three 10,000-gallon gasoline underground storage tanks (USTs) and one 550-gallon waste oil UST are located at the site. The site contains two dispenser islands, a service station building with attached service garage (Figure 2).

There are five monitoring wells on site that are sampled quarterly (MW-1, MW-1B, MW-2, MW-3 and MW-4). Down-gradient well MW-4 has the highest hydrocarbon concentrations; down-gradient well MW-1 and cross-gradient well MW-2, located in the vicinity of the former UST complex, also have detectable concentrations of total petroleum hydrocarbons as gasoline (TPH-g) and methyl tert-butyl ether (MTBE). TPH-g is not detectable in the deep well MW-1B or in the cross-gradient well MW-3, but low levels of MTBE have been detected in both.

Attachment B displays well and boring data; Attachment C presents historical groundwater quality data and historical soil quality data.

LOCAL HYDROGEOLOGY

The site is composed of silt, silty fine sand, or clayey fine sand to a depth of approximately 95 feet below ground surface (bgs). Site borings logs are provided as Attachment B with locations shown on Figure 2. Groundwater was first encountered in borings at a depth of approximately 45 feet, stabilizing in wells to a depth of approximately 30 feet bgs. A second water-bearing zone was encountered at a depth of approximately 100 feet bgs. The groundwater gradient in the shallow zone has consistently been to the north-northeast at a magnitude of 0.03 to 0.06 ft/ft. A gradient for the deeper zone can not be determined from a single well.

The sandy soils typically contain 20 to 40 percent fines that reduce the permeability of the deposits. In the north-northeastern portion of the site, sediments become coarse-grained. Borings MW-1, SB-7 and SB-5 encountered coarse-grained sediments between depths of approximately 20 and 55 feet bgs consisting of clayey sandy gravel (GP), gravelly sand with silt (SP), and clayey gravel (GC). A thick deposit of silt (ML) was encountered from approximately 55 feet bgs to the top of the lower aquifer at a depth of approximately 100 feet bgs. A geologic cross section is provided on Figure 3.

PREVIOUS ENVIRONMENTAL ACTIVITIES

A summary of previous environmental activities at the site has been included as Attachment D. Available history dates back to 1985; the site history is complete based on the documentation available to Delta at this time.

SENSITIVE RECEPTORS

A well survey for this site was conducted by Toxichem Management Systems, Inc. (Toxichem) in May 2004. The Toxichem survey gathered information from Zone 7 Water District (Zone 7) and the Department of Water Resources; a copy of the well survey map and summary table are included as Attachment C. The nearest wells identified were a well of "unknown' use (3S/1E-21B) and a municipal well (3S/1E-21B1), both located approximately 900 feet northeast of the site. Toxichem was unable to locate either well in the field and concluded that they were likely abandoned. In November 2005, Delta observed an old water tower building near the location of the two wells. A municipal well (3S/1E-16P1) was identified as being over 1,200 feet north of the site, however Toxichem was not able to locate that well in the field.

Delta performed an addition well survey in September 2005; a well location map was obtained from Zone 7, which is included as Attachment C. Three wells located approximately 1,000 feet northwest of the site (3S/1E-21C1, -21C3, and -21C4) were identified; well 3S/1E-21C1 was classified as a "supply well", well 3S/1E-21C3 as "abandoned or unlocatable", and 3S/1E-21C4 as "other designated well". Delta was only able to field verify well 3S/1E-21C4, which provides irrigation water for a small city park. Delta also located a similar well in Kottinger Park located approximately 800 feet east of the site.

Delta was unable to locate a map of underground utilities for the site area. Depth to groundwater beneath the site is typically over 30 feet bgs, therefore underground utilities are not considered a vertical conduit to shallow groundwater. The Arroyo Del Valle Creek is located approximately 1,133 feet north-west of the site. All identified wells which were confirmed in the field are located 1,000 feet or more from the site and are not considered to be at risk for impacts from contamination at the site.

PETROLEUM DISTRIBUTION

Distribution of Petroleum Hydrocarbons in Groundwater

Groundwater impacts are centered in the area of the former UST complex at well MW-4 located in the northeast side of the site (Figure 2). Wells MW-1 and MW-4 are approximately 50 to 75 feet downgradient of the former UST complex, MW-2 is located near the northeastern corner of the former UST tank complex, and MW-3 is approximately 50 feet up-gradient of the former tank pit. During the most recent groundwater sampling and monitoring event conducted on December 3, 2008, (Attachment C, Table 1) depth to shallow groundwater ranged from 32.12 feet bgs at well MW-3 to 35.19 feet bgs at well MW-1. Depth to groundwater in deep well MW-1B was 80.84 feet bgs. The reported groundwater flow direction and gradient was northeasterly at an approximate gradient of 0.06 feet/feet.

The highest concentration of TPH-g during the 4^{th} quarter 2008 sampling event was detected in MW-4 at 20,000 µg/L. Down-gradient well MW-1 and cross-gradient well MW-2 also have high detectable concentrations of TPH-g at 3,400 and 3,000 µg/L, respectively. TPH-g was not detected above the reporting limit of 50 µg/L in deep well MW-1B or the cross-gradient well MW-3. The available data indicate most of the TPH-g impacted groundwater is located to the northeast and northwest of the former UST complex.

During the 4th quarter 2008 sampling event, MTBE was detected above the San Francisco Bay Regional Water Quality Control Board (SFBRWQCB) Environmental Screening Levels (ESLs) for non-drinking water in three of the five wells, with reported concentrations of 3,200 μ g/L, 2,900 μ g/L, and 21,000 μ g/L, respectively, at wells MW-1, MW-2, and MW-4. MTBE was also detected at low levels in MW-1B and MW-3 at 3.4 and 2.1 μ g/L respectively.

Distribution of Petroleum Hydrocarbons in Soil

Soil analytical data from Attachment C indicate the highest concentrations of TPH-g were detected in boring S-B, located within the former UST complex at 14 to 15.5 feet bgs at a concentration of 1,300 mg/kg. The next highest concentration was detected in SB-5 (located north of MW-4), at a depth of 35 feet bgs at a concentration of 820 mg/kg. Concentrations of concern were also detected in MW-4, just north of the former UST complex, at 36.5 feet bgs at a concentration of 380 mg/kg. The

available data indicate most of the TPH-g impacted soils are located northeasterly to northwesterly of the former UST complex.

As shown on Figure 3, the highest concentrations of MTBE were detected in soil samples from MW-4 at depths of approximately 45 and 50 feet with concentrations of 0.59 and 0.56 mg/kg, respectively.

REMEDIATION STATUS

Field Activities prior to Dual-Phase Extraction Testing

Delta prepared a site-specific Health and Safety Plan, which was reviewed by all field personnel. Delta and Frontier Environmental (Frontier) field personnel obtained a various locations permit with Bay Area Air Quality Management District (BAAQMD) for the operations of a 450 cubic foot per minute (cfm) system. Frontier and Delta notified BAAQMD of the upcoming events prior to mobilizing to the field.

Step Drawdown Testing

Prior to the DPE test, Delta performed step drawdown tests in wells MW-1 and MW-4 in order to estimate the maximum sustainable pumping rates for the upper groundwater zones. Water levels in the wells were measured during pumping using an electronic water level meter. The sustainable pumping rate for well MW-1 was determined to be 0.55 gpm, with a hydraulic conductivity of 3.59 x 10 centimeters per second (cm/sec) calculated using the average pumping rate of 0.48 gpm during the test. This value is typical of silt (Freeze and Cherry, 1979) and does seem consistent with the boring log descriptions. The step drawdown test at sell MW-4 produced a sustainable pumping rate of 0.48 gpm; a hydraulic conductivity of 3.17 x 10⁻⁵ cm/sec was calculated using the average pumping rate of 0.48 gpm during the test. This value is typical of silt (Freeze and Cherry, 1979) and is consistent with the description of soils on boring log. The above results led Delta to classify all site soils as low permeability.

Dual-Phase Extraction Test Summary

Based on continued high TPH-g concentrations in the aqueous phase in Wells MW-1, MW-2 and MW-4, DPE tests were completed on all three wells using a mobile DPE system. Initially, a 5-day DPE feasibility study was performed on well MW-4, which is situated in the former UST complex and has the highest contaminant concentrations. Upon completion of the 5-day test, two additional tests were performed on wells MW-1 and MW-2 for a period of up to 8 hours each. Both tests were discontinued after 4 hours due to low flow rates. Feasibility is calculated by estimating influent hydrocarbon concentrations, hydrocarbon mass recovery rates, the soil vapor radius of influence (ROI), and groundwater production rates. Soil vapor was extracted from the wells through application of high vacuum to each tested well using a 25-horsepower (hp) liquid ring pump. The following sections provide details of the DPE test results; field measurements for each test are included in Tables 1 through 6.

Inflow Rates

The influent flow rates, expressed in units of cfm, applied vacuums and induced vacuums, expressed in units of inches of water (inH₂O), and inlet hydrocarbon concentrations, expressed in units of parts per million (ppm), were measured during DPE test events. Tables 1, 3 and 5 provide summaries of the recorded measurements for each test at wells MW-4, MW-1 and MW-2, respectively. Vapor concentrations were measured using a photo-ionization detector (PID) capable of analyzing hydrocarbon vapor at concentrations of up to 10,000 parts per million by volume (ppmv). Induced vacuum and applied vacuum were measured with vacuum gauges placed on the DPE system during operation.

Radius of Influence

The ROI and area of effectiveness of extraction rate from the DPE system field measurements were determined from measurements recorded at observation wells surrounding the test well. Groundwater parameters included dissolved oxygen (DO), electrical conductivity, temperature, pH, and turbidity, as well as depth to groundwater at the wells. Measurements for tests conducted at wells MW-4, MW-1 and MW-2 are provided in Tables 2, 4, and 6, respectively. MW-3 had insufficient water for sampling during the two 8-hour tests. Water levels at MW-3 were measured throughout the 8 hour tests, and no significant changes were observed.

Influent Vapor Concentrations

Inlet hydrocarbon vapor readings were recorded regularly throughout the pilot tests using a PID. The monitoring schedule is detailed in the *Dual-Phase Extraction Work Plan* included as Attachment A. Readings taken at well MW-4 during the 5-day test reflect a steady increase in concentrations through the end of the second day, at which time concentrations reached a peak of 9,010 ppm taken with a PID, then gradually declined to more steady-state concentrations, with a final PID reading of 2,610 ppm.

In addition, vapor samples were collected for laboratory analysis from the DPE system inlet vapor stream at the beginning, middle, and end of the 5-day and each 8-hour test using Tedlar bags. Vapor samples were logged onto chain-of-custody forms and submitted to a California state certified laboratory for analysis. Vapor samples were analyzed for TPH-g, BTEX compounds, TBA, and MTBE by EPA Method TO-14. Influent TPH-g concentrations during the 5-day test at MW-4 were calculated at 420 ppm, 4,900 ppm, and 3,600 ppm for pre-test, mid-test, and post test samples; MTBE concentrations were calculated at 17 ppm, 230 ppm, and 24 ppm. Influent TPH-g concentrations during the 8-hour test at well MW-1 were calculated at 73 ppm, 31 ppm, and 22 ppm for pre-test, mid-test, and post test samples; MTBE concentrations were calculated at 0.5 ppm, 0.19 ppm, and 0.2 ppm. Influent TPH-g concentrations during the 8-hour test at well MW-2 were calculated at 21 ppm, 91 ppm and 120 ppm for pre-test, mid-test, and post test samples; MTBE concentrations were calculated at 0.92 ppm, 7.4 ppm, and 8.1 ppm. Analytical results for vapor samples are presented in Table 7. The certified analytical results with chain-of-custody documentation are included as Attachment E.

Groundwater Samples

Groundwater samples were collected at the beginning, middle and end of each test from the test well and the surrounding observation wells. Groundwater samples were logged onto chain-of-custody forms and submitted to a California state certified laboratory for analysis. Groundwater samples were analyzed for TPH-g, BTEX compounds, MTBE, tert-butyl alcohol (TBA), diisopropyl ether (DIPE), ethyl tert-butyl ether (ETBE), tert-amyl methyl ether (TAME), ethylene dibromide (EDB), 1,2-dichloroethane (1,2-DCA), and ethanol by EPA Method 8260B.

Analytical concentrations for groundwater samples were in general typical of concentrations reported during groundwater monitoring events. Analytical results for groundwater samples are presented in Table 7. The certified analytical reports with chain-of-custody documentation are included as Attachment E.

Dual-Phase Extraction Operation Results

Based on the work plan dated March 12, 2008, DPE system and groundwater measurements at each test well and observation wells were recorded at 15-minute intervals for the first two hours of each test. During the 5-day test, measurements were taken at 1-hour intervals during the third hour, 2-hour intervals from the third to seventh hours, and every four hours for the remainder of the test. During the 8-hour tests, measurements were taken on the hour at the second through fourth hours, at which time both test were discontinued due to low flow conditions. Groundwater parameters included pH, electrical conductivity, turbidity, dissolved oxygen, temperature, oxygen reduction potential, and depth to groundwater during extraction.

The induced vacuum at each wellhead, observed flow rate at each wellhead, and petroleum hydrocarbon soil vapor influent concentrations as measured by a PID ranged as follows.

Well ID (test)	Induced Vacuum (in. H ₂ O)	Flow Rate (cfm)	Influent Soil Vapor (ppm)
MW-4 (5- day test)	>150	18-75	150 – 9,010
MW-1 (8-hr test)	>150	60-70	25-53
MW-2 (8- hr test)	75	80-125	25-121

In general, due to the impermeable clay subsurface only incremental water level variations were noted in the observation wells during the DPE events on the tested wells. In contaminated wells, dissolved oxygen levels increased during pilot tests correlated to a general decrease in hydrocarbon

concentrations. Low dissolved oxygen levels typically coincide with higher levels of groundwater contamination, because oxygen is in high demand for contaminant degradation.

Hydrocarbon Mass Recovery

Hydrocarbon mass removal through vapor extraction was calculated using an average concentration over the total period of operation and the average flow rate for each test. Total mass removal through vapor extraction and treatment of hydrocarbons in the vadose zone was estimated to be approximately 286.3 pounds. A total of approximately 2,748 gallons of groundwater were extracted with an estimated hydrocarbon mass removal of 0.23 pounds. Mass removal data is presented in Table 8.

Soil Vapor Radius of Influence

Delta was unable to calculate the radius of influence during the DPE pilot tests based on the location of the observation wells in relation to the test well, which ranged in distance from 40 to 80 feet, and given the local hydrogeology. Observable influence was not noted during the tests, which would lead us to believe that the ROI at the site is less than 40 feet. Estimating ROI based on effective air exchange assuming three soil pore volumes of vapor are being extracted per day can be calculated as:

$$Q = \frac{3/day \cdot \pi R_E^2 b n_a}{1440 \min/day}$$

Where: Q = Flow Rate (cfm)

 R_E = Radius of Effective Air Exchange b = Thickness of Unsaturated Zone n_a = Effective Air-Filled Soil Porosity

Given site parameters during the test and using an average estimated influent flow rate of 55 cfm for all three wells we can estimate ROI using this equation. The thickness of the unsaturated zone during the test was approximately 30 feet; the effective air-filled soil porosity is 0.30 for sandy clay, which results in a conservative estimate for the zone of effective air exchange. Using these values, the radius of effective air exchange could be estimated at approximately 26 feet:

Dual-Phase Extraction Test Conclusion

During the DPE pilot tests, approximately 0.23 pounds of hydrocarbons were removed from extracted groundwater and approximately 286.3 pounds of hydrocarbons were removed through soil vapor extraction.

Minimal groundwater movement was observed in the observation wells during the DPE tests. Consequently, the vapor ROI could not be calculated based on observable measurements, other than noting the ROI appears to be less than 40 feet. Calculating ROI based on the average observed flow rate and known site subsurface conditions produced a theoretical ROI of approximately 26 feet. Dissolved oxygen levels increased throughout the pilot tests, which was correlated to generally decreasing hydrocarbon concentrations in the water.

The highest contaminant impacts are TPH-g, MTBE and TBA in the aqueous phase and TPH-g in the vapor phase. The maximum groundwater concentrations during the DPE pilot test were encountered in MW-4 with TPH-g reported at 13,000 µg/L, MTBE at 16,000 µg/L and TBA at 3,800 g/L. Wells MW-1 and MW-2 also reported concentrations of contaminants of concern which were generally comparable to concentrations reported during quarterly groundwater monitoring. TPH-g was present in the vadose zone at increasing vapor concentrations during the 5-day extraction test in well MW-4. TPH-g vapor concentrations increased from 420 ppm at the beginning of the 5-day test, to 4,900 ppm at midweek, and finally at 3600 ppm at the end of the 5-day test. The increase in vapor concentrations may have resulted in part due to vapor plume migration during the extraction test.

Based on the substantial hydrocarbon mass removed from the vadose zone through vapor extraction and the low average flow rate for groundwater extraction of approximately 0.4 gpm, vapor extraction is the more feasible remediation strategy at this site. The low mass removal of hydrocarbons from groundwater during the DPE test is indicative of the impermeable aquifer region throughout the site, which limits groundwater movement while the large vadose zone supports significant hydrocarbon extraction through vapor extraction.

RECOMMENDATIONS

Based on the results of the DPE pilot test and the previous groundwater extraction pilot test, it has been determined that groundwater extraction as a remediation strategy will have limited success. However, the results also indicate that soil vapor extraction (SVE) may be a viable component of an overall remediation strategy. Furthermore, the soil permeability documented by the relative success of SVE suggests that air or oxygen sparging may also be suitable to address the oxygenate issues in the groundwater at the site. Delta proposes preparing a remedial action plan which will incorporate this data; soil vapor extraction and sparge-based bioremediation will be included in this evaluation.

REMARKS

This report represents Delta's professional opinions based upon the currently available information and are arrived at in accordance with currently acceptable professional standards. This report is based upon a specific scope of work requested by the client. The Contract between Delta and its client outlines the scope of work, and only those tasks specifically authorized by that contract or outlined in this report were performed. This report is intended only for the use of Delta's Client and anyone else specifically listed on this report. Delta will not and cannot be liable for unauthorized reliance by any other third party. Other than as contained in this paragraph, Delta makes no express or implied warranty as to the contents of this document.

Should you have any questions or need any further assistance, please contact Suzanne McClurkin-Nelson (Delta) at (408) 826-1875 or Mr. William Lantz (Delta) at (626) 873-2702. In addition, Mr. Dennis Brown (Shell) can be reached at (707) 865-0251.

Sincerely,

Delta Consultants

Cora Olson Staff Engineer

Suzanne McClurkin-Nelsc

Senior Project Manage

William Lantz, P.A. Senior Engineering

cc: Denis Brown, Shell Oil Products US, Carson

Attachments: Figure 1 – Site Location Map

Figure 2 - Site Map

Figure 3 - Geologic Cross Section A - A'

Table 1- DPE Field Measurements for 5-day test on MW-4

Table 2- Groundwater Parameter Data in Observation Wells for 5-day test on MW-4

Table 3- DPE Field Measurements for 8-hour test on MW-1

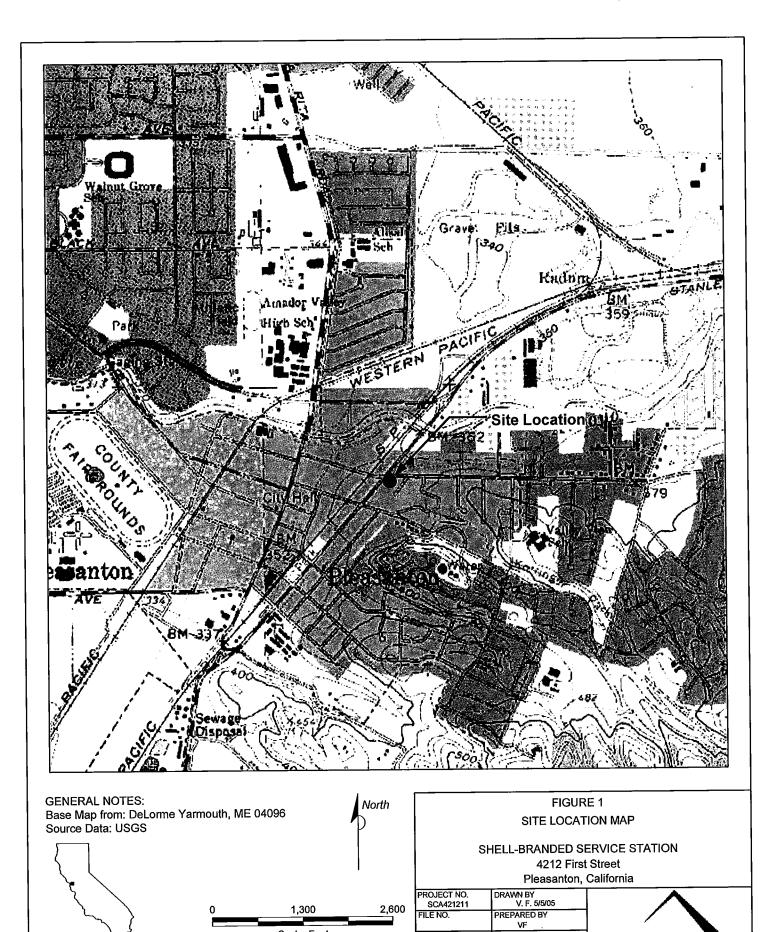
Table 4- Groundwater Parameter Data in Observation Wells for 8- hour test on MW-1

Table 5– DPE Field Measurements for 8-hour test on MW-2

Table 6- Groundwater Parameter Data in Observation Wells for 8- hour test on MW-2

Table 7- Groundwater and Vapor Analytical Results from All Tests

Table 8 – Hydrocarbon Mass Removal from Vapor and Groundwater

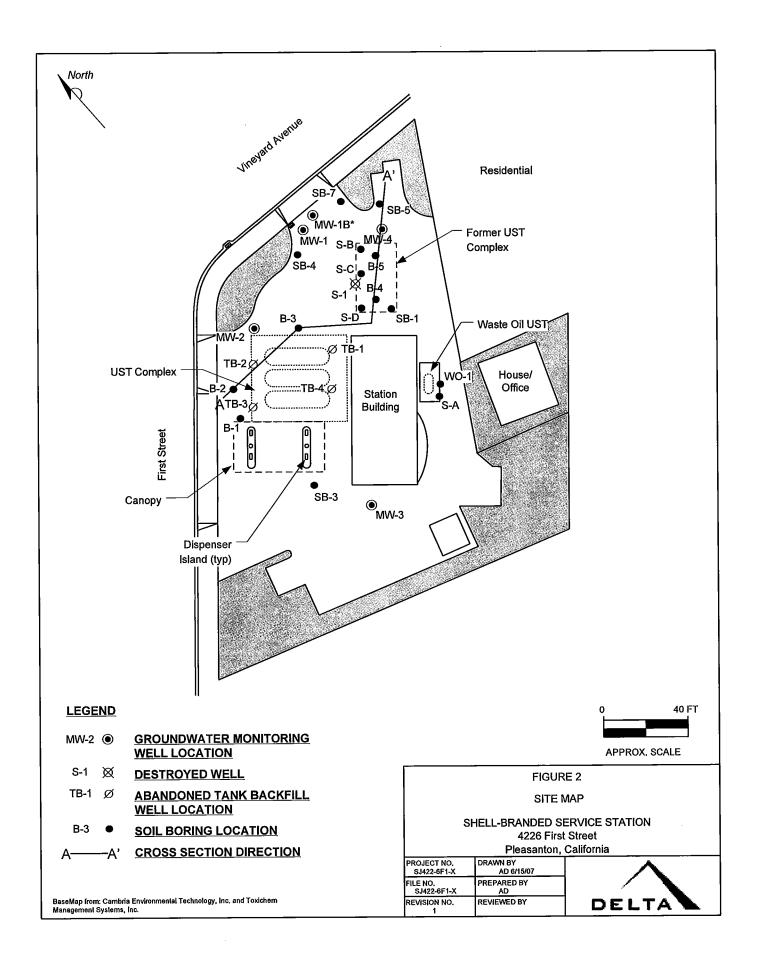

Attachment A – DPE Work Plan and Letter of Correspondence

Attachment B – Boring Logs

Attachment C - Sensitive Receptor, Soil, and Groundwater Data

Attachment D – History of Previous Environmental Activities

Attachment E - Laboratory Analytical Reports



Scale, Feet

QUADRANGLE LOCATION

REVISION NO.

REVIEWED BY

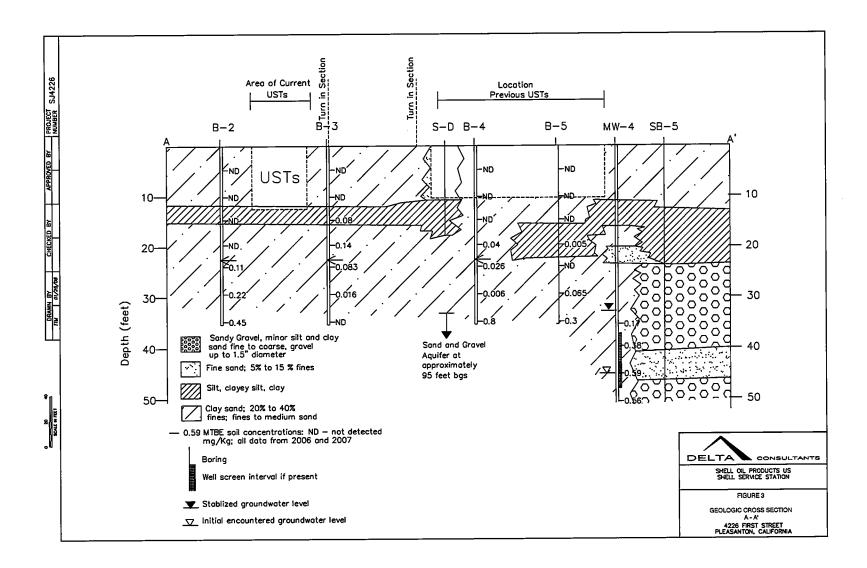


Table 1

DPE Field Measurements for 5-day test on MW-4
Shell Branded Station, 4212 First Street, Pleasanton, CA

Dual Phase Extraction operation (From 1/5/09 13:45 To 1/10/09 8:00)

Direct	1000	Injid Pilovikaa Vilojini	(A)(E)(A)(A)(U)(A) (A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(sindige (EVagulita a Wellhead (Int-so)	A Intelligiverous rations o Verborg ropio (group)	egroedha Groedha Groedha	(Achlour) • Achlour) • Achlour)
1/5/2009	13:45	18	26.50	>150	150	1,269,923	0
1/5/2009	14:00	18	26.50	>150	245	1,269,923	0
1/5/2009	14:15	18	26.50	>150	405	1,269,923	0
1/5/2009	14:30	55	26.50	>150_	670	1,269,961	38
1/5/2009	14:45	55	26,00	>150	972	1,269,961	38
1/5/2009	15:00	55	26.00	>150	1,780	1,269,995	72
1/5/2009	15:15	50	25.50	>150	2,030	1,269,995	72
1/5/2009	15;30	50	26.50	>150	2,750	1,269,995	_72
1/5/2009	16:00	55	26.00	>150	3,160	1,270,026	103
1/5/2009	18:00	50	26.00	>150	3,890	1,270,127	204
1/5/2009	19:00	50	26.00	>150	4,030	1,270,160	237
1/5/2009	21:00	50	26	>150	4,050	1,270,268	345
1/6/2009	1:00	55	26.5	>150	4,120	1,270,303_	380
1/6/2009	5:00	55	26.5	>150	4,030	1,270,434	511
1/6/2009	9:00	58	26.5	>150	4,100	1,270,572	649
1/6/2009	12:00	58	26.75	>150	9,010	1,270,572	649
1/6/2009	16:00	55	26	>150	4,130	1,270,761	838
1/6/2009	20:00	58	26	>150	4,280	1,270,856	933
1/7/2009	0:00	58	26	>150	4,120	1,270,973	1,050
1/7/2009	4:00	58	26	>150	3,430	1,271,094	1,171
1/7/2009	8:00	58	25,5	>150	3,790	1,271,170	1,247
1/7/2009	12:00	55	25.5	>150	3,680	1,271,263	1,340
1/7/2009	16:00	50	26.5	>150	3,670	1,271,356	1,433
1/7/2009	20:00	55	26.5	>150	3,210	1,271,442	1,519
1/8/2009	0:00	55	26	>150	3,060	1,271,526	1,603
1/8/2009	4:00	60	25.5	>150	2,990	1,271,612	1,689
1/8/2009	8:00	60	26.5	>150	2,960	1,271,700	1,777
1/8/2009	12:00	60	26	>150	2,960	1,271,762	1,839
1/8/2009	16:00	60	26	>150	2,940	1,271,848	1,925
1/8/2009	20:00	60	25.5	>150	2,930	1,271,936	2,013
1/9/2009	0:00	60	25.5	>150	2,890	1,272,022	2,099
1/9/2009	4:00	60	26	>150	2,890	1,272,116	2,193
1/9/2009	8:00	60	25.75	>150	2,920	1,272,200	2,277
1/9/2009	12:00	_60	26	>150	2,810	1,272,263	2,340
1/9/2009	16:00	60	26	>150	2,830	1,272,353	2,430
1/9/2009	20:00	65	26	>150	2,810	1,272,475	2,552
1/10/2009	0:00	68	26	>150	2,750	1,272,543	2,620
1/10/2009	4:00	75	26	>150	2,650	1,272,600	2,677
1/10/2009	8:00	70	26	>150	2,610	1,272,664	2,741

Abbreviations: cfm = Cubic feet per minute inH2O = Inches of water ppm = Parts per million

Table 2 Groundwater Parameter Data in Observation Wells for 5-day test on MW-4 Shell Branded Stallon, 4212 First Street, Pleasanton, CA

Dual Phase Extraction operation (From 1/5/09 13:45 to 1/10/2008 8:00)

Well	lbate	Time	14, 15 18, 17, 10	(166 ((16/6m)):	riminally (E(0)	joō (malis)	((C))	ORP	-tiv	composits
MW-1	1/5/09	11:55	6.2	0.16	NA	NA	16.3	NA NA	41.4	Before Test Sample Taken
Mw-1	1/5/09	14:15	6.3	0.16	19	8.6	16.0	87	38.4	
MW-1	1/5/09	_14:35	6.5	0	45	8.2	17.8	41	38.74	· _ · _ · _ · _ · _ · _ · _ · _ · _ · _
MW-1	1/5/09	14:48	6.5	0.16	94	_8.2	17.8	48	38.88	
MW-1	1/5/09	15:02	6.7	0.16	83	8.6	17.7	49	38,69	
MW-1	1/5/09	15:17	6.5	0,15	57	8.5	17.9	48	38.69	
MW-1	1/5/09	15:32	6.7	0.16	45	8.7	16.9	44	38.61	
MW-1	1/5/09	15:46	6.7	0.16	36	8.3	17.9	45	38,65	
MW-1_	1/5/09	16:03	6.6	0.16	32	8.2	17.8	43	38.75	
MW-1	1/5/09	18:12	6.8	0.16	10	8.3	17.5	142	38.76	
MW-1	1/5/09	19:00	7.0	0.16	14	8.3	17.6	138	38.82	
MW-1	1/5/09	21:00	6.9	0.16	10	8.2	17.4	145	38.84 38.84	
MW-1	1/6/09	1:00	7.1 6.8	0.17	13 180	8.3 11.7	17. <u>0</u> 17.5	139 196	38.98	
MW-1	1/6/09	5:00 12:00	7.3	0.16	6	9.5	17.2	205	36.47	
MW-1	1/6/09	16:00	7.8	0.17	3	11.5	15.2	181	36,45	
MW-1	1/6/09	20:00	7.9	0.16	8	10.1	15.7	170	36.75	
MW-1	1/7/09	0:00	7.8	0.17	8	9.8	15.2	165	36.88	
MW-1	1/7/09	4:00	7.8	0.16	8	9,9	15.0	162	37.01	
MW-1	1/7/09	7:30	7.1	0.15	9	9.2	15.7	214	36.83	Mid- Test Sample Taken
MW-1	1/7/09	12:00	7.2	0.17	_2	10.2	14.7	165	37.22	
MW-1	1/7/09	16:00	7.2	0.16	5	9.6	16.8	136	37.41	
MW-1	1/7/09	20:00	7.1	0.16	5	9.4	15.4	140	37.41	
MW-1_	1/8/09	0:00	7.2	0.17	3	9.8	15.8	176	37.42	
MW-1	1/8/09	4:00_	7.0	0,17	1	10.8	16.2	210	37.42	
MW-1	1/8/09	8:00	7.0	0.17	2	10.4	17.3	237	37.43	
MW-1	1/8/09	12:00	6.9	0.17	3	9.8	17.1	232	37.45	
MW-1	1/8/09	16:00	6.9	0.16	2	10.2	17	202	37.47	
MW-1	1/8/09	20:00	7.0	0.16	1	10.1	16.8	198	37.50	
MW-1	1/9/09	0:00	7.2	0.17	3	9.8	16.8	198	37.50	
MW-1	1/9/09	4:00	6.9	0	15	10.2	11.5	210	37.74	
MW-1	1/9/09	8:00	7.6	0	45	13.6	10.5	222	37.90	
MW-1_	1/9/09	12:00	7.7	0.17	3	11.3	19.4	180	37.98	
MVV-1	1/9/09	16:00	7.6	0.17	2	11.1	19.2	176	38.02	
MW-1	1/9/09	20:00	7.6	0.17	2	11,1	19.1	174	38,08	
MW-1	1/10/09	0:00	7.6	0.17	2	11.1	19	170	38.11	
MW-1	1/10/09	4:00	7.4	0.17	2	11.1	18.9	164	38.15	
MW-1	1/10/09	8:00	8.1	0.17	4	11.5	13.8	233	38.48	<u></u>
 	Τ			<u> </u>		1		<u> </u>	00.40	Defeat Tool Coursels Tales
MW-2	1/5/09	13:05	6.4	0.11	NA _	NA 0.0	15.8	NA 400	38.13	Before Test Sample Taken
MW-2	1/5/09	14:23	6.5	0	69	8.3	17.4	102	38.80	-
MW-2	1/5/09	14:38	6.5	0.1	61	7.9	18.5	64	37.96	
MW-2	1/5/09	14:52	6.5	97	54	8.1	18.6	55	37.95	
MW-2	1/5/09	15:07	6.7	1	60	8.7	17.9	46	38.02	
MW-2	1/5/09	15:21	6.7	0,1	50	8.2	18.3	59	37.99	<u> </u>

Table 2 Groundwater Parameter Data in Observation Wells for 5-day test on MW-4 Shell Branded Station, 4212 First Street, Pleasanton, CA

Dual Phase Extraction operation (From 1/5/09 13:45 to 1/10/2008 8:00)

Wall	DATE	Time	dan k	EG (valen)		(0.017) (0.00)	JONE JONE	ÖRF	FJAV	gombedia.
MW-2	1/5/09	15:36	6.9	0.11	48	8.3	17.8	57	38.02	
MW-2	1/5/09	15:51	6.9	0	46	8.2	17.8	48	38.05	
MW-2	1/5/09	16:09	6.9	0.11	51	8.3	17.9	62	38.2	
MW-2	1/5/09	18:10	6,9	0.9	26	9.2	17.3	136	38.15	
MW-2	1/5/09	19:05	6.9	0.11	28	9.6	17.2	138	38.15	
MW-2	1/5/09	21:00	6.9	0.12	24	9.2	17.4	135	38.15	
MW-2	1/6/09	1:00	6.9	0.11	26	9,0	17.2	140	38.18	
MW-2	1/6/09	5:00	6.9	0.11	21	9.3	17.6	155	38.18	
MW-2	1/6/09	12:00	6.9	0.13	24	8.9	18.7	202	36.02	
MW-2	1/6/09	16:00	6.5	0.12	17	11.2	15.6	188	35.72	
MW-2	1/6/09	20:00	6.5	0.11	13	9,4	17.2	172	35.75	
MW-2	1/7/09	0:00	6.5	0.12	15	11.1	16.8	170	35.78	
MW-2	1/7/09	4:00	6.5	0.11	17	11.1	17.1	171	35,81	
MW-2	1/7/09	7:50	6.6	0.1	6	8.6	16.1	214	35.15	Mid- Test Sample Taken
MW-2	1/7/09	12:00	6.7	0.11	4	9.6	16.1	162	35.19	
MW-2	1/7/09	16:00	6.9	0.11	6	9.1	17.7	140	35,22	
MW-2	1/7/09	20:00	6.9	0,1	4	10.3	17.4	152	35.39	
MW-2	1/8/09	0:00	6.7	0.11	8	9.6	17.8	159	35.48	
_MW-2	1/8/09	4:00	6.9	5	6	9,8	18.1	` 199	35.54	
MW-2	1/8/09	8:00	6.6	1	5	10.0	18.1	2632	35.6	
MW-2	1/8/09	12:00	6.9	2	3	9.8	17.9	215	35.62	
MW-2	1/8/09	16:00	6.9	0.11	7	10.2	17.8	220	35.62	
MW-2	1/8/09	20:00	6.9	0.1	5	9.8	17.5	202	35.63	
MW-2	1/9/09	0:00	6.8	0.11	8	9.8	18	198	35.63	
MW-2	1/9/09	4:00_	7	0.11	3	9.9	17.9	165	35.65	
MW-2	1/9/09	8:00	7.6	0.9	4	10.8	16.5	233	35,78	
MW-2	1/9/09	12:00	7.3	0.12	4	11.3	19.5	185	35.8	
MW-2	1/9/09	16:00	7,2	0.11	3	11.1	19.1	168	35.87	
MW-2	1/9/09	20:00	7.1	0.11	3	11.1	18.9	170	35.93	
MW-2	1/10/09	0:00	7.2	0.11	2	10.1	18.8	174	35.97	
MW-2	1/10/09	4:00	7.1	0.11	3	10.1	18.8	172	34.01	
MW-2	1/10/09	8:00	6,9	0.11	5	10.8	15.3	234	33.6	
	ι	т-					T		<u> </u>	I
MW-3	1/5/09	13:25	6.5	0	NA NA	NA	16	NA NA	33,20	
MW-3	1/5/09	14:28	6.2	_0	170	8.3	17.6	78	33.18	
MW-3	1/5/09	14:43	6.4	75	28	8,1	18.2	34	33.25	
MW-3	1/5/09	14:56	6.6	77	38	8.3	18.5	36	33.30	
MW-3	1/5/09	15:11	6.7	78	30	8.4	18,1	39	33,35	-
MW-3	1/5/09	_15:25	6.4	.0	23	8.4	18.1	60	33,45	-
MW-3	1/5/09	15:41	6.8	77	20	8.3	17.9	58	33.40	
MW-3	1/5/09	15:57	6.7	78	24	8,5	17.2	41	33.49	
MW-3	1/5/09	16:14	7.0	0	29	8.9	16.5	35	33.52	
MW-3	1/5/09	18:20	7.2	79	18	9.2	17.9	81	33.65	
MW-3	1/5/09	19:12	7.4	79	22	9.0	17.4	78	33.78	·
MW-3	1/5/09	21:00	7.2	78	18	9.2	17.0	82	33,80	

Table 2 Groundwater Parameter Data in Observation Wells for 5-day test on MW-4 Shell Branded Station, 4212 First Street, Pleasanton, CA

Dual Phase Extraction operation (From 1/5/09 13:45 to 1/10/2008 8:00)

Well	Date	Time	BIR	#6 (us/om)	Tuesididy (NTU)	(mg/0)	a Temp	ÖR F	, john v	Comments
MW-3	1/6/09	1:00	7.0	80	20	8.8	17.2	94	33.82	
MW-3	1/6/09	5:00	6.9	79	22	8.9	17.1	154	33.82	
MW-3	1/6/09	12:00	6.9	81	20	8.8	19.0	168	33.62	
MW-3	1/6/09	16:00	6.8	81	18	10.3	17.0_	174	33,60	
MW-3	1/6/09	20:00	6.6	81	35	9.2	17.8	_161	33.70	
MW-3	1/7/09	0:00	6,8	81	22	10.1	17.4	158	33.75	
MW-3	1/7/09	4:00	6.9	80	28	10.3	17.0	161	33.82	_
MW-3	1/7/09	8:20	7.1	0	30	8.9	16.0	178	33.64	
MW-3	1/7/09	12:00	6.8	88	36	9.2	17.2	81	33.90	
MW-3	1/7/09	16:00	6.9	0	31	10.4	15.0	3	33.94	
MW-3	1/7/09	20:00	6.7	0	34	9,9	15.3	198	33.95	
MW-3	1/8/09	0:00	6.8	88	29	10.1	16.4	163	33.97	
MW-3	1/8/09	4:00	6.8	88	29	10.1	16.4	163	33.97	
MW-3	1/8/09	8:00	6.5	0.11	21	9.7	18.3	98	_34.01	
MW-3	1/8/09	12:00	6.8	0.11	26	10.1	17.8	104	34.09	
MW-3	1/8/09	16:00	6.8	0.11	_26	10.1	17.6	100	34.10	
WAN-3	1/8/09	20:00	6.5	0.10	24	9.8	17.9	98	34.10	_
MW-3	1/9/09	0:00	6.8	0.11	26	9.9	16.8	152	34.1 <u>1</u>	
MW-3	1/9/09	4:00	6.9	0.11	26	9,8	17.1	101	34.15	
MW-3	1/9/09	8:20	6.9	0.11	26	10.1	17.9	171	33.90	
MW-3	1/9/09	12:00	6.8	0.11	32	11.5	18.9	128	33.92	
MW-3	1/9/09	16:00	6.9	0.10	30	10.1	17.9	125	33.88	
WW-3	1/9/09	20:00	6.8	0.11	28	10.0	17.6	128	33.88	
MW-3	1/9/09	0:00	6,8	0.10	28	10.2	17.8	129	33.90	·-
MW-3	1/9/09	4:00	6.8	0.11	28	10.3	17.8	135	33,90	
MW-3	1/9/09	8:00	6.8	0.11	17	10.2	16.4	150	33,90	
									05.00	Defend Total County Talan
MW-4	1/5/09	11:15	5.9	93	NA 170	NA 10.0	16.3	NA NA	35.60	Before Test Sample Taken
MW-4	1/5/09	14:30	6.8	0	170	10.8	12	26	Extraction Well	
MW-4	1/5/09	14:44	6.6	0.11	170	10.1	13.5	17	Extraction Well Extraction Well	
MW-4	1/5/09	14:59 15:12	6.8	97	110	9,6	13.8	13 18	Extraction Well	
MW-4	1/5/09	15:12	6.9	0	200	10.1	13.9	20	Extraction Well	
MW-4	1/5/09	15:42	6.9	95	270	9.9	14	13	Extraction Well	
MW-4	1/5/09	15:59	6.9	95	260	10.0	13.6	19	Extraction Well	
MW-4	1/5/09	16:16	7.2	0	430	10.4	13.2	-3	Extraction Well	
MW-4	1/5/09	18:25	6.6	0	120	12.1	12.3	68	Extraction Well	
MW-4	1/5/09	19:18	6.9	0	135	12.1	12.2	63	Extraction Well	
MW-4	1/5/09	21:00	7.1	0	100	12.1	12.1	72	Extraction Well	
MW-4	1/6/09	1:00	7.0	0	87	11.9	12.2	86	Extraction Well	
MW-4	1/6/09	5:00	7.0	0	15	11.9	11.9	186	Extraction Well	
MW-4	1/6/09	12:00	7.6	. 0	100	10.7	14.5	185	Extraction Well	
MW-4	1/6/09	16:00	7.4	0	62	11.7	15.6	162	Extraction Well	
MW-4	1/6/09	20:00	7.4	. 1	110	12.4	11.8	151	Extraction Well	
MW-4	1/7/09	0:00	7.6	0	111	12.1	12,2	153	Extraction Well	

Table 2 Groundwater Parameter Data in Observation Wells for 5-day test on MW-4 Shell Branded Station, 4212 First Street, Pleasanton, CA

Dual Phase Extraction operation (From 1/5/09 13:45 to 1/10/2008 8:00)

W.II	Dite	Time.		(05/616)).		D0 (mg/L)	Tompa. Po	QRF		Commonts
MW-4	1/7/09	4:00	7.4	0	106	11.7	12.1	149	Extraction Well	
MW-4	1/7/09	8:50	7.5	0	110	10.3	13.2	99	Extraction Well	Mid- Test Sample Taken
MW-4	1/7/09	12:00	7.0	88	110	9.6	16.2	10	Extraction Well	
MW-4	1/7/09	16:00	6.9	0	74	10.3	14.8	8	Extraction Well	
MW-4	1/7/09	20:00	7.2	0	83	11.1	14.4	46	Extraction Well	
MW-4	1/7/09	0:00	7.2	92	72	12.1	14.4	88	Extraction Well	
MW-4	1/8/09	4:00	7.0	88	66	11.8	13.9	156	Extraction Well	
MW-4	1/8/09	8:00	7.2	95	40	12.3	13.4	236	Extraction Well	
MW-4	1/8/09	12:00	7.4	0,11	470	10.0	22.3	162	Extraction Well	
MW-4	1/8/09	16:00	7.2	99	68	11.8	22.1	161	Extraction Well	-
MW-4	1/8/09	20:00	7.2	0.1	72	11.1	10.8	154	Extraction Well	
MW-4	1/8/09	0:00	7.0	0.11	102	10,8	15.2	156	Extraction Well	
MW-4	1/9/09	4:00	6.9	99	74	11.5	10.8	152	Extraction Well	-
MW-4	1/9/09	8:00	7.6	0	45	13.6	10.5	222	Extraction Well	
MW-4	1/9/09	12:00	7.9	0	29	11.3	19.9	177	Extraction Well	
MW-4	1/9/09	16:00	7.2	0	26	10.1	18,9	172	Extraction Well	
MW-4	1/9/09	20:00	7.1	0	26	10.1	18,9	172	Extraction Well	
MW-4	1/9/09	0:00	7.2	0	28	11.1	18.6	176	Extraction Well	
MW-4	1/10/09	4:00	7.2	0	28	11,1	18.6	176	Extraction Well	
MW-4	1/10/09	8:00	7.1	_ 1	24	15.1	8.4	-2	Extraction Well	

Abbreviations:
EC = Electrical conductivity
uS/cm = micro Slemens per centimeter
NTU = Nephelometric turbidity units
DO = Dissolved oxygen
mg/L = Milligrams per liter
Temp = Temperature
C = Celsius
QRP = Oxygen reduction potential
DTW = Depth to water

Table 3

DPE Field Measurements for 8-hour test on MW-1

Shell Branded Station, 4212 First Street, Pleasanton, CA

Dual Phase Extraction operation (From 1/13/2009 9:00 To 1/13/2009 13:00)

		Marcon a	Unio VACIJI cile Versi secul() V (Cile) Seculosi (O) Secul	alityro e ky suitum A navellin velik	alphanes di accidenti Vappi (1766)	i o diraka Mareniaka Melinaka	and the Albertain
							
1/13/2009	9:00	68	26.50	<150	25	1,272,690	0
1/13/2009	9:15	68	26.50	<150	41	1,272,690	0
1/13/2009	9:30	68	26.50	<150	35	1,272,690	0
1/13/2009	9:45	60	26.00	<150	30	1,272,690	0
1/13/2009	10:00	_60	26.00	<150	48	1,272,690	0
1/13/2009	10:15	68	26.00	<150	53	1,272,690	0
1/13/2009	10:30	70	25.50	<150	53	1,272,690	0
1/13/2009	10:45	68	25.50	<150	41	1,272,690	0
1/13/2009	11:00	68	25.50	<150	50	1,272,690	0
1/13/2009	12:00	68	25.50	<150	25	1,272,690	0
1/13/2009	13:00	68	25.50	<150	27	1,272,690	0

Abbreviations: cfm = Cubic feet per minute inH2O = Inches of water ppm = Parts per million

Table 4
Groundwater Parameter Data in Observation Wells for 8- hour test on MW-1
Shell Branded Station, 4212 First Street, Pleasanton, CA

Dual Phase Extraction operation (From 1/12/2009 10:00 To 1/12/2009 14:00)

Well :				- E	Turodika (Oliv)	(ng(l))	Temp.	ÖRÐ	Willd
23.41.25.24.000			6.9	0	140	10.6	14.1	158	Extraction Well
MW-1	1/12/09	9:50	6.7	0.11	130	10.5	20.3	128	Extraction Well
MW-1	1/12/09	10:25	6.9	0.11	190	10.2	20.2	116	Extraction Well
MW-1	1/12/09	10:40		94	170	8.9	20.5	90	Extraction Well
MW-1	1/12/09	11:10	6.6	0.1	170	10	21	103	Extraction Well
MW-1	1/12/09	11:27	6.7	94	160	9.6	21.2	97	Extraction Well
MW-1	1/12/09	11:44			160	9.9	21.1	116	Extraction Well
MW-1	1/12/09	12:07	7.2	94 0	150	9.1	23.2	121	Extraction Well
MW-1	1/12/09	13:13	7.2			9.3	24.8	90	Extraction Well
MW-1	1/12/09	14:30	7.3	0	120	1 9.3		1 90	<u>LXII action vveii</u>
MW 0	1/12/00	0:20	7.3	0	52	11.1	17.7	209	38.46
MW-2	1/12/09	9:20	6.6	93	47	10.2	20.1	122	38.15
MW-2	1/12/09	10:34		0	130	10.4	19.9	124	38.27
MW-2	1/12/09	10:40	6.6	0.1	45	10.4	20	97	38.52
MW-2	1/12/09	11:07	6.4		34	10.3	20.5	98	38.75
MW-2	1/12/09	11:26	6.7	0.11		-		99	38.81
MW-2	1/12/09	11:43	6.9	0.11	29	10	200.5	81	38,95
MW-2	1/12/09	12:22	6.4	0.1	33	10.1	20		39.05
MW-2	1/12/09	13:18	6.3	0.1	30	10	20	126	39.08
MW-2	1/12/09	14:05	7.5	0.12	14	10.2	20.8	126	39.06
	T	14.54		1		NA*	NA*	N/A*	24.04
MVV-3	1/12/09	11:51	NA*	NA*	NA*	NA*	NA*	NA*	34.04
MW-3	1/12/09	13:20	NA*	NA*	NA*	NA*	NA*	NA*	34.09
MVV-3	1/12/09	14:35	NA*	NA*	NA*	NA*	NA*	NA*	34.14
	T			<u> </u>		12.5	40.4	000	20.40
MW-4	1/12/09	9:20	6.9	84	240	10.9	18.1	220	38.43
MW-4	1/12/09	10:17	6.7	85	160	10.5	19.6	142	37.69
MW-4	1/12/09	10:37	6.7	85	170	10.6	19.8	106	37.75

