August 13, 2008 DELTA Project No.SCA421211 SAP No. 135782

Mr. Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

RECEIVED

10:32 am, Aug 13, 2008

Alameda County Environmental Health

Re: SECOND QUARTER 2008 GROUNDWATER MONITORING REPORT

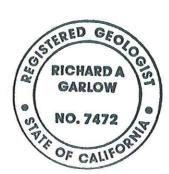
Shell-Branded Service Station 4212 First Street Pleasanton, California

Dear Mr. Wickham:

On behalf of Shell Oil Products (SHELL), Delta Consultants (DELTA) has prepared this *Second Quarter 2008 Groundwater Monitoring Report* for the above referenced site. The sampling activities at the site were performed by Blaine Tech Services, Inc. under contract to SHELL and included the collection of groundwater samples and static water level measurements. A DELTA staff member, under the supervision of a California Registered Civil Engineer or a California Professional Geologist, performed the data evaluation.

This quarterly report represents DELTA's professional opinions based upon the currently available information and is arrived at in accordance with currently acceptable professional standards. This report is based upon a specific scope of work requested by the client. The Contract between DELTA and its client outlines the scope of work, and only those tasks specifically authorized by that contract or outlined in this report were performed. This report is intended only for the use of DELTA's Client and anyone else specifically listed on this report. DELTA will not and cannot be liable for unauthorized reliance by any other third party. Other than as contained in this paragraph, DELTA makes no express or implied warranty as to the contents of this report.

Mr. Jerry Wickham Alameda County Health Care Services Agency August 13, 2008 Page 2


If you have any questions regarding this site, please contact Mr. Richard Garlow (DELTA) at (408) 826-1880 or Mr. Denis Brown (SHELL) at (707) 865-0251.

Sincerely,

Delta Consultants

Richard A. Garlow, M.S., P.G. 7472

Project Manager

Attachment: Second Quarter 2008 Groundwater Monitoring Report

cc: Mr. Denis Brown, Shell Oil Products US

Mr. Jerry Wickham Alameda County Health Care Services Agency August 13, 2008 Page 3

SHELL QUARTERLY STATUS REPORT

Station Address:	4226 First Street, Pleasanton, California
DELTA Project No.:	SCA421211
SHELL Project Manager / Phone No.:	Denis Brown / (707) 865-0251
DELTA Site Manager / Phone No.:	Richard Garlow / (408) 826-1880
Primary Agency / Regulatory ID No.:	Alameda County Health Care Services Agency (ACHCSA) / Jerry Wickham
Other Agencies to Receive Copies:	None

WORK PERFORMED THIS QUARTER (SECOND - 2008):

1. Quarterly groundwater monitoring and sampling. Submitted quarterly report.

WORK PROPOSED FOR NEXT QUARTER (THIRD - 2008):

- 1. Quarterly groundwater monitoring and sampling. Submit quarterly report.
- 2. Await agency response to DPE workplan.

Current Phase of Project:	Groundwater monitoring
Site Use:	Shell-branded Service Station
Frequency of Sampling:	Quarterly
Frequency of Monitoring:	Quarterly
Is Separate Phase Hydrocarbon Present Onsite (Well #'s):	☐ Yes ☒ No
Cumulative SPH Recovered to Date:	NA
SPH Recovered This Quarter:	None
Sensitive Receptor(s) and Respective Direction(s):	The Arroyo Del Valle Creek is located approximately 1,133 feet north-west of the site. No municipal water supply wells were identified within a 1-mile radius of the site.
Site Lithology:	The site is underlain by interlayered silt, silty sand, gravelly sand and silty gravel.
Current Remediation Techniques:	Monitoring Natural Attenuation
Permits for Discharge:	None
Groundwater Recovered This Quarter:	174.9 gallons were recovered during sampling on May 23, 2008.
Approximate Depth to Groundwater:	31.44 to 31.80 feet below top of well casing. 57.53 feet below top of well casing in deeper Well MW1-B.
Groundwater Gradient:	North at approximately 0.03 ft/ft

SHELL QUARTERLY STATUS REPORT (CONT.)

Current Agency Correspondence:	ACHCSA letter dated December 14, 2007
Date of Most Recent Work Plan Approval:	February 2, 2007
Site History:	
Case Opening	1985
Onsite Assessment	1986 - 2007
Offsite Assessment	None
Passive Remediation	Monitoring Natural Attenuation
Active Remediation	June 2007, Step Draw Down; June – August 2007, Batch Extraction
Closure	None
Summary of Unusual Activity:	None

ATTACHMENTS:

Tables:

Table 1 – Well Concentrations

Figures:

Figure 1 – Site Location Map

Figure 2 – Groundwater Elevation Contour Map

Figure 3 – Hydrocarbon Distribution in Groundwater Map

Appendices:

Appendix A - Field Data Sheets

Appendix B – Field Procedures

Appendix C - Laboratory Report and Chain-of-Custody Documentation

TABLE

TABLE 1 WELL CONCENTRATIONS

Shell-branded Service Station 4212 First Street

	a de la companya de l						MTBE	MTBE						Depth to	GW
Well ID	Date	TPPH	В	Т	E	Х	8020	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
		(ug/L)	(MSL)	(ft.)	(MSL)										
				-					•	•					
MW-1	6/16/1999	NA	NA	NΑ	NA	371.20	37.81	333,39							
MW-1	6/30/1999	89.0	5.89	<0.500	<0.500	0.652	<5.00	NA	NA	NA	NA	NA	371.20	33.65	337.55
MW-1	9/24/1999	1,560	473	<10.0	<10.0	22.8	<2.50	NA	NΑ	NA	NA	NA	371.20	37.04	334.16
MW-1	12/8/1999	1,020	375	<5.00	<5.00	15.2	<50.0	NΑ	NΑ	NA	NA	NA	371.20	36.79	334.41
MW-1	2/10/2000	523	106	<5.00	<5.00	31.8	2.9	NΑ	NA	NA	NA	NA	371.20	34.90	336.30
MW-1	5/17/2000	<50.0	<0.500	<0.500	<0.500	<0.500	37	29.5	NA	NA	NA	NA	371.20	32.55	338.65
MW-1	8/3/2000	808	290	<2.50	<2.50	8.9	<12.5	NA	NA	NA	NA	NA	371.20	39.13	332.07
MW-1	10/31/2000	507	250	0.962	<0.500	23.5	3.76	NA	NA	NA	NA	NA	371.20	37.91	333.29
MW-1	3/1/2001	<50.0	<0.500	<0.500	<0.500	<0.500	74.6	NΑ	NA	NA	NA	NA	371.20	39.60	331.60
MVV-1	5/30/2001	780	280	<2.0	<2.0	11	NA	<2.0	NA	NA	NA	NΑ	371.20	39.53	331.67
MW-1	8/2/2001	1,900	580	<2.5	<2.5	12	NA	<25	NA	NA	NA	NA	371.20	39.61	331.59
MW-1	12/6/2001	840	190	<0.50	<0.50	13	NA	<5.0	NA	NA	NA	NA	371.20	39.63	331.57
MW-1	2/5/2002	2,700	650	<2.5	<2.5	7.2	NA NA	<25	NA	NA	NA	NA	371.20	35.53	335.67
MW-1	6/17/2002	2,500	550	<2.0	<2.0	5.9	NA	<20	NA	NΑ	NA	NΑ	371.20	39.29	331.91
MW-1	7/25/2002	690	130	<0.50	<0.50	4.4	NA NA	18	NA	NA	NA	NA	371.20	39.39	331.81
MW-1	11/14/2002	400	31	<0.50	<0.50	2.7	NA	27	NA	NA	NA	NA	371.20	40.00	331.20
MW-1	2/12/2003	840	0.85	<0.50	<0.50	<0.50	NA	40	NA	NA	NA	NA	371.20	32.92	338.28
MW-1	5/14/2003	680	190	<2.5	<2.5	<5.0	NA	95	NA	NA	NA	NA	371.20	32.57	338.63
MW-1	7/29/2003	870	190	<2.5	<2.5	<5.0	NA	150	NA	NA	NA	NA	371.20	33.82	337.38
MW-1	11/19/2003	<200	14	<2.0	<2.0	<4.0	NA	230	NA	NA	NA	NA	371.20	38.28	332.92
MW-1	2/19/2004	58 d	11	<0.50	<0.50	<1.0	NA	85	NA	NA	NA	NA	371.20	36.93	334.27
MW-1	5/3/2004	670	310	<2.5	<2.5	<5.0	NA	420	NA	NA	NA	NA	371.20	32.70	338.50
MW-1	8/24/2004	430 d	34	<2.5	<2.5	<5.0	NA	690	NA	NA	NA	NA	371.20	34.66	336.54
MW-1	11/15/2004	<250	29	<2.5	<2.5	<5.0	NA	470	NΑ	NA	NA	NA	371.20	38.27	332.93
MW-1	2/2/2005	540 e	87	<2.5	<2.5	<5.0	NA	700	NA	NA	NA	NA	371.20	32.02	339.18
MW-1	5/5/2005	460 e	88	<2.5	<2.5	<5.0	NΑ	300	NA	NA	NA	NA	371.20	36.82	334.38
MW-1	8/5/2005	910	230	<2.5	<2.5	<5.0	NA	480	NA	NA	NA	NA	371.20	33,35	337.85
MW-1	11/22/2005	1,760	27	<0.500	<0.500	1	NA	1,160	NA	NA	NA	NA	371.20	33.42	337.78
MW-1	2/7/2006	4,620	225	<0.500	<0.500	<0.500	NA	1,480	NA	NA	NA	NA	371.20	31.63	339.57

