RECEIVED

1:15 pm, May 12, 2009

Alameda County Environmental Health

May 11, 2009

Re: Quarterly Monitoring Report – First Quarter 2009

Former Shell-branded Service Station

4212 First Street

Pleasanton, California

Dear Mr. Wickham:

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Sincerely, Shell Oil Products US

Denis L. Brown Project Manager

20945 S. Wilmington Avenue, Carson, CA 90810

May 11, 2009 DELTA Project No. SCA421211A SAP No. 135782

Mr. Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: FIRST QUARTER 2009 GROUNDWATER MONITORING REPORT Shell-Branded Service Station 4212 First Street Pleasanton, California

Dear Mr. Wickham:

On behalf of Shell Oil Products (SHELL), Delta Consultants (DELTA) has prepared this *First Quarter 2009 Groundwater Monitoring Report* for the above referenced site. The sampling activities at the site were performed by Blaine Tech Services, Inc. under contract to SHELL and included the collection of groundwater samples and static water level measurements. A DELTA staff member, under the supervision of a California Registered Civil Engineer or a California Professional Geologist, performed the data evaluation.

This report represents DELTA's professional opinions based upon the currently available information and is arrived at in accordance with currently acceptable professional standards. This report is based upon a specific scope of work requested by the client. The Contract between DELTA and its client outlines the scope of work, and only those tasks specifically authorized by that contract or outlined in this report were performed. This report is intended only for the use of DELTA's Client and anyone else specifically listed on this report. DELTA will not and cannot be liable for unauthorized reliance by any other third party. Other than as contained in this paragraph, DELTA makes no express or implied warranty as to the contents of this report.

Mr. Jerry Wickham Alameda County Health Care Services Agency May 11, 2009 Page 2

If you have any questions regarding this site, please contact Ms. Suzanne McClurkin-Nelson (DELTA Site Manager) at (408) 826-1875 or Mr. Denis Brown (SHELL Project Manager) at (707) 865-0251.

Sincerely,

Delta Consultants

Suzanne McClurkin-Nelson

Senior Project Manager

Richard A. Garlow, M.S., P.G.

Project Specialist

RICHARD A GARLOW
NO. 7472
PART OF CALLE OF THE PART OF CALLE OF CALLE OF THE PART OF TH

Attachment:

First Quarter 2009 Groundwater Monitoring Report

cc:

Mr. Denis Brown, Shell Oil Products US

SHELL QUARTERLY STATUS REPORT

4212 First Street, Pleasanton, California
SCA421211A
Denis Brown / (707) 865-0251
Suzanne McClurkin-Nelson / (408) 826-1875
Alameda County Health Care Services Agency (ACHCSA) / Jerry Wickham
None

WORK PERFORMED THIS QUARTER (FIRST -2009):

- 1. Quarterly groundwater monitoring and sampling. Submitted quarterly report.
- 2. Dual-Phase Extraction Pilot Test Report submitted February 12, 2009.
- 3. Performed compliance sampling & submitted Dispenser Repair Report on March 6, 2009.

WORK PROPOSED FOR NEXT QUARTER (SECOND -2009):

- 1. Quarterly groundwater monitoring and sampling. Submit quarterly report.
- 2. Submit Interim Remediation Work Plan

Current Phase of Project:	Groundwater monitoring
Site Use:	Shell-branded Service Station
Frequency of Sampling:	Quarterly
Frequency of Monitoring:	Quarterly
Is Separate Phase Hydrocarbon Present Onsite (Well #'s):	☐ Yes ⊠ No
Cumulative SPH Recovered to Date :	NA
SPH Recovered This Quarter:	None
Sensitive Receptor(s) and Respective Direction(s):	The Arroyo Del Valle Creek is located approximately 1,133 feet north-west of the site. A supply well (3S/1E-21C1) was located 1,000 feet northwest of the site and a municipal well (3S/1E-16P10) was located approximately 1,200 feet north of the site.
Site Lithology:	The site is underlain by interlayered silt, silty sand, gravelly sand and silty gravel.
Current Remediation Techniques:	Quarterly monitoring of natural attenuation
Permits for Discharge:	None
Groundwater Recovered This Quarter:	124.7 gallons were recovered during sampling on February 5, 2009.

SHELL QUARTERLY STATUS REPORT (CONT.)

Approximate Depth to Groundwater: 32.29 to 35.07 feet below top of well casing. 76.11 feet below

top of well casing in deeper Well MW1-B.

Groundwater Gradient: Northeast at approximately 0.05 ft/ft

Current Agency Correspondence: ACHCSA letter dated September 9, 2008

Date of Most Recent Work Plan Approval: September 9, 2008

Site History:

Case Opening 1985

Onsite Assessment 1986 - 2007

Offsite Assessment None

Passive Remediation Monitoring Natural Attenuation

Active Remediation June 2007, Step Draw Down;

June, August 2007, Batch Extraction

February 12, 2009, Dual-Phase Extraction Pilot Test

Closure None

Summary of Unusual Activity: None

ATTACHMENTS:

Tables:

Table 1 – Well Concentrations

Figures:

Figure 1 – Site Location Map

Figure 2 – Groundwater Elevation Contour Map – 2/5/2009

Figure 3 – Hydrocarbon Distribution in Groundwater Map – 2/5/2009

Appendices:

Appendix A – Blaine Tech Services, Inc. Field Data Sheets

Appendix B – Blaine Tech Services, Inc. Field Procedures

Appendix C – Certified Laboratory Report with Chain-of-Custody Documentation

TABLE

Pleasanton, CA

							MTBE	MTBE						Depth to	GW
Well ID	Date	TPPH	В	Т	E	Χ	8020	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
		(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)									
MW-1	6/16/1999	NA	NA	371.20	37.81	333.39									
MW-1	6/30/1999	89.0	5.89	<0.500	<0.500	0.652	<5.00	NA	NA	NA	NA	NA	371.20	33.65	337.55
MW-1	9/24/1999	1,560	473	<10.0	<10.0	22.8	<2.50	NA	NA	NA	NA	NA	371.20	37.04	334.16
MW-1	12/8/1999	1,020	375	<5.00	<5.00	15.2	<50.0	NA	NA	NA	NA	NA	371.20	36.79	334.41
MW-1	2/10/2000	523	106	<5.00	<5.00	31.8	2.9	NA	NA	NA	NA	NA	371.20	34.90	336.30
MW-1	5/17/2000	<50.0	<0.500	<0.500	<0.500	<0.500	37	29.5	NA	NA	NA	NA	371.20	32.55	338.65
MW-1	8/3/2000	808	290	<2.50	<2.50	8.9	<12.5	NA	NA	NA	NA	NA	371.20	39.13	332.07
MW-1	10/31/2000	507	250	0.962	<0.500	23.5	3.76	NA	NA	NA	NA	NA	371.20	37.91	333.29
MW-1	3/1/2001	<50.0	<0.500	<0.500	<0.500	<0.500	74.6	NA	NA	NA	NA	NA	371.20	39.60	331.60
MW-1	5/30/2001	780	280	<2.0	<2.0	11	NA	<2.0	NA	NA	NA	NA	371.20	39.53	331.67
MW-1	8/2/2001	1,900	580	<2.5	<2.5	12	NA	<25	NA	NA	NA	NA	371.20	39.61	331.59
MW-1	12/6/2001	840	190	<0.50	<0.50	13	NA	<5.0	NA	NA	NA	NA	371.20	39.63	331.57
MW-1	2/5/2002	2,700	650	<2.5	<2.5	7.2	NA	<25	NA	NA	NA	NA	371.20	35.53	335.67
MW-1	6/17/2002	2,500	550	<2.0	<2.0	5.9	NA	<20	NA	NA	NA	NA	371.20	39.29	331.91
MW-1	7/25/2002	690	130	<0.50	<0.50	4.4	NA	18	NA	NA	NA	NA	371.20	39.39	331.81
MW-1	11/14/2002	400	31	<0.50	<0.50	2.7	NA	27	NA	NA	NA	NA	371.20	40.00	331.20
MW-1	2/12/2003	840	0.85	<0.50	<0.50	<0.50	NA	40	NA	NA	NA	NA	371.20	32.92	338.28
MW-1	5/14/2003	680	190	<2.5	<2.5	<5.0	NA	95	NA	NA	NA	NA	371.20	32.57	338.63
MW-1	7/29/2003	870	190	<2.5	<2.5	<5.0	NA	150	NA	NA	NA	NA	371.20	33.82	337.38
MW-1	11/19/2003	<200	14	<2.0	<2.0	<4.0	NA	230	NA	NA	NA	NA	371.20	38.28	332.92
MW-1	2/19/2004	58 d	11	<0.50	<0.50	<1.0	NA	85	NA	NA	NA	NA	371.20	36.93	334.27
MW-1	5/3/2004	670	310	<2.5	<2.5	<5.0	NA	420	NA	NA	NA	NA	371.20	32.70	338.50
MW-1	8/24/2004	430 d	34	<2.5	<2.5	<5.0	NA	690	NA	NA	NA	NA	371.20	34.66	336.54
MW-1	11/15/2004	<250	29	<2.5	<2.5	<5.0	NA	470	NA	NA	NA	NA	371.20	38.27	332.93
MW-1	2/2/2005	540 e	87	<2.5	<2.5	<5.0	NA	700	NA	NA	NA	NA	371.20	32.02	339.18
MW-1	5/5/2005	460 e	88	<2.5	<2.5	<5.0	NA	300	NA	NA	NA	NA	371.20	36.82	334.38
MW-1	8/5/2005	910	230	<2.5	<2.5	<5.0	NA	480	NA	NA	NA	NA	371.20	33.35	337.85
MW-1	11/22/2005	1,760	27	<0.500	<0.500	1	NA	1,160	NA	NA	NA	NA	371.20	33.42	337.78
MW-1	2/7/2006	4,620	225	<0.500	<0.500	<0.500	NA	1,480	NA	NA	NA	NA	371.20	31.63	339.57