Table 4
Groundwater Parameter Data in Observation Wells for 8- hour test on MW-1
Shell Branded Station, 4212 First Street, Pleasanton, CA

Dual Phase Extraction operation (From 1/12/2009 10:00 To 1/12/2009 14:00)

-Weil	Dato	Time	pH	EC (US/org)	Turkieldy (SPU)	-[D6] -((mg/l-))	Tempe ((0)	GRP.	DITW.
MW-4	1/12/09	10:50	6.5	0	170	10.2	19.7	93	37.85
MVV-4	1/12/09	11:18	7.0	85	200	10.4	20.2	100	37.71
MW-4	1/12/09	11:38	6.9	0	120	10.2	19.8	106	37.77
MW-4	1/12/09	12:14	6.7	0 _	130	10.1	20.0	101	37.66
MW-4	1/12/09	13:07	7.1	0	150	9.3	22.7	132	37.48
MW-4	1/12/09	14:1 <u>5</u>	7.3	86	150	10.2	21.6	132	37.44

Abbreviations:

EC = Electrical conductivity
uS/cm = micro Siemens per centimeter
NTU = Nephelometric turbidity units
DO = Dissolved oxygen
mg/L = Milligrams per liter
Temp = Temperature
C = Celsius
ORP = Oxygen reduction potential
DTW = Depth to water

Notes:

^{*} Insufficient water for sample in MW-3

Table 5

DPE Field Measurements for 8-hour test on MW-2
Shell Branded Station, 4212 First Street, Pleasanton, CA

Dual Phase Extraction operation (From 1/13/09 9:00 To 1/13/09 13:00)

			inie Applied Vaevum (system) (milio)	vaniona VAT tallani Le altra illinoide Le altra illinoide	elijti Pateloje ipolija Zavi pomonita sev Zavi ((195))	Reculify (Callons)	alogal Volumes OW ERFR cred (bellons)
1/13/2009	9:00	85	24.00	75	25	1,272,728	0
1/13/2009	9:15	80	25.25	75	50	1,272,728	0
1/13/2009	9:30	120	23.50	75	78	1,272,735	7
1/13/2009	9:45	122	23.50	75	89	1,272,735	7
1/13/2009	10:00	122	23.50	75	82	1,272,73 <u>5</u>	7
1/13/2009	10:15	122	23.50	75	84	1,272,735	7
1/13/2009	10:30	122	24.00	75	85	1,272,735	7
1/13/2009	10:45	122	24.00	75	85	1,272,735	7
1/13/2009	11:00	125	24.00	75	112	1,272,735	7
1/13/2009	12:00	125	24.00	75	113	1,272,735	7
1/13/2009	13:00	125	24.00	75	121_	1,272,735	7

Abbreviations: cfm = Cubic feet per minute inH2O = Inches of water ppm = Parts per million

Table 6
Groundwater Parameter Data in Observation Wells for 8- hour test on MW-2
Shell Branded Station, 4212 First Street, Pleasanton, CA

Dual Phase Extraction operation (From 1/13/2009 9:00 To 1/13/2009 13:00)

Wall	D110	Illime .		(USIGN)	Turbidity.	jp10/s 	(20)	orp.	Diw.
MW-1	1/13/09	9:00	7.2	0.17	29	10.8	15.8	213	39.71
MW-1	1/13/09	9:15	6.6	0.16	350	10.7	17.7	199	40.09
MW-1	1/13/09	9:30	6.6	0	560	10.8	18.3	16 <u>4</u>	40.31
MW-1	1/13/09	9:45	6.6	0	0	10.9	18.4	144	40.45
MVV-1	1/13/09	10:00	6.6	0.16	630	10.6	19.1	151	40.61
MVV-1	1/13/09	10:15	6.6	o	680	10.9	19.6	128	40.85
MVV-1	1/13/09	10:30	6.6	0.17	440	11.1	20.1	122	40.8
MVV-1	1/13/09	10:45	6.7	0.18	550	11.5	19.5	120	40.75
MVV-1	1/13/09	11:20	6.6	0	360	11.4	18.5	138	40.61
MVV-1	1/13/09	12:00	6.7	_ 0	360	10.8	20	150	40.34
MW-1	1/13/09	13:00	7.2	0.18	360	10.3	21.7	141	40.15
MW-2	1/13/09	9:00	6.8	0	9	11.2	15.3	206	36.96
MW-2	1/13/09	9:15	7	0 _	560	13.2	13.7	170	Extraction Well
MW-2	1/13/09	9:30	6.6	0.12	81	12.6	15.1	155	Extraction Well
MW-2	1/13/09	9:45	6.4	0	73	10.3	14.8	128	Extraction Well
MW-2	1/13/09	10:00	6.9	0	36	11.9	16.7	121	Extraction Well
MW-2	1/13/09	10:15	6.8	0.12	69	11.5	18.4	122	Extraction Well
MW-2	1/13/09	10:30	6.7	1	60	11.9	19.1	111	Extraction Well
MW-2	1/13/09	10:45	6.4	1	55	11.7	18.5	80	Extraction Well
MW-2	1/13/09	11:25	6.8	0.12	76	11.2	18.8	138	Extraction Well
MW-2	1/13/09	12:00	6.6	0	50	10.3	21	153	Extraction Well
MW-2	1/13/09	13:00	6.8	0.13	46	8.4	26.2	141	Extraction Well
MW-3	1/13/09	9:45	NA*						33.96
MW-3	1/13/09	13:30							33.95

Table 6 Groundwater Parameter Data in Observation Wells for 8- hour test on MW-2 Shell Branded Station, 4212 First Street, Pleasanton, CA

Dual Phase Extraction operation (From 1/13/2009 9:00 To 1/13/2009 13:00)

Well	Dite	, linto:	144	166 (((S/o)1))				OTH	
MVV-4	1/13/09	9:00	6.9	1	26	10.6	16.3	206	36.87
MW-4	1/13/09	9:15	6.5	87	74	10.3	18.8	192	36.96
MW-4	1/13/09	9:30	6.6	99	68	10.2	19.4	157	37.01
MVV-4	1/13/09	9:45	6.5	0	110	10.4	19.4	139	37.15
MW-4	1/13/09	10:00	6.7	87	120	10.2	19.0	123	37.11
MW-4	1/13/09	10:15	6.7	89	120	10.8	19.7	124	37.11
MW-4	1/13/09	10:30	6.6	1	110	11.3	20.2	116	37.05
MW-4	1/13/09	10:45	6.8	84	74	11.3	19.7	114	37.05
MW-4	1/13/09	11:15	6.8	0.9	54	11.3	18.4	137	36.95
MW-4	1/13/09	12:00	6.7	90	62 _	10.6	20.3	146	36.85
MW-4	1/13/09	13:00	7.0	11	67	10.9	20.3	135	36.87

Abbreviations:

FC = Electrical conductivity
uS/cm = micro Siemens per centimeter
NTU = Nephelometric turbidity units DO = Dissolved oxygen mg/L = Milligrams per liter Temp = Temperature C = Celsius
ORP = Oxygen reduction potential
DTW = Depth to water

Notes: * insufficient water for sample in MW-3

Table 7
Groundwater and Vapor Analytical Results from All Tests

Shell Branded Station, 4212 First Street, Pleasanton, CA

GROUNDWATER SAMPLES															
Well	Test (:				A DESCRIPTION OF THE PROPERTY		19735 1988 1987	1.75 E	121 1318 1 2 3 1 2					
MW-1	5-day (MW-4)	Pre-Test	2,400	26	<25	<25	<25	2,700	<50	<50	<50	930	< 2500	83 <10	<25 <20
MW-2	5-day (MW-4)	Pre-Test	2,000	<10	<20	<20	<20	2,300	<40 <2.0	<40 <2.0	<40 <2.0	480 <10	<2000 <100	<0.50	<20 <1.0
MVV-3	5-day (MW-4) 5-day (MW-4)	Pre-Test Pre-Test	<50 13,000	<0.50 <50	<1.0 <100	<1.0 <100	<1.0 <100	1.6 16,000	<200	<200	<200	3,800	<10000	<50	<100
MW-4	5-day (IVIVV-4)	rie-rest	13,000												-4.0
MW-1	5-day (MW-4)	Mid -Test	2,000	<0.50	<1.0	<1.0	<1.0	3,100	6.1 <2.0	<2.0 <2.0	5.9 4.4	820 55	<100 <100	66 <0.50	<1.0 <1.0
MW-2	5-day (MW-4)	Mid -Test	1,800	<0.50	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	2,900 4,1	<2.0 <2.0	<2.0 <2.0	4.4 <2.0	<10	<100	<0.50	<1.0
MW-3 MW-4	5-day (MW-4) 5-day (MW-4)	Mid -Test Mid -Test	<50 7,000	<0.50 200	4.9	130	280	2,600	<2.0	<2.0	7.8	1,700	<100	<0.50	<1.0
10100-4	5-day (MVV-4)	Mild - I est	7,000			<u> </u>							.500		-15.0
MW-1	5-day (MW-4)	Post-Test	1,500	<2.5	<5.0	<5.0	<5.0	1,300	<10	<10	<10 2.5	130 23	<500 120	36 <0.50	<5.0 <1.0
MW-2	5-day (MW-4)	Post-Test	1,200	< 0.5	<1.0	<1.0	<1.0 <1.0	1,300 5.1	<2.0 <2.0	<2.0 <2.0	2.5 <2.0	23 <10	190	<0.50	<1.0
MW-3	5-day (MW-4) 5-day (MW-4)	Post-Test Post-Test	<50 10,000	<0.50 370	<1.0 <10	<1.0 160	430	2,000	<20	<20	<20	2,100	<1000	<10	<5.0
MW-4	5-uay (MVV-4)	rusi-resi											.1000	200	-110
MW-1	8 hr (MW-1)	Pre-Test	3,100	46	<10	<10	<10	2,400	<20	<20	<20	720		220 <2.5	<10 <5.0
MW-2	8 hr (MW-1)	Pre-Test	2,100	<2.5	<5.0	<5.0	<5.0	2,000	<10 NS	<10 NS	<10 NS	<50 NS	<500 NS	\2.5 NS	NS
MW-3	8 hr (MW-1)	Pre-Test	NS 18,000	NS <50	NS <100	NS <100	NS <100	NS 15.000	<200	<200	<200	1,500	<10000	<50	<100
MW-4	8 hr (MW-1)	Pre-Test	10,000		100										
MW-1	8 hr (MW-1)	Mid-Test	5,500	61	<25	<25	77	4,000	<50	<50	<50	720		<12	<25
MW-2	8 hr (MW-1)	Mid-Test	2,600	<10	<20	<20	<20	2,500	<40	<40 NS	<40 NS	<200 NS	<2000 NS	<10 NS	<20 NS
MW-3	8 hr (MW-1)	Mid-Test	NS 47 000	NS 550	NS <100	NS <100	NS <100	NS 16,000	NS <200	<200	<200	1,700		<50	<100
MW-4	8 hr (MW-1)	Mid-Test	17,000	<50	<u><100</u>			10,000		1200					
MW-1	8 hr (MW-1)	Post-Test	6,200	92	<25	27	<100	3,700	<50	<50	<50	660		<12	<25
MW-2	8 hr (MW-1)	Post-Test	3,100	<5.0	<10	<10	<10	2,400	<20	<20	<20	<100		<5.0	<10 NS
MW-3	8 hr (MW-1)	Post-Test	NS	NS 105	NS 150	NS 450	NS <50	NS 43 000	NS <100	NS <100	NS <100	NS 1,300		NS <25	143 <50
MVV-4	8 hr (MW-1)	Post-Test	17,0 <u>00</u>	<25	<50	<50	V50	13,000			~100	1,000		-20	
MVV-1	8 hr (MW-2)	Pre-Test	3,600	<10	<20	<20	<20	2,600	<40	<40	<40	1,000		96	<20
MW-2	8 hr (MW-2)	Pre-Test	3,300	<10	<20	<20	<20	2,700	<40	<40	<40	<200		<10	<20
MW-3	8 hr (MW-2)	Pre-Test	NS	NS	NS	NS	NS	NS	NS	NS	NS 4000	NS		NS <50	NS <100
MW-4	8 hr (MW-2)	Pre-Test	18,000	<50	<100	<100	<100	15,000	<200_	<200	<200	<1000	_ <10000	\30	<u> </u>
MW-1	8 hr (MW-2)	Mid-Test	2,500	<12	<25	<25	<25	2,500	<50	<50	<50	970		140	<25
MW-2	8 hr (MW-2)	Mid-Test	1,300	21	<20	<20	23	850	<40	<40	<40	350		<10	<20
MVV-3	8 hr (MW-2)	Mid-Test	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS			NS 4100
MVV-4	8 hr (MW-2)	Mid-Test	17 <u>,</u> 000	<50	<100	<100	<100	14,000	<200	<200	<200	1,000	<10000	<50	<100
MW-1	8 hr (MW-2)	Post-Test	2,900	<10	<20	<20	<20	2,200	<40	<40	<40	830	<2000	140	<20
MW-2	8 hr (MW-2)	Post-Test	940	6.7	<10	<10	<10	660	<20	<20	<20	250			<10
MVV-3	8 hr (MW-2)	Post-Test	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS			NS
MW-4	8 hr (MW-2)	Post-Test	15,000	<10	<20	<20_	<20	15,00 <u>0</u>	<40	<40	49	1,000	<2000	<10	<20

Table 7 Groundwater and Vapor Analytical Results from All Tests

Shell Branded Station, 4212 First Street, Pleasanton, CA

VAPOR SAMPLES															
MW-4 DPE Influent	5-day (MW-4)	Pre-Test	420	0.1	0.12	<0.05	<0.20	17	NS	NS	NS	<0.2	NS	NS	NS
MW-4 DPE Influent	5-day (MW-4)	Mid-Test	4,900	19	1.6	12	16	23	NS	NS	NS	2.7	NS	NS	NS
MW-4 DPE Influent	5-day (MW-4)	Post-Test	3,600 a	22 a	3.1 a	22 a	38 a	24 a	24 a	NS	NS	<2.0 a	NS	NS	NS
MW-1 DPE Influent	8-hr (MW-1)	Pre-Test	73	0.079	0.0067	0.15	0.32	0.5	NS	NS	NS	0.08	NS	NS	NS
MW-1 DPE Influent	8-hr (MW-1)	Mid-Test	31	0.03	0.0051	0.067	0.17	0.19	NS	NS	NS	0.043	NS	NS	NS
MW-1 DPE Influent	8-hr (MW-1)	Post-Test	22	0.031	0.0059	0.066	0.16	0.2	NS	NS	NS	0.056	NS	NS	NS
MW-2 DPE Influent	8-hr (MW-2)	Pre-Test	21	0.019	0.085	0.051	0.12	0.92	NS	NS	NS	<0.010	NS	NS	NS
MW-2 DPE Influent	8-hr (MW-2)	Mid-Test	91	0.019	0.012	0.052	0.16	7.4	NS	NS	NS	<0.040	NS	NS	NS
MW-2 DPE Influent	8-hr (MW-2)	Post-Test	120	0.016	<0.012	0.053	0.16	8.1	NS	NS	NS	<0.050	NS	NS	NS

Abbreviations:

TPPH = Total purgeable petroleum hydrocarbons as gasoline

B = Benzene

T = Toluene

E = Ethylbenzene

X = Total xylenes

MTBE = Methyl tert-butyl ether by EPA Method 8260

DIPE = Diisopropyl ether

ETBE = Ethyl tert-butyl ether

TAME = Tert-amyl methyl ether

TBA = Tert-butyl alcohol

1,2-DCA = 1,2-dichloroethane

EDB = Ethylene dibromide

ug/L = Micrograms per liter

< = Denotes no reported concentrations above shown detection limit

NS = Not sampled

ppm = Parts per million

Notes

BTEX, MTBE, and TBA air sample results reported in parts per billion(ppb). Analytical Results converted to parts per million, formula: ppb*10^-3 = ppm a = Sample Received After Recommended Hold Time

Table 8 Hydrocarbon Mass Removal from Vapor and Groundwater

Shell Branded Station, 4212 First Street, Pleasanton, CA

VAPOR MASS RECOVERY										
Tes		Torona Torona Torona		Ministration Occupant a four Annual Common Common		Property and the second	Tota Indindiano Tass Removed in Venerille			
5-Day Test (MW-4)	110.25	55	420	4,900	3,600	2,973	285.6			
8-hr Test (MW-1)	4	67	73	31	22	42	0.18			
8-hr Test (MW-2)	4	115	21	91	120	77	0.56			

GROUNDWATER MASS RECOVERY											
5-Day Test (MW-4)	110.25	2,741	13,000	7,000	10,000	10,000	0.23				
8-hr Test (MW-1)	4	0	3,100	5,500	6,200	4,933	0.00				
8-hr Test (MW-2)	4	7	3,600	2,500	2,900	3,000	0.0002				

TPH-g = Total petroleum hydrocarbons as gasoline

cfm = Cubic feet per minute

ppm = Parts per million

lbs = Pounds

ug/L = Micrograms per liter

System Flow is noted as average airflow through DPE unit during test period

Vapor Mass Calculation: (Flow(ft^3/min) *(60min/hr)*Operating Hours)*(Avg. Concentration)*(10^-6 ppmv/v)*(0.264, which is vapor density) Groundwater Mass Calculation: (total gallons)*(3.78L /gallon)*(Avg. concentration (ug/l))*(10^-9 kg/ug)*(2.205lb/kg)

ATTACHMENT A DPE WORK PLAN AND LETTER OF CORRESPONDENCE

ALAMEDA COUNTY HEALTH CARE SERVICES

AGENCY

DAVID J. KEARS, Agency Director

ENVIRONMENTAL HEALTH SERVICES
ENVIRONMENTAL PROTECTION
1131 Harbor Bay Parkway, Suite 250
Alameda, CA 94502-6577
(510) 567-6700
FAX (510) 337-9336

September 9, 2008

Denis Brown Shell Oll Products US 20945 S. Wilmington Ave. Carson, CA 90810-1039

Douglas and Mary Safreno 1627 Vineyard Avenue Pleasanton, CA 94566-6389

Subject: Fuel Leak Case No. RO0000360 and Geotracker Global ID T0600101259, Shell#13-5782, 4226 First Street, Pleasanton, CA 94566

Dear Mr. Brown and Mr. and Ms. Safreno:

Alameda County Environmental Health (ACEH) staff has reviewed the fuel leak case file for the above-referenced site including the reports entitled, "Dual-Phase Extraction Feasibility Study and Batch Extraction Workplan, Shell-branded Service Station, 4226 First Street, Pleasanton, California," dated March 12, 2008 (Work Plan) and "Second Quarter 2008 Groundwater Monitoring Report, Shell-branded Service Station, 4226 First Street, Pleasanton, California," dated August 13, 2008. Both reports were prepared on Shell's behalf by Delta Environmental Consultants, Inc. Work Plan proposes a 5-day dual-phase extraction (DPE) pilot test and batch groundwater extraction.

The proposal to conduct a DPE pilot test is acceptable; however, we have several technical comments and additions to the proposed methods for the DPE event. The DPE pilot test may be implemented provided that the technical comments below are addressed and incorporated during the proposed activities. Submittal of a revised Work Plan or Work Plan Addendum is not required unless an alternate scope of work outside that described in the Work Plan and technical comments below is proposed. We request that you address the following technical comments, perform the proposed work, and send us the reports described below.

TECHNICAL COMMENTS

1. Water Supply Wells. The "Second Quarter 2008 Groundwater Monitoring Report, , Shell-branded Service Station, 4226 First Street, Pleasanton, California," dated August 13, 2008 states that, "No municipal water supply wells were identified within a 1-mile radius of the site. However, a review of the Well Location Map in the, "Initial Site conceptual Model (September 2005) dated February 6, 2006 indicates that a municipal water supply well is located approximately 1,200 feet northwest of the site. A well of unknown use appears to be located approximately 1,000 feet northwest of the site. Please review the sensitive receptor survey

Denis Brown Douglas and Mary Safreno September 9, 2008 Page 2

for the site and correct future reports as necessary. In addition, all water supply wells rather than just municipal supply wells should be considered sensitive receptors.

- 2. Site Location on Figure 1. The location of the site on Figure 1 in both reports is incorrect. Please correct the location in future reports.
- 3. Extraction Wells. Well MW-4 is the only well proposed for testing during the DPE pilot test. The concentrations of fuel hydrocarbons and oxygenates are highest in groundwater from well MW-4. Therefore, we have no objection to the DPE event being conducted primarily within well MW-4. However, we request that you also conduct DPE testing for up to 8 hours within wells MW-1 and MW-2.
- 4. Vapor Extraction Rate. The applied vacuum should be incremental increased to determine the optimal extraction rate for maximum air flow. Once determined, the optimal extraction rate should be used to determine induced vacuum and sustained rates of contaminant extraction.
- Monitoring Parameters. Please include measurements of water level drawdown in proximal
 wells during the DPE testing. In additional, the volume of groundwater extracted should be
 measured continuously using a totalizing meter.
- 6. Analytical Methods. The proposed analytical methods for soil and groundwater samples are acceptable. The Work Plan proposes analysis of soil vapor samples using method TO-14. We request that you use EPA Method 8260B for analysis of soil vapor samples rather than TO-14. The more current TO-14A or TO-15 analytical methods are also acceptable for analysis of the soil vapor samples.
- 7. Proposed Batch Extraction. Extraction of 20,000-gallons of water is proposed from well MW-1 to reduce off-site migration. We do not believe that batch extraction has very limited effectiveness for this site and is not cost effective. Therefore, unless you provide further technical justification to demonstrate that pumping 20,000 gallons of water from well MW-1 is effective in preventing off-site migration, we do not concur with implementation of batch extraction and recommend that the UST Cleanup Fund not reimburse any future costs for batch extraction.
- Groundwater Monitoring. Please continue quarterly groundwater sampling and present the results in the quarterly monitoring reports requested below.
- 9. Report Submittals. We received hard copies of the "Draft Corrective Action Report," dated November 2, 2007 and "Third Quarter 2007 Groundwater Monitoring Report," dated November 10, 2007. Electronic versions of these reports were uploaded to Geotracker but not uploaded to the ACEH ftp site. Please submit these two reports in electronic form in order to complete the ACEH agency files for this case. The report entitled, "Site Investigation and Interim Remedial Action Report," dated June 25, 2007 is missing attachments D, E, F, and G, which includes Pumping Test Data. Please resubmit "Site Investigation and Interim Remedial Action Report," dated June 25, 2007 to the ACEH website and Geotracker with all attachments.

Denis Brown Douglas and Mary Safreno September 9, 2008 Page 3

TECHNICAL REPORT REQUEST

Please submit technical reports to Alameda County Environmental Health (Attention: Jerry Wickham), according to the following schedule:

- January 14, 2009 DPE Pilot Test Report
- 45 days following the end of each quarter Quarterly Monitoring Report

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) Geotracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the Geotracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in Geotracker (in PDF format). Please visit the SWRCB website for more information on these requirements (http://www.swrcb.ca.gov/ust/cleanup/electronic_reporting).

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or

Denis Brown Douglas and Mary Safreno September 9, 2008 Page 4

certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

If you have any questions, please call me at (510) 567-6791 or send me an electronic mail message at jerry.wickham@acgov.org.

Sincerely,

Jerry Wickham, California PG 3766, CEG 1177, and CHG 297

Senior Hazardous Materials Specialist

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Cheryl Dizon, QIC 80201, Zone 7 Water Agency, 100 North Canyons Parkway Livermore, CA 94551

Danielle Stefani, Livermore-Pleasanton Fire Department, 3560 Nevada Street Pleasanton, CA 94566

Rich Garlow, Delta Environmental Consultants, Inc., 312 Piercy Road, San Jose, CA 95138

Donna Drogos, ACEH Jerry Wickham, ACEH File

Alameda County Environmental Cleanup **Oversight Programs** (LOP and SLIC)

ISSUE DATE: July 5, 2005

REVISION DATE: December 16, 2005

PREVIOUS REVISIONS: October 31, 2005

SECTION: Miscellaneous Administrative Topics & Procedures

SUBJECT: Electronic Report Upload (ftp) Instructions

Effective January 31, 2006, the Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

Entire report including cover letter must be submitted to the fip site as a single portable document format (PDF) with no password protection. (Please do not submit reports as attachments to electronic mail.)

It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather

Signature pages and perjury statements must be included and have either original or electronic signature.

Do not password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password. Documents with password protection will not be accepted.

Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer

monitor.

Reports must be named and saved using the following naming convention:

RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Additional Recommendations

A separate copy of the tables in the document should be submitted by e-mail to your Caseworker in Excel format. These are for use by assigned Caseworker only.

Submission Instructions

. 1) Obtain User Name and Password:

- a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to dehioptoxic@acgov.org

ii) Send a fax on company letterhead to (510) 337-9335, to the attention of Alicia Lam-Finneke.

- b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- Upload Files to the ftp Site

a) Using Internet Explorer (IE4+), go to ftp://elcoftp1.acgov.org

(I) Note: Netscape and Firefox browsers will not open the FTP site.

Click on File, then on Login As.

Enter your User Name and Password. (Note: Both are Case Sensitive.)

d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.

- With both "My Computer" and the fip site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- Send E-mail Notifications to the Environmental Cleanup Oversight Programs

a) Send email to dehloptoxic@acgov.org notify us that you have placed a report on our ftp site.

Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name at acgov.org. (e.g., firstname.lastname@acgov.org)

The subject line of the e-mail must start with the RO# followed by Report Upload. (e.g., Subject: RO1234 Report Upload) ·

March 12, 2008 Project SCA421211 SAP No. 135782

Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway Alameda, California 94502

Re: Dual-Phase Extraction Feasibility Study and Batch
Extraction Workplan
Shell-branded Service Station
4226 First Street
Pleasanton, California

Dear Mr. Wickham,

Delta Consultants, Inc. (DELTA), on behalf of Shell Oil Products US (SHELL), has prepared this Dual-phase Extraction Feasibility Study Workplan for remediation enhancement at the site referenced above (Figures 1 and 2). This work plan is prepared in response to a letter from the Alameda County Health Care Services Agency (ACHCSA) dated December 14, 2007. The ACHCSA letter indicated that the Draft Corrective Action Plan (CAP) submitted by SHELL dated November 2, 2007 was not sufficient to select the most suitable remedial action for the site. The letter requested that SHELL address technical comments and submit a Pilot Work Plan or Revised Draft CAP by February 14, 2008. Due to data loss resulting from a robbery at our offices DELTA requested and received a deadline extension to March 14, 2008.

RESPONSE TO TECHNICAL COMMENTS

The ACHCSA requested that SHELL evaluate soil vapor extraction (SVE) and dual-phase extraction (DPE) as potential remedial technology for the site. DELTA, in the Draft CAP, had concluded that air sparging and oxygen injection were considered unsuitable due to the fine-grained nature of soils at the site. ACHCSA, based on a review of site boring logs and cross-sections, concluded that highly permeable beds exist within the primarily fine-grained soils at the site.

Soil Descriptions and Classifications

Soil from the ground surface to a depth of approximately 95 feet below ground surface (bgs) is composed of silt, silty fine sand, or clayey fine sand. A geologic cross section is provided as Figure 3. The fine-grained soils are

classified on boring logs as ML, SM, and SC, respectively by the Unified Soil Classification System. The sandy soils typically contain 20% to 40% fines that reduce the permeability of the deposits. In the north-northeastern portion of the site, sediments become coarse grained. Borings MW-1, SB-7 and SB-5 (Attachment A) encountered coarse-grained sediments between a depth of approximately 20 feet and 55 feet bgs consisting of clayey sandy gravel (GP), gravelly sand with silt (SP), and clayey gravel (GC). DELTA concludes these are the soil layers referenced in the ACHCSA letter dated December 14, 2007, described as having moderate to high estimated permeability. A thick deposit of silt (ML) was encountered from approximately 55 feet bgs to the top of the lower aquifer at a depth of approximately 100 feet bgs.

Depth to groundwater in shallow monitoring wells is approximately 30 feet bgs and the groundwater flow direction is north to northeast.

Pumping Tests

Step drawdown tests were conducted to provide data for evaluating various remedial technologies for the Draft CAP. The tests were performed using Wells MW-1 and MW-4 (Figure 2). Well MW-1 is screened in soils described as gravelly sand with silt (SP), sandy gravel (GP), and clayey gravelly sand (SP). Well MW-4 is screened in soils described as sandy lean clay with gravel. The soil contained 10% to 20% gravel, 20% to 30% fine sand, and 50% to 70% clay.

The sustainable pumping rate for well MW-1 was determined to be 0.55 gallons per minute (gpm). A hydraulic conductivity of $3.59 \times 10-5$ cm/sec was calculated using the average pumping rate during the test (0.48 gpm). This value is typical of silt (Freeze and Cherry, 1979) and does seem consistent with boring log descriptions.

The step drawdown test at Well MW-4 produced a sustainable pumping rate of 0.4 gpm. A hydraulic conductivity of 3.17 x 10-5 centimeters per second (cm/sec) was calculated using the average pumping rate during the test of 0.48 gpm. This value is typical of silt (Freeze and Cherry, 1979) and is consistent with the description of soils on boring logs. The above results led DELTA to consider all site soils as low permeability.

Distribution of Petroleum Hydrocarbons and Methyl Tert-butyl Ether (MTBE)

Petroleum hydrocarbons and MTBE are concentrated in soils in the 30 to 55 foot depth interval (see Figure 3). The highest concentrations of MTBE were from soil samples in the northern portion of the site. The highest MTBE concentrations in recent soil samples were from MW-4 at depths of 44.5 and 55 feet (0.59 milligrams per kilogram (mg/kg) and 0.56 mg/kg). Tert-butyl alcohol (TBA) was not detected in any soil samples from the boring for well MW-4. A summary of recent soil analytical data is provided as Attachment B. A photoionization detector (PID) spike was recorded in the following borings, all located in the northern portion of the site (Figure2);

- S-1 at 30 and 35 feet bgs (400 and 575 parts per million (ppm),
- B-3 at 30 feet bgs (536 ppm)
- B-5 at 35 feet bgs (887 ppm),
- SB-4 at 35 feet bgs (650 ppm),
- SB-5 at 35 feet bgs (650 ppm)
- MW-4 at 34 to 44 feet bgs (106 to 762 ppm)

The ability to remove these narrow bands of contaminants is uncertain based on groundwater tests which indicated fine-grained soils. No such spikes were recorded for borings MW-3, SB-3 and B-1 located in the

central and southern portion of the site. However, the deepest PID reading in these three borings was at 30 feet bgs.

Analytical results indicate total petroleum hydrocarbons as gasoline (TPH-g), MTBE, and TBA are concentrated in shallow groundwater in the area of wells MW-1, MW-2 and MW-4 in the northern portion of the site (Figure 2). The maximum detected concentration of total petroleum hydrocarbons as gasoline (TPH-g) in groundwater have occurred in wells MW-1, MW-2 and MW-4. The highest concentrations of TPH-g and MTBE in groundwater are currently detected in well MW-4 at 8,200 micro grams per liter (ug/l) and 11,000 ug/l (June 2007). Analyses for the presence of TBA was not performed in groundwater samples from well MW-4. The highest detected current concentration of TBA in groundwater is 1,500 ug/l in well MW-1.

Analytical results indicate that MTBE and TBA have been detected at various depths. MTBE and TBA were detected in deep well MW-1B at 35 ug/l and 7.11 ug/l in the August 22, 2007 sampling.

INTERIM REMEDIAL ACTION WORKPLAN

DELTA/SHELL'S first priority was to reduce off-site migration of contaminants. Approximately 7,000 gallons of groundwater were extracted during activities in 2007. Groundwater extraction was also prompted in an attempt to reverse downward migration of contaminants towards the deeper aquifer. The ACHCSA in their letter dated December 12, 2007 concluded "...no further temporary groundwater extraction is requested at this site."

Based on elevated dissolved TPH-g and MTBE concentrations present in the vicinity of groundwater monitoring well MW-4, Delta recommends the performance of a Dual Phase Extraction (DPE) test. Specifically, Delta recommends a 5 day DPE Feasibility Study for the purpose of evaluating this technique for source area mitigation. The feasibility is assessed by estimating influent hydrocarbon concentration, hydrocarbon mass recovery rates, soil vapor radius of influence (ROI), and groundwater production rates.

Approximately one week after the DPE is completed groundwater extraction will be conducted at MW-1 to address off-site migration. Extraction will be continued until 20,000 gallons of groundwater have been extracted.

The following sections detail the proposed extraction activities.

Chemicals of Concern

TPH-g, MTBE, and TBA are the chemicals of concern in groundwater based on analytical results from previous and ongoing quarterly groundwater monitoring and sampling.

Pre-field Activities

DELTA will prepare a site-specific Health and Safety Plan, which will be reviewed daily by all field personnel. Prior to initiation of field activities, Calclean (or another contractor) and DELTA will notify the Bay Area Air Quality Management District (BAAQMD) of the upcoming event. DELTA and Calclean field personnel will oversee the operations of the 450-CFM system under permit. DELTA will obtain a temporary water storage tank and will extract a maximum of 10,000 gallons of groundwater during the event.

DPE Event

Delta proposes a 5-day High Vacuum DPE Test be conducted by extracting from well MW-4 which contains the highest detected concentration of contaminants. Well MW-4 is 47 feet deep and screened from 37 to 47 feet bgs.

The well casing is four inch diameter, schedule 40 PVC. Groundwater will be lowered by extracting groundwater to expose the well screens. Once the well screen is exposed, soil vapor will be extracted from the well by applying a high vacuum, up to 29 inches of mercury, to the well using a 25-horsepower, liquid ring pump.

Inlet flow rates, applied vacuums, induced vacuums, and inlet hydrocarbon concentrations will be measured at approximately 15-minute intervals for the first 2 hours, at 1 hour intervals during the third hour, at 2-hour intervals from the third hour to the twelfth hour, and at 4 hour intervals up until the 5th day. Vapor concentration will be measured using a Horiba MEXA 324JU, capable of analyzing petroleum hydrocarbons vapors up to 10,000 parts per million by volume (ppmv). Induced vacuums will be measured with vacuum gauges placed on wells MW-1, MW-2, MW-3 in order to monitor the negative pressure gradient induced by DPE. Induced vacuum will be measured hourly.

Using Tedlar bags, vapor samples will be collected from the DPE system influent vapor stream at the start, mid, and end of activities. Influent samples will be collected by the subcontractor and DELTA personnel throughout the test from wells MW-1 and MW-4, separately, and simultaneously. Vapor samples will be analyzed for TPH-g, benzene, toluene, ethybenzene and total xylenes (BTEX), TBA, and MTBE using USEPA Method TO-14. Both the vapor and groundwater samples will be logged on chain-of-custody forms, and submitted to Cal-Science Laboratories, Inc. for analysis. Pre and post groundwater samples will be collected and analyzed for TPH-g; BTEX compounds; MTBE; 1, 2 dichloroethane (1,2 DCA); tert-amyl methyl ether (TAME); TBA, di-isoproply ether (DIPE); 1,2-dibromoethane (EDB); ethyl tert-butyl ether (ETBE) and ethanol by USEPA Method 8260B.

Feasibility and Corrective Action Plan Report

Delta will prepare a Feasibility Testing Results Report that details the results of the high vacuum, dual phase extraction (HVDPE) tests. The results of the study will be used to evaluate long-term remedial options at the Site.

Possible remedial options for this site consist of one of the following:

- 1) a monitoring and natural attenuation program if dissolved concentrations are reduced to within Agency-acceptable limits,
- 2) a series of short-term remediation events if dissolved concentrations are reduced by 25% or more at the conclusion of this pilot study, or
- 3) full remediation if hydrocarbon concentrations in soil and/or groundwater remain recalcitrant.

Batch Extraction

Approximately one week following completion of the DPE test a batch extraction will be conducted at MW-1 to reduce off-site migration. Water will be pumped into an onsite storage tank until 20,000 gallons have been removed. The groundwater will be disposed by Shell. The system will be visited on a weekly basis to monitor system operation. Monitoring wells MW-1, MW-2 and MW-4 will be sampled on a monthly basis (scheduling to not duplicate quarterly monitoring sampling) with sample analyses for TPHg, BTEX, MTBE and TBA to monitor concentrations.

Please call Richard Garlow (DELTA) (408) 826-1880 or Denis Brown (SHELL) at (707) 865-0251, if you have any questions regarding the contents of this report.

Sincerely,

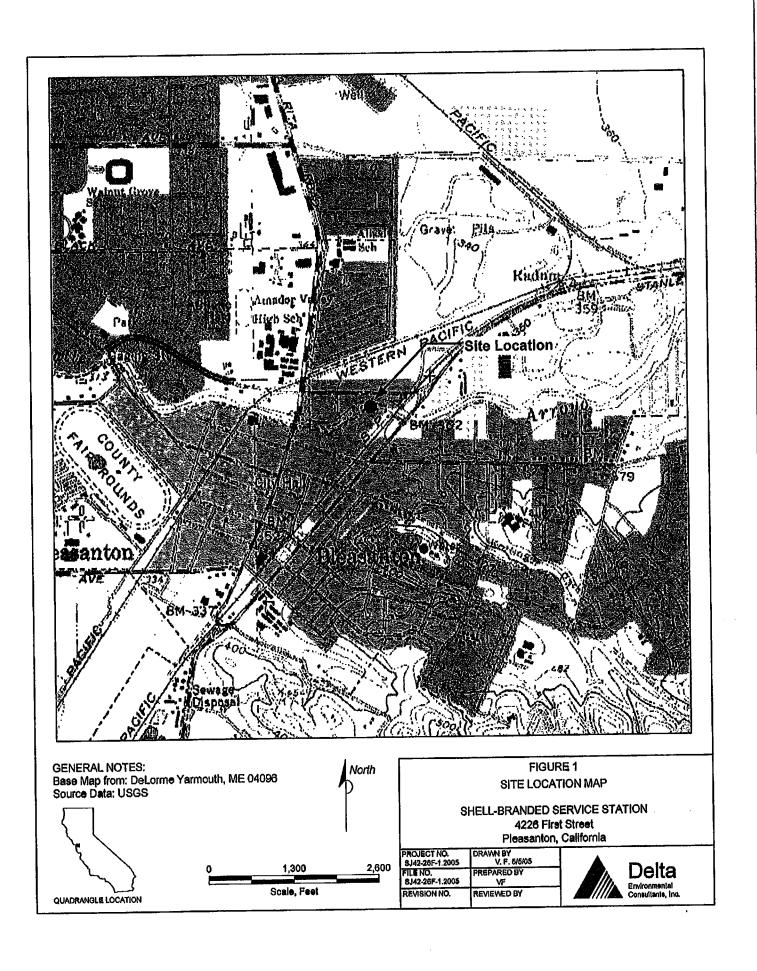
Delta Consultants, Inc.

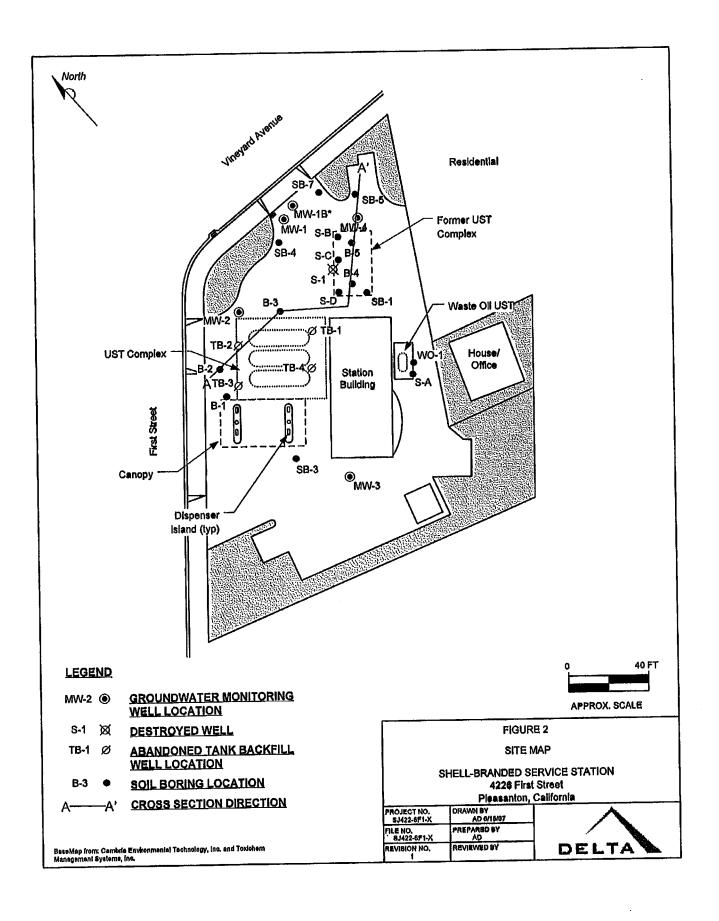
Richard A. Garlow, M.S., P.G. Project Manager

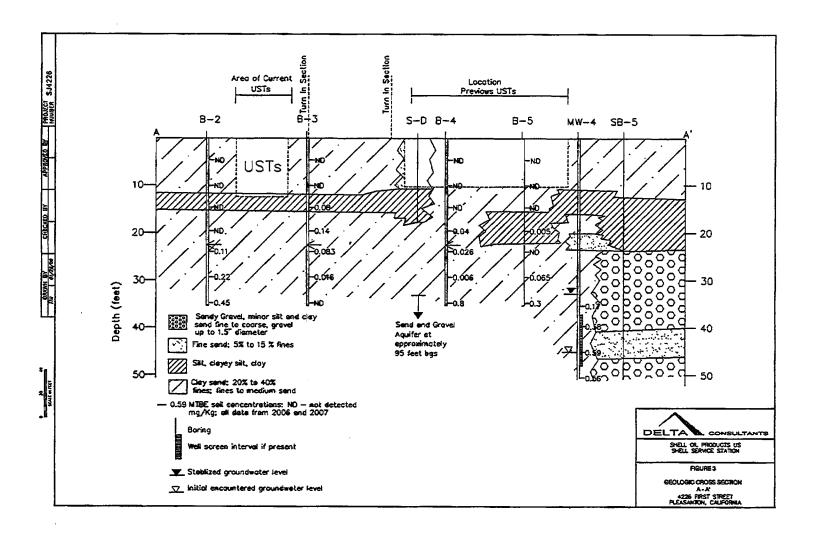
Attachments:

cc:

Figure 1 - Site Location Map


Figure 2 - Site Map


Figure 3 - Geologic Cross Section


Attachment A - Boring Logs

Attachment B - Soil analytical Data

Denis Brown, Shell Oil Products US, Carson and Monte Rio, CA

ATTACHMENT B BORING LOGS

WELL LOG (TPH-G) G:PLE4228GNTPLE4228.GPJ DEFAULT.GDT 811199

Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

BORING/WELL LOG

CLIE	NT NAI	ME	_	Equ	ilva Se	rvices	LO		BORING/WELL NAME	MW-1				
JOB	SITE N	AME			4226				DRILLING STARTED	08-Apr-99				
	ATION					Street,	Pleas	anton, California					 -	
	JECT N	UMBE			-0395				WELL DEVELOPMENT D					
DRIL					<u>aa Dril</u>							<u>83 ft</u>		
	LING M				ow-ste				TOP OF CASING ELEVAT					
	NG DIA 3ED BY			<u>8" .</u>	akub								4 00)	77
	EMED 8	_			akub					-				<u>- ₹</u>
	ARKS	- ·							DEPTH TO WATER (Stati	•				—
NGIVI/	ANNO			пац	ក ម្តាក់វិថ	1160 (O :	y ugs;	located near Myy planter/	entrance to Shell station on	vineyard and				
TPHg (mg/kg)	BLOW	RECOVERY	SAMPLE 1D	EXTENT	DEPTH (ft bos)	U.S.C.S.	GRAPHIC	LITHO	LOGIC DESCRIPTION		CONTACT DEPTH (ft bgs)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ELL DIAGR	IAM
					Π	7	***	ASPHALT.			0.3		Ø	
				11	Γ	1	XXX	FILL.	own (10YR4/3); very soft; w	-h 50/	1.5		%	
				I		ML		clay, 70% silt, 25% fit	ne to medium grained sand; b low estimated permeability	low I				
				1		}	$\{\{\}\}\}$	SILT: (MIL): dark valla	w brown (10YR4/6); stiff; m	olet	4.5		2	
					- ° -	ML			sand, 2% fine grained grav					
			[""-					9.7		≺ Porlian I/II	d Type
					- 10 	ML		38% clay, 50% slit, 29	flow brown (10YR5/8); stiff; 6 fine grained sand, 10% fir tvel; high plasticity; low esti	damp; ne to				
	18 26 30			ĕ	 -15-						15.0			
<1.0			SB-6 -15.5			SP		(5GY4/1); dense; dam); (SP); dark greenish gray p; 20% clay, 50% sand, 30° to moderate estimated gments.	% gravel;				-
<1.0	13 11 20		SB-6 • 19.5	X	- -20-	ML		damp; 15% clay, 50%	(ML); olive (5Y4/3); very st silt, 35% very fine grained s low estimated permeability.	iff; and; low	9.3			
	20 28			[}	-25-			Gravally SANO with SI	lt; (SP); olive (5Y4/3); dens	2	4.5		≺ 2" dlam. Schedul	40
<1,0	30		SB-6 25.0	-	23-	SP		damp; 5% clay, 15% si	it, 60% fine to medium grain lasticity; high to moderate	ned			PVC	
<1.0	40 43 48		SB-6 30.0	-	-30-	R	000	2% clay, 13% slit, 35% 50% fine to coarse, sub	olive (5Y4/3); very dense; o medium grained sand (red angular to subrounded grav ph estimated permeability.	lamp; grains),	9.0		·	
	20 3 5		, \$	*	35-	, ,	20		(SP); dark yellow brown	34	5.0		≺ Bentonite	
								Conth	nued Next Page				PAGE	1 OF 2

WELL LOG (TPH-G) GIPLE4226/GINTPLE4226,GPJ DEFAULT,GDT 8/11/99

Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

BORING/WELL LOG

CLIENT NAME	Equiva Services LLC	BORING/WELL NAME	MW-1
Job/site Name	ple-4226	DRILLING STARTED	08-Apr-99
LOCATION	4226 First Street, Pleasanton, California	DRILLING COMPLETED	09-Apr-99

Continued from Previous Page CONTACT DEPTH (# bgs) TPHg (mg/kg) SAMPLE ID GRAPHIC LOG RECOVERY BLOW DEPTH (ft bgs) U.S.C.S. LITHOLOGIC DESCRIPTION WELL DIAGRAM (10YR4/6); very dense; damp; 20% clay, 10% slit, 40% medium grained sand, 30% fine to coarse grained gravel (sandstone/claystone, serpentinite, some MnO_s/Fe <1.0 SB-6 - 35.0 Monterey Sand #3 staining); low plasticity; moderate to low estimated permeability. 20 46 50/4 <1.0 40.0 SP Ϋ́ 28 45 48 @ 44' - moist to wet. 2"-diam., 0.020" Slotted Schedule 40 PVC 50.0 32 60/8 Ciavey GRAVEL with Silt; (GC); dark yellow brown (10YR4/6); very dense; moist to wet; 25% clay, 15% silt, 20% fine to coarse grained sand, 40% fine to coarse grained gravel. GC 55.2 Cisvay Sil.T; (MH); light olive brown (2.5Y5/4); hard; damp; 25% clay, 75% silt; medium to high plasticity; very low estimated permeability; black MnO₂ blebs throughout. MH 58.0 Bottom of Boring @ 58 ft

Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

CLIENT NAME JOB/SITE NAME LOCATION PROJECT NUMBER DRILLER DRILLING METHOD BORING DIAMETER LOGGED BY REVIEWED BY REMARKS Equiva Services LLC JOB-4226 4226 First Street, Pleasanton, California 241-0395 Drilling Hollow-stem auger B. Jakub REVIEWED BY B. Jakub Hand augered to 4' bgs; located E side of Vineya									DRILLING STARTED 07-Apr-99 DRILLING COMPLETED 07-Apr-99 WELL DEVELOPMENT DATE (YIELD) NA GROUND SURFACE ELEVATION Not Surveyed TOP OF CASING ELEVATION Not Surveyed SCREENED INTERVAL NA DEPTH TO WATER (First Encountered) NA DEPTH TO WATER (Static) 42.50ft (08-Apr-99) and exit near planter.						
TPHg (mg/kg)	BLOW	RECOVERY	SAMPLEID	EXTENT	DEPTH (# bgs)	U.S.C.S.	GRAPHIC	LITH	DLOGIC DESCRIPTION	·	CONTACT DEPTH (ft bgs)	WEL	L DIAGRAM		
	11 12 19			XXX	5-	ML.		clay, 70% slit, 25% f plasticity; moderate	rown (10YR4/3); very soft; wet; ine to medium grained sand; low olow estimated permeability. by brown (10YR4/6); stiff; mols as and, 2% fine grained gravel; ted permeability.	v :	1.5 1.5 4.5		·		
<u>-</u>	15 26 31			X	- -10			1 38% Alay 50% elit 2	ellow brown (10YR5/8); stiff; da % fine grained sand, 10% fine t avel; high plasticity; low estima	0	9.7				
<1.0	16 20 3\$		\$B-7 -15.0		-15-	ML		4 14.3 - olive brown clay, 78% silt, 2% fin low estimated perme	(2,5Y4/4) motlled with olive; 20 ● grained gravel; medium plasti ability.	% city;	19.5				
<1.0	11 23 25		SB-7 - 19.5	X	-20 - - -	GP		dense; damp; 3% cla grained sand, 20% fir plasticity; high estima Clayev Sandy GRAVi 20% clay, 20% fine to concee oralped grayel	L; (GP); yellow brown (10YH5/i coarse grained sand, 80% fine (nuartz. possibly chert); low to	lo .	20.3				
<1.0	20 20 20		SB-7 - 24.5	X	-25-	SP :		permeability. Gravelly SAND with S dense; damp; 3% ciay sand, 25% line graine estimated permeability Clayey SiLT; (ML); sinfine grained sand; high	if; damp; 30% clay, 60% silt, 10 n plasticity; low estimated	6); d	25.3 4 29.0				
<1.0	35 38 40		SB-7 - 29.3	X X	-30	GP. D	\$0.00.00 \$0.00.00 \$0.00.00	(5Y3/2); 15% clay, 5% sand, 45% line to coal plasticity; moderate to	bon. Tay: (GP); dark olive gray set; 35% tine to coarse grained se grained gravel (quartz); low high estimated permeability.		34.0				

Continued Next Page

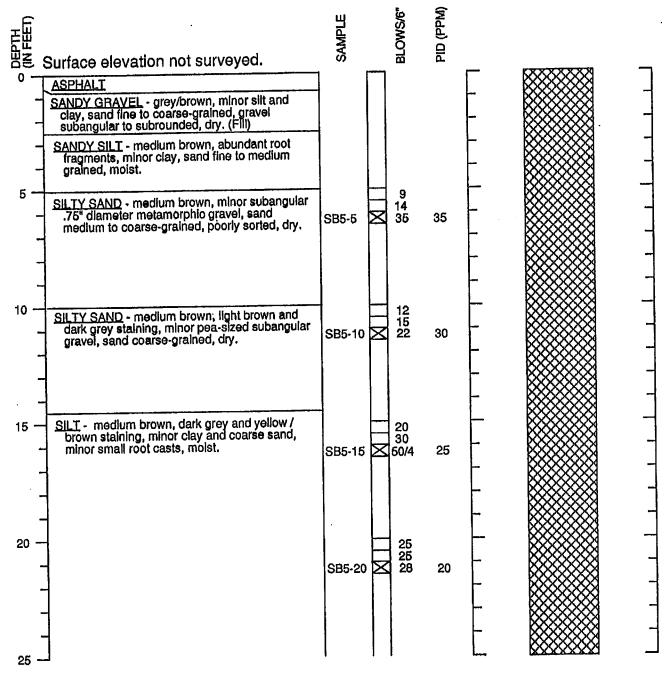
PAGE 2 OF S

Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

CLIENT NAME	Equiva Services LLC	BORING/WELL NAME	SB-7
JOB/SITE NAME	ple-4226	DRILLING STARTED	07-Apr-99
LOCATION	4228 First Street, Pleasanton, California	DRILLING COMPLETED	07-Apr-99

Continued from Previous Page CONTACT DEPTH (ft bgs) SAMPLE 10 RECOVERY GRAPHIC BLOW U.S.C.S. EXTENT DEPTH (ft bgs) WELL DIAGRAM LITHOLOGIC DESCRIPTION (10YR5/8); very dense; damp; 35% olay, 15% slit, 10% sand, 40% fine to coarse grained grave! (quartz); medium plasticity; moderate to low estimated permeability. SB-7 34.3 @ 39' - quartz, siltstone, chert gravels. <1.0 SB-7 40.0 GC @ 44' - moist to wet. 40 60/3 83 SB-7 Clavey GRAVEL; (GC); yellow brown (10YR5/4); very dense; moist to wet; 20% clay, 10% silt, 10% medium to coarse grained sand, 60% fine grained gravel; medium plasticity; low to moderate estimated permeability. **Portland Type** <1.0 SB-7 -49.5 GC 36 50/3 <1.0 SB-7 - 54.3 59.0 Clavey SILT; (MH); mottled yellow brown (10YR4/6) and light brownish gray (2.5Y6/2); hard; dry; 20% clay, 70% silt, 10% very fine to fine grained sand; medium plasticity; low estimated permeability. 30 50/3 SB-7 <1.0 WELT LOG (TPH-G) G-PLE4226GNT/PLE4226.GPJ DEFAULT.GDT 8/1/39 мн @ 64' - dark brown MnO2 or organio blebs throughout. SB-7 <1.0 69.0 Clayay SILT; (MH); light olive brown (2.5Y5/4); hard; dry; 25% clay, 75% silt; medium plasticity; very low \$B.7 estimated permeability. - 69.5 ₱ 74' - Increasing mottled with yellow brown (10YR5/8)...