TABLE 1 WELL CONCENTRATIONS Shell-branded Service Station

4212 First Street

P	leas	anto	n, CA

								ton, CP	·			******			
							MTBE	MTBE	ļ	i				Depth to	GW
Well ID	Date	TPPH	В	Т	E	Х	8020	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
	ļ	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
			· · · · · · · · · · · · · · · · · · ·												
MW-1	5/16/2006	1,100	130	<0.50	2	2	NA	1,600	NA	NA	NA	NA	371.20	31.16	340.04
MW-1	8/21/2006	2,700	86	<0.500	1	1	NA	1,960	NA	NA	NA	NA	371.20	33.07	338.13
MW-1	11/14/2006	1,400 g	30	<25	<25	<25	NA	2,100	<25	<25	<25	<1,000	371.20	33.73	337.47
MW-1	2/1/2007	800	21	<0.50	<0.50	<1.0	NA	2,300	NA	NA	NA	NA	371.20	33.02	338.18
MW-1	6/1/2007	1,400 j,k	68	<20	<20	4.4	NA	2,200	NA	NA	NA	NA	371.20	32.87	338.33
MW-1	8/22/2007	250 j	20	<20	<20	<20	NA	3,100	NA	NΑ	NA	1,500	371.20	34.64	336.56
MW-1	11/26/2007	1,800 j	33	<20	<20	<20	NΑ	3,100	<40	<40	<40	930	371.20	35.59	335.61
MW-1	2/19/2008	1,800 j	33	<20	<20	<20	NA	3,700	NA	NA	NA	1,700	371.20	31.05	340.15
MW-1	5/23/2008	3,700	100	<25	<25	<25	NA	3,100	NA	NA	NA	1,300	371.20	31.80	339.40
MW-1B	9/21/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	371.67	76.94	294.73
MW-1B	9/28/2006	<50	<0.50	<0.50	<0.50	<0.50	NA	21	NA	NA	NΑ	<20	371.67	77.15	294.52
MW-1B	11/14/2006	320 g	<5.0	<5.0	<5.0	<5.0	NΑ	310	<5.0	<5.0	<5.0	<200	371.67	69.38	302.29
MW-1B	2/1/2007	77	0.53	<0.50	<0.50	<1.0	NA	150	NA	NA	NA	NA	371.67	60.92	310.75
MW-1B	6/1/2007	<50 j,k	0.251	<1.0	<1.0	<1.0	NA	74	NΑ	NA	NΑ	NA	371.67	61.07	310.60
MW-1B	8/22/2007	<50 i	0.25 I	<1.0	<1.0	<1.0	NΑ	35	NA	NA	NA	7,11	371.67	77.54	294.13
MW-1B	11/26/2007	<50 j	<0.50	<1.0	<1.0	<1.0	NA	1.7	<2.0	<2.0	<2.0	<10	371.67	68.50	303.17
MW-1B	2/19/2008	65 j	2.6	4.2	<1.0	1.1	NA	58	NA	NA	NA	<10	371.67	57.21	314.46
MW-1B	5/23/2008	<50	<0.50	<1.0	<1.0	<1.0	NA	3.6	NA	NA	NA	<10	371.67	57.53	314.14
·		,		<u> </u>											
MW-2	2/3/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	372.40	32.65	339.75
MW-2	2/7/2000	NA	NA	NA	NΑ	NA	NΑ	NA	NA	NA	NA	NA	372.40	35.51	336.89
MW-2	2/10/2000	<50.0	<0.500	<0.500	<0.500	<0.500	2.61	NA	NA	NA	NA	NA	372.40	36.62	335.78
MW-2	5/17/2000	120	4.09	<0.500	<0.500	<0.500	29	NA	NA	NA	NA	NA	372.40	32.14	340.26
MW-2	8/3/2000	<50.0	0.692	<0.500	<0.500	<0.500	40.5	36.6b	NA	NA	NA	NA	372.40	32.42	339.98
MW-2	10/31/2000	<50.0	<0.500	<0.500	<0.500	<0.500	57.4	44.8c	NA	NA	NA	NA	372.40	33.02	339.38
MW-2	3/1/2001	173	1.64	1.65	2.86	3.97	127	167	NA	NA	NΑ	NA	372.40	32.54	339.86
MW-2	5/30/2001	<50	<0.50	<0.50	<0.50	<0.50	NA	170	NA	NA	NA	NA	372.40	32.42	339.98
MW-2	8/2/2001	<50	<0.50	<0.50	<0.50	<0.50	NA	160	NA	NA	NA	NA	372.40	32.55	339.85

TABLE 1 WELL CONCENTRATIONS

Shell-branded Service Station 4212 First Street

Well ID	Date	TODU	J				MTBE	MTBE						Depth to	GW
		TPPH	В	T	E	X	8020	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
MW-2	12/6/2001	<50	<0.50	<0.50	<0.50	<0.50	NA	170	NA	NA	NA	NA	372.40	33.15	339.25
MW-2	2/5/2002	<50	0.72	<0.50	<0.50	1.7	NA	170	NA	NΑ	NA	NA	372.40	32.29	340.11
MW-2	6/17/2002	<50	<0.50	<0.50	<0.50	<0.50	NA	260	NA	NA	NA	NA	372.40	32.63	339.77
MW-2	7/25/2002	<50	<0.50	<0.50	<0.50	<0.50	NA	280	NA	NA	NA	NA	372.40	32.80	339.60
MW-2	11/14/2002	120	13	9	3.8	14	NA	430	NA	NA	NA	NA	372.40	33.31	339.09
MW-2	2/12/2003	<100	<1.0	<1.0	<1.0	<1.0	NA	430	NA	NA	, NA	NA	372.40	32.15	340.25
MW-2	5/14/2003	<250	<2.5	<2.5	<2.5	<5.0	NA	470	NA	NA	NΑ	NA	372.40	32.01	340.39
MW-2	7/29/2003	<250	<2.5	<2.5	<2.5	<5.0	NA	670	NΑ	NΑ	NA	NA	372.40	32.51	339.89
MW-2	11/19/2003	<50	<0.50	<0.50	<0.50	<1.0	NA	54	NA	NA	NA	NΑ	372.40	33.83	338.57
MW-2	2/19/2004	65	<0.50	3.4	1.4	6.5	NΑ	8.2	NΑ	NA	NA	NA	372.40	32.68	339.72
MW-2	5/3/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	5.2	NA	NA	NA	NA	372.40	32.07	340.33
MW-2	8/24/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	2.7	NA	NA	NA	NA	372.40	32.44	339.96
MW-2	11/15/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	1.3	NΑ	NA	NA	NA	372.40	32.95	339.45
MW-2	2/2/2005	<50	<0.50	<0.50	<0.50	<1.0	NA	24	NΑ	NA	NA	NA	372.40	31.94	340.46
MW-2	5/5/2005	72 f	<0.50	<0.50	<0.50	<1.0	NA	4.9	NA	NA	NA	NA	372.40	31.91	340.49
MW-2	8/5/2005	<50	<0.50	<0.50	<0.50	<1.0	NA	16	NA	NA	NA	NA	372.40	32.15	340.25
MW-2	11/22/2005	840	1	<0.500	<0.500	1	NA	556	NA	NA	NA	NA	372.40	32.31	340.09
MW-2	2/7/2006	3,550	<0.500	<0.500	<0.500	<0.500	NA	2,500	NA	NA	NA	NA	372.40	31.70	340.70
MW-2	5/16/2006	1,400	<5.0	<5.0	<5.0	<10	NA	1,700	NΑ	NA	NA	NA	372.40	31.38	341.02
MW-2	8/21/2006	1,910	<0.500	<0.500	<0.500	<0.500	NA	2,590	NA	NA	NA	NA	372.40	33.29	339.11
MW-2	11/14/2006	2,300 g	<25	<25	<25	<25	NA	2,500	<25	<25	<25	<1,000	372.40	32.67	339.73
MW-2	2/1/2007	670	<0.50	<0.50	<0.50	<1.0	NA	2,000	NA	NA	NA	NA	372.40	32.13	340.27
MW-2	6/1/2007	500 j,k	<10	<20	<20	<20	NA	2,000	NA	NA	NA	NA	372.40	32.14	340.26
MW-2	8/22/2007	100 j,k	<10	<20	<20	<20	NA	2,400	NA	NA	NA	120 l	372.40	32.93	339.47
MW-2	11/26/2007	1,600 j,k	<10	<20	<20	<20	NA	2,900	<40	<40	<40	<200	372.40	33.44	338.96
MW-2	2/19/2008	1,300 j,k	<10	<20	<20	<20	NA	3,300	NA	NA	NA	<200	372.40	31.18	341.22
MW-2	5/23/2008	1,900	<12	<25	<25	<25	NA	1,700	NA	NA	NA	<250	372.40	31.44	340.96
MW-3	2/3/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	375.05	32.06	342.99