														_	
							MTBE	MTBE						Depth to	GW
Well ID	Date	TPPH	В	Τ	Ε, .	X	8020	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
		1	· · · · · · · · · · · · · · · · · · ·			1	T								1
MW-1	5/16/2006	1,100	130	<0.50	2	2	NA	1,600	NA	NA	NA	NA	371.20	31.16	340.04
MW-1	8/21/2006	2,700	86	<0.500	1	1	NA	1,960	NA	NA	NA	NA	371.20	33.07	338.13
MW-1	11/14/2006	1,400 g	30	<25	<25	<25	NA	2,100	<25	<25	<25	<1,000	371.20	33.73	337.47
MW-1	2/1/2007	800	21	<0.50	<0.50	<1.0	NA	2,300	NA	NA	NA	NA	371.20	33.02	338.18
MW-1	6/1/2007	1,400 j,k	68	<20	<20	4.4	NA	2,200	NA	NA	NA	NA	371.20	32.87	338.33
MW-1	8/22/2007	250 j	20	<20	<20	<20	NA	3,100	NA	NA	NA	1,500	371.20	34.64	336.56
MW-1	11/26/2007	1,800 j	33	<20	<20	<20	NA	3,100	<40	<40	<40	930	371.20	35.59	335.61
MW-1	2/19/2008	1,800 j	33	<20	<20	<20	NA	3,700	NA	NA	NA	1,700	371.20	31.05	340.15
MW-1	5/23/2008	3,700	100	<25	<25	<25	NA	3,100	NA	NA	NA	1,300	371.20	31.80	339.40
MW-1	8/7/2008	4,200	33	<25	<25	<25	NA	3,500	NA	NA	NA	<250	371.20	33.03	338.17
MW-1	12/3/2008	3,400	34	<25	<25	<25	NA	3,200	NA	NA	NA	980	371.20	35.19	336.01
MW-1	2/5/2009	2,100	26	<25	<25	<25	NA	1,700	NA	NA	NA	340	371.20	35.07	336.13
MW-1B	9/21/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	371.67	76.94	294.73
MW-1B	9/28/2006	<50	<0.50	<0.50	<0.50	<0.50	NA	21	NA	NA	NA	<20	371.67	77.15	294.52
MW-1B	11/14/2006	320 g	<5.0	<5.0	<5.0	<5.0	NA	310	<5.0	<5.0	<5.0	<200	371.67	69.38	302.29
MW-1B	2/1/2007	77	0.53	<0.50	<0.50	<1.0	NA	150	NA	NA	NA	NA	371.67	60.92	310.75
MW-1B	6/1/2007	<50 j,k	0.25 l	<1.0	<1.0	<1.0	NA	74	NA	NA	NA	NA	371.67	61.07	310.60
MW-1B	8/22/2007	<50 j	0.25 l	<1.0	<1.0	<1.0	NA	35	NA	NA	NA	7.1 l	371.67	77.54	294.13
MW-1B	11/26/2007	<50 j	<0.50	<1.0	<1.0	<1.0	NA	1.7	<2.0	<2.0	<2.0	<10	371.67	68.50	303.17
MW-1B	2/19/2008	65 j	2.6	4.2	<1.0	1.1	NA	58	NA	NA	NA	<10	371.67	57.21	314.46
MW-1B	5/23/2008	<50	<0.50	<1.0	<1.0	<1.0	NA	3.6	NA	NA	NA	<10	371.67	57.53	314.14
MW-1B	8/7/2008	<50	<0.50	<1.0	<1.0	<1.0	NA	1.1	NA	NA	NA	<10	371.67	72.51	299.16
MW-1B	12/3/2008	<50	<0.50	<1.0	<1.0	<1.0	NA	3.4	NA	NA	NA	<10	371.67	80.84	290.83
MW-1B	2/5/2009	<50	<0.50	<1.0	<1.0	<1.0	NA	4.4	NA	NA	NA	<10	371.67	76.11	295.56
MW-2	2/3/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	372.40	32.65	339.75
MW-2	2/7/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	372.40	35.51	336.89
MW-2	2/10/2000	<50.0	<0.500	<0.500	<0.500	<0.500	2.61	NA	NA	NA	NA	NA	372.40	36.62	335.78

							MTBE	MTBE						Depth to	GW
Well ID	Date	TPPH	В	Т	E	X	8020	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
MW-2	5/17/2000	120	4.09	<0.500	<0.500	<0.500	29	NA	NA	NA	NA	NA	372.40	32.14	340.26
MW-2	8/3/2000	<50.0	0.692	<0.500	<0.500	<0.500	40.5	36.6b	NA	NA	NA	NA	372.40	32.42	339.98
MW-2	10/31/2000	<50.0	<0.500	<0.500	<0.500	<0.500	57.4	44.8c	NA	NA	NA	NA	372.40	33.02	339.38
MW-2	3/1/2001	173	1.64	1.65	2.86	3.97	127	167	NA	NA	NA	NA	372.40	32.54	339.86
MW-2	5/30/2001	<50	<0.50	<0.50	<0.50	<0.50	NA	170	NA	NA	NA	NA	372.40	32.42	339.98
MW-2	8/2/2001	<50	<0.50	<0.50	<0.50	<0.50	NA	160	NA	NA	NA	NA	372.40	32.55	339.85
MW-2	12/6/2001	<50	<0.50	<0.50	<0.50	<0.50	NA	170	NA	NA	NA	NA	372.40	33.15	339.25
MW-2	2/5/2002	<50	0.72	<0.50	<0.50	1.7	NA	170	NA	NA	NA	NA	372.40	32.29	340.11
MW-2	6/17/2002	<50	<0.50	<0.50	<0.50	<0.50	NA	260	NA	NA	NA	NA	372.40	32.63	339.77
MW-2	7/25/2002	<50	<0.50	<0.50	<0.50	<0.50	NA	280	NA	NA	NA	NA	372.40	32.80	339.60
MW-2	11/14/2002	120	13	9	3.8	14	NA	430	NA	NA	NA	NA	372.40	33.31	339.09
MW-2	2/12/2003	<100	<1.0	<1.0	<1.0	<1.0	NA	430	NA	NA	NA	NA	372.40	32.15	340.25
MW-2	5/14/2003	<250	<2.5	<2.5	<2.5	<5.0	NA	470	NA	NA	NA	NA	372.40	32.01	340.39
MW-2	7/29/2003	<250	<2.5	<2.5	<2.5	<5.0	NA	670	NA	NA	NA	NA	372.40	32.51	339.89
MW-2	11/19/2003	<50	<0.50	<0.50	<0.50	<1.0	NA	54	NA	NA	NA	NA	372.40	33.83	338.57
MW-2	2/19/2004	65	<0.50	3.4	1.4	6.5	NA	8.2	NA	NA	NA	NA	372.40	32.68	339.72
MW-2	5/3/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	5.2	NA	NA	NA	NA	372.40	32.07	340.33
MW-2	8/24/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	2.7	NA	NA	NA	NA	372.40	32.44	339.96
MW-2	11/15/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	1.3	NA	NA	NA	NA	372.40	32.95	339.45
MW-2	2/2/2005	<50	<0.50	<0.50	<0.50	<1.0	NA	24	NA	NA	NA	NA	372.40	31.94	340.46
MW-2	5/5/2005	72 f	<0.50	<0.50	<0.50	<1.0	NA	4.9	NA	NA	NA	NA	372.40	31.91	340.49
MW-2	8/5/2005	<50	<0.50	<0.50	<0.50	<1.0	NA	16	NA	NA	NA	NA	372.40	32.15	340.25
MW-2	11/22/2005	840	1	<0.500	<0.500	1	NA	556	NA	NA	NA	NA	372.40	32.31	340.09
MW-2	2/7/2006	3,550	<0.500	<0.500	<0.500	<0.500	NA	2,500	NA	NA	NA	NA	372.40	31.70	340.70
MW-2	5/16/2006	1,400	<5.0	<5.0	<5.0	<10	NA	1,700	NA	NA	NA	NA	372.40	31.38	341.02
MW-2	8/21/2006	1,910	<0.500	<0.500	<0.500	<0.500	NA	2,590	NA	NA	NA	NA	372.40	33.29	339.11
MW-2	11/14/2006	2,300 g	<25	<25	<25	<25	NA	2,500	<25	<25	<25	<1,000	372.40	32.67	339.73
MW-2	2/1/2007	670	<0.50	<0.50	<0.50	<1.0	NA	2,000	NA	NA	NA	NA	372.40	32.13	340.27
MW-2	6/1/2007	500 j,k	<10	<20	<20	<20	NA	2,000	NA	NA	NA	NA	372.40	32.14	340.26

