RECEIVED

9:31 am, Feb 03, 2010

Alameda County Environmental Health

February 1, 2010

Re: Fourth Quarter 2009 Groundwater Monitoring Report

Shell-Branded Service Station 4212 (aka 4226) First Street Pleasanton, California

Dear Mr. Jerry Wickham:

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Sincerely, Shell Oil Products US

Denis L. Brown Project Manager February 1, 2010 Delta Project No. SCA421211A SAP No. 135782

Mr. Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: FOURTH QUARTER 2009 GROUNDWATER MONITORING REPORT

Shell-Branded Service Station 4212 (aka 4226) First Street Pleasanton, California

Dear Mr. Wickham:

On behalf of Equilon Enterprises LLC dba Shell Oil Products (Shell), Delta Consultants (Delta) has prepared this Fourth Quarter 2009 Groundwater Monitoring Report for the above referenced site. The sampling activities at the site were conducted by Blaine Tech Services, Inc. under direct contract to Shell and included the collection of groundwater samples and static water level measurements. Delta does not provide any oversight of Blaine Tech Services Inc's work or protocol. A Delta staff member performed an evaluation of the data provided to us under the supervision of a California Registered Civil Engineer or a California Professional Geologist.

This report represents Delta's professional opinions based upon the currently available information and is arrived at in accordance with currently acceptable professional standards. This report is based upon a specific scope of work requested by the client. The Contract between Delta and its client outlines the scope of work, and only those tasks specifically authorized by that contract or outlined in this report were performed. This report is intended only for the use of Delta's client and anyone else specifically listed on this report. Delta will not and cannot be liable for unauthorized reliance by any other third party. Other than as contained in this paragraph, Delta makes no express or implied warranty as to the contents of this report.

February 1, 2010 Fourth Quarter 2009 Groundwater Monitoring Report 4212 (aka 4226) First Street, Pleasanton, California Page 2

If you have any questions regarding this site, please contact Ms. Suzanne McClurkin-Nelson (Delta Project Manager) at (408) 826-1875 or Mr. Denis Brown (Shell Site Manager) at (707) 865-0251.

SIONAL GEOLOG

Sincerely,

Delta Consultants

Suzanne McClurkin-Nelson Senior Project Manager

Regina Bussard, P.G.

Project Geologist

Attachment: Fourth Quarter 2009 Groundwater Monitoring Report

cc: Mr. Denis Brown, Shell Oil Products US

Janin Mulleth

February 1, 2010 Fourth Quarter 2009 Groundwater Monitoring Report 4212 (aka 4226) First Street, Pleasanton, California Page 3

SHELL QUARTERLY STATUS REPORT

Station Address:	4212 (aka 4226) First Street, Pleasanton, California
DELTA Project No.:	SCA421211A
SHELL Project Manager / Phone No.:	Denis Brown / (707) 865-0251
DELTA Site Manager / Phone No.:	Suzanne McClurkin-Nelson / (408) 826-1875
Primary Agency / Regulatory ID No.:	Alameda County Environmental Health (Mr. Jerry Wickham, P.G., CHG)
Other Agencies to Receive Copies:	None

WORK PERFORMED THIS QUARTER (FOURTH -2009):

- 1. Quarterly groundwater monitoring and sampling. Submitted quarterly report.
- 2. Complete Remediation system design drawings; prepare building permit application; submit detailed proposed schedule for remediation system installation.

WORK PROPOSED FOR NEXT QUARTER (FIRST -2010):

- 1. Quarterly groundwater monitoring and sampling. Submit quarterly report.
- 2. Submit permit application package for building permit, submit Bay Area Air Quality Management District application for Authority to Construct.
- 3. Install four soil vapor extraction (SVE) wells and one test air sparge (AS) well; conduct AS pilot test and determine optimal radius of influence (ROI); adjust spacing and install remaining proposed AS wells on site.

Current Phase of Project:	Groundwater monitoring
Site Use:	Shell-branded Service Station
Frequency of Sampling:	Quarterly
Frequency of Monitoring:	Quarterly
Is Separate Phase Hydrocarbon Present Onsite (Well #'s):	☐ Yes ⊠ No
Cumulative SPH Recovered to Date:	NA
SPH Recovered This Quarter:	None
Sensitive Receptor(s) and Respective Direction(s):	The Arroyo Del Valle Creek is located approximately 1,133 feet north-west of the site. A supply well (3S/1E-21C1) was located 1,000 feet northwest of the site and a municipal well (3S/1E-16P10) was located approximately 1,200 feet north of the site.
Site Lithology:	The site is underlain by interlayered silt, silty sand, gravelly sand and silty gravel.
Current Remediation Techniques:	Quarterly monitoring of natural attenuation
Permits for Discharge:	None
Groundwater Recovered This Quarter:	67.3 gallons were recovered on November 9, 2009.

SHELL QUARTERLY STATUS REPORT (CONT.)

Approximate Depth to Groundwater: 32.43 to 35.84 feet below top of well casing. 98.90 feet

below top of well casing in deeper Well MW1-B.

Groundwater Gradient: Northeast at approximately 0.06 ft/ft

Current Agency Correspondence: ACHCSA email dated December 4, 2009 (Appendix A)

Date of Most Recent Work Plan Approval: A ACHCSA letter dated August 7, 2009 approving Interim

Remediation work Plan (Appendix A)

Site History:

Case Opening 1985

Onsite Assessment 1986 - 2007

Offsite Assessment None

Passive Remediation Monitoring Natural Attenuation

Active Remediation June 2007, Step Draw Down;

June, August 2007, Batch Extraction

February 12, 2009, Dual-Phase Extraction Pilot Test

Closure None

Summary of Unusual Activity: None

Analytical results for the fourth quarter 2009 are consistent with historical data set. The preliminary remediation system design has been finalized and a permit application package will be submitted to the building department during the first quarter 2010, along with an application to the local air district for a discharge permit. Remediation wells SVE-1 through SVE-4 and test AS well are being installed January 2010; an AS pilot test will be performed January 26, 2010 to determine the site-specific radius of influence (ROI) after which the AS spacing for the system design will be adjusted if needed. Following confirmation of well placement, the remaining AS wells will be installed.

ATTACHMENTS:

Figures:

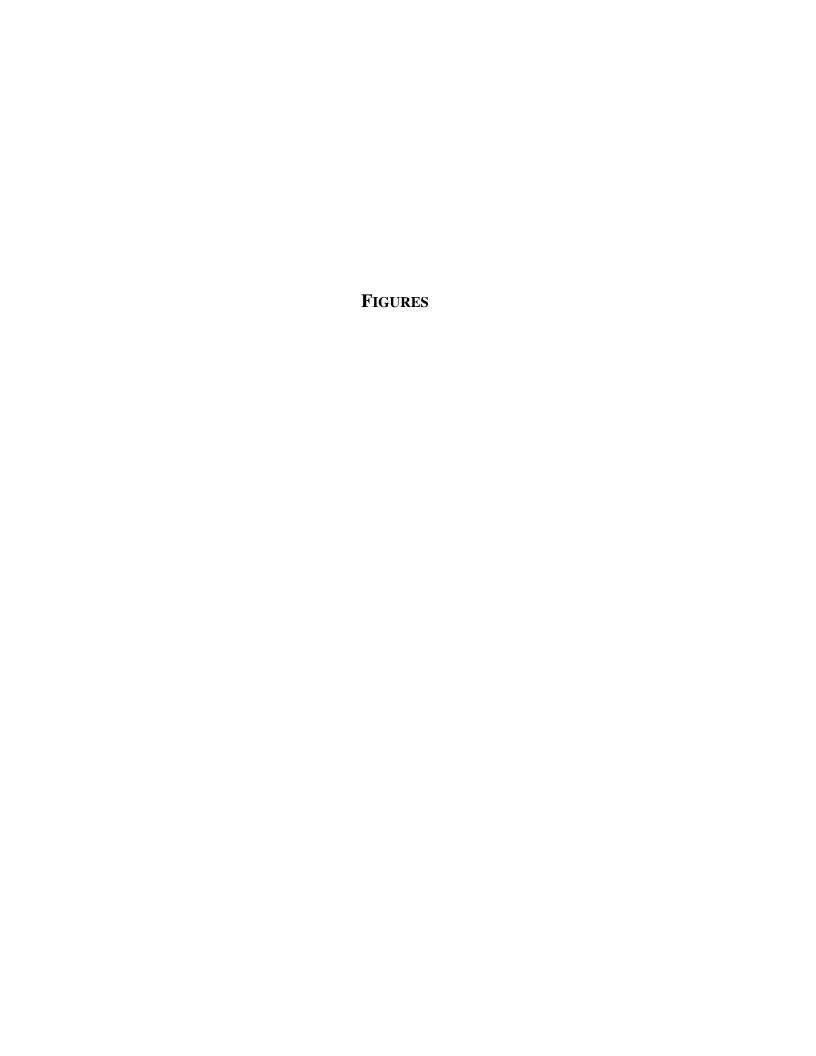
Figure 1 – Site Location Map

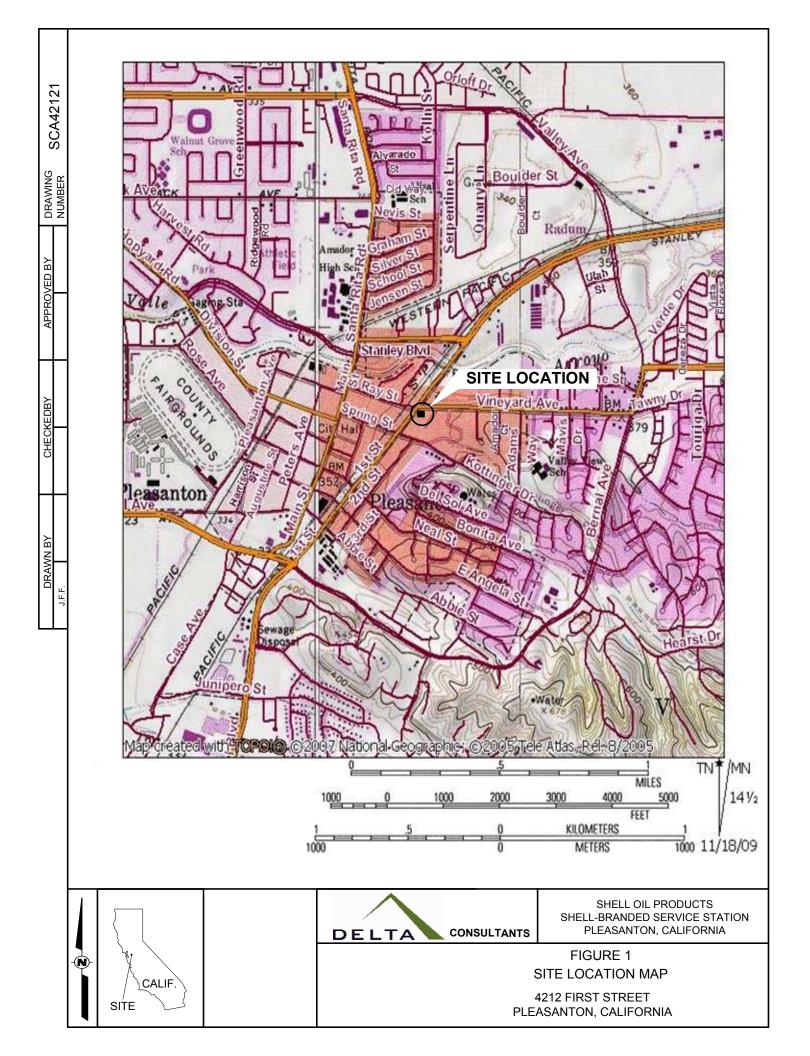
Figure 2 – Groundwater Elevation Contour Map – 11/9/2009

Figure 3 – Hydrocarbon Distribution in Groundwater Map – 11/9/2009

Table:

Table 1 – Well Concentrations


Appendices:


Appendix A – Agency Correspondence

Appendix B – Blaine Tech Services, Inc. Field Data Sheets

Appendix C – Blaine Tech Services, Inc. Field Procedures

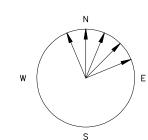
Appendix D – Certified Analytical Report with Chain-of-Custody Documentation