TABLE 1 WELL CONCENTRATIONS

Shell-branded Service Station 4212 First Street

							MTBE	MTBE						Depth to	GW
Well ID	Date	TPPH	В	Т	E	Х	8020	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
		(ug/L)	(MSL)	(ft.)	(MSL)										
MW-3	2/7/2000	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	NA	375.05	32.57	342.48
MW-3	2/10/2000	180	5.12	<0.500	<0.500	0.714	26.8	21.5a	NA	NA	NA	NA	375.05	32.77	342.28
MW-3	5/17/2000	1,360	414	<5.00	<5.00	17.6	<25.0	NA	NA	NA	NA	NA	375.05	31.00	344.05
MW-3	8/3/2000	<50.0	0.536	<0.500	<0.500	<0.500	22	NA	NA	NA	NA	NA	375.05	31.03	344.02
MW-3	10/31/2000	<50.0	<0.500	<0.500	<0.500	<0.500	31.1	NA	NA	NA	NA	NA	375.05	31.28	343.77
MW-3	3/1/2001	384	172	0.815	<0.500	8	5.16	NA	NA	NA	NA	NA	375.05	31.21	343.84
MW-3	5/30/2001	<50	<0.50	<0.50	<0.50	<0.50	NA	110	NA	NA	NA	NA	375.05	31.02	344.03
MW-3	8/2/2001	<50	<0.50	<0.50	<0.50	<0.50	NA	93	NA	NΑ	NA	NA	375.05	30.94	344.11
MW-3	12/6/2001	110	<0.50	<0.50	<0.50	2.3	NΑ	180	NA	NA	NA	NA	375.05	31.28	343.77
MW-3	2/5/2002	<50	0.89	0.6	<0.50	2.1	NA	130	NA	NA	NA	NA	375.05	31.12	343.93
MW-3	6/17/2002	<50	<0.50	<0.50	<0.50	<0.50	NA	72	NA	NA	NA	NA	375.05	31.21	343.84
MW-3	7/25/2002	<50	<0.50	<0.50	<0.50	<0.50	NA	81	NA	NA	NA	NA	375.05	30.96	344.09
MW-3	11/14/2002	<50	<0.50	<0.50	<0.50	<0.50	NA	60	NA	NA	NA	NA	375.05	31.44	343.61
MW-3	2/12/2003	<50	<0.50	<0.50	<0.50	<0.50	NA	43	NΑ	NA	NA	NA	375.05	31.28	343.77
MW-3	5/14/2003	<50	<0.50	<0.50	<0.50	<1.0	NA	24	NA	NA	NA	NA	375.05	31.20	343,85
MW-3	7/29/2003	<50	<0.50	<0.50	<0.50	<1.0	NA	21	NA	NA	NA	NA	375.05	31.29	343.76
MW-3	11/19/2003	<50	<0.50	<0.50	<0.50	<1.0	NA	8.2	NA	NA	NA	NA	375.05	31,86	343.19
MW-3	2/19/2004	81	0.67	4.4	1.8	8.6	NA	13	NA	NA	NA	NA	375.05	31.66	343.39
MW-3	5/3/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	13	NA	NA	NA	NA	375.05	31.72	343.33
MW-3	8/24/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	10	NΑ	NA	NA	NA	375.05	32.09	342.96
MW-3	11/15/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	6.6	NA	NA	NA	NA	375.05	31.50	343.55
MW-3	2/2/2005	<50	<0.50	<0.50	<0.50	<1.0	NA	3.1	NA	NA	NA	NA	375.05	31.28	343.77
MW-3	5/5/2005	<50	<0.50	<0.50	<0.50	<1.0	NA	2.3	NA	NA	NA	NA	375.05	31.42	343.63
MW-3	8/5/2005	<50	<0.50	<0.50	<0.50	<1.0	NA	2.4	NA	NA	NΑ	NA	375.05	31.35	343.70
MW-3	11/22/2005	<50	<0.500	<0.500	<0.500	<0.500	NA	3.84	NA	NA	NA	NA	375.05	31.98	343.07
MW-3	2/7/2006	<50.0	<0.500	<0.500	<0.500	<0.500	NA	<0.500	NA	NA	NA	NA	375.05	31.24	343.81
MW-3	5/16/2006	<50	<0.50	<0.50	<0.50	<1.0	NA	4.5	NA	NA	NA	NA	375.05	31.37	343.68
MW-3	8/21/2006	<50.0	<0.500	<0.500	<0.500	<0.500	NA	4.04	NA	NA	NA	NA	375.05	31.95	343.10
MW-3	11/14/2006	<50	<0.50	<0.50	<0.50	<0.50	NA	3.8	<0.50	<0.50	<0.50	<20	375.05	32.24	342.81

TABLE 1 WELL CONCENTRATIONS Shell-branded Service Station

4212 First Street

	İ	T .	İ					tori, or				,		D - 41- 4-	O187
			_	_	_		MTBE	MTBE						Depth to	GW
Well ID	Date	TPPH	В	Τ , , ,	E	X	8020	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
		ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
	·	,										1		r	
MW-3	2/1/2007	<50	<0.50	<0.50	<0.50	<1.0	NA	2.8	NA	NA	NA	NA	375.05	32.17	342.88
MW-3	6/1/2007	<50 j	<0.50	<1.0	<1.0	<1.0	NA	3.1	NA	NA	NA	NA	375.05	31.86	343.19
MW-3	8/22/2007	<50 j	<0.50	<1.0	<1.0	<1.0	NA	4.6	NA	NA	NA	<10	375.05	32.18	342.87
MW-3	11/26/2007	<50 j	<0.50	<1.0	<1.0	<1.0	NA	3.5	<2.0	<2.0	<2.0	<10	375.05	32.69	342.36
MW-3	2/19/2008	<50 j	<0.50	1.2	<1.0	<1.0	NΑ	2.6	NA	NA	NA	<10	375.05	30.94	344.11
MW-3	5/23/2008	<50	<0.50	<1.0	<1.0	<1.0	NA	3.6	NA	NA	NA	<10	375.05	31.45	343.60
MW-4	9/21/2006	NA	NA	NA ′	NA	NA	NA	NA	NA	NA	NA	NA	372.78	31.58	341.20
MW-4	9/28/2006	11,000	<250	<250	<250	<250	NA	13,000	NA	NA	NA	<10,000	372.78	31.57	341.21
MW-4	11/14/2006	30,000	<250	<250	<250	<250 h,i	NA	14,000	<250	<250	<250	<10,000	372.78	32.11	340.67
MW-4	2/1/2007	6,300	50	<5.0	19	120	NA	14,000	NΑ	NΑ	NA	NA	372.78	33.23	339.55
MW-4	6/1/2007	8,200 j	52	<25	26	150	NA	11,000	NA	NΑ	NA	NA	372.78	31.57	341,21
MW-4	8/22/2007	NA	NA	NA	NΑ	NA	NΑ	NA	NA	NA	NA	NA	372.78	33.40	339.38
MW-4	11/26/2007	12,000 j	71	<100	<100	<100	NA	20,000	<200	<200	<200	<1,000	372.78	34.74	338.04
MW-4	2/19/2008	13,000 j	<100	<200	<200	<200	NA	18,000	NA	NA	NA	2,900	372.78	29,70	343.08
MW-4	5/23/2008	21,000	<100	<200	<200	<200	NΑ	16,000	NA	NA	NA	<2,000	372.78	31.67	341.11
	•	•	•			4	<u> </u>	}							
TB-1	2/12/2003	Well inacce	essible	NA	NA	NA	NA	. NA	NΑ	NA	NA	NA	NΑ	NA	NA
TB-1	2/28/2003	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	NΑ	NA	12.54	NA
TB-1	5/14/2003	<50	<0.50	<0.50	<0.50	<1.0	NA	<5.0	NA	NA	NA	NA	NA	12.31	NA
		•	•			•		<u> </u>	<u> </u>						
TB-2	2/12/2003	Well inacce	essible	NA	NA	NA	NA	NA	NA	NA	NA	NA	· NA	NA	NA
TB-2	2/28/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	12.56	NA
TB-2	5/14/2003	Insufficient	water	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	12.54	NA
F		·			•	•	•	,		•	' - ' - ' - ' - ' - ' - ' - ' - ' - ' -				
TB-3	2/12/2003	Well dry	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	NA	NA
TB-3	2/28/2003	Well dry	NA	NA	NA:	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA
TB-3	5/14/2003	Well dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
<u> </u>		<u>., </u>		·					ı.			<u> </u>		•	

TABLE 1 WELL CONCENTRATIONS

Shell-branded Service Station 4212 First Street

Pleasanton, CA

							MTBE	MTBE						Depth to	GW
Well ID	Date	TPPH	В	Т	E	X	8020	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
															-
TD 4	2/42/2002	Moll do.	NIA	NΙΔ	NIA	NIA	NIA	NΙΛ	NΙΔ	NΔ	NΙΔ	NIA	NIA	NΙΔ	NIA

TB-4	2/12/2003	Well dry	NA	NA	NA	NA	NA	NΑ	NΑ	NΑ	NA	NΑ	NA	NA	NA
TB-4	2/28/2003	Well dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TB-4	5/14/2003	Well dry	NΑ	NA	NΑ	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA

Abbreviations:

TPPH = Total petroleum hydrocarbons as gasoline by EPA Method 8260B; prior to May 30, 2001, analyzed by EPA Method 8015.

BTEX = Benzene, toluene, ethylbenzene, xylenes by EPA Method 8260B; prior to May 30, 2001, analyzed by EPA Method 8020.

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether, analyzed by EPA Method 8260B