							MTBE	MTBE						Depth to	GW
Well ID	Date	TPPH	В	Т	Е	Х	8020	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
MW-2	8/22/2007	100 j,k	<10	<20	<20	<20	NA	2,400	NA	NA	NA	120 l	372.40	32.93	339.47
MW-2	11/26/2007	1,600 j,k	<10	<20	<20	<20	NA	2,900	<40	<40	<40	<200	372.40	33.44	338.96
MW-2	2/19/2008	1,300 j,k	<10	<20	<20	<20	NA	3,300	NA	NA	NA	<200	372.40	31.18	341.22
MW-2	5/23/2008	1,900	<12	<25	<25	<25	NA	1,700	NA	NA	NA	<250	372.40	31.44	340.96
MW-2	8/7/2008	1,700	<10	<20	<20	<20	NA	1,300	NA	NA	NA	<200	372.40	31.94	340.46
MW-2	12/3/2008	3,000	<10	<20	<20	<20	NA	2,900	NA	NA	NA	<200	372.40	32.53	339.87
MW-2	2/5/2009	1,200	<10	<20	<20	<20	NA	1,000	NA	NA	NA	<200	372.40	32.29	340.11
MW-3	2/3/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	375.05	32.06	342.99
MW-3	2/7/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	375.05	32.57	342.48
MW-3	2/10/2000	180	5.12	<0.500	<0.500	0.714	26.8	21.5a	NA	NA	NA	NA	375.05	32.77	342.28
MW-3	5/17/2000	1,360	414	<5.00	<5.00	17.6	<25.0	NA	NA	NA	NA	NA	375.05	31.00	344.05
MW-3	8/3/2000	<50.0	0.536	<0.500	<0.500	<0.500	22	NA	NA	NA	NA	NA	375.05	31.03	344.02
MW-3	10/31/2000	<50.0	<0.500	<0.500	<0.500	<0.500	31.1	NA	NA	NA	NA	NA	375.05	31.28	343.77
MW-3	3/1/2001	384	172	0.815	<0.500	8	5.16	NA	NA	NA	NA	NA	375.05	31.21	343.84
MW-3	5/30/2001	<50	<0.50	<0.50	<0.50	<0.50	NA	110	NA	NA	NA	NA	375.05	31.02	344.03
MW-3	8/2/2001	<50	<0.50	<0.50	<0.50	<0.50	NA	93	NA	NA	NA	NA	375.05	30.94	344.11
MW-3	12/6/2001	110	<0.50	<0.50	<0.50	2.3	NA	180	NA	NA	NA	NA	375.05	31.28	343.77
MW-3	2/5/2002	<50	0.89	0.6	<0.50	2.1	NA	130	NA	NA	NA	NA	375.05	31.12	343.93
MW-3	6/17/2002	<50	<0.50	<0.50	<0.50	<0.50	NA	72	NA	NA	NA	NA	375.05	31.21	343.84
MW-3	7/25/2002	<50	<0.50	<0.50	<0.50	<0.50	NA	81	NA	NA	NA	NA	375.05	30.96	344.09
MW-3	11/14/2002	<50	<0.50	<0.50	<0.50	<0.50	NA	60	NA	NA	NA	NA	375.05	31.44	343.61
MW-3	2/12/2003	<50	<0.50	<0.50	<0.50	<0.50	NA	43	NA	NA	NA	NA	375.05	31.28	343.77
MW-3	5/14/2003	<50	<0.50	<0.50	<0.50	<1.0	NA	24	NA	NA	NA	NA	375.05	31.20	343.85
MW-3	7/29/2003	<50	<0.50	<0.50	<0.50	<1.0	NA	21	NA	NA	NA	NA	375.05	31.29	343.76
MW-3	11/19/2003	<50	<0.50	<0.50	<0.50	<1.0	NA	8.2	NA	NA	NA	NA	375.05	31.86	343.19
MW-3	2/19/2004	81	0.67	4.4	1.8	8.6	NA	13	NA	NA	NA	NA	375.05	31.66	343.39
MW-3	5/3/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	13	NA	NA	NA	NA	375.05	31.72	343.33
MW-3	8/24/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	10	NA	NA	NA	NA	375.05	32.09	342.96

							MTBE	MTBE						Depth to	GW
Well ID	Date	TPPH	В	Т	E	X	8020	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
MW-3	11/15/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	6.6	NA	NA	NA	NA	375.05	31.50	343.55
MW-3	2/2/2005	<50	<0.50	<0.50	<0.50	<1.0	NA	3.1	NA	NA	NA	NA	375.05	31.28	343.77
MW-3	5/5/2005	<50	<0.50	<0.50	<0.50	<1.0	NA	2.3	NA	NA	NA	NA	375.05	31.42	343.63
MW-3	8/5/2005	<50	<0.50	<0.50	<0.50	<1.0	NA	2.4	NA	NA	NA	NA	375.05	31.35	343.70
MW-3	11/22/2005	<50	<0.500	<0.500	<0.500	<0.500	NA	3.84	NA	NA	NA	NA	375.05	31.98	343.07
MW-3	2/7/2006	<50.0	<0.500	<0.500	<0.500	<0.500	NA	<0.500	NA	NA	NA	NA	375.05	31.24	343.81
MW-3	5/16/2006	<50	<0.50	<0.50	<0.50	<1.0	NA	4.5	NA	NA	NA	NA	375.05	31.37	343.68
MW-3	8/21/2006	<50.0	<0.500	<0.500	<0.500	<0.500	NA	4.04	NA	NA	NA	NA	375.05	31.95	343.10
MW-3	11/14/2006	<50	<0.50	<0.50	< 0.50	<0.50	NA	3.8	<0.50	<0.50	<0.50	<20	375.05	32.24	342.81
MW-3	2/1/2007	<50	<0.50	<0.50	<0.50	<1.0	NA	2.8	NA	NA	NA	NA	375.05	32.17	342.88
MW-3	6/1/2007	<50 j	<0.50	<1.0	<1.0	<1.0	NA	3.1	NA	NA	NA	NA	375.05	31.86	343.19
MW-3	8/22/2007	<50 j	<0.50	<1.0	<1.0	<1.0	NA	4.6	NA	NA	NA	<10	375.05	32.18	342.87
MW-3	11/26/2007	<50 j	<0.50	<1.0	<1.0	<1.0	NA	3.5	<2.0	<2.0	<2.0	<10	375.05	32.69	342.36
MW-3	2/19/2008	<50 j	<0.50	1.2	<1.0	<1.0	NA	2.6	NA	NA	NA	<10	375.05	30.94	344.11
MW-3	5/23/2008	<50	<0.50	<1.0	<1.0	<1.0	NA	3.6	NA	NA	NA	<10	375.05	31.45	343.60
MW-3	8/7/2008	<50	<0.50	<1.0	<1.0	<1.0	NA	3.0	NA	NA	NA	<10	375.05	31.40	343.65
MW-3	12/3/2008	<50	<0.50	<1.0	<1.0	<1.0	NA	2.1	NA	NA	NA	<10	375.05	32.12	342.93
MW-3	2/5/2009	<50	<0.50	<1.0	<1.0	<1.0	NA	1.1	NA	NA	NA	<10	375.05	32.74	342.31
MW-4	9/21/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	372.78	31.58	341.20
MW-4	9/28/2006	11,000	<250	<250	<250	<250	NA	13,000	NA	NA	NA	<10,000	372.78	31.57	341.21
MW-4	11/14/2006	30,000	<250	<250	<250	<250 h,i	NA	14,000	<250	<250	<250	<10,000	372.78	32.11	340.67
MW-4	2/1/2007	6,300	50	<5.0	19	120	NA	14,000	NA	NA	NA	NA	372.78	33.23	339.55
MW-4	6/1/2007	8,200 j	52	<25	26	150	NA	11,000	NA	NA	NA	NA	372.78	31.57	341.21
MW-4	8/22/2007	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	372.78	33.40	339.38
MW-4	11/26/2007	12,000 j	71	<100	<100	<100	NA	20,000	<200	<200	<200	<1,000	372.78	34.74	338.04
MW-4	2/19/2008	13,000 j	<100	<200	<200	<200	NA	18,000	NA	NA	NA	2,900	372.78	29.70	343.08
MW-4	5/23/2008	21,000	<100	<200	<200	<200	NA	16,000	NA	NA	NA	<2,000	372.78	31.67	341.11
MW-4	8/7/2008	27,000	<100	<200	<200	<200	NA	21,000	NA	NA	NA	<2,000	372.78	31.90	340.88

Pleasanton, CA

							MTBE	MTBE						Depth to	GW
Well ID	Date	TPPH (ug/L)	B (ug/L)	T (ug/L)	E (ug/L)	X (ug/L)	8020 (ug/L)	8260 (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	TOC (MSL)	Water (ft.)	Elevation (MSL)
<u> </u>		, , ,	, , ,	<u> </u>	, ,	<u> </u>	, ,	· · ·	<u>, , , , , , , , , , , , , , , , , , , </u>	, ,	, ,	, ,			
MW-4	12/3/2008	20,000	19	<25	<25	29	NA	21,000	NA	NA	NA	2,500	372.78	34.32	338.46
MW-4	2/5/2009	15,000	200	<200	<200	<200	NA	13,000	NA	NA	NA	<2,000	372.78	34.58	338.20
TB-1	2/12/2003	Well inacce	essible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TB-1	2/28/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	12.54	NA
TB-1	5/14/2003	<50	<0.50	< 0.50	<0.50	<1.0	NA	<5.0	NA	NA	NA	NA	NA	12.31	NA
TB-2	2/12/2003	Well inacce	essible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TB-2	2/28/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	12.56	NA
TB-2	5/14/2003	Insufficient	water	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	12.54	NA
TB-3	2/12/2003	Well dry	NA	NA	NA	NA	NA	NA	NA						
TB-3	2/28/2003	Well dry	NA	NA	NA	NA	NA	NA	NA						
TB-3	5/14/2003	Well dry	NA	NA	NA	NA	NA	NA	NA						
TB-4	2/12/2003	Well dry	NA	NA	NA	NA	NA	NA	NA						
TB-4	2/28/2003	Well dry	NA	NA	NA	NA	NA	NA	NA						
TB-4	5/14/2003	Well dry	NA	NA	NA	NA	NA	NA	NA						

TABLE 1

HISTORIC WELL CONCENTRATIONS

Shell-branded Service Station

4212 First Street

Pleasanton, CA

							MTBE	MTBE						Depth to	GW
Well ID	Date	TPPH	В	Т	E	X	8020	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
		(ug/L)	(MSL)	(ft.)	(MSL)										

Abbreviations:

TPPH = Total petroleum hydrocarbons as gasoline by EPA Method 8260B; prior to May 30, 2001, analyzed by EPA Method 8015.