LEGEND

MW−1 � GROUNDWATER MONITORING WELL LOCATION AND DESIGNATION

DESTROYED GROUNDWATER MONITORING WELL LOCATION AND DESIGNATION

ABANDONED TANK BACKFILL WELL LOCATION TB-1 🦻


343.08 GROUNDWATER ELEVATION IN FEET ABOVE MEAN SEA LEVEL (Ft/MSL)

344.00 — — GROUNDWATER CONTOUR IN FEET ABOVE MEAN SEA LEVEL (Ft/MSL)

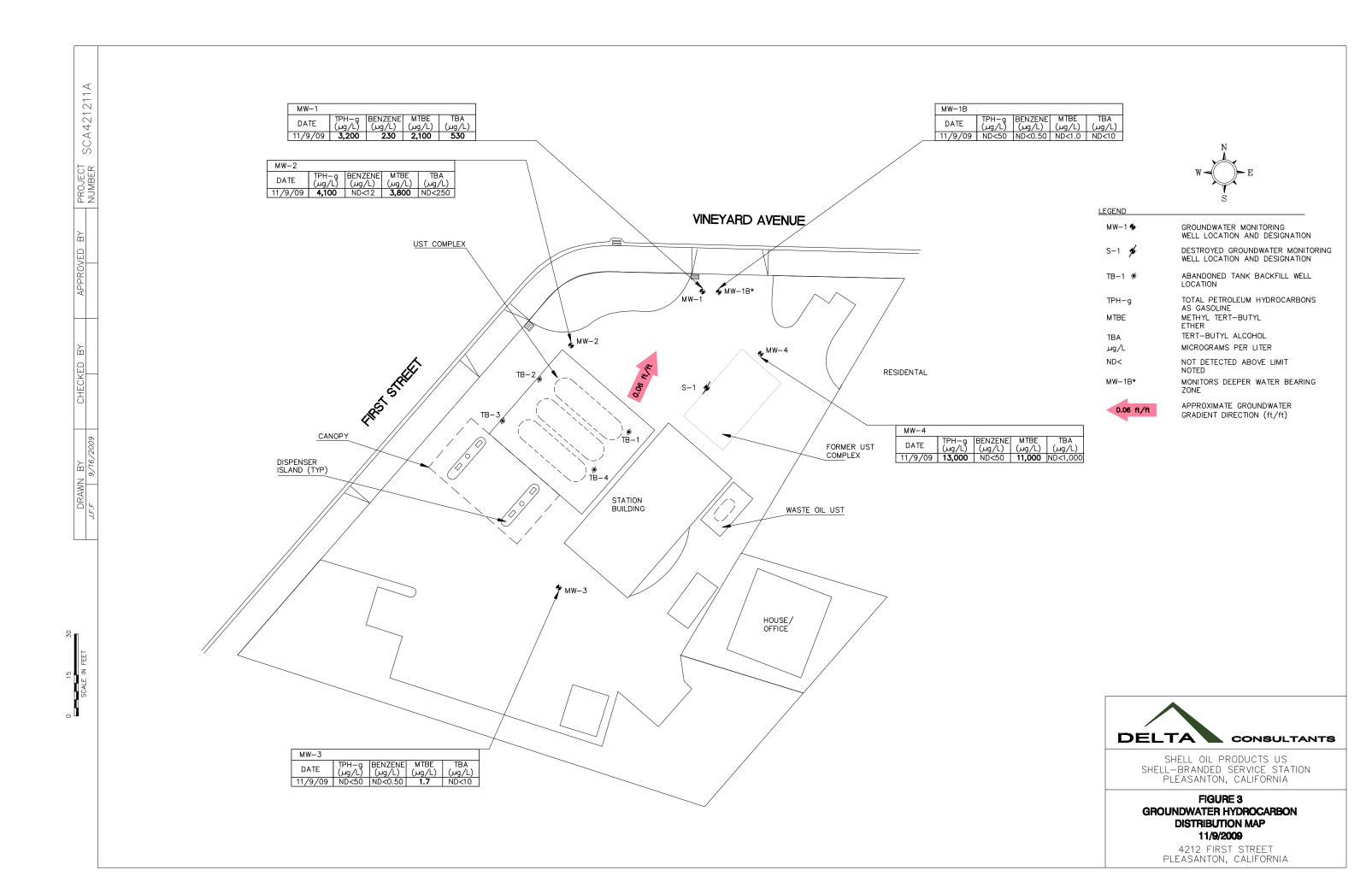
CONTOUR INTERVAL=2.00 FEET

MONITORS DEEPER WATER BEARING ZONE; NOT USED USED IN CONTOURING MW-1B*

APPROXIMATE GROUNDWATER GRADIENT DIRECTION (ft/ft)

HISTORIC GROUNDWATER FLOW DIRECTIONS

DATE	FLOW
	DIRECTION
8/5/2005	ENE
11/22/2005	ENE
2/7/2006	NNE
5/16/2006	NNE
8/21/2006	N
11/14/2006	N
2/1/2007	NNE
8/22/2007	N, NNE
11/26/2007	NNE
2/19/2008	NNW
5/23/2008	N
8/7/2008	N, NNW
12/3/2008	NNE
2/5/2009	NNE
5/7/2009	NNW
8/20/2009	NE
11/9/2009	NE



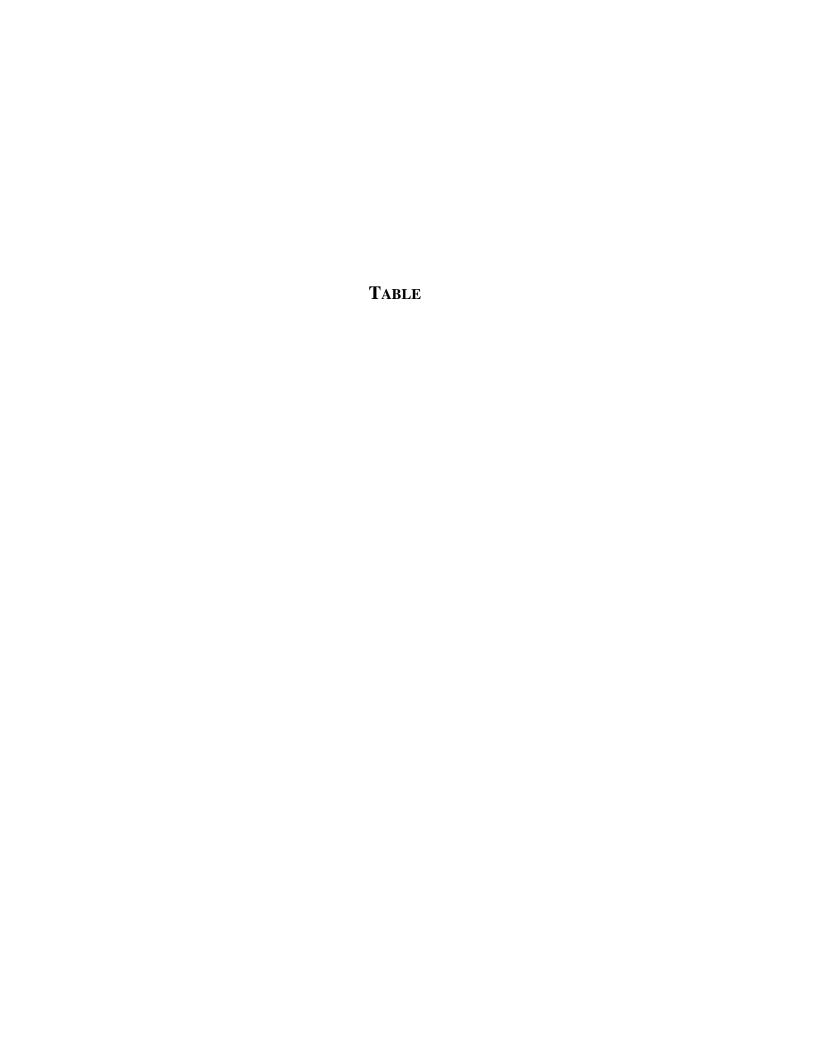

SHELL OIL PRODUCTS US SHELL—BRANDED SERVICE STATION PLEASANTON, CALIFORNIA

FIGURE 2

GROUNDWATER ELEVATION CONTOUR MAP 11/9/2009

4212 FIRST STREET PLEASANTON, CALIFORNIA

							MTBE	MTBE						Depth to	GW
Well ID	Date	TPPH	В	Т	E	X	8020	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
		(ug/L)	(MSL)	(ft.)	(MSL)										
MW-1	6/16/1999	NA	371.20	37.81	333.39										
MW-1	6/30/1999	89.0	5.89	<0.500	<0.500	0.652	<5.00	NA	NA	NA	NA	NA	371.20	33.65	337.55
MW-1	9/24/1999	1,560	473	<10.0	<10.0	22.8	<2.50	NA	NA	NA	NA	NA	371.20	37.04	334.16
MW-1	12/8/1999	1,020	375	<5.00	<5.00	15.2	<50.0	NA	NA	NA	NA	NA	371.20	36.79	334.41
MW-1	2/10/2000	523	106	<5.00	<5.00	31.8	2.9	NA	NA	NA	NA	NA	371.20	34.90	336.30
MW-1	5/17/2000	<50.0	<0.500	<0.500	<0.500	<0.500	37	29.5	NA	NA	NA	NA	371.20	32.55	338.65
MW-1	8/3/2000	808	290	<2.50	<2.50	8.9	<12.5	NA	NA	NA	NA	NA	371.20	39.13	332.07
MW-1	10/31/2000	507	250	0.962	<0.500	23.5	3.76	NA	NA	NA	NA	NA	371.20	37.91	333.29
MW-1	3/1/2001	<50.0	<0.500	<0.500	<0.500	<0.500	74.6	NA	NA	NA	NA	NA	371.20	39.60	331.60
MW-1	5/30/2001	780	280	<2.0	<2.0	11	NA	<2.0	NA	NA	NA	NA	371.20	39.53	331.67
MW-1	8/2/2001	1,900	580	<2.5	<2.5	12	NA	<25	NA	NA	NA	NA	371.20	39.61	331.59
MW-1	12/6/2001	840	190	<0.50	<0.50	13	NA	<5.0	NA	NA	NA	NA	371.20	39.63	331.57
MW-1	2/5/2002	2,700	650	<2.5	<2.5	7.2	NA	<25	NA	NA	NA	NA	371.20	35.53	335.67
MW-1	6/17/2002	2,500	550	<2.0	<2.0	5.9	NA	<20	NA	NA	NA	NA	371.20	39.29	331.91
MW-1	7/25/2002	690	130	<0.50	<0.50	4.4	NA	18	NA	NA	NA	NA	371.20	39.39	331.81
MW-1	11/14/2002	400	31	<0.50	<0.50	2.7	NA	27	NA	NA	NA	NA	371.20	40.00	331.20
MW-1	2/12/2003	840	0.85	<0.50	<0.50	<0.50	NA	40	NA	NA	NA	NA	371.20	32.92	338.28
MW-1	5/14/2003	680	190	<2.5	<2.5	<5.0	NA	95	NA	NA	NA	NA	371.20	32.57	338.63
MW-1	7/29/2003	870	190	<2.5	<2.5	<5.0	NA	150	NA	NA	NA	NA	371.20	33.82	337.38
MW-1	11/19/2003	<200	14	<2.0	<2.0	<4.0	NA	230	NA	NA	NA	NA	371.20	38.28	332.92
MW-1	2/19/2004	58 d	11	<0.50	<0.50	<1.0	NA	85	NA	NA	NA	NA	371.20	36.93	334.27
MW-1	5/3/2004	670	310	<2.5	<2.5	<5.0	NA	420	NA	NA	NA	NA	371.20	32.70	338.50
MW-1	8/24/2004	430 d	34	<2.5	<2.5	<5.0	NA	690	NA	NA	NA	NA	371.20	34.66	336.54
MW-1	11/15/2004	<250	29	<2.5	<2.5	<5.0	NA	470	NA	NA	NA	NA	371.20	38.27	332.93
MW-1	2/2/2005	540 e	87	<2.5	<2.5	<5.0	NA	700	NA	NA	NA	NA	371.20	32.02	339.18
MW-1	5/5/2005	460 e	88	<2.5	<2.5	<5.0	NA	300	NA	NA	NA	NA	371.20	36.82	334.38
MW-1	8/5/2005	910	230	<2.5	<2.5	<5.0	NA	480	NA	NA	NA	NA	371.20	33.35	337.85
MW-1	11/22/2005	1,760	27	<0.500	<0.500	1	NA	1,160	NA	NA	NA	NA	371.20	33.42	337.78