ETBE = Ethyl tertiary butyl ether, analyzed by EPA Method 8260B

TAME = Tertiary amyl methyl ether, analyzed by EPA Method 8260B

TBA = Tertiary butyl alcohol, analyzed by EPA Method 8260B

TOC = Top of Casing Elevation

GW = Groundwater

ug/L = Parts per billion

MSL = Mean sea level

ft. = Feet

<n = Below detection limit

NA = Not applicable

TABLE 1

WELL CONCENTRATIONS

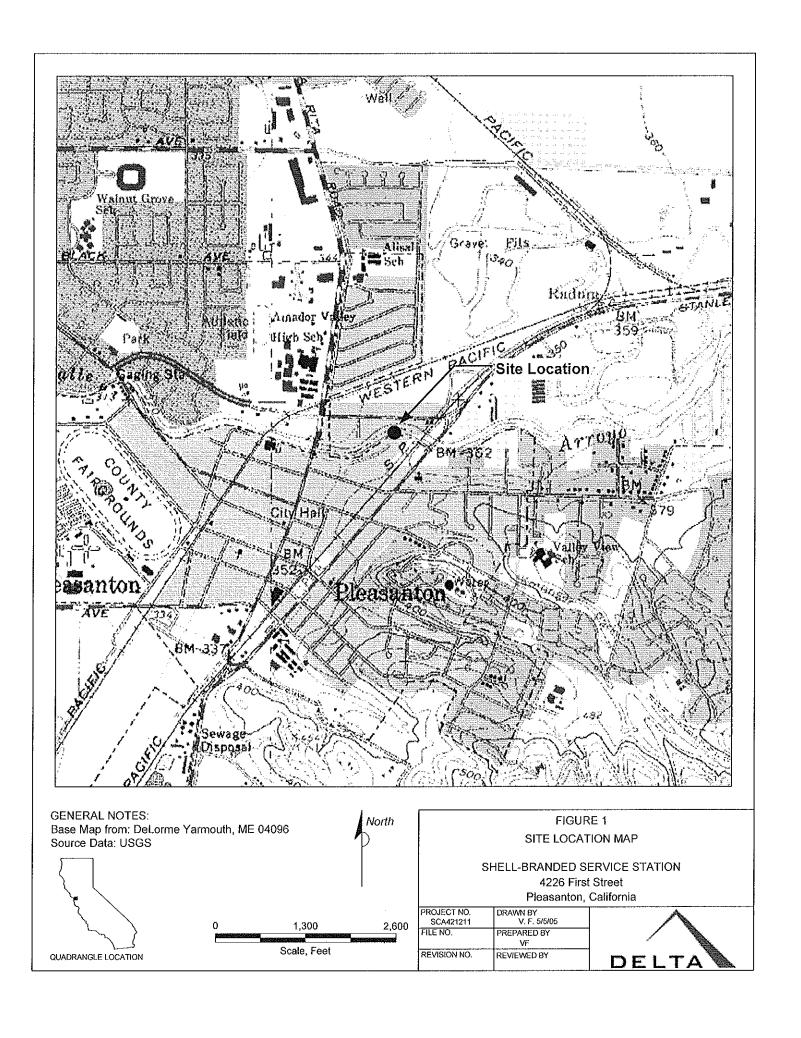
Shell-branded Service Station 4212 First Street

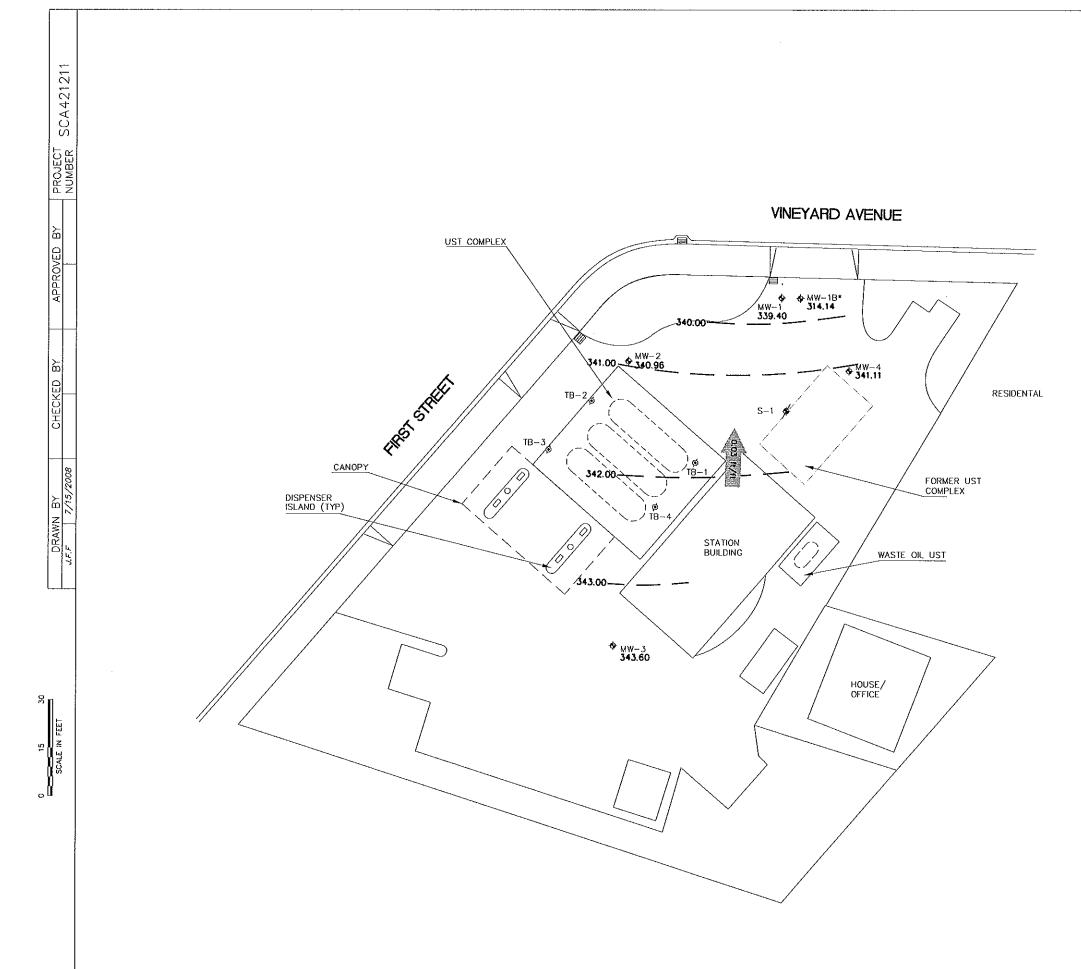
Pleasanton, CA

							MTBE	MTBE				1		Depth to	GW
Well ID	Date	TPPH	В	T	E	Х	8020	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)

Notes:

- a = Sample was analyzed outside of the EPA recommended holding time.
- b = Concentration is an estimate value above the linear quantitation range.
- c = The result reported was generated out of time. The sample was originally run within hold time, but needed to be re-analyzed.
- d = Sample contains discrete peak in addition to gasoline.
- e = Quantity of unknown hydrocarbon(s) in sample based on gasoline.
- f = The concentration reported reflect(s) individual or discrete unidentified peaks not matching a typical fuel pattern.
- g = The result for this hydrocarbon is elevated due to the presence of single analyte peak(s) in the quantitation range.
- h = Sample was originally analyzed with a positive result, however the reanalysis did not confirm the presence of the analyte.
- i = Confirmatory analysis was past holding time.
- j = Analyzed by EPA Method 8015B (M).
- k = The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standard.
- I = Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.


Well MW-1 surveyed on May 4, 1999 by Virgil Chavez Land Surveying of Vallejo, CA.


Site surveyed on March 19, 2000 by Virgil Chavez Land Surveying of Vallejo, CA.

Site surveyed on January 15, 2002 by Virgil Chavez Land Surveying of Vallejo, CA.

3Q06 survey data for wells MW-1B and MW-4 provided by Delta Environmental Consultants, Inc. of San Jose, CA.

FIGURES

GROUNDWATER MONITORING
WELL LOCATION AND DESIGNATION

S-1 DESTROYED GROUNDWATER MONITORING
WELL LOCATION AND DESIGNATION

TB-1 DESTROYED GROUNDWATER MONITORING
WELL LOCATION AND DESIGNATION

ABANDONED TANK BACKFILL WELL
LOCATION

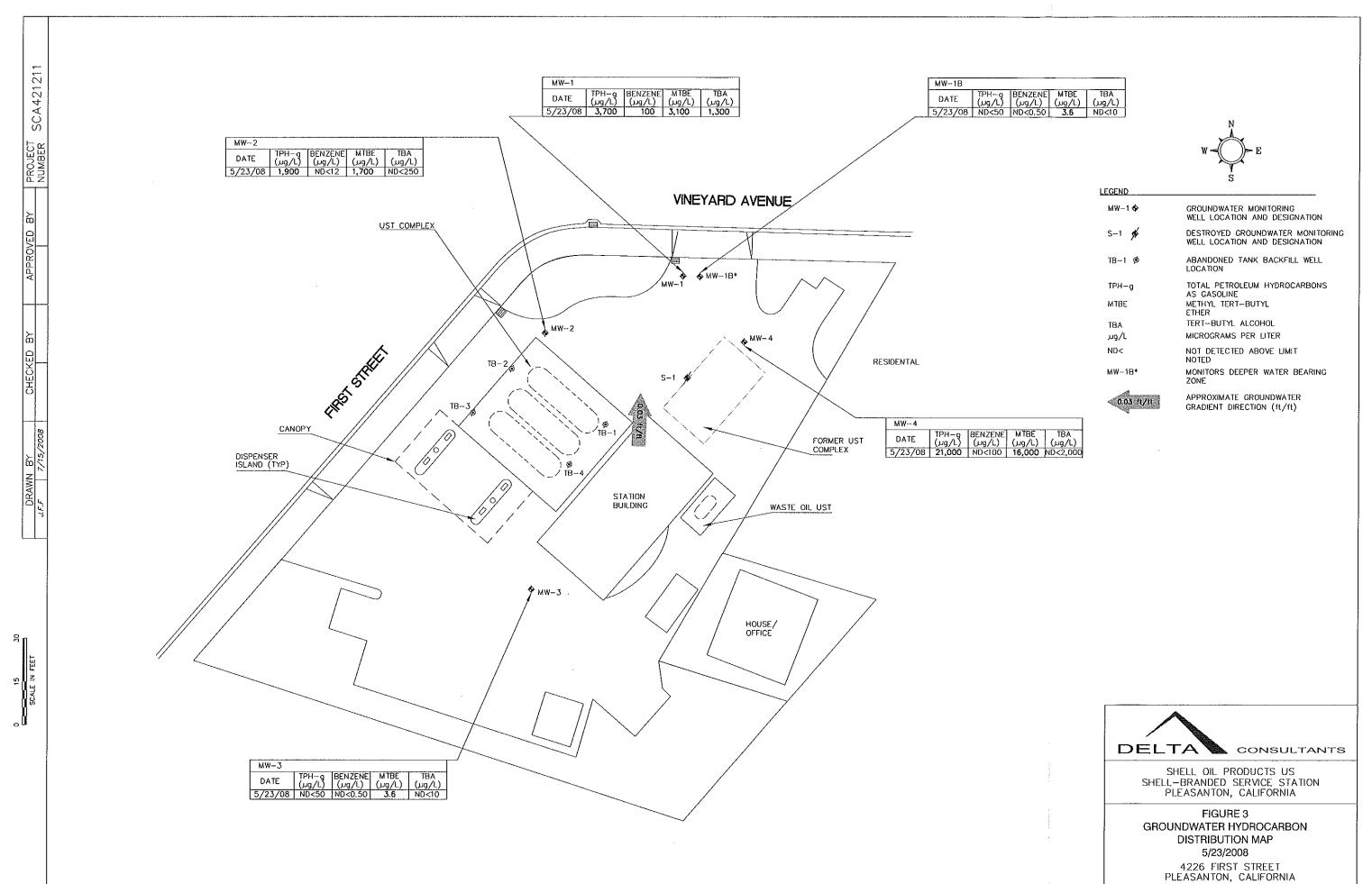
GROUNDWATER ELEVATION
IN FEET ABOVE MEAN SEA
LEVEL (Ft/MSL)