Continued Next Page



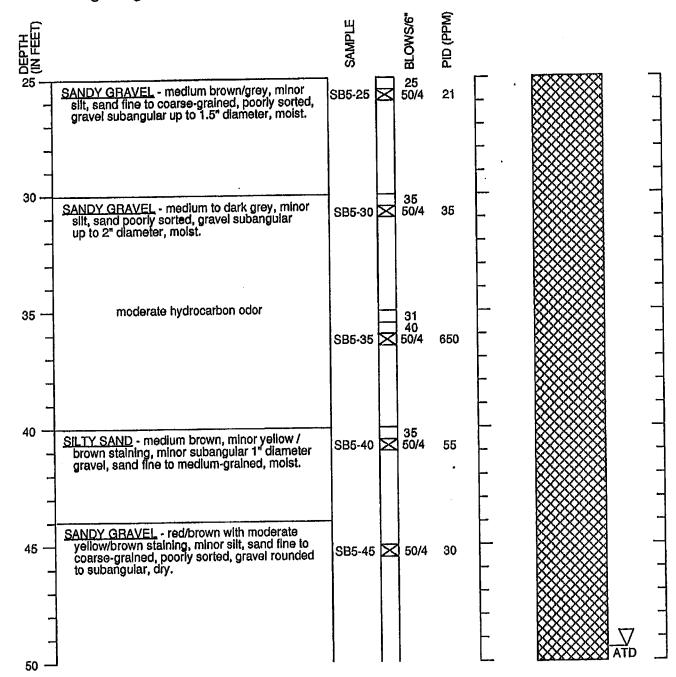
Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: [510] 420-0700 Fax: (510) 420-9170

			AD #
CLIENT NAME	Equiva Services LLC	BORING/WELL NAME	SB-7
JOB/SITE NAME	ple-4226	DRILLING STARTED	07-Apr-99
LOCATION		DRILLING COMPLETED	07-Apr-99

								Continued from Previous Page		-
ТРН9 (тд/кд)	BLOW	RECOVERY	SAMPLEID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC		М	
	50/4		SB-7 - 74.5	×				© 74' to 74.5' - black blebs, possibly MnO₂.	٠	
	15 30 50/2		SB-7 - 79.8	XX	-80 					
	. 16 25 80		SB-7 - 85.0	X	-85	МН		© 84' - dark yellow browл (10YR4/6); damp; 30% clay, 70% silt.		
	1,5 4 B 50			XXX	 90 					
	25 30 50		SB-7 - 94.5	X	-95-			@ 94' - MnO₂ blebs throughout; becomes elitler.		
	28 50/0		SB-7	X	-100-	SC		Clavey SAND with Gravel; (SC); dark yellow brown (10YR4/6); dense; damp; 30% clay, 5% slit, 50% fine to coarse grained sand, 15% fine grained gravel (quartz); medium plasticity; low to moderate estimated permeability.	10	į
								Ground water sample (SB-7-GW) collected.		
						{				
						•				
.									•	
			:]	1				PAGE 3	T 0	į

Geologic Log

- 1. Refer to Figure A-1 for explanation of descriptions and symbols.
- Soll descriptions and stratum lines are interpretive and actual changes may be gradual.
 Perched water encountered at 49.5 feet BGS.

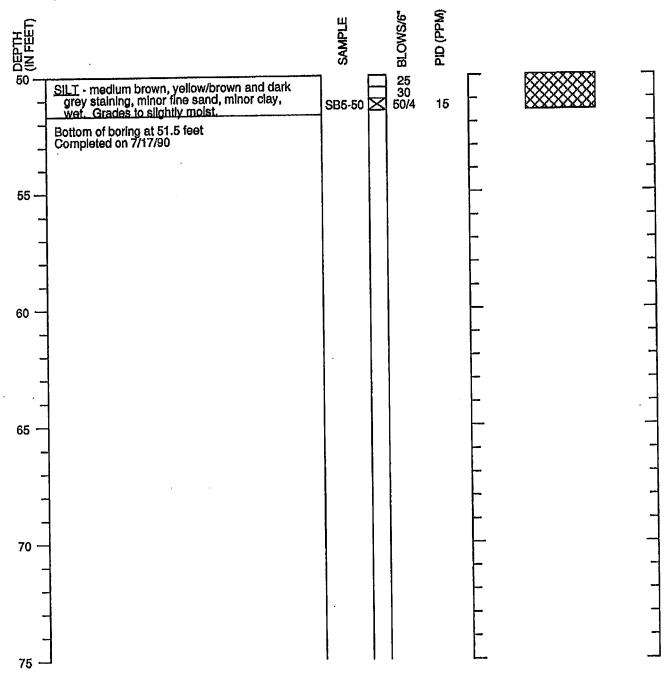


HARTCROWSER

J-6006 Figure A-3 Page 1 of 3

12/90

Geologic Log

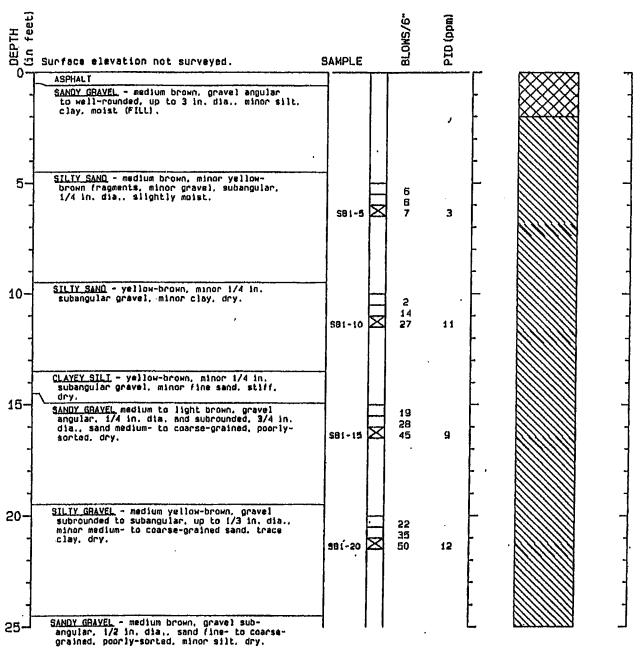

- 1. Refer to Figure A-1 for explanation of descriptions and symbols.
- Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 Perched water encountered at 49.5 feet BGS

HARTCROWSER

J-6006 Figure A-3 Page 2 of 3

12/90

Geologic Log



- Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 Perched water encountered at 49.5 feet.

HARTCROWSER

J-6006 Figure A-3 Page 3 of 3 12/90

Geologic Log

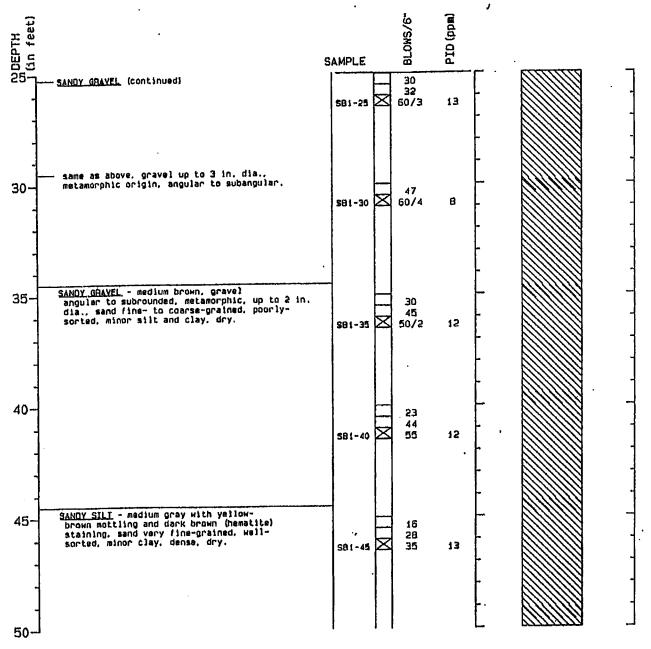
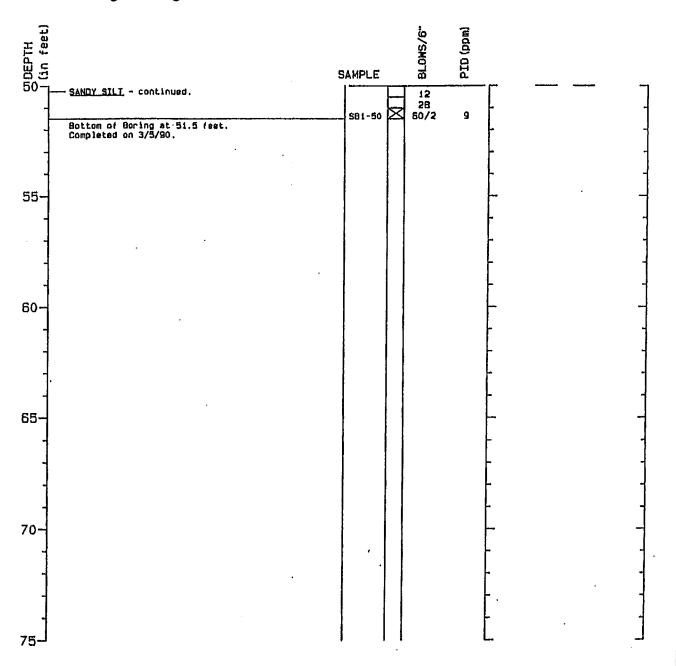

- Refer to Figure A-1 for explanation of descriptions and symbols.
- Soil description and stratum lines are interpretive and actual changes may be gradual.
- 3. No free water encountered.

Figure A-2

Page 1 of 3

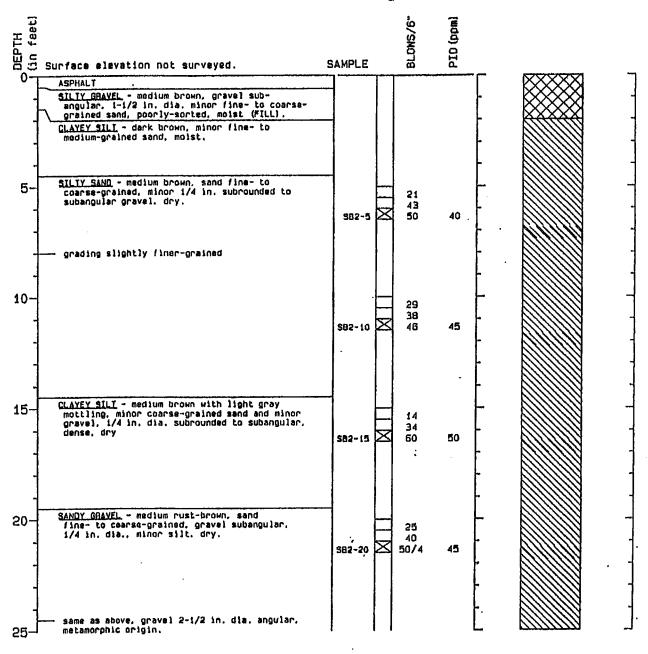
Geologic Log


1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil description and stratum lines are interpretive and actual changes may be gradual.

3. No free water encountered.

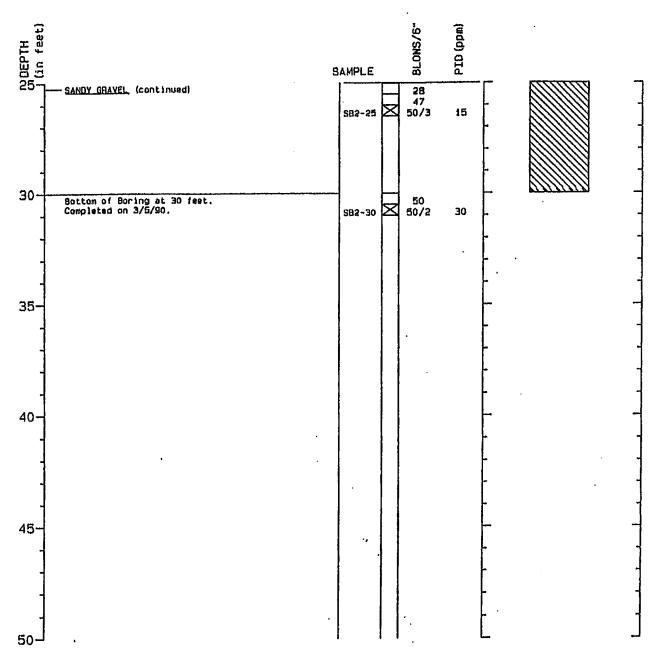
HARTCROWSER 4/90 J-6006 Figure A-2 Page 2 of 3


Geologic Log

- Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil description and stratum lines are interpretive and actual changes may be gradual.
 No free water encountered.

Geologic Log

 Refer to Figure A-1 for explanation of descriptions and symbols.

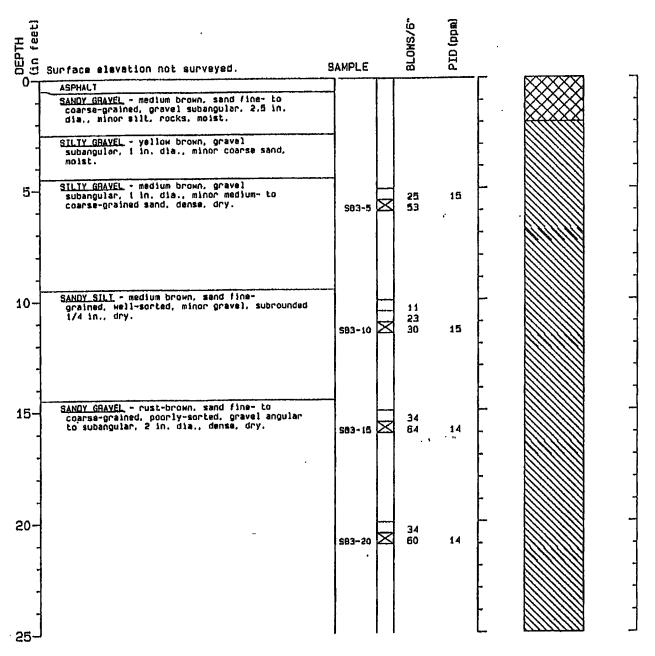

and symbols.2. Soil description and stratum lines are interpretive and actual changes may be gradual.

3. No free water encountered.

HARTCROWSER
J-6006 3/90
Figure A-3

Page 1 of 2

Geologic Log


^{1.} Refer to Figure A-1 for explanation of descriptions and symbols.

^{2,} Soil description and stratum lines are interpretive and actual changes may be gradual.

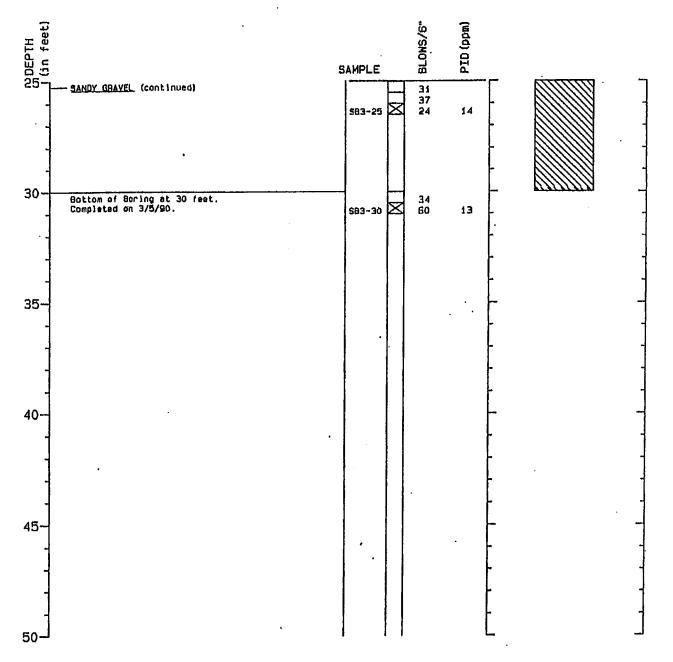
3. No free water encountered.

Geologic Log

1. Refer to Figure A-1 for explanation of descriptions

and symbols.
2. Soil description and stratum lines are interpretive and actual changes may be gradual.

3. No free water encountered.

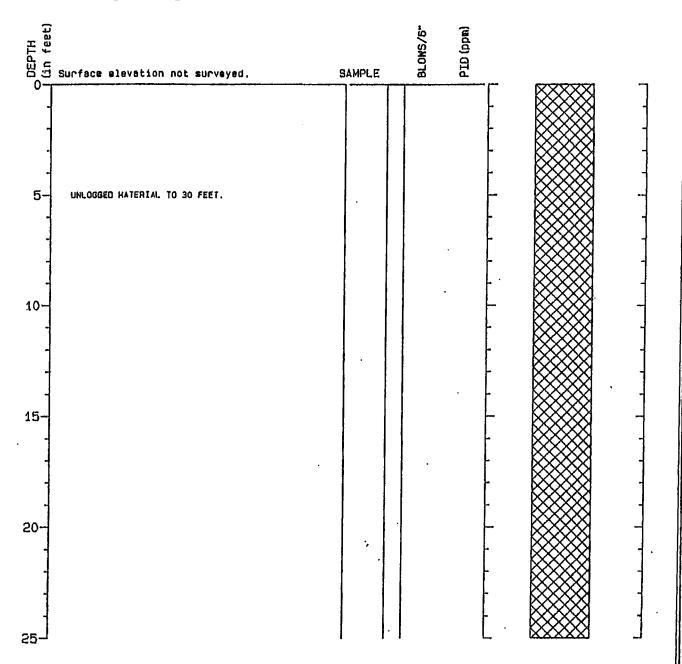


3/90

Figure A-4

Page 1 of 2

Geologic Log


- 1. Refer to Figure A-1 for explanation of descriptions
- and symbols.
 2. Soil description and stratum lines are interpretive and actual changes may be gradual.
 3. No free water encountered.

Page 2 of 2

Boring Log WA-1

Geologic Log

- Refer to Figure A-1 for explanation of descriptions and symbols.
 Soll description and stratum lines are interpretive and actual changes may be gradual.
 No free water encountered.

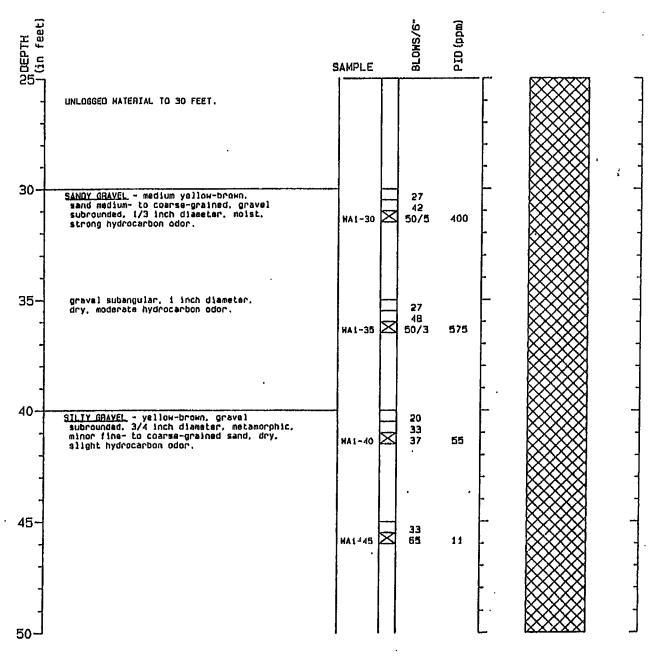
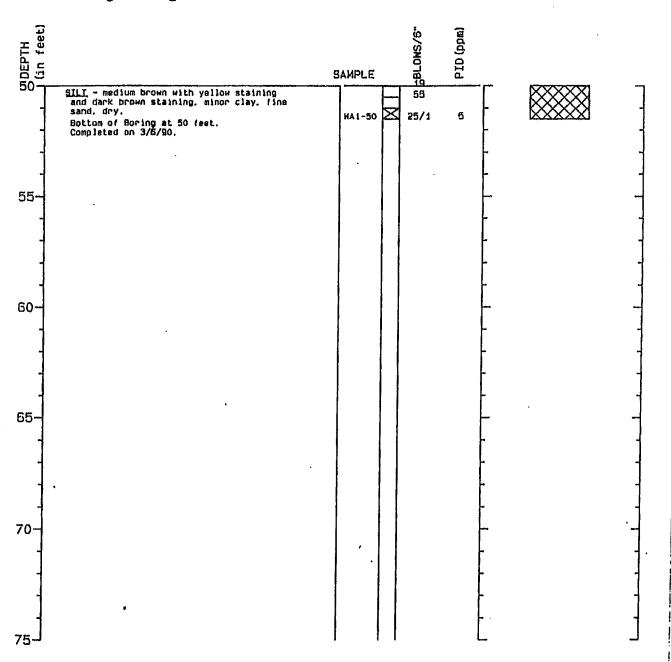


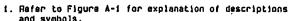
Figure A-5

Page 1 of 3

Boring Log WA-1

Geologic Log


- 1. Refer to Figure A-1 for explanation of descriptions and symbols.
- Soil description and stratum lines are interpretive and actual changes may be gradual.
 No free water encountered.



Page 2 of 3

Boring Log WA-1

Geologic Log

and symbols.

2. Soll description and stratum lines are interpretive and actual changes may be gradual.

3. No free water encountered.

J-6006 4/90 Figure A-5 Page 3 of 3

Delta Environmental Consultants, Inc.	Casing Type: Stot Size: Gravel Pack: Elevation		(7') •VC	Hole Hole Well Well		108' г: 4 " 108'	Location Map	Well No: MW-1B Page 1 of 6 see site map
Well Completion Static United Static Water Completion Static Water Level	Moisture Content PID Reading (ppm)	Penetration (blows/6")	Depth (feet)	Recovery & Interval eldura	A Soil Type	Ll'		//DESCRIPTION
		air knifed & hand augered	1— 2— 3— 4— 5— 6— 7— 8— 9— 10— 11— 12— 14— 15— 16— 17— 18— 19— 20			See Cambria's MW-lithology between 1	1 boring loand 58.5 fe	g (attached) for soll pet bg

٠,

.

Delta Environmental Consultants, Inc.	Project No: Logged By Driller: Drilling Met Sampling N Casing Typ Slot Size: Gravel Pac	: thod: Method: pe:	SJ42-26I AP Gregg HSA/AK SS sch 40 P 0.01 #2/12 sa	(7') 'VC		Hole I Hole I Well I Well I Casin		108' :: 4" 108'	Location Map	Well No: MW-1B Page 2 of 6 ee site map
Well Completion Static 限数 Water Level	Moisture Content	PID Reading (ppm)	Penetration (blows/6")	Depth (feet)	Recovery (5	Interval eldu	Soil Type	Lľ	THOLOGY	/ DESCRIPTION
				21 — 22 — 23 — 24 — 25 — 26 — 27 — 28 — 30 — 31 — 32 — 33 — 34 — 35 — 36 — 37 — 38 — 39 — 40						

:

.

			Project N	o:	SJ42-26	F-1		Clien	:	Shell Oil Products	US	Well No: MW-1B		
			Logged E		AP			Locat	lon:	4226 First Street		Page 3 of 6		
	14		Driller:	•	Gregg			Date	Drilled:	8/23/2006	Location Map	1		
De	コル	2	Drilling M	ethod:	HSA/AK	(7')		Hole	Diamete	r: 12"				
	フル	a		Method:	SS	. ,		Hole	Depth:	108'	Please se	ase see site map		
Envie	onmen		Casing T		sch 40 F	VC.			Diameter					
			Slot Size		0.01	••			Depth;	108'	ļ			
Consu	nams,		Gravel Pa		#2/12 sa	nd			g Sticku		1			
l			Glaver	Elevation	TA/ 12 00	<u>.</u>	Norti		1	Easting	1			
				Piovacion										
Wel Comple	1ta.a	Static	o ≠	PID Reading (ppm)	Penetration (blows/6")	g	Sai	mple	8					
	1 '	Water	Moisture Content	p (ea	S S	Depth (feet)	E	页	Soil Type	LI'	THOLOGY	/ DESCRIPTION		
Backfill Casing		Level	8 8 €	7 G		₹	Recovery	Interval	Soj					
සී ඊ	1		_	<u>a.</u>	" "	^	%	드						

						41	\vdash	_						
	-						╂	-						
						42 —								
						43	 	<u> </u>						
	$\mid \cdot \mid$						+-	├─						
						44								
						45	┼	-						
	•					46—	†							
						-								
					İ	47 —	┼-	-						
						48		<u> </u>						
						-	+-	┼						
						49—								
						50—	+	-						
						51—			<u> </u>					
				<u> </u>		"-	1		-					
	-					52	+	+-	1					
						53—]					
	-					-	+	+-	1					
						54 —]					
						55	+	+-	-					
	-					56—]					
						"-	\perp	\perp	4					
						57—	十	+-	1					
						58		1_	1					
					14	1 .		A	-ML	SILT: mottled vellow	brown and	l orangish brown, hard,		
			dry	8.1	16	59—] """	80-90% fines, <10%	fine to ver	fine grained sands,		
	-		<u> </u>		21	60		4]	low plasticity				

.

Environmental Casing Type: sch 40 PVC Well Diameter: 4" Casing Type: sch 40 PVC Well Diameter: 4" Slot Size: 0.01 Well Depth: 108' Gravel Pack: #2/12 sand Casing Stlokup: - Elevation Northing Easting Well Completion Static Water Level Pack: #2/12 sand Casing Stlokup: - Elevation Static Water Level Pack: #2/12 sand Casing Stlokup: - Elevation Northing Easting LITHOLOGY 61	Well No: MW-1B Page 4 of 6 ee site map
Delta Driller: Gregg Date Drilled: 8/23/2006 Environmental Consultants, Inc. Environmental Consultants, Inc. Well Completion Report Date Drilled: 8/23/2006 Environmental Consultants, Inc. Well Completion Report Date Drilled: 8/23/2006 Hole Depth: 108' Well Depth: 108' Casing Type: sch 40 PVC Well Dlameter: 4" Slot Size: 0.01 Well Depth: 108' Gravel Pack: #2/12 sand Casing Stickup: - Elevation Northing Easting LITHOLOGY MIL SILT (cont.)	ee site map
Drilling Method: HSA/AK (7') Hole Dlameter: 12" Sampling Method: SS Hole Depth: 108' Casing Type: sch 40 PVC Well Dlameter: 4" Slot Size: 0.01 Well Depth: 108' Gravel Pack: #2/12 sand Casing Stickup: - Elevation Northing Easting Well Completion Static Water Level Pack: Water Leve	
Environmental Casing Type: sch 40 PVC Well Diameter: 4" Casing Type: sch 40 PVC Well Depth: 108' Slot Size: 0.01 Well Depth: 108' Gravel Pack: #2/12 sand Casing Stickup: - Elevation Northing Easting Well Completion Static Water Level Level Pack: #2/12 sand Casing Stickup: - Elevation Sample Sample Sample Pack: #2/12 sand Pack: #2/12 sand Casing Stickup: - Elevation Northing Easting LiTHOLOGY MIL SILT (cont.)	
Environmental Casing Type: sch 40 PVC Well Diameter: 4" Consultants, Inc. Casing Type: sch 40 PVC Well Depth: 108' Slot Size: 0.01 Well Depth: 108' Casing Stlickup: - Elevation Northing Easting Well Completion Static Water Level Water Level Water Level Well Diameter: 4" Solot Size: 0.01 Well Depth: 108' Casing Stlickup: - Elevation Northing Easting LITHOLOGY 61 ML SILT (cont.)	
Environmental Casing Type: sch 40 PVC Well Dlameter: 4" Slot Size: 0.01 Well Depth: 108' Gravel Pack: #2/12 sand Casing Stickup: - Elevation Northing Easting Well Completion Static Water Level Pack: #2/12 sand Casing Stickup: - Elevation Northing Easting LITHOLOGY 61 ML SILT (cont.)	/ DESCRIPTION
Consultants, Inc. Slot Size: 0.01 Well Depth: 108' Gravel Pack: #2/12 sand Casing Stickup: - Northing Easting Well Completion Static Water Level Level Water Level Water Level Completion Static Water Level Water Level Completion Static Water Level Completion Static Water Level Completion Static Water Level Completion Static Water Level Completion Completion Static Water Level Water Level Completion Completion Static Water Level Completion Static Water Level Completion Completion Completion Static Water Level Water Level Completion	/ DESCRIPTION
Gravel Pack: #2/12 sand Casing Stickup: - Elevation Northing Easting Well Completion Water Level Level VI Cont.	/ DESCRIPTION
Elevation Northing Easting Well Completion Water Level Water Leve	/ DESCRIPTION
Well Completion Water Level Level Countent Condition Water Level Feed Water Level Water Level Countent Counter Countent Counter Countent Countent Counter Counter Counter Counter Counter Counter Counter Counter	/ DESCRIPTION
Completion Static Water Level Content	/ DESCRIPTION
61 ML SILT (cont.)	/ DESCRIPTION
61 ML SILT (cont.)	7 DESCRIPTION
61 ML SILT (cont.)	
61 ML SILT (cont.)	
61—————————————————————————————————————	
 8888 	
10 04	
dry 11.5 12 64—	
14 65	
66	
67	
68-1-1	
dry 10.9 16 69	
18 70	
73	
11 74	
dry 9.9 13 14	
17 75	
76	
78———	
11 70 (80-90% fines, <10% ve	ery fine grained sands,
dry 9.1 13 /9 medium plasticity)	
16 80	

		Project No		SJ42-26F	: -1		Cllent	:	She	II Oil Products	US .	Well No: MW-1B
Delta		Logged B		AP	•		Locati	on:	422	8 First Street		Page 5 of 6
- 1 4		Driller:		Gregg			Date I	Orilled:	8/23	3/2006	Location Map	
2112	2	Drilling M		HSA/AK	(7')		Hole [Diamete.	: 12"			
テトレ	u	Sampling		SS	. ,		Hole i	Depth:	108	ŗ	Please se	ee site map
nment		Casing Ty		sch 40 P	VC.			Diameter	: 4"			•
			, , , ,							3'		
.ants, i					nd						i	
	ŀ	Glaveri		#2712 GU				1		asting	1	
			Lioralion							-	ļ	
						T^{-}	··· I					
on s	datic	8 #	ig ~	ទ្ធិត	8	1	npl e	8				
, I ~		age	9 % E	te s	ъ Э	e G	ন্ত	È		LI	THOLOGY	/ DESCRIPTION
	. ,	¹ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E S		ebt e	8		Soi				
			₫.	۱ ۵ ۰	Δ	8	모					
								ML	SILT (cor	nt.)		
\neg					81							
_					51 							
一					92	I^-						
_					02-	\mathbb{I}^{-}						
[Y	j 1		1 1	02			1				
	,			1	os —			***				
-				10			A	ML	SILT wit	h Sand: mo	ttled yellow	brown and orange brown,
		drv	9.2	14	84-				hard, 70-	80% fines,	20-30% ver	y fine to fine grained sands,
		""/			-				low to no	plasticity		
<u> </u>					85—							
-1					٠ - ١							
]		1	୫୯	1						
_						+-	T					
		1		1	87	\top						
		1		İ		_						
·					88	_	 					
-				10	•		4	i				
 i		moist	99		89 —				(1	5-25% very	fine graine	d sands)
		1110131	0.0		٠	-		1	<i>``</i> -	<u></u> -		
\dashv					90 —	_	<u> </u>	1			-	
		1		1	l . •	1	1					
					91 —	\top		1				
\dashv					1	+	†***		·-			
				1	92-	1	1	1		-		
			l	1] :	+	1	1			*,	
\dashv					93	1	1	1				
-			[13	1		4	1				
		da,	110		94-		╅	1	12	0-30% verv	fine graine	d sands)
ᅴ		ury	''.5		I .	- [╁	1			<u> </u>	
—			1	20	95-		┱	1				
		1				+-	+	1		 ,	-	
-		1			96-	+	+-	1				
\dashv			1		1	+	+	† 、				
		1			97 —	-	+	1 %				
_				1		\dashv	╁	┤ `	 -		 .	
-				1	98-	+	+-	1				
_				144			A	90	Clavey	SAND with	Gravel: bro	own, dense, 10-20% fines.
-L	∇	٠١	6.4		99-		+	┨	20-30%	dravele un	to 1" dlame	ter, 60-70% medium to
- $ -$		wet	0.1		100	-6	1	1	COpres C	reined con	da (mostly o	coarse grained)
	on s	ants, Inc. On Static Water Level	ants, Inc. Slot Size: Gravel Printing On Static Water Level water Level moist — — — — — — — — — — — — — — — — — — —	Static Water Level	Static Water Level Adry 9.2 10 moist 9.9 16 21 dry 11.9 18	Slot Size: 0.01 Gravel Pack: #2/12 sand Elevation On Static Water Level On On City Page 110 On Gravel Pack: #2/12 sand On Static Water Level On On City Page 110 On Gravel Pack: #2/12 sand On Static Water Level On On City Page 110 On Gravel Pack: #2/12 sand On Static Water Level On On City Page 110 On Static Water Level On On City Page 110 On Static Water Level On On City Page 110 On Static Water Level On On City Page 110 On Static Water Level On On City Page 110 On Static Water Pack: #2/12 sand On Static Water Pack: #2/12 sand On On City Page 110 On On On City Page 110 On On On City Page 110 On On On City Page 110 On On On City Page 110 On On On On On On On On On On On On On O	Static Water Level Siot Size: 0.01	Static Side Static Water Level Side Size: 0.01 Well Depth: Casing Sticku Revention Static Water Level Old Old Static Water Level Old O	Static S	Static S	Static Static	

Delta Environmental Consultants, Inc.	Project N Logged E Driller: Drilling N Sampling Casing T Siot Size Gravel P	tethod: Method: Method: ype: ack: Elevation	SJ42-26 AP Gregg HSA/AK SS sch 40 F 0.01 #2/12 ss	(7') PVC	Hole Hole Well Well		108' er: 4" 108'	Location Map	Well No: MW-1B Page 6 of 6 ee site map
Completion Statio Water Level	Moisture Content	PID Reading (ppm)	Penetration (blows/6")	Depth (feet)	Recovery 60 Interval eldural	Soil Type			/ DESCRIPTION
	wet	0.7	13 17 19 13 17 20	101 — 102 — 103 — 104 — 105 — 106 — 107 — 108 — 110 — 111 — 112 — 113 — 114 — 115 — 116 — 117 — 118 — 119 —		SC		, 40-60% fl ls up to 1" , 55-65% s	ne to coarse graines sands, diameter) and, 10-20% gravels up to

Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

CLIENT I JOB/SITE LOCATIO PROJEC DRILLEN BORING LOGGEE REVIEWI	E NAME ON T NUMB G METH DIAME O BY ED BY	Sh 42 BER 24 Gr IOD HC TER 8" B.	ell-l 26 I 1-00 egg bllov Jak	orande First St 395 Drilling v-stem tub	auger	e stat	ion ton, California		ATE (YIELD) /ATION ION _372.40 (372.6 t above ft bgs 33. NA	5 ft above m e msi .0 ft (18-Jan	
TPHg (ppm)	BLOW	SAMPLEID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG		DLOGIC DESCRIPTION		DEPTH (ft bgs)	WELL	. DIAGRAM
	•				ML		80% silt, 15% fine gi low to moderate esti	ark brown; soft; damp; 3% c alned sand, 2% gravel; low mated permeability; palm tr	ee roots.	0.5 4.0		
<1.0		MW-2-6.3'		-5-	SM MH		estimated permeable Clavey SILT; (MH);	ellow brown; soft; damp; 2% 5% gravel; low plasticity; m ity. yellow brown; stiff; damp; 36 kined sand, 10% fine to coal ilgh plasticity; low estimated	3% clay,	5.8 6.6		4ª dlam., Schedule 40 PVC
			0	10	SM		permeability. Silty SAND; (SM); y 40% silt, 50% sand, estimated permeabl 15% clays Silty SAND;	ellow brown; dense; damp; 3 8% gravel; no plasticity; hig lity, (SM); yellow brown; stiff; da 50% sand, 5% gravel; low p	2% olay, ph	10.0		
			Ō	 	SM		moderate estimated Sility SAND; (SM); y 40% silt, 50% sand, estimated permeabl @ 12.8' - 10% clay,	permeability. ellow brown; dense; damp; 8% gravel; no plasticity; highlity. 38% silt, 50% sand, 8% graves billty.	2% clay, jh avel;	15.0		
				—15— -	ML		Clayey SILT; (ML);	yellowish brown; stiff; damp; and, 2% gravel; medium pla	; 15% isticity; low	16.5		≺ Portland Type I/II
<1.0		MW-2-16.5'	П	- ·	SM		l clay 25% silt 45%); (SM); yellow brown; damp fine to coarse grained sand,); 5% , 25%	18.2		
		·	0	 20	SM		Clayey Silty SAND; clay, 25% silt, 50%	estimated permeability, (SM); yellow brown; damp; sand, 10% fine gravel.		22,0		•
<1.0		MW-2-21.5'	0		GM	60000000000000000000000000000000000000	Sandy Silty GRAVE clay, 30% slit, 20% to 2".	L; (GM); yellow brown; dan sand, 40% fine to coarse gr	np; 10% ravel; chert			✓ Bentonite Seal ✓ Lonestar Sand
<1.0		MW-2-26.0		-	SM	Paro	30% sill, 40% sand	0; (SM); very dense; damp; , 25% gravel; no to low plas stimated permeability.	5% clay, ticity;	26.0		#3
<1.0	35 50/8 38 50/0	MW-2-30.5	XXX	- -30-	GM	900	very dense; damp;	GRAVEL: (GM); dark yellov 15% clay, 15% silt, 20% sa el; low plasticity; moderate e	estimated	30.0		
100 PM	45 60/8		OXIXO		 -		@ 31.7' - color cha	nge to dark greenish gray; c IVEL; (GC); very dense; wet y, 15% silt, 20% sand, 40%	10	33.5		
	24		Σ	- 35-	<u> </u>	77%	1	Continued Next Page				PAGE 1 OF

Cambria Environmental Technology, Inc. 1144 - 65th St. Calland, CA 94608

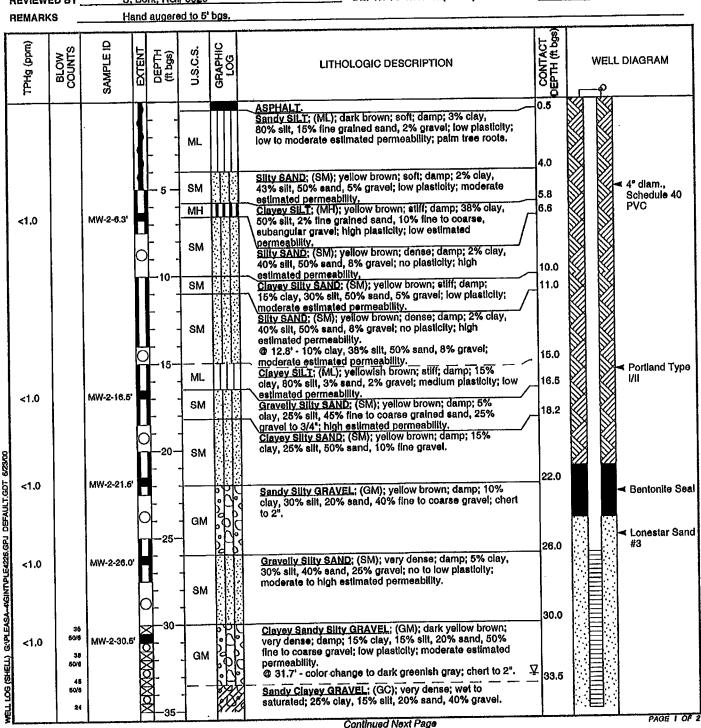
1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

CLIENT NAME Equiva Services LLC

BORING/WELL NAME MW-2

DRILLING STARTED 18-Jan-00

BORING/WELL LOG


PAGE 2 OF 2

Shell-branded service station JOB/SITE NAME DRILLING COMPLETED 19-Jan-00 4228 First Street, Pleasanton, California LOCATION Continued from Previous Page CONTACT DEPTH (ft bgs) GRAPHIC LOG SAMPLE ID TPHg (ppm) BLOW COUNTS U.S.C.S. EXTENT DEPTH (ft bgs) **WELL DIAGRAM** LITHOLOGIC DESCRIPTION Sandy Clavey GRAVEL; (GC); very dense; wet to saturated; 25% clay, 15% slit, 20% sand, 40% gravel. MW-2-35.0' <1.0 4"-diam., 0,020" Slotted Schedule 40 50/6 GС PVC 35 50/6 60/6 40.3 Sandy Gravelly SILT; (ML); hard; saturated; 12% clay, 58% slit, 15% sand, 15% gravel; medium plasticity; low 37 60/8 ML. estimated permeability. 29 43.5 Sandy Clavey SILT; (ML); hard; saturated; 15% clay, 60% silt, 15% sand, 10% gravel. ML 50/8 45.0 Sandy SILT; (ML); hard; saturated; 12% clay, 45% slit, 43% fine grained sand; slight plasticity; low estimated 60/6 ML permeability. 12 48.0 19 27 **Bottom of** Boring @ 48 ft LOG (SHELL) GYPLEASA-AGINTYPLE4226.GPJ DEFAULT.GDT 67300

Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

CLIENT NAME JOB/SITE NAME LOCATION PROJECT NUMBER DRILLER DRILLING METHOD BORING DIAMETER LOGGED BY REVIEWED BY	Equiva Services LLC Shell-branded service station 4226 First Street, Pleasanton, California 241-0395 Gregg Drilling Hollow-stem auger 8" B. Jakub S. Bork, RG# 5620 Hand augered to 5' bgs.	BORING/WELL NAME MW-2 DRILLING STARTED 18-Jan-00 DRILLING COMPLETED 19-Jan-00 WELL DEVELOPMENT DATE (YIELD) 03-Feb-00 GROUND SURFACE ELEVATION 372.65 ft above msi TOP OF CASING ELEVATION 372.40 ft above msi SCREENED INTERVAL 26 to 46 ft bgs DEPTH TO WATER (First Encountered) 33.0 ft (18-Jan-00)
REMARKS		t bgs

PAGE 2 OF 2

Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

CLIENT NAME JOB/SITE NAME

MW-2 **BORING/WELL NAME** Equiva Services LLC 18-Jan-00 **DRILLING STARTED** Shell-branded service station 19-Jan-00 DRILLING COMPLETED

4226 First Street, Pleasanton, California LOCATION Continued from Previous Page CONTACT DEPTH (ft bgs) GRAPHIC LOG TPHg (ppm) SAMPLEID BLOW COUNTS U.S.C.S. EXTENT DEPTH (ft bgs) WELL DIAGRAM LITHOLOGIC DESCRIPTION Sandy Clavey GRAVEL; (GC); very dense; wet to saturated; 25% clay, 15% slit, 20% sand, 40% gravel. MW-2-35.0° <1.0 4"-dlam., 0.020" Slotted Schedule 40 60/6 GC PVC 60/8 60/0 40.3 Sandy Gravelly SILT; (ML); hard; saturated; 12% clay, 58% silt, 15% sand, 15% gravel; medium plasticity; low 37 ML estimated permeability. 50/6 43.5 Sandy Clayey SILT; (ML); hard; saturated; 15% clay, 60% silt, 15% sand, 10% gravel. ML 50/6 45.0 Sandy SiLT; (ML); hard; saturated; 12% clay, 45% slit, 43% fine grained sand; slight plasticity; low estimated permeability. B0/6 ML 12 48.0 Bottom of Boring @ 48 ft WELL LOG (SHELL) GYPLEASA-AGINTY-LEAZZ6.GPJ DEFAULT.GDT 623/00

PAGE 1 OF 2

WELL LOG (SHELL) GIPLEASA MGINTIPLE 4226.GPJ DEFAULT.GDT 672300

Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

LOGGE	E NAM ON OT NUM R IG MET I DIAM D BY	ME S ABER 4 ABER 2 GHOD H ETER 8 B 9	226 41-0 reg ollo	Firet S 0395 g Drillin	ed services, languages auges	Pleas	ation anton, California	DRILLING STARTED DRILLING COMPLETED WELL DEVELOPMENT D. GROUND SURFACE ELE TOP OF CASING ELEVAT SCREENED INTERVAL DEPTH TO WATER (First	ATE (YIELD)_ VATION _ ION <u>375.05</u> 20 to 38 Encountered)	03-F 375.1 ft abov 5 ft bgs 25	eb-00 90 ft above msi 1 6,0 ft (18	ove mal
ТРНд (ррт)	BLOW	SAMPLEID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC	LITH	OLOGIC DESCRIPTION		CONTACT DEPTH (ft bgs)	٧	VELL DIAGRAM
<1.0	14 28 49 26 50/4	MW-3-6.0'	Xo X o	-10-	ML SM	3.2	fine grained sand, 1 low estimated perm Sility SAND; (SM); y 43% silt, 55% sand Clayey Sil.T; (ML); 60% silt, 5% sand.	ellow brown: dense: damp: 2	erate to	5.3 5.8		4" diam., Schedule 40 PVC Portland Type I/II
<1.0	42 50/8	MW-3-15.5'	Σ Q	15 			Gravelly Silty SANE 5% clay, 20% silt, 6 subangular to subro	e; (SM); yellow brown; very d 0% fine grained sand, 15% fi unded gravel.	ense; ne,			■ Bentonite Seal ■ Lonestar Sand
<1.0	13 24 50/6	MW-3-20.5'	X	20 	SM		❷ 22' - slit layer not	ed by driller.				#3
<1.0	12 22 30	MW-3-25,5°	X	25	SM		seturated: 15% clay	(SM); yellow brown; dense; v ,35% silt, 40% fine grained s ngular gravel; low plasticity; i lity.	vet to sand, 10% ow	25.0 30.0		4"-dlam., 0.020" Slotted Schedule 40 PVC
	50/8		8	-30 -35	GM		Sandy Silty GRAVE silt, 25% sand, 40% estimated permeabl	.; (GM); very dense; 5% clay gravel; low plasticity; moderality.	, 30% ale	35.0		

Continued Next Page

PAGE 2 OF 2

Cambria Environmental Technology, Inc. 1144 - 65ih St. Oakland, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