							MTBE	MTBE						Depth to	GW
Well ID	Date	TPPH	В	Т	Е	X	8020	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
MW-1	2/7/2006	4,620	225	<0.500	<0.500	<0.500	NA	1,480	NA	NA	NA	NA	371.20	31.63	339.57
MW-1	5/16/2006	1,100	130	<0.50	2	2	NA	1,600	NA	NA	NA	NA	371.20	31.16	340.04
MW-1	8/21/2006	2,700	86	<0.500	1	1	NA	1,960	NA	NA	NA	NA	371.20	33.07	338.13
MW-1	11/14/2006	1,400 g	30	<25	<25	<25	NA	2,100	<25	<25	<25	<1,000	371.20	33.73	337.47
MW-1	2/1/2007	800	21	<0.50	<0.50	<1.0	NA	2,300	NA	NA	NA	NA	371.20	33.02	338.18
MW-1	6/1/2007	1,400 j,k	68	<20	<20	4.4	NA	2,200	NA	NA	NA	NA	371.20	32.87	338.33
MW-1	8/22/2007	250 j	20	<20	<20	<20	NA	3,100	NA	NA	NA	1,500	371.20	34.64	336.56
MW-1	11/26/2007	1,800 j	33	<20	<20	<20	NA	3,100	<40	<40	<40	930	371.20	35.59	335.61
MW-1	2/19/2008	1,800 j	33	<20	<20	<20	NA	3,700	NA	NA	NA	1,700	371.20	31.05	340.15
MW-1	5/23/2008	3,700	100	<25	<25	<25	NA	3,100	NA	NA	NA	1,300	371.20	31.80	339.40
MW-1	8/7/2008	4,200	33	<25	<25	<25	NA	3,500	NA	NA	NA	<250	371.20	33.03	338.17
MW-1	12/3/2008	3,400	34	<25	<25	<25	NA	3,200	NA	NA	NA	980	371.20	35.19	336.01
MW-1	2/5/2009	2,100	26	<25	<25	<25	NA	1,700	NA	NA	NA	340	371.20	35.07	336.13
MW-1	5/7/2009	4,400	230	<25	<25	<25	NA	3,700	NA	NA	NA	980	371.20	32.45	338.75
MW-1	8/20/2009	3,100	86	<25	<25	<25	NA	2,500	NA	NA	NA	730	371.20	34.48	336.72
MW-1	11/9/2009	3,200	230	<20	<20	33	NA	2,100	<40	<40	<40	530	371.20	35.84	335.36
			1							1	1	1			
MW-1B	9/21/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	371.67	76.94	294.73
MW-1B	9/28/2006	<50	<0.50	<0.50	<0.50	<0.50	NA	21	NA	NA	NA	<20	371.67	77.15	294.52
MW-1B	11/14/2006	320 g	<5.0	<5.0	<5.0	<5.0	NA	310	<5.0	<5.0	<5.0	<200	371.67	69.38	302.29
MW-1B	2/1/2007	77	0.53	<0.50	<0.50	<1.0	NA	150	NA	NA	NA	NA	371.67	60.92	310.75
MW-1B	6/1/2007	<50 j,k	0.25 I	<1.0	<1.0	<1.0	NA	74	NA	NA	NA	NA	371.67	61.07	310.60
MW-1B	8/22/2007	<50 j	0.25 I	<1.0	<1.0	<1.0	NA	35	NA	NA	NA	7.1 l	371.67	77.54	294.13
MW-1B	11/26/2007	<50 j	<0.50	<1.0	<1.0	<1.0	NA	1.7	<2.0	<2.0	<2.0	<10	371.67	68.50	303.17
MW-1B	2/19/2008	65 j	2.6	4.2	<1.0	1.1	NA	58	NA	NA	NA	<10	371.67	57.21	314.46
MW-1B	5/23/2008	<50	<0.50	<1.0	<1.0	<1.0	NA	3.6	NA	NA	NA	<10	371.67	57.53	314.14
MW-1B	8/7/2008	<50	<0.50	<1.0	<1.0	<1.0	NA	1.1	NA	NA	NA	<10	371.67	72.51	299.16
MW-1B	12/3/2008	<50	<0.50	<1.0	<1.0	<1.0	NA	3.4	NA	NA	NA	<10	371.67	80.84	290.83

							MTBE	MTBE						Depth to	GW
Well ID	Date	TPPH	В	Т	Е	Х	8020	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
		(ug/L)	(MSL)	(ft.)	(MSL)										
MW-1B	2/5/2009	<50	<0.50	<1.0	<1.0	<1.0	NA	4.4	NA	NA	NA	<10	371.67	76.11	295.56
MW-1B	5/7/2009	<50	<0.50	<1.0	<1.0	<1.0	NA	2.5	NA	NA	NA	13	371.67	66.97	304.70
MW-1B	8/20/2009	<50	<0.50	<1.0	<1.0	<1.0	NA	1.7	NA	NA	NA	<10	371.67	97.32	274.35
MW-1B	11/9/2009	<50	<0.50	<1.0	<1.0	<1.0	NA	<1.0	<2.0	<2.0	<2.0	<10	371.67	98.90	272.77
MW-2	2/3/2000	NA	372.40	32.65	339.75										
MW-2	2/7/2000	NA	372.40	35.51	336.89										
MW-2	2/10/2000	<50.0	<0.500	<0.500	<0.500	<0.500	2.61	NA	NA	NA	NA	NA	372.40	36.62	335.78
MW-2	5/17/2000	120	4.09	<0.500	<0.500	<0.500	29	NA	NA	NA	NA	NA	372.40	32.14	340.26
MW-2	8/3/2000	<50.0	0.692	<0.500	<0.500	<0.500	40.5	36.6b	NA	NA	NA	NA	372.40	32.42	339.98
MW-2	10/31/2000	<50.0	<0.500	<0.500	<0.500	<0.500	57.4	44.8c	NA	NA	NA	NA	372.40	33.02	339.38
MW-2	3/1/2001	173	1.64	1.65	2.86	3.97	127	167	NA	NA	NA	NA	372.40	32.54	339.86
MW-2	5/30/2001	<50	<0.50	<0.50	<0.50	<0.50	NA	170	NA	NA	NA	NA	372.40	32.42	339.98
MW-2	8/2/2001	<50	<0.50	<0.50	<0.50	<0.50	NA	160	NA	NA	NA	NA	372.40	32.55	339.85
MW-2	12/6/2001	<50	<0.50	<0.50	<0.50	<0.50	NA	170	NA	NA	NA	NA	372.40	33.15	339.25
MW-2	2/5/2002	<50	0.72	<0.50	<0.50	1.7	NA	170	NA	NA	NA	NA	372.40	32.29	340.11
MW-2	6/17/2002	<50	<0.50	<0.50	<0.50	<0.50	NA	260	NA	NA	NA	NA	372.40	32.63	339.77
MW-2	7/25/2002	<50	<0.50	<0.50	<0.50	<0.50	NA	280	NA	NA	NA	NA	372.40	32.80	339.60
MW-2	11/14/2002	120	13	9	3.8	14	NA	430	NA	NA	NA	NA	372.40	33.31	339.09
MW-2	2/12/2003	<100	<1.0	<1.0	<1.0	<1.0	NA	430	NA	NA	NA	NA	372.40	32.15	340.25
MW-2	5/14/2003	<250	<2.5	<2.5	<2.5	<5.0	NA	470	NA	NA	NA	NA	372.40	32.01	340.39
MW-2	7/29/2003	<250	<2.5	<2.5	<2.5	<5.0	NA	670	NA	NA	NA	NA	372.40	32.51	339.89
MW-2	11/19/2003	<50	<0.50	<0.50	<0.50	<1.0	NA	54	NA	NA	NA	NA	372.40	33.83	338.57
MW-2	2/19/2004	65	<0.50	3.4	1.4	6.5	NA	8.2	NA	NA	NA	NA	372.40	32.68	339.72
MW-2	5/3/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	5.2	NA	NA	NA	NA	372.40	32.07	340.33
MW-2	8/24/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	2.7	NA	NA	NA	NA	372.40	32.44	339.96
MW-2	11/15/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	1.3	NA	NA	NA	NA	372.40	32.95	339.45
MW-2	2/2/2005	<50	< 0.50	<0.50	<0.50	<1.0	NA	24	NA	NA	NA	NA	372.40	31.94	340.46

							MTBE	MTBE						Depth to	GW
Well ID	Date	TPPH	В	Т	E	Χ	8020	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
MW-2	5/5/2005	72 f	<0.50	<0.50	<0.50	<1.0	NA	4.9	NA	NA	NA	NA	372.40	31.91	340.49
MW-2	8/5/2005	<50	<0.50	<0.50	<0.50	<1.0	NA	16	NA	NA	NA	NA	372.40	32.15	340.25
MW-2	11/22/2005	840	1	<0.500	<0.500	1	NA	556	NA	NA	NA	NA	372.40	32.31	340.09
MW-2	2/7/2006	3,550	<0.500	<0.500	<0.500	<0.500	NA	2,500	NA	NA	NA	NA	372.40	31.70	340.70
MW-2	5/16/2006	1,400	<5.0	<5.0	<5.0	<10	NA	1,700	NA	NA	NA	NA	372.40	31.38	341.02
MW-2	8/21/2006	1,910	<0.500	<0.500	<0.500	<0.500	NA	2,590	NA	NA	NA	NA	372.40	33.29	339.11
MW-2	11/14/2006	2,300 g	<25	<25	<25	<25	NA	2,500	<25	<25	<25	<1,000	372.40	32.67	339.73
MW-2	2/1/2007	670	<0.50	<0.50	<0.50	<1.0	NA	2,000	NA	NA	NA	NA	372.40	32.13	340.27
MW-2	6/1/2007	500 j,k	<10	<20	<20	<20	NA	2,000	NA	NA	NA	NA	372.40	32.14	340.26
MW-2	8/22/2007	100 j,k	<10	<20	<20	<20	NA	2,400	NA	NA	NA	120 I	372.40	32.93	339.47
MW-2	11/26/2007	1,600 j,k	<10	<20	<20	<20	NA	2,900	<40	<40	<40	<200	372.40	33.44	338.96
MW-2	2/19/2008	1,300 j,k	<10	<20	<20	<20	NA	3,300	NA	NA	NA	<200	372.40	31.18	341.22
MW-2	5/23/2008	1,900	<12	<25	<25	<25	NA	1,700	NA	NA	NA	<250	372.40	31.44	340.96
MW-2	8/7/2008	1,700	<10	<20	<20	<20	NA	1,300	NA	NA	NA	<200	372.40	31.94	340.46
MW-2	12/3/2008	3,000	<10	<20	<20	<20	NA	2,900	NA	NA	NA	<200	372.40	32.53	339.87
MW-2	2/5/2009	1,200	<10	<20	<20	<20	NA	1,000	NA	NA	NA	<200	372.40	32.29	340.11
MW-2	5/7/2009	2,400	<10	<20	<20	<20	NA	2,400	NA	NA	NA	<200	372.40	31.98	340.42
MW-2	8/20/2009	2,800	<10	<20	<20	<20	NA	2,400	NA	NA	NA	<200	372.40	32.51	339.89
MW-2	11/9/2009	4,100	<12	<25	<25	<25	NA	3,800	<50	<50	<50	<250	372.40	32.43	339.97
MW-3	2/3/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	375.05	32.06	342.99
MW-3	2/7/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	375.05	32.57	342.48
MW-3	2/10/2000	180	5.12	<0.500	<0.500	0.714	26.8	21.5a	NA	NA	NA	NA	375.05	32.77	342.28
MW-3	5/17/2000	1,360	414	<5.00	<5.00	17.6	<25.0	NA	NA	NA	NA	NA	375.05	31.00	344.05
MW-3	8/3/2000	<50.0	0.536	<0.500	<0.500	<0.500	22	NA	NA	NA	NA	NA	375.05	31.03	344.02
MW-3	10/31/2000	<50.0	<0.500	<0.500	<0.500	<0.500	31.1	NA	NA	NA	NA	NA	375.05	31.28	343.77
MW-3	3/1/2001	384	172	0.815	<0.500	8	5.16	NA	NA	NA	NA	NA	375.05	31.21	343.84
MW-3	5/30/2001	<50	<0.50	<0.50	<0.50	<0.50	NA	110	NA	NA	NA	NA	375.05	31.02	344.03