GROUNDWATER CONTOUR
IN FEET ABOVE MEAN SEA
LEVEL (Ft/MSL)
CONTOUR INTERVAL=1.0 FEET

MW-18*

MONITORS DEEPER WATER BEARING
ZONE; NOT USED USED IN
CONTOURING

APPROXIMATE GROUNDWATER GRADIENT DIRECTION (ft/ft)



SHELL OIL PRODUCTS US SHELL—BRANDED SERVICE STATION PLEASANTON, CALIFORNIA

FIGURE 2

GROUNDWATER ELEVATION CONTOUR MAP 5/23/2008

4226 FIRST STREET PLEASANTON, CALIFORNIA

APPENDIX A

FIELD DATA SHEETS

SHELL WELLHEAD INSPECTION FORM

(FOR SAMPLE TECHNICIAN)

Site Address		421	2 1	FIR	ST	ST.	PLE	EASAN	TON Date <u>9/23/08</u>
Job Number									TON Date 9/23/08 Page 1 of 1
Well ID	Well Inspected - No Corrective Action Required	Well Box Meets Compliance Requirements *See Below	Water Bailed From Wellbox	Cap Replaced	Lock Replaced	Well Not Inspected (explain in notes)	New Deficiency Identified	Previously Identified Deficiency Persists	Notes
MW-I	X	X							
MW-1B	X	X							
MW-2	X	Х							
MW-3 MW-4	X	X							
MW-4	X	, , , ,						Χ	NO TAG
					į				
Well box must meet MONITORING WELL	all three " (12"o	e criteria er less) 3)	to be WEL	comp L TAC	liant:	1) WELL I: RESENT, S	S SECURA SECURE, A	BLE BY DE ND CORRE	SIGN (12"or less) 2) WELL IS MARKED WITH THE WORDS
Notes:	*	MW.	- 4		N) TA6			
		······································	·						
BLAINE TECH SERV	ICES INC	••••							

WELL GAUGING DATA

Project # <u>080</u>	0523-1W-1 Date	5/23/08	Client SHELL
•	•	,	
Cia 4717	FIRET CTREET	DI CA CA CA CA	

Well ID	Time	Well Size (in.)	Sheen /	Depth to Immiscible Liquid (ft.)		Depth to water	Depth to well bottom (ft.)	Survey Point: TOB or	Notes
MW-1	0829	2	ODOR	·		31.80	57,15		
MW-1B	0,800	4				57,53			
MW-Z	0822	4				 31,44	49.65		
MW-3	0809	4		,		31.45	34.65		
MW-4	0838	4	DOOR		ļ	31.67	46,78		
						· ·			
							·		
							i i		
				······································		- The second second second second second second second second second second second second second second second	7-1-1		
						 ·			
		-							
						 	-		
						-			

BTS#: O	80523	>-1W-	-1	Site: 4212	FIRST ST.,	PLGASANTON				
Sampler:	iW			Date: 5/23/08						
Well I.D.:	MW-I			Well Diameter: (2) 3 4 6 8						
Total Well	Depth (TD): 5	7.15	Depth to Water (DTW): 31.80						
Depth to Fr	ee Product	•		Thickness of Free Product (feet):						
Referenced	to:	(PVD	Grade	D.O. Meter (if req'd): YSI HACH						
DTW with 8	80% Recha	arge [(H	eight of Water	Column x 0.2	0) + DTW]: ?	6.87				
Purge Method: XBailer Disposable Bailer Peristaltic Positive Air Displacement Electric Submersible Other Well Dismeter Wulliplier Well Dismeter Well Dismeter Well Dismeter Multiplier Well Dismeter Multiplier Multiplier Well Dismeter Multiplier Multiplier Well Dismeter Multiplier Multi										
1 Case Volume	3als.) X Speci	3 fied Volum	= 12.3 $Calculated Vo$	Gals. 2"	0.16 6° 0.37 Othe	1.47				
Time	Temp (°F)	рҢ	Cond. (mS or 🎉)	Turbidity (NTUs)	Gals. Removed	Observations				
1034	67.4	6.44	1706	116	4.1					
1042	69.8	6.59	1717	437	8.2					
1056	69.5	6.61	1726	611	12.3	DTW = 41.13				
		·								
						·				
Did well de	water?	Yes (No)	Gallons actua	lly evacuated:	12.3				
Sampling D	ate: 5/23	3/08	Sampling Time		Depth to Wate					
Sample I.D.	: MW-	<u></u>	Line - control	Laboratory:	STL Other_(Cal Science				
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Other:	See CC	00				
EB I.D. (if a	pplicable)	•	@ Time	Duplicate I.D	. (if applicable):					
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Other:						
D.O. (if req'	d): Pr	e-purge:		mg/L	Post-purge:	mg/L				
O.R.P. (if re	q'd): Pr	e-purge:		mV	Post-purge:	mV				

DID#: 080373-W-1	DILL. 9212 FIRST ST. PLEASANTON						
Sampler: IN	Date: 5/23/08						
Well I.D.: MW-1B	Well Diameter: 2 3 4 6 8						
Total Well Depth (TD): 107,98	Depth to Water (DTW): 57.53						
Depth to Free Product:	Thickness of Free Product (feet):						
Referenced to: (VC) Grade	D.O. Meter (if	req'd):	YSI HACH				
DTW with 80% Recharge [(Height of Water	Column x 0.20) + DTW]: 67.62						
Positive Air Displacement Extrace X Electric Submersible Other Graph (Gals.) X 3 = 99	Waterra Peristaltic tion Pump Well Diamete 1" 2" 3"	Other: Other: Well	Disposable Bailer Extraction Port Dedicated Tubing Diameter Multiplier 0.65 1.47				
1 Case Volume Specified Volumes Calculated Vo Cond.	Turbidity						
Time Temp (°F) pH (mS or 😥	(NTUs)	Gals. Removed	Observations				
0910 67.8 7.71 1045	156	33					
0916 68.3 6.93 1036	38	66					
0922 68.6 6.91 1031	24	99	DTW = 58.12				
4							
Did well dewater? Yes (No	Gallons actually	y evacuated:	99				
Sampling Date: 5/23/08 Sampling Time	: 0928	Depth to Water	r: 58.12				
Sample I.D.: MW-1B	Laboratory:	STL Other C	al Science				
Analyzed for: TPH-G BTEX MTBE TPH-D	Other:	see Co	C				
EB I.D. (if applicable):	Duplicate I.D. (if applicable):					
Analyzed for: трн-G втех мтве трн-D	Other:						
D.O. (if req'd): Pre-purge:	mg/ _L Po	ost-purge:	mg/L				
O.R.P. (if req'd): Pre-purge:	mV Po	ost-purge:	mV				

$D_1 O_{\mu}$, O_0	00000	- IW -	<u> </u>	SILL 4212 FIRST ST. PLEASANTON						
Sampler:)	W			1	5/23	,				
Well I.D.:	MW-2	_ ·) iameter		4)	6 8		
Total Well			45.65	Depth to Water (DTW): 31,44						
Depth to Fr	ee Product	t:		Thickness of Free Product (feet):						
Referenced	to:	(VC)	Grade	D.O. Meter (if req'd): YSI HACH						
DTW with	80% Rech	arge [(F	leight of Water	r Column x 0.20) + DTW]: 34,28						
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme					ther: Well Dia 4" 6"	Disposable Bailer Extraction Port Dedicated Tubing meter Multiplier 0.65 1.47		
1 Case Volume	Gals.) X Speci	fied Volun		_ Gals. lume	3"	0.37	Other	radius ² * 0.163		
Time	Temp (°F)	pН	Cond. (mS or µ\$)	I	oidity (TUs)	Gals. Remov	ved	Observations		
1010	67.4	6.60	1098	5	7	9.3				
1012	68.8	6.48	1103	2	- (18,6				
1014	69.1	6.49	1124	10	0	27.9		DTW= 42.53		
Did well de	water?	Yes (No	Gallon	s actuall:	y evacuated		27.9		
Sampling D	ate: 5/2;	3/08	Sampling Time	: 12	16	Depth to W	ater:	WAITED 2-HOUR 41.20		
Sample I.D.	: MW-	2		Labora	tory:	STL Other	C	al Science		
Analyzed fo	r: TPH-G	BTEX		Other:	Se	e Co	\mathcal{D}_{\perp}			
EB I.D. (if a	pplicable)	:	@ Time	Duplica	ate I.D. (if applicabl	e):	7		
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Other:						
D.O. (if req'	d): Pr	e-purge:		^{mg} /∟	Po	ost-purge:		mg/ _L		
O.R.P. (if re	q'd): Pr	e-purge:		mV	Po	ost-purge:		mV		