BTEX = Benzene, toluene, ethylbenzene, xylenes by EPA Method 8260B; prior to May 30, 2001, analyzed by EPA Method 8020.

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether, analyzed by EPA Method 8260B

ETBE = Ethyl tertiary butyl ether, analyzed by EPA Method 8260B

TAME = Tertiary amyl methyl ether, analyzed by EPA Method 8260B

TBA = Tertiary butyl alcohol, analyzed by EPA Method 8260B

TOC = Top of Casing Elevation

GW = Groundwater

ug/L = Parts per billion

MSL = Mean sea level

ft. = Feet

<n = Below detection limit

NA = Not applicable

TABLE 1

HISTORIC WELL CONCENTRATIONS

Shell-branded Service Station

4212 First Street

Pleasanton, CA

							MTBE	MTBE						Depth to	GW
Well ID	Date	TPPH	В	T	E	Χ	8020	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
		(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)									

Notes:

- a = Sample was analyzed outside of the EPA recommended holding time.
- b = Concentration is an estimate value above the linear quantitation range.
- c = The result reported was generated out of time. The sample was originally run within hold time, but needed to be re-analyzed.
- d = Sample contains discrete peak in addition to gasoline.
- e = Quantity of unknown hydrocarbon(s) in sample based on gasoline.
- f = The concentration reported reflect(s) individual or discrete unidentified peaks not matching a typical fuel pattern.
- g = The result for this hydrocarbon is elevated due to the presence of single analyte peak(s) in the quantitation range.
- h = Sample was originally analyzed with a positive result, however the reanalysis did not confirm the presence of the analyte.
- i = Confirmatory analysis was past holding time.
- j = Analyzed by EPA Method 8015B (M).
- k = The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standard.
- I = Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

Well MW-1 surveyed on May 4, 1999 by Virgil Chavez Land Surveying of Vallejo, CA.

Site surveyed on March 19, 2000 by Virgil Chavez Land Surveying of Vallejo, CA.

Site surveyed on January 15, 2002 by Virgil Chavez Land Surveying of Vallejo, CA.

3Q06 survey data for wells MW-1B and MW-4 provided by Delta Environmental Consultants, Inc. of San Jose, CA.

FIGURES

SHELL-BRANDED SERVICE STATION 4212 First Street Pleasanton, California

_	JECT NO. :A421211A	DRAWN BY V. F. 5/5/05
FILE	NO.	PREPARED BY VF
REV	ISION NO.	REVIEWED BY

LEGEND

MW−1 💠

GROUNDWATER MONITORING WELL LOCATION AND DESIGNATION

DESTROYED GROUNDWATER MONITORING WELL LOCATION AND DESIGNATION

ABANDONED TANK BACKFILL WELL LOCATION TB-1 🦻

343.08 GROUNDWATER ELEVATION IN FEET ABOVE MEAN SEA LEVEL (Ft/MSL)

344.00 — — GROUNDWATER CONTOUR IN FEET ABOVE MEAN SEA

LEVEL (Ft/MSL) CONTOUR INTERVAL=1.0 FEET

MW-1B*

MONITORS DEEPER WATER BEARING ZONE; NOT USED USED IN CONTOURING

APPROXIMATE GROUNDWATER GRADIENT DIRECTION (ft/ft)

SHELL OIL PRODUCTS US SHELL—BRANDED SERVICE STATION PLEASANTON, CALIFORNIA

FIGURE 2

GROUNDWATER ELEVATION CONTOUR MAP 2/5/2009

4212 FIRST STREET PLEASANTON, CALIFORNIA

APPENDIX A

BLAINE TECH SERVICES, INC. FIELD DATA SHEETS

SHELL WELLHEAD INSPECTION FORM

(FOR SAMPLE TECHNICIAN)

Site Address	4	212	干	irst	<u>S</u>	F. 5	Pleaso	anton	Date 2/5/09
Job Number						Tec	hnician	RN	Ne Carthy Page 1 of 1
Well ID	Well Inspected - No Corrective Action Required	Well Box Meets Compliance Requirements "See Below	Water Bailed From Wellbox	Cap Replaced	Lock Replaced	Well Not Inspected (explain in notes)	New Deficiency Identified	Previously Identified Deficiency Persists	Notes
MW-1	X	V.							
MW-18	>	Y							
MW-Z	×	义				-		2.5	
Mw-3	X	X							
MW-H	X	X							
							3.4		
							-	× ,	
			_						
			_						
	all three	criteria t	o be d	ompl TAG	iant: 1	I) WELL IS	SECURAI ECURE, A	BLE BY DES	SIGN (12"or less) 2) WELL IS MARKED WITH THE WORDS
Notes:				·					· · · · · · · · · · · · · · · · · · ·
									, y
BLAINE TECH SERVI	ICES, INC.		S	AN JOS	·	SACRAMEN	NTO LO	OS ANGELES	SAN DIEGO SEATTLE www.blainetech.com

WELL GAUGING DATA

Project # <u>090205 - RM2</u> Date <u>2</u> 5 09	Client SHELL
Site 4212 First St. Pleasonton	

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)			Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or	Notes
MUL - 1	1245	2			*42.2		35.07	56.54	1	
MW-18		4			Ø.	or .	35.07 76.11	108.10	· · · · · · · · · · · · · · · · · · ·	
MW-Z MW-3 MW-4	1248	4					32.29 32.74 34.58	45.79	7	
MW-3	1736	4					32.74	34.53	24	
MW-4	1238	4	\$			· 8	34.58	46.52	V	
					>8 <u>.</u>		 		1.	
						B				
					3	·				
						ë			dž	
					ŕ			, , , , , , , , , , , , , , , , , , ,		
								**		
								eg d	1:	
					r i			100 m	¥.	
				7						
The second secon	***************************************					·		- Commence		1.
					1				- # 	\$2.1

BTS#: 🔿	90205	- Ronz	,	Site: 4217	First SL	Pleasonton			
Sampler:	RM			Date: 2/5/09					
Well I.D.: v	NW-	l		Well Diameter: 2 3 4 6 8					
Total Well	Depth (TD)): 5(054	Depth to Water (DTW): 55.07					
Depth to Fr	ee Produc	t:		Thickness of Free Product (feet):					
Referenced	to:	PVC	Grade	D.O. Meter (i	f req'd):	YSI HACH			
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20	0) + DTW]:	9.36			
Positive Air Displacement Extraction Pump Extraction Port						Disposable Bailer Extraction Port Dedicated Tubing Diameter Multiplier 0.65 1.47			
			Cond.	Turbidity					
Time	Temp (°F)	pН	(mS or μS)	(NTUs)	Gals. Removed	Observations			
1423	673	6.93	1775	71000	3.5				
1427	68.8	6.59	1796	>1000	7				
1431	68.5	6.62	1798	71000	10.5				
			DTW-	47.54					
Did well de	water?	Yes (No)	Gallons actua	lly evacuated: [0.5			
Sampling D	ate:2/5/	09	Sampling Time	e: 1631	Depth to Wate	r: 40.54 (24)			
Sample I.D.	: MW-1			Laboratory:	CalScience Colu	ımbia Other			
Analyzed fo	or: TPH-G	BTEX	МТВЕ ТРН-D	Oxygenates (5)	Other:				
EB I.D. (if a	applicable):	@ Time	Duplicate I.D.	(if applicable):				
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:				
D.O. (if req	'd): P	re-purge:		mg/L	Post-purge:	mg/L			
O.R.P. (if re	eq'd): P	re-purge:		mV	Post-purge:	mV			