							MTBE	MTBE						Depth to	GW
Well ID	Date	TPPH	В	Т	E	X	8020	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
		(ug/L)	(MSL)	(ft.)	(MSL)										
															•
MW-3	8/2/2001	<50	<0.50	<0.50	<0.50	<0.50	NA	93	NA	NA	NA	NA	375.05	30.94	344.11
MW-3	12/6/2001	110	<0.50	<0.50	<0.50	2.3	NA	180	NA	NA	NA	NA	375.05	31.28	343.77
MW-3	2/5/2002	<50	0.89	0.6	<0.50	2.1	NA	130	NA	NA	NA	NA	375.05	31.12	343.93
MW-3	6/17/2002	<50	<0.50	<0.50	<0.50	<0.50	NA	72	NA	NA	NA	NA	375.05	31.21	343.84
MW-3	7/25/2002	<50	<0.50	<0.50	<0.50	<0.50	NA	81	NA	NA	NA	NA	375.05	30.96	344.09
MW-3	11/14/2002	<50	<0.50	<0.50	<0.50	<0.50	NA	60	NA	NA	NA	NA	375.05	31.44	343.61
MW-3	2/12/2003	<50	<0.50	<0.50	<0.50	<0.50	NA	43	NA	NA	NA	NA	375.05	31.28	343.77
MW-3	5/14/2003	<50	<0.50	<0.50	<0.50	<1.0	NA	24	NA	NA	NA	NA	375.05	31.20	343.85
MW-3	7/29/2003	<50	<0.50	<0.50	<0.50	<1.0	NA	21	NA	NA	NA	NA	375.05	31.29	343.76
MW-3	11/19/2003	<50	<0.50	<0.50	<0.50	<1.0	NA	8.2	NA	NA	NA	NA	375.05	31.86	343.19
MW-3	2/19/2004	81	0.67	4.4	1.8	8.6	NA	13	NA	NA	NA	NA	375.05	31.66	343.39
MW-3	5/3/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	13	NA	NA	NA	NA	375.05	31.72	343.33
MW-3	8/24/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	10	NA	NA	NA	NA	375.05	32.09	342.96
MW-3	11/15/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	6.6	NA	NA	NA	NA	375.05	31.50	343.55
MW-3	2/2/2005	<50	<0.50	<0.50	<0.50	<1.0	NA	3.1	NA	NA	NA	NA	375.05	31.28	343.77
MW-3	5/5/2005	<50	<0.50	<0.50	<0.50	<1.0	NA	2.3	NA	NA	NA	NA	375.05	31.42	343.63
MW-3	8/5/2005	<50	<0.50	<0.50	<0.50	<1.0	NA	2.4	NA	NA	NA	NA	375.05	31.35	343.70
MW-3	11/22/2005	<50	<0.500	<0.500	<0.500	<0.500	NA	3.84	NA	NA	NA	NA	375.05	31.98	343.07
MW-3	2/7/2006	<50.0	<0.500	<0.500	<0.500	<0.500	NA	<0.500	NA	NA	NA	NA	375.05	31.24	343.81
MW-3	5/16/2006	<50	<0.50	<0.50	<0.50	<1.0	NA	4.5	NA	NA	NA	NA	375.05	31.37	343.68
MW-3	8/21/2006	<50.0	<0.500	<0.500	<0.500	<0.500	NA	4.04	NA	NA	NA	NA	375.05	31.95	343.10
MW-3	11/14/2006	<50	<0.50	<0.50	<0.50	<0.50	NA	3.8	<0.50	<0.50	<0.50	<20	375.05	32.24	342.81
MW-3	2/1/2007	<50	<0.50	<0.50	<0.50	<1.0	NA	2.8	NA	NA	NA	NA	375.05	32.17	342.88
MW-3	6/1/2007	<50 j	<0.50	<1.0	<1.0	<1.0	NA	3.1	NA	NA	NA	NA	375.05	31.86	343.19
MW-3	8/22/2007	<50 j	<0.50	<1.0	<1.0	<1.0	NA	4.6	NA	NA	NA	<10	375.05	32.18	342.87
MW-3	11/26/2007	<50 j	<0.50	<1.0	<1.0	<1.0	NA	3.5	<2.0	<2.0	<2.0	<10	375.05	32.69	342.36
MW-3	2/19/2008	<50 j	<0.50	1.2	<1.0	<1.0	NA	2.6	NA	NA	NA	<10	375.05	30.94	344.11
MW-3	5/23/2008	<50	<0.50	<1.0	<1.0	<1.0	NA	3.6	NA	NA	NA	<10	375.05	31.45	343.60

								-							
							MTBE	MTBE						Depth to	GW
Well ID	Date	TPPH	В	T	E	X	8020	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
MW-3	8/7/2008	<50	<0.50	<1.0	<1.0	<1.0	NA	3.0	NA	NA	NA	<10	375.05	31.40	343.65
MW-3	12/3/2008	<50	<0.50	<1.0	<1.0	<1.0	NA	2.1	NA	NA	NA	<10	375.05	32.12	342.93
MW-3	2/5/2009	<50	<0.50	<1.0	<1.0	<1.0	NA	1.1	NA	NA	NA	<10	375.05	32.74	342.31
MW-3	5/7/2009	<50	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA	<10	375.05	31.69	343.36
MW-3	8/20/2009	<50	<0.50	<1.0	<1.0	<1.0	NA	2.0	NA	NA	NA	<10	375.05	32.42	342.63
MW-3	11/9/2009	<50	<0.50	<1.0	<1.0	<1.0	NA	1.7	<2.0	<2.0	<2.0	<10	375.05	32.54	342.51
MW-4	9/21/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	372.78	31.58	341.20
MW-4	9/28/2006	11,000	<250	<250	<250	<250	NA	13,000	NA	NA	NA	<10,000	372.78	31.57	341.21
MW-4	11/14/2006	30,000	<250	<250	<250	<250 h,i	NA	14,000	<250	<250	<250	<10,000	372.78	32.11	340.67
MW-4	2/1/2007	6,300	50	<5.0	19	120	NA	14,000	NA	NA	NA	NA	372.78	33.23	339.55
MW-4	6/1/2007	8,200 j	52	<25	26	150	NA	11,000	NA	NA	NA	NA	372.78	31.57	341.21
MW-4	8/22/2007	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	372.78	33.40	339.38
MW-4	11/26/2007	12,000 j	71	<100	<100	<100	NA	20,000	<200	<200	<200	<1,000	372.78	34.74	338.04
MW-4	2/19/2008	13,000 j	<100	<200	<200	<200	NA	18,000	NA	NA	NA	2,900	372.78	29.70	343.08
MW-4	5/23/2008	21,000	<100	<200	<200	<200	NA	16,000	NA	NA	NA	<2,000	372.78	31.67	341.11
MW-4	8/7/2008	27,000	<100	<200	<200	<200	NA	21,000	NA	NA	NA	<2,000	372.78	31.90	340.88
MW-4	12/3/2008	20,000	19	<25	<25	29	NA	21,000	NA	NA	NA	2,500	372.78	34.32	338.46
MW-4	2/5/2009	15,000	200	<200	<200	<200	NA	13,000	NA	NA	NA	<2,000	372.78	34.58	338.20
MW-4	5/7/2009	18,000	<100	<200	<200	<200	NA	17,000	NA	NA	NA	<2,000	372.78	31.34	341.44
MW-4	8/20/2009	15,000	<50	<100	<100	<100	NA	13,000	NA	NA	NA	1,900	372.78	33.56	339.22
MW-4	11/9/2009	13,000	<50	<100	<100	<100	NA	11,000	<200	<200	<200	<1000	372.78	33.57	339.21
TB-1	2/12/2003	Well inacce	essible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TB-1	2/28/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	12.54	NA
TB-1	5/14/2003	<50	<0.50	<0.50	<0.50	<1.0	NA	<5.0	NA	NA	NA	NA	NA	12.31	NA
TB-2	2/12/2003	Well inacce	essible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
											, .				

Pleasanton, CA

							MTBE	MTBE						Depth to	GW
Well ID	Date	TPPH	B	T (ug/L)	E (ug/L)	X (ug/L)	8020	8260	DIPE	ETBE	TAME	TBA	TOC (MSL)	Water	Elevation (MSL)
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(IVISL)	(ft.)	(IVISL)
TB-2	2/28/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	12.56	NA
TB-2	5/14/2003	Insufficient	water	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	12.54	NA
TB-3	2/12/2003	Well dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TB-3	2/28/2003	Well dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TB-3	5/14/2003	Well dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TB-4	2/12/2003	Well dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TB-4	2/28/2003	Well dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TB-4	5/14/2003	Well dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Abbreviations:

TPPH = Total petroleum hydrocarbons as gasoline by EPA Method 8260B; prior to May 30, 2001, analyzed by EPA Method 8015.

BTEX = Benzene, toluene, ethylbenzene, xylenes by EPA Method 8260B; prior to May 30, 2001, analyzed by EPA Method 8020.

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether, analyzed by EPA Method 8260B

ETBE = Ethyl tertiary butyl ether, analyzed by EPA Method 8260B

TAME = Tertiary amyl methyl ether, analyzed by EPA Method 8260B

TBA = Tertiary butyl alcohol, analyzed by EPA Method 8260B

TOC = Top of Casing Elevation

GW = Groundwater

ug/L = Parts per billion

MSL = Mean sea level

ft. = Feet

<n = Below detection limit

NA = Not applicable

TABLE 1

WELL CONCENTRATIONS

Shell-branded Service Station

4212 First Street

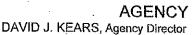
Pleasanton, CA

							MTBE	MTBE						Depth to	GW
Well ID	Date	TPPH	В	Т	E	Χ	8020	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
		(ug/L)	(MSL)	(ft.)	(MSL)										

Notes:

- a = Sample was analyzed outside of the EPA recommended holding time.
- b = Concentration is an estimate value above the linear quantitation range.
- c = The result reported was generated out of time. The sample was originally run within hold time, but needed to be re-analyzed.
- d = Sample contains discrete peak in addition to gasoline.
- e = Quantity of unknown hydrocarbon(s) in sample based on gasoline.
- f = The concentration reported reflect(s) individual or discrete unidentified peaks not matching a typical fuel pattern.
- g = The result for this hydrocarbon is elevated due to the presence of single analyte peak(s) in the quantitation range.
- h = Sample was originally analyzed with a positive result, however the reanalysis did not confirm the presence of the analyte.
- i = Confirmatory analysis was past holding time.
- j = Analyzed by EPA Method 8015B (M).
- k = The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standard.
- I = Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

Well MW-1 surveyed on May 4, 1999 by Virgil Chavez Land Surveying of Vallejo, CA.

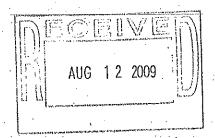

Site surveyed on March 19, 2000 by Virgil Chavez Land Surveying of Vallejo, CA.

Site surveyed on January 15, 2002 by Virgil Chavez Land Surveying of Vallejo, CA.

3Q06 survey data for wells MW-1B and MW-4 provided by Delta Environmental Consultants, Inc. of San Jose, CA.

APPENDIX A AGENCY CORRESPONDENCE

ALAMEDA COUNTY HEALTH CARE SERVICES


ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

(510) 567-6700 FAX (510) 337-93

August 7, 2009

Denis Brown Shell Oil Products US 20945 S. Wilmington Ave. Carson, CA 90810-1039

Douglas and Mary Safreno 1627 Vineyard Avenue Pleasanton, CA 94566-6389

Subject: Fuel Leak Case No. RO0000360 and Geotracker Global ID T0600101259, Shell#13-5782, 4226 First Street, Pleasanton, CA 94566 – Work Plan Approval

Dear Mr. Brown and Mr. and Ms. Safreno:

Alameda County Environmental Health (ACEH) staff has reviewed the fuel leak case file for the above-referenced site including the reports entitled, "Interim Remediation Work Plan, Shell-branded Service Station, 4212 First Street, Pleasanton, California," dated June 1, 2009 (Work Plan). The Work Plan was prepared on Shell's behalf by Delta Environmental Consultants, Inc.

The Work Plan proposes installation of a soil vapor extraction and air sparging system including extraction wells, sparging wells, and observation wells for interim remediation to address elevated concentrations of fuel hydrocarbons in soil and groundwater at the site. The proposed scope of work is acceptable and may be implemented as proposed.