BTS#:	08051	23-11	W-1	Site:	4212	FIRST ST.	PLEATSAN YON			
Sampler:	IW			Date:		108				
Well I.D.:	MW-3			Well		: 2 3 (4)) 6 8			
Total Well	Depth (TE)):	34.65	Depth	Depth to Water (DTW): 31,45					
Depth to Fr	ee Produc	t:		Thick	Thickness of Free Product (feet):					
Referenced	to:	(PVC)	Grade	D.O. Meter (if req'd): YSI HACH						
DTW with	80% Rech	arge [(I	Ieight of Water	Colum	m x 0.20)) + DTW]: - ?	32.09			
Purge Method: X Bailer Disposable Bailer Positive Air Displacement Electric Submersible Other Other: Value Paristatic Disposable Bailer Disposable Bailer Extraction Pump Extraction Port Dedicated Tubing										
			Cond,	7	bidity					
Time	Temp (°F)	pН	(mS or (S)	1	TUs)	Gals. Removed	Observations			
0946	68.3	6.89	. 814	2	9	2.1	obor			
0950	68.1	6.76	811	تِ ح	50	4.2	DRAW INC DOWN			
0959	67.9	6.74	816	9	56	6.3	DRAWING DOWN			
							DTW = 33.83			
				<u></u>						
Did well de	water?	Yes (No)	Gallon	s actuall	y evacuated:	6.3			
Sampling D	ate: $5/2$	3/08	Sampling Tim	e: 120	0	Depth to Wate	WAITOD 2-HOVE T: 33,49			
Sample I.D.	: MW-	-3		Labora	itory:	STL Other	Cal Science			
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Other:		see CO	Ċ			
EB I.D. (if a	pplicable)	:	@ Time	Duplic	ate I.D. (if applicable):				
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Other:						
D.O. (if req'	d): Pr	e-purge:		mg/L	Po	ost-purge:	mg/ _L			
O.R.P. (if re	q'd): Pr	e-purge:		mV	Po	ost-purge;	ınV			

B18#: 080223-1W-1	,	SILE: 4212 FIRST ST., PLEASANTON					
Sampler: IW	I	Date: 5/23	108				
Well I.D.: MW-4	7	Well Diameter: 2 3 (4) 6 8					
Total Well Depth (TD): 46	78 I	Depth to Water (DTW): 31.67					
Depth to Free Product:		Thickness of Free Product (feet):					
Referenced to:	Grade I	D.O. Meter (if r	eq'd):	YSI HACH			
DTW with 80% Recharge [(Heigh	ıt of Water C	Column x 0.20)	+DTW]: 3	4.69			
Purge Method: Bailer Disposable Bailer Positive Air Displacement Electric Submersible	Other	Waterra eristaltic on Pump Well Diameter 1" Gals.	Other: Multiplier Well E 0.04 4" 0.16 6"	Disposable Bailer Disposable Bailer Extraction Port Dedicated Tubing Diameter Multiplier 0.65 1.47			
$\frac{1 \cdot 0}{1 \text{ Case Volume}} \text{ (Gals.) X } \frac{\mathcal{O}}{\text{Specified Volumes}} =$	Calculated Volu		0.37 Other	radius ² * 0.163			
	Cond. nS or (18)	Turbidity (NTUs)	Gals. Removed	Observations			
1106 70,9 6:83	916	157	9.8	ODOR			
1108 70.6 6.89	923	154	19.6	le			
1110 70,5 6.86	721	125	29.4	£1			
				DTW = 42,40			
Did well dewater? Yes (No) (Gallons actually	vevacuated:	29.4			
Sampling Date: 5/23/08 San	pling Time:	: 1248	Depth to Water	: 31.78			
Sample I.D.: Mw-4	I	Laboratory:	STL Other C	al Science			
Analyzed for: TPH-G BTEX MTE		Other:	see Co	50			
EB I.D. (if applicable):	Time I	Duplicate I.D. (if applicable):				
Analyzed for: TPH-G BTEX MTE	BE TPH-D C	Other:					
D.O. (if req'd): Pre-purge:		^{mg} / _L Po	ost-purge;	^{mg} /L			
O.R.P. (if req'd): Pre-purge:		mV Po	ost-purge:	mV			

APPENDIX B

FIELD PROCEDURES

BLAINE TECH SERVICES INC.

GROUNDWATER SAMPLING SPECIALISTS
SINCE 1985

June 17, 2008

Denis Brown Shell Oil Products US 2095 South Wilmington Avenue Carson, CA 90810

> Second Quarter 2008 Groundwater Monitoring at Shell-branded Service Station 4212 First Street Pleasanton, CA

Monitoring performed on May 23, 2008

Groundwater Monitoring Report 080523-IW-1

This report covers the routine monitoring of groundwater wells at this Shell-branded facility. In accordance with standard procedures that conform to Regional Water Quality Control Board requirements, routine field data collection includes depth to water, total well depth, thickness of any separate immiscible layer, water column volume, calculated purge volume (if applicable), elapsed evacuation time (if applicable), total volume of water removed (if applicable), and standard water parameter instrument readings. Sample material is collected, contained, stored, and transported to the laboratory in conformance with EPA standards. Purgewater (if applicable) is, likewise, collected and transported to the Martinez Refining Company.

Basic field information is presented alongside analytical values excerpted from the laboratory report in the cumulative table of **WELL CONCENTRATIONS**. The full analytical report for the most recent samples and the field data sheets are attached to this report.

At a minimum, Blaine Tech Services, Inc. field personnel are certified on completion of a forty-hour Hazardous Materials and Emergency Response training course per 29 CFR 1910.120. Field personnel are also enrolled in annual eight-hour refresher courses.

SAN JOSE

SACRAMENTO

LOS ANGELES

SAN DIEGO

SEATTLE

Blaine Tech Services, Inc. conducts sampling and documentation assignments of this type as an independent third party. Our activities at this site consisted of objective data and sample collection only. No interpretation of analytical results, defining of hydrological conditions or formulation of recommendations was performed.

Please call if you have any questions.

Yours truly,

Mike Ninokata Project Manager

MN/tm

attachments: Cumulative Table of WELL CONCENTRATIONS

Certified Analytical Report

Field Data Sheets

cc: Rich Garlow

Delta Environmental 175 Bernal Rd., Suite 200 San Jose, CA 95119

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE
1680 ROGERS AVENUE SAN JOSE, CA (408) 573-0555 FAX (408) 573-7771 LIC. 746684 www.blainetech.com

BLAINE TECH SERVICES, INC. METHODS AND PROCEDURES FOR THE ROUTINE MONITORING OF GROUNDWATER WELLS AT SHELL SITES

Blaine Tech Services, Inc. performs environmental sampling and documentation as an independent third party. We specialize in groundwater monitoring assignments and intentionally limit the scope of our services to those centered on the generation of objective information.

To avoid conflicts of interest, Blaine Tech Services, Inc. personnel do not evaluate or interpret the information we collect. As a state licensed contractor (C-57 well drilling –water – 746684) performing strictly technical services, we do not make any professional recommendations and perform no consulting of any kind.

SAMPLING PROCEDURES OVERVIEW

SAFETY

All groundwater monitoring assignments performed for Shell comply with Shell's safety guidelines, 29 CFR 1910.120 and SB-198 Injury and Illness Prevention Program (IIPP). All Field Technicians receive the full 40-hour 29CFR 1910.120 OSHA SARA HAZWOPER course, medical clearance and on-the-job training prior to commencing any work on any Shell site.

INSPECTION AND GAUGING

Wells are inspected prior to evacuation and sampling. The condition of the wellhead is checked and noted according to a wellhead inspection checklist.

Standard measurements include the depth to water (DTW) and the total well depth (TD) obtained with industry standard electronic water level indicators that are graduated in increments of hundredths of a foot.

The water in each well is inspected for the presence of immiscibles. When free product is suspected, its presence is confirmed using an electronic interface probe (e.g. MMC). No samples are collected from a well containing over two-hundredths of a foot (0.02') of product.

EVACUATION

Depth to water measurements are collected by our personnel prior to purging and minimum purge volumes are calculated anew for each well based on the height of the water column and the diameter of the well. Expected purge volumes are never less than three case volumes and are set at no less than four case volumes in some jurisdictions.

Well purging devices are selected on the basis of the well diameter and the total volume to be evacuated. In most cases the well will be purged using an electric submersible pump (i.e. Grundfos) suspended near (but not touching) the bottom of the well.

PARAMETER STABILIZATION

Well purging completion standards include minimum purge volumes, but additionally require stabilization of specific groundwater parameters prior to sample collection. Typical groundwater parameters used to measure stability are electrical conductivity, pH, and temperature. Instrument readings are obtained at regular intervals during the evacuation process (no less than once per case volume).

Stabilization standards for routine quarterly monitoring of fuel sites include the following: Temperature is considered to have stabilized when successive readings do not fluctuate more than +/- 1 degree Celsius. Electrical conductivity is considered stable when successive readings are within 10%. pH is considered to be stable when successive readings remain constant or vary no more than 0.2 of a pH unit.

DEWATERED WELLS

Normal evacuation removes no less than three case volumes of water from the well. However, less water may be removed in cases where the well dewaters and does not immediately recharge.

MEASURING RECHARGE

Upon completion of well purging, a depth to water measurement is collected and notated to ensure that the well has recharged to within 80% of its static, pre-purge level prior to sampling.

Wells that do not immediately show 80% recharge or dewatered wells will be allowed a minimum of 2 hours to recharge prior to sampling. The water level at time of sampling will be noted.

PURGEWATER CONTAINMENT

All non-hazardous purgewater evacuated from each groundwater monitoring well is captured and contained in on-board storage tanks on the Sampling Vehicle and/or special water hauling trailers. Effluent from the decontamination of reusable apparatus (sounders, electric pumps and hoses etc.), consisting of groundwater combined with deionized water and non-phosphate soap, is also captured and pumped into effluent tanks.

Non-hazardous purgewater is transported under standard Bill of Lading documentation to a Blaine Tech Services, Inc. facility before being transported to a Shell approved disposal facility.

SAMPLE COLLECTION DEVICES

All samples are collected using a stainless steel, Teflon or disposable ballers.