BTS #: 09	0205-R	MZ		Site: 4212 First St. Pleasanton					
Sampler: (1	Date: 2/5/09				
Well I.D.:	MW-15	>		Well Diameter	Well Diameter: 2 3 4 6 8				
Total Well	Depth (TD): 109	8.10	Depth to Wate	Depth to Water (DTW): 76 以 って				
Depth to Fr					Free Product (fe				
Referenced		PVC	> Grade	D.O. Meter (if		YSI HACH			
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20) + DTW]: 6.	39 82.51			
	Bailer Disposable B Positive Air I Electric Subn	Displaceme nersible	nt Extrac Other	Well Diamet	0.04 4"	Disposable Bailer Extraction Port Dedicated Tubing Diameter Multiplier 0.65			
20.8 (1) Case Volume		ろ fied Volum	$_{\text{les}} = \frac{62.4}{\text{Calculated Vo}}$		0.16 6" 0.37 Othe	1.47 r radius ² * 0.163			
Time	Temp (°F)	рН	Cond. (mS or (uS)	Turbidity (NTUs)	Gals. Removed	Observations			
1318	65.7	7.51	1109	71000	20.8	Brown			
1321	67.0	7.46	1133	634	41.6	Bosion			
1324	67.3	7.22	1134	261	62.4	v 6			
		·							
	·		DTV -	16.24					
Did well de	water?	Yes (No	Gallons actual	ly evacuated:	62.4			
Sampling D	ate: 2/5	109	Sampling Time	e: 1335	Depth to Wate	r: 76.24			
Sample I.D.	: MW-1	S		Laboratory:	CalScience Colu	ımbia Other			
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: SEE	0 C			
EB I.D. (if a	applicable)):	(a) Time	Duplicate I.D.	(if applicable):				
Analyzed fo	or: TPH-G	BTEX	МТВЕ ТРН-D	Oxygenates (5)	Other:				
D.O. (if req	'd): Pı	re-purge:		mg/L I	Post-purge:	$^{ m mg}/_{ m L}$			
ORP (if re	ea'd). Pr	re-nurge:		mV I	Post-nurge:	${ m mV}$			

BTS #: 60	20005-	RMZ		Site: 4217 First St. Pleasanton						
Sampler: (Date: 2 5 09						
Well I.D.:	iMw-Z	Percent		Well Diameter: 2 3 4 6 8						
Total Well	Depth (TD)): <(5	779	Depth to W	Depth to Water (DTW): 32.79					
Depth to Fr	ee Product	t:		Thickness of	Thickness of Free Product (feet):					
Referenced	to:	PVC	Grade	D.O. Meter	(if req'd):		YSI HACH			
DTW with	80% Rech	arge [(H	leight of Water	Column x 0	.20) + DTV	v]: 3'	1.99			
8,8 (Displaceme nersible	Other	Well D 1" 2" 3"	Samplin iameter Multiplic 0.04 0.16 0.37	Other: Well 1 6" Othe	Disposable Bailer Extraction Port Dedicated Tubing Diameter Multiplier 0.65 1.47			
1 Case Volume	Speci	fied Volum								
Time	Temp (°F)	рН	Cond. (mS or (uS))	Turbidity (NTUs)	1	emoved	Observations			
1401	68.1	671	1036	44.3	8.8	S	very dear			
1403	69.2	656	1091	16.6	17.	9	u //			
1405	68.6	6.50	1074	23.7	26	. – –	v #			
			DTV0-43	.23						
Did well de	water?	Yes	No	Gallons act	ually evacu	ated:	264			
Sampling D	Pate: 215	109	Sampling Time	e: 1605	Depth t	o Wate	r: 40.63 (ZN-)			
Sample I.D.	: MW-	7		Laboratory:	CalScien	ce Colu	ımbia Other			
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5) Other:	DEE_	COC			
EB I.D. (if	applicable)):	(a) Time	Duplicate I.	D. (if appli	cable):				
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5	5) Other:					
D.O. (if req	'd): P	re-purge:		mg/L	Post-purge	:	mg/L			
O.R.P. (if re	ea'd): P	re-nurge:		mV	Post-purge):	mV			

BTS#: 090205- RMZ	Site	Site: 4217 First St. Pleasanton					
Sampler: W	Dat	Date: 7 5 09					
Well I.D.: WW-3	Wel	Well Diameter: 2 3 (4) 6 8					
Total Well Depth (TD): て4.53	Dep	th to Wate	er (DTW): 37	.74 25			
Depth to Free Product:	Thic	ckness of I	Free Product (fee	et):			
Referenced to: (PVC) Gra	ide D.C	. Meter (if	req'd):	YSI HACH			
DTW with 80% Recharge [(Height of	`Water Colı	ımn x 0.20)) + DTW]: 3	3.05			
Purge Method: Bailer Disposable Bailer Positive Air Displacement	Wat Perista Extraction Po ther	erra altic	Sampling Method:	Bailer Disposable Bailer Extraction Port Dedicated Tubing			
$\frac{1 \text{ Case Volume}}{1 \text{ Case Volume}} (Gals.) \times \frac{1}{\text{Specified Volumes}} = \frac{1}{\text{Calc}}$	S Gals	1"	0.04 4" 0.16 6" 0.37 Othe	0.65 1.47			
Time Temp (°F) pH (mS o		Γurbidity (NTUs)	Gals. Removed	Observations			
1346 67.5 7.03 90	7.3	79.5	7	oder			
1348 689 689 854	1.6	49.9	2				
WELL DEWATERS	EO (P)	2 galle	ons				
1532 67.6 7.03 861		79.9	6.2cm/code/still/still/streamments/st				
-B760	59:23	•					
Did well dewater? Yes No	Gall	ons actual	ly evacuated:	2			
Sampling Date: 2/5/09 Samplin	ng Time: \	535	Depth to Wate	r: 33.02			
Sample I.D.: Mw-3	Lab	oratory:	CalScience Colu	umbia Other			
Analyzed for: TPH-G BTEX MTBE	трн-д Оху	genates (5)	Other: SEE (Joc			
EB I.D. (if applicable):	me Dup	licate I.D.	(if applicable):				
Analyzed for: TPH-G BTEX MTBE	трн-D Оху <u>ғ</u>	genates (5)	Other:				
D.O. (if req'd): Pre-purge:	r	ng/L	Post-purg:	mg/L			
O.R.P. (if req'd): Pre-purge:	n	nV]	Post-purge:	mV			

BTS#: C	90205.	- RMZ		Site: 4212 First St. Pleasenton						
Sampler:	ZM			Date: 2/5/39						
Well I.D.:	MW-4			Well Diameter: 2 3 4 6 8						
Total Well	Depth (TD)): 4(d	257	Depth to Water (DTW): 34.58						
Depth to Fr		***************************************		Thickness	Thickness of Free Product (feet):					
Referenced		PVC	Grade	D.O. Mete	r (if	req'd):	YSI HACH			
DTW with	80% Rech	arge [(H	eight of Water	Column x (0.20) + DTW]: Z	0.97			
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme		Waterra Peristaltic tion Pump		Sampling Method:	Disposable Bailer Extraction Port Dedicated Tubing			
7.8 (c) 1 Case Volume	Gals.) X Speci	5 fied Volum	= 23.4 es Calculated Vo	Gals. 2	11	er Multiplier Well 0.04 4" 0.16 6" 0.37 Othe	Diameter Multiplier 0.65 1.47 r radius ² * 0.163			
Time	Temp (°F)	pН	Cond. (mS or (µS)	Turbidit (NTUs)	-	Gals. Removed	Observations			
1444	67.0	675	958,9	753		7.8				
1446	68.1	6.57	1006	7100	2	15.6				
1448	68.4	659	1005	71000	>	23.4				
			DTW-48	2.14	***************************************					
Did well de	water?	Yes (No	Gallons ac	tuall	y evacuated:	23.4			
Sampling D	Date: 7/5	109	Sampling Time	e: 1600		Depth to Wate	r: 35.33			
Sample I.D	: MW-L	-{		Laboratory	7: (CalScience Colu	ımbia Other			
Analyzed fo	or: TPH-G	BTEX	МТВЕ ТРН-D	Oxygenates	(5)	Other: SEE	COC			
EB I.D. (if	applicable):	@ Time	Duplicate 1	I.D.	(if applicable):				
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates	(5)	Other:				
D.O. (if req	('d): P	re-purge:		mg/L	P	ost-purge:	mg/ _L			
ORP (if re	ea'd). P	re nurge:		mV	р	ost-purge:	mV			

APPENDIX B

BLAINE TECH SERVICES, INC. FIELD PROCEDURES

GROUNDWATER SAMPLING SPECIALISTS
SINCE 1985

February 25, 2009

Denis Brown Shell Oil Products US 2095 South Wilmington Avenue Carson, CA 90810

> First Quarter 2009 Groundwater Monitoring at Shell-branded Service Station 4212 First Street Pleasanton, CA

Monitoring performed on February 5, 2009

Groundwater Monitoring Report 090205-RM-2

This report covers the routine monitoring of groundwater wells at this Shell-branded facility. In accordance with standard procedures that conform to Regional Water Quality Control Board requirements, routine field data collection includes depth to water, total well depth, thickness of any separate immiscible layer, water column volume, calculated purge volume (if applicable), elapsed evacuation time (if applicable), total volume of water removed (if applicable), and standard water parameter instrument readings. Sample material is collected, contained, stored, and transported to the laboratory in conformance with EPA standards. Purgewater (if applicable) is, likewise, collected and transported to the Martinez Refining Company.

Basic field information is presented alongside analytical values excerpted from the laboratory report in the cumulative table of **WELL CONCENTRATIONS**. The full analytical report for the most recent samples and the field data sheets are attached to this report.

At a minimum, Blaine Tech Services, Inc. field personnel are certified on completion of a forty-hour Hazardous Materials and Emergency Response training course per 29 CFR 1910.120. Field personnel are also enrolled in annual eight-hour refresher courses.

Blaine Tech Services, Inc. conducts sampling and documentation assignments of this type as an independent third party. Our activities at this site consisted of objective data and sample collection only. No interpretation of analytical results, defining of hydrological conditions or formulation of recommendations was performed.