TECHNICAL REPORT REQUEST

Please submit technical reports to Alameda County Environmental Health (Attention: Jerry Wickham), according to the following schedule:

- December 14, 2009 System Installation and Start-up Report
- 45 days following the end of each quarter following system installation and start-up —
 Quarterly Remediation Progress and Monitoring Report

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

Denis Brown Douglas and Mary Safreno RO0000360 August 7, 2009 Page 2

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) Geotracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the Geotracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in Geotracker (in Please visit the SWRCB website for more information on these requirements PDF format). (http://www.swrcb.ca.gov/ust/cleanup/electronic reporting).

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

Denis Brown
Douglas and Mary Safreno
RO0000360
August 7, 2009
Page 3

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

If you have any questions, please call me at (510) 567-6791 or send me an electronic mail message at jerry.wickham@acgov.org.

Sincerely,

Jerry Wickham, California PG 3766, CEG 1177, and CHG 297

Senior Hazardous Materials Specialist

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Cheryl Dizon, QIC 80201, Zone 7 Water Agency, 100 North Canyons Parkway Livermore, CA 94551

Danielle Stefani, Livermore-Pleasanton Fire Department, 3560 Nevada Street Pleasanton, CA 94566

Suzanne McClurkin-Nelson, Delta Environmental Consultants, Inc., 312 Piercy Road, San Jose, CA 95138

Donna Drogos, ACEH Jerry Wickham, ACEH File

Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC)

ISSUE DATE: July 5, 2005

REVISION DATE: March 27, 2009

PREVIOUS REVISIONS: December 16, 2005,

October 31, 2005

SECTION: Miscellaneous Administrative Topics & Procedures

SUBJECT: Electronic Report Upload (ftp) Instructions

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection. (Please do not submit reports as attachments to electronic mail.)

It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.

Signature pages and perjury statements must be included and have either original or electronic signature.

Do not password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password. Documents with password protection will not be accepted.

Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer

monitor.

Reports must be named and saved using the following naming convention:

RO# Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Additional Recommendations

A separate copy of the tables in the document should be submitted by e-mail to your Caseworker in Excel format.
 These are for use by assigned Caseworker only.

Submission Instructions

1) Obtain User Name and Password:

- a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to dehloptoxic@acgov.org

Or

ii) Send a fax on company letterhead to (510) 337-9335, to the attention of My Le Huynh.

- b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site

a) Using Internet Explorer (IE4+), go to ftp://alcoftp1.acgov.org

(i) Note: Netscape and Firefox browsers will not open the FTP site.

b) Click on File, then on Login As.

c) Enter your User Name and Password. (Note: Both are Case Sensitive.)

d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.

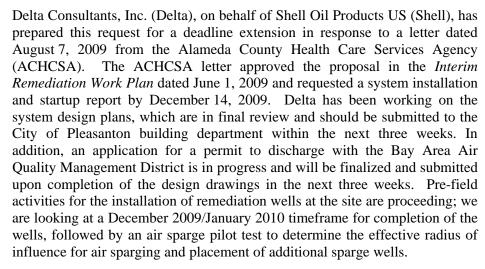
- e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs

a) Send email to dehloptoxic@acgov.org notify us that you have placed a report on our ftp site.

b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)

c) The subject line of the e-mail must start with the RO# followed by Report Upload. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO# use the street address instead.

d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.


November 25, 2009 Project SCA421211A SAP No. 135782

Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway Alameda, California 94502

Re: Request for Report Deadline Extension

Shell-branded Service Station 4226 First Street (*aka* 4212) Pleasanton, California

Dear Mr. Wickham,

Delta proposes submittal to ACHCSA by December 14, 2009 of a tentative schedule for completion of all pre-field requirements prior to system installation, followed by monthly status reports. Once all required permits are issued and a field date is in place for installation of the remediation system, Delta will propose a new deadline for a *System Installation and Startup Report*. Please let us know if this is acceptable; you can contact Suzanne McClurkin-Nelson (Delta) at (408) 826-1875 or Denis Brown (Shell) at (707) 865-0251 with any questions or comments.

Sincerely,

Delta Consultants, Inc.

Suzanne McClurkin-Nelson Senior Project Manager

France Pullal Int

cc: Mr. Denis Brown, Shell Oil Products US

Suzanne McClurkin-Nelson

From: Wickham, Jerry, Env. Health [jerry.wickham@acgov.org]

Sent: Friday, December 04, 2009 6:03 PM

To: Suzanne McClurkin-Nelson

Cc: Regina Bussard; denis.l.brown@shell.com; Scott Pearson

Subject: RE: 4226 First St., Pleasanton (aka 4212) (Case No. RO0000360)

Suzanne,

The proposal to extend the schedule for submittal of a System Installation and Startup Report beyond December 14, 2009 and to provide a detailed schedule for proposed system installation no later than December 14, 2009 is acceptable. ACEH may provide additional comments pending review of the detailed schedule.

Regards,

Jerry Wickham
Alameda County Environmental Health
1131 Harbor Bay Parkway
Alameda, CA 94502
510-567-6791
jerry.wickham@acgov.org

From: Suzanne McClurkin-Nelson [mailto:SMcClurkin-Nelson@deltaenv.com]

Sent: Wednesday, November 25, 2009 2:12 PM

To: Wickham, Jerry, Env. Health

Cc: Suzanne McClurkin-Nelson; Regina Bussard; denis.l.brown@shell.com; Scott Pearson

Subject: 4226 First St., Pleasanton (aka 4212) (Case No. RO0000360)

Importance: High

Jerry; As we discussed Monday, I have attached a letter proposing a change in the deliverable requested in your letter dated August 7, 2009 as noted below:

- Provide detailed schedule of pre-field and field work for proposed system installation no later than December 14, 2009.
- Provide monthly status reports each month thereafter, beginning 1/15/10, until the system is installed, at which time a proposed date for submittal of a System Installation and Startup Report will be finalized.

Please let me know if this is an acceptable schedule - thanks!

Suzanne McClurkin-Nelson | Senior Project Manager | Global Oil & Gas Business Group Delta Consultants, an Oranjewoud N.V. Company

Direct +1 408 826 1875 | Mobile +1 408 796 8889 | Alternate +1 408 582 4422 smcclurkin-nelson@deltaenv.com | www.deltaenv.com

THE TRUSTED PARTNER FOR MAXIMIZED ASSET VALUE

Member of Inogen® | www.inogenet.com

Confidentiality Notice: If you are not the intended recipient of this email, please delete it. Thank you.

APPENDIX B

BLAINE TECH SERVICES, INC. FIELD DATA SHEETS

SHELL WELLHEAD INSPECTION FORM

(FOR SAMPLE TECHNICIAN)

Site Address	42	12	Fires.	4	SI.		Pleus	unten	Date <u>\ </u>
Job Number	_09	1109-	<u> </u>			_ Tec	hnician	70	Date <u>11- 9 - 09</u> Page of
Well ID	Well Inspected - No Corrective Action Required	Well Box Meets Compliance Requirements *See Below	Water Bailed From Wellbox	Cap Replaced	Lock Replaced	Well Not Inspected (explain in notes)	New Deficiency Identified	Previously Identified Deficiency Persists	Notes
Mw-(×	×							
MW-113	X	太							
Mer-Z	X	>							
MW-3	X	〉							
Mw-4	X	X						,	
		,							
*Well box must meet "MONITORING WELL Notes:									SIGN (12"or less) 2) WELL IS MARKED WITH THE WORDS ECT
OLUME TEOLUSED	***********								

WELL GAUGING DATA

Projec	et# <u>091</u> 1	109-50) (_ Date _	11-9.09		Client _	Shell	
								·	
Site _	4217	Furst	67	Plea	rsanton	CH			

Γime	Well Size (in.)	Sheen / Odor	Depth to Immiscible	Thickness of	Volume of Immiscibles			Survey	
	Size	i .		l .	muniscidies	3			
		i .	THE HISCIDIC	Immiscible	Removed		Danth to 11	Point:	
	(****)		Liquid (ft.)		(ml)	Depth to water (ft.)	bottom (ft.)	TOB or	NI-4
205			Erquia (II.)	Diquid (IL.)	(1111)			(100)	Notes
	2					35.84	56.98	Ţ.	
38	4					98.90	107.94	Section of the sectio	
817	4					32.43	45.90		
320	4					3254	34.97	$\langle \rangle$	
513	4					33.57	46,70	V	
·									
								·	
									1,000
						·			
	05 08 05 08 05 05 05 05 05 05 05 05 05 05 05 05 05	08 4 17 4 20 4 13 4	98 4 117 4 20 4 113 4						

				DIVITORING	DATASHEET				
BTS#: C	991109 -	-J01		Site: 4212	First st	Pleasan ton			
Sampler:	50			Date: 11-9		(ICESULVI IVI			
Well I.D.:	MW-1	ı		Well Diamete	10	6 8			
Total Well	l Depth (TI	D): 5(6.98	Depth to Wat	ter (DTW): 32	5.34			
Depth to F	Free Produc	et:		Thickness of	Thickness of Free Product (feet):				
Referenced	d to:	PVC	Grade	D.O. Meter (i	· · · · · · · · · · · · · · · · · · ·	YSI HACH			
DTW with	80% Rech	narge [(H	leight of Water		A) = =====	40.37			
Purge Method:	Bailer Disposable E	Bailer Displacemer		Waterra Peristaltic ction Pump	Sampling Method Other	Disposable Bailer Extraction Port Dedicated Tubing			
				Well Diame		ll Diameter Multiplier			
3.3	(Gals.) X	3	= 9.9	Gals. 1"	0.04 4" 0.16 6"	0.65 1.47			
1 Case Volume		ified Volume			0.37 Oth				
Time	Temp (°F)	рН	Cond. (mS or (uS)	Turbidity (NTUs)	Gals. Removed	l Observations			
0851	65,3	6.65	1662	247	3.3	Clarke			
0555	65.4	6.68	1837	561	6.6	1			
0659	65.3	6.71	1630	626	9.9				
T. 1 11 1	<u></u>		77	DW.	43.81				
Did well der	water'!	Yes (N	Ÿ	Gallons actual	ly evacuated:	9.9			
Sampling D	ate: 11-9.	-09 S	Sampling Time	: 1100	Depth to Wate:				
Sample I.D.	: MW-			Laboratory: (CalScience Colu	umbia Other			
Analyzed fo	or: TPH-G	BTEX M	MTBE TPH-D (Oxygenates (5)	Other: See	- CO-C			
EB I.D. (if a	pplicable)		@ Time I	Duplicate I.D.	(if applicable):				
Analyzed for	r: трн-G	BTEX M		Oxygenates (5)	Other:				
D.O. (if req'o	d): Pre	e-purge:		mg,	ost-purge:	mg/L			
O.R.P. (if red	q'd): Pre	e-purge:		mV P	ost-purge:	mV			

		SHI	. WELL MO	ONITORING	DA' SHEE'	1			
BTS #: 6	91109	-101	1	0:					
Sampler:	50			Data	First St	Pleasan ton			
Well I.D.:		7			W. II D:				
Total Well		D)	07 61	Well Diameter: 2 3 4 6 8 Depth to Water (DTW): 9890					
Depth to F			07.94						
Referenced		PVC	Grade		Free Product (
				D.O. Meter (i		YSI HACH			
Purge Method:	Bailer	iaige [(.	Height of Water			00.71			
ange medica.	Disposable E Positive Air	Displacen	nent Extrac	Waterra Peristaltic ction Pump	Sampling Metho	Disposable Bailer Extraction Port Dedicated Tubing			
					Oth	e)':			
5.8 (Case Volume	Gals.) X Speci	3 fied Volu	= 17.4 nes Calculated Vo	_ Gals. Well Diamet 1" 2" 3"	0.04 4" 0.16 6"	U.UJ			
Time	Temp (°F)	рН	Cond. (mS or (uS)	Turbidity (NTUs)	Gals. Removed	d Observations			
0830	66.3	7,55	10 45	191	5.8				
1832	66.4	7.8Z	1061	227	11.6				
0834	64.3	12.5	1199	781	17.4				
Did well dev	vater?	Yes (N)	Gallons actually	y evacuated:	17.4			
Sampling Da	te: 11-9-	-09	Sampling Time	: 0840	Depth to Wate				
Sample I.D.:	MW-	13			CalScience Coli	umbia Other			
Analyzed for	: TPH-G	ВТЕХ	MTBE TPH-D (Other: See				
EB I.D. (if ap	plicable):		@	Duplicate I.D. (COC			
Analyzed for	: ТРН-G	ВТЕХ			Other:				
D.O. (if req'd): Pre	-purge:		nig,	st-purge:	mg/L			