CLIENT NAME	Equiva Services LLC	BORING/WELL NAME	MW-3
JOB/SITE NAME	Shell-branded service station	DRILLING STARTED	18-Jan-00
LOCATION	4226 First Street, Pleasanton, California	DRILLING COMPLETED	19-Jan-00

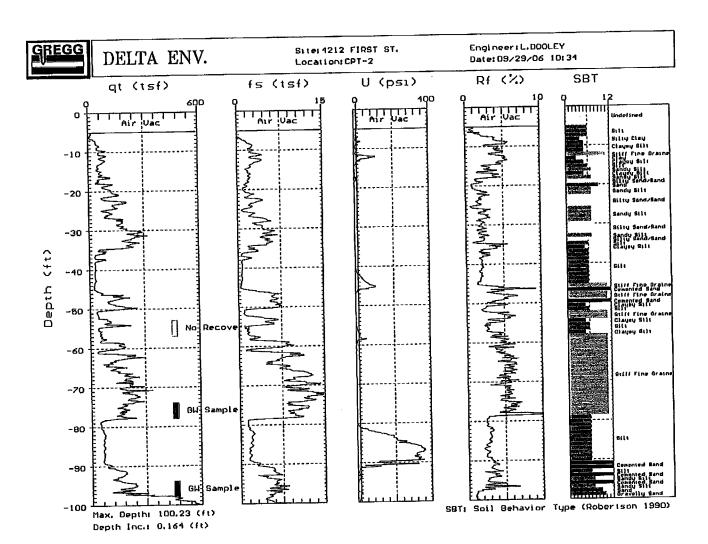
Continued from Previous Page CONTACT DEPTH (ft bgs) GRAPHIC LOG SAMPLE ID TPHg (ppm) BLOW COUNTS U.S.C.S. EXTENT DEPTH (# bgs) **WELL DIAGRAM** LITHOLOGIC DESCRIPTION SILT: (ML); light brown; hard; 10% clay, 80% silt, 10% sand; low plasticity; low estimated permeability. ML ■ Bentonite Seal 40.0 Clayey SILT; (ML); hard; 20% clay, 70% slit, 10% fine grained sand; medium plasticity; low estimated permeability. 15 25 42 ML 41.5 Bottom of Boring @ 41.5 WELL LOG (SHELL) GIPLEASA-AGINTPLE4226.GPJ DEFAULT.GDT 62300

							A.D4.		Shell Oil Products (JS Well No: MW-4
		Project No:	*	SJ42-26F	-1		Cllent:		4226 First Street	Page 1 of 3
		Logged By:	•	AP			Locati		8/24/2006	Location Map
<u> </u>	4	Driller:		Gregg				Orilled:		Essenti mak
Del	[2]	Drilling Me	thod:	HSA/AK	(7')			Diameter:		Please see site map
	LU	Sampling N	Method:	SS			Hole [Depth:	50'	Flease see site map
Environme	ental	Casing Ty	pe:	sch 40 P	VC		Well [Diameter:		
onsultant		Slot Size:		0.01			Well (47'	
Oliganana	o,o,	Gravel Pag	ok:	#2/12 sa	nd		Casin	g Stickup		
			Elevation			North	ing		Easting	
							—i			
ell Completion	Statio	ايدو	PID Reading (ppm)	Penetration (blows/6")	Depth (feet)		nple	Soil Type		
= D	Water	Moisture Content	pa (jeg	MS/	t (\$	Recovery	Interval		Li	THOLOGY / DESCRIPTION
Backiili Casing	Level	🕏 🗟	D G	en Se	e b	8	활	S		
8 8	_		瓦,	<u>a.</u> -		\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	<u>-</u>		411 half Oll book	rook
** _				1 🕈	-			AF	~4" asphalt, ~8" base	el OCK
₩		1 1		1 [1 1—	┼	\vdash			
***]				-		├─┤	 		
₩ I <u> </u>		j i		1	2-	4-				
₩]			و ا	1 -	-	 			
 	1	1		12 =	3-	4	 			
]			air knifed & hand augered			 			
⋙				[돌 다	4-	4—	├			
₩ I —				a gi	` .		 			
 				ا اح	5-		├ —			
 	1	1 1					└			
**** ****		1 1		1	6-		 	1		
 	-				ļ [*] .		ļ			
**** _	7	1		₩	7-		↓	1		
⋙ ──	1				, '			1		
⋙	1				1 8-	_ _		1		
‱ −−	1	1 1			"	-		ļ	an ann with	Gravel: dark brown to orangish brown
⋙				3	- 0	_		_	Clayey SAND With	Graver, dark blown to orangion store
**** —	1	dry	0.1	4	١			sc	loose, 60-70% fine t	o coarse grained sands, 20-30% fines
⋙	-			5	10-		₩	1	10-20% gravels up t	0 1" diameter
⋙	1	1 1		L	10-			_		
⋙	-				144	\Box		}		
‱ —	1				111-					
₩ -	-{				1,0]`\.		
‱	-{				12-	$\neg \neg$	T	7 ×.		144 B 4004
₩₩ -	-			1	1,,	\top	1	CL	Sandy Lean CLAY	orangish brown, very stiff, 5-10%
‱	-			1	13-	_ _	1.	7	lgravels up to 1" dia	meter, 35-45% fine grained sands,
 		1		6			1	1	50-60% fines, low p	lasticity
‱ I <i>-</i>	4	moist	7.4	8	14-			7		
₩ -	-	HIDIST	′."	12				7		
‱	-	1		'-	15-		¥-	1		
‱ .	_		1			+	+	1		
₩ —	4	1			16-	\dashv	+	1		
‱ ∣ .	_				1	-	┪	Ⅎ୕୕		
‱ l_	ᅬ			1	17-	-+-		┤ ``、		
‱ 1‱	_		l	ļ		+		┤ sc`	` 	
****			1		18-		+	4 30		
****	_			_	-			4	Clavey SAND: orai	ngish brown, medium dense, 20-30%
******* '	_	į	1	7	19-		#	-	fines 70-8004 fine	grained sands, trace gravels up to 0.5
XXXXXXI		moist	2	11	20			4	diameter, low plast	loitu
1 R88888										

		Project No	,	SJ42-26F AP	-1		Client: Locati		Shell Oil Products 4226 First Street	บร	Well No: MW-4 Page 2 of 3
_		Logged By Driller:	,,	Ar Gregg				Orilled:	8/24/2006	Location Map	
Delt	-	Drilling Me		HSA/AK	(7 ')		Hole [Diameter:	12"]	
ノビル	la	Sampling w		SS	(, ,		Hole [Depth:	50'	Please	see site map
		Casing Ty	••••	sch 40 P	VC)iameter:	4"		
Environme		Slot Size:	, p	0.01	•-		Well [Depth:	47'		
onsultants	s, inc.	Gravel Pa		#2/12 sa	nd			g Stickur): <u>-</u>		
			Elevation			North	ing		Easting		
Well				86	ct e	Sar	nple	g g		-	
Completion ⊒ छ	Static Water	Moisture Content	Readi pm)	Penetration (blows/6")	Depth (feet)	Şer	屋	Soil Type	Li	THOLOG	Y / DESCRIPTION
Casing	Level	કું છે	PID Reading (ppm)	Per Oct	Ge De	Recovery	Interval	ဖိ			
888								SC	Clayey SAND (cont.)		
▩ ─					21—						
₩					l ^{− .} -	-		,			
⋙ ─				1	22		├ ─	1			
				1] -	-	-	`\			
₩ I _					23—	-	 				
 				_	} -		-	SP-	Poorly Graded SAN	D with C	lay: brown, medium dense,
***				6	24-	-81		SC	5-15% fines, 85-95%	fine grai	ned sands
⋙ I	i	moist	4.1	8		-16	┟╁╴		0-1070 1111001 00 00 1	· · · · · · · · · · · · · · · · · · ·	
₩ 1				9	25-	_	-	}			
⋙ Ⅰ ۔۔۔	1	1	ļ				╁─╴	i			
888		1		1	26		+-	1			
*** _	1	l l			1		╁	\ .			
⋙ I	.]		Ì		27-		+-	136			
‱ 1 _	4				1	┰	╁──	'`			
‱ \	_{				28-	- -	╁┈	1			
‱ ∣ –	4	1	İ	11			A	sc	Clayey SAND with	Gravel: b	prown, medium dense, 20-30
‱	-[majet	7.2	13	29 —			1 -	fines, 10-20% grave	is up to 0	.5" diameter, 50-70% fine to
⋙ ! –	- l	moist	1.2	17				1	coarse grained sand	ds	
‱	_	1	}	''	30 —	一	+	1			
‱ -	-		1	İ	1	\dashv	1	1			
‱ —	-			1	31 —		1	1			
‱	-		1	1	1	\top		1 ``.			
‱ —	-			1	32-	_	1] ``、			
‱ −	-	1	1			7]			
**** —	₩				33-	_1_]			well brown bard 10 200%
)	-├▼-	-		10	34-		1	CL	Sandy lean CLAY	with Gra	vel: brown, hard, 10-20%
%	-	moisi	340	16	34-			_	gravels up to 1" dia	meter, 20	1-30% fine grained sands
 	~			20	35-		J	_	(mostly in small inc	iusions of	lenses), 50-70% fines,
<i> </i> —	-	1		1	351	\perp		_	low plasticity		
-	-		1	12	36-) () () () () () () () () () (1	_			
∰ —	-	mois	t 555	14	i i			_			
::::::::::::::::::::::::::::::::::::::	1			17			_ +	_			
	7	- [3′ =			4			
Pies	1				38-		\bot	4		 _	
₩ =	7	1	1		1			4	/avanalah ba	own war	ey mottling, 15-25% gravels u
₩ 目:	-			13			1	4	(orangish br	OWIT WIGHT	% fine grained sands, 45-65%
※※目 一	7	mols	t 762		1 '			_	fines, low pla	offolian	70 mio granios canadi is sar
00000 ⊟ •			1	20	40		-	1	i tines, low pia	สอนบแ y)	

		Project N	0;	SJ42-261	F-1		Cilent		Shell Oll Product		Well No: MW-4
		Logged B		AP			Locati		4226 First Street		Page 3 of 3
_ 1	4	Driller:	•	Gregg				Orilled:	8/24/2006	Location Ma	ар
Del	12	Drilling M	ethod:	HSA/AK	(7')			Diamete		1	ile man
	LU	Sampling		SS			Hole (Depth:	50'	Please	e see site map
Environme	ental	Casing T		sch 40 P	VC			Diamete			
Consultants		Slot Size:		0.01				Depth:	47'		
0011041141114	,	Gravel Pa	ack:	#2/12 sa	nd			g Stickt	ip: -	4	
			Elevation			North	ing		Easting	<u></u>	
Well Completion	Static Water Level	Moisture Content	PID Reading (ppm)	Penetration (blows/6")	Depth (feet)	Recovery &	Interval of	Soil Type	L	ITHOLO	GY / DESCRIPTION
Backfill Casing	FeAGI	30		8 6	<u>8</u>	8	E		sandy lean CLAY w	laravel (c	cont.)
⋘目		1			ļ -	┼		ŲL,	Salidy leaf CLAT W	glavei (c	
※目		i l			41	+-					
※ 目 _					-	+	 				
※目					42 —	╁					
					43						
					40 -					lan 40 0	20% gravels 20-20% fine
		1		14	44-		1		no grey mott	ing, 10-2	20% gravels, 20-30% fine
	1	moist	106	17	'' .	_	\vdash		grained sand	5, 50-70	76 111105
	1	1		24	45—		*				
₩ 目 _		1			-		├	1			
⋙目 —				1	46-	+-	 	İ			
⋙ 目 −	∇			İ	·		┢	١,			
		1			47 —			``\	,		
		1			48 —	-	-	ÇL	sandy lean CLAY:	orangish	brown, hard, 35-45% fine
				11	1 .		A	"-	grained sands, 55-	35% fine	s, low plasticity
	-	wet	27	17	49—	_	H	1	9		
<i> </i> –	-{	WGC	"	20	'			1			
<i></i>		1	[.	1	50—				Bottom of the borin	g is at 50) feet bg
_	1				51—		<u> </u>]			
	1	1			"		1	1			
]				52-	-	4-	-			
]				1	_	+	4			
	_				53 —	-	+	1			
	_					+	+-	1			
	-				54 —		+	1			
_	-					+	+	1			
	-	-			55—	_	1-	1			
-	-				E0		丁]			
	1	1		1	56-						
	-	-			57 —						
	1	[1	37 =		Ļ	4			
	1	1	1	1	58-	_ _		4			
						4	-	-			
			1		59-	-		-			
						-	+-	-			
	1				60						

	BORING LOG									
NInogen'	•	ilent Shell Oil Produc roje ct Number SJ42	Bo B-	ring N 1	lo.					
idress: 26 1st Street easanton, California gged By: Andy Persio	Drillin Drillin	g Date(s): 3/27/07 g Company: Gregg g Method: HSA g Depth (ft): 35	Boring diameter (in.): 8 Sampling Method: Har Well Depth (ft.): NA Casing Diameter (in.):	d Auger/Split Spoon	Casing Material: NA Screen Interval: NA Screen slot size: NA Sand Pack: NA					
Depth (ft.) Water Level Soil/Rock Graphic Sampled Interval Blow Counts (plows/ft)	Recovery (%)	Soll/Re	ook Visual Description		PID Reading (ppm)	Boring Completion	Depth (ft.)			
)-		ACRUALT: 6 inches cor	icrete, 2-3 inches base ro	nork .	,		L _o			
		SC: Clavey SAND, oran	ge brown, 50-80% fine to 1.5 inches in diameter.				-			
s-]	100%	5,5 - 7 feet bgs: as above	e, clay increasing, more o	compact, moist.	13.3		-5			
. <u>-</u>	83%	CL: Lean CLAY with sa 80% fines, low plasticity	2.4		-1					
	100%	SC: Clayey SAND, orar 40% fines, trace gravel	ngish brown, 80-70% fine s, dry.	to medium sand, 30-	4.8					
,-	67%	SC: Clayey SAND with coarse sand, 30-40% fi dry.	gravel, dark brown to da nes, 10-20% gravels up t	rk gray, 50-80% fine to o 1 inch in diameter,	33.3		- - - -			
5-1	83%	(as above, orangish b 25-30% gravels up to 1	rown, 50-60% fine to coa Inch in diameter, dry)	rse sand, 15-25% fines,	40.6		- - - - -			
,	83%	SG; Clayey SAND, ora 30% fines, 10% gravels	ngish brown, 65-70% fine s up to 0.5 inches in diam	e to coarse sand, 25- neter, dry.	0.2					
6 -	67%	CL: Lean CLAY with se sand, low plasticity, we	and, orangish brown, 76- it.	80% fines, 15-20% fine	0.1					
		Bollom of boring = 35 fe Note: Sampled to 35 fee					- - -			


.

		BORING LOG					
DE LTA	Client Shell Oil Produ Project Number SJ4	ucts US Be 226F1X B-	oring No. 2				
Address: 1226 1st Street Pleasanton, California Logged By: Andy Persio	Orilling Date(s): 3/27/07 Orilling Company: Gregg Orilling Method: HSA Boring Depth (ft): 35	ng Company: Gregg Sampling Method: Hand Auger/Spilt Spoon Ng Method: HSA Well Depth (ft.): NA					
Depth (ft.) Water Level Soil/Rock Graphic Sampled Interval Blow Counts (blows/ft)	Soll/F	Rock Visual Description	PID Reading (ppm) Boring Completion Depth (ft.)				
20 - 25 - 30 - 36 - 36 - 36 - 36 - 36 - 36 - 36	CL: Sandy lean CLAY, medium sand. SC: Clayey SAND, ora 45% fines, trace grave 5.6 · 7 feet bgs: as about (as above, 65-75% fines). CL: Sandy CLAY, oran plasticity, dry. SC: Clayey SAND, ora 40% fines, trace grave 40% fines, trace grave.	we, clay increasing, more compact, dry. ne to medium sand, 25-35% fines, very dense, dry ngish brown, 20-30% fine sand, 70-80% fines, low angish brown, 60-70% fine to coarse sand, 30- els, dry. th gravel, brown to orangish brown, 50-60% fine to fines, 5-25% gravels up to 1 inch in diameter, dry.	0.2				

BORING LOG Boring No. Client Shell Oil Products US DELTA **B-3** SJ4226F1X Project Number Kinogen ... Casing Material: NA Boring diameter (in.): 8 Drilling Date(s): 3/27-28/07 Address: Screen Interval: NA Sampling Method: Hand Auger/Spilt Spoon Drilling Company: Gregg 4226 1st Street Screen slot size: NA Well Depth (ft.): NA Drilling Method: HSA Pleasanton, California Sand Pack: NA Boring Depth (ft): 35 Casing Diameter (in.): NA Logged By: Andy Persio Soll/Rock Visual Description ASPHALT: 6 inches concrete, 1-2 inches base rock. SC: Clayey SAND, orangish brown, 56-65% fine to medium sand, 35-45% fines. 12.5 100% (as above, clay increasing, more compact, dry) (as above, 60-70% fine to medium sand, 30-40% fines, trace gravels, 0.4 100% 10 CL: Sandy lean CLAY, orangish brown, 30-40% fine sand, 60-70% fines, low plasticity, dry. 6.2 100% 15 SC: Clayey SAND, orangish brown, 60-70% fine sand, 30-40% fines, 2.1 dry. 83% 20 (as above, 60-70% fine to coarse sand, 20-30% fines, 10% gravels up to 98.1 67% 0.5 inches in diameter, dry) 25 (as above, 50-60% fine to medium sand, 30-40% fines, 5-10% gravels 636 50% up to 0.5 inches in diameter, dry) 30 SC: Clayey SAND with gravel, dark brown, 50-60% fine to coarse sand, 25-35% fines, 15-26% gravels up to 1 inch in diameter, dry. 2.7 83% 35 35 Bottom of boring = 35 feet bgs. Note: Sampled to 35 feet bgs. Page 1 of 1

BORING LOG Boring No. Client Shell Oil Products US DELTA B-4 Project Number SJ4226F1X XInogen' Casing Material: NA Drilling Date(s): 3/27-28/07 Boring diameter (in.): 8 Address: Screen Interval: NA Sampling Method: Hand Auger/Split Spoon Drilling Company: Gregg 4226 1st Street Screen slot size: NA Well Depth (ft.): NA Pleasanton, California Drilling Method: HSA Sand Pack: NA Casing Diameter (in.): NA Logged By: Andy Persio Boring Depth (fl): 35 Depth (ft.) Soil/Rock Visual Description ASPHALT: 6 inches concrete, 2 inches base rock. SC: Clayey SAND with gravel, dark brown, 50-60% fine to medium sand, 20-30% fines, 10-20% gravels up to 1 inch in diameter, dry. 56.3 100% 5. 13.0 67% (same as above, dry) 10 SC: Clayey SAND, orangish brown, 50-60% fine to medium sand, 40-60% fines, trace gravels, dry. 5,8 87% 16 15 1.2 (as above, 60-70% fine to coarse sand, 30-40% fines, trace gravels, dry) 80% 20 (as above, 55-65% fine to coarse sand, 30-40% fines, 5-15% gravels up 12.3 100% to 1 inch in diameter, dry) 25 SC: Clayey SAND with gravel, orangish brown, 60-60% fine to coarse sand, 25-35% lines, 15-25% gravels up to 1.5 inches in diameter, dry. 18.2 87% 30 46.5 83% (same as above, dry) 35 35 Bottom of boring = 35 feet bgs. Note: Sampled to 35 feet bgs. 40 Page 1 of 1

BORING LOG Boring No. Client Shell Oil Products US DELTA **B-5** Project Number SJ4226F1X XInogen'___ Casing Material: NA Boring diameter (in.): 6 Drilling Date(s): 3/27-28/07 Address: Screen Interval: NA Sampling Method: Hand Auger/Split Spoon Drilling Company: Gregg 4226 1st Street Screen slot size: NA Well Depth (ft.): NA Drilling Method: HSA Pleasanton, California Sand Pack: NA Casing Diameter (in.): NA Boring Depth (ft): 35 Logged By: Andy Persio Depth (ft.) Soil/Rock Visual Description ASPHALT: 6 inches concrete, 2 inches base rock. SC: Clayey SAND with gravel, brown, 50-60% fine to medium sand, 20-30% fines, 10-20% gravels up to 1 Inch in diameter, dry. 100% 2.4 100% 10 (as above, orangish brown, 50-60% fine to medium sand, 35-45% fines, 10 5-10% gravels up to 0.5 Inches in diameter, dry) 0.1 100% CL: Sandy lean CLAY, dark brown to dark gray, 65-75% fines, 25-35% fine sand, trace gravels up to 0.5 inches in diameter, low plasticity, dry. 15 15 6.1 100% 20 (as above, orangish brown, 60-70% fines, 30-40% fine sand, medium 20 plasticity, dry) 7.4 100% SC: Clayey SAND, orangish brown, 55-65% fine to medium sand, 35-25 25 45% fines, dry. 7.4 67% SC: Clayey SAND with gravel, dark gray, 50-60% fine to coarse sand, 30 30 25-35% fines, 10-20% gravels up to 1.5 inches in diameter, dry. (as above, orangish brown, 50-60% fine to coarse sand, 35-45% fines, 687 100% 5-15% gravels up to 1 inch in diameter, moist) 35 35 Bottom of boring = 35 feet bgs. Note: Sampled to 35 feet bgs. 40 Page 1 of 1

ATTACHMENT C

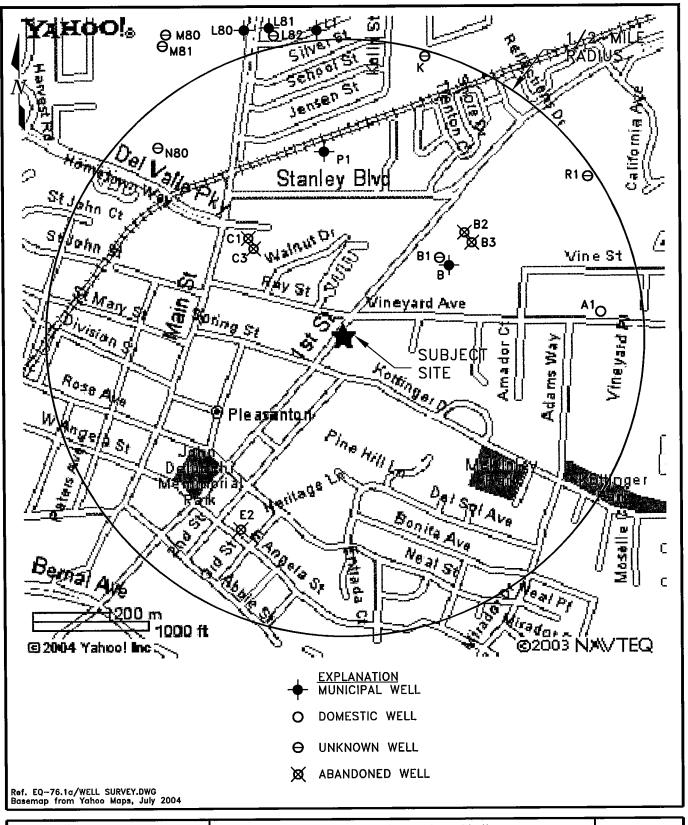
SENSITIVE RECEPTOR, SOIL, AND GROUNDWATER DATA

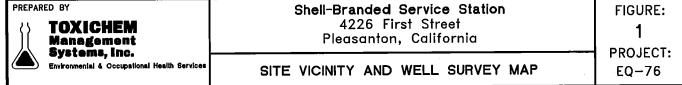
Table 4
Well Location Details
Shell-branded Service Station
4226 First Street, Pleasanton

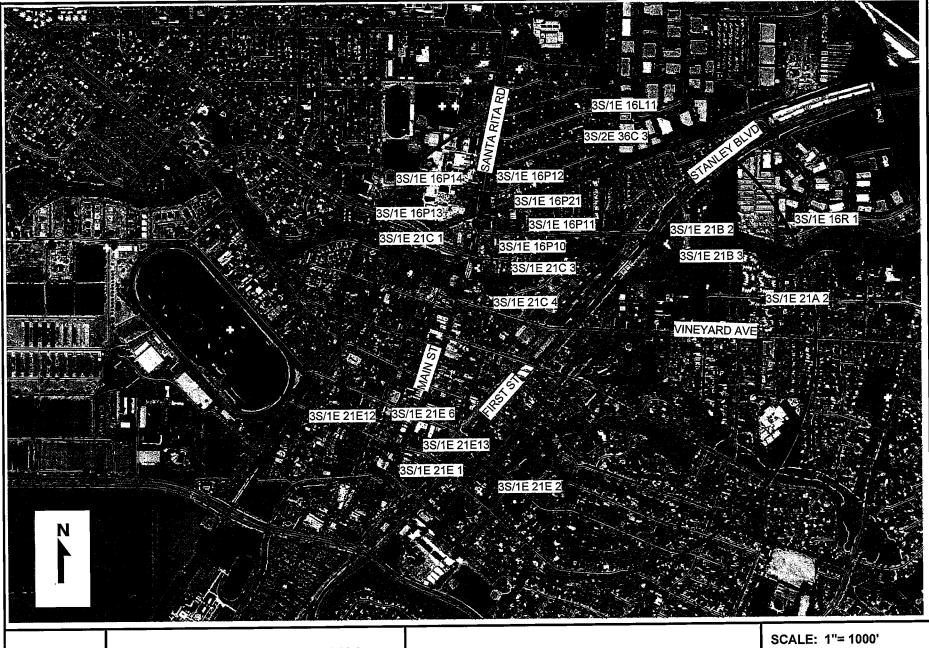
Approximate Distance Total and Direction from Site Source of Date Installed Use (Feet) Depth ft. Well Location Information Map Number Well Number NA >2,200 NNE 133 1916 1500' North of Ball Park (according to log) Κ 3S/1E - 16K DWR 152 1945 Municipal No distances on log, see approximate location on map >2,200 N DWR L1 3S/1E - 16L1 Municipal 158 1936 20'S Blacow South Vine, 150'W of Santa Rita Road >2,400 NNW L80 3S/1E - 16L80 DWR Municipal >2,200 N 205 NA No distances on log, see approximate location on map 3S/1E - 16L81 DWR L81 NA 1912 >2,200 N 45 3S/1E - 16L82 DWR No distances on log, see approximate location on map L82 1912 NA 33 >2,400NNW DWR No distances on log, see approximate location on map M80 3S/1E - 16M80 1912 NA >2,400NNW 37 No distances on log, see approximate location on map M81 3S/1E - 16M81 DWR 1912 NA 178 >1,300 NW No distances on log, see approximate location on map N80 3S/1E - 16N80 DWR 305 1956 Municipal >1,200 N No distances on log, see approximate location on map P1 3S/1E - 16P1 DWR >1,800 E 262 1954 Domestic 3S/1E - 21A1 No distances on log, see approximate location on map DWR Α1 Municipal 900'NE 250 1913 400'E of First St., 500'N of Vineyard 3S/1E - 21B DWR В 796 1960 Test Well 400'E of First St., 500'N of Vineyard 900'NE 3S/1E - 21B1 DWR В1 Abandoned Water Well 30 NA 1200'NE See Map B2 3S/1E - 21B2 Zone 7 Abandoned Water Well 1200'NE 55 NA See Map В3 3S/1E - 21B3 Zone 7 Abandoned water Well 57 NΑ 1,100'NW See Map 3\$/1E - 21C1 Zone 7 C1 Abandoned Water Well NΑ 1,100'NW NA СЗ 3S/1E - 21C3 Zone 7 See Map NΑ Abandoned Water Well 2,000SW 35 See Map E2 3S/1E - 21E2 Zone 7 226 NA Water Production Well 2,600NE See Map R1 3S/1E - 16R1 Zone 7

NA = Information Not Available

DRAFT


Table 5
Well Construction Details
Shell-branded Service Station
4226 First Street, Pleasanton


Map Number	Total Depth	Depth to Water (ft. bgs)	Casing Type	Casing Diameter (in.)	Screen Interval (ft. bgs)	Gravel Pack Interval (ft. bgs)	Annular Seal Depth (ft. bgs)	Annular Seal Material	Well Construction Method	Driller's log Number	Pumping Test Rate (gpm)	Test Duration (hours)
				·						- "		
K	133	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
L1	152	22	12 Gauge	12	56-136	NA	NA	NA	NA	NA	NA	NA
L80	158	NA	NA	NA	48-66 and various to 156'	NA	NA	NA	NA	NA	NA	NA
L81	205	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
L82	45	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
M80	33	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
M81	37	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
N80	178	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
P1	305	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	262	86	3/16 steel	10	110-178	NA	NA	NA	Cable	NA	33	NA
В	250	NA	NA	12	50-60, 105-135, 188-238	NA	NA	NA	NA	NA	NA	NA
B1	796	NA	NA	NA	NA	NA	NA	NA	Rotary	50865	NA	NA
B2	30	NA	NA	8	NA	NA	NA	NA	NA	NA	NA	NA
В3	55	NA	NA	12	NA	NA	NA	NA	NA	NA	NA	NA
C1	57	NA	NA	12	NA	NA	NA	NA	NA	NA	NA	NA
C3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
E2	35	NA	Brick	3'2"	NA	NA	NA	NA	NA	NA	NA	NA
R1	226	NA	NA	10	NA	NA	NA	NA	NA	NA	NA	NA


NA = Information Not Available

ft. bgs = Feet below ground surface

gpm = Gallons per minute

ZONE 7 WATER AGENCY 100 NORTH CANYONS PARKWAY LIVERMORE, CA 94551

WELL LOCATION MAP

RADIUS = 1/2 mi

4226 FIRST ST

H:\FLOOD\REFERALLS\REFERALLS.WOR

Table 1 Soil Analytical Results - Shell-branded Service Station Incident# 98995840 4226 First Street, Pleasanton, California

Sample	TPHg	Benzene	Toluene	Ethylbenzene	Xylene	MTBE
•			- (concentrations	reported in ppm)		
MW-2-6.3'	<1.0	<0.005	<0.005	<0.005	<0.010	<0.05
MW-2-16.5'	<1.0	<0.005	<0.005	<0.005	<0.010	<0.05
MW-2-21.5'	<1.0	<0.005	<0.005	<0.005	<0.010	<0.05
MW-2-26.0'	<1.0	<0.005	<0.005	<0.005	<0.010	<0.05
MW-2-30.5'	<1.0	<0.005	<0.005	< 0.005	< 0.010	<0.05
MW-2-35.0'	<1.0	r<0.005	<0.005	<0.005	<0.010	<0.05
MW-3-5.0'	<1.0	<0.005	<0.005	<0.005	<0.010	<0.05
MW-3-10.5	<1.0	<0.005	<0.005	<0.005	<0.010	<0.05
MW-3-15.5'	<1.0	<0.005	<0.005	<0.005	<0.010	<0.05
MW-3-20.5'	<1.0	<0.005	<0.005	<0.005	<0.010	<0.05
MW-3-25.5	<1.0	<0.005	<0.005	<0.005	<0.010	<0.05

Abbreviations and Notes:

TPHg = Total petroleum hydrocarbons as gasoline MTBE = Methyl tert-Butyl Ether by BPA 8020. ppm = parts per million

Samples collected January 18 and 19, 2000

TABLE 1

CHEMICAL ANALYSIS OF SOIL SAMPLES SHELL SERVICE STATION 4226 FIRST STREET PLEASANTON, CALIFORNIA

Concentrations in mg/kg (parts per million)

Box	ing	Depth (ft)	TPH	Benzene	Toluene	Ethylbenzene	Xylene
SE	3-1	15	4.2	ND	ND	ND	ND
SE	3-1	35	18	ND	ND	ND	ND
SB	-1	50	ND	ND	ND	ND	ND
SB	-2	15	ND	ND	ND	ND	ND
SB	-2	30	7.2	ND	0.17	ND	ND
SB	-3	10	ND	ND	ND	ND	ND
SB-	.3	30	ND	ND	ND	ND	ND
WA-	.1	30	380	2,2	2.7	5.3	32
WA-	1	35	290	1.8	0.35	0.24	1.5
WA-	1	40	ND	ND	ND	ND	ND
WA-	1	50	ND	ND	ND	ND	ND
		···			,		
Detecti	on L	imits:	1.0	0,050	0.10	0.10	0.10

Notes:

- 1) TPH Total Petroleum Hydrocarbons (gasoline range) analyzed by EPA Methods 5030/8015
- 2) Benzene, Toluene, Ethylbenzene and Xylene analyzed by EPA Method 8020
- 3) ND- Not Detected at detection limit shown
- 4) SB-1, SB-2 and SB-3 samples collected March 5, 1990 WA-1 samples collected March 6, 1990

TABLE 1

ANALYTICAL RESULTS OF SOIL SAMPLES

Concentrations in mg/kg (parts per million)

SHELL OIL COMPANY **4226 FIRST STREET** PLEASANTON, CALIFORNIA

Boring	TPH	Benzene ·	Toluene	Ethylbenzene	Xylenes
SB4-15	N.D.	N.D.	. N.D.	N.D.	N.D.
SB4-35	N.D.	0.023	0.0071	N.D.	0.0055
SB4-50	N.D.	0.030	0.0059	N.D.	N.D.
SB5-35	820	65	3.7	6.5	65
SB5-40	N.D.	N.D.	N.D.	N.D.	N.D.
SB5-50	N.D.	N.D.	N.D.	N.D.	N.D.
DETECTION LIMITS:	1.0	0.0050	0.0050	0.0050	0.0050

NOTES:

3) ND - Not detected.

TPH - Total Petroleum Hydrocarbons (Gasoline Range) analyzed by EPA Methods 5030/8015.
 Benzene, Toluene, Ethylbenzene and Xylene analyzed by EPA Method 8020.

Table 1 Soil Analytical Results - Shell-branded Service Station Incident# 98995840 4226 First Street, Pleasanton, California

Sample	TPHg	Benzene	Toluene	Ethyl Benzene	Xylene	MTBE
	4		(ppm)	···	
						
SB-6-15,5'	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	< 0.025
SB-6-19.5'	<1.0	< 0.0050	<0.0050	<0.0050	<0.0050	<0.025
SB-6-25.0'	<1.0	<0.0050	<0.0050	<0.0050	< 0.0050	<0.025
SB-6-30.0'	<1.0	<0.0050	<0.0050	<0.0050	< 0.0050	< 0.025
SB-6-35.0'	<1.0	0.0069	<0.0050	<0.0050	<0.0050	< 0.025
SB-6-40.0'	<1.0	<0.0050	0.28	< 0.0050	<0.0050	< 0.025
SB-6-45.0'	<1.0	0.1	<0.0050	<0.0050	<0.0050	<0.025
SB-7-15.0'	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.025
SB-7-19.5'	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	
SB-7-24.5'	<1.0	<0.0050	<0.0050	<0.0050		<0.025
SB-7-29.3'	<1.0	<0.0050	<0.0050		<0,0050	<0.025
SB-7-28.3				<0.0050	<0.0050	<0.025
	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.025
SB-7-40.0'	83	<0.0050	0.37	0.26	0.26	<0.025
SB-7-44.5'	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.025
SB-7-69.5'	<1.0	<0.0050	<0.0050	<0.0050	< 0.0050	<0.050
SB-7-84.5'	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.050

Abbreviations and Notes:

TPHg ≈ Total petroleum hydrocarbons as gasoline

MTBE = Methyl tert-Butyl Ether

ppm = parts per million

Samples collected April 7 through 9, 1999

Table 2 Summary of Soil Analytical Data Shell Service Station

4226 First Street, Pleasanton, CA

Sample Designation	Date Sampled	Depth (feet)		TPH-G (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Xylene and Ethyl-benzene (mg/kg)
					0.4	-0.4	-0.4
S-B	9/27/1985	3.5 to 5	*	2	<0.1	<0.1	<0.4
S-B	9/27/1985	7 to 8.5	*	460	<2.0	2	32
S-B	9/27/1985	10.5 to 12		610	<2.0	3.5	63
S-B	9/27/1985	14 to 15.5		1,300	<2.5	9.6	260
S-B	9/27/1985	19 to 20.5		<2	<0.1	<0.1	<0.4
S-B S-C	9/27/1985	10.5 to 12		<2	<0.1	<0.1	<0.4
S-D	9/27/1985	10.5 to 12		<2	<0.1	<0.1	<0.4
			<u>i </u>			!	

Notes:

mg/kg = milligrams per kilogram
TPH-G = Total petroleum hydrocarbons as gasoline
* Sample of gravel from UST pit

Table 2 Summary of Soil Analytical Data Shell Service Station 4226 First Street, Pleasanton, CA

Sample	Date Sempled	Depth (foot)	TPH-G		Toluene	Ethyl-benzene (mg/kg)	Xylene (mg/kg)	MTBE (mg/kg)	TBA (mg/kg)
Designation	Sampled	(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
MW-1B@65'	8/23/2006	65	<2.5	<0.025	<0.025	<0.025	<0.050	<0.025	<0.250
MW-1B@69.5'	8/23/2006	69.5	<2.5	<0.025	<0.025	<0.025	<0.050	<0.025	<0.250
MW-1B@95'	8/23/2006	95	<2.5	<0.025	<0.025	<0.025	<0.050	<0.025	<0.250
MW-4@35'	8/24/2006	35	51	<0.025	<0.025	<0.025	<0.050	0.17	<0.250
MW-4@36.5'	8/24/2006	36.5	380	<0.025	<0.025	1.2	1.6	0.092	<0.250
MW-4@39.5'	8/24/2006	39.5	6.7	<0.025.	<0.025	0.05	0.064	0.038	<0.250
MW-4@44.5'	8/24/2006	44.5	<2.5	<0.025	<0.025	<0.025	<0.050	0.59	<0.250
MW-4@50'	8/24/2006	50	<2.5	<0.025	<0.025	<0.025 .	<0.050	0.56,	<0.250

Notes:

mg/kg = milligrams per kilogram TPH-G = Total petroleum hydrocarbons as gasoline MTBE = Methyl tert-butyl ether

Pleasanton, CA

							MTBE	MTBE						Depth to	GW
Well ID	Date	TPPH	В	Т	E	X	8020	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
		-													
MW-1	6/16/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	371.20	37.81	333.39
MW-1	6/30/1999	89.0	5.89	<0.500	<0.500	0.652	<5.00	NA	NA	NA	NA	NA	371.20	33.65	337.55
MW-1	9/24/1999	1,560	473	<10.0	<10.0	22.8	<2.50	NA	NA	NA	NA	NA	371.20	37.04	334.16
MVV-1	12/8/1999	1,020	375	<5.00	<5.00	15.2	<50.0	NA	NA	NA	NA	NA	371.20	36.79	334.41
MVV-1	2/10/2000	523	106	<5.00	<5.00	31.8	2.9	NA	NA	NA	NA	NA_	371.20	34.90	336.30
MW-1	5/17/2000	<50.0	<0.500	<0.500	<0.500	<0.500	37	29.5	NA	NA	NA	NA	371.20	32.55	338.65
MW-1	8/3/2000	808	290	<2.50	<2.50	8.9	<12.5	NA	NA	NA	NA_	NA _	371.20	39.13	332.07
MW-1	10/31/2000	507	250	0.962	<0.500	23.5	3.76	NA	NA	NA	NA	NA	371.20	37.91	333.29
MW-1	3/1/2001	<50.0	<0.500	<0.500	<0.500	<0.500	74.6	NA _	NA	NA	NA	NA	371.20	39.60	331.60
MVV-1	5/30/2001	780	280	<2.0	<2.0	11	NA	<2.0	NA	NA	NA	NA	371.20	39.53	331.67
MVV-1	8/2/2001	1,900	580	<2.5	<2.5	12	NA	<25	NA	NA	NA	NA	371.20	39.61	331.59
MW-1	12/6/2001	840	190	<0.50	<0.50	13	NA	<5.0	NA _	NA	NA	NA	371.20	39.63	331.57
MVV-1	2/5/2002	2,700	650	<2.5	<2.5	7.2	NA	<25	NA	NA	NA	NA	371.20_	35.53	335.67
MW-1	6/17/2002	2,500	550	<2.0	<2.0	5.9	NA	<20	NA	NA	NA	NA	371.20	39.29	331.91
MW-1	7/25/2002	690	130	<0.50	<0.50	4.4	NA	18	NA	NA	NA	NA_	371.20	39.39	331.81
MW-1	11/14/2002	400	31	<0.50	<0.50	2.7	NA	27	NA	NA	NA _	NA	371.20	40.00	331.20
MW-1	2/12/2003	840	0.85	<0.50	<0.50	<0.50	NA	40	NA	NA_	NA	NA	371.20	32.92	338.28
MW-1	5/14/2003	680	190	<2.5	<2.5	<5.0	NA	95	NA	NA	NA	NA	371.20	32.57	338.63
MW-1	7/29/2003	870	190	<2.5	<2.5	<5.0	NA	150	NA	NA	NA	NA	371.20	33.82	337.38
MW-1	11/19/2003	<200	14	<2.0	<2.0	<4.0	NA	230	NA	NA _	NA	NA	371.20	38.28	332.92
MW-1	2/19/2004	58 d	11	<0.50	<0.50	<1.0	NA	85	NA	NA	NA	NA	371.20	36.93	334.27
. MW-1	5/3/2004	670	310	<2.5	<2.5	<5.0	NA	420	NA	NA_	NA	NA	371.20	32.70	338.50
MW-1	8/24/2004	430 d	34	<2.5	<2.5	<5.0	NA	690	NA	NA	NA	NA	371.20	34.66	336.54
MW-1	11/15/2004	<250	29	<2.5	<2.5	<5.0	NA	470	NA	NA	NA	NA	371.20	38.27	332.93
MW-1	2/2/2005	540 e	87	<2.5	<2.5	<5.0	NA	700	NA	NA	NA	NA_	371.20	32.02	339.18
MW-1	5/5/2005	460 e	88	<2.5	<2.5	<5.0	NA	300	NA	NA	NA	NA	371.20	36.82	334.38
MW-1	8/5/2005	910	230	<2.5	<2.5	<5.0	NA	480	NA	NA	NA	NA	371.20	33.35	337.85
MW-1	11/22/2005	1,760	27	<0.500	<0.500	1	NA	1,160	NA	NA	NA_	NA	371.20	33.42	337.78
MW-1	2/7/2006	4,620	225	<0.500	<0.500	<0.500	NA	1,480	NA	NA	NA	NA	371.20	31.63	339.57

							10010011	ton, cr							
							MTBE	MTBE	-				-	Depth to	GW
Well ID	Date	TPPH	В	Т	E	Х	8020	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
		<u> </u>	<u> </u>												
MW-1	5/16/2006	1,100	130	<0.50	2	2	NA	1,600	NA	NA	NA	NA_	371.20	31.16	340.04
MW-1	8/21/2006	2,700	86	<0.500	1	1	NA	1,960	NA	NA	NA	NA _	371.20	33.07	338.13
MW-1	11/14/2006	1,400 g	30	<25	<25	<25	NA	2,100	<25	<25	<25	<1,000	371.20	33.73	337.47
MVV-1	2/1/2007	800	21	<0.50	<0.50	<1.0	NA	2,300	NA	NA	NA	NA	371.20	33.02	338.18
MW-1	6/1/2007	1,400 j,k	68	<20	<20	4.41	NA	2,200	NA	NA	NA	NA	371.20	32.87	338,33
MW-1	8/22/2007	250 j	20	<20	<20	<20	NA	3,100	NA	NA	NA	1,500	371.20	34.64	336.56
MW-1	11/26/2007	1,800 j	33	<20	<20	<20	NA	3,100	<40	<40	<40	930	371.20	35.59	335.61
MW-1	2/19/2008	1,800 j	33	<20	<20	<20	NA	3,700	NA	NA	NA	1,700	371.20	31.05	340.15
MVV-1	5/23/2008	3,700	100	<25	<25	<25	NA	3,100	NA	NA	NA	1,300	371.20	31.80	339.40
MW-1	8/7/2008	4,200	33	<25	<25	<25	NA	3,500	NA	NA	NA	<250	371.20	33.03	338.17
MW-1	12/3/2008	3,400	34	<25	<25	<25	NA	3,200	NA	NA	NA	980	371,20	35.19	336.01
_		·													
MW-1B	9/21/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	371.67	76.94	294.73
MW-1B	9/28/2006	<50	<0.50	<0.50	<0.50	<0.50	NA	21	NA	NA _	NA	<20	371.67	77.15	294.52
MW-1B	11/14/2006	320 g	<5.0	<5.0	<5.0	<5.0	NA	310	<5.0	<5.0	<5.0	<200	371.67	69.38	302.29
MW-1B	2/1/2007	77	0.53	<0.50	<0.50	<1.0	NA	150	NA	NA	NA	NA .	371.67	60.92	310.75
MW-1B	6/1/2007	<50 j,k	0.25 l	<1.0	<1.0	<1.0	NA	74	NA	NA	NA	NA	371.67	61.07	310.60
MW-1B	8/22/2007	<50 j	0.25 1	<1.0	<1.0	<1.0	NA	35	NA	NA	NA	7.11	371.67	77.54	294.13
MW-1B	11/26/2007	<50 j	<0.50	<1.0	<1.0	<1.0	NA	1.7	<2.0	<2.0	<2.0	<10	371.67	68.50	303.17
MW-1B	2/19/2008	65 j	2.6	4.2	<1.0	1.1	NA	58	NA	NA	NA	<10	371.67	57.21	314.46
MW-1B	5/23/2008	<50	<0.50	<1.0	<1.0	<1.0	NA	3.6	NA	NA	NA	<10	371.67	57.53	314.14
MW-1B	8/7/2008	<50	<0.50	<1.0	<1.0	<1.0	NA	1,1	NA	NA	NA	<10	371.67	72.51	299.16
MW-1B	12/3/2008	<50	<0.50	<1.0	<1.0	<1.0	NA	3.4	NA	NA	NA	<10	371.67	80.84	290.83
												_			
MW-2	2/3/2000	NA	NA	NA	NA _	NA	NA	NA	NA_	NA	NA	NA	372.40	32.65	339.75
MW-2	2/7/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	372.40	35.51	336.89
MW-2	2/10/2000	<50.0	<0.500	<0.500	<0.500	<0.500	2.61	NA _	NA	NA	NA	NA_	372.40	36.62	335.78
MW-2	5/17/2000	120	4.09	<0.500	<0.500	<0.500	29	NA_	NA	NA	NA	NA_	372.40	32.14	340.26
MW-2	8/3/2000	<50.0	0.692	<0.500	<0.500	<0.500	40.5	36.6b	NA	NA	NA	NA	372.40	32.42	339.98

Pleasanton, CA

							MTBE	MTBE						Depth to	GW
Well ID	Date	TPPH	В	Т	E	X	8020	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
MW-2	10/31/2000	<50.0	<0.500	<0.500	<0.500	<0.500_	57.4	44.8c	NA	NA_	NA	NA	372.40	33.02	339.38
MW-2	3/1/2001	173	1.64	1.65	2.86	3.97	127	167	NA	NA	NA	NA	372.40	32.54	339.86
MW-2	5/30/2001	<50	<0.50	<0.50	<0.50	<0.50	NA	170	NA	NA	NA.	NA	372.40	32.42	339.98
MW-2	8/2/2001	<50	<0.50	<0.50	<0.50	<0.50	NĄ	160	NA	NA	<u>N</u> A	NA	372.40	32.55	339.85
MW-2	12/6/2001	<50	<0.50	<0.50	<0.50	<0.50	NA	170	NA	NA _	NA	NA	372.40	33.15	339.25
MW-2	2/5/2002	<50	0.72	<0.50	<0.50	1.7	NA_	170	NA	NA	NA_	NA _	372.40	32.29	340.11
MW-2	6/17/2002	<50	<0.50	<0.50	<0.50	<0.50	NA	260	NA	NA	NA NA	NA	372.40	32.63	339.77
MW-2	7/25/2002	<50	<0.50	<0.50	<0.50	<0.50	NA	280	NA_	NA	NA NA	NA	372.40	32.80	339.60
MW-2	11/14/2002	120	13	9	3.8	14	ŅΑ	430	NA	NA NA	NA	NA	372.40	33.31	339.09
MW-2	2/12/2003	<100	<1.0	<1.0	<1.0	<1.0	NA	430	NA_	NA	NA	NA	372.40	32.15	340.25
MW-2	5/14/2003	<250	<2.5	<2.5	<2.5	<5.0	NA	470	NA	NA _	NA	NA	372.40	32.01	340.39
MW-2	7/29/2003	<250	<2.5	<2.5	<2.5	<5.0	NA	670	NA	NA	NA	NA	372.40	32.51	339.89
MW-2	11/19/2003	<50	<0.50	<0.50	<0.50	<1.0	NA	54	NA	NA	NA	NA	372.40	33.83	338.57
MW-2	2/19/2004	65	<0.50	3.4	1.4	6.5	NA	8.2	NA	NA	NA_	NA	372.40	32.68	339.72
MW-2	5/3/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	5.2	NA	_NA	NA	NA	372.40	32.07	340.33
MW-2	8/24/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	2.7	NA	NA	NA .	NA	372.40	32.44	339.96
MW-2	11/15/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	1.3	NA	NA	NA	NA	372.40	32.95	339.45
MW-2	2/2/2005	<50	<0.50	<0.50	<0.50	<1.0	NA_	24	NA	NA	NA_	NA _	372.40	31.94	340.46
MW-2	5/5/2005	72 f	<0.50	<0.50	<0.50	<1.0	NA	4.9	NA	NA	NA	NA	372.40	31.91	340.49
MW-2	8/5/2005	<50	<0.50	<0.50	<0.50	<1.0	NA	16	NA	NA	NA _	NA	372.40	32.15	340.25
MW-2	11/22/2005	840	1	<0.500	<0.500	1	NA	556	NA	NA	NA	NA	372.40	32.31	340.09
MW-2	2/7/2006	3,550	<0.500	<0.500	<0.500	<0.500	NA	2,500	NA	NA	NA	NA	372.40	31.70	340.70
MW-2	5/16/2006	1,400	<5.0	<5.0	<5.0	<10	NA	1,700	NA_	NA	NA	NA	372.40	31.38	341.02
MW-2	8/21/2006	1,910	<0.500	<0.500	<0.500	<0.500	NA	2,590	NA	NA	NA	NA	372.40	33.29	339.11
MW-2	11/14/2006	2,300 g	<25	<25	<25	<25	NA	2,500	<25	<25	<25	<1,000	372.40	32.67	339.73
MW-2	2/1/2007	670	<0.50	<0.50	<0.50	<1.0	NA	2,000	NA	NA	NA	NA	372.40	32.13	340.27
MW-2	6/1/2007	500 j,k	<10	<20	<20	<20	NA	2,000	NA	NA	NA_	NA	372.40	32.14	340.26
MW-2	8/22/2007	100 j,k	<10	<20	<20	<20	NA	2,400	NA	NA	NA	120	372.40	32.93	339.47
MW-2	11/26/2007	1,600 j,k	<10	<20	<20	<20	NA	2,900	<40	<40	<40	<200	372.40	33.44	338.96