SAMPLE CONTAINERS

Sample material is decanted directly from the sampling baller into sample containers provided by the laboratory that will analyze the samples. The transfer of sample material from the baller to the sample container conforms to specifications contained in the USEPA T.E.G.D. The type of sample container, material of construction, method of closure and filling requirements are specific to the intended analysis. Chemicals needed to preserve the sample material are commonly placed inside the sample containers by the laboratory or glassware vendor prior to delivery of the bottle to our personnel. The laboratory sets the number of replicate containers.

TRIP BLANKS

Trip Blanks, if requested, are taken to the site and kept inside the sample cooler for the duration of the event. They are turned over to the laboratory for analysis with the samples from that site.

DUPLICATES

Duplicates, if requested, may be collected at a site. The Field Technician uses their discretionin choosing the well at which the Duplicate is collected, typically one suspected of containing measurable contaminants. The Duplicate sample is labeled "DUP" and the time of collection is omitted from the COC, thus rendering the sample blind.

SAMPLE STORAGE

All sample containers are promptly placed in food grade ice chests for storage in the field and transport (direct or via our facility) to the designated analytical laboratory. These ice chests contain quantities of restaurant grade ice as a refrigerant material. The samples are maintained in either an ice chest or a refrigerator until relinquished into the custody of the laboratory or laboratory courier.

DOCUMENTATION CONVENTIONS

A label must be affixed to all sample containers. In most cases these labels are generated by our office personnel and are partially preprinted. Labels can also be hand written by our field personnel. The site is identified with the store number and site address, as is the particular groundwater well from which the sample is drawn (e.g. MW-1, MW-2, S-1 etc.). The time and date of sample collection along with the initials of the person who collects the sample are handwritten onto the label.

Chain of Custody records are created using client specific preprinted forms following USEPA specifications.

Shell Oil Products US

Bill of Lading records are contemporaneous records created in the field at the site where the non-hazardous purgewater is generated. Field Technicians use preprinted Bill of Lading forms.

DECONTAMINATION

All equipment is brought to the site in clean and serviceable condition and is cleaned after use in each well and before subsequent use in any other well. Equipment is decontaminated before leaving the site.

The primary decontamination device is a commercial steam cleaner. The steam cleaner is detuned to function as a hot pressure washer that is then operated with high quality deionized water that is produced at our facility and stored onboard our sampling vehicle. Cleaning is facilitated by the use of proprietary fixtures and devices included in the patented workstation (U.S. Patent 5,535,775) that is incorporated in each sampling vehicle. The steam cleaner is used to decon reels, pumps and bailers.

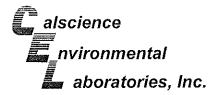
Any sensitive equipment or parts (i.e. Dissolved Oxygen sensor membrane, water level indicator, etc.) that cannot be washed using the high pressure water, will be sprayed with a non-phosphate soap and deionized water solution and rinsed with delonized water.

DISSOLVED OXYGEN READINGS

Dissolved Oxygen readings are taken pre- and/or post-purge using YSI meters (e.g. YSI Model 54, 58 or 95) or HACH field test kits.

The YSI meters are equipped with a stirring device that enables them to collect accurate in-situ readings. The probe/stirring devices are modified to allow downhole measurements to be taken from wells with diameters as small as two inches. The probe and reel is decontaminated between wells as described above. The meter is callbrated between wells as per the instructions in the operating manual. The probe and stirrer is lowered into the water column. The reading is allowed to stabilize prior to collection.

OXYIDATON REDUCTION POTENTIAL READINGS


All readings are obtained with either Corning or Myron-L meters (e.g. Corning ORP-65 or a Myron-L Ultrameter GP). The meter is cleaned between wells as described above. The meter is calibrated at the start of each day according to the instruction manual.

FERROUS IRON MEASUREMENTS

All field measurements are collected at time of sampling with a HACH test kit.

APPENDIX C

LABORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION

June 04, 2008

Michael Ninokata Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose; CA 95112-1105

Subject:

Calscience Work Order No.:

08-05-2263

Client Reference:

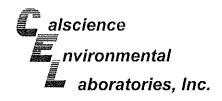
4212 First St., Pleasanton, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 5/24/2008 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.


Sincerely,

Calscience Environmental

Laboratories, Inc.

Jessie Kim

Project Manager

Analytical Report

Blaine Tech Services, Inc. 1680 Rogers Avenue

San Jose, CA 95112-1105

Date Received:

Work Order No:

Work Order No

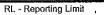
Preparation: Method:

Units:

05/24/08

08-05-2263

EPA 5030B


LUFT GC/MS / EPA 8260B ug/L

- 4 f 0


Project: 4212 First St., Pleasanton, CA

Page 1 of 2

Client Sample Number				ib Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analyz		QC Batch ID
MW-1		11. ha - 11. ha	08-05-	2263-1-A	05/23/08 12:28	Aqueous	GC/MS R	06/02/08	06/03/ 08:4		080602L02
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
TPPH	3700	1200	25		p/m-Xylene			ND	25	25	
Benzene ·	100	12	25		o-Xylene			ND	25	25	
Ethylbenzene	ND	25	25		Methyl-t-Butyl	Ether (MTB)	E)	3100	25	25	
Toluene	ND	25	25		Tert-Butyl Alc	ohol (TBA)		1300	250	25	
Surrogates:	REC (%)	Control		<u>Qual</u>	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
1,4-Bromofluorobenzene	82	<u>Limits</u> 70-130			1,4-Bromofluo	orobenzene-T	PPH	86	70-130		
MW-1B			08-05-	2263-2-A	05/23/08 09:28	Aqueous	GC/MS R	06/02/08	06/03/ 09:1		080602L02
Parameter	Result	RL	DE	Qual	Parameter			Result	RL	DF	Qual
TPPH	ND	50	1	GEGG	p/m-Xylene			ND	1.0	1	
Benzene	ND	0,50	1		o-Xylene			ND	1.0	1	
Ethylbenzene	ND	1.0	1		Methyl-t-Butyl	Ether (MTR	F)	3.6	1.0	1	
Toluene	ND	1.0	1		Tert-Butyl Alc	•	- /	ND	10	1	
Surrogates:	REC (%)	Control Limits	'	Qual	Surrogates:	onor (* BA)		REC (%)	Control Limits		Qual
1,4-Bromofluorobenzene	83	70-130			1,4-Bromofluo	orobenzene-T	PPH	86	70-130		
MW-2			08-05-	2263-3-A	05/23/08 12;16	Aqueous	GC/MS R	06/02/08	06/03/ 09:4		080602L02
					TAGE OF THE PARTY					7-p-1111	
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			Result	<u>RL</u>	DF	Qual
TPPH	1900	1200	25		p/m-Xylene			ND	25	25	
Benzene	ИD	12	25		o-Xylene			ND	25	25	
Ethylbenzene	ND	25	25		Methyl-t-Butyl	Ether (MTBI	E)	1700	25	25	
Toluene	ND .	25	25		Tert-Butyl Alc	ohol (TBA)		ND	250	25	
Surrogates:	REC (%)	<u>Control</u>		<u>Qual</u>	Surrogates:			REC (%)	Control		<u>Qual</u>
1.4-Bromofluorobenzene	81	<u>Limits</u> 70-130			1,4-Bromofluo	orobenzene-T	РРН	85	<u>Limits</u> 70-130		
MW-3			08-05-	2263-4-A	05/23/08 12:00	Aqueous	GC/MS R	06/02/08	06/03/ 10:1		080602L02
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
TPPH	ND	50	1		p/m-Xylene			ND	1.0	1	
Benzene	ND	0.50	1		o-Xylene			ND	1.0	1	
Ethylbenzene	ND	1.0	1		Methyl-t-Butyl	Ether (MTBI	E)	3.6	1.0	1	
Toluene	ND	1.0	1		Tert-Butyl Alc	ohol (TBA)		ND	10	1	
Surrogates:	REC (%)	Control Limits	-	<u>Qual</u>	Surrogates:	, ,		REC (%)	Control Limits		<u>Qual</u>
1,4-Bromofluorobenzene	82	70-130			1,4-Bromofluc	robenzene-T	PPH	86	70-130		

DF - Dilution Factor ,

Analytical Report

Blaine Tech Services, Inc. 1680 Rogers Avenue

1680 Rogers Avenue San Jose, CA 95112-1105 Date Received:

Work Order No:

Preparation:

Method: Units: 05/24/08

08-05-2263 EPA 5030B

LUFT GC/MS / EPA 8260B

ug/L

Project: 4212 First St., Pleasanton, CA

Page 2 of 2

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrumen	Date t Prepared	Date/T d Analyz		QC Batch ID
MW-4			08-05-2	263-5-A	05/23/08 12:48	Aqueous	GC/MS R	06/02/08	06/03/ 10:4		080602L02
Parameter	Result	RL	<u>DF</u>	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	Qual
TPPH	21000	10000	200		p/m-Xylene			ND	200	200) · ·
Benzene	ND	100	200		o-Xylene			ND	200	200)
Ethylbenzene	ND	200	200		Methyl-t-Butyl	Ether (MTB	E)	16000	200	200)
Toluene	ND	200	200		Tert-Butyl Alc	oho! (TBA)		ND	2000	200	
Surrogates:	REC (%)	Control		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u>		<u>Qual</u>
		<u>Limits</u>							<u>Limits</u>		
1,4-Bromofluorobenzene	80	70-130			1,4-Bromofluo	robenzene-1	rpph	84	70-130		
Method Blank			099-12	-715-421	N/A	Aqueous	GC/MS R	06/02/08	06/03, 03:1		080602L02
		**************************************			11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						Galanti propinski britani i remini Propins
<u>Parameter</u>	Result	RL	<u>DE</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	DF	<u>Qual</u>
TPPH	ND	50	1		p/m-Xylene			ND	1.0	1	
Benzene	ИD	0.50	1		o-Xylene			ND	1.0	1	
Ethylbenzene	ND	1.0	1		Methyl-t-Butyl	Ether (MTB	E)	ND	1.0	1	
Toluene	NÓ	1.0	1		Tert-Butyl Alc	ohol (TBA)		ND	10	1	
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control		<u>Qual</u>
1,4-Bromoffuorobenzene	82	<u>Limits</u> 70-130			1,4-Bromofluc	robenzene-1	TPPH	86	<u>Limits</u> 70-130		