Post-purge:

mV

O.R.P. (if req'd):

Pre-purge:

		SHI	. WELL M	ONITORING	DA. ASHEET			
BTS#: C	991109	-J0/		Site: 4212				
Sampler:	SO			Date: 11-9-09				
Well I.D.:				Well Diamete				
Total Wel			11000					
Depth to F			45.90	Depth to Wat		2.43		
Referenced		PVC.) Grade		Free Product (fe	eet):		
DTW with	80% Reck		-,140	D.O. Meter (i	7) + DTW]: 34	YSI HACH		
Purge Method:	Bailer	iaige [(I	reigni of water			particular and the second		
	Disposable I Positive Air Electric Subi	Displacem	ent Extra Other	Waterra Peristaltic ction Pump	Sampling Method Other	Disposable Bailer Extraction Port Dedicated Tubing		
6.7 I Case Volume	Gals.) XSpeci	3 ified Volun	= nes	Well Diame 1" 2" 1ume 3"		Diameter <u>Multiplier</u> 0.65 1.47		
Time	Temp (°F)	рН	Cond. (mS or (uS)	Turbidity (NTUs)	Gals. Removed	Observations		
0936	65.2	6.78	1018	2	8.7	Coser varions		
0940	67.6	6.68	1001		17,4			
-594	Deva	Led	2 K a	allanc	, ,			
1140	67.1	6.70	988,	11	q			
				P B				
Did well dev	water? (Yes)	No	Gallons actuall	y evacuated:	18		
Sampling Da	ate: 11-9-	-09	Sampling Time		Depth to Water	. 42 CI		
Sample I.D.:	MW-	e	-		CalScience Colur	· (CVII)		
Analyzed for	r: TPH-G	BTEX	МТВЕ ТРН-D (Oxygenates (5)	Other: See			
EB I.D. (if a _l	pplicable):		@ Time]	Duplicate I.D. (COC		
Analyzed for	∵ TPH-G	BTEX I			Other:			
D.O. (if req'c	l): Pre	-purge:		mg/L Po	ost-purge:	mg/		

O.R.P. (if req'd):

Pre-purge:

Post-purge:

Post-purge:

		SHI	. WELL M	ONITORING	DA SHEET				
BTS#:	091109	-Jo/		Site: 4717		· · · · · · · · · · · · · · · · · · ·			
Sampler				Date: 11-9-09					
Well I.D	: My-	2			Wall Discourse of the				
	ell Depth (T		31.92		David A TT A CONTROL				
Depth to	Free Produ				Free Product (fee	2.54			
Referenc		PVC	Grade	D.O. Meter (i	•	YSI HACH			
DTW wit	th 80% Rec	harge [(F	Height of Wate	r Column x 0.2		3.07			
Purge Metho	d: Bailer Disposable	Bailer Displaceme		Waterra Peristaltic action Pump	Sampling Method: Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing			
1.5 I Case Volum		3 ified Volum	= 4,5 es Calculated Vo	Gals. Olume Well Diame 1" 2" 3"	ter Multiplier Well Di 0.04 4" 0.16 6" 0.37 Other	iameter <u>Multiplier</u> 0.65 1.47 radius ² * 0.163			
Time	Temp (°F)	рН	Cond. (mS or (1S)	Turbidity (NTUs)	Gals. Removed	Observations			
0919	641	6-65	871	172	1,5	Observations			
0921	64.3	0.68	862	180	3.0				
GUZZ	64.5	6.67	897	202	4.5				
Did well do	ewater?	Yes ((ov	Gallons actuall	y evacuated: 2	5			
Sampling I	Date: 11-9	-09	Sampling Time		Depth to Water:	1			
Sample I.D				· · · · · · · · · · · · · · · · · · ·	CalScience Columb	33.61 (Zhr) bia Other			
Analyzed f	or: TPH-G	BTEX N	ИТВЕ ТРН-D		Other: See				
EB I.D. (if	applicable)	•	<u>a</u>	Duplicate I.D. (COC			
Analyzed for	ог: трн-G	BTEX N			Other:				
D.O. (if req	'd): Pre	e-purge:		nig/L Po	Ost-nurge:	:mg/			

 $\,mV\,$

O.R.P. (if req'd):

Pre-purge:

Post-purge:

Post-purge:

BTS#: 091109 - JO1	Site: 40.					
Sampler: 50	Date: 11-9-09					
Well I.D.: MW- 4	Well Diameter: 2 3 (4) 6 8					
Total Well Depth (TD): 46-70						
Depth to Free Product:						
Referenced to: (PVC) Grade	Thickness of Free Product (feet):					
DTW with 80% Recharge [(Height of Water	D.O. Meter (if req'd): Calve (0.00) + PETER					
Purge Method: Bailer	0.10					
Disposable Bailer	Waterra Sampling Method: Bailer Peristaltic Disposable Bailer tion Pump Extraction Port Dedicated Tubing Other:					
	Well Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65					
$\frac{6.5}{1 \text{ Case Volume}} (\text{Gals.}) \times \frac{3}{\text{Specified Volumes}} = \frac{25.5}{\text{Calculated Volumes}}$	Gals. 2" 0.16 6" 1.47					
Cond.	Turbidity					
Time Temp (°F) pH (mS or (uS)	(NTUs) Gals. Removed Observations					
1095 66.3 698 988	18/ 8.5					
0957 66.4 6.8 964	39/ 17:0					
Dewnterd @ 7.5	galles 17. Squilly					
1200 66.7 6.86 961	0121					
Did well dewater? Yes (No)	Gallons actually evacuated: 17 <					
Sampling Date: 11-9-09 Sampling Time:	1200 Depth to Water: 38, 57 (26)					
Sample I.D.: MW - L	Laboratory: CalScience Columbia Other					
Analyzed for: TPH-G BTEX MTBE TPH-D C)vvgenates (5) Othor					
EDID (C.C. 1: 11)	Ouplicate I.D. (if applicable):					
Analyzed for TRUG PT	exygenates (5) Other:					
D.O. (if req'd): Pre-purge:	ng/L Post-purge: mg/L					
O.R.P. (if req'd): Pre-purge:	mV Post-purge: mV					

Post-purge:

SHELL WELLHEAD REPAIR FORM

(FOR REPAIR TECHNICIAN)

Site Address	4212 1st St. Pleasanton	Date	9/24/	109					
	090924-BW3 Technician BW	Page	l of	-1					
	Check Indicates deficiency	~	ļ .						
Inspection Point (Well ID or description of location)	Well Inspected, Cleaned Labeled - No Further Corrective Action Required Replaced Cap Replaced Lid Seal Casing Annular Seal Tab's / Bolts Box Structure Apron Trip Hazard Below Grade Not Securable by Design (12" diameter or less) Lid not marked with words "MONITORING WELL" Other Deficiency Not Securable by Design (12" diameter or less) Lid not marked with words Well Not Inspected (explain in notes)	All Repairs Completed	Remaining Deficiencies Logged onto <i>BLAINE</i> Repair Order	Remaining Deficiencies Logged onto <i>Notice of</i> Deficient Condition - BLAINE Unable to Repair					
		\times							
MW-1	Notes: Retapped 1/2 Tabs	`							
	Well box type / size: 121 Em co Materials used: 2	bolt	nolts						
		X							
MW-1B	Notes: Retapped 3/2 Tabs - Taged								
	Well box type / size: 12 "Em co Materials used: 2	bolts)						
		\times							
MW-Z	Notes: Retained 1/2 Toubs								
111000	Well box type / size: 2 (mco Materials used: 2	bolt	5						
		\times							
MW-3	Notes: Retapped 7/2 Tabs								
	Well box type / size: 12 11 Em co Materials used: 2	00 HS							
		\times							
MW-4	Notes: Retapped 3/2 Tabs - Tagged								
	Well box type / size: The Moo Materials used:	polls							
	Notes:								
	Well box type / size: Materials used:								
	Notes:								
	Well box type / size: Materials used:								

SHELL SITE INSPECTION CHECKLIST

Client	Shell			_ Date _	9/24/09	
Site Address	4212 15 =	St. Pleasan-	ton		, ,	
Job Number	090974-E	3W3	Technician	BU	N	
Site Status	Strell	Branded Station	Vacant Lot	Other		
Inspected / L	abeled / Cleaned	- all wells on Scope	e Of Work			
Inspected / C	leaned Compone	ents - all other ident	ifiable wells		X	N/A
Inspected sit	e for site investiç	ation & site remedi	ation related t	rip hazar	ds 🔀	
Completed al	l outstanding <i>BL</i>	AINE Wellhead Rep	air Order(s)			N/A
Completed S	hell Wellhead Re	pair Form(s)				N/A
-	atment / remedia nd appearance	tion system compo	und for securit	ty,		N/A
_	cant lot for signs rown vegetation	of habitation, hazar and security	dous material	s or		N/A
Visually inspe	ected site drums	for condition and p	roper labeling			N/A
Unresolved d form(s) comp		fied - "Notice of De	ficient Condition	on"		N/A
Notes						
	P					
						
	**************************************	PROJECT MANA	GER ONLY			
Checklist Rev		Notes				

BLAINE TECH SERVICES, INC.

SAN JOSE

SACRAMENTO

LOS ANGELES

SAN DIEGO

SEATTLE

www.blainetech.com

APPENDIX C

BLAINE TECH SERVICES, INC. FIELD PROCEDURES

GROUNDWATER SAMPLING SPECIALISTS
SINCE 1985

November 23, 2009

Denis Brown Shell Oil Products US 2095 South Wilmington Avenue Carson, CA 90810

> Fourth Quarter 2009 Groundwater Monitoring at Shell-branded Service Station 4212 First Street Pleasanton, CA

Monitoring performed on November 9, 2009

Groundwater Monitoring Report **091109-JO-1**

This report covers the routine monitoring of groundwater wells at this Shell-branded facility. In accordance with standard procedures that conform to Regional Water Quality Control Board requirements, routine field data collection includes depth to water, total well depth, thickness of any separate immiscible layer, water column volume, calculated purge volume (if applicable), elapsed evacuation time (if applicable), total volume of water removed (if applicable), and standard water parameter instrument readings. Sample material is collected, contained, stored, and transported to the laboratory in conformance with EPA standards. Purgewater (if applicable) is, likewise, collected and transported to the Martinez Refining Company.

Basic field information is presented alongside analytical values excerpted from the laboratory report in the cumulative table of **WELL CONCENTRATIONS**. The full analytical report for the most recent samples and the field data sheets are attached to this report.

At a minimum, Blaine Tech Services, Inc. field personnel are certified on completion of a forty-hour Hazardous Materials and Emergency Response training course per 29 CFR 1910.120. Field personnel are also enrolled in annual eight-hour refresher courses.

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE

1680 ROGERS AVENUE SAN JOSE, CA (408) 573-0555 FAX (408) 573-7771 LIC. 746684 www.blainetech.com

Blaine Tech Services, Inc. conducts sampling and documentation assignments of this type as an independent third party. Our activities at this site consisted of objective data and sample collection only. No interpretation of analytical results, defining of hydrological conditions or formulation of recommendations was performed.

Please call if you have any questions.

Yours truly,

Mike Ninokata Project Manager

MN/np

attachments: Cumulative Table of WELL CONCENTRATIONS

Certified Analytical Report

Field Data Sheets

cc: Suzanne McClurkin-Nelson Delta Environmental 175 Bernal Rd., Suite 200 San Jose, CA 95119

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE

BLAINE TECH SERVICES, INC. METHODS AND PROCEDURES FOR THE ROUTINE MONITORING OF GROUNDWATER WELLS AT SHELL SITES

Blaine Tech Services, Inc. performs environmental sampling and documentation as an independent third party. We specialize in groundwater monitoring assignments and intentionally limit the scope of our services to those centered on the generation of objective information.

To avoid conflicts of interest, Blaine Tech Services, Inc. personnel do not evaluate or interpret the information we collect. As a state licensed contractor (C-57 well drilling –water – 746684) performing strictly technical services, we do not make any professional recommendations and perform no consulting of any kind.

SAMPLING PROCEDURES OVERVIEW

SAFETY

All groundwater monitoring assignments performed for Shell comply with Shell's safety guidelines, 29 CFR 1910.120 and SB-198 Injury and Illness Prevention Program (IIPP). All Field Technicians receive the full 40-hour 29CFR 1910.120 OSHA SARA HAZWOPER course, medical clearance and on-the-job training prior to commencing any work on any Shell site.