							MTBE	MTBE						Depth to	GW
Well ID	Date	TPPH	В	т	E	Х	8020	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
	2415	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
<u> </u>		 													
MW-2	2/19/2008	1,300 j,k	<10	<20	<20	<20	NA	3,300	NA	NA	NA	<200	372.40	31.18	341.22
MW-2	5/23/2008	1,900	<12	<25	<25	<25	NA	1,700	ŅΑ	NA	NA	<250	372.40	31.44	340.96
MW-2	8/7/2008	1,700	<10	<20	<20	<20	NA	1,300	NA	NA_	NA	<200	372.40	31.94	340.46
MW-2	12/3/2008	3,000	<10	<20	<20	<20	NA	2,900	NA	NA	NA	<200	372.40	32.53	339.87
MW-3	2/3/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	<u>NA</u>	NA	375.05	32.06	342.99
MW-3	2/7/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	375.05	32.57	342.48
MVV-3	2/10/2000	180	5.12	<0.500	<0.500	0.714	26.8	21.5a	NA	NA	NA	NA	375.05	32.77	342.28
MW-3	5/17/2000	1,360	414	<5.00	<5.00	17.6	<25.0	NA	NA	NA	NA	NA	375.05	31.00	344.05
MW-3	8/3/2000	<50.0	0.536	<0.500	<0.500	<0.500	22	NA	NA	NA	NA	NA	375.05	31.03	344.02
MW-3	10/31/2000	<50.0	<0.500	<0.500	<0.500	<0.500	31.1	NA	NA	NA	NA	NA	375.05	31.28	343.77
MW-3	3/1/2001	384	172	0.815	<0.500	8	5.16	NA	NA	NA	NA	NA	375.05	31.21	343.84
MW-3	5/30/2001	<50	<0.50	<0.50	<0.50	<0.50	NA	110	NA	NA	NA	NA	375.05	31.02	344.03
MW-3	8/2/2001	<50	<0.50	<0.50	<0.50	<0.50	NA _	93	NA_	NA_	NA_	NA_	375.05	30.94	344.11
MW-3	12/6/2001	110	<0.50	<0.50	<0.50	2.3	NA	180	NA	NA	NA	NA	375.05	31.28	343.77
MW-3	2/5/2002	<50	0.89	0.6	<0.50	2.1	NA	130	NA	NA	NA	NA	375.05	31.12	343.93
MW-3	6/17/2002	<50	<0.50	<0.50	<0.50	<0.50	NA	72	NA	NA_	NA _	NA _	375.05	31.21	343.84
MW-3	7/25/2002	<50	<0.50	<0.50	<0.50	<0.50	NA	81	NA	NA NA	NA	NA	375.05	30.96	344.09
MW-3	11/14/2002	<50	<0.50	<0.50	<0.50	<0.50	NA	60	NA	NA	NA	NA	375.05	31.44	343.61
MW-3	2/12/2003	<50	<0.50	<0.50	<0.50	<0.50	NA	43	NA	NA	NA	ŅΑ	375.05	31.28	343.77
MW-3	5/14/2003	<50	<0.50	<0.50	<0.50	<1.0	NA	24	NA	NA_	NA _	NA	375.05	31.20	343.85
MW-3	7/29/2003	<50	<0.50	<0.50	<0.50	<1.0	NA	21	NA	NA	NA	<u>NA</u>	375.05	31.29	343.76
MW-3	11/19/2003	<50	<0.50	<0.50	<0.50	<1.0	NA	8.2	NA	NA	NA	NA	375.05	31.86	343.19
MW-3	2/19/2004	81	0.67	4.4	1.8	8.6	NA	13	NA	NA	NA	NA	375.05	31.66	343.39
MW-3	5/3/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	13	NA	NA	NA	NA	375.05	31.72	343.33
MW-3	8/24/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	10	NA	NA	NA.	ŅΑ	375.05	32.09	342.96
MW-3	11/15/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	6.6	NA	NA_	NA	NA	375.05	31.50	343.55
MW-3	2/2/2005	<50	<0.50	<0.50	<0.50	<1.0	NA	3.1	NA	NA	<u>NA</u>	NA	375.05	31.28	343.77
MW-3	5/5/2005	<50	<0.50	<0.50	<0.50	<1.0	NA	2.3	NA	NA	NA.	NA_	375.05	31.42	343.63

									<u> </u>						
							MTBE	MTBE						Depth to	GW
Well ID	Date	TPPH	В	T	E	Х	8020	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
MW-3	8/5/2005	<50	<0.50	<0.50	<0.50	<1.0	NA	2.4	NA	NA_	NA	NA	375.05	31.35	343.70
MW-3	11/22/2005	<50	<0.500	<0.500	<0.500	<0.500	NA	3.84	NA_	NA	NA	NA	375.05	31.98	343.07
MW-3	2/7/2006	<50.0	<0.500	<0.500	<0.500	<0.500	NA	<0.500	NA _	NA	NA_	NA	375.05	31.24	343.81
MW-3	5/16/2006	<50	<0.50	<0.50	<0.50	<1.0	NA	4.5	NA	NA	NA	NA	375.05	31.37	343.68
MW-3	8/21/2006	<50.0	<0.500	<0.500	<0.500	<0.500	NA	4.04	NA	NA	NA_	NA_	375 <u>.</u> 05	31.95	343.10
-	11/14/2006	<50	<0.50	<0.50	<0.50	<0.50	NA	3.8	<0.50	<0.50	<0.50	<20	375.05	32.24	342.81
MW-3	2/1/2007		<0.50	<0.50	<0.50	<1.0	NA	2.8	NA	NA	NA	NA	375.05	32.17	342.88
MW-3	6/1/2007	<50 j	<0.50	<1.0	<1.0	<1.0	NA	3.1	NA	NA	NA_	NA_	37 <u>5.05</u>	31.86	343.19
MW-3	8/22/2007	<50 j	<0.50	<1.0	<1.0	<1.0	NA	4.6	NA	NA	NA	<10	375.05	32.18	342.87
	11/26/2007	<50 j	<0.50	<1.0	<1.0	<1.0	NA	3.5	<2.0	<2.0	<2.0	<10	375.05	32.69	342.36
MW-3	2/19/2008	<50 j	<0.50	1.2	<1.0	<1.0	NA	2.6	NA	NA	NA	<10	375.05	30.94	344.11
MW-3	5/23/2008	<50	<0.50	<1.0	<1.0	<1.0	NA_	3.6	NA	NA	NA	<10	375.05	31.45	343.60
MW-3	8/7/2008	<50	<0.50	<1.0	<1.0	<1.0	NA	3.0	NA	NA	NA	<10	375.05	31.40	343.65
MW-3	12/3/2008	<50	<0.50	<1.0	<1.0	<1.0	NA	2.1	NA	NA	NA	<10	375.05	32.12	342.93
<u> </u>				<u> </u>	_										
MW-4	9/21/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA _	372.78	31.58	341.20
MW-4	9/28/2006	11,000	<250	<250	<250	<250	NA	13,000	NA	NA	NA	<10,000	372.78	31.57	341.21
	11/14/2006	30,000	<250	<250	<250	<250 h,i	NA	14,000	<250	<250	<250	<10,000	372.78	32.11	340.67
MW-4	2/1/2007	6,300	50	<5.0	19	120	NA	14,000	NA	NA_	NA	NA	372.78	33.23	339.55
MW-4	6/1/2007	8,200 j	52	<25	26	150	NA	11,000	NA	NA	NA_	NA	372.78	31.57	341.21
MW-4	8/22/2007	NA	NA	NA	NA	NA	NA	NA _	NA_	NA	NA	NA	372.78	33.40	339.38
	11/26/2007	12,000 j	71	<100	<100	<100	NA	20,000	<200	<200	<200	<1,000	372.78	34.74	338.04
MW-4	2/19/2008	13,000 j	<100	<200	<200	<200	NA	18,000	NA	NA	NA	2,900	372.78	29.70	343.08
MW-4	5/23/2008	21,000	<100	<200	<200	<200	NA	16,000	NA	NA	NA	<2,000	372.78	31.67	341.11
MW-4	8/7/2008	27,000	<100	<200	<200	<200	NA	21,000	NA	NA	NA	<2,000	372.78	31.90	340.88
MW-4	12/3/2008	20,000	19	<25	<25	29	NA	21,000	NA	NA	NA	2,500	372.78	34.32	338.46
.,														.,	
TB-1	2/12/2003	Well inacce	essible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TB-1	2/28/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA _	NA	12.54	NA

Pleasanton, CA

							MTBE	MTBE						Depth to	GW
Well ID	Date	ТРРН	В	Т	E	X	8020	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
			•												
TB-1	5/14/2003	<50	<0.50	<0.50	<0.50	<1.0	NA	<5.0	NA	NA	NA	NA	NA	12.31	NA
TB-2	2/12/2003	Well inacce	essible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TB-2	2/28/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	12.56	NA NA
TB-2	5/14/2003	Insufficient	water	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	12.54	NA
		- '													
TB-3	2/12/2003	Well dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TB-3	2/28/2003	Well dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TB-3	5/14/2003	Well dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		<u> </u>				•									
TB-4	2/12/2003	Well dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TB-4	2/28/2003	Well dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA _
TB-4	5/14/2003	Well dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Pleasanton, CA

							MTBE	MTBE						Depth to	GW
Well ID	Date	TPPH	В	Т	E	X	8020	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)

Abbreviations:

TPPH = Total petroleum hydrocarbons as gasoline by EPA Method 8260B; prior to May 30, 2001, analyzed by EPA Method 8015.

BTEX = Benzene, toluene, ethylbenzene, xylenes by EPA Method 8260B; prior to May 30, 2001, analyzed by EPA Method 8020.

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether, analyzed by EPA Method 8260B

ETBE = Ethyl tertiary butyl ether, analyzed by EPA Method 8260B

TAME = Tertiary amyl methyl ether, analyzed by EPA Method 8260B

TBA = Tertiary butyl alcohol, analyzed by EPA Method 8260B

TOC = Top of Casing Elevation

GW = Groundwater

ug/L = Parts per billion

MSL = Mean sea level

ft. = Feet

<n = Below detection limit

NA = Not applicable

							MTBE	MTBE						Depth to	GW
Well ID	Date	TPPH (ug/L)	B (ug/L)	T (ug/L)	E (ug/L)	X (ug/L)	8020 (ug/L)	8260 (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	TOC (MSL)	Water _(ft.)	Elevation (MSL)

Pleasanton, CA

Notes:

- a = Sample was analyzed outside of the EPA recommended holding time.
- b = Concentration is an estimate value above the linear quantitation range.
- c = The result reported was generated out of time. The sample was originally run within hold time, but needed to be re-analyzed.
- d = Sample contains discrete peak in addition to gasoline.
- e = Quantity of unknown hydrocarbon(s) in sample based on gasoline.
- f = The concentration reported reflect(s) individual or discrete unidentified peaks not matching a typical fuel pattern.
- g = The result for this hydrocarbon is elevated due to the presence of single analyte peak(s) in the quantitation range.
- h = Sample was originally analyzed with a positive result, however the reanalysis did not confirm the presence of the analyte.
- i = Confirmatory analysis was past holding time.
- i = Analyzed by EPA Method 8015B (M).
- k = The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standard.
- I = Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

Well MW-1 surveyed on May 4, 1999 by Virgil Chavez Land Surveying of Vallejo, CA.

Site surveyed on March 19, 2000 by Virgil Chavez Land Surveying of Vallejo, CA.

Site surveyed on January 15, 2002 by Virgil Chavez Land Surveying of Vallejo, CA.

3Q06 survey data for wells MW-1B and MW-4 provided by Delta Environmental Consultants, Inc. of San Jose, CA.

ATTACHMENT D

HISTORY OF PREVIOUS ENVIRONMENTAL ACTIVITIES

HISTORY OF ENVIRONMENTAL ACTIVITIES

Shell-branded Service Station, 4226 First Street, Pleasanton, CA

1985 Subsurface Investigation: In September 1985, Emcon Associates drilled four exploratory soil borings (S-A, S-B, S-C and S-D) and installed one groundwater monitoring well (S-1) in the vicinity of the former USTs. A maximum concentration of 1,300 milligrams per kilogram (mg/kg) TPH-g was detected in the soil sample collected from boring S-B at approximately 15 feet bgs. Benzene was not detected in any of the soil analyzed.

1986 Underground Storage Tank Removal: In May 1986, four former gasoline USTs were removed from the northeastern portion of the site and the waste oil tank was replaced. Blaine Tech Services, Inc. collected compliance soil samples from beneath each of the USTs. A maximum concentration of 240 mg/kg TPH-g was detected in the soil. The new USTs were installed in the current location in front of the service station building.

1990 Subsurface Investigation: In March 1990, Hart Crowser, Inc. advanced three soil borings (SB-1 through SB-3) in the vicinity of the former gasoline USTs and drilled out Well S-1. The boring for the destruction of Well S-1 was advanced 20 feet beyond the bottom of the well casing, and was designated WA-1. Selected soil samples from all four borings were analyzed for TPH-g and benzene, toluene, ethylbenzene, and total xylenes (BTEX compounds). Maximum concentrations of 380 mg/kg TPH-g and 2.2 mg/kg benzene were detected in the soil sample collected from Boring WA-1 at 30 feet bgs. In December 1990, Hart Crowser, Inc. advanced two additional soil borings (SB-4 and SB-5) down-gradient of the former USTs. Maximum concentrations of 820 mg/kg TPH-g and 65 mg/kg benzene were detected in the soil sample collected from Boring SB-5 at 35 feet bgs.

1995 Dispenser and Piping Replacement: In September 1995, the product piping and dispensers were replaced by Paradiso Mechanical. Weiss Associates collected compliance soil samples and directed over-excavation of hydrocarbon-impacted soil during the replacement activities. A total of approximately 40 cubic yards of soil were excavated from the site. A maximum concentration of 120 mg/kg TPH-g was detected in the soil sample (DP-3) collected from beneath the southern-most product dispenser at approximately 8 feet bgs.

1998 Facility Upgrade: In July 1998, Cambria Environmental Technology, Inc. (Cambria) inspected the waste oil tank remote fill piping during removal activities performed by Gettler-Ryan, Inc. No field indications of petroleum hydrocarbons were observed.

1999 Subsurface Investigation: In April 1999, Cambria advanced two soil borings (SB-6 and SB-7). One of the borings (SB-6) was converted to a groundwater monitoring well and re-designated MW-1. A concentration of 83 mg/kg TPH-g was detected in the soil sample collected from boring SB-7 at a depth of 40 feet bgs. Concentrations of 0.1 mg/kg and 0.0069 mg/kg benzene were detected in the soil samples collected from

HISTORY OF ENVIRONMENTAL ACTIVITIES (CONT.)

Shell-branded Service Station, 4226 First Street, Pleasanton, CA

boring SB-6/MW-1 at depths of 45 feet and 35 feet, respectively. TPH-g and benzene were not detected above the laboratory detection limits in any of the other soil samples analyzed. During drilling, groundwater was encountered at approximately 42.5 feet bgs, but was not evident in the boring until the hole was left open overnight. TPH-g was detected in the grab groundwater samples collected from borings SB-6/MW-1 and SB-7 at concentrations of 10,000 micrograms per liter (μ g/L) and 750 μ g/L, respectively; benzene was detected concentrations of 4,500 μ g/L and 20 μ g/L, respectively. MTBE was not detected above the laboratory detection limits in any of the soil or groundwater analyzed.

2000 Subsurface Investigation: In January 2000, Cambria installed two groundwater monitoring wells (MW-2 and MW-3). Concentrations of TPH-g, BTEX compounds and MTBE were not detected above the laboratory detection limits in any of the eleven soil samples analyzed during the investigation. Both new wells were added to the quarterly groundwater monitoring and sampling program for the site.

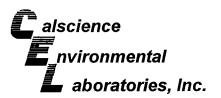
2005 UST Upgrades and Backfill Well Abandonment: On January 13, 2005, during UST upgrade activities, Town and Country Contractors, Inc. destroyed four UST backfill wells (TB-1 through TB-4) in accordance with provisions from the Zone 7 Water Agency. Upon completion, a new concrete slab was poured over the entire UST complex and former well locations

2005 Waste Oil UST Investigation: In January 2005, it was determined that an unknown liquid had likely been poured into a port on the waste oil tank that drained directly into the surrounding pea gravel. An Unauthorized Release Report (URR) dated January 19, 2005 was submitted to the Livermore-Pleasanton Fire Department and the ACHCSA. SHELL contractors sealed the UST port with epoxy, opened the tank pit, removed as much of the pea gravel as possible and analyzed a composite sample of the pea gravel for petroleum hydrocarbon parameters. The pea gravel was found to contain 1.4 mg/kg TPH-g, 1,400 mg/kg total petroleum hydrocarbons as diesel (TPH-d) and 10,000 mg/kg total petroleum hydrocarbons as oil and grease. On June 10, 2005, DELTA advanced an exploratory boring (WO-1) adjacent to the waste oil tank. Analysis of the soil samples from WO-1 indicated that the petroleum hydrocarbons introduced to the waste oil tank backfill had not moved into the surrounding soil.

2006 Subsurface Investigation: On August 23 and 24, 2006, DELTA installed two onsite monitoring wells (MW-1B and MW-4). Well MW-1B was installed north of the UST complex to monitor a deeper groundwater bearing zone. Groundwater in the deeper zone was initially encountered at a depth of approximately 97 feet bgs and stabilized at a depth of approximately 83 feet bgs. A maximum concentration of 380 mg/kg TPH-g was detected in the soil sample collected from the boring for Well MW-4 at a depth of 36.5 feet bgs. MTBE was detected in the soil samples collected from the boring for Well MW-4 at concentrations ranging from 0.038 mg/kg to 0.59 mg/kg. TPH-g, BTEX compounds, MTBE and tert butyl alcohol (TBA) were not detected at concentrations above

HISTORY OF ENVIRONMENTAL ACTIVITIES (CONT.)

Shell-branded Service Station, 4226 First Street, Pleasanton, CA


the laboratory detection limits in any of the soil analyzed from Well MW-1B. Both new wells were added to the quarterly monitoring and sampling program.

On August 15 and September 29, 2006, DELTA advanced exploratory borings at two locations (CPT-2 and CPT-3) using cone penetrometer test (CPT) equipment. Each CPT location consisted of two separate boreholes – one for stratigraphic profiling and a second for collecting discrete soil and groundwater samples. In Boring CPT-2, two depth-discrete groundwater samples were collected from the intervals of 74 to 78 feet bgs and 94 to 98 feet bgs. In Boring CPT-3, one depth-discrete groundwater sample was collected from the interval of 53 to 57 feet bgs. The maximum concentrations of 700 μ g/l TPH-g, 79 μ g/l MTBE and 2,000 μ g/l TBA were detected in the groundwater sample collected from Boring CPT-3.

2007 Subsurface Investigation: On March 27 through 29, 2007, DELTA advanced five exploratory soil borings (B-1 through B-5). A total of thirty-five soil samples (seven from each boring) were collected for chemical analysis. A maximum concentration of 710 mg/kg TPH-g was detected in the soil sample collected from Boring B-3 at a depth of 34.5 feet bgs. MTBE was detected at a maximum concentration of 0.78 mg/kg in the soil sample collected from boring B-1 at a depth of 24.5 bgs. TBA was detected at a maximum concentration of 0.8 mg/kg in the soil sample collected from Boring B-1 at a depth of 19.5 feet bgs.

2007 Aquifer Pump Test and Groundwater Extraction Event: On June 6 and 7, 2007, DELTA performed step drawdown tests in order to estimate the sustainable pumping rate for the upper groundwater zone in Wells MW-1 and MW-4. On June 6, 2007, DELTA also began a long term groundwater extraction event from Well MW-4 in order evaluate its use as a groundwater remediation option. Based on the results of the step drawdown tests, the sustainable pumping rate for the upper water bearing zone (30 to 45 feet bgs) is estimated to be 0.5 gallons per minute (gpm) or less and the horizontal radius of pumping influence is estimated to be at least 35 feet.

ATTACHMENT E LABORATORY ANALYTICAL REPORTS

Supplemental Report 1

February 04, 2009

The original report has been revised/corrected.

Rich Garlow Delta Environmental Consultants, Inc. 312 Piercy RD. San Jose, CA 95138-1401

Subject:

Calscience Work Order No.:

09-01-0314

Client Reference:

4212 First St, Pleasanton, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 1/7/2009 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Philip Samelle for

Laboratories, Inc.

Jessie Kim

Project Manager

FAX: (714) 894-7501

Analytical Report

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

Preparation:

Method:

01/07/09

09-01-0314

N/A

EPA TO-3M

Project: 4212 First St, Pleasanton, CA

Page 1 of 1

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
DPE Influent - Start Test	200	09-01-0314-5-A	01/05/09 14:15	Air	GC 13	N/A	01/07/09 17:15	090107L02
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	420	3.8	2.5		ppm (v/v)		
Method Blank		098-01-005-1,630	N/A	Air	GC 13	N/A	01/07/09 09:15	090107L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	1.5	1		ppm (v/v)		

Analytical Report

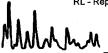
Delta Environmental Consultants, Inc.

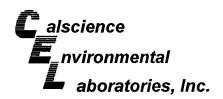
312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No: Preparation:


Method: Units: 01/07/09


09-01-0314 N/A

EPA TO-15 ppb (v/v)

Page 1 of 1

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti d Analyz		QC Batch ID
DPE Influent - Start Test			09-01-0)314-5-A	_ 01/05/09 ₫ % - 14:15	Air	GC/MS II	N/A	01/07/ 20:23)90107L01
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	100	50	100		Xylenes (total)			ND	200	100	
Toluene	120	50	100		Methyl-t-Butyl Eth	er (MTBE	≣)	17000	2000	1000)
Ethylbenzene	ND	50	100		Tert-Butyl Alcoho	l (TBA)		ND	200	100	
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
1,4-Bromofluorobenzene	103	57-129			1,2-Dichloroethar	ne-d4		102	47-137		
Toluene-d8	98	78-156									
Method Blank		10 a.,		-002-8,047	7 N/A	Air	GC/MS II	N/A	01/07/ 10:02		090107L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.50	1		Xylenes (total)			ND	2.0	1	
Toluene	ND	0.50	1		Methyl-t-Butyl Eth	ner (MTBE	Ξ)	ND	2.0	1	
Ethylbenzene	ND	0.50	1		Tert-Butyl Alcoho	I (TBA)	-	ND	2.0	1	
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
1,4-Bromofluorobenzene Toluene-d8	102 99	57-129 78-156			1,2-Dichloroethar	ne-d4		103	47-137		

Analytical Report

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

Preparation:

Method: Units:

01/07/09

09-01-0314 **EPA 5030B**

LUFT GC/MS / EPA 8260B

ug/L

Project: 4212 First St, Pleasanton, CA

Page 1 of 3

Client Sample Number				Sample umber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti Analyz		QC Batch ID
MW-1 Before Test		for "Solor Leb 15	09-01-03	314-1-B	01/05/09 10:30	Aqueous	GC/MS LL	01/13/09	01/14/0 01:08		090113L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	26	12	25		Tert-Butyl Alco	ohol (TBA)		930	250	25	
1,2-Dibromoethane	ND	25	25		Diisopropyl Eth	ner (DIPE)		ND	50	25	
1,2-Dichloroethane	83	12	25		Ethyl-t-Butyl E	ther (ETBE)	ı	ND	50	25	
Ethylbenzene	ND	25	25		Tert-Amyl-Met	hyl Ether (Ta	AME)	ND	50	25	
Toluene	ND	25	25		Ethanol			ND	2500	25	
Xylenes (total)	ND	25	25		TPPH			2400	1200	25	
Methyl-t-Butyl Ether (MTBE)	2700	25	25								
Surrogates:	REC (%)	<u>Control</u>		<u>Qual</u>	Surrogates:			REC_(%)	<u>Control</u>		Qual
		Limits			_				<u>Limits</u>		
Dibromofluoromethane	108	74-140			1,2-Dichloroet	hane-d4		112	74-146		
Toluene-d8	99	88-112			Toluene-d8-TF	PPH		100	88-112		
1,4-Bromofluorobenzene	93	74-110									
MW-2 Before Test	čir	TBUTAL A	09-01-03	314-2-B	01/05/09	Aqueous	GC/MS LL	01/13/09	01/14/		090113L01
	00		Badata P	11. 14. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	12:15	(3%)	g (400		01:3	5	egales (Amerika)
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	10	20		Tert-Butyl Alco	ohol (TBA)		480	200	20	
1,2-Dibromoethane	ND	20	20		Diisopropyl Etl	her (DIPE)		ND	40	20	
1,2-Dichloroethane	ND	10	20		Ethyl-t-Butyl E	ther (ETBE))	ND	40	20	
Ethylbenzene	ND	20	20		Tert-Amyl-Met	hyl Ether (T	AME)	ND	40	20	
Toluene	ND	20	20		Ethanol	,	·	ND	2000	20	
Xylenes (total)	ND	20	20		TPPH			2000	1000	20	
Methyl-t-Butyl Ether (MTBE)	2300	20	20								
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	Control Limits		<u>Qual</u>
Dibromofluoromethane	. 109	74-140			1,2-Dichloroet	hane-d4		112	74-146		
Toluene-d8	101	88-112			Toluene-d8-TI			102	88-112		
1,4-Bromofluorobenzene	94	74-110							–		

alscience nvironmental aboratories, Inc.

Analytical Report

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

Method:

Units:

Preparation:

EPA 5030B LUFT GC/MS / EPA 8260B

ug/L

01/07/09

09-01-0314

Project: 4212 First St, Pleasanton, CA

Page 2 of 3

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti Analyz		QC Batch ID
MW-3 Before Test			09-01-0	314-3-B	01/05/09 12:45	Aqueous	GC/MS LL	01/13/09	01/14/ 02:0		090113L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>
Benzene	ND	0.50	1		Tert-Butyl Alco	ohol (TBA)	•	ND	10	1	
1,2-Dibromoethane	ND	1.0	1		Diisopropyl Etl	her (DIPE)		ND	2.0	1	
1,2-Dichloroethane	ND	0.50	1		Ethyl-t-Butyl E	ther (ETBE)		ND	2.0	1	
Ethylbenzene	ND	1.0	1		Tert-Amyl-Met	thyl Ether (T/	AME)	ND	2.0	1	
Toluene	ND	1.0	1		Ethanol			ND	100	1	
Xylenes (total)	ND	1.0	1		TPPH			ND	50	1	
Methyl-t-Butyl Ether (MTBE)	1.6	1.0	1								
Surrogates:	REC (%)	Control		<u>Qual</u>	Surrogates:			REC (%)	<u>Control</u>		<u>Qual</u>
-		Limits							<u>Limits</u>		
Dibromofluoromethane	108	74-140			1,2-Dichloroet	hane-d4		115	74-146		
Toluene-d8	101	88-112			Toluene-d8-TI	PPH		102	88-112		
1,4-Bromofluorobenzene	96	74-110			_	_					
MW-4 Before Test			09-01-0	314-4-B	01/05/09 10:00	Aqueous	GC/MS LL	01/13/09	01/14/ 02:3		090113L01
	<u> </u>			· .			· · · · · ·				-
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	50	100		Tert-Butyl Alce	ohol (TBA)		3800	1000	10	0
1,2-Dibromoethane	ND	100	100		Diisopropyl Et	her (DIPE)		ND	200	10	0
1,2-Dichloroethane	ND	50	100		Ethyl-t-Butyl E	ther (ETBE)		ND	200	10	0
Ethylbenzene	ND	100	100		Tert-Amyl-Met	thyl Ether (Ta	AME)	ND	200	10	0
Toluene	ND	100	100		Ethanol			ND	10000	10	0
Xylenes (total)	ND	100	100		TPPH			13000	5000	10	0
Methyl-t-Butyl Ether (MTBE)	16000	100	100								
Surrogates:	REC (%)	Control		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	Control Limits		<u>Qual</u>
Dibromofluoromethane	107	<u>Limits</u> 74-140			1,2-Dichloroet	hana.d4		112	74-146		
Toluene-d8	107	88-112			Toluene-d8-T			105	88-112		
	102 95	74-110			i Jiuci ic-u0-1	1111		100	00-112		
1,4-Bromofluorobenzene	ອວ	14-110									

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

Preparation:

Method:

Units:

EPA 5030B

LUFT GC/MS / EPA 8260B ug/L


01/07/09

09-01-0314

Project: 4212 First St, Pleasanton, CA

Page 3 of 3

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analyz		QC Batch ID
Method Blank	786 11866 1	47 - 27 P (8) - 5 9	099-12	-767-841	NA	Aqueous	GC/MS LL	01/13/09	01/13/ 21:3		090113L01
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.50	1		Tert-Butyl Alco	ohol (TBA)		ND	10	1	
1,2-Dibromoethane	ND	1.0	1		Diisopropyl Eth	ner (DIPE)		ND	2.0	1	
1,2-Dichloroethane	ND	0.50	1		Ethyl-t-Butyl E	ther (ETBE)		ND	2.0	1	
Ethylbenzene	ND	1.0	1		Tert-Amyl-Met	hyl Ether (Ta	AME)	ND	2.0	1	
Toluene	ND	1.0	1		Ethanol			ND	100	1	
Xylenes (total)	ND	1.0	1		TPPH			ND	50	1	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1								
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits		Qual
Dibromofluoromethane	106	74-140			1,2-Dichloroet	hane-d4		107	74-146		
Toluene-d8 1,4-Bromofluorobenzene	101 94	88-112 74-110			Toluene-d8-TF	PPH		102	88-112		

Quality Control - Duplicate

Delta Environmental Consultants, Inc. 312 Piercy RD.

San Jose, CA 95138-1401

Date Received: Work Order No:

Preparation: Method:

01/07/09 09-01-0314

9-01-0314 N/A

EPA TO-3M

Project: 4212 First St, Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared:	Date Analyzed:	Duplicate Batch Number
09-01-0317-1	Air	GC 13	NA	01/07/09	090107D02
Parameter	Sample Conc	DUP Conc	RPD	RPD CL	Qualifiers
TPH as Gasoline	160	180	10	0-20	

alscience nvironmental aboratories, Inc.

Quality Control - Spike/Spike Duplicate

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

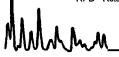
Date Received:

Work Order No:

Preparation:

Method:

01/07/09


09-01-0314 EPA 5030B

LUFT GC/MS / EPA

8260B

Project 4212 First St, Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepare	ed	Date Analyzed	MS/MSD Batch Number
09-01-0289-6	Aqueous	GC/MS LL	01/13/09		01/13/09	090113501
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
- didiffocor	<u> </u>	WOD MILEO	701120 02	111.02	<u> </u>	<u>Qualificity</u>
Benzene	83	82	88-118	1	0-7	3
Carbon Tetrachloride	95	91	67-145	4	0-11	
Chlorobenzene	91	88	88-118	4	0-7	
1,2-Dibromoethane	97	96	70-130	1	0-30	
1,2-Dichlorobenzene	91	90	86-116	1	0-8	
1,1-Dichloroethene	94	90	70-130	5	0-25	
Ethylbenzene	90	87	70-130	4	0-30	
Toluene	86	84	87-123	2	0-8	3
Trichloroethene	82	81	79-127	1	0-10	
Vinyl Chloride	85	85	69-129	1	0-13	
Methyl-t-Butyl Ether (MTBE)	86	88	71-131	1	0-13	
Tert-Butyl Alcohol (TBA)	86	94	36-168	8	0-45	
Diisopropyl Ether (DIPE)	80	80	81-123	0	0-9	3
Ethyl-t-Butyl Ether (ETBE)	85	85	72-126	1	0-12	
Tert-Amyl-Methyl Ether (TAME)	80	82	72-126	2	0-12	
Ethanol	75	89	53-149	17	0-31	

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

Preparation: Method:

N/A

09-01-0314

N/A

EPA TO-15

Project: 4212 First St, Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bate Number	ch
097-09-002-8,047	All	GC/MS II	N/A	01/07/09	090107L01	
<u>Parameter</u>	LCS %RE	C LCSD %	REC %REC	CL RPD	RPD CL	<u>Qualifiers</u>
Benzene	105	101	60-15	6 3	0-40	
Toluene	104	100	56-14	6 4	0-43	
Ethylbenzene	107	104	52-15	i4 3	0-38	
p/m-Xylene	101	98	42-15	6 3	0-41	
o-Xylene	106	104	52-14	8 2	0-38	
•			52-14	8 2	0-38	

alscience nvironmental aboratories, Inc.

Quality Control - LCS/LCS Duplicate

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

09-01-0314

Preparation:

EPA 5030B

N/A

Method:

LUFT GC/MS / EPA 8260B

Project: 4212 First St, Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal		LCS/LCSD Ba Number	tch
099-12-767-841	Aqueous	GC/MS LL	01/13/09	01/13	09	090113L01	
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	85	84	84-120	78-126	1	0-8	
Carbon Tetrachloride	103	101	63-147	49-161	2	0-10	
Chlorobenzene	93	92	89-119	84-124	0	0-7	
1,2-Dibromoethane	97	98	80-120	73-127	1	0-20	
1,2-Dichlorobenzene	93	93	89-119	84-124	0	0-9	
1,1-Dichloroethene	106	96	77-125	69-133	9	0-16	
Ethylbenzene	95	94	80-120	73-127	1	0-20	
Toluene	91	91	83-125	76-132	0	0-9	
Trichloroethene	88	88	89-119	84-124	0	0-8	ME
Vinyl Chloride	100	97	63-135	51-147	3	0-13	
Methyl-t-Butyl Ether (MTBE)	88	88	82-118	76-124	0	0-13	
Tert-Butyl Alcohol (TBA)	103	100	46-154	28-172	3	0-32	
Diisopropyl Ether (DIPE)	84	82	81-123	74-130	3	0-11	
Ethyl-t-Butyl Ether (ETBE)	85	85	74-122	66-130	0	0-12	
Tert-Amyl-Methyl Ether (TAME)	80	79	76-124	68-132	1	0-10	
Ethanol	109	91	60-138	47-151	17	0-32	
TPPH	98	95	65-135	53-147	3	0-30	

Total number of LCS compounds: 17

Total number of ME compounds: 1

Total number of ME compounds allowed:

LCS ME CL validation result: Pass

RPD - Relative Percent Difference

CL - Control Lim

Glossary of Terms and Qualifiers

Work Order Number: 09-01-0314

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

LAB (LOCATION)			Sh							Oi	I P	ro	dυ	cts	s C	ha	in	Of	Cu	sto	h	Re). (arc	1					
☑ CALSCIENCE (00000	D),	ase Chez	k An		to Da		4444		ot B							<u> </u>	<u>ت بن بن</u>	l						ė mi	no.	- इंटर-न		·
☐ SPL (D Bu	. SERVICES			NETAIL		SHELL	RETAI	l. ir	en D	144 . T.	فضف	in in tal C	riva	urie:	•••••			÷۴	- 1						•	1 1	U c+€C	K IF NO INCIDENT # APPLIES
□ хенсо с			TIMA SD&CI	===			—=	uees		 										_	9	8	9	٠.٠٠	5	8	4	0	DATE	E: 1/6/2009
TEST AMERICA (CONSU		<u> </u>	J WBES		ا					PQ	#				<u>::::</u> }				AP	#				PAG	E:1 of1
ORHER (<u>□</u> 9+€	LL PIPELIN		OTHER.					s	С	A	4	2	1	2	1	1	Т		1	3	5	7	8	2	Г	П	FAGE	e or!
SAMPLING COMPANY:					Lee c	00E-					ABGR							لنبا		5	Luie	<u> </u>	*	CLOS	W. 80 (M.	9:	L			
Delta Consultants										421	12 1s	St St	; Pie	aso	nton	eculiseit		_	PHONE N	\perp		<u> </u>		TO60	0010	0125	59			CONSULTANT PROJECT NO:
	312 Piercy F	Road; Sa	n Jose, C	A 95138						l				,,		•				_			ſ							COMPENSATION LYCORD I HOT
PROJECT CONTACT Bladcopy of PBF Report to	•	Rich Ga	riow							An	gela	Pice	O (Print):						408-8	26-1	862			Apico	@de	ltaen	IV.CO		OSE OM	
TELEPHONE: 408-826-1889	FAX: 488-225-8506		E-MAIL:							c	уга О	Nsor	n																	91-0314
TURNAROUND TIME (CALENDAR)			<u> </u>	Rga	ariovijo	deltaerw				-																		l V	<i>t</i> 1	21 0-17
	SDAYS 3 DAYS	E	2 DAYS	□ 24 HO	URS	L		TS NEEDE M WEEK												REQ	WES	TED /	WA	LYSI	IS					
☐ LA - RIMQCB-REPORT FORMAT	UST AGENCY:												_																$\neg \vdash$	
				[7] guan	CONTE	ACT RATE	ABDI TES			┢		/ater :	1	les	Н	Vapo	r San	eptes					7	\neg		_		$\overline{}$	╹	EMPERATURE ON RECEIP C°
SPECIAL INSTRUCTIONS	OR NOTES:					URSEMENT				8		Oxygenates (8250B)		•		₹	& MTBE (TO-14)				- 1							1 1		
Send results to:				☐ 200 N	AOT NE	EDED				(8260B)		8				ė				İ			ŀ	ł	٠ ا			1 1		
				RECE	PT VER	IFICATION	REQUES	TEO		8		1		<u> </u>	~	e q	Ē							1	Į			i l		
88.88.R		C 4 4 4	PLING		·					Purgeable	9	8	<u> </u>	1200	260	9	*	1			ı		- [- 1				- 1	
Field Comple	Identification	3/4	-LING	MATRIX	\vdash	PRESE	WATINE	$\overline{}$	NO. OF	2	(826	ŏ	956(8	8) 10	<u>a</u>	È					- 1	1	1	1					
Field Sample	POSIAMICAMONI	DATE	TIME	- MPGPHSA	HQL	HN08-1284	MOHE	ORNER	RO, OF CONST.	TPH-G	BTEX (8260B)	Shell	EDB (8260B)	1,2-DCA (8280B)	Ethanol (8260B)	TPH-G Purgeable (TO-14)	BTEX, TBA,													Container PID Readings or Laboratory Notes
MW-1 Before Test		1/5/09	10:30		x				5	х	x	x	x	X	x										ı				5 (0xys = MTBE, TBA,
Z MW-2 Before Test		1/5/09	12:15		x				_5	x	x	х	х	X	x		l		\perp			-		-		ı			DIF	PE, ETBE, & TAME
MW-3 Before Test	•	1/5/09	12:45		x				5	x	x	х	х	х	х					\neg	\top	\neg	7		\Box			П		
MW-4 Before Test		1/5/09	10:00		x		1		5	x	x	х	x	х	x	1	寸	7		十	\dagger		\dagger	T	7				+	
DPE Influent - Star	t Test	1/5/09	14:15				x		1				П		П	x	x	x			\top		丁		一	\neg	_	\Box	\neg	
			14,10				 ^	†	- -				Н		-	\dashv	ᅥ	\dashv	\dashv	-	+	+	+	+	\dashv			\vdash		
							-	-		Н	\vdash		\vdash		_					-1	+	4	4	4	_	_			_ _	· · · · · · · · · · · · · · · · · · ·
						_ _	4			Ш			Ш	_			ļ	_	_	_	_	\perp	4		_	_[\Box		
			İ	•]															1			ŀ			- 1		i l		
							1									7	7	7	\neg	+	╅	\top	╅	_+	_			一十	十	
						·	+	1		\sqcup	\square		\sqcup	_		4		_				\perp	\perp	\perp		_		\sqcup	\bot	
														ŀ		- 1		- [-	ı			1		
Profigation by: (Signature)				Received by: (Sig	notere)			<u> </u>			I		·	1				•				9	ule:	10	<u>ب</u>			7	Tena:	
GIII Completed by (Streethers)	1 (corn Ol	50~)		Bankara San			1															_ ['	/ G	טוי	0					
G S 0	105723			Received by: (Sig	jnskre)	100	$\sqrt{\lambda}$	1	_ (` _r -	2											D	ale:	_ \	I 10	<u> </u>			Time:	~~~
Relinquished by: (Signature)		. — •		Received by: (Sig	احطمو	$\frac{\omega}{\omega}$	U V		- `	<u> </u>	بز											4	<u> </u>	1	V_{\cap}	/ \		_	Time	000
				op (og																		"	wie: **		-			ſ	4 me :	
]_								5/2/65 Revision

f 14

WORK ORDER #: 09-0 1-0 7 1 4

SAMPLE RECEIPT FORM

Cooler ___ of ___

CLIENT: Delta Consultants		DATE:	107 109								
TEMPERATURE: (Criteria: 0.0 °C - 6.0 °C, not frozen) Temperature 3 2 °C - 0.2 °C (CF) = 3 0 °C Blank Sample Sample(s) outside temperature criteria (PM/APM contacted by:). Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling. Received at ambient temperature, placed on ice for transport by Courier. Ambient Temperature: Air Filter Metals Only PCBs Only Initial: 25											
CUSTODY SEALS INTACT: Cooler		□ N/A	Initial: RS								
SAMPLE CONDITION:	Yes	No —	N/A								
Chain-Of-Custody (COC) document(s) received with samples											
COC document(s) received complete											
Sampler's name indicated on COC											
Sample container label(s) consistent with COC											
Sample container(s) intact and good condition											
Correct containers and volume for analyses requested											
Analyses received within holding time		u									
Proper preservation noted on COC or sample container											
Volatile analysis container(s) free of headspace											
Tedlar bag(s) free of condensation	Ø										
CONTAINER TYPE:			_								
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve □EnCores®											
Water: □VOA ☑VOĀh □VOAna₂ □125AGB □125AGBh	□125A	GBpo₄ □1A	.GB □1AGBna₂								
□1AGBs □500AGB □500AGBs □250CGB □250CGBs □1											
□250PBn □125PB □125PBznna □100PBsterile □100PBna	2 □										
Air: //Tediar® Summa®	a:ZnAc₂+Na		ewed by:								

WORK ORDER #: 4 9 4 4 4 4

SAMPLE ANOMALY FORM

CHAIN O	F CUSTODY	(COC):			Comm	ents:		
☐ No da ☐ COC r	linquished by te/time relinqu ot received w plete informat	ilshed ith samples	- s – notify P	M				
	S - CONTAIN			<u> </u>		nents:		
□ Sampl □ Holdir □ Insuffi □ Impro □ No pro □ Sampl □ Sampl □ Sampl □ Sampl □ L	es NOT RECE es received be es received be es received be es received be es received be eservative note e labels illegit e labels do note eservative note e labels do note eservative note e labels do note eservative note ese	ut NOT LIST d — list samples for analysis) used — list ed on label ole — note te ot match CO Collected ation compromise						
HEADSP	ACE – Contai	ners with	Bubble >	6mm or ¼ i	nch:			
Sample #	Container ID(s)	# of Vials Received	Sample #	Container iD(s)	# of Vials Received	Sample #	Container ID(s)	# of RSK or CO ₂ or DO or Organic Lead Received
-1 -2	AB, DE	5				`		·
-3	B. C A.B. E	5 5						
-4	AB, D, E	5			<u> </u>			
Comments	• •							
						nitial / Dat	te <u>Ao (-</u> '	7-09

Supplemental Report 1

February 04, 2009

The original report has been revised/corrected.

Rich Garlow Delta Environmental Consultants, Inc. 312 Piercy RD. San Jose, CA 95138-1401

Subject:

Calscience Work Order No.:

Client Reference:

09-01-0601

4212 First St, Pleasanton, CA

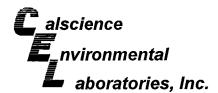
Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 1/9/2009 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,


Calscience Environmental

Philip Samelle for

Laboratories, Inc.

Jessie Kim

Project Manager

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

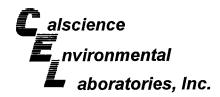
Date Received:

Work Order No: Preparation:

Method:

01/09/09

09-01-0601


N/A

EPA TO-3M

Project: 4212 First St, Pleasanton, CA

Page 1 of 1

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Date Instrument Prepared	Date/Time Analyzed	QC Batch ID
DPE Influent-Mid Test	1000 (1500) 1000 (1500) 1000 (1500)	09-01-0601-5-A	01/07/09 07:15	Air	GC 39 N/A	01/09/09 14:45	090109L01
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>		
TPH as Gasoline	4900	30	20		ppm (v/v)		
Method Blank		098-01-005-1,633	N/A	Air	GC 39 N/A	01/09/09 08:55	090109L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>		
TPH as Gasoline	ND	1.5	1		ppm (v/v)		

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

Preparation: Method:

Units:

01/09/09

09-01-0601

N/A EPA TO-15 ppb (v/v)

Page 1 of 1

Project.	1212	Firet St	Pleasanton.	$C\Delta$

Client Sample Number				Sample ımber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	00 Datab ID
DPE Influent-Mid Test		XCQX:	09-01-06	01-5-A	01/07/09 07:15	Air	GC/MS K	N/A	01/10/09 01:19	090109L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			<u>Result</u>	<u>RL</u>	DF Qual
Benzene	19000	500	1000		Xylenes (total)				2000	1000
Toluene	1600	500	1000		Methyl-t-Butyl I	Ether (MTB	E)	23000	2000	1000
Ethylbenzene	12000	500	1000		Tert-Butyl Alco	hol (TBA)		2700	2000	1000
Surrogates:	<u>REC (%)</u>	Control Limits	9	Qual	Surrogates:			REC (%)	Control Limits	<u>Qual</u>
1,4-Bromofluorobenzene	103	57-129			1,2-Dichloroeth	nane-d4		97	47-137	
Toluene-d8	98	78-156			-					
Method Blank	Autoritis (April)		097-09-0	02-8,056	N/A	Air	GC/MS K	N/A	01/09/09 09:26	090109L01
Parameter	Result	RL	DF	Qual	Parameter			Result	<u>RL</u>	DF Qual
Benzene	ND	0.50	1		Xylenes (total)			ND	2.0	1
Toluene	ND	0.50	1		Methyl-t-Butyl		E)	ND	2.0	1
Ethylbenzene	ND	0.50	1		Tert-Butyl Alco	•	_,	ND	2.0	1
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	Surrogates:	, ,		REC (%)	Control Limits	<u>Qual</u>
1,4-Bromofluorobenzene Toluene-d8	96 97	57-129 78-156	<i>:</i>		1,2-Dichloroeth	nane-d4		94	47-137	

l k ...