Please call if you have any questions.

Yours truly,

Mike Ninokata Project Manager

MN/jb

attachments: Cumulative Table of WELL CONCENTRATIONS

Certified Analytical Report

Field Data Sheets

cc: Suzanne McClurkin-Nelson Delta Environmental 175 Bernal Rd., Suite 200 San Jose, CA 95119

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE

BLAINE TECH SERVICES, INC. METHODS AND PROCEDURES FOR THE ROUTINE MONITORING OF **GROUNDWATER WELLS AT SHELL SITES**

Blaine Tech Services, Inc. performs environmental sampling and documentation as an independent third party. We specialize in groundwater monitoring assignments and intentionally limit the scope of our services to those centered on the generation of objective information.

To avoid conflicts of interest, Blaine Tech Services, Inc. personnel do not evaluate or interpret the information we collect. As a state licensed contractor (C-57 well drilling -water - 746684) performing strictly technical services, we do not make any professional recommendations and perform no consulting of any kind.

SAMPLING PROCEDURES OVERVIEW

SAFETY

All groundwater monitoring assignments performed for Shell comply with Shell's safety guidelines, 29 CFR 1910.120 and SB-198 Injury and Illness Prevention Program (IIPP). All Field Technicians receive the full 40-hour 29CFR 1910.120 OSHA SARA HAZWOPER course, medical clearance and on-the-job training prior to commencing any work on any Shell site.

INSPECTION AND GAUGING

Wells are inspected prior to evacuation and sampling. The condition of the wellhead is checked and noted according to a wellhead inspection checklist.

Standard measurements include the depth to water (DTW) and the total well depth (TD) obtained with industry standard electronic water level indicators that are graduated in increments of hundredths of a foot.

The water in each well is inspected for the presence of immiscibles. When free product is suspected, its presence is confirmed using an electronic interface probe (e.g. MMC). No samples are collected from a well containing over two-hundredths of a foot (0.02') of product.

EVACUATION

Depth to water measurements are collected by our personnel prior to purging and minimum purge volumes are calculated anew for each well based on the height of the water column and the diameter of the well. Expected purge volumes are never less than three case volumes and are set at no less than four case volumes in some jurisdictions.

Well purging devices are selected on the basis of the well diameter and the total volume to be evacuated. In most cases the well will be purged using an electric submersible pump (i.e. Grundfos) suspended near (but not touching) the bottom of the well.

PARAMETER STABILIZATION

Well purging completion standards include minimum purge volumes, but additionally require stabilization of specific groundwater parameters prior to sample collection. Typical groundwater parameters used to measure stability are electrical conductivity, pH, and temperature. Instrument readings are obtained at regular intervals during the evacuation process (no less than once per case volume).

Stabilization standards for routine quarterly monitoring of fuel sites include the following: Temperature is considered to have stabilized when successive readings do not fluctuate more than +/- 1 degree Celsius. Electrical conductivity is considered stable when successive readings are within 10%. pH is considered to be stable when successive readings remain constant or vary no more than 0.2 of a pH unit.

DEWATERED WELLS

Normal evacuation removes no less than three case volumes of water from the well. However, less water may be removed in cases where the well dewaters and does not immediately recharge.

MEASURING RECHARGE

Upon completion of well purging, a depth to water measurement is collected and notated to ensure that the well has recharged to within 80% of its static, pre-purge level prior to sampling.

Wells that do not immediately show 80% recharge or dewatered wells will be allowed a minimum of 2 hours to recharge prior to sampling. The water level at time of sampling will be noted.

PURGEWATER CONTAINMENT

All non-hazardous purgewater evacuated from each groundwater monitoring well is captured and contained in on-board storage tanks on the Sampling Vehicle and/or special water hauling trailers. Effluent from the decontamination of reusable apparatus (sounders, electric pumps and hoses etc.), consisting of groundwater combined with deionized water and non-phosphate soap, is also captured and pumped into effluent tanks.

Non-hazardous purgewater is transported under standard Bill of Lading documentation to a Blaine Tech Services, Inc. facility before being transported to a Shell approved disposal facility.

SAMPLE COLLECTION DEVICES

All samples are collected using a stainless steel, Teflon or disposable bailers.

SAMPLE CONTAINERS

Sample material is decanted directly from the sampling bailer into sample containers provided by the laboratory that will analyze the samples. The transfer of sample material from the bailer to the sample container conforms to specifications contained in the USEPA T.E.G.D. The type of sample container, material of construction, method of closure and filling requirements are specific to the intended analysis. Chemicals needed to preserve the sample material are commonly placed inside the sample containers by the laboratory or glassware vendor prior to delivery of the bottle to our personnel. The laboratory sets the number of replicate containers.

TRIP BLANKS

Trip Blanks, if requested, are taken to the site and kept inside the sample cooler for the duration of the event. They are turned over to the laboratory for analysis with the samples from that site.

DUPLICATES

Duplicates, if requested, may be collected at a site. The Field Technician uses their discretionin choosing the well at which the Duplicate is collected, typically one suspected of containing measurable contaminants. The Duplicate sample is labeled "DUP" and the time of collection is omitted from the COC, thus rendering the sample blind.

SAMPLE STORAGE

All sample containers are promptly placed in food grade ice chests for storage in the field and transport (direct or via our facility) to the designated analytical laboratory. These ice chests contain quantities of restaurant grade ice as a refrigerant material. The samples are maintained in either an ice chest or a refrigerator until relinquished into the custody of the laboratory or laboratory courier.

DOCUMENTATION CONVENTIONS

A label must be affixed to all sample containers. In most cases these labels are generated by our office personnel and are partially preprinted. Labels can also be hand written by our field personnel. The site is identified with the store number and site address, as is the particular groundwater well from which the sample is drawn (e.g. MW-1, MW-2, S-1 etc.). The time and date of sample collection along with the initials of the person who collects the sample are handwritten onto the label.

Chain of Custody records are created using client specific preprinted forms following USEPA specifications.

Bill of Lading records are contemporaneous records created in the field at the site where the non-hazardous purgewater is generated. Field Technicians use preprinted Bill of Lading forms.

DECONTAMINATION

All equipment is brought to the site in clean and serviceable condition and is cleaned after use in each well and before subsequent use in any other well. Equipment is decontaminated before leaving the site.

The primary decontamination device is a commercial steam cleaner. The steam cleaner is detuned to function as a hot pressure washer that is then operated with high quality deionized water that is produced at our facility and stored onboard our sampling vehicle. Cleaning is facilitated by the use of proprietary fixtures and devices included in the patented workstation (U.S. Patent 5,535,775) that is incorporated in each sampling vehicle. The steam cleaner is used to decon reels, pumps and bailers.

Any sensitive equipment or parts (i.e. Dissolved Oxygen sensor membrane, water level indicator, etc.) that cannot be washed using the high pressure water, will be sprayed with a nonphosphate soap and deionized water solution and rinsed with deionized water,

DISSOLVED OXYGEN READINGS

Dissolved Oxygen readings are taken pre- and/or post-purge using YSI meters (e.g. YSI Model 54, 58 or 95) or HACH field test kits.

The YSI meters are equipped with a stirring device that enables them to collect accurate in-situ readings. The probe/stirring devices are modified to allow downhole measurements to be taken from wells with diameters as small as two inches. The probe and reel is decontaminated between wells as described above. The meter is calibrated between wells as per the instructions in the operating manual. The probe and stirrer is lowered into the water column. The reading is allowed to stabilize prior to collection.

OXYIDATON REDUCTION POTENTIAL READINGS

All readings are obtained with either Corning or Myron-L meters (e.g. Corning ORP-65 or a Myron-L Ultrameter GP). The meter is cleaned between wells as described above. The meter is calibrated at the start of each day according to the instruction manual.

FERROUS IRON MEASUREMENTS

All field measurements are collected at time of sampling with a HACH test kit.

APPENDIX C

CERTIFIED LABORATORY REPORT WITH CHAIN-OF-CUSTODY DOCUMENTATION

February 23, 2009

Michael Ninokata Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105

Subject: Calscience Work Order No.: 09-02-0792

Client Reference: 4212 First St., Pleasanton, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 2/7/2009 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Philip Samelle for

Laboratories, Inc. Jessie Kim

Project Manager

CA-ELAP ID: 1230 · NELAP ID: 03220CA · CSDLAC ID: 10109 · SCAQMD ID: 93LA0830
7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Analytical Report

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation:

EPA 5030B

Method: Units:

LUFT GC/MS / EPA 8260B

ug/L

Project: 4212 First St., Pleasanton, CA

Page 1 of 2

02/07/09

09-02-0792

•											
Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti Analyz		QC Batch ID
MW-1			09-02-0)792-1-A	02/05/09 16:31	Aqueous	GC/MS LL	02/16/09	02/16/ 19:4		090216L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF	<u>Qual</u>
Benzene	26	12	25		Methyl-t-Buty	l Ether (MTB	E)	1700	25	25	
Ethylbenzene	ND	25	25		Tert-Butyl Alc	cohol (TBA)		340	250	25	
Toluene	ND	25	25		TPPH			2100	1200	25	
Xylenes (total)	ND	25	25								
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		Qual
Dibromofluoromethane	103	74-140			1,2-Dichloroe	thane-d4		101	74-146		
Toluene-d8	99	88-112			Toluene-d8-T	PPH		99	88-112		
1,4-Bromofluorobenzene	97	74-110									
MW-1B			09-02-0	792-2-A	02/05/09 13:35	Aqueous	GC/MS LL	02/16/09	02/16/ 20:0		090216L01
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.50	1		Methyl-t-Buty	l Ether (MTB)	F)	4.4	1.0	1	
Ethylbenzene	ND	1.0	1		Tert-Butyl Alc	,	_,	ND	10	1	
Toluene	ND	1.0	1		TPPH	(ND	50	1	
Xylenes (total)	ND	1.0	1							•	
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control		Qual
		Limits							Limits		
Dibromofluoromethane	105	74-140			1,2-Dichloroe	thane-d4		103	74-146		
Toluene-d8	99	88-112			Toluene-d8-T	PPH		99	88-112		
1,4-Bromofluorobenzene	98	74-110									
MW-2			09-02-0)792-3-A	02/05/09 16:05	Aqueous	GC/MS LL	02/16/09	02/16/ 20:3		090216L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	10	20		Methyl-t-Buty	l Ether (MTR	F)	1000	20	20	
Ethylbenzene	ND	20	20		Tert-Butyl Alc	,	-,	ND	200	20	
Toluene	ND	20	20		TPPH	(12,1)		1200	1000	20	
Xylenes (total)	ND	20	20						. 500	20	
Surrogates:	REC (%)	Control Limits	23	<u>Qual</u>	Surrogates:			REC (%)	Control Limits		Qual
Dibromofluoromethane	102	74-140			1,2-Dichloroe	thane-d4		100	74-146		
Toluene-d8	101	88-112			Toluene-d8-T			101	88-112		
1,4-Bromofluorobenzene	97	74-110			. Oldono do-1				50 112		
.,. 210110110010001120110	51	7 - 110									

DF - Dilution Factor

Analytical Report

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation:

09-02-0792 EPA 5030B

02/07/09

Method: Units: LUFT GC/MS / EPA 8260B

ug/L

Project: 4212 First St., Pleasanton, CA

Page 2 of 2

110,000. 12121	,	, 5, .								- ∽9	0 2 0. 2
Client Sample Number				ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti Analyz		QC Batch ID
MW-3			09-02-0	0792-4-A	02/05/09 15:35	Aqueous	GC/MS LL	02/16/09	02/16/ 21:0		090216L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.50	1		Methyl-t-Buty	l Ether (MTB	E)	1.1	1.0	1	
Ethylbenzene	ND	1.0	1		Tert-Butyl Ald	cohol (TBA)		ND	10	1	
Toluene	ND	1.0	1		TPPH			ND	50	1	
Xylenes (total)	ND	1.0	1								
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
Dibromofluoromethane	102	74-140			1,2-Dichloroe	ethane-d4		100	74-146		
Toluene-d8	100	88-112			Toluene-d8-T			100	88-112		
1,4-Bromofluorobenzene	96	74-110									
MW-4			09-02-0	0792-5-A	02/05/09 16:00	Aqueous	GC/MS LL	02/16/09	02/16/ 21:2		090216L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	200	100	200		Methyl-t-Buty	d Ether (MTR	E)	13000	200	200	
Ethylbenzene	ND	200	200		Tert-Butyl Ald		_)	ND	2000	200	
Toluene	ND	200	200		TPPH	conor (TDA)		15000	10000	200	
Xylenes (total)	ND	200	200					10000	10000	200	
Surrogates:	REC (%)	Control	200	Qual	Surrogates:			REC (%)	Control		Qual
<u> </u>	<u>::== (70)</u>	Limits		<u> </u>	<u> </u>			1120 (10)	Limits		400
Dibromofluoromethane	104	74-140			1,2-Dichloroe	ethane-d4		102	74-146		
Toluene-d8	100	88-112			Toluene-d8-T	TPPH		100	88-112		
1,4-Bromofluorobenzene	96	74-110									
Method Blank			099-12	2-767-1,126	6 N/A	Aqueous	GC/MS LL	02/16/09	02/16/ 15:0		090216L01
Dorometer	Popult	DI	DE	Ougl	Doromotor			Popult	DI	DE	Ouel
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter Market Port	LEO - AATS	_\	Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.50	1		Methyl-t-Buty	,	∟)	ND	1.0	1	
Ethylbenzene	ND	1.0	1		Tert-Butyl Ald	conol (TBA)		ND	10	1	
Toluene	ND	1.0	1		TPPH			ND	50	1	
Xylenes (total)	ND	1.0	1	Ougl	Curromotor			DEC (0/)	Control		Ougl
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits		Qual
Dibromofluoromethane	98	74-140			1,2-Dichloroe	ethane-d4		95	74-146		
Toluene-d8	99	88-112			Toluene-d8-T	TPPH		99	88-112		
1,4-Bromofluorobenzene	97	74-110									

Quality Control - Spike/Spike Duplicate

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: 02/07/09 09-02-0792 EPA 5030B LUFT GC/MS / EPA 8260B

Project 4212 First St., Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number	
09-02-0782-5	Aqueous	GC/MS LL	02/16/09	02/16/09		090216S01	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>	
Benzene	88	88	88-118	0	0-7		
Carbon Tetrachloride	90	89	67-145	1	0-11		
Chlorobenzene	92	91	88-118	1	0-7		
1,2-Dibromoethane	94	93	70-130	1	0-30		
1,2-Dichlorobenzene	94	95	86-116	1	0-8		
1,1-Dichloroethene	84	83	70-130	1	0-25		
Ethylbenzene	91	90	70-130	2	0-30		
Toluene	90	90	87-123	0	0-8		
Trichloroethene	87	86	79-127	0	0-10		
Vinyl Chloride	79	80	69-129	2	0-13		
Methyl-t-Butyl Ether (MTBE)	97	97	71-131	1	0-13		
Tert-Butyl Alcohol (TBA)	95	97	36-168	3	0-45		
Diisopropyl Ether (DIPE)	93	93	81-123	0	0-9		
Ethyl-t-Butyl Ether (ETBE)	98	99	72-126	1	0-12		
Tert-Amyl-Methyl Ether (TAME)	100	100	72-126	0	0-12		
Ethanol	116	115	53-149	0	0-31		

RPD - Relative Percent Difference , CL - Control Limit

Quality Control - LCS/LCS Duplicate

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method:

09-02-0792 EPA 5030B

N/A

LUFT GC/MS / EPA 8260B

Project: 4212 First St., Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	ate yzed	LCS/LCSD Numbe	
099-12-767-1,126	Aqueous	Aqueous GC/MS LL		02/16/09		090216L	01
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers
Benzene	91	94	84-120	78-126	3	0-8	
Carbon Tetrachloride	95	100	63-147	49-161	6	0-10	
Chlorobenzene	96	97	89-119	84-124	2	0-7	
1,2-Dibromoethane	100	103	80-120	73-127	3	0-20	
1,2-Dichlorobenzene	98	100	89-119	84-124	2	0-9	
1,1-Dichloroethene	82	94	77-125	69-133	14	0-16	
Ethylbenzene	95	98	80-120	73-127	4	0-20	
Toluene	94	97	83-125	76-132	2	0-9	
Trichloroethene	94	99	89-119	84-124	5	0-8	
Vinyl Chloride	81	90	63-135	51-147	10	0-13	
Methyl-t-Butyl Ether (MTBE)	102	106	82-118	76-124	4	0-13	
Tert-Butyl Alcohol (TBA)	99	103	46-154	28-172	3	0-32	
Diisopropyl Ether (DIPE)	97	100	81-123	74-130	3	0-11	
Ethyl-t-Butyl Ether (ETBE)	105	107	74-122	66-130	2	0-12	
Tert-Amyl-Methyl Ether (TAME)	108	108	76-124	68-132	1	0-10	
Ethanol	113	112	60-138	47-151	1	0-32	
TPPH	97	90	65-135	53-147	7	0-30	

Total number of LCS compounds: 17

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order Number: 09-02-0792

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out or control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