INSPECTION AND GAUGING

Wells are inspected prior to evacuation and sampling. The condition of the wellhead is checked and noted according to a wellhead inspection checklist.

Standard measurements include the depth to water (DTW) and the total well depth (TD) obtained with industry standard electronic water level indicators that are graduated in increments of hundredths of a foot.

The water in each well is inspected for the presence of immiscibles. When free product is suspected, its presence is confirmed using an electronic interface probe (e.g. MMC). No samples are collected from a well containing over two-hundredths of a foot (0.02') of product.

EVACUATION

Depth to water measurements are collected by our personnel prior to purging and minimum purge volumes are calculated anew for each well based on the height of the water column and the diameter of the well. Expected purge volumes are never less than three case volumes and are set at no less than four case volumes in some jurisdictions.

Well purging devices are selected on the basis of the well diameter and the total volume to be evacuated. In most cases the well will be purged using an electric submersible pump (i.e. Grundfos) suspended near (but not touching) the bottom of the well.

PARAMETER STABILIZATION

Well purging completion standards include minimum purge volumes, but additionally require stabilization of specific groundwater parameters prior to sample collection. Typical groundwater parameters used to measure stability are electrical conductivity, pH, and temperature. Instrument readings are obtained at regular intervals during the evacuation process (no less than once per case volume).

Stabilization standards for routine quarterly monitoring of fuel sites include the following: Temperature is considered to have stabilized when successive readings do not fluctuate more than +/- 1 degree Celsius. Electrical conductivity is considered stable when successive readings are within 10%. pH is considered to be stable when successive readings remain constant or vary no more than 0.2 of a pH unit.

DEWATERED WELLS

Normal evacuation removes no less than three case volumes of water from the well. However, less water may be removed in cases where the well dewaters and does not immediately recharge.

MEASURING RECHARGE

Upon completion of well purging, a depth to water measurement is collected and notated to ensure that the well has recharged to within 80% of its static, pre-purge level prior to sampling.

Wells that do not immediately show 80% recharge or dewatered wells will be allowed a minimum of 2 hours to recharge prior to sampling. The water level at time of sampling will be noted.

PURGEWATER CONTAINMENT

All non-hazardous purgewater evacuated from each groundwater monitoring well is captured and contained in on-board storage tanks on the Sampling Vehicle and/or special water hauling trailers. Effluent from the decontamination of reusable apparatus (sounders, electric pumps and hoses etc.), consisting of groundwater combined with deionized water and non-phosphate soap, is also captured and pumped into effluent tanks.

Non-hazardous purgewater is transported under standard Bill of Lading documentation to a Blaine Tech Services, Inc. facility before being transported to a Shell approved disposal facility.

SAMPLE COLLECTION DEVICES

All samples are collected using a stainless steel, Teflon or disposable bailers.

SAMPLE CONTAINERS

Sample material is decanted directly from the sampling bailer into sample containers provided by the laboratory that will analyze the samples. The transfer of sample material from the bailer to the sample container conforms to specifications contained in the USEPA T.E.G.D. The type of sample container, material of construction, method of closure and filling requirements are specific to the intended analysis. Chemicals needed to preserve the sample material are commonly placed inside the sample containers by the laboratory or glassware vendor prior to delivery of the bottle to our personnel. The laboratory sets the number of replicate containers.

TRIP BLANKS

Trip Blanks, if requested, are taken to the site and kept inside the sample cooler for the duration of the event. They are turned over to the laboratory for analysis with the samples from that site.

DUPLICATES

Duplicates, if requested, may be collected at a site. The Field Technician uses their discretion in choosing the well at which the Duplicate is collected, typically one suspected of containing measurable contaminants. The Duplicate sample is labeled "DUP" and the time of collection is omitted from the COC, thus rendering the sample blind.

SAMPLE STORAGE

All sample containers are promptly placed in food grade ice chests for storage in the field and transport (direct or via our facility) to the designated analytical laboratory. These ice chests contain quantities of restaurant grade ice as a refrigerant material. The samples are maintained in either an ice chest or a refrigerator until relinquished into the custody of the laboratory or laboratory courier.

DOCUMENTATION CONVENTIONS

A label must be affixed to all sample containers. In most cases these labels are generated by our office personnel and are partially preprinted. Labels can also be hand written by our field personnel. The site is identified with the store number and site address, as is the particular groundwater well from which the sample is drawn (e.g. MW-1, MW-2, S-1 etc.). The time and date of sample collection along with the initials of the person who collects the sample are handwritten onto the label.

Chain of Custody records are created using client specific preprinted forms following USEPA specifications.

Bill of Lading records are contemporaneous records created in the field at the site where the non-hazardous purgewater is generated. Field Technicians use preprinted Bill of Lading forms.

DECONTAMINATION

All equipment is brought to the site in clean and serviceable condition and is cleaned after use in each well and before subsequent use in any other well. Equipment is decontaminated before leaving the site.

The primary decontamination device is a commercial steam cleaner. The steam cleaner is detuned to function as a hot pressure washer that is then operated with high quality deionized water that is produced at our facility and stored onboard our sampling vehicle. Cleaning is facilitated by the use of proprietary fixtures and devices included in the patented workstation (U.S. Patent 5,535,775) that is incorporated in each sampling vehicle. The steam cleaner is used to decon reels, pumps and bailers.

Any sensitive equipment or parts (i.e. Dissolved Oxygen sensor membrane, water level indicator, etc.) that cannot be washed using the high pressure water, will be sprayed with a nonphosphate soap and deionized water solution and rinsed with deionized water,

DISSOLVED OXYGEN READINGS

Dissolved Oxygen readings are taken pre- and/or post-purge using YSI meters (e.g. YSI Model 54, 58 or 95) or HACH field test kits.

The YSI meters are equipped with a stirring device that enables them to collect accurate in-situ readings. The probe/stirring devices are modified to allow downhole measurements to be taken from wells with diameters as small as two inches. The probe and reel is decontaminated between wells as described above. The meter is calibrated between wells as per the instructions in the operating manual. The probe and stirrer is lowered into the water column. The reading is allowed to stabilize prior to collection.

OXYIDATON REDUCTION POTENTIAL READINGS


All readings are obtained with either Corning or Myron-L meters (e.g. Corning ORP-65 or a Myron-L Ultrameter GP). The meter is cleaned between wells as described above. The meter is calibrated at the start of each day according to the instruction manual.

FERROUS IRON MEASUREMENTS

All field measurements are collected at time of sampling with a HACH test kit.

APPENDIX D

CERTIFIED ANALYTICAL REPORT WITH CHAIN-OF-CUSTODY DOCUMENTATION

November 19, 2009

Michael Ninokata Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105

Subject: Calscience Work Order No.: 09-11-0857

Client Reference: 4212 First St., Pleasanton, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 11/11/2009 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Philip Samelle for

Laboratories, Inc.

Xuan H. Dang Project Manager

CA-ELAP

NELAP ID: 03220CA

CSDLAC ID: 10109

SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 ·

TEL:(714) 895-5494 ·

FAX: (714) 894-7501

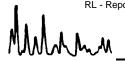
Analytical Report

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation:

09-11-0857 EPA 5030B

Method: Units:

LUFT GC/MS / EPA 8260B


ug/L

Project: 4212 First St., Pleasanton, CA

Page 1 of 2

11/11/09

Client Sample Number			Lab Sample Number		Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Tim Analyze		QC Batch ID
MW-1			09-11-0857-1-B		11/09/09 11:00	Aqueous	GC/MS OO	11/14/09	11/14/09 18:35	•	091114L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	230	10	20		Tert-Butyl Alc	ohol (TBA)		530	200	20	
Ethylbenzene	ND	20	20		Diisopropyl Et	ther (DIPE)		ND	40	20	
Toluene	ND	20	20		Ethyl-t-Butyl E	Ether (ETBE)		ND	40	20	
Xylenes (total)	33	20	20		Tert-Amyl-Me	thyl Ether (T	AME)	ND	40	20	
Methyl-t-Butyl Ether (MTBE)	2100	20	20		TPPH			3200	1000	20	
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
Dibromofluoromethane	97	80-132			1,2-Dichloroet	thane-d4		107	80-141		
Toluene-d8	102	80-120			Toluene-d8-T	PPH		102	88-112		
1,4-Bromofluorobenzene	99	76-120									
MW-1B			09-11-0	0857-2-B	11/09/09 08:40	Aqueous	GC/MS OO	11/14/09	11/14/09 19:02	9	091114L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.50	1		Tert-Butyl Alc	ohol (TBA)		ND	10	1	
Ethylbenzene	ND	1.0	1		Diisopropyl Et	ther (DIPE)		ND	2.0	1	
Toluene	ND	1.0	1		Ethyl-t-Butyl E	Ether (ETBE)		ND	2.0	1	
Xylenes (total)	ND	1.0	1		Tert-Amyl-Me	thyl Ether (Ta	AME)	ND	2.0	1	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1		TPPH			ND	50	1	
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control		<u>Qual</u>
5 11 6 11		<u>Limits</u>							<u>Limits</u>		
Dibromofluoromethane	98	80-132			1,2-Dichloroet			109	80-141		
Toluene-d8	102	80-120			Toluene-d8-T	PPH		102	88-112		
1,4-Bromofluorobenzene	96	76-120									
MW-2			09-11-0	0857-3-B	11/09/09 11:40	Aqueous	GC/MS OO	11/14/09	11/14/09 19:30	•	091114L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	12	25		Tert-Butyl Alc	ohol (TBA)		ND	250	25	
Ethylbenzene	ND	25	25		Diisopropyl Et	ther (DIPE)		ND	50	25	
Toluene	ND	25	25		Ethyl-t-Butyl E	,		ND	50	25	
Xylenes (total)	ND	25	25		Tert-Amyl-Me	thyl Ether (T	AME)	ND	50	25	
Methyl-t-Butyl Ether (MTBE)	3800	25	25	<u>.</u> .	TPPH			4100	1200	25	
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
Dibromofluoromethane	102	80-132			1,2-Dichloroet	thane-d4		112	80-141		
Toluene-d8	103	80-120			Toluene-d8-T	PPH		103	88-112		
1,4-Bromofluorobenzene	96	76-120									

DF - Dilution Factor , Qual

Qual - Qualifiers

Analytical Report

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation:

09-11-0857 EPA 5030B

11/11/09

Method: Units:

LUFT GC/MS / EPA 8260B

ug/L

Project: 4212 First St., Pleasanton, CA

Page 2 of 2

Client Sample Number			Lab Sample Number		Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Tim Analyze		QC Batch ID
MW-3			09-11-0)857-4-B	11/09/09 11:23	Aqueous	GC/MS OO	11/14/09	11/14/09 19:58	•	091114L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.50	1		Tert-Butyl Alc	ohol (TBA)		ND	10	1	
Ethylbenzene	ND	1.0	1		Diisopropyl Et	ther (DIPE)		ND	2.0	1	
Toluene	ND	1.0	1		Ethyl-t-Butyl E	Ether (ETBE))	ND	2.0	1	
Xylenes (total)	ND	1.0	1		Tert-Amyl-Me	thyl Ether (T	AME)	ND	2.0	1	
Methyl-t-Butyl Ether (MTBE)	1.7	1.0	1		TPPH			ND	50	1	
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
Dibromofluoromethane	102	80-132			1,2-Dichloroe	thane-d4		110	80-141		
Toluene-d8	103	80-120			Toluene-d8-T	PPH		102	88-112		
1,4-Bromofluorobenzene	95	76-120									
MW-4			09-11-0)857-5-B	11/09/09 12:00	Aqueous	GC/MS OO	11/14/09	11/14/09 20:26	•	091114L01
Parameter	Result	<u>RL</u>	DF	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF	<u>Qual</u>
Benzene	ND	50	100		Tert-Butyl Alc	ohol (TBA)		ND	1000	100	1
Ethylbenzene	ND	100	100		Diisopropyl Et	ther (DIPE)		ND	200	100	1
Toluene	ND	100	100		Ethyl-t-Butyl E	Ether (ETBE))	ND	200	100)
Xylenes (total)	ND	100	100		Tert-Amyl-Me	thyl Ether (T	AME)	ND	200	100	1
Methyl-t-Butyl Ether (MTBE)	11000	100	100		TPPH			13000	5000	100	1
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control		<u>Qual</u>
		<u>Limits</u>							<u>Limits</u>		
Dibromofluoromethane	101	80-132			1,2-Dichloroe			111	80-141		
Toluene-d8	102	80-120			Toluene-d8-T	PPH		102	88-112		
1,4-Bromofluorobenzene	96	76-120									
Method Blank			099-12	-767-2,852	2 N/A	Aqueous	GC/MS OO	11/14/09	11/14/09 13:30	•	091114L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.50	1		Tert-Butyl Alc	ohol (TBA)		ND	10	1	
Ethylbenzene	ND	1.0	1		Diisopropyl Et	ther (DIPE)		ND	2.0	1	
Toluene	ND	1.0	1		Ethyl-t-Butyl E			ND	2.0	1	
Xylenes (total)	ND	1.0	1		Tert-Amyl-Me	thyl Ether (T	AME)	ND	2.0	1	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1		TPPH			ND	50	1	
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits		Qual
Dibromofluoromethane	101	80-132			1,2-Dichloroe	thane-d4		112	80-141		
Toluene-d8	103	80-120			Toluene-d8-T	PPH		103	88-112		
1,4-Bromofluorobenzene	98	76-120									