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

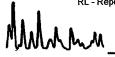
Work Order No:

Preparation:

Method: Units: 01/09/09

09-01-0601

EPA 5030B


LUFT GC/MS / EPA 8260B

ug/L

Project: 4212 First St, Pleasanton, CA

Page 1 of 4

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti		QC Batch ID
MW-1 Mid Test	14175	Y	09-01-0)601-1-A	01/07/09 07:30	Aqueous	GC/MS RR	01/13/09	3 01/14/0 3 10:32		990113L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.50	1		Tert-Butyl Alco			820	10	1	
1,2-Dibromoethane	ND	1.0	1		Diisopropyl Etl	her (DIPE)		6.1	2.0	1	
1,2-Dichloroethane	66	0.50	1		Ethyl-t-Butyl E	ther (ETBE)	1	ND	2.0	1	
Ethylbenzene	ND	1.0	1		Tert-Amyl-Met	hyl Ether (T.	AME)	5.9	2.0	1	
Toluene	ND	1.0	1		Ethanol			ND	100	1	
Xylenes (total)	ND	1.0	1		TPPH			2000	50	1	
Methyl-t-Butyl Ether (MTBE)	3100	50	50								
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	<u>Control</u> <u>Limits</u>		<u>Qual</u>
Dibromofluoromethane	103	74-140			1,2-Dichloroet	hane-d4		108	74-146		
Toluene-d8	99	88-112			Toluene-d8-TI	PPH		95	88-112		
1,4-Bromofluorobenzene	98	74-110								_	
MW-2 Mid Test		i Cjir ar irin i		0601-2-A	01/07/09 07:50	Aqueous	GC/MS RR	01/13/09	01/14/ 10:50		090113L02
Parameter Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.50	1		Tert-Butyl Alco	ohol (TBA)		55	10	1	
1,2-Dibromoethane	ND	1.0	1		Diisopropyl Et	her (DIPE)		ND	2.0	1	
1,2-Dichloroethane	ND	0.50	1		Ethyl-t-Butyl E	ther (ETBE))	ND	2.0	1	
Ethylbenzene	ND	1.0	1		Tert-Amyl-Met	thyl Ether (T	AME)	4.4	2.0	1	
Toluene	ND	1.0	1		Ethanol			ND	100	1	
Xylenes (total)	ND	1.0	. 1		TPPH			1800	50	1	
Methyl-t-Butyl Ether (MTBE)	2900	50	50								
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	Control Limits		<u>Qual</u>
Dibromofluoromethane	102	74-140			1,2-Dichloroet	hane-d4		109	74-146		
Toluene-d8	100	88-112			Toluene-d8-T	PPH		95	88-112		
1,4-Bromofluorobenzene	95	74-110									

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

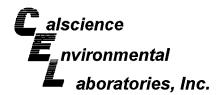
Preparation: Method:

Units:

EPA 5030B

LUFT GC/MS / EPA 8260B

ug/L


01/09/09

09-01-0601

Project: 4212 First St, Pleasanton, CA

Page 2 of 4

Client Sample Number				b Sample Number	Date/Time Collected Matrix	Instrumen	Date t Prepared	Date/Ti Analyz		QC Batch ID
MW-3 Mid Test			09-01-0)601-3-A	01/07/09 Aqueou 08:20	s GC/MSW	/ 01/14/09	01/15/ 05:5)90114L02
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.50	1		Tert-Butyl Alcohol (TBA)		ND	10	1	
1,2-Dibromoethane	ND	1.0	1		Diisopropyl Ether (DIPE))	ND	2.0	.1	
1,2-Dichloroethane	ND	0.50	1		Ethyl-t-Butyl Ether (ETB	E)	ND	2.0	1	
Ethylbenzene	ND	1.0	1		Tert-Amyl-Methyl Ether ((TAME)	ND	2.0	1	
Toluene	ND	1.0	1		Ethanol		ND	100	1	
Xylenes (total)	ND	1.0	1		TPPH		ND	50	1	
Methyl-t-Butyl Ether (MTBE) Surrogates:	4.1 REC (%)	1.0 Control	1	Qual	Surrogates:		REC (%)	Control		Qual
<u>Currogates.</u>	INCO (70)	Limits			<u>Carrogatoor</u>			Limits		
Dibromofluoromethane	113	74-140			1,2-Dichloroethane-d4		107	74-146		
Toluene-d8	101	88-112			Toluene-d8-TPPH		97	88-112		
1,4-Bromofluorobenzene	97	74-110				_		_		
MW-4 Mid Test		Large with	09-01-	0601-4-A	01/07/09 Aqueou 08:20	s GC/MS V	V 01/14/09	01/15/ 10:2		090114L02
Parameter	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	200	0.50	1		Tert-Butyl Alcohol (TBA))	1700	500	50	
1,2-Dibromoethane	ND	1.0	1		Diisopropyl Ether (DIPE		ND	2.0	1	
1.2-Dichloroethane	ND	0.50	1		Ethyl-t-Butyl Ether (ETB		ND	2.0	1	
Ethylbenzene	130	1.0	1		Tert-Amyl-Methyl Ether	(TAME)	7.8	2.0	1	
Toluene	4.9	1.0	1		Ethanol	` '	ND	100	1	
Xylenes (total)	280	1.0	1		TPPH		7000	2500	50	
Methyl-t-Butyl Ether (MTBE)	2600	50	50							
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:		REC (%)	Control Limits		Qual
Dibromofluoromethane	106	74-140			1,2-Dichloroethane-d4		102	74-146		
Toluene-d8	102	88-112			Toluene-d8-TPPH		97	88-112		
1,4-Bromofluorobenzene	98	74-110								

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

Preparation:

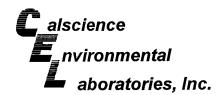
Method: Units: 01/09/09

09-01-0601

EPA 5030B LUFT GC/MS / EPA 8260B

ug/L

Project: 4212 First St, Pleasanton, CA


Page 3 of 4

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti Analyz		QC Batch ID
Method Blank	Piihuud Pi		099-12	767-845	N/A	Aqueous	GC/MS RF	01/13/09	01/14/ 03:1		090113L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.50	1		Tert-Butyl Alco	hol (TBA)		ND	10	1	
1,2-Dibromoethane	ND	1.0	1		Diisopropyl Eth	er (DIPE)		ND	2.0	1	
1,2-Dichloroethane	ND	0.50	1		Ethyl-t-Butyl Et	her (ETBE))	ND	2.0	1	
Ethylbenzene	ND	1.0	1		Tert-Amyl-Metl	hyl Ether (T	AME)	ND	2.0	1	
Toluene	ND	1.0	1		Ethanol			ND	100	1	
Xylenes (total)	ND	1.0	1		TPPH			ND	50	1	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1								
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	Control Limits		Qual
Dibromofluoromethane	100	74-140			1,2-Dichloroeth	nane-d4		105	74-146		
Toluene-d8	99	88-112			Toluene-d8-TF	PH		94	88-112		
1,4-Bromofluorobenzene	98	74-110									
Method Blank		4.4617.3	099-12	-767-856	N/A	Aqueous	GC/MS W	01/14/09	01/15/ 05:2		090114L02
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.50	1		Tert-Butyl Alco	hol (TBA)		ND	10	1	
1,2-Dibromoethane	ND	1.0	1		Diisopropyl Eth	ner (DIPE)		ND	2.0	1	
1,2-Dichloroethane	ND	0.50	1		Ethyl-t-Butyl Et	ther (ETBE))	ND	2.0	1	
Ethylbenzene	ND	1.0	1		Tert-Amyl-Met	hyl Ether (T	AME)	ND	2.0	1	
Toluene	ND	1.0	1		Ethanol			ND	100	1	
Xylenes (total)	ND	1.0	1		TPPH			ND	50	1	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1								
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	Control Limits		<u>Qual</u>
Dibromofluoromethane	107	74-140			1,2-Dichloroeth	nane-d4		108	74-146		
Toluene-d8	100	88-112			Toluene-d8-TF	PH		95	88-112		
1,4-Bromofluorobenzene	94	74-110									

RL - Reporting Limit

DF - Dilution Factor ,

Qual - Qualifier

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

Preparation:

Method: Units: 01/09/09

09-01-0601

EPA 5030B

LUFT GC/MS / EPA 8260B

ug/L

Project: 4212 First St, Pleasanton, CA

Page 4 of 4

Client Sample Number				b Sample Vumber	Date/Time Collected Matri	x Instrument	Date Prepared	Date/Ti		QC Batch ID
Method Blank	TI COMPANY		099-12	-767-862	N/A Aqueo	ous GC/MS RR	01/15/09	01/15/0 14:47		090115L01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>		<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>
Benzene	ND	0.50	1		Tert-Butyl Alcohol (TB	A)	ND	10	1	
1,2-Dibromoethane	ND	1.0	1		Diisopropyl Ether (DIP	PE)	ND	2.0	1	
1.2-Dichloroethane	ND	0.50	1		Ethyl-t-Butyl Ether (ET	TBE)	ND	2.0	1	
Ethylbenzene	ND	1.0	1		Tert-Amyl-Methyl Ethe	er (TAME)	ND	2.0	1	
Toluene	ND	1.0	1		Ethanol		ND	100	1	
Xylenes (total)	ND	1.0	1		TPPH		ND	50	1	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1							
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:		<u>REC (%)</u>	<u>Control</u> <u>Limits</u>		<u>Qual</u>
Dibromofluoromethane	97	74-140			1,2-Dichloroethane-d4	ļ	99	74-146		
Toluene-d8	98	88-112			Toluene-d8-TPPH		93	88-112		
1,4-Bromofluorobenzene	97	74-110								

Quality Control - Duplicate

Delta Environmental Consultants, Inc. 312 Piercy RD. San Jose, CA 95138-1401

Date Received: Work Order No: Preparation:

01/09/09 09-01-0601 N/A

Method:

d: EPA TO-3M

Project: 4212 First St, Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared:	Date Analyzed:	Duplicate Batch Number
09-01-0620-2	Air	GC 39	N/A	01/09/09	090109D01
<u>Parameter</u>	Sample Conc	DUP Conc	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	240	240	1	0-20	

Muhan

Quality Control - Spike/Spike Duplicate

Delta Environmental Consultants, Inc. 312 Piercy RD. San Jose, CA 95138-1401

Date Received: Work Order No: Preparation: Method: 01/09/09 09-01-0601 EPA 5030B LUFT GC/MS / EPA 8260B

Project 4212 First St, Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date alyzed	MS/MSD Batch Number	
09-01-0545-4	Aqueous	GC/MS RR	01/13/09	01/	114/09	090113502	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>	
Benzene	84	85	88-118	1	0-7	3	
Carbon Tetrachloride	91	93	67-145	2	0-11		
Chlorobenzene	87	88	88-118	1	0-7	3	
1,2-Dibromoethane	92	92	70-130	1	0-30		
1,2-Dichlorobenzene	85	88	86-116	4	0-8	3	
1,1-Dichloroethene	78	79	70-130	1	0-25		
Ethylbenzene	85	86	70-130	1	0-30		
Toluene	83	84	87-123	0	0-8	3	
Trichloroethene	81	82	79-127	1	0-10		
Vinyl Chloride	67	67	69-129	1	0-13	3	
Methyl-t-Butyl Ether (MTBE)	87	88	71-131	2	0-13		
Tert-Butyl Alcohol (TBA)	90	91	36-168	1	0-45		
Diisopropyl Ether (DIPE)	87	93	81-123	6	0-9		
Ethyl-t-Butyl Ether (ETBE)	90	93	72-126	3	0-12		
Tert-Amyl-Methyl Ether (TAME)	88	89	72-126	2	0-12		
Ethanol	87	88	53-149	1	0-31		

Calscience nvironmental aboratories, Inc.

Quality Control - Spike/Spike Duplicate

Delta Environmental Consultants, Inc. 312 Piercy RD.

San Jose, CA 95138-1401

Date Received: Work Order No:

Preparation:

Method:

01/09/09 09-01-0601

EPA 5030B

LUFT GC/MS / EPA 8260B

Project 4212 First St, Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepare	d	Date Analyzed	MS/MSD Batch Number
MW-3 Mid Test	Aqueous	s ∰ GC/MS W	01/14/09	YEX.	01/15/09	090114S02
-					-	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	97	97	88-118	0	0-7	
Carbon Tetrachloride	97	99	67-145	2	0-11	
Chlorobenzene	96	98	88-118	2	0-7	
1,2-Dibromoethane	100	97	70-130	2	0-30	
1,2-Dichlorobenzene	100	97	86-116	2	0-8	
1,1-Dichloroethene	101	101	70-130	0	0-25	
Ethylbenzene	97	99	70-130	2	0-30	
Toluene	98	98	87-123	0	0-8	
Trichloroethene	97	96	79-127	1	0-10	
Vinyl Chloride	96	92	69-129	4	0-13	
Methyl-t-Butyl Ether (MTBE)	108	105	71-131	2	0-13	
Tert-Butyl Alcohol (TBA)	87	81	36-168	6	0-45	
Diisopropyl Ether (DIPE)	106	107	81-123	1	0-9	
Ethyl-t-Butyl Ether (ETBE)	103	104	72-126	1	0-12	
Tert-Amyl-Methyl Ether (TAME)	103	100	72-126	3	0-12	
Ethanol	87	83	53-149	4	0-31	

alscience nvironmental aboratories, Inc.

Quality Control - Spike/Spike Duplicate

Delta Environmental Consultants, Inc. 312 Piercy RD.

San Jose, CA 95138-1401

Date Received: Work Order No: Preparation: Method: 01/09/09 09-01-0601 EPA 5030B LUFT GC/MS / EPA

8260B

Project 4212 First St, Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Α	Date nalyzed	MS/MSD Batch Number
09-01-0610-1	Aqueous	GC/MS RR	01/15/09	0	1/15/09	090115S01
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	<u>Qualifiers</u>
Benzene	89	86	88-118	3	0-7	3
Carbon Tetrachloride	95	97	67-145	2	0-11	
Chlorobenzene	91	90	88-118	1	0-7	
1,2-Dibromoethane	96	93	70-130	4	0-30	
1,2-Dichlorobenzene	91	91	86-116	0	0-8	
1,1-Dichloroethene	84	81	70-130	4	0-25	
Ethylbenzene	90	89	70-130	1	0-30	
Toluene	89	86	87-123	3	0-8	3
Trichloroethene	86	84	79-127	2	0-10	
Vinyl Chloride	83 .	81	69-129	2	0-13	
Methyl-t-Butyl Ether (MTBE)	94	92	71-131	2	0-13	
Tert-Butyl Alcohol (TBA)	. 93	91	36-168	2	0-45	
Diisopropyl Ether (DIPE)	87	99	81-123	13	0-9	4
Ethyl-t-Butyl Ether (ETBE)	99	96	72-126	3	0-12	
Tert-Amyl-Methyl Ether (TAME)	94	91	72-126	4	0-12	

81

53-149

8

0-31

88

RPD - Rejail

Ethanol

alscience nvironmental aboratories, Inc.

Quality Control - LCS/LCS Duplicate

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

Preparation:

Method:

N/A

09-01-0601

N/A

EPA TO-15

Project: 4212 First St, Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared A		e zed	LCS/LCSD Bate Number	ch
097-09-002-8,055	Air	GC/MS K	N/A	01/09/	09	090109L01	
<u>Parameter</u>	LCS %RE	C LCSD %	REC %R	EC CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	110	108	66	0-156	2	0-40	
Toluene	111	108	50	3-146	3	0-43	
Ethylbenzene	114	112	5	2-154	2	0-38	
p/m-Xylene	112	109	4:	2-156	2	0-41	
o-Xylene	113	110	5	2-148	3	0-38	

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

Preparation:

Method:

N/A

09-01-0601

EPA 5030B

LUFT GC/MS / EPA 8260B

Project: 4212 First St, Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyze	ed	0-8 0-10 0-7 0-20 0-9		
099-12-767-845	Aqueous	GC/MS RR	01/13/09	01/14/09	17.54	090113L02		
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	<u>Qualifiers</u>	
Benzene	87	88	84-120	78-126	2	8-0		
Carbon Tetrachloride	96	97	63-147	49-161	2	0-10		
Chlorobenzene	91	92	89-119	84-124	1	0-7		
1,2-Dibromoethane	94	96	80-120	73-127	3	0-20		
1,2-Dichlorobenzene	91	91	89-119	84-124	0	0-9		
1,1-Dichloroethene	82	83	77-125	69-133	1	0-16		
Ethylbenzene	92	93	80-120	73-127	1	0-20		
Toluene	88	89	83-125	76-132	1	0-9		
Trichloroethene	89	90	89-119	84-124	2	0-8		
Vinyl Chloride	70	70	63-135	51-147	0	0-13		
Methyl-t-Butyl Ether (MTBE)	88	90	82-118	76-124	2	0-13		
Tert-Butyl Alcohol (TBA)	89	87	46-154	28-172	2	0-32		
Diisopropyl Ether (DIPE)	81	91	81-123	74-130	11	0-11		
Ethyl-t-Butyl Ether (ETBE)	90	92	74-122	66-130	2	0-12		
Tert-Amyl-Methyl Ether (TAME)	90	92	76-124	68-132	2	0-10		
Ethanol	87	83	60-138	47-151	5	0-32		
TPPH	91	86	65-135	53-147	6	0-30		

Total number of LCS compounds: 17
Total number of ME compounds: 0
Total number of ME compounds allowed:

LCS ME CL validation result : Pass

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

Preparation:

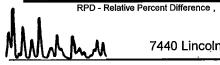
Method:

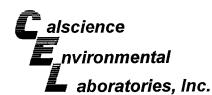
N/A

09-01-0601

EPA 5030B LUFT GC/MS / EPA 8260B

Project: 4212 First St, Pleasanton, CA


Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed		LCS/LCSD Numbe	
099-12-767-856	Aqueous	GC/MS W	01/14/09	01/15	/09	090114L	02
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	111	107	84-120	78-126	4	0-8	
Carbon Tetrachloride	121	121	63-147	49-161	0	0-10	
Chlorobenzene	105	102	89-119	84-124	3	0-7	
1,2-Dibromoethane	104	98	80-120	73-127	6	0-20	
1,2-Dichlorobenzene	105	99	89-119	84-124	6	0-9	
1,1-Dichloroethene	121	117	77-125	69-133	3	0-16	
Ethylbenzene	113	108	80-120	73-127	5	0-20	
Toluene	112	108	83-125	76-132	4	0-9	
Trichloroethene	115	110	89-119	84-124	4	0-8	
Vinyl Chloride	113	110	63-135	51-147	2	0-13	
Methyl-t-Butyl Ether (MTBE)	108	105	82-118	76-124	3	0-13	
Tert-Butyl Alcohol (TBA)	102	99	46-154	28-172	3	0-32	
Dilsopropyl Ether (DIPE)	112	108	81-123	74-130	3	0-11	
Ethyl-t-Butyl Ether (ETBE)	107	104	74-122	66-130	3	0-12	
Tert-Amyl-Methyl Ether (TAME)	104	101	76-124	68-132	4	0-10	
Ethanol	105	95	60-138	47-151	10	0-32	
TPPH	86	89	65-135	53-147	3	0-30	


Total number of LCS compounds: 17

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Delta Environmental Consultants, Inc. 312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

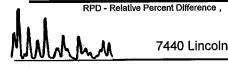
Work Order No:

Preparation:

Method:

N/A

09-01-0601


EPA 5030B LUFT GC/MS / EPA 8260B

Project: 4212 First St, Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyz		LCS/LCSD Ba Number	tch
099-12-767-862	Aqueous	GC/MS RR	01/15/09	01/15/09		090115L01	4/2/
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME_CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Benzene	97	98	84-120	78-126	1	0-8	
Carbon Tetrachloride	109	111	63-147	49-161	1	0-10	
Chlorobenzene	101	102	89-119	84-124	1	0-7	
1,2-Dibromoethane	103	105	80-120	73-127	1	0-20	
1,2-Dichlorobenzene	101	103	89-119	84-124	1	0-9	
1,1-Dichloroethene	94	95	77-125	69-133	1	0-16	
Ethylbenzene	102	104	80-120	73-127	2	0-20	
Toluene	98	99	83-125	76-132	1	0-9	
Trichloroethene	98	100	89-119	84-124	2	0-8	
Vinyl Chloride	72	71	63-135	51-147	1	0-13	
Methyl-t-Butyl Ether (MTBE)	99	99	82-118	76-124	1	0-13	
Tert-Butyl Alcohol (TBA)	93	92	46-154	28-172	0	0-32	
Disopropyl Ether (DIPE)	107	105	81-123	74-130	1	0-11	
Ethyl-t-Butyl Ether (ETBE)	106	102	74-122	66-130	3	0-12	
Tert-Amyl-Methyl Ether (TAME)	101	99	76-124	68-132	2	0-10	
Ethanol	86	86 [°]	60-138	47-151	0	0-32	
TPPH	85	86	65-135	53-147	1	0-30	

Total number of LCS compounds: 17
Total number of ME compounds: 0
Total number of ME compounds allowed:

LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order Number: 09-01-0601

<u>Qualifier</u>	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
Е	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

LAB (LOCATIO	١)					C ILL	?		Sh	ell (Oil	Pi	rod	luc	ts	C	hai	n C)f (Cus	tod	ly F	Rec	or	d						
OLSCIENCE (Ple	ase Chec				Box:			Prin	t Bil	ll To	Con	tact	Na	ne:				, H	NCID	ENT:	# (E	NV.S	ER	VIÇI	5)∶	C) CHEC	CK IF NO INCIDENT # APPI	UES
3 Sar (□ BW	. SERVICES		MOTIVA				SHELL RE		l											Т	в я	$\overline{}$		$\overline{}$	7	-		E: 1/8/2009	
		□мо	TIVA SD&CM		ONSUL	TANT			LUBES	一同						0	4				1				P:#:						
TEST AMERICA (OTHER_			1 (===		一		::::: <u>:</u>	·····		****			·····	:::::: T				<u> </u>	1	T	Ī	7	1	PAG	E: of	_1_
OTHER (LL SHE	LL PEPELINE		LOGIC	_	_	:	==				A SS: Str	4	2	1	2	1	1		State		3 (8		2				_
MPLINE COMPANY: Delta Consultants					Loc co								t St;		-	ton			Lavi	IONE NO.:	State	CA		1	6001	_	59			CONSULTANT PROJECT IN	<u> </u>
ADORESS:	312 Piercy F	Road; Sa	n Jose, C	A 95138							1				ompany, «	CIUC4 L	ecanoni:													Collocation (Notice)	
ROJECT CONTACT (Hardcapy or PDF I	apati to):										Ang	ela	Pico	inte					4	08-826	<u>-186</u>	2		Apid	co@d	eltae	nv.co		USE OF	M V	988
TELEPHONE:	FAX:	Rich Ga	LFIOW E-MAIL:										lson																		
408-826-1890	408-225-8506	;		Rga	arlow@	<u>Qdelta</u>	env.co						13011															U		01- <i>060 (</i>	
TURNAROUND TIME (CALE) STANDARD (14 DAY)	DAR DAYS); □ 5 DAYS □ 3 DAYS		⊒ 2 DAYS	☐ 24 HO	IURS		☐ RE	ESULTS I	NEEDED	NID										F	EQU	ESTE	D AN	ALY	SIS						
A - RWQCB REPORT FOR						_										П	-		Т	-						П					
7 DY-KWÓCH KRACKI FOK	Will D COT AGENCT.										Щ	Wa	ater S	ample	es T			Sample	ės		_	_	_	1		╫	_	1 7	ऻॱ	TEMPERATURE ON RE	ECE
SPECIAL INSTRUCTION	ONS OR NOTES :			Ø sHeu							<u>@</u>		(B)			ı	₹	2			1					1	Ì	1 1			
_				☐ STATE			MENT RA	HE APPL	ue		3260		(821				[]	Ē													
Send results to:				□ EDD N			70N PC	∼ (ECT	_		9		ig i	ĺ	<u></u>		<u></u>	& MTBE (TO-14)									1		 		_
				∟ RECE	M-1 AEK	UPICAT	ISUN KE	₩	.		8	<u>@</u>	ue6.	ا ۾	, g	90g	gear	جة. ا		-	1			-		1					
		SAM	PLING			PR	RESERVA	TIVE	П		P	826	ő	260	8)	<u>§</u>	2	₹		1					1	1					
Field San	nple Identification	DATE	TIME	MATRIX	HCL	HNO3	H2SO4	NONE		NO. OF CONT.	TPH-G Purgeable (8260B)	BTEX (8260B)	5 Shell Oxygenates (8260B)	EDB (8260B)	1,2-DCA (8280B)	Ethanol (8260B)	TPH-G Purgeable (TO-14)	BTEX, T8A,				1				l				Container PID Read or Laboratory Not	
MW-1 Mid Tes		1/7/09	7:30		X		12.00			5	х	x	x	×	_	×					1.								5	Oxys = MTBE, TBA,	
MW-2 Mid Tes		1/7/09			×					5	x	х	х	x	х	х			Т			T			T			1 1	D	IPE, ETBE, & TAME	
					1	Н	 -	\vdash			x	х	×	$\overline{\mathbf{x}}$	x	x			十			1	\top		Г			\Box	\Box		_
MW-3 Mid Tes		1/7/09	8:20	_	<u>*</u>	-		H		5	x	×	x	x	x	x	-	\dashv	╁		+	┼	+	+	+	t	 -	1 1	\vdash		_
MW-4 Mid Tes	<u>t</u>	1/7/09	8:20	·	X			 I		_5_	^	-		^	4	$\hat{\dashv}$	\dashv		╌	+-	+-	┼—	+-	╀	+	╀╌	╁	╀┤	-+		_
\$ DPE Influent -	Mid Test	1/7/09	7:15		<u> </u>	Ш		x		1	Ш						×	×, ;	<u>\</u>		\bot	-	\bot	1	4_	┺	1		oxdot		_
																_						\perp		\perp	\perp	L	L				
		\top											П			一			T		Т		T		I^{-}	Γ					
		+		 	+		-	$\vdash \vdash$			$\vdash \vdash$		\vdash	ᅥ	+	\dashv	-	\dashv	十	_	+	T	+-	†	T	†	T	† †			_
						Ш		╙			Ш		Ш		\perp		\Box		1		\perp		4-	1	4_	↓_	+	\sqcup			_
																		- 1	1			1									
		+	 		+	\vdash							\square	一	-	\dashv		-+	\dagger	_	+	\top	+	\top	+	十	\top	+			_
<u></u>	<u> </u>	<u> </u>				Ш	ļ															<u> </u>	100	_لِ		L	Ш	4	Time;		_
Relingfushind by: (Signature)	1/2 -			Received by: (S	ignakiro)	1																	1	Ja	12	مرم	50	Ίl			
Me	(cora C	كالاصرا																					\perp	70	12	<u> </u>	_	`			
edinquished by: (Signature)	Janoer			Received by: (S	ignature	}			_							_							Da	Ŀ	(Time:		_
]		
Relinquished by: (Signature)	3.			Received by: (S	grature	۰				=	_		_	7	4		_						Da	« ,				\neg	Time:		_
	10572 75	٠,						/			_	H	7	Z,						/	Z		1	1/4	1/0	20	7	1	11	3/	
		'T _													-					<u>LE</u>				<u> </u>	10	_			111	05/2/06 Revision	

of 19

the transfer of the property of

Page 18 of 19 WORK ORDER #: 4: 4 9 - 6 1 - 6 6 6 1

aboratories, inc. SAMPLE RECEIPT FORM Cooler \(\sqrt{} \) of \(\sqrt{} \)

CLIENT: Delta cons	DATE: 1	19109
TEMPERATURE: (Criteria: 0.0 °C − 6.0 °C, not frozen) Temperature 3 • C °C − 0.2 °C (CF) = 3 • 4 °C □ Sample(s) outside temperature criteria (PM/APM contacted by:). □ Sample(s) outside temperature criteria but received on ice/chilled on same □ Received at ambient temperature, placed on ice for transport by	ne day of sampling	Sample
	Bs Only	Initial:
CUSTODY SEALS INTACT: Cooler		Initial: AD
SAMPLE CONDITION: Ye		N/A
COC decument(s) received with samples		
COC document(s) received complete		
, , , , , , , , , , , , , , , , , , , ,	Z	
Correct containers and volume for analyses requested		П
• • •	z	
	 Z	
Tedlar bag(s) free of condensation	d 🗆	
CONTAINER TYPE:		
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve □EnCores® I		
Water: □VOA ∠□VOAh □VOAna₂ □125AGB □125AGBh □1	125AGBpo₄ □	1AGB □1AGBna₂
□1AGBs □500AGB □500AGBs □250CGB □250CGBs □1PB		
□250PBn □125PB □125PBznna □100PBsterile □100PBna₂		
Air:	Re	abeled by: AD

1989 Programme Technological Communication

SOP T100_090 (12/10/08)

alteria de la composición del composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la

aboratories, Inc. SAMPLE ANOMALY FORM

CHAIN O	F CUSTODY	(COC):			Comm	ents:		
□ No dat	linquished by te/time relinqu tot received w plete informat	iished ith samples	- notify P	M	samp is a	les Is	coc (matr water) (5	
SAMPLES	S - CONTAIN	ERS & LAI	BELS:		Comn	nents:		
□ Sampl □ Holdin □ Insuffi □ Improp □ No pre □ Sampl □ Sampl □ Sampl □ P □ #	es NOT RECE es received b ig time expire cient quantitie per container(eservative not e labels illegil e labels do no cample ID cate and Time roject Informa e containers e containers e containers exing Broken Vithout Labels	ut NOT LIS d — list samp es for analy s) used — lis ed on label ble — note te ot match CC Collected ation s compromise	TED on CO ble ID(s) and sis – list te st test – list test a st/containe OC – Note i	DC nd test est and notify lab er type in comments			NID TEST T	
HEADSP	ACE – Conta	iners with	Bubble >	6mm or ¼ i	nch:			
Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of RSK or CO ₂ or DO or Organic Lead Received
-3	BICIDIE	5						
	DICIDIE	2						
Comments						Initial / Da	te <u>Ao</u> 1-9	-09
								

SOP T100_081 (09/19/08)

Supplemental Report 1

February 04, 2009

The original report has been revised/corrected.

Rich Garlow
Delta Environmental Consultants, Inc.
312 Piercy RD.
San Jose, CA 95138-1401

Subject:

Calscience Work Order No.:

09-01-0865

Client Reference:

4212 First St, Pleasanton, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 1/13/2009 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Philip Samelle for

Laboratories, Inc.

Jessie Kim

Project Manager

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

Preparation:

01/13/09 09-01-0865

N/A

Method:

EPA TO-3M

Project: 4212 First St, Pleasanton, CA

Page 1 of 1

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
DPE Influent-After Test		09-01-0865-5-A	01/10/09 08:00	Air	GC 13	N/A	01/13/09 12:33	090113L01
Comment(s): -Sample received after	er recommended	holding time.						
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	3600	30	20		ppm (v/v))		
DPE Influent-8hr Pre Test	y sta s .	09-01-0865-9-A	01/12/09 10:10	Air	GC 13	N/A	01/13/09 12:13	090113L01
Parameter Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	73	1.5	1		ppm (v/v)		
DPE Influent-8hr Mid Test		09-01-0865-13-A	01/12/09 12:25	Air	GC 13	N/A	01/13/09 12:22	090113L01
Parameter_	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	31	1.5	1		ppm (v/v)		
Method Blank		098-01-005-1,638	N/A	Air	GC 13	N/A	01/13/09 08:40	090113L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	1.5	1		ppm (v/v)		

RL - Reportir

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No: Preparation:

Method:

Units:

01/13/09

09-01-0865

N/A

EPA TO-15

ppb (v/v)

Project: 4212 First St. Pleasanton, CA

Page 1 of 2

Project: 4212 First St, Pl	easantor	n, CA							F	age 1 of 2
Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared		QC Batch ID
DPE Influent-After Test			09-01-0)865-5-A	01/10/09 08:00	Air	GC/MS K	N/A	01/13/09 21:38	090113L01
Comment(s): -Sample received aft	er recommen	ded holdin	g time.							
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			<u>Result</u>	<u>RL</u>	<u>DF</u> Qual
Benzene	22000	500	1000		Xylenes (total)			38000	2000	1000
Toluene	3100	500	1000		Methyl-t-Butyl E	ther (MTB	E)	24000	2000	1000
Ethylbenzene	22000	500	1000		Tert-Butyl Alcoh	nol (TBA)	•	ND	2000	1000
Surrogates:	REC (%)	Control		<u>Qual</u>	Surrogates:	, ,		REC (%)	<u>Control</u>	<u>Qual</u>
		Limits							<u>Limits</u>	
1,4-Bromofluorobenzene	105	57-129			1,2-Dichloroeth	ane-d4		97	47-137	
Toluene-d8	99	78-156								
DPE Influent-8hr Pre Test	- 1		09-01-0)865-9-A	01/12/09	Air	GC/MS K	N/A	01/14/09	090114L01
	a Pagaraga	144.5			10:10		3		16:39	
		. 77 8			<u> </u>					
Parameter	Result	RL	<u>DF</u>	Qual	Parameter			Result	RL	DF Qual
Benzene	79	5.0	10		Xylenes (total)			320	20	 10
Toluene	6.7	5.0	10		Methyl-t-Butyl E	ther (MTB	E)	500	20	10
Ethylbenzene	150	5.0	10		Tert-Butyl Alcoh		_,	80	20	10
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control	Qual
	1.2	Limits							Limits	
1,4-Bromofluorobenzene	98	57-129			1,2-Dichloroeth	ane-d4		94	47-137	
Toluene-d8	101	78-156								
DPE Influent-8hr Mid Test		14.5	09-01-0)865-13-A	01/12/09	Air	GC/MS K	N/A	01/14/09	090114L01
	ey disease of the	e de disensares			12:25				18:11	
Danamatan	Dooulk		DE	Ouel	Davamatan			Dogult	DI	DE Ouel
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	DF Qual
Benzene	30	3.1	6.25		Xylenes (total)		_,	170	12	6.25
Toluene	5.1	3.1	6.25		Methyl-t-Butyl E		L)	190	12	6.25
Ethylbenzene	67	3.1	6.25		Tert-Butyl Alcol	JOI (TBA)		43	12	6.25
Surrogates:	<u>REC (%)</u>	Control		<u>Qual</u>	Surrogates:			REC (%)	Control Limits	<u>Qual</u>
1,4-Bromofluorobenzene	103	<u>Limits</u> 57-129			1,2-Dichloroeth	ano.d4		92	47-137	
Toluene-d8	100	78-156			1,2-01011010011	an c u -		V2	47-137	
E Avi di Silani		70-100							24142/24	
Method Blank			097-09	-002-8,07	0 N/A	Air	GC/MS K	N/A	01/13/09 14:44	9 090113L01
All the second of the second o			1. 1						14.44	
	D!	DI	DE	01	D			D#	DI	DE 0
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			<u>Result</u>	<u>RL</u>	<u>DF</u> <u>Qual</u>
Benzene	ND	0.50	1		Xylenes (total)			ND	2.0	1
Toluene	ND	0.50	1		Methyl-t-Butyl E	•	E)	ND	2.0	1
Ethylbenzene	ND	0.50	1		Tert-Butyl Alcol	nol (TBA)		ND	2.0	1
Surrogates:	REC (%)	<u>Control</u>		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u>	<u>Qual</u>
4.4 Decimally and	07	<u>Limits</u>			4.0 District "			00	<u>Limits</u>	
1,4-Bromofluorobenzene	97	57-129			1,2-Dichloroeth	an e -q4		99	47-137	
Toluene-d8	100	78-156								

DF - Dilution Factor ,

Qual - Qualifiers

01/13/09

N/A

09-01-0865

Analytical Report

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

Preparation:

Method: Units:

EPA TO-15 ppb (v/v)

Page 2 of 2

Project: 4212 First St, Pleasanton, CA

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti I Analyz		QC Batch ID
Method Blank	11 10 10 10 10 2	T 37 1	097-09	-002-8,073		Air	GC/MS K	N/A	01/14/ 11:1		090114L01
Parameter	Result	<u>RL</u>	DF	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>D</u> F	<u>Qual</u>
Benzene	ND	0.50	1		Xylenes (total)			ND	2.0	1	
Toluene	ND	0.50	1		Methyl-t-Butyl E	ther (MTBI	≣)	ND	2.0	1	
Ethylbenzene	ND	0.50	1		Tert-Butyl Alcoh	iol (TBA)		ND	2.0	1	
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
1,4-Bromofluorobenzene Toluene-d8	96 100	57-129 78-156			1,2-Dichloroetha	ane-d4		92	47-137		

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

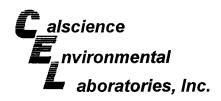
Preparation:

Method:

Units:

01/13/09

09-01-0865 EPA 5030B


LUFT GC/MS / EPA 8260B

ug/L

Project: 4212 First St, Pleasanton, CA

Page 1 of 6

		.,									
Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analyz		QC Batch II
MW-1 After Test	48-2197 (26 r	2.003.485	09-01-0)865-1-A	01/10/09 08:30	Aqueous	GC/MS R	01/19/09	01/19/ 19:4		090119L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	DE	<u>Qual</u>
Benzene	ND	2.5	5		Tert-Butyl Alc	ohol (TBA)		130	50	5	
1,2-Dibromoethane	ND	5.0	5		Diisopropyl Et	her (DIPE)		ND	10	5	
1,2-Dichloroethane	36	2.5	5		Ethyl-t-Butyl E	ther (ETBE)		ND	10	5	
Ethylbenzene	ND	5.0	5		Tert-Amyl-Me	thyl Ether (TA	AME)	ND	10	5	
Toluene	ND	5.0	5		Ethanol	• •	·	ND	500	5	
Xylenes (total)	ND	5.0	5		TPPH			1500	250	5	
Methyl-t-Butyl Ether (MTBE)	1300	20	20								
Surrogates:	REC (%)	<u>Control</u>		Qual	Surrogates:			REC (%)	<u>Control</u>		<u>Qual</u>
·····		<u>Limits</u>							<u>Limits</u>		
Dibromofluoromethan e	117	74-140			1,2-Dichloroet	hane-d4		128	74-146		
Toluene-d8	109	88-112			Toluene-d8-T	PPH		108	88-112		
1,4-Bromofluorobenzene	95	74-110									
MW-2 After Test		-	09-01-0)865-2-A	01/10/09 07:50	Aqueous	GC/MS R	01/19/09	01/19/ 20:1		090119L01
Parameter Parameter Parameter	Result	<u>RL</u>	DE	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF	<u>Qual</u>
Benzene	ND	0.50	1		Tert-Butyl Alc	ohol (TBA)		23	10	1	
1,2-Dibromoethane	ND	1.0	i		Diisopropyl Et	, ,		ND	2.0	1	
1,2-Dichloroethane	ND	0.50	1		Ethyl-t-Butyl E			ND	2.0	1	
Ethylbenzene	ND	1.0	1		Tert-Amyl-Me	thyl Ether (T/	AME)	2.5	2.0	1	
Toluene	ND	1.0	1		Ethanol		,	120	100	1	
Xylenes (total)					TODU			4000		1	
AVIENES (IUIAI)	ND	1.0	1		TPPH			1200	50	1	
, ,	ND 1300	1.0 50	1 50		IPPN			1200	50	1	
Methyl-t-Butyl Ether (MTBE)			-	Qual	Surrogates:			REC (%)	Control	'	<u>Qual</u>
Methyl-t-Butyl Ether (MTBE)	1300	50	-	<u>Qual</u>						1	Qual
Ayleries (total) Methyl-t-Butyl Ether (MTBE) Surrogates: Dibromofluoromethane	1300	50 Control	-	<u>Qual</u>		lhane-d4			Control	1	<u>Qual</u>
Methyl-t-Butyl Ether (MTBE) Surrogates:	1300 REC (%)	50 Control Limits	-	Qual	Surrogates:			REC (%)	Control Limits	1	<u>Qual</u>

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

Preparation:

Method:

Units:

01/13/09

09-01-0865

EPA 5030B

LUFT GC/MS / EPA 8260B

ug/L

Project: 4212 First St, Pleasanton, CA

Page 2 of 6

		-,									
Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analyz		QC Batch II
MW-3 After Test			09-01-0	0865-3-A	01/10/09 08:15	Aqueous	GC/MS RR	01/20/09	01/20/ 20:1		090120L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.50	1		Tert-Butyl Ald	ohol (TBA)		ND	10	1	
1,2-Dibromoethane	ND	1.0	1		Diisopropyl E	ther (DIPE)		ND	2.0	1	
1,2-Dichloroethane	ND	0.50	1		Ethyl-t-Butyl E	Ether (ETBE)		ND	2.0	1	
Ethylbenzene	ND	1.0	1		Tert-Amyl-Me	thyl Ether (T/	AME)	ND	2.0	1	
Toluene	ND	1.0	1		Ethanol			190	100	1	
Xylenes (total)	ND	1.0	- 1		TPPH			ND	50	1	
Methyl-t-Butyl Ether (MTBE)	5.1	1.0	1								
Surrogates:	REC (%)	<u>Control</u>		<u>Qual</u>	Surrogates:			REC (%)	Control_		<u>Qual</u>
		<u>Limits</u>							<u>Limits</u>		
Dibromofluoromethane	101	74-140			1,2-Dichloroe	thane-d4		111	74-146		
Toluene-d8	101	88-112			Toluene-d8-T	PPH		96	88-112		
1,4-Bromofluorobenzene	97	74-110					_				
MW-4 After Test		- Austri	09-01-	0865-4-A	01/10/09 08:20	Aqueous	GC/MS R	01/19/09	01/19 21:1		090119L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	370	5.0	10		Tert-Butyl Ald	ohol (TBA)		2100	100	10)
1,2-Dibromoethane	ND	10	10		Diisopropyl E	ther (DIPE)		ND	20	10)
1,2-Dichloroethane	ND	5.0	10		Ethyl-t-Butyl I	Ether (ETBE)		ND	20	10)
Ethylbenzene	160	10	10		Tert-Amyl-Me	ethyl Ether (Ta	AME)	ND	20	10)
Foluene	ND	10	10		Ethanol			ND	1000	10)
Kylenes (total)	430	10	10		TPPH			10000	500	10)
Methyl-t-Butyl Ether (MTBE)	2000	50	50								
Surrogates:	REC (%)	Control.		<u>Qual</u>	Surrogates:			REC (%)	<u>Control</u>		<u>Qual</u>
		Limits							<u>Limits</u>		
Dibromofluoromethane	113	74-140			1,2-Dichloroe			112	74-146		
Toluene-d8	101	88-112			Toluene-d8-T	PPH		100	88-112		
1,4-Bromofluorobenzene	95	74-110									

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

Preparation:

Method: Units: 01/13/09

09-01-0865

EPA 5030B LUFT GC/MS / EPA 8260B

ug/L

Project: 4212 First St, Pleasanton, CA

Page 3 of 6

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analyz		QC Batch ID
MW-1 8-hr Pre Test			09-01-0)865-6-A	01/12/09 09:50	Aqueous	GC/MS R	01/19/09	01/19/ 21:4		090119L01
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual
Benzene	46	5.0	10		Tert-Butyl Alco	hol (TBA)		720	100	10	
1,2-Dibromoethane	ND	10	10		Diisopropyl Eth	ner (DIPE)		ND	20	10	
1,2-Dichloroethane	220	5.0	10		Ethyl-t-Butyl Et	lher (ETBE)		ND	20	10	
Ethylbenzene	ND	10	10		Tert-Amyl-Meth	hyl Ether (T/	AME)	ND	20	10	
Foluene	ND	10	10		Ethanol			ND	1000	10	
Kylenes (total)	ND	10	10		TPPH			3100	500	10	
Methyl-t-Butyl Ether (MTBE)	2400	50	50								
Surrogates:	REC (%)	<u>Control</u>		<u>Qual</u>	Surrogates:			REC (%)	<u>Control</u>		<u>Qual</u>
		<u>Limits</u>			_				<u>Limits</u>		
Dibromofluoromethane	112	74-140			1,2-Dichloroeth	nan e- d4		111	74-146		
Foluene-d8	103	88-112			Toluene-d8-TF	PPH		102	88-112		
Foluene-d8 1,4-Bromofluorobenzene	103 95	88-112 74-110			Toluene-d8-TF	PH		102	88-112		
	95		09-01-0)865-7-A	Toluene-d8-TF 01/12/09 09:20	PPH	GC/MS R	102 01/19/09	01/19/ 22:0		090119L01
1,4-Bromofluorobenzene MW-2 8-hr Pre Test	95	74-110	09-01- (0865-7-A Qual	01/12/09		GC/MS R		01/19/		090119 L01 Qual
1,4-Bromofluorobenzene MW-2 8-hr Pre Test Parameter	95	74-110			01/12/09 09:20	Aqueous	GC/MS R	01/19/09	01/19/ 22:0	9	
,4-Bromofluorobenzene MW-2 8-hr Pre Test Parameter Benzene	95	74-110 RL	DF		01/12/09 09:20 Parameter	Aqueous	GC/MS R	01/19/09 Result	01/19/ 22:0	9 DE	
A-Bromofluorobenzene MW-2 8-hr Pre Test Parameter Benzene 1,2-Dibromoethane	95 Result ND	74-110 RL 2.5	<u>DF</u> 5		01/12/09 09:20 Parameter Tert-Butyl Alco	Aqueous ohol (TBA) ner (DIPE)		01/19/09 Result ND	01/19/ 22:0 <u>RL</u> 50	9 DF 5	
A-Bromofluorobenzene MW-2 8-hr Pre Test Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane	95 Result ND ND	74-110 <u>RL</u> 2.5 5.0	<u>DF</u> 5 5		01/12/09 09:20 Parameter Tert-Butyl Alco Diisopropyl Eth	Aqueous ohol (TBA) ner (DIPE) ther (ETBE)		01/19/09 Result ND ND	01/19/ 22:0 <u>RL</u> 50 10	9 DF 5 5	
,4-Bromofluorobenzene MW-2 8-hr Pre Test Parameter Benzene ,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene	95 Result ND ND ND ND	74-110 <u>RL</u> 2.5 5.0 2.5	DF 5 5 5		01/12/09 09:20 Parameter Tert-Butyl Alco Diisopropyl Eth Ethyl-t-Butyl Et	Aqueous ohol (TBA) ner (DIPE) ther (ETBE)		O1/19/09 Result ND ND ND ND	01/19/ 22:0 <u>RL</u> 50 10	9 DF 5 5 5	-
,4-Bromofluorobenzene MW-2 8-hr Pre Test Parameter Benzene ,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Foluene	95 Result ND ND ND ND ND ND	74-110 RL 2.5 5.0 2.5 5.0	DF 5 5 5 5		01/12/09 09:20 Parameter Tert-Butyl Alco Diisopropyl Eth Ethyl-t-Butyl Et Tert-Amyl-Metl	Aqueous ohol (TBA) ner (DIPE) ther (ETBE)		O1/19/09 Result ND ND ND ND ND	01/19/ 22:0 RL 50 10 10	9 DF 5 5 5	-
,4-Bromofluorobenzene MW-2 8-hr Pre Test Parameter Benzene ,2-Dibromoethane ,2-Dichloroethane Ethylbenzene Foluene (ylenes (total)	Result ND ND ND ND ND ND	74-110 <u>RL</u> 2.5 5.0 2.5 5.0 5.0	DF 5 5 5 5 5		01/12/09 09:20 Parameter Tert-Butyl Alco Diisopropyl Eth Ethyl-t-Butyl Et Tert-Amyl-Metl Ethanol	Aqueous ohol (TBA) ner (DIPE) ther (ETBE)		O1/19/09 Result ND ND ND ND ND ND	01/19/ 22:0 RL 50 10 10 10 500	9 DF 5 5 5 5	-
A.4-Bromofluorobenzene MW-2 8-hr Pre Test Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) Methyl-t-Butyl Ether (MTBE)	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	74-110 RL 2.5 5.0 2.5 5.0 5.0 5.0 5.0 Control	DF 5 5 5 5 5 5		01/12/09 09:20 Parameter Tert-Butyl Alco Diisopropyl Eth Ethyl-t-Butyl Et Tert-Amyl-Metl Ethanol	Aqueous ohol (TBA) ner (DIPE) ther (ETBE)		O1/19/09 Result ND ND ND ND ND ND	01/19/ 22:0 RL 50 10 10 10 500 250 Control	9 DF 5 5 5 5	-
MW-2 8-hr Pre Test Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) Methyl-t-Butyl Ether (MTBE) Surrogates:	Result ND ND ND ND ND ND ND ND ND ND ND ND REC (%)	74-110 RL 2.5 5.0 2.5 5.0 5.0 5.0 5.0 Control Limits	DF 5 5 5 5 5 5	Qual	Parameter Tert-Butyl Alco Disopropyl Eth Ethyl-t-Butyl Et Tert-Amyl-Metl Ethanol TPPH Surrogates:	Aqueous ohol (TBA) ner (DIPE) ther (ETBE) hyl Ether (T		01/19/09 Result ND ND ND ND ND ND ND ND ND REC (%)	01/19/ 22:0 RL 50 10 10 10 500 250 Control Limits	9 DF 5 5 5 5	Qual
MW-2 8-hr Pre Test Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) Methyl-t-Butyl Ether (MTBE) Surrogates: Dibromofluoromethane	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	74-110 RL 2.5 5.0 2.5 5.0 5.0 5.0 5.0 Control Limits 74-140	DF 5 5 5 5 5 5	Qual	Parameter Tert-Butyl Alco Disopropyl Etr Ethyl-t-Butyl Et Tert-Amyl-Metl Ethanol TPPH Surrogates: 1,2-Dichloroeti	Aqueous ohol (TBA) ner (DIPE) ther (ETBE) hyl Ether (Ta		01/19/09 Result ND ND ND ND ND ND ND ND REC (%)	01/19/ 22:0 RL 50 10 10 500 250 Control Limits 74-146	9 DF 5 5 5 5	Qual
MW-2 8-hr Pre Test Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) Methyl-t-Butyl Ether (MTBE) Surrogates:	Result ND ND ND ND ND ND ND ND ND ND ND ND REC (%)	74-110 RL 2.5 5.0 2.5 5.0 5.0 5.0 5.0 Control Limits	DF 5 5 5 5 5 5	Qual	Parameter Tert-Butyl Alco Disopropyl Eth Ethyl-t-Butyl Et Tert-Amyl-Metl Ethanol TPPH Surrogates:	Aqueous ohol (TBA) ner (DIPE) ther (ETBE) hyl Ether (Ta		01/19/09 Result ND ND ND ND ND ND ND ND ND REC (%)	01/19/ 22:0 RL 50 10 10 10 500 250 Control Limits	9 DF 5 5 5 5	Qual

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

Preparation:

Method:

Units:

09-01-0865 **EPA 5030B**

LUFT GC/MS / EPA 8260B

01/13/09

Project: 4212 First St, Pleasanton, CA

Page 4 of 6

				Date/Time Collected Matrix Inst	trument	Date Prepared	Date/Tim Analyze	_	C Batch ID
	K belgavi	09-01-0	865-8-A	01/12/09 Aqueous GC/ 09:20	MS RR	01/20/09	01/20/09 21:55	0	90120L01
Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual
ND	50	100		Tert-Butyl Alcohol (TBA)		1500	1000	100	
ND	100	100		Dilsopropyl Ether (DIPE)		ND	200	100	
ND	50	100		Ethyl-t-Butyl Ether (ETBE)		ND	200	100	
ND	100	100		Tert-Amyl-Methyl Ether (TAME))	ND	200	100	
ND	100	100		Ethanol			10000	100	
ND	100	100		TPPH		18000	5000	100	
15000	100	100							
REC (%)	Control .		<u>Quai</u>	Surrogates:	В	REC (%)	Control_		<u>Qual</u>
	<u>Limits</u>								
106	74-140			1,2-Dichloroethane-d4			74-146		
101	88-112			Toluene-d8-TPPH		97	88-112		
97	74-110								
				Janet Sales Control of the Control o			04/00/0		
正指数 医双氯甲基	1936/03/0	୍ 09-01-()865-10-B		/MS RR	01/20/09	01/20/09	9 0	90120L01
	154140000000	09-01-0)865-10-B	\$ 01/12/09 Aqueous GC/ 12:00	/MS RR	01/20/09	22:20	9 ₅ 4. ()	90120L01
Result			0865-10-B ————————————————————————————————————			01/20/09 Result		9 0 DF	90120L01 Qual
Result	<u>RL</u>	<u>DF</u>		12:00 Parameter			22:20	<u>DF</u>	
Result 61	<u>RL</u> 12	<u>DF</u> 25		12:00 Parameter Tert-Butyl Alcohol (TBA)		<u>Result</u>	22:20 RL	DF 25	
Result 61 ND	<u>RL</u> 12 25	<u>DF</u> 25 25		Parameter Tert-Butyl Alcohol (TBA) Diisopropyl Ether (DIPE)	<u></u>	Result 720	22:20 RL 250	<u>DF</u>	
Result 61 ND ND	RL 12 25 12	DF 25 25 25 25		Parameter Tert-Butyl Alcohol (TBA) Diisopropyl Ether (DIPE) Ethyl-t-Butyl Ether (ETBE)		Result 720 ND ND	22:20 RL 250 50 50	DF 25 25 25 25	
Result 61 ND ND ND	RL 12 25 12 25	DF 25 25 25 25 25		Parameter Tert-Butyl Alcohol (TBA) Diisopropyl Ether (DIPE) Ethyl-t-Butyl Ether (ETBE) Tert-Amyl-Methyl Ether (TAME))	Result 720 ND	22:20 RL 250 50 50 50	DF 25 25 25 25 25	
Result 61 ND ND ND ND ND	RL 12 25 12 25 25 25	DF 25 25 25 25 25 25		Parameter Tert-Butyl Alcohol (TBA) Diisopropyl Ether (DIPE) Ethyl-t-Butyl Ether (ETBE) Tert-Amyl-Methyl Ether (TAME) Ethanol)	Result 720 ND ND ND ND ND	22:20 RL 250 50 50 50 2500	DF 25 25 25 25 25 25	
Result 61 ND ND ND ND ND 77	RL 12 25 12 25 25 25 25	DF 25 25 25 25 25 25 25		Parameter Tert-Butyl Alcohol (TBA) Diisopropyl Ether (DIPE) Ethyl-t-Butyl Ether (ETBE) Tert-Amyl-Methyl Ether (TAME))	Result 720 ND ND ND ND	22:20 RL 250 50 50 50	DF 25 25 25 25 25	
Result 61 ND ND ND ND ND 77 4000	RL 12 25 12 25 25 25 25 25	DF 25 25 25 25 25 25	Qual	Parameter Tert-Butyl Alcohol (TBA) Diisopropyl Ether (DIPE) Ethyl-t-Butyl Ether (ETBE) Tert-Amyl-Methyl Ether (TAME) Ethanol TPPH)	Result 720 ND ND ND ND ND ND 5500	22:20 RL 250 50 50 50 2500 1200	DF 25 25 25 25 25 25	
Result 61 ND ND ND ND ND 77	RL 12 25 12 25 25 25 25 25 Control	DF 25 25 25 25 25 25 25		Parameter Tert-Butyl Alcohol (TBA) Diisopropyl Ether (DIPE) Ethyl-t-Butyl Ether (ETBE) Tert-Amyl-Methyl Ether (TAME) Ethanol)	Result 720 ND ND ND ND ND	22:20 RL 250 50 50 50 2500	DF 25 25 25 25 25 25	Qual
Result 61 ND ND ND ND ND 77 4000	RL 12 25 12 25 25 25 25 25	DF 25 25 25 25 25 25 25	Qual	Parameter Tert-Butyl Alcohol (TBA) Diisopropyl Ether (DIPE) Ethyl-t-Butyl Ether (ETBE) Tert-Amyl-Methyl Ether (TAME) Ethanol TPPH)	Result 720 ND ND ND ND ND ND 5500	22:20 RL 250 50 50 50 2500 1200 Control	DF 25 25 25 25 25 25	Qual
Result 61 ND ND ND ND ND 77 4000 REC (%)	RL 12 25 12 25 25 25 25 25 Control Limits	DF 25 25 25 25 25 25 25	Qual	Parameter Tert-Butyl Alcohol (TBA) Diisopropyl Ether (DIPE) Ethyl-t-Butyl Ether (ETBE) Tert-Amyl-Methyl Ether (TAME) Ethanol TPPH Surrogates:)	Result 720 ND ND ND ND ND S5500 REC (%)	22:20 RL 250 50 50 50 2500 1200 Control Limits	DF 25 25 25 25 25 25	Qual
	Result ND ND ND ND ND ND 15000 REC (%) 106 101 97	Result RL ND 50 ND 100 ND 50 ND 100 ND 100 ND 100 15000 100 REC (%) Control Limits 106 74-140 101 88-112 97 74-110	Result RL DF ND 50 100 ND 100 100 ND 100 100 ND 100 100 ND 100 100 ND 100 100 ND 100 100 REC (%) Control Limits 106 74-140 101 88-112 97 74-110	Result RL DF Qual ND 50 100 ND 100 100 ND 50 100 ND 100 100 ND 100 100 ND 100 100 15000 100 100 REC (%) Control Limits Qual 101 88-112 97 97 74-110 Total	Number Collected Matrix Instance	Number Collected Matrix Instrument	Number Collected Matrix Instrument Prepared	Number Collected Matrix Instrument Prepared Analyzer	Number Collected Matrix Instrument Prepared Analyzed Collected Matrix Instrument Prepared Analyzed Collected Matrix Instrument Prepared Analyzed Collected Collected Matrix Instrument Prepared Analyzed Collected

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

Preparation: Method:

Units:

EPA 5030B

LUFT GC/MS / EPA 8260B

ug/L

01/13/09 09-01-0865

Project: 4212 First St, Pleasanton, CA

Page 5 of 6

Client Sample Number				o Sample lumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti		QC Batch ID
MW-2 8-hr Mid Test		de dán (s) Light (s)	09-01-0	865-11-A	9 01/12/09 12:10	Aqueous	GC/MS RR	01/20/09	01/20/0 22:44		090120L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>
Benzene	ND	10	20		Tert-Butyl Alc	ohol (TBA)		ND	200	20)
1,2-Dibromoethane	ND	20	20		Diisopropyl Et	her (DIPE)		ND	40	20)
1,2-Dichloroethane	ND	10	20		Ethyl-t-Butyl E	ther (ETBE))	ND	40	20	
Ethylbenzene	ND	20	20		Tert-Amyl-Me	thyl Ether (T	AME)	ND	40	20)
Toluene	ND	20	20		Ethanol	,	,	ND	2000	20)
Xylenes (total)	ND	20	20		TPPH			2600	1000	20	1
Methyl-t-Butyl Ether (MTBE)	2500	20	20								
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
Dibromofluoromethane	106	74-140			1,2-Dichloroet	hane-d4		119	74-146		
Toluene-d8	101	88-112			Toluene-d8-T	PPH		96	88-112		
1,4-Bromofluorobenzene	97	74-110									
MW-4 8-hr Mid Test	1 34 3 (24 to 1) 1 1 1 1		09-01-0	865-12-A	01/12/09 12:20	Aqueous	GC/MS RF	01/20/09	01/20/0 23:08		090120L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF	<u>Qual</u>
Benzene	ND	50	100		Tert-Butyl Alc	ohol (TBA)		1700	1000	10	0
1,2-Dibromoethane	ND	100	100		Diisopropyl El	her (DIPE)		ND	200	10	D
1,2-Dichloroethane	ND	50	100		Ethyl-t-Butyl E	ther (ETBE)	ND	200	10	0
Ethylbenzene	ND	100	100		Tert-Amyl-Me	thyl Ether (T	AME)	ND	200	10	0
Toluene	ND	100	100		Ethanol			ND	10000	10	0
Xylenes (total)	ND	100	100		TPPH			17000	5000	10	0
Methyl-t-Butyl Ether (MTBE)	16000	100	100								
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
Dibromofluoromethane	106	74-140			1,2-Dichloroet	thane-d4		118	74-146		
Toluene-d8	102	88-112			Toluene-d8-T	PPH		97	88-112		
1,4-Bromofluorobenzene	94	74-110									

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

Preparation:

Method:

Units:

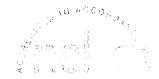
. . . .