First St. Delicate Notices	LAB (LOCATION)					5			S	hell	0	il F	Pro	du	cts	s C	ha	in	Of	Cu	ste	ody	y R	ec	or	d							
	CALSCIENCE ()		PI	ease (te Bo	X:		Pri	int B	ill T	o Co	nta	et N	me:					:))\	CIDI	ENT:	# (E	NV S	SEF	RVIC	ES)	Псн	ECK IE NO I	NCIDENT	# APPLIE
					□ мо	TIVA RE	ETAIL		SHELL	RETAIL	$ _{De}$										1	1	T	7	' i · ·	· · · · · ·							
		□ м	OTIVA SD&C	:м	or con	NSULTA	NT		LUBES							PO	#							+				<u> </u>		1	· L	101	
The Technology Control of the Principles of the		☐ s⊦	ELL PIPELIN	IE .	П отн	HER					ا	T	T	T	T	T	T		T	T	1-1-1-1-			T	T T	T	T	T	T	PA	GE:	1	of
Repert Aver, San Jose, CA 95112 State St	FLING COMPANY				- 1						SIT	E ADDE	RESS:	Street a	and City	У	<u> </u>	L				State		<u> </u>	GLO	ĐÁL ID N	NO	Щ.	<u> Т</u>	1			
Registry Association Section S	Blaine Tech Services BTSS																CA								_								
MARKED M	80 Rogers Ave, San Jose, CA 95112																			HONE N	5				E-MAI	L					CONSU	ILTANT PRO そのと の	SUECTNO S
MANISTRANSS MANIS	chael Ninokata										Jor	PLER NA	ng, D	Print)	Mon	rovia	Offic	e	6	26.2	56.66	62			jsu	ng@	}delf	taenv		anee e	BTS#		energe
SEALT SERVICE OF MECKED STATE SERVICE ST		71									1	7	N	10/	1	الما																	
AL PRICES REPORT FORMAT UST AGRICUS AL PRICES REPORT FORMAT UST AGRICUS AL PRICES REPORT FORMAT UST AGRICUS C SEZENDA MCCUrkin-Habon on Wiffield report INTER REPORT REPORT RATE AFFUELS C SEZENDA MCCUrkin-Habon on Wiffield report INTER REPORT VISURE ATTOM REQUESTED INTER VISURE ATTOM REQUESTED INTER REPORT VISURE ATTOM REQUESTED	URNAROUND TIME (CALENDAR DAYS):							RESULT	S NEEDE	D	╁	س	- 1	<u> </u>	√عر	V	<u>~Y</u>												()	-1 - C	12-0	74	۷.
FECIAL INSTRUCTIONS OR NOTES: C SEZARAS MECHIFIC-NELLOS OR NOTES: C SEZARAS MECHIFICANION RECUESTOR		s	2 DAYS		24 HOUR	s 					┺			_	,						RE	QUE	STED	ANA	\LY:	SIS							
AND TE TIME MATERIAL OF THE PROSERVATIVE MATERIAL TO REQUESTED MAT	LA - RWQCB REPORT FORMAT UST AGENCY:										4	_	1	į.		-															TEMPER/	TURE (ON REC
AND TE TIME MATERIAL OF THE PROSERVATIVE MATERIAL TO REQUESTED MAT	SPECIAL INSTRUCTIONS OR NOTES :								DI TEC		9	15 M		E, 78																		C۰	
AND TE TIME MATERIAL OF THE PROSERVATIVE MATERIAL TO REQUESTED MAT	•							NATE AF	rucs		826	80	١,	(MTB			ĺ																
Field Sample Identification DATE TIME MATRIX MINO 1 1820 NO.0 1 1820 NO.0 OTHER OFF. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Run TPH-d w/Silica Gel Clean Up							REQUEST	ΈD		ble	aple			_					<u> </u>		<u>a</u>	5M)			!				H			
Field Sample Identification DATE TIME MATRIX MINO 1 1820 NO.0 1 1820 NO.0 OTHER OFF. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1919	- SAN	BLING		···						- E	ractz	80B)	\$ (826 ETBE	60B)	8	9	60B)	(800	2260	<u>@</u>	2601	(801				1						
MW-1 MW-1R	Field Sample Identification	SAM	T		-		PRESER	VATIVE	1	NO. OF	14	Ä	(82	enate AME,	(82	826	(826	(82	826	<u>ج</u>	8260	8	ou										
MW-1 MW-1R	Field Sample Identification	DATE	TIME	MAI					1	CONT.		표	Ĕ	Oxyg	TBE	BA (PE	AME	18E	Ĭ	90	than	etha										
MW-7 MW-3 IS35 S X X X X X MW-3 IS35 S X X X X X MW-4 MW-4 V 1600 S S S X X X X X MX MW-4 V 1600 S S S X X X X X X MX MW-4 V 1600 S S S X X X X X X MX MW-4 V 1600 S S S X X X X X X X X X X X X X X X X	5.5.	2/5/0	11.71	12			03 H2SO	14 NONE	OTHER	+	╁	+	+	\$ 0	-		Δ	-	ш,	-	W	ũ	Σ	\vdash		-	┾	+-	+	\vdash		DOTATOT:	y 140103
MW-7 NW-3 IS3S SXXXXX MX MW-4 Is60 V3 SXXXX XXX MX Diffe: 15109 Time: 215109 Time: 2400	100	+		1				+	-		1-	+-	├ ─	\vdash		_			+	+		-1				_	├	+-	\vdash	-			
MW-4 1600 V 3 3 X X X X X X X X X X X X X X X X X	2 4.5-7	+/-		\vdash			+	+	-		1	+	┿	_		-	\vdash	_	+	+-		\dashv					╀	+-	\vdash				
MW-4 1600 V 3 3 X X X X X X X X X X X X X X X X X	1 1	++-						+			1		 	+				\dashv		+		-				<u> </u>	╀	+	+				
Beauty (Signature) MC Date: 2 5 109 1725 Received by (Signature) Received by (Signature) WC DATE: Time: 2 5 09 Time: 2 5 09 Time: 2 7 09 Time:		1		67		-			1		-	1	-			\vdash		_		_	\dashv	_					\vdash	+	 				
Model by: (Signature) Received by: (Signature) Received by: (Signature) CEC Date: Time: 2/2/09 Time: 2/		+~-	1600	_ v	<u></u>	3_		-	 	S	X	 	×		ベ	X	_	_	_	-	_						$oxed{oldsymbol{oldsymbol{oldsymbol{eta}}}}$	_	$\perp \perp$				
Model by: (Signature) Received by: (Signature) Received by: (Signature) CEC Date: Time: 2/2/09 Time: 2/			ļ			4		_			L		_						_								L						
Model by: (Signature) Received by: (Signature) Received by: (Signature) CEC Date: Time: 2/2/09 Time: 2/								<u>. </u>																l								_	
Model by: (Signature) Received by: (Signature) Received by: (Signature) CEC Date: Time: 2/2/09 Time: 2/									ł									\Box										1	\Box				
Model by: (Signature) Received by: (Signature) Received by: (Signature) CEC Date: Time: 2/2/09 Time: 2/		 				+	_	+	<u> </u>			l .					- 1	\dashv	-	╁	-+	\dashv				\dashv	-	\vdash	\vdash				
Model by: (Signature) Received by: (Signature) Received by: (Signature) CEC Date: Time: 2/2/09 Time: 2/		 				+	-	<u> </u>	ļ		<u> </u>		_		_			_	_	_							<u> </u>	1					
Model by: (Signature) Received by: (Signature) Received by: (Signature) CEC Date: Time: 2/2/09 Time: 2/			L. I																ĺ	ļ		ł								-			
VCATUM JCO9 Received by: (Signature) Date: VITING: V	inguished by: (Signature)			Received					10		.		Λ	<u> </u>		-	<u> </u>	<u>'</u> -					_	Dale:		_		٠	-				
VCATUM JCO9 Received by: (Signature) Date: VITING: V	Kell of Som	Meland Yill a left of and									do (ustalion)									25109						1725							
(30 730) Wobat CE 2/7/09 1000	inquisMed by: (Signature)			Ro (a)	by: A Coli	urby E'T	T)	<u> </u>	\Box			`	<u> </u>		0		ナ								•	<u> </u>	_						
(30 730) Wobat CE 2/7/09 1000	Ichtim				(*			_	<u> </u>	>			٤ (١		Ċ								Ī	2	(_ ~	∂ ′	9		1	(3)	>	
1000 PHO	inquished by: (Signature)	10-	09	Received	by: (Signati	ure)	* \		()	(<u> </u>											Dale:	1	<u> </u>	<u>~</u>	<u> </u>	\dashv	Time:	1/0		
	Color of Gen	س سر	27)					DC	Va	T.		\bigcirc	P	ب									ļ	7	12	<u> </u>	Y	ı		In	101		
	0.00	\ \ \					<u>`</u>	-																-	17	1	<u>~~</u>					ion	

WORK ORDER #: **09-** 2 2 - 6 7 9 2

SAMPLE RECEIPT FORM

Cooler <u>\</u> of <u>\</u>

CLIENT: 1875	DATE: _	2/7/09										
TEMPERATURE: (Criteria: 0.0 °C − 6.0 °C, not frozen) Temperature °C − 0.2 °C (CF) = ^ °C Sample(s) outside temperature criteria (PM/APM contacted by:).	Blank	☐ Sample										
 □ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling. □ Received at ambient temperature, placed on ice for transport by Courier. 												
Ambient Temperature: ☐ Air ☐ Filter ☐ Metals Only ☐ PCBs		Initial: W5										
CUSTODY SEALS INTACT: Cooler		Initial: <u>SS</u>										
SAMPLE CONDITION: Yes	No	N/A										
Chain-Of-Custody (COC) document(s) received with samples												
COC document(s) received complete												
Sampler's name indicated on COC												
Sample container label(s) consistent with COC												
Sample container(s) intact and good condition												
Correct containers and volume for analyses requested												
Analyses received within holding time												
Proper preservation noted on COC or sample container		. 🗆										
Volatile analysis container(s) free of headspace												
Tedlar bag(s) free of condensation												
CONTAINER TYPE:												
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve □EnCores® □1												
Water: □VOA ☑VOAh □VOAna₂ □125AGB □125AGBh □125	5AGBpo₄ □	1AGB □1AGBna₂										
□1AGBs □500AGB □500AGBs □250CGB □250CGBs □1PB □												
□250PBn □125PB □125PBznna □100PBsterile □100PBna₂ □												
Air: ☐Tedlar® ☐Summa® ☐ Container: C:Clear A:Amber P:Poly/Plastic G:Glass J:Jar B:Bottle Preservative: h:HCL n:HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na:NaOH po ₄ :H ₃ PO ₄ s:H ₂ SO ₄ znna:ZnAc ₂ -	Checked/L Re	abeled by: $\frac{1}{2}$										