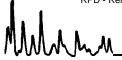
DF - Dilution Factor

Qual - Qualifiers

Quality Control - Spike/Spike Duplicate

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method:

11/11/09 09-11-0857 EPA 5030B LUFT GC/MS / EPA 8260B


0-48

Project 4212 First St., Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
09-11-0975-2	Aqueous	GC/MS OO	11/14/09		11/14/09	091114S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	101	101	72-120	0	0-20	
Carbon Tetrachloride	108	108	63-135	0	0-20	
Chlorobenzene	98	97	80-120	1	0-20	
1,2-Dibromoethane	99	99	80-120	0	0-20	
1,2-Dichlorobenzene	97	96	80-120	1	0-20	
1,1-Dichloroethene	104	106	60-132	2	0-24	
Ethylbenzene	106	106	78-120	1	0-20	
Toluene	101	100	74-122	1	0-20	
Trichloroethene	102	101	69-120	2	0-20	
Vinyl Chloride	84	89	58-130	6	0-20	
Methyl-t-Butyl Ether (MTBE)	103	103	72-126	0	0-21	
Tert-Butyl Alcohol (TBA)	90	91	72-126	1	0-20	
Diisopropyl Ether (DIPE)	110	109	71-137	1	0-23	
Ethyl-t-Butyl Ether (ETBE)	103	102	74-128	1	0-20	
Tert-Amyl-Methyl Ether (TAME)	100	100	76-124	0	0-20	

81

51

Ethanol

35-167

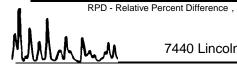
46

Quality Control - LCS/LCS Duplicate

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method:

09-11-0857 **EPA 5030B**

N/A


LUFT GC/MS / EPA 8260B

Project: 4212 First St., Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate yzed	LCS/LCSD Batch Number				
099-12-767-2,852	Aqueous	GC/MS OO	11/14/09	11/14	/09	091114L	01			
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers			
Benzene	103	102	80-122	73-129	1	0-20				
Carbon Tetrachloride	111	110	68-140	56-152	1	0-20				
Chlorobenzene	100	99	80-120	73-127	1	0-20				
1,2-Dibromoethane	101	104	80-121	73-128	3	0-20				
1,2-Dichlorobenzene	100	98	80-120	73-127	2	0-20				
1,1-Dichloroethene	109	109	72-132	62-142	0	0-25				
Ethylbenzene	108	106	80-126	72-134	1	0-20				
Toluene	102	102	80-121	73-128	1	0-20				
Trichloroethene	102	102	80-123	73-130	0	0-20				
Vinyl Chloride	89	95	67-133	56-144	7	0-20				
Methyl-t-Butyl Ether (MTBE)	104	107	75-123	67-131	3	0-20				
Tert-Butyl Alcohol (TBA)	91	90	75-123	67-131	0	0-20				
Diisopropyl Ether (DIPE)	110	112	71-131	61-141	1	0-20				
Ethyl-t-Butyl Ether (ETBE)	103	105	76-124	68-132	2	0-20				
Tert-Amyl-Methyl Ether (TAME)	100	104	80-123	73-130	4	0-20				
Ethanol	78	89	61-139	48-152	13	0-27				
TPPH	110	109	65-135	53-147	1	0-30				

Total number of LCS compounds: 17 Total number of ME compounds: 0 Total number of ME compounds allowed :

LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order Number: 09-11-0857

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

LAB (LOCATION)						6	"		Sn	ell	UI	II F	10	au	Cts	; (C	na	ın (UT	Gu	StC	_												
CALSCIENCE ()	Please Check Appropriate Box:								Print Bill To Contact Name: INCIDENT # (EN													F (ENV SERVICES) CHECK IF NO INCIDENT # APPLIES												
SPL () XENCO ()	□ €N	IV. SERVICE	<u> </u>		MOTIVA	A RETA	IL		SHELL RE	TAIL	Dei	nis I	Brow	vn								9	8	9	9	5	5 8 4 0			DA	TE: 11~ G	4-09		
TEST AMERICA ()	П мс	OTIVA SD&C	М		CONSUL	LTANT			LUBES							PO	#								SAP	#					· ·	. 1		
OTHER ()	☐ SH	IELL PIPELIN	E		OTHER							Τ	Τ	Τ	T	<u> </u>				Т	• • • •	Ť			Ť		T			PA	<u>۱</u> : عاد	of <u>l</u>		
LING COMPANY	1 .				LOG C								RESS: 1		-		<u></u>					State			GLOBA									
Ine Tech Services					ВТ	SS					42 EDF D	12 I	FIRST	t St.	, Ple	easa	anto	n	Į,	PHONE NO			CA		TO6	001	012	259			CONSULTA	NT PROJECT NO		
0 Rogers Ave, San Jose, CA 95112																															091	109-5	2]	
JECT CONTACT (Hardcopy or PDF Report to) Hael Ninokata											SAM	gela !	Pico,	(Print)	a, Sai	n Jos	e Off	ice		408.82	6,186	52		ļ:	apice	o@de	ltaer	nv.co	LABI	USE O				
EPHONE: FAX: (408)573-0555 (408)573-777	1	E-MAIL	·								1.	₫.	0	ti	7,														0	9-	-//-c	857		
RNAROUND TIME (CALENDAR DAYS):		mnino				.com		RESULT	S NEEDED		╁										DE	OUE	STED	ANA	Ve			[:						
STANDARD (14 DAY) 5 DAYS 3 DAYS		2 DAYS		24 HO	OURS				ON WE	EKEND	┼		- 								KE	UUE:	SIED	ANA	LYS	13							_	
LA - RWQCB REPORT FORMAT UST AGENCY:				SHEL	CONT	DACTO		יטו זרכ			4	_	.	3A,																	TEMPERAT	URE ON REC	EIPT	
SPECIAL INSTRUCTIONS OR NOTES :				■ STAT					PPLIES		9	(8015M)		(MTBE, TBA,																C°				
CC Suzanne McClurkin-Nelson w/final report smcclurkin-nelson@deltaenv.com				EDD I	NOT NE	EDED					- Purgeable (8260B)	8																						
Run TPH-d w/Silica Gel Clean Up				7 RECE	IPT VER	RIFICA	TION RE	QUEST	TED		aple	- Extractable	<u></u>	5 Oxygenates (8260B) DIPE, TAME, ETBE)	<u></u>	_	ا ـ	<u></u>	<u>~</u>	(SB)	_	9	Methanol (8015M											
	SAI	MPLING	Т-		Т	PI	RESERV	ATIVE	$\overline{}$		┪┋	xttac	2601	ates (6	3260	(60B)	260B	3260	260	(82	909 909	826	18) 10											
Field Sample Identification	DATE	TIME	M.	ATRIX						NO. OF CONT.	1		BTEX (8260B)	ygen	MTBE (8260B)	TBA (8260B)	DIPE (8260B)	TAME (8260B)	ETBE (8260B)	1,2 DCA (8260B)	EDB (8260B)	Ethanol (8260B)	hand						ı		Containe	r PID Reading	js	
is:	DATE	IIME			HCL	ниоз	H2SO4	NONE	OTHER		¥	표	E	S S	Σ	TB/	립	₹	ET	1,2		£	Me								or Labo	ratory Notes		
MW-1	1-9-0	1100	1	J	3					3	X		7	X				l																
MW-1B		0410		i						1	X		×	×																				
Mw-2		1140	1							1	X		X	 																\top				
f MW-3		1123	 	1	11		†	1		+	X	<u> </u>	┪								_			\Box			\dashv			1				
1010	++-		 	1	+				+ +	+	K	_	t	~	-					_	1			\vdash	\dashv		\dashv			\dashv				
MW-4	10	1200	 	¥1	10	\vdash	├—	1	+	<u>y</u> _	尸	-	X	1						+	-	\dashv		\vdash			\dashv	_						
	-		-		+	-	-	 -			₩	-	┼┈	-	ļ	_			_					\Box	-	\dashv	-+			_			_ ′	
	. .		ļ		ļ	ļ	<u> </u>	1			 		-	<u> </u>			\Box			_	_								_	_ .			<i>.</i>	
																			Ì						ļ									
														Τ													T			\neg				
			1		+	-		ļ	1		╁	╁	+	+	\vdash	Н	\dashv			+		_				\dashv	+		\dashv	+			—	
nquished by:((Signature)		<u> </u>	Receh	ve by:	Signature	<u></u>			11		<u></u>			<u> </u>										Date:						Time:				
- 11 .			1		N			,	~~	4				1	1-	. 1							ĺ								(
nquished 9/: (Signature)			Raceh	ved by (s				_(Sanf	7k			Cu	8-17	200	4								Date:	00	1 - 0	1				<u>(85</u>	.		
<i>"</i>							/	·) >	<u>~</u> '	<i>~ /</i>		,	,	0	/	· >									, ,	1	_			Time:	0.0			
POTUL		4	Receh	ved by: (S	Signature	<u> </u>	0		114	u	v	y		-{<	<u> </u>	7								Date	110	0	9_				000	,		
Touished by: (Signature)			1.000	. Ju Jy. (3	ga.u. 6	,					1	,		- 1			_	_						Date	ı				- 1	Time;				
novished by: (Signature)											0	,	11.	\sim	\sim	Τ	() l-	\Rightarrow					1.1	١.	0	`		- 1		1230			
	<u>73</u>												\mathcal{K}	<u>7</u>	<u>0</u> a	<u>ــلــ</u>	. (کز	<u>a</u>					II	11	Q	ì				05/2/06 Revision			

SAMPLE RECEIPT FORM Cooler _ of _

CLIENT: BTS	DATE: _	11 ///	09
TEMPERATURE: (Criteria: 0.0 °C - 6.0 °C, not frozen) Temperature	ourier.	□ Sample ng. Initial:	WB_
CUSTODY SEALS INTACT: Cooler		Initial: Initial:	
SAMPLE CONDITION:	Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples	z		
COC document(s) received complete	<u>/</u>		
\square Collection date/time, matrix, and/or # of containers logged in based on sample labels	i.		
☐ COC not relinquished. ☐ No date relinquished. ☐ No time relinquished.	•		
Sampler's name indicated on COC	. Ž		
Sample container label(s) consistent with COC			
Sample container(s) intact and good condition	. e		
Correct containers and volume for analyses requested	. - 41 _.		
Analyses received within holding time	. Z		
Proper preservation noted on COC or sample container	. z		
☐ Unpreserved vials received for Volatiles analysis		•	
Volatile analysis container(s) free of headspace	<u>/</u>		
Tedlar bag(s) free of condensation	-	• -	Z
CONTAINER TYPE:			
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve □EnCores [®] [⊒TerraCore	.s® □	<u>. </u>
Water: □VOA ◘️VOAh □VOAna₂ □125AGB □125AGBh □125AGBp			1AGBs
☐500AGB ☐500AGJ ☐500AGJş ☐250AGB ☐250CGB ☐250CGB			
' □250PB □250PBn □125PB □125PB z nna □100PJ □100PJna ₂ □	•		
Air: □Tedlar [®] □Summa [®] Other: □ Trip Blank Lot#:		Checked by:	80
Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E		Reviewed by: _	5 ()
Preservative: h: HCl n: HNO3 nao:NaoSoOo Na: NaOH n: HoPO4 s: HoSO4 znna: ZnAco+NaOH		Scanned by:	Ç0