01/13/09 09-01-0865

EPA 5030B

LUFT GC/MS / EPA 8260B

ug/L


Project: 4212 First St, Pleasanton, CA

Page 6 of 6

Client Sample Number	-			b Sample Numbe <u>r</u>	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti Analyz		QC Batch ID
Method Blank			099-12	-767-888	er of N/A	Aqueous	GC/MS R	01/19/09	01/19/ 14:2		090119L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.50	1		Tert-Butyl Alc	ohol (TBA)		ND	10	1	
1,2-Dibromoethane	ND	1.0	1		Diisopropyl Et	her (DIPE)		ND	2.0	1	
1,2-Dichloroethane	ND	0.50	1		Ethyl-t-Butyl E	Ether (ETBE)		ND	2.0	1	
Ethylbenzene	ND	1.0	1		Tert-Amyl-Me	thyl Ether (T/	AME)	ND	2.0	1	
Toluene	ND	1.0	1		Ethanol			ND	100	1	
Xylenes (total)	ND	1.0	1		TPPH			ND	50	1	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1								
Surrogates:	REC (%)	<u>Control</u>		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	Control Control		<u>Qual</u>
		<u>Limits</u>							<u>Limits</u>		
Dibromofluoromethane	118	74-140			1,2-Dichloroet			122	74-146		
Toluene-d8	104	88-112			Toluene-d8-T	PPH		103	88-112		
1,4-Bromofluorobenzene	96	74-110			_						
Method Blank		-	099-12	-767-893	N/A	Aqueous	GC/MS RF	R 01/20/09	01/20/ 15:0		090120L01
		-	·						15:0	<u> </u>	
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>
Benzene	ND	0.50	1		Tert-Butyl Alc	ohol (TBA)		ND	10	1	
1,2-Dibromoethane	ND	1.0	1		Diisopropyl El	ther (DIPE)		ND	2.0	1	
1,2-Dichloroethane	ND	0.50	1		Ethyl-t-Butyl E	Ether (ETBE)		ND	2.0	1	
Ethylbenzene	ND	1.0	1		Tert-Amyl-Me	thyl Ether (T.	AME)	ND	2.0	1	
Toluene	ND	1.0	1		Ethanol			ND	100	1	
Xylenes (total)	ND	1.0	1		TPPH			ND	50	1	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1								
Surrogates:	DEC (0/)	Control		Qual	Surrogates:			REC (%)	Control		<u>Qual</u>
	REC (%)	Condo									
<u>Gurrogates.</u>	REC (%)	Limits							<u>Limits</u>		
Dibromofluoromethane	104				1,2-Dichloroe			114	<u>Limits</u> 74-146		
		Limits									

Quality Control - Duplicate

Delta Environmental Consultants, Inc. 312 Piercy RD.

San Jose, CA 95138-1401

Date Received: Work Order No: Preparation:

Preparation: Method: 01/13/09 09-01-0865 N/A

EPA TO-3M

Project: 4212 First St, Pleasanton, CA

Quality Control Sample ID	Matrix	instrument	Date Prepared:	Date Analyzed:	Duplicate Batch Number
DPE Influent-After Test	Āir	GC 13	N/A	01/13/09	090113D01
<u>Parameter</u>	Sample Conc	DUP Conc	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	3600	3600	1	0-20	

alscience nvironmental aboratories, Inc.

Quality Control - Spike/Spike Duplicate

Delta Environmental Consultants, Inc. 312 Piercy RD.

San Jose, CA 95138-1401

Date Received: Work Order No:

Preparation:

Method:

01/13/09

09-01-0865 EPA 5030B

EPA 8260B

Project 4212 First St, Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
09-01-0832-1	Aque	ous GC/MS R	01/19/09		01/19/09	090119801
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	103	96	88-118	7	0-7	
Carbon Tetrachloride	99	98	67-145	2	0-11	
Chlorobenzene	96	93	88-118	4	0-7	
1,2-Dibromoethane	96	93	70-130	3	0-30	
1,2-Dichlorobenzene	97	95	86-116	2	0-8	
1,1-Dichloroethene	96	91	70-130	5	0-25	
Ethylbenzene	101	95	70-130	6	0-30	
Toluene	102	96	87-123	6	0-8	
Trichloroethene	95	90	79-127	5	0-10	
Vinyl Chloride	86	84	69-129	3	0-13	
Methyl-t-Butyl Ether (MTBE)	104	104	71-131	0	0-13	
Tert-Butyl Alcohol (TBA)	83	92	36-168	10	0-45	
Diisopropyl Ether (DIPE)	119	117	81-123	2	0-9	
Ethyl-t-Butyl Ether (ETBE)	115	113	72-126	2	0-12	
Tert-Amyl-Methyl Ether (TAME)	107	101	72-126	6	0-12	
Ethanol	88	93	53-149	6	0-31	

MANA_

Calscience nvironmental aboratories, Inc.

Quality Control - Spike/Spike Duplicate

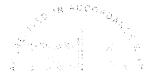
Delta Environmental Consultants, Inc. 312 Piercy RD.

San Jose, CA 95138-1401

Date Received: Work Order No:

Preparation: Method:

01/13/09 09-01-0865 EPA 5030B


LUFT GC/MS / EPA 8260B

Project 4212 First St, Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
09-01-1017-3	Aqueous	GC/MS_RR	01/20/09		01/20/09	090120801
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CI	<u>Qualifiers</u>
Benzene	95	95	88-118	0	0-7	
Carbon Tetrachloride	109	110	67-145	1	0-11	
Chlorobenzene	96	95	88-118	1	0-7	
1,2-Dibromoethane	102	98	70-130	4	0-30	
1,2-Dichlorobenzene	95	93	86-116	2	0-8	
1,1-Dichloroethene	98	97	70-130	1	0-25	
Ethylbenzene	99	99	70-130	0	0-30	
Toluene	93	. 9 4	87-123	1	0-8	
Trichloroethene	93	95	79-127	2	0-10	
Vinyl Chloride	75	74	69-129	1	0-13	
Methyl-t-Butyl Ether (MTBE)	99	98	71-131	1	0-13	
Tert-Butyl Alcohol (TBA)	103	99	36-168	3	0-45	
Diisopropyl Ether (DIPE)	100	105	81-123	5	0-9	
Ethyl-t-Butyl Ether (ETBE)	105	105	72-126	0	0-12	
Tert-Amyl-Methyl Ether (TAME)	97	96	72-126	2	0-12	
Ethanol	106	107	53-149	1	0-31	

Mulhan

Delta Environmental Consultants, Inc.

312 Piercy RD.

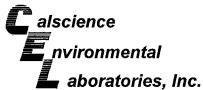
San Jose, CA 95138-1401

Date Received:

Work Order No:

Preparation:

Method:


N/A **EPA TO-15**

09-01-0865

N/A

Project: 4212 First St, Pleasanton, CA

Quality Control Sample ID	Mat	trix	Instrument	Date Prepared	Date Analyze	t	LCS/LCSD Batch Number_	1
097-09-002-8,070	Air	1.5	GC/MS K	N/A	01/13/09	,	090113L01	
<u>Parameter</u>		LCS %RE	<u>C LCSD %R</u>	<u>EC %</u>	REC CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Benzene		104	105		60-156	1	0-40	
Toluene		103	103		56-146	1	0-43	
Ethylbenzene		109	107		52-154	2	0-38	
p/m-Xylene		106	105		42-156	1	0-41	
o-Xylene		108	106		52-148	1	0-38	

aboratories, inc.

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

Preparation:

Method:

N/A

09-01-0865

N/A

EPA TO-15

Project: 4212 First St, Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bate Number	:h
097-09-002-8,073	Air	GC/MS K STA	N/A	01/14/09	090114L01	
<u>Parameter</u>	LCS %RE	C LCSD %I	REC %RE	CCL RPI	<u> RPD CL</u>	Qualifiers
Benzene	111	113	60	-156 1	0-40	
Toluene	112	112	56	-146 0	0-43	
Ethylbenzene	116	115	52	-154 0	0-38	
p/m-Xylene	113	112	42	-156 1	0-41	
o-Xylene	114	113	52	-148 1	0-38	

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

Preparation: Method:

N/A

09-01-0865

EPA 5030B

LUFT GC/MS / EPA 8260B

Project: 4212 First St, Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyze	ed	LCS/LCSD Ba Number	itch
099-12-767-888	Aqueous	GC/MS R	01/19/09	01/19/09		090119L01	
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	<u>Qualifiers</u>
Benzene	107	108	84-120	78-126	0	0-8	
Carbon Tetrachloride	109	112	63-147	49-161	3	0-10	
Chlorobenzene	100	100	89-119	84-124	0	0-7	
1,2-Dibromoethane	103	98	80-120	73-127	5	0-20	
1,2-Dichlorobenzene	103	103	89-119	84-124	0	0-9	
1,1-Dichloroethene	100	105	77-125	69-133	5	0-16	
Ethylbenzene	107	109	80-120	73-127	2	0-20	
Toluene	109	108	83-125	76-132	1	0-9	
Trichloroethene	102	102	89-119	84-124	1	0-8	
Vinyl Chloride	88	93	63-135	51-147	6	0-13	
Methyl-t-Butyl Ether (MTBE)	116	108	82-118	76-124	7	0-13	
Tert-Butyl Alcohol (TBA)	102	111	46-154	28-172	8	0-32	
Diisopropyl Ether (DIPE)	128	124	81-123	74-130	3	0-11	ME
Ethyl-t-Butyl Ether (ETBE)	121	115	74-122	66-130	5	0-12	
Tert-Amyl-Methyl Ether (TAME)	112	105	76-124	68-132	7	0-10	
Ethanol	102	113	60-138	47-151	10	0-32	
TPPH	97	93	65-135	53-147	4	0-30	

Total number of LCS compounds: 17

Total number of ME compounds: 1

Total number of ME compounds allowed:

LCS ME CL validation result: Pass

RPD - Relative Percent Difference ,

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

Preparation: Method:

N/A

09-01-0865

EPA 5030B

LUFT GC/MS / EPA 8260B

Project: 4212 First St, Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	ate yzed	LCS/LCSD Numbe	
099-12-767-893	Aqueous	GC/MS RR	01/20/09	01/20	/09	090120L	01 🐃 😤
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers
Benzene	99	97	84-120	78-126	1	0-8	
Carbon Tetrachloride	122	121	63-147	49-161	1	0-10	
Chlorobenzene	98	98	89-119	84-124	0	0-7	
1,2-Dibromoethane	102	103	80-120	73-127	1	0-20	
1,2-Dichlorobenzene	97	98	89-119	84-124	1	0-9	
1,1-Dichloroethene	106	104	77-125	69-133	2	0-16	
Ethylbenzene	103	101	80-120	73-127	2	0-20	
Toluene	98	96	83-125	76-132	2	0-9	
Trichloroethene	101	97	89-119	84-124	4	8-0	
Vinyl Chloride	81	80	63-135	51-147	2	0-13	
Methyl-t-Butyl Ether (MTBE)	102	101	82-118	76-124	0	0-13	
Tert-Butyl Alcohol (TBA)	106	103	46-154	28-172	3	0-32	
Diisopropyl Ether (DIPE)	107	103	81-123	74-130	3	0-11	
Ethyl-t-Butyl Ether (ETBE)	104	103	74-122	66-130	1	0-12	
Tert-Amyl-Methyl Ether (TAME)	98	97 [.]	76-124	68-132	2	0-10	
Ethanol	109	112	60-138	47-151	2	0-32	
TPPH	96	94	65-135	53-147	2	0-30	

Total number of LCS compounds: 17

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order Number: 09-01-0865

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

LAB (LOCATION))	S	hell	Oil	Pr	roc	duc	:ts	Cl	nai	n C	of C	ust	ody	[,] Re	CO	rd					
Z CALSCIENCE (200000	Ptea	se Chec	k Api	propri	ate B	ox		Pri	nt Bil	ll To	Con	tact	Nan	ne:				::INC	IDEN	T.#.(I	ENV.	SER\	/ICE	S) ∴ [CHEC	X IF NO INCIDENT # APPLIES
_]asr ()	BW	SERVICES			RETAIL		☑ SHBT	RETAIL		••••									9	8		9 5	T		0		E: 1/12/2009
☐ XENCO (□ MOT	TIVA SD&CM		CONSUL	TANT		☐ LUBES		13:33					PO:						<u> </u>	سبلب	₽#					
TEST AMERICA (LL PIPELINE	==	OTHER_					****	::::::: 			Ť		· · · · ·	T	<u> </u>) 	1		T	<u> </u>	T			PAG	E: of2
OTHER (<u> </u>	[D 348	U. PPELDE		Res ce							Α	4 reet and	2	1	2	1	1	<u> </u>	1	3		7 8					
elta Consultants						vae:							Plea	•	tоп						:A	1.	06001		59			
DERESS:	940 Pinana	Dand. Co.	- less CA	05420						EDF DI	LIVERAB	BL 10 (Hame, Co	наразу, С	Califico Las	rallon);		PHON	E NO.;				AL:					CONSULTANT PROJECT NO.:
RQJECT CONTACT (Hautcopy or POF Report to):	312 Piercy	Road; Sai	Jose, UA	1 95138						Ang	gela l	Pica						408	-826-	1862		Ac	olco@d	leltaen	TV,CON			<u> </u>
E) EDUCHP- PAY-		Rich Ga	rlow							1	LER NAI								_							LAB	OSE ON	
408-826-1880	408-225-850	5	E-MAIL:	Ros	arlow@	Odeltaer	nv.com			Co	ra O	lson	1															91-0865
TURNAROUND TIME (CALENDAR DAYS) I STANDARD (14 DAY) I 5 DA] 2 DAYS	☐ 24 HO	V 1000			ALTS NEEDI											RE	QUES	TED A	NAL'	YSIS					
	UST AGENCY:	· L	1 2 UA15		,uks			ON WEEK	END	-		_			Т			т-						1			op	
LA - RWQCB REPORT FORMAT	US! AGENUT:										Wa	ater S	Sample	es T			Sample	les						-			ן ⊢	TEMPERATURE ON RECEIP C*
SPECIAL INSTRUCTIONS OR N	TES:			☐ STATE				-		<u>e</u>		80		- 1		€	BTEX, TBA, & MTBE (TO-14)					-						-
Send results to:				∐ SDD N			re KAIE	-AFFLICO		8260		(82)				١٩	É E		1							i	1	
Senu results (o:				RECE			ON RECUI	ESTED		Purgeable (8260B)		5 Shell Oxygenates (8260B)		<u>@</u>	<u>_</u>	TPH-G Purgeable (TO-14)	MT6				ļ						F	
		7							,	2	8	ygen	<u>@</u>	1,2-DCA (8260B)	Ethenol (8260B)	70ea	ا ته ا											
		SAM	PLING		<u> </u>	PRE	SERVATA	VE	NO. OF	2	(826	ŏ	926	3	<u>8</u>	2	2	Ì	ŀ							i I		
Field Sample Ide	tification	DATE	TIME	MATRIX				}	CONT.	TPH-G	BTEX (6260B)	Shei	EDB (8260B)	2 Z	ŝ	풅	ĕ	-				-	-1			1		Container PID Readings or Laboratory Notes
	· · ·	+			HCL	HNO3 H	2SO4 MC	OTHE	-				-	-	-+	누	-			-	+	+	┪	╁		\vdash	+	Oxys = MTBE, TBA,
MW-1 After Test		1/10/09	8:30	_	×	$\vdash \vdash$			5_	×	×	X	×		×	-+	+			\vdash		+	+	╄	Н	\vdash		
MW-2 After Test		1/10/09	7:50		x				5	×	×	x	х	×	×	\perp		_				_	Ц			\vdash	ᆜᄜ	IPE, ETBE, & TAME
MW-3 After Test		1/10/09	8:15		x				5	x	x	x	x	x	х	-												
MW-4 After Test		1/10/09	8:20		×				5	×	х	х	х	x	х													
	4				T			x					Ħ			x	x ;	×				┪		İ			\top	
DPE Influent - After Te	ST	1/10/09	8:00		+	\vdash	\dashv	* -	1		H		H	+	t	+	十	+		 		+	+	T	Н	\vdash	+	
		-			-		-	-	 		\vdash		\vdash	-+	ᅪ	-	+	+	-	╁┼	-	+	+	┼	Н	$\vdash \vdash$	+	
					1	\sqcup			<u> </u>	<u> </u>			\sqcup	\dashv	_	4	_	4	_		-	-		\vdash	Ш	\vdash	-+	
							į.								ļ				1	l I						1	ł	
		1.		· · · · · · · · · · · · · · · · · · ·					1						\dashv	T	\top						\top	T		\Box		
	-	-			+	-		-	 	├	\vdash		\vdash		\dashv	+	+			┝	- 	+	-}	╀	H	$\vdash \vdash$	-	
		1																								Ш		
ellachished by: (Signature)	/			Received by: (S	ignalure))															- [Date:		_			Time:	
en	(com 0)	can)	۱ ۱																			-	12-	-0	7			
elinquished by: (Signature)	(0.5	<u></u>	,	Received by: (S	ignalure))												11	1	/	٠ ا	Dale:					Time:	
<i>:</i>																		[<i>[][</i>	SIN	外		1/1	13/1	901	/		10	000
				Received by: (S	ignature))											///	W				Date	- / -			7	Time:	
elinquished by: (Signature)																,	v 11	,			- 1					- 1		
	723752	2															•				1					i		

LAB (LOCATION)						?		Sh	ell (Oil	Pı	roc	duc	cts	C	ha	in	Of	Cus											
CALSCIENCE()		Ple	ase Checl	(Áp	prop	riate				Prio	it Bil	lì Tọ	Co	ntac	t Na	me:	::::			::[:	INC	IDE	MT:#	(EN	IV S	ER	λiĊ	E\$}:	<u> </u>	CHECK IF NO INCIDENT # APPLIES
] SPL ()	□ aw	SERVICES		10TTV	A RETAI	L	Ø:	SHELL R	ETAIL			•								Γ	9	8	9	9	5	8	4	0	ſ	DATE: 1/12/2009
] XENCO ()	□ мот	TVA SD&CM		ONSUL	LTANT	-		UBES							PO:	#				:::				šĀP	# ::] .	
OTHER ()	- S-E	LL PIPELINE		THER						s	С	,		2	1	•	1	4	······	+	1	3	5	7	8	2	Ϊ	T	1 5	PAGE:2 of2_
IPLING COMPANY:				roe c	ODE:				_			A SS: S	treet an		1	2		!	<u>l</u>	Si	ate	<u> </u>	ᅱ		AL ID N		<u>. </u>			
elta Consultants										421	2 1st	t St;	Ple:	asor	nton				HONE NO.:	丄	С	A		TO6	001	012	59	_		CONSULTANT PROJECT NO.:
DORESS: 312 Piercy I	Road; Sar	ı Jose, CA	A 95138						1	EDF DE	LIVERAS	ALE TO ((Name, C	оприлу,	, CEINCE L	ocazion)	i.	ľ	HORE NO.				ľ							
OUECT CONTACT (Kardcepy or PDF Report (s):										Ang	ela l	Picc	Print:						108-82	<u>6-18</u>	62			Apic	0@de	eltae	nv.c	om Eigig	ia ne	EOMEY DE
LEPHONE: FAX:	Rich Ga	CHAL:									ra O																			01- <i>ค</i> 866
408-826-1880 408-225-8506			Roa	rlow@	<u> Ddelta</u>							100.																		0.009
TURNAROUND TIME (CALENDAR DAYS): STANDARD (14 DAY)	E	2 DAYS	☐ 24 HO	URS		∐R		NEEDED WEEKE								•			• 1	REQ	UES	TED	ANA	LYS	is					
LA - RWQCB REPORT FORMAT UST AGENCY:				,							W	ater S	Sampl	es		Vapo	or Sar	nples												TEMPERATURE ON RECEI
			☑ SHELL	CONT	RACT R	ATE API	PLIES				_		<u> </u>	<u> </u>					-	T	\neg		Ī			Γ	Т	Ţ	T	" .
SPECIAL INSTRUCTIONS OR NOTES:			☐ STATE			MENT RA	TE APP	LIES		809		8260				7-14	[흔		1							1				
Send results to:			☐ EDD N							(8)		tes (4		_		e (T	置										1			
			RECE	PT VE	RIFICAT	ION RE	QUESTE	Ð	- [dea	<u>ھ</u>	Jena	ا ۾ ا	808;	(B)	eab	≥ •3									l				
	SAMI	PLING			PR	ESERV/	ATIVE			P.	8260	0 V	260E	A (8;	1 (82)	Purg	₽¥				İ									1
Field Sample Identification	DATE	TIME	MATRIX]		NO, OF CONT.	TPH-G Purgeable (8260B)	BTEX (8260B)	5 Shell Oxygenates (8260B)	EDB (8260B)	1,2-DCA (8260B)	Ethanol (8260B)	TPH-G Purgeable (TO-14)	BTEX, TBA, & MTBE (TO-14)				1									Container PID Readings or Laboratory Notes
Field Sample Identification				HCL	HNO3	H2SO4	NONE	OTHER			\vdash	9 9	_	_	-	ΤF	<u> </u>		\perp	+	+				<u> </u>	<u> </u> -	+	+	+	
MW-1 8-hr PreTest	1/12/09	9;50		x			Ш		5	х	×	х	x	х	X		<u> </u>	Ш		\perp	\bot		\square			_	1	4_	4	5 Oxys = MTBE, TBA,
MW-2 8-hr Pre Test	1/12/09	9:20		x					5	x	x	X	x	х	X.		<u>L</u>								L	L	\perp		\perp	DIPE, ETBE, & TAME
MW-4 8-hr Pre Test	1/12/09	9:20		x					5	х	х	х	x	х	х														1	<u> </u>
DPE influent - 8hr Pre Test	1/12/09	10:10		T			x		1							х	х	х		T							T	T		
PE INIUGIL - OIF FIE TEST	1/12/09	10:10		t^{-}	†		十一										1	Н		\top	\dashv				Г	T -	T	1	\top	
	$\vdash \vdash$			+	\vdash		\vdash			x	x	x	x	х	х	-	\vdash	H		+	+		$\vdash \vdash$			Г	十	+	+	+
MW-1 8-hr MidTest	1/12/09	12:00		×	\vdash				5		Н	-		×	×		\vdash	\vdash	+	+	-					\vdash	+	+	+	
MW-2 8-hr Mid Test	1/12/09	12:10		×			$\vdash \vdash$		5	x	х	х	X		-	L	├	$\vdash \vdash$	+	+	+				-	\vdash	+	+	+	
2 MW-4 8-hr Mid Test	1/12/09	12:20		x					5	х	×	X	x	X	х											L	L		丄	
DPE Influent - 8hr Mid Test	4.440.000	40.05	_				x		1							х	×	х											Ì	
DE IMMENT - OUL MIG LEST	1/12/09	12:25		+	\vdash	-	-		-	\vdash	\vdash			\vdash	Н	H	\vdash	$\vdash \dashv$	\dashv	+	\top		H			T	十	\top	\top	†
			Received by: (Si	and:													<u> </u>						Date:	<u>.</u>	L	L		\perp	+	ne;
allpopulshed by: (Signature)			Hecewaa by: [Si	Summer (=1																		\ ·	١-	> -	Ò	٠	1	"	
Manual (Con C	13an		Received by: (Si	lonature																			Dale	- (١	+	ne:
uniquance by: (Signature)	•		received by: (Si	gnatuft	- J													1	11	7	1	'	ļ	/.	21.	a /	2/] '-	1000
																		W	<i>LyL</i>	a	10°		0	<u> [</u>	<u> </u>	90	7		14	
			Received by: (Si	ignalwe	e)													•]/					Dave:		′				'"	JANA,
linquished by: (Signature)			(Caccaroo by, (Ca														,												ı	
Hinquished by: (Signsture)			(Cacaron by, Ca																											05/2/05 Revision

Calecience
Environmental

SAMPLE RECEIPT FORM

Cooler ___ of ___

CLIENT: Delta	DATE: _	01/13/09
TEMPERATURE: (Criteria: 0.0 °C - 6.0 °C, not frozen) Temperature3 _ • 9 _ °C - 0.2 °C (CF) =3 _ • 7 _ °C Sample(s) outside temperature criteria (PM/APM contacted by:). Sample(s) outside temperature criteria but received on ice/chilled on same		□ Sample
☐ Received at ambient temperature, placed on ice for transport by Ambient Temperature: ☐ Air ☐ Filter ☐ Metals Only ☐ PCE		Initial:
CUSTODY SEALS INTACT: Cooler		Initial: 40 Initial: 60
SAMPLE CONDITION: Chain-Of-Custody (COC) document(s) received with samples. COC document(s) received complete. Sampler's name indicated on COC. Sample container label(s) consistent with COC. Sample container(s) intact and good condition. Correct containers and volume for analyses requested. Analyses received within holding time. Proper preservation noted on COC or sample container. Volatile analysis container(s) free of headspace.		N/A
Tedlar bag(s) free of condensation	DTerraCores® 25AGBpo₄ □ □500PB □	I1AGB □1AGBna₂ 500PBna □250PB

SOP T100_090 (12/10/08)

SAMPLE ANOMALY FORM

CHAIN OF CUSTODY (COC):	Comments:
 □ Not relinquished by client – no signature □ No date/time relinquished 	(-1) through (-4), (-6) through (-8), (-10) through (-12) matrix is water
☐ COC not received with samples – notify PM	(-5)+(-9)+(-13) matrix is gir
✓ Incomplete information regarding samples, tests, et	
SAMPLES - CONTAINERS & LABELS:	Comments:
☐ Samples NOT RECEIVED but listed on COC	(-2) MW-2 After test collection
☐ Samples received but NOT LISTED on COC	time per called is 8:25
☐ Holding time expired – list sample ID(s) and test	(-4) MW-4 After Pest collection
☐ Insufficient quantities for analysis – list test	time ver caled is 8:05
☐ Improper container(s) used – list test	(10) May 1 8-hu Mid-Test labeled
☐ No preservative noted on label – list test and notify la	
Sample labels illegible – note test/container type	(-11) MW-2 Shr Mid Test Laveled
Sample labels do not match COC – Note in comment	s as MW-2 Mid tert
☑ Sample ID	
☑ Date and Time Collected	
☐ Project Information	
☐# of containers	
☐ Sample containers compromised – Note in comment	s
☐ Leaking ☐ Broken	
☐ Without Labels	
Other:	
HEADSPACE – Containers with Bubble > 6mm or 1	4 inch:
Sample Container # of Vials Sample Containe # ID(s) Received # ID(s)	r # of Vials Sample Container # of RSK or CO2 or DO or Organic Lead Received
127/12 BCE 5 7 BEE	5- EU
3 ABCOE 5 10 CE	5
4 C 5 11 E	5
6 8204 5	
Comments:	
	Initial / Date <u>12.</u>

SOP T100_081 (09/19/08)

Philip Sanelle

From: Sent:

Rich Garlow [RGarlow@deltaenv.com] Tuesday, January 13, 2009 3:14 PM

To:

Philip Sanelle

Subject:

RE: Question on COC for site 4212 1st St, Pleasonton

yes

----Original Message----

From: Philip Sanelle [mailto:PSanelle@calscience.com]

Sent: Tuesday, January 13, 2009 2:45 PM

To: Rich Garlow Cc: Jessie Kim

Subject: Question on COC for site 4212 1st St, Pleasonton

We received sample 5 (DPE Influent - After Test) past holding time. Do you want us to proceed with testing this sample?

Attached is the COC. <<09-01-0865.PDF>> Thank you, Philip Sanelle Assistant Project Manager Calscience Environmental Laboratories, Inc. 7440 Lincoln Way Garden Grove, CA 92841-1427 Tel.: 714-895-5494 Fax: 714-894-7501 PSanelle@calscience.com

PRIVACY NOTICE:

This email (and/or the documents attached to it) is intended only for the use of the individual or entity to which it is addressed and may contain information that is privileged, confidential, or exempt from disclosure under applicable Federal or State law. If the reader of this message is not the intended recipient or the employee or agent responsible for delivering the message to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this communication is strictly prohibited. If you have received this communication in error, please notify us immediately by telephone or else to arrange for the return of the documents.

REPORT SECURITY NOTICE:

The client or recipient of any attached analytical report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience Environmental Laboratories, Inc. is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience Environmental Laboratories, Inc. for any defense to any litigation which arises.

Supplemental Report 1

February 04, 2009

The original report has been revised/corrected.

Rich Garlow Delta Environmental Consultants, Inc. 312 Piercy RD. San Jose, CA 95138-1401

Subject: Calscience Work Order No.: 09-01-1161

Client Reference: 4212 First St, Pleasanton, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 1/15/2009 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Philip Samelle for

Laboratories, Inc.

Jessie Kim

Project Manager

FAX: (714) 894-7501

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No: Preparation:

Method:

01/15/09

09-01-1161

N/A

EPA TO-3M

Project: 4212 First St, Pleasanton, CA

Page 1 of 1

riojooti 1212 i not ot, i loadant	···, ··	•						.
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
DPE Influent - 8hr Post Test		09-01-1161-4-A	01/12/09 14:00	Air	GC 13	N/A	01/15/09 12:21	090115L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	. <u>Units</u>			
TPH as Gasoline	22	1.5	1		ppm (v/v))		
DPE Influent - (2nd-8hr) Pre Test		09-01-1161-8-A	01/13/09 09:10	Air	GC 13	N/A	01/15/09 12:31	090115L01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
ΓPH as Gasoline	21	1.5	1		ppm (v/v))		
DPE Influent - (2nd-8hr) Mid Test		09-01-1161-12-A	01/13/09 11:15	Air		N/A	01/15/09 12:40	090115L01
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
ГРН as Gasoline	91	1.5	1		ppm (v/v))		
DPE Influent - (2nd-8hr) Post Test	3 4 4 1	09-01-1161-16-A	01/13/09 13:00	Air Air	GC 13	, N/A	01/15/09 12:50	090115L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	120	1.5	1		ppm (v/v))		
Method Blank		098-01-005-1,642	N/A	Air	GC 13	N/A	01/15/09 08:36	090115L01
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	1.5	1		ppm (v/v))		

RL - Reporting Limit ,

DF - Dilution Factor ,

Qual - Qualifiers

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

Preparation:

Method:

01/15/09 09-01-1161

N/A

EPA TO-15

					Units:					ppb (v/v)
Project: 4212 First St, Pl	easantor	ı, CA							_Pa	ge 1 of 2
Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
DPE Influent - 8hr Post Test			09-01-1	I161-4-A	01/12/09 14:00	Air	GC/MS K	N/A	01/15/09 12:46	090115L01
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Parameter</u>			<u>Result</u>	<u>RL</u> <u>D</u> F	<u>Qual</u>
Benzene	31	2.0	4		Xylenes (total)			160	8.0	ļ
Toluene	5.9	2.0	4		Methyl-t-Butyl E	ther (MTB	E)	200	8.0	1
Ethylbenzene	66	2.0	4		Tert-Butyl Alcoh	nol (TBA)		56	8.0	!
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:	, ,		REC (%)	Control Limits	<u>Qual</u>
1,4-Bromofluorobenzene	98	57-129			1,2-Dichloroetha	ane-d4		94	47-137	
Toluene-d8	101	78-156								
DPE Influent - (2nd-8hr) Pre Tes	st ?		09-01-1	1161-8-A	01/13/09 09:10	Air	GC/MS K	N/A	01/15/09 15:53	090115L01
	*	****		<u> </u>	· · · · · · · · · · · · · · · · · · ·	*	*, ***			
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			<u>Result</u>	<u>RL</u> DI	
Benzene	19	2.5	5		Xylenes (total)			120	10	5
Toluene	8.5	2.5	5		Methyl-t-Butyl E	ther (MTB	SE)	920	80 4	0
Ethylbenzene	51	2.5	5		Tert-Butyl Alcoh	nol (TBA)		ND	10	5
Surrogates:	REC (%)	Control_		<u>Qual</u>	Surrogates:			REC (%)	Control_	<u>Qual</u>
		<u>Limits</u>							<u>Limits</u>	
1,4-Bromofluorobenzene	103	57-129			1,2-Dichloroeth	an e -d4		95	47-137	
Toluene-d8	91	78-156								
DPE Influent - (2nd-8hr) Mid Tes	st		09-01-	1161-12-A	01/13/09 11:15	Air	GC/MS K	N/A	01/15/09 16:40	090115L01
Dogwood on the state of the sta	Docult		DE	Ouel	Parameter			Result	RL DI	F Qual
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			-		
Benzene	19	10	20		Xylenes (total)	*45 a.s. /8 ATC	\ _ \	160 7400		0
Toluene	12	10	20		Methyl-t-Butyl E		se)	7400 ND		00 :0
Ethylbenzene	52	10	20	Our	Tert-Butyl Alcol	IOI (TBA)			Control	.u Qual
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	Limits	Qual
1,4-Bromofluorobenzene	102	<u>Liiiiis</u> 57-129			1,2-Dichloroeth	ana.d4		92	47-137	
Toluene-d8	85	78-156			1,2-DICHIOTOGUI	anc-u-		32	47-107	
		70-100							04/47/00	
DPE Influent - (2nd-8hr) Post Te	est		09-01-	1161-16-A	01/13/09 13:00	Air	GC/MS K	N/A	01/15/09 17:28	090115L01
Programme and the second secon	<u> </u>			-	13.00					
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			<u>Result</u>	<u>RL</u> D	F Qual
Benzene	16	12	25		Xylenes (total)			160	50 2	.5
Toluene	ND	12	25		Methyl-t-Butyl E	Ether (MTE	BE)	8100	500 2	50
Ethylbenzene	53	12	25		Tert-Butyl Alcol	hol (TBA)		ND	50 2	.5
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits	<u>Qual</u>
1,4-Bromofluorobenzene	104	<u>Linius</u> 57-129			1,2-Dichloroeth	ane-d4		92	47-137	
Toluene-d8	93	78-156			.,= =:0:10:00011					
i diadilo do	55	102100								

DF - Dilution Factor ,

Qual - Qualifiers

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

Preparation:

Method: Units: 01/15/09

09-01-1161

N/A

EPA TO-15 ppb (v/v)

Page 2 of 2

FAX: (714) 894-7501

Project: 4212 First St, Pleasanton, CA

1 10,000. 42121113	t ot, i loadanton	, 0, (. ∽უ	0 2 01 2
Client Sample Number				b Sample Vumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti Analyz		QC Batch ID
Method Blank			097-09	-002-8,083	NA:	Air	GC/MS K	N/A	01/15/ 09:42		090115L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.50	1		Xylenes (total)			ND	2.0	1	
Toluene	ND	0.50	1		Methyl-t-Butyl E	ther (MTB	E)	ND	2.0	1	
Ethylbenzene	ND	0.50	1		Tert-Butyl Alcoh	nol (TBA)		ND	2.0	1	
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		Qual
1,4-Bromofluorobenzene	95	57-129			1,2-Dichloroeth	ane-d4		92	47-137		
Toluene-d8	100	78-156			,						
Method Blank	n naktier	103	097-09	-002-8,087	N/A	Air	GC/MS K	N/A	01/16/ 12:2		090116L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.50	1		Xylenes (total)			ND	2.0	1	
Toluene	ND	0.50	1		Methyl-t-Butyl E	ther (MTB	E)	ND	2.0	1	
Ethylbenzene	ND	0.50	1		Tert-Butyl Alcoh	nol (TBA)	•	ND	2.0	1	
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits		Qual
1,4-Bromofluorobenzene Toluene-d8	92 96	57-129 78-156			1,2-Dichloroeth	ane-d4		92	47-137		

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

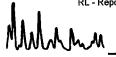
Date Received:

Work Order No:

Preparation:

Method: Units: 01/15/09

09-01-1161


EPA 5030B LUFT GC/MS / EPA 8260B

na/l

Project: 4212 First St, Pleasanton, CA

Page 1 of 8

Client Sample Number				o Sample lumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analyz		QC Batch ID
MW-1 8-hr Post Test		erategy Sier	09-01-1	161-1-A	01/12/09 14:30	Aqueous	GC/MS R	01/23/09	01/24/ 04:2		090123L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	92	12	25		Tert-Butyl Alc	ohol (TBA)		660	250	25	
1,2-Dibromoethane	ND	25	25		Diisopropyl Et	her (DIPE)		ND	50	25	
1,2-Dichloroethane	ND	12	25		Ethyl-t-Butyl E	ther (ETBE)		ND	50	25	
Ethylbenzene	27	25	25		Tert-Amyl-Me	thyl Ether (T	AME)	ND	50	25	
Toluene	ND	25	25		Ethanol			ND	2500	25	
Xylenes (total)	100	25	25		TPPH			6200	1200	25	
Methyl-t-Butyl Ether (MTBE) Surrogates:	3700 REC (%)	25 <u>Control</u> Limits	25	Qual	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
Dibromofluoromethane	98	74-140			1,2-Dichloroe	hane-d4		99	74-146		
Toluene-d8	98	88-112			Toluene-d8-T			98	88-112		
1,4-Bromofluorobenzene	97	74-110									
MW-2 8-hr Post Test		Miller o	09-01-1	161-2-A	01/12/09 14:05	Aqueous	GC/MS R	01/23/09	01/24 04:5		090123L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	5.0	10		Tert-Butyl Alc	ohol (TBA)		ND	100	10	1
1,2-Dibromoethane	ND	10	10		Diisopropyl E	ther (DIPE)		ND	20	10	l
1,2-Dichloroethane	ND	5.0	10		Ethyl-t-Butyl F	ther (ETBE)	•	ND	20	10	1
Ethylbenzene	ND	10	10		Tert-Amyl-Me	thyl Ether (T.	AME)	ND	20	10	
Toluene	ND	10	10		Ethanol			ND	1000	10	
Xylenes (total)	ND	10	10		TPPH			3100	500	10)
Methyl-t-Butyl Ether (MTBE) Surrogates:	2400 REC (%)	25 <u>Control</u> Limits	25	<u>Qual</u>	Surrogates:			REC (%)	Control Limits		Qual
Dibromofluoromethane	99	74-140			1.2-Dichloroe	thane da		99	74-146		

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

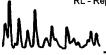
Preparation:

Method: Units:

01/15/09

09-01-1161

EPA 5030B


LUFT GC/MS / EPA 8260B

ug/L

Project: 4212 First St, Pleasanton, CA

Page 2 of 8

110,000. 121211100	ot, i loadanton	., 0, .								9	
Client Sample Number				b Sample lumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Tir Analyze		QC Batch II
MW-4 8-hr Post Test		() Edita	09-01-1	161-3-A	01/12/09 14:15	Aqueous	GC/MS R	01/23/09	01/24/0 05:22		090123L02
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	25	50		Tert-Butyl Alco	ohol (TBA)		1300	500	50	
,2-Dibromoethane	ND	50	50		Diisopropyl Et	her (DIPE)		ND	100	50	
,2-Dichloroethane	ND	25	50		Ethyl-t-Butyl E	ther (ETBE)		ND	100	50	
thylbenzene	ND	50	50		Tert-Amyl-Met		AME)	ND	100	50	
Foluene	ND	50	50		Ethanol	•	•	ND	5000	50	
(ylenes (total)	ND	50	50		TPPH			17000	2500	50	
/ethyl-t-Butyl Ether (MTBE)	13000	200	200								
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC_(%)	<u>Control</u>		<u>Qual</u>
		Limits							<u>Limits</u>		
Dibromofluoromethane	99	74-140			1,2-Dichloroet	hane-d4		100	74-146		
Toluene-d8	98	88-112			Toluene-d8-TI	PPH		98	88-112		
1,4-Bromofluorobenzene	97	74-110									
MW-1 (2nd-8hr) Pre Test			09-01-1	161-5-A	01/13/09 09:00	Aqueous	GC/MS R	01/23/09	01/24/0 05:51		090123L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	10	20		Tert-Butyl Alc	ohol (TBA)		1000	200	20	
,2-Dibromoethane	ND	20	20		Diisopropyl Et	her (DIPE)		ND	40	20	
,2-Dichloroethane	96	10	20		Ethyl-t-Butyl E	ther (ETBE)		ND	40	20	
Ethylbenzene	ND	20	20		Tert-Amyl-Me	thyl Ether (TA	AME)	ND	40	20	
oluene	ND	20	20		Ethanol			ND	2000	20	
(ylenes (total)	· ND	20	20		TPPH			3600	1000	20	
Methyl-t-Butyl Ether (MTBE)	2600	20	20								
Surrogates:	<u>REC (%)</u>	Control		<u>Qual</u>	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
Dibromofluoromethane	101	<u>Limits</u> 74-140			1,2-Dichloroet	hano d4		100	74-146		
Dioromonuoromethane Toluene-d8	98	74-140 88-112			Toluene-d8-T			98	88-112		
	96 98	74-110			i viuerie-uo-ri	1 1 1 1		90	00-112		
1,4-Bromofluorobenzene	90	74-110									

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

Units:

Preparation: Method:

01/15/09

09-01-1161

EPA 5030B LUFT GC/MS / EPA 8260B

ug/L

Project: 4212 First St, Pleasanton, CA

Page 3 of 8

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Tim Analyze	00 D-4-1- ID
MW-2 (2nd-8hr) Pre Test			09-01-1	161-6-B	01/13/09 08:45	Aqueous	GC/MS R	01/23/09	01/24/09 06:20	090123L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u> <u>Qual</u>
Benzene	ND	10	20		Tert-Butyl Alc	, ,		ND	200	20
1,2-Dibromoethane	ND	20	20		Diisopropyl Et	her (DIPE)		ND	40	20
1,2-Dichloroethane	ND	10	20		Ethyl-t-Butyl E	ther (ETBE)		ND	40	20
Ethylbenzene	ND	20	20		Tert-Amyl-Me	thyl Ether (T/	AME)	ND	40	20
Toluene	ND	20	20		Ethanol			ND	2000	20
Xylenes (total)	ND	20	20		TPPH			3300	1000	20
Methyl-t-Butyl Ether (MTBE)	2700	20	20							
Surrogates:	REC (%)	<u>Control</u>		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u>	<u>Qual</u>
		<u>Limits</u>							<u>Limits</u>	
Dibromofluoromethane	100	74-140			1,2-Dichloroet	hane-d4		101	74-146	
Toluene-d8	98	88-112			Toluene-d8-T	PPH		98	88-112	
1,4-Bromofluorobenzene	98	74-110			_					
MW-4 (2nd-8hr) Pre Test		t Aver	09-01-1	1161-7-A		Aqueous	GC/MS R	01/23/09		9 090123L02
	· <u> </u>	- 3. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	ad wa		08:55		<u> </u>		06:49	
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	DF Qual
Benzene	ND	50	100		Tert-Butyl Alc	ohol (TBA)		ND	1000	100
1,2-Dibromoethane	ND	100	100		Diisopropyl Et	her (DIPE)		ND	200	100
1,2-Dichloroethane	ND	50	100		Ethyl-t-Butyl E	ther (ETBE)		ND	200	100
Ethylbenzene	ND	100	100		Tert-Amyl-Me	thyl Ether (Ta	AME)	ND	200	100
Toluene	ND	100	100		Ethanol			ND	10000	100
Xylenes (total)	ND	100	100		TPPH			18000	5000	100
Methyl-t-Butyl Ether (MTBE)	15000	100	100							
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	<u>Control</u> Limits	<u>Qual</u>
Dibromofluoromethane	99	74-140			1.2-Dichloroe	thane-d4		100	74-146	
Toluene-d8	98	88-112			Toluene-d8-T			98	88-112	
1,4-Bromofluorobenzene	96	74-110			. 3,40,10 40 1					

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No: Preparation:

EPA 5030B

Method: Units:

LUFT GC/MS / EPA 8260B

ug/L

01/15/09

09-01-1161

Project: 4212 First St, Pleasanton, CA

Page 4 of 8

Client Sample Number				b Sample Numbe <u>r</u>	Date/Time Collected Matrix Instrumer	Date nt Prepared	Date/Time Analyzed	00000000
MW-1 (2nd-8hr) Mid Test			09-01-1	161-9-A	01/13/09 Aqueous GC/MS F 11:20	R 01/23/09	01/24/09 07:17	⊕ 090123L02
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter	Result	<u>RL</u> :	DF Qual
Benzene	ND	12	25		Tert-Butyl Alcohol (TBA)	970	250	25
1,2-Dibromoethane	ND	25	25		Diisopropyl Ether (DIPE)	ND	50	25
1,2-Dichloroethane	140	12	25		Ethyl-t-Butyl Ether (ETBE)	ND	50	25
Ethylbenzene	ND	25	25		Tert-Amyl-Methyl Ether (TAME)	ND	50	25
Toluene	ND	25	25		Ethanol	ND	2500	25
Xylenes (total)	ND	25	25		TPPH	3500	1200	25
Methyl-t-Butyl Ether (MTBE)	2500	25	25					
Surrogates:	<u>REC (%)</u>	<u>Control</u>		<u>Qual</u>	Surrogates:	REC (%)	<u>Control</u>	<u>Qual</u>
		<u>Limits</u>					<u>Limits</u>	
Dibromofluoromethane	99	74-140			1,2-Dichloroethane-d4	100	74-146	
Toluene-d8	98	88-112			Toluene-d8-TPPH	98	88-112	
1,4-Bromofluorobenzene	98	74-110						
MW-2 (2nd-8hr) Mid Test		1 (1997)	09-01-1	1161-10-A	01/13/09 Aqueous GC/MS I 11:25	R 01/23/09	01/24/09 07:46	090123L02
	er Zwei i Wei kujuk jer				The state of the s		. <u> </u>	
<u>Parameter</u>	<u>Result</u>	<u>RĿ</u>	DF	<u>Qual</u>	<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF Qual</u>
Benzene	21	10	20		Tert-Butyl Alcohol (TBA)	350	200	20
1,2-Dibromoethane	ND	20	20		Diisopropyl Ether (DIPE)	ND	40	20
1,2-Dichloroethane	ND	10	20		Ethyl-t-Butyl Ether (ETBE)	ND	40	20
Ethylbenzene	ND	20	20		Tert-Amyl-Methyl Ether (TAME)	ND	40	20
Toluene	ND	20	20		Ethanol	ND	2000	20
Xylenes (total)	23	20	20	•	TPPH	1300	1000	20
Methyl-t-Butyl Ether (MTBE)	850	20	20					
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:	<u>REC (%)</u>	Control Limits	<u>Qual</u>
Dibromofluoromethane	99	74-140			1,2-Dichloroethane-d4	100	74-146	
Toluene-d8	98	88-112			Toluene-d8-TPPH	98	88-112	
1,4-Bromofluorobenzene	97	74-110						

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

Preparation:

. Method: Units: 01/15/09

09-01-1161

EPA 5030B LUFT GC/MS / EPA 8260B

ug/L

Project: 4212 First St, Pleasanton, CA

Page 5 of 8

Client Sample Number				Sample lumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analyz		C Batch ID
MW-4 (2nd-8hr) Mid Test		6966673 3077	09-01-1	161-11-A	01/13/09 a 11:15	Aqueous	GC/MSR	01/23/09	01/24 08:1		90123L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	50	100		Tert-Butyl Alco	ohol (TBA)		1000	1000	100	
1,2-Dibromoethane	ND	100	100		Diisopropyl Etl	her (DIPE)		ND	200	100	
1,2-Dichloroethane	ND	50	100		Ethyl-t-Butyl E	ther (ETBE)		ND	200	100	
Ethylbenzene	ND	100	100		Tert-Amyl-Met	hyi Ether (T	AME)	ND	200	100	
Toluene	ND	100	100		Ethanol			ND	10000	100	
Xylenes (total)	ND	100	100		TPPH			17000	5000	100	
Methyl-t-Butyl Ether (MTBE)	14000	100	100								
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	<u>Control</u>		Qual Qual
-		<u>Limits</u>							<u>Limits</u>		
Dibromofluoromethane	98	74-140			1,2-Dichloroet	hane-d4		100	74-146		
Toluene-d8	98	88-112			Toluene-d8-TI	PPH		98	88-112		
Toluene-d8 1,4-Bromofluorobenzene	98 98	88-112 74-110			Toluene-d8-TI	PPH		98	88-112		
			09-01-1	161-13-A	30 348 - 183 4		GC/MS R	The second second	88-112 01/24 08:4)90123L02
1,4-Bromofluorobenzene	98	74-110	09-01-1 DF	161-13-A Qual	01/13/09		GC/MS R	The second second	01/24		090123L02 Qual
1,4-Bromofluorobenzene MW-1 (2nd-8hr) Post Test	98	74-110			© 01/13/09 13:20	Aqueous	GC/MS R	01/23/09	01/24 08:4	4	
1,4-Bromofluorobenzene MW-1 (2nd-8hr) Post Test Parameter	98 Result	74-110 RL	<u>DF</u>		01/13/09 13:20 Parameter	Aqueous	GC/MS R	01/23/09 Result	01/24 08:4 <u>RL</u>	4 DE	
1,4-Bromofluorobenzene MW-1 (2nd-8hr) Post Test Parameter Benzene	98 Result ND	74-110 RL 10	<u>DF</u> 20		01/13/09 13:20 Parameter Tert-Butyl Alco	Aqueous ohol (TBA) her (DIPE)		01/23/09 Result 830	01/24 08:4 <u>RL</u> 200	DE 20	
1,4-Bromofluorobenzene MW-1 (2nd-8hr) Post Test Parameter Benzene 1,2-Dibromoethane	98 Result ND ND	74-110 <u>RL</u> 10 20	DF 20 20		01/13/09 13:20 Parameter Tert-Butyl Alco Disopropyl Et	Aqueous ohol (TBA) her (DIPE) ther (ETBE)		01/23/09 Result 830 ND	01/24 08:4 RL 200 40	DF 20 20	
1,4-Bromofluorobenzene MW-1 (2nd-8hr) Post Test Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane	Result ND ND 140	74-110 RL 10 20 10	DF 20 20 20		01/13/09 13:20 Parameter Tert-Butyl Alco Disopropyl Et Ethyl-t-Butyl E	Aqueous ohol (TBA) her (DIPE) ther (ETBE)		01/23/09 Result 830 ND ND	01/24 08:4 RL 200 40 40	DF 20 20 20	
A,4-Bromofluorobenzene MW-1 (2nd-8hr) Post Test Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene	Result ND ND 140 ND	74-110 RL 10 20 10 20	DF 20 20 20 20 20		Parameter Tert-Butyl Alco Diisopropyl Et Ethyl-t-Butyl Mert	Aqueous ohol (TBA) her (DIPE) ther (ETBE)		01/23/09 Result 830 ND ND ND ND	01/24 08:4 RL 200 40 40 40	DF 20 20 20 20 20	
1,4-Bromofluorobenzene MW-1 (2nd-8hr) Post Test Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total)	Result ND ND 140 ND ND	RL 10 20 10 20 20 20	DF 20 20 20 20 20 20		Parameter Tert-Butyl Alco Diisopropyl Et Ethyl-t-Butyl Mel Ethanol	Aqueous ohol (TBA) her (DIPE) ther (ETBE)		Result 830 ND ND ND ND ND	01/24 08:4 RL 200 40 40 40 40 2000	DF 20 20 20 20 20 20	
1,4-Bromofluorobenzene MW-1 (2nd-8hr) Post Test Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene	Result ND ND 140 ND ND ND	74-110 RL 10 20 10 20 20 20 20	DF 20 20 20 20 20 20 20		Parameter Tert-Butyl Alco Diisopropyl Et Ethyl-t-Butyl Mel Ethanol	Aqueous ohol (TBA) her (DIPE) ther (ETBE)		Result 830 ND ND ND ND ND	01/24 08:4 RL 200 40 40 40 40 2000	DF 20 20 20 20 20 20	
1,4-Bromofluorobenzene MW-1 (2nd-8hr) Post Test Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) Methyl-t-Butyl Ether (MTBE)	Result ND ND 140 ND ND ND ND ND ND	74-110 RL 10 20 10 20 20 20 20 20	DF 20 20 20 20 20 20 20	Qual	Parameter Tert-Butyl Alco Diisopropyl Et Ethyl-t-Butyl E Tert-Amyl-Met Ethanol TPPH	Aqueous ohol (TBA) her (DIPE) ther (ETBE)		Result 830 ND ND ND ND ND ND 2900	01/24 08:4 RL 200 40 40 40 40 2000 1000	DF 20 20 20 20 20 20	Qual
1,4-Bromofluorobenzene MW-1 (2nd-8hr) Post Test Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) Methyl-t-Butyl Ether (MTBE)	Result ND ND 140 ND ND ND ND ND ND	74-110 RL 10 20 10 20 20 20 20 Control	DF 20 20 20 20 20 20 20	Qual	Parameter Tert-Butyl Alco Disopropyl Et Ethyl-t-Butyl E Tert-Amyl-Met Ethanol TPPH Surrogates: 1,2-Dichloroet	Aqueous phol (TBA) her (DIPE) ther (ETBE) hyl Ether (T		01/23/09 Result 830 ND ND ND ND ND ND REC (%) 102	01/24 08:4 RL 200 40 40 2000 1000 Control Limits 74-146	DF 20 20 20 20 20 20	Qual
1,4-Bromofluorobenzene MW-1 (2nd-8hr) Post Test Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) Methyl-t-Butyl Ether (MTBE) Surrogates:	Result ND ND 140 ND ND ND ND ND REC (%)	74-110 RL 10 20 10 20 20 20 20 Control Limits	DF 20 20 20 20 20 20 20	Qual	Parameter Tert-Butyl Alco Disopropyl Et Ethyl-t-Butyl E Tert-Amyl-Met Ethanol TPPH Surrogates:	Aqueous phol (TBA) her (DIPE) ther (ETBE) hyl Ether (T		Result 830 ND ND ND ND ND ND ND REC (%)	01/24 08:4 RL 200 40 40 40 2000 1000 Control Limits	DF 20 20 20 20 20 20	Qual

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

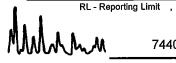
Preparation:

Method:

Units:

01/15/09

09-01-1161


EPA 5030B LUFT GC/MS / EPA 8260B

ug/L

Project: 4212 First St, Pleasanton, CA

Page 6 of 8

Client Sample Number				o Sample lumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti Analyz		QC Batch ID
MW-2 (2nd-8hr) Post Test			7 09-01-1	161-14-A	01/13/09 13:30	Aqueous	GC/MS R	01/23/09	01/24/ 09:13		090123L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>
Benzene	6.7	5.0	10		Tert-Butyl Alc	ohol (TBA)		250	100	10	
1,2-Dibromoethane	ND	10	10		Diisopropyl Et	her (DIPE)		ND	20	10	
1,2-Dichloroethane	ND	5.0	10		Ethyl-t-Butyl E	ther (ETBE)		ND	20	10	
Ethylbenzene	ND	10	10		Tert-Amyl-Me	thyl Ether (Ta	AME)	ND	20	10	
Toluene	ND	10	10		Ethanol			ND	1000	10	
Xylenes (total)	ND	10	10		TPPH			940	500	10	
Methyl-t-Butyl Ether (MTBE)	660	10	10								
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control		<u>Qual</u>
		<u>Limits</u>							<u>Limits</u>		
Dibromofluoromethane	99	74-140			1,2-Dichloroet	ihane-d4		100	74-146		
Toluene-d8	98	88-112			Toluene-d8-T	PPH		99	88-112		
1,4-Bromofluorobenzene	97	74-110									
MW-4 (2nd-8hr) Post Test	"特别,我们的人们。"	3+ 347 (\$46.5)	09-01-1	161-15-A	01/13/09 13:10	Aqueous	GC/MS R	01/23/09	01/24/ 09:4		090123L02
Parameter	Result	RL	<u>DF</u>	Qual	Parameter		•	Result	RL	DE	Qual
Benzene	ND	<u>10</u>	20	'aram	Tert-Butyl Alc	obol (TRA)		1000	200	20	
1,2-Dibromoethane	ND ND	20	20		Diisopropyl Et			ND	40	20	
1.2-Dichloroethane	ND ND	10	20		Ethyl-t-Butyl E			ND	40	20	
Ethylbenzene	ND	20	20		Tert-Amyl-Me	, ,		49	40	20	
Toluene	ND ND	20	20		Ethanol	any Later (1	- IVIL)	ND TO	2000	20	
Xylenes (total)	ND	20	20		TPPH			15000	1000	20	
Methyl-t-Butyl Ether (MTBE)	15000	200	200		11-111			10000	1000	20	
Surrogates:	REC (%)	Control	200	Qual	Surrogates:			REC (%)	Control		Qual
<u>ourrogates.</u>	NEG (70)	Limits		<u>uuai</u>	<u>ourrogates.</u>			1750 (10)	Limits		<u>scuui</u>
Dibromofluoromethane	100	74-140			1,2-Dichloroe	thane-d4		101	74-146		
Toluene-d8	98	88-112			Toluene-d8-T			98	88-112		
1.4-Bromofluorobenzene	96	74-110			i diacrio au-r			50	00-112		
1,7 DIVINIUMONODERZENE	30	74-110									

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

Preparation:

Method: Units: 01/15/09

09-01-1161

EPA 5030B LUFT GC/MS / EPA 8260B

ug/L

Project: 4212 First St, Pleasanton, CA

Page 7 of 8

			•	Date/Time Collected	Matrix	Instrument	Date Prepared			QC Batch ID
re <mark>s</mark> truit (, e)		09-01-1	161-17-A	01/13/09 14:00	Aqueous	GC/MSR	01/23/09			090123L01
Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>
ND	5.0	10		Tert-Butyl Alc	ohol (TBA)		2000	100	10	
ND	10	10		Diisopropyl Et	ther (DIPE)		ND	20	10	
ND	5.0	10		Ethyl-t-Butyl E	ther (ETBE)		ND	20	10	
ND	10	10		Tert-Amyl-Me	thyl Ether (T.	AME)	ND	20	10	
ND	10	10		Ethanol			ND	1000	10	
ND	10	10		TPPH			2600	500	10	
2000	10	10								
REC (%)	<u>Control</u>		<u>Qual</u>	Surrogates:			REC (%)	Control		<u>Qual</u>
	<u>Limits</u>							<u>Limits</u>		
95	74-140			1,2-Dichloroet	thane-d4					
00				T 1 10 T	DDLL		00	88-112		
98	88-112			Toluene-d8-T	PPH		90	00-112		
98 98	88-112 74-110			I oluene-d8-1	PPH		90	00-112		
98	74-110	099-12	-767-926	N/A	, ing water to get the	GC/MS R			/09 .9	090123L01
98	74-110	099-12 DF	-767-926 Qual			GC/MS R		01/23	/09 .9 	090123L01 Qual
98	74-110		# <u>\$</u>	N/A	- Aqueous	GC/MS R	01/23/09	01/23 17:4	9	<u>:</u> :
98 Result	74-110 <u>RL</u>	DF	# <u>\$</u>	N/A Parameter	Aqueous	GC/MS R	01/23/09 Result ND ND	01/23 17:4 <u>RL</u>	9 DF	<u> </u>
98 Result ND	74-110 <u>RL</u> 0.50	<u>DF</u> 1	# <u>\$</u>	N/A Parameter Tert-Butyl Alc	Aqueous cohol (TBA) ther (DIPE)		01/23/09 Result ND ND ND ND	01/23 17:4 <u>RL</u> 10	9 DF	<u> </u>
98 Result ND ND	74-110 <u>RL</u> 0.50 1.0	<u>DF</u> 1	# <u>\$</u>	N/A Parameter Tert-Butyl Alc Diisopropyl El	Aqueous cohol (TBA) ther (DIPE) Ether (ETBE)		01/23/09 Result ND ND	01/23 17:4 RL 10 2.0	9 DF	<u> </u>
98 Result ND ND ND	74-110 RL 0.50 1.0 0.50	DF 1 1	# <u>\$</u>	N/A Parameter Tert-Butyl Alc Diisopropyl Et	Aqueous cohol (TBA) ther (DIPE) Ether (ETBE)		01/23/09 Result ND ND ND ND	01/23 17:4 RL 10 2.0 2.0	9 DF	<u> </u>
98 Result ND ND ND ND ND	74-110 RL 0.50 1.0 0.50 1.0	DF 1 1 1	# <u>\$</u>	Parameter Tert-Butyl Alc Diisopropyl E Ethyl-t-Butyl E Tert-Amyl-Me	Aqueous cohol (TBA) ther (DIPE) Ether (ETBE)		01/23/09 Result ND ND ND ND ND	01/23 17:4 RL 10 2.0 2.0 2.0	9 DF	<u> </u>
Result ND ND ND ND ND ND	74-110 RL 0.50 1.0 0.50 1.0 1.0	DF 1 1 1 1	# <u>\$</u>	Parameter Tert-Butyl Alc Diisopropyl E Ethyl-t-Butyl E Tert-Amyl-Me Ethanol	Aqueous cohol (TBA) ther (DIPE) Ether (ETBE)		ND ND ND ND ND	01/23 17:4 RL 10 2.0 2.0 2.0 2.0	DF 1 1 1 1 1	<u> </u>
Result ND ND ND ND ND ND ND ND ND ND ND ND ND	74-110 RL 0.50 1.0 0.50 1.0 1.0 1.0 Control	DF 1 1 1 1 1	# <u>\$</u>	Parameter Tert-Butyl Alc Diisopropyl E Ethyl-t-Butyl E Tert-Amyl-Me Ethanol	Aqueous cohol (TBA) ther (DIPE) Ether (ETBE)		ND ND ND ND ND	01/23 17:4 RL 10 2.0 2.0 2.0 100 50 Control	DF 1 1 1 1 1	<u> </u>
Result ND ND ND ND ND ND ND ND ND ND ND ND ND	74-110 RL 0.50 1.0 0.50 1.0 1.0 1.0 Control Limits	DF 1 1 1 1 1	Qual	Parameter Tert-Butyl Alc Diisopropyl Et thyl-t-Butyl E Tert-Amyl-Me Ethanol TPPH Surrogates:	Aqueous Johol (TBA) Her (DIPE) Ether (ETBE) Her (T		Result ND ND ND ND ND ND ND ND ND ND ND	01/23 17:4 RL 10 2.0 2.0 2.0 100 50 Control Limits	DF 1 1 1 1 1	Qual
Result ND ND ND ND ND ND ND ND ND ND ND ND ND	74-110 RL 0.50 1.0 0.50 1.0 1.0 1.0 Control	DF 1 1 1 1 1	Qual	Parameter Tert-Butyl Alc Diisopropyl Er Ethyl-t-Butyl E Tert-Amyl-Me Ethanol TPPH	Aqueous cohol (TBA) ther (DIPE) ther (ETBE) thyl Ether (T		ND ND ND ND ND ND ND ND ND ND ND ND ND N	01/23 17:4 RL 10 2.0 2.0 2.0 100 50 Control	DF 1 1 1 1 1	Qual
	ND ND ND ND ND ND ND 2000 REC (%)	Result RL ND 5.0 ND 10 ND 5.0 ND 10 ND 10 ND 10 2000 10 REC (%) Control Limits 95 74-140	Result RL DF ND 5.0 10 ND 10 10 ND 5.0 10 ND 10 10 ND 10 10 ND 10 10 ND 10 10 ND 10 10 REC (%) Control Limits 95 74-140	Result RL DF Qual ND 5.0 10 ND 10 10 ND 5.0 10 ND 10 10 ND 10 10 ND 10 10 2000 10 10 REC (%) Control Limits Qual 95 74-140 Test of the control	Number Collected Number Collected 199-01-1161-17-A 01/13/09 14:00	Number Collected Matrix	Number Collected Matrix Instrument	Number Collected Matrix Instrument Prepared	Number Collected Matrix Instrument Prepared Analyz	Number Collected Matrix Instrument Prepared Analyzed

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

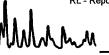
Preparation:

Method:

Units:

01/15/09 09-01-1161

EPA 5030B


LUFT GC/MS / EPA 8260B

ug/L

Project: 4212 First St, Pleasanton, CA

Page 8 of 8

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti Analyz		QC Batch ID
Method Blank	সেন্দ্ৰীয় ক্ষিত্ৰীয় কৰি কন্ত্ৰীয় কৰি		099-12	-767-927	N/A	Aqueous	GC/MS R	01/23/09	01/24/ 02:58		090123L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.50	1		Tert-Butyl Alco	ohol (TBA)		ND	10	1	
1,2-Dibromoethane	ND	1.0	1		Diisopropyl Etl	ner (DIPE)		ND	2.0	1	
1,2-Dichloroethane	ND	0.50	1		Ethyl-t-Butyl E			ND	2.0	1	
Ethylbenzene	ND	1.0	1		Tert-Amyl-Met	hyl Ether (T	AME)	ND	2.0	1	
Toluene	ND	1.0	1		Ethanol	•	·	ND	100	1	
Xylenes (total)	NĐ	1.0	1		TPPH			ND	50	1	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1								
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control		<u>Qual</u>
		Limits							Limits		
Dibromofluoromethane	97	74-140			1,2-Dichloroet	hane-d4		97	74-146		
Toluene-d8	98	88-112			Toluene-d8-TI	PPH		98	88-112		
1,4-Bromofluorobenzene	97	74-110									
Method Blank	erikî xwere Vulta	100	099-12	-767-930	N/A	Aqueous	GC/MS R	01/24/09	01/24/ 14:07	09 / 7	090124L01
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.50	1		Tert-Butyl Alco	ohol (TBA)		ND	10	1	
1,2-Dibromoethane	ND	1.0	1		Diisopropyl Eti			ND	2.0	1	
1,2-Dichloroethane	ND	0.50	1		Ethyl-t-Butyl E	ther (ETBE)		ND	2.0	1	
Ethylbenzene	ND	1.0	1		Tert-Amyl-Met	hyl Ether (T	AME)	ND	2.0	1	
Toluene	ND	1.0	1		Ethanol	,	•	ND	100	1	
Xylenes (total)	ND	1.0	1		TPPH			ND	50	1	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1								
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
Dibromofluoromethane	100	74-140			1,2-Dichloroet	hane-d4		99	74-146		
Toluene-d8	99	88-112			Toluene-d8-TI			99	88-112		
1,4-Bromofluorobenzene	96	74-110				-		-			

Quality Control - Duplicate

Delta Environmental Consultants, Inc. 312 Piercy RD.

San Jose, CA 95138-1401

Date Received: Work Order No: Preparation: Method: 01/15/09 09-01-1161 N/A

EPA TO-3M

Project: 4212 First St, Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared:	Date Analyzed:	Duplicate Batch Number
09-01-1083-20	Air	GC 13	N/A	01/15/09	090115D01
<u>Parameter</u>	Sample Conc	DUP Conc	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as Gasoline	600	610	2	0-20	

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

alscience nvironmental aboratories, Inc.

Quality Control - Spike/Spike Duplicate

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received: Work Order No:

Preparation: Method:

01/15/09 09-01-1161 EPA 5030B

LUFT GC/MS / EPA 8260B

Project 4212 First St, Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date I Analyzed	MS/MSD Batch Number
09-01-1018-4	Aqueous	GC/MSR	01/23/09	a Liza	01/23/09	090123801
•						<u> </u>
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	107	105	88-118	2	0-7	
Carbon Tetrachloride	118	119	67-145	1	0-11	
Chlorobenzene	108	107	88-118	1	0-7	
1,2-Dibromoethane	108	110	70-130	2	0-30	
1,2-Dichlorobenzene	108	106	86-116	2	0-8	
1,1-Dichloroethene	105	103	70-130	2	0-25	
Ethylbenzene	107	105	70-130	2	0-30	
Toluene	106	105	87-123	1	0-8	
Trichloroethene	107	104	79-127	3	0-10	
Vinyl Chloride	94	92	69-129	3	0-13	
Methyl-t-Butyl Ether (MTBE)	106	111	71-131	5	0-13	
Tert-Butyl Alcohol (TBA)	103	106	36-168	3	0-45	
Disopropyl Ether (DIPE)	117	127	81-123	9	0-9	3
Ethyl-t-Butyl Ether (ETBE)	112	110	72-126	2	0-12	
Tert-Amyl-Methyl Ether (TAME)	110	109	72-126	1	0-12	
Ethanol	99	98	53-149	1	0-31	

Mhha_

alscience nvironmental aboratories, Inc.

Quality Control - Spike/Spike Duplicate

Delta Environmental Consultants, Inc. 312 Piercy RD.

San Jose, CA 95138-1401

Date Received: Work Order No: Preparation: 01/15/09 09-01-1161 EPA 5030B LUFT GC/MS / EPA

Method: LUFT GC/MS / EPA 8260B

Project 4212 First St, Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
09-01-1297-4	Aqueou	S GC/MSR	01/24/09	V.	01/24/09	090124801
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Renyene	106	108	88-118	2	0-7	
Benzene		121	67-145	7	0-7 0-11	
Carbon Tetrachloride	113			1	0-7	
Chlorobenzene	108	109	88-118	•		
1,2-Dibromoethane	108	111	70-130	3	0-30	
1,2-Dichlorobenzene	108	108	86-116	1	0-8	
1,1-Dichloroethene	108	106	70-130	2	0-25	
Ethylbenzene	106	108	70-130	1	0-30	
Toluene	106	107	87-123	1	0-8	
Trichloroethene	109	107	79-127	1	0-10	
Vinyl Chloride	93	91	69-129	2	0-13	
Methyi-t-Butyl Ether (MTBE)	106	111	71-131	5	0-13	
Tert-Butyl Alcohol (TBA)	98	109	36-168	7	0-45	
Diisopropyl Ether (DIPE)	100	130	81-123	26	0-9	4,3
Ethyl-t-Butyl Ether (ETBE)	98	111	72-126	12	0-12	
Tert-Amyl-Methyl Ether (TAME)	108	108	72-126	0	0-12	
Ethanol	97	103	53-149	6	0-31	

Muhan_

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

Preparation:

Method:

N/A

09-01-1161

N/A

EPA TO-15

Project: 4212 First St, Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bate Number	ch
097-09-002-8,083	Air	GC/MS K		01/15/09	090115L01	
<u>Parameter</u>	LCS %RE	C LCSD %	<u> KREC %R</u>	EC CL RPD	RPD CL	<u>Qualifiers</u>
Benzene	107	109	6	0-156 2	0-40	
Toluene	106	108	50	6-146 2	0-43	
Ethylbenzene	109	109	5	2-154 1	0-38	
p/m-Xylene	105	106	4:	2-156 1	0-41	
o-Xylene	106	107	5	2-148 1	0-38	

Delta Environmental Consultants, Inc. 312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No: Preparation:

Method:

N/A

09-01-1161 N/A

EPA TO-15

Project: 4212 First St, Pleasanton, CA

Quality Control Sample ID	Mat <u>rix</u> Ir	nstrument	Date Prepared	Date Analyzed	LCS/LCSD Bate Number	:h
097-09-002-8,087	A ir G	C/MS K	N/A	01/16/09	090116L01	
<u>Parameter</u>	LCS %REC	LCSD %RI	EC %REC	CL RPD	RPD CL	Qualifiers
Benzene	107	107	60-15	6 0	0-40	
Toluene	107	106	56-14	6 1	0-43	
Ethylbenzene	110	110	52-15	i4 0	0-38	
p/m-Xylene	107	107	42-15	6 0	0-41	
o-Xylene	108	109	52-14	8 0	0-38	

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

Preparation:

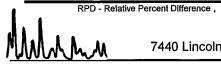
Method:

N/A

09-01-1161

EPA 5030B

LUFT GC/MS / EPA 8260B


Project: 4212 First St, Pleasanton, CA

Quality Control Sample ID		Matrix	Instrument	Date Prepared	Da Anal	ate yzed	LCS/LCSD Numbe	
099-12-767-926	sout policy	Aqueous	GC/MS R	01/23/09	01/23	/09	090123L	01 (2.50)
<u>Parameter</u>		LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	<u>Qualifiers</u>
Benzene		103	101	84-120	78-126	2	0-8	
Carbon Tetrachloride		116	111	63-147	49-161	4	0-10	
Chlorobenzene		107	105	89-119	84-124	2	0-7	
1,2-Dibromoethane		108	107	80-120	73-127	1	0-20	
1,2-Dichlorobenzene		106	106	89-119	84-124	0	0-9	
1,1-Dichloroethene		102	101	77-125	69-133	1	0-16	
Ethylbenzene		107	104	80-120	73-127	3	0-20	
Toluene		102	102	83-125	76-132	1	0-9	
Trichloroethene		105	105	89-119	84-124	1	0-8	
Vinyl Chloride		105	91	63-135	51-147	14	0-13	Х
Methyl-t-Butyl Ether (MTBE)		99	100	82-118	76-124	1	0-13	
Tert-Butyl Alcohol (TBA)		102	110	46-154	28-172	7	0-32	
Diisopropyl Ether (DIPE)		100	94	81-123	74-130	7	0-11	
Ethyl-t-Butyl Ether (ETBE)		106	106	74-122	66-130	0	0-12	
Tert-Amyl-Methyl Ether (TAME)		105	105	76-124	68-132	0	0-10	
Ethanol		97	101	60-138	47-151	4	0-32	
TPPH		97	105	65-135	53-147	7	0-30	

Total number of LCS compounds: 17

Total number of ME compounds: 0

Total number of ME compounds allowed: LCS ME CL validation result: Pass

N/A

09-01-1161

Quality Control - LCS/LCS Duplicate

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

Work Order No:

Preparation:

EPA 5030B

Method:

LUFT GC/MS / EPA 8260B

Project: 4212 First St, Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal <u>y</u>		LCS/LCSD F Number	
099-12-767-927	Aqueous	GC/MS R	01/23/09	01/24/	09	090123L0	02
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME_CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Benzene	102	106	84-120	78-126	4	0-8	
Carbon Tetrachloride	113	120	63-147	49-161	6	0-10	
Chlorobenzene	105	107	89-119	84-124	1	0-7	
1,2-Dibromoethane	106	109	80-120	73-127	2	0-20	
1,2-Dichlorobenzene	104	106	89-119	84-124	1	0-9	
1,1-Dichloroethene	102	104	77-125	69-133	2	0-16	
Ethylbenzene	105	107	80-120	73-127	2	0-20	
Toluene	102	104	83-125	76-132	2	0-9	
Trichloroethene	108	114	89-119	84-124	5	0-8	
Vinyl Chloride	87	93	63-135	51-147	7	0-13	
Methyl-t-Butyl Ether (MTBE)	100	102	82-118	76-124	2	0-13	
Tert-Butyl Alcohol (TBA)	107	109	46-154	28-172	2	0-32	
Diisopropyl Ether (DIPE)	113	114	81-123	74-130	1	0-11	
Ethyl-t-Butyl Ether (ETBE)	105	108	74-122	66-130	3	0-12	
Tert-Amyl-Methyl Ether (TAME)	103	106	76-124	68-132	3	0-10	
Ethanol	101	103	60-138	47-151	2	0-32	
TPPH	102	108	65-135	53-147	6	0-30	

Total number of LCS compounds: 17 Total number of ME compounds: 0 Total number of ME compounds allowed : LCS ME CL validation result: Pass

Delta Environmental Consultants, Inc.

312 Piercy RD.

San Jose, CA 95138-1401

Date Received:

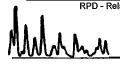
Work Order No:

Preparation:

Method:

09-01-1161

EPA 5030B


N/A

LUFT GC/MS / EPA 8260B

Project: 4212 First St, Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	ate yzed	LCS/LCSD Ba Number	itch
099-12-767-930	Aqueous	GC/MS R	01/24/09	01/24	/09	090124L01	
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	109	111	84-120	78-126	2	0-8	
Carbon Tetrachloride	119	122	63-147	49-161	3	0-10	
Chlorobenzene	112	112	89-119	84-124	0	0-7	
1,2-Dibromoethane	108	109	80-120	73-127	1	0-20	
1,2-Dichlorobenzene	110	112	89-119	84-124	2	0-9	
1,1-Dichloroethene	113	114	77-125	69-133	1	0-16	
Ethylbenzene	112	114	80-120	73-127	1	0-20	
Toluene	110	109	83-125	76-132	1	0-9	
Trichloroethene	113	115	89-119	84-124	1	8-0	
Vinyl Chloride	98	98	63-135	51-147	0	0-13	
Methyl-t-Butyl Ether (MTBE)	98	100	82-118	76-124	1	0-13	
Tert-Butyl Alcohol (TBA)	111	114	46-154	28-172	3	0-32	
Diisopropyl Ether (DIPE)	113	110	81-123	74-130	2	0-11	
Ethyl-t-Butyl Ether (ETBE)	104	104	74-122	66-130	1	0-12	
Tert-Amyl-Methyl Ether (TAME)	102	102	76-124	68-132	0	0-10	
Ethanol	108	111	60-138	47-151	2	0-32	
TPPH	108	115	65-135	53-147	6	0-30	

Total number of LCS compounds: 17 Total number of ME compounds: 0 Total number of ME compounds allowed: LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order Number: 09-01-1161

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

LAB (LOCATION)					6			Sh	ell (Oil	Pr	od.	luc	ts	Cł	nai	n C)f (Cus	toc	ly I	₹e	CO	rd						•	
☑ CALSCIBNCE(Plea	se Check	Appr	opriati	Box			Print	Bill	tΤα	Con	tact	Nan	MICIOE						DENT # (EMV. SERVICES): CHECK IF NO INCIDENT #									
D SPL (ENV.	SERVICES		AVEIC			SHELLR	ETAJIL.												9	8	9	9	5	8 4	4 0	. 0	ATE: 1/14/2	009	
		□ MOT	IVA SO&CM		NSULTA	NT		LUBES						·	o i	:::::							S	\P #] _			
TEST AMERICA (L PIPELINE		nuco				一门			Ť	Ϋ́	1	Ť	T		<u></u>	· · · · ·			<u></u>	5	7	8	2	T	7 P	AGE:1	of2_	
OTHER (☐ 3HB	T LINETINE		LOS CODI					SITEA		A ss: se	4	2	11	2	11	1	<u> </u>	Stat	1	3		LOBAL		لك	ш.				
elta Consultants						-				4212	1st	t St:	Plea	SON	ton			_			CA			0600	101	259				TANT PROJECT NO:	
BELES COLISINGLIES	312 Piercy I	Dandi Sar	loca CA	05138						EN/ DELI	MERABI	LE 70-#	times, Sc	ortendo (illisa La	ention):		_	DHE NO.:				-	A41:					COMM	DAN PROJECT NO.	
COJECT CONTACT (Historpy or PDF Report to		(Uau, 3a)	1 3056, 07	33100	_					Ange	ela f	Pico						4	08-82	6-186	2			olco@	delta	env.	com	in aci	CALL Y		
EL EPHONE:	FAX:	Rich Ga	FEAT:									lson															7	\mathcal{Y}_{i}	- O I	-1161	
408-826-1880	408-225-8506			Rgar	low@d	eltaenv.				3	a O	13011																			
TURNAROUND TIME (CALENDAR STANDARD (14 DAY)	DAYS):	G] 2 DAYS	☐ 24 HOU	IRS		RESULTS ON	WEEKE											i	REQU	ESTI	D A	NAL	YSIS							
LA - RWQCB REPORT FORMAT	UST AGENCY:		-								14/-	ater S		96		Venor	Samp	les											TEMPERA	TURE ON RECEI	
				☐ SHBT	CONTIRA	CT RATE A	PPLNES			\vdash	7	$\overline{}$	away)	<u> </u>					\neg	Т	T	Т	T		1	T	Т	T	1	C•	
SPECIAL INSTRUCTIONS	OR NOTES :			STATE				PLIES		(8280B)	ŀ	260			ŀ	(TO-14)	ė	-	1				1			1					
Send results to:				□ EDD W	OF MEED	e o .				8		8			ŀ	Ĕ	쀨		ł					ł	1				<u> </u>		
				RECES	T VERSE	TCATION I	equesi	ED		8	<u></u>	9.78		608	9		& MTBE (TO-14)						1							•	
		SAM	PLING			PRESER	VAJIVE			ğ	280	ő	8) (82	826	E	ă l					-	ŀ	1			-		1		
Field Sample	dentification			MATRIX			ŀ		NO. OF	TPH-G Purgeable	BTEX (8260B)	5 Shell Oxygenates (8260B)	EDB (8260B)	1,2-DCA (8260B)	Ethanol (8260B)	TPH-G Purgeable	втех, твА,	-					ŀ					İ		ner PID Reading: boratory Notes	
Field Sample		DATE	TIME		HCL H	NO3 H280	NONE	OTHER		Ē	튭	88		1.2	氫	티	<u></u>	4	_	_	4	+	4	- -	+	4	_	+	 		
MW-1 8-hr Post To	est	1/12/09	14:30		x				5	x	х	х	X	×	×	_		\perp		_	1	_	\downarrow	_	4	\bot	_	\bot	 	ATBE, TBA,	
MW-2 8-hr Post To		1/12/09	14:05		x		·		5_	х	X	×	x	x	×			\perp	\perp		\perp	\perp	\perp	_	_	_	_	1	DIPE, ETT	E, & TAME	
3 MW-48-hr Post To		1/12/09			x				5	x	х	х	x	x	x				1_					\perp		Ц.			<u> </u>		
2							×	1	1						\Box	x	x	×		Ì	ĺ				1						
DPE Influent - 8hr	Post lest	1/12/09	14:00			_	+^		<u> </u>									T			Т		Т	\Box	Т				1		
		+			1-+	-	+-	\vdash		x	х	×	х	x	×		\neg	寸		\top			1		T	\neg	丁	\top	1		
MW-1 (2nd -8hr) F	PreTest	1/13/09	9:00		×	+		+	5	×	x	x	x	×	×	_	十	+	\top	\top	\top	1	1	1	十	十		\top			
MW-2 (2nd -8hr) F	re Test	1/13/09	8:45		×		+		5	1-1		_	×		x	\dashv	十	-	+	+	+	十	\top	\top	十	\top	+	+			
/ MW-4 (2nd -8hr) F	re Test	1/13/09	8:55		×				5	×	×	×	. *					\dashv	+	+	+	+	+	+	+	+	+	+	┼		
DPE influent - (2n	d_Rhr) Pre Test	1/13/09	9:10				x	1	1							×	X	×							\perp	\perp	\perp		 		
E La La maideire - (21)		1	 			$\neg \neg$	1	T -							\neg		\Box	T											1		
Refinantished by: (Signature)				Received by: (Si	gnature)	L_				<u> </u>		l)ate;	<u>-</u>	7		 _	Tie	ne:		
Than (-6	ಬ	_ 1	• •	·																		1/	15	11	00	1				
Retaquiched by: (Signature)	- Coral	<u>1500</u>		Received by: (S	gnature)				_				_									+)ale:	•	· I _	_	`	Tie	ne;		
——————————————————————————————————————					,																										
Reliequished by: (Signature)				Received by: (S	(مسلمدوا	 ,																+	Delec						ne:		
ACO Ha	1057237	54				ea		0	,	מ <i>בי</i>)												7//	7.0	- /	04	7		10:3	D	
11 S U PT			j		1/./\	مامساد	レ	/v-	- '	てし	_								_											4.1	

22 of 25

LAB (LOCATION)								Sł	nell	Oil	l P	ro	du	cts	C	ha	in	Of	Cu	ısto	ody	y R	ec	ore	b					
☐ CATROTENCE (Ple	ase Checl	(Ap	propri	ite Bö	K:		Prii	ot Bi	Il To	ı Co	ntac	t Na	me:					∷tN	CIDE	NT:	# (E)	iv:s	ERV	ICE	S):	□он	HECK IF NO INCIDENT # APPLIES
☐ SPL (□ BN/	. SERVICES			A RETAIL		SHELL	RETAIL	l	••••	•••	• • • •	• • • •		••••	••••	• • • •			9	8		7.7	·		-T	0		TE: 1/14/2009
		□мо	TIVA SD&OM		ONSU	LTANT		LUBES		100				:::::	PO	4				::::				SAF			- 7	ॉ		
TEST AMBRICA (==						<u> </u>		·····		· · · · · ·	<u> </u>	7			·····	***	:::::: T		· · · · · · · ·	بند	· T		····	<u>₩</u>	PA	\GE:2 of2_
OTHER (III SHE	II. PIPELINE		THER					s	C	Α	4	_2	1	2	_1	1	\perp		1	3	5		8 ALIBNO				<u>. </u>	
	•				LOCK	ODE:							teret al		ntan						SURE	CA				~)125	: c			
Delta Consultants ADDRESS:					4212 1st St; Pleasonton EDF DELWERABLE TO (Warns, Company, Office Location): PHONE MO.						<u> </u>		EHAL		7125	-			CONSULTANT PROJECT NO.:											
312 Piercy Road; San Jose, CA 95138							Angela Bico 409 926 196						1862	Anico Odoltanny com																
PROJECT CONTACT (Authory or PDF Report in): Rich Garlow						Angela Pico 408-826-1862 Apico@deltaenv.com																								
TELEPHONE: 408-826-1880	FAX: 408-225-8506		E-MAIL:	Rae	rlowé	2)deltaen	v com			င	га О)lso:	n															C	Я	-01-1161
TURNAROUND TIME (CALENDAR D				1785	IO B		RESULT	S NEEDE	D	—																				
☑ STANDARD (14 DAY) □	5 DAYS 3 DAYS		2 DAYS	☐ 24 HO	JRS			N WEEK												- KE	uv.	STEC	- AN	ALT 8	15					
☐ LA - RWQCB REPORT FORMAT	UST AGENCY:										W	ater :	Samp	les		Vapo	or Sam	nples											ı	TEMPERATURE ON RECEI
COCOLAL INCTOLLOTIONS C	D NOTES -				CONT	RACT RATE	APPLIES					ê					4										\Box		П	C*
SPECIAL INSTRUCTIONS C	/K NU153:			☐ STATE			T RATE AF	PLIES		TPH-G Purgeable (8260B)		5 Shell Oxygenates (8260B)		1		TPH-G Purgeable (TO-14)	TBA, & MTBE (TO-14)]				i				- 1		. 1	
Send results to:				☐ £000 N	OT NE	EDED EDED				(82		es es				Ĕ	퓚													
				RECES	PT VE	RIFICATION	N REQUES	TED		apple	E	Ē	_	1,2-DCA (8260B)	(B)	ğ	W W												. 1	
		SAM	PLING		Г	PRES	ERVATIVE		1	ğ	BTEX (8260B)	<u>\$</u>	EDB (8260B)	(82	Ethanol (8260B)	ğ	₩,											ıl	. 1	
Field Sample	Identification		·	MATRIX					NO. OF	φ	8) X	=	(82	Š	lou	ö	기									I		ıl		Container PID Readings
Field Sample		DATE	TIME		наь	HNO3 H2	SO4 NONE	E OTHER	1	HE.	BTE.	5 5	ED	12	Eth	표	BTEX.											, I		or Laboratory Notes
9 MW-1 (2nd -8hr) Mi	idTest	1/13/09	11:20		x				5	х	х	x	х	х	х												\neg			5 Oxys = MTBE, TBA,
10 MW-2 (2nd -8hr) M		1/13/09	11:25		х			\top	5	х	х	x	x	x	х												\Box		\neg	DIPE, ETBE, & TAME
MW-4 (2nd -8hr) Mi		1/13/09	11:15		x			 	5	х	х	х	x	х	х												\Box			
2 DPE Influent - (2nd	•				-		x	1	1							х	х	x										T	丁	
1:44 DPE Innuent - (200	-onr) Mila Test	1/13/09	11:15			┼╌┼╴	- -^			_	\vdash					H			\dashv	\dashv	-		-		_	\dashv	寸	\Box	\dashv	
					<u> </u>	╀╌┼╴		+				 	-	<u> </u>					-+				├	-		\dashv	\dashv	\dashv	\dashv	
1 MW-1 (2nd -8hr) Po	st Test	1/13/09	13:20		×			 	5	X	X	×	X	X	×				-+	_			ļ			-	-		_	
4 MW-2 (2nd -8hr) Po	st Test	1/13/09	13:30		x				5	X	x	×	×	×	×		Ш	_	_				<u> </u>				\dashv	\sqcup	\dashv	
MW-4 (2nd -8hr) Po	set Taet	1/13/09	13:10		x			İ	5	x	x	х	x	×	x			- 1							1					
2 IIII - (21G - 01II) 1 C	ist rest	17 10703	19.10		^	1 1			1							х	х	x	寸				一					T	コ	
DPE Influent - (2nd	-8hr) Post Test	1/13/09	13:00			\vdash	<u>_</u> ×	 	<u> </u>		ļ	_				Ļ	Ĥ	$\hat{\dashv}$	_	{	-		<u> </u>	_			-		\dashv	
Folkaylahad by: (Signaldre)		1/13/09	14:00		x				5	x	x	x	x	X	x			:	ŀ											
Relinquished by: (Signature)	7 /	1 :: : : : : :		Received by: (Sig)						<u> </u>								•			Dete	_	;				Time:	
Received by: (Signature) Received by: (Signature)														1) 14/65																
											-								Date		' 	+		一	Time	· · · · · · · · · · · · · · · · · · ·				
			1																						-				ı	
Relinquished by: (Signature)				Received by: (Sig	malure)								_									Date	:				\dashv	Time:	
			<i>'</i>					_	_														ค	, f	_ر	1 ~	0			10:30
<u> 650 # 1</u>	0572375	4]	jer	e e	my 1	<u> </u>	a	2														0	[_[<u>'\</u>	10	1			to - JU
				J		•																		•	•	•				TO MENSION

WORK ORDER #: **09-** 🖸 🗓 - 🗓 🗓 🖟

SAMPLE RECEIPT FORM

Cooler <u>/</u> of <u>/</u>

CLIENT: DELTA CONSULTANTS		DATE: _ <i>[</i>]	115109								
TEMPERATURE: (Criteria: 0.0 °C – 6.0 °C, not frozen)											
Temperature 2 . 6 °C - 0.2 °C (CF) = 2 . 4 °	,c	Blank	∃ Sample								
☐ Sample(s) outside temperature criteria (PM/APM contacted by:).										
☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling.											
☐ Received at ambient temperature, placed on ice for transport by Courier.											
Ambient Temperature: ☐ Air ☐ Filter ☐ Metals Only ☐	PCBs O	nly	Initial:								
CUSTODY SEALS INTACT:											
☐ Cooler ☐ ☐ No (Not Intact) ☐ Not F	Present	□ N/A	Initial: <u>PS</u>								
☐ Sample ☐ ☐ No (Not Intact) ☑ Not F	Present		Initial: <u>AM</u>								
SAMPLE CONDITION:	Yes	No	N/A								
Chain-Of-Custody (COC) document(s) received with samples	Ø										
COC document(s) received complete	IZ										
Sampler's name indicated on COC											
Sample container label(s) consistent with COC	囡										
Sample container(s) intact and good condition											
Correct containers and volume for analyses requested	囡	. 🗆									
Analyses received within holding time	Ø										
Proper preservation noted on COC or sample container	Ø		. 🗆								
Volatile analysis container(s) free of headspace		团									
Tedlar bag(s) free of condensation											
CONTAINER TYPE:											
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve □EnCores											
Water: □VOA ☑VOAh □VOAna₂ □125AGB □125AGBh	□125A	GBpo₄ □1	AGB □1AGBna₂								
□1AGBs □500AGB □500AGBs □250CGB □250CGBs □	1PB 🗆 5	500PB □50	0PBna □250PB								
□250PBn □125PB □125PBznna □100PBsterile □100PBna	a ₂ 🗆										
Air: 🗹 Tedlar® 🗆 Summa® 🗆			beled by:								
Container: C:Clear A:Amber P:Poly/Plastic G:Glass J:Jar B:Bottle Preservative: h:HCL n:HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na;NaOH po ₄ :H ₂ PO ₄ s:H ₂ SO ₄ zn	na:ZnAc₂+N		iewed by:								

WORK OR	DER #:	09-
----------------	--------	-----

	1	6	

Lalecience Environmental Laboratories, inc.

Laboratories, Inc. SAMPLE ANOMALY FORM

-	CUSTODY ((000):			Comm	Comments:							
□ No date	nquished by e/time relinqu ot received w lete informat	ished ith samples											
	- CONTAIN		Comn	Comments:									
□ Sample □ Sample □ Holding □ Insuffic □ Imprope □ No pres □ Sample □ Sample □ Sample □ Sample □ Sample □ Bample □ Bample	es NOT RECE es received be g time expired ient quantitie er container(s ervative note labels illegik labels do no mple ID ate and Time of containers containers existing oken ithout Labels	IVED but lisut NOT LIST d — list samples for analys) used — list ed on label ole — note te of match CO Collected ation		nents:									
HEADSPA	CE – Conta	iners with	Bubble >	6mm or ¼ i	nch:								
Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of RSK or CO₂ or DO or Organic Lead Received					
5	D) E	Ģ		BICIDIE	6]				
6	<u> </u>	6		A,B,C,DE	6				41				
7 17	DIE	6	14	DIE	6				┦┃				
L 9/11	CIDIE	<u> </u>	15	BICIDE	6			L	┚┃				
Comments:				·									
			 .					<u> </u>	٠				
	· · · · · · · · · · · · · · · · · · ·					Initial / Da	te <u>RM 1/12</u>	5/09	_				
□ Sample □ Holding □ Insuffic □ Improp □ No pres □ Sample □ Sample □ Sample □ Sample □ He □ Br □ W □ Other: HEADSPA Sample # 5 6 7 9,17	s received by time expired itent quantities or container (servative note labels illegited in the labels do note and Time roject Information containers of containers of containers of containers of container (D(s))	ut NOT LIST d – list samples for analy s) used – list ed on label ole – note te of match CO Collected ation compromise liners with # of Vials Received	red on Coole ID(s) are sis — list test — list test ast/contained CC — Note and — Note are subble > Sample #	ond test est and notify lab er type in comments in comments 6mm or ¼ in Container ID(s)	# of Vials Received	#	ID(s)	CO ₂ or DO Organic Le Received	or ead				

SOP T100_081 (09/19/08)