Quality Control - Spike/Spike Duplicate

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: 05/24/08 08-05-2263 EPA 5030B LUFT GC/MS / EPA 8260B

Project 4212 First St., Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number	
08-05-2251-27	Aqueou	s GC/MSR	06/02/08	3	06/03/08	080602802	
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers	
Benzene	112	112	70-130	1	0-30		
Ethylbenzene	113	113	70-130	1	0-30		
Toluene	113	112	70-130	1	0-30		
p/m-Xylene	112	110	70-130	2	0-30		
o-Xylene	110	109	70-130	1	0-30		
Methyl-t-Butyl Ether (MTBE)	103	102	70-130	1	0-30		
Tert-Butyl Alcohol (TBA)	93	87	70-130	7	0-30		
Diisopropyl Ether (DIPE)	93	92	70-130	1	0-30		
Ethyl-t-Butyl Ether (ETBE)	. 83	86	70-130	4	0-30		
Tert-Amyl-Methyl Ether (TAME)	92	91	70-130	1	0-30		
Ethanol	96	92	70-130	4	0-30		

Quality Control - LCS/LCS Duplicate

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received:

N/A 08-05-2263

Work Order No: Preparation:

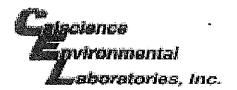

EPA 5030B

Method:

LUFT GC/MS / EPA 8260B

Project: 4212 First St., Pleasanton, CA

Quality Control Sample ID	Matrix · Ins	strument		Date nalyzed	LCS/LCSD Bat Number	ch
099-12-715-421	Aqueous G0	C/MS R	06/02/08 06	/03/08	080602L02	
<u>Parameter</u>	LCS %REC	LCSD %RE	C %REC CL	RPD	RPD CL	<u>Qualifiers</u>
TPPH	90	91	65-135	1	0-30	
Benzene	108	109	70-130	1	0-30	
Ethylbenzene	109	111	70-130	1	0-30	
Toluene	110	112	70-130	1	0-30	
p/m-Xylene	110	111	70-130	0	0-30	
o-Xylene	108	108	70-130	0	0-30	
Methyl-t-Butyl Ether (MTBE)	95	96	70-130	1	0-30	
Tert-Butyl Alcohol (TBA)	80	88	70-130	9	0-30	
Diisopropyl Ether (DIPE)	88	89	70-130	1	0-30	
Ethyl-t-Butyl Ether (ETBE)	80	80	70-130	1	0-30	
Tert-Amyl-Methyl Ether (TAME)	87	88	70-130	1	0-30	
Ethanol	102	106	70-130	4	0-30	


Glossary of Terms and Qualifiers

Work Order Number: 08-05-2263

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

SPECO SPECIAL SERVICES MOTIVA RETAIL SHELL	LAB (LOCATION)				-	11/2	Ç	Shel	10	il P	ro	du	cts	Cha	ain	Of	Cu	sto	ody	/ Re	CO	rd							
3 TO THE 1 TO THE	CALSCIENCE ()		Ple	ease Ghec	k Appr	opriate	Вох		Prì	int B	îl Fo	o C01	ntaet:	Name					IN	CIDEN	丌#(EN∀	SER	(VIÇI	ES)	☐ CHF	CK IF NO INCIDENT # 4	APPLIES	
TOTAL SEASON	LI SPL ()										i I																		
Design D		□мс	OTIVA SD&CN	,	CONSULTAN	IT	LUBI	S]				Р	0#									****			<i>-</i>		- 0	
STATE STAT] OTHER ()	□ sн	IELL PIPELINI	. 0	OTHER					1	i i		::::::::::::::::::::::::::::::::::::::	<u> </u>	::::::::::::::::::::::::::::::::::::::	<u></u>		*****		<u> </u>	:::: <u>:</u>		1	T	7	PAC	GE: of		
## SPORTS AVE. San Jose, CA 95172 Set Operation of Proceedings of Procedings of	MPLING COMPANY				LOS CODE				EIT.	E ADDE	RESS: S	treeten	od City	Ш			L	-	State		9	LOBALIC	Ó NO:						
19	Blaine Tech Services BTSS							42	12 F	First	t St.,	Plea	sant	ton					CA			010	125	9					
Container District Container Containe	i80 Rogers Ave, San Jose, CA 95112								E0F (DELIVER	ABLE TO	(Name, C	ompany, Of	ite Lacotia	n):		PHONE NO),·			E-N	AAL.							
MANUAL	PROJECT CONTACT Phatocopy or POF Report to)								Jon Sulng, Delta, Monrovia Office 626,256,6662																BTS #				
TEMPORAL FIRST PLANS AND THE CALLES FOR ANALYSIS 15 TAMON 15 DAYS 2	LEPHONE: FAX:		E-MAIL:						┦~~	a well-str	- America fr			•											LAG	OSE OF	97. 9		
STANDAR (SC PANY C PANS		771	mninok	ata@blain	etech.co				1	AN	W	111	JA.	<u> ია</u>											1	حر	+ 2762)	
SPECIAL INSTRUCTIONS OR NOTES: SPECIAL INSTRUCTIONS OR NOTES. THE SPECIAL INSTRUCTION OR NOTES. SPECIAL INSTRUCTION OR NOTES. SPECIAL INSTRUCTION OR NOTES. SPECIAL INSTRUCTION OR NOTES. THE SPECIAL INSTRUCTION OR NOTES. SPECIAL INSTRUCTION OR NOTES. THE SPECIAL INSTRUCTION OR NOTES. THE SPECIAL INSTRUCTION OR NOTES. THE SPECIAL INSTRUCTION OR NOTES. THE SPECIAL INSTRUCTION OR NOTES. THE SPECIAL INSTRUCTION OR NOTES. THE SPECIAL INSTRUCTION OR NOTES. THE SPECIAL INSTRUCTION OR NOTES. THE SPECIAL INSTRUCTION OR NOTES. THE SPECIAL INSTRUCTION OR NOTES. T		AYS	2 DAYS	☐ 24 H	DURS	□iR			0									RE	QUE	STED /	ANAL'	YSIS							
SPECIAL INSTRUCTIONS OR NOTES: SAMPLING DO NOT NEEDED D	LA - RWQCB REPORT FORMAT UST AGENCY:				_				1		T					Τ			1		П		1	Т		Т	TEMPERATURE ON	PECEIST	
RIN TPH-4 w/Silica Gel Clean Up SAMPLING PRESERVATION REQUISTED	SPECIAL INSTRUCTIONS OF NOTES .								┨ᠷ	Ê		TBA							1									RECEIP	
RIN TPH-4 w/Silica Gel Clean Up SAMPLING PRESERVATION REQUISTED		_					ATE APPLIES		280	8015		HYBE											İ						
MW-1 State 1225 W 3 X X X X X X X X X		a final rep	ort	•) je										Î						-			
MW-1 State 1225 W 3 X X X X X X X X X	Rus 1 Pri-a wishica set Clean Up			L≠1 RECE	API VERIFIC	ATION RE	QUESTED		geat.	ictal	19	(8280 (TBE)	(a)	a a	(HO	E E	280E	_	B09	9015									
MW-1 State 1228 W X 3 X X X X X X X X X X X X X X X X X		SAI	PLING		7	PRESERV	RESERVATIVE] ¥	Extra	(826(nados ME, E	826	260	(826)	926	A (8;	1980	(8)	0									
MW-1 State 1228 W X 3 X X X X X X X X X X X X X X X X X	is s	DATE	TIME	MATRIX			-	CONT	Ē	Ť	TEX (xygel E, TA	381	PE (8	F	38	200	8	hand	that									
Microbinal by (Signature) Resolved by (Signature) Associated (Sample Costo) And 5/25/08 1700 Including by (Signature) Shipped Via 650 Resolved by (Signature) Resolved by (Signature) Associated (Sample Costo) And Date: 5/20/08 1700 Resolved by (Signature) Resolved by (Signature) Resolved by (Signature) Resolved by (Signature) Resolved by (Signature) Resolved by (Signature) Resolved by (Signature) Resolved by (Signature) Resolved by (Signature) Resolved by (Signature)	(4) 		 		HCL HN	03 H2SO4	NONE OTH			F	E	유림			1	 □	=	<u></u>	盂	ž	\perp	\bot			\perp		or Laboratory N	vates	
Microbinal by (Signature) Resolved by (Signature) Associated (Sample Costo) And 5/25/08 1700 Including by (Signature) Shipped Via 650 Resolved by (Signature) Resolved by (Signature) Associated (Sample Costo) And Date: 5/20/08 1700 Resolved by (Signature) Resolved by (Signature) Resolved by (Signature) Resolved by (Signature) Resolved by (Signature) Resolved by (Signature) Resolved by (Signature) Resolved by (Signature) Resolved by (Signature) Resolved by (Signature)	MW-1	5/23/0	1228	<u> W</u>	X					1		[X	<u>X</u>		<u> </u>				\perp							<u></u>		
Microbinal by (Signature) Resolved by (Signature) Associated (Sample Costo) And 5/25/08 1700 Including by (Signature) Shipped Via 650 Resolved by (Signature) Resolved by (Signature) Associated (Sample Costo) And Date: 5/20/08 1700 Resolved by (Signature) Resolved by (Signature) Resolved by (Signature) Resolved by (Signature) Resolved by (Signature) Resolved by (Signature) Resolved by (Signature) Resolved by (Signature) Resolved by (Signature) Resolved by (Signature)	Z MW-1B	$\perp \perp$	0928		X			13	X		X		\times	X_{\perp}				_	_										
Microbinal by (Signature) Resolved by (Signature) Associated (Sample Costo) And 5/25/08 1700 Including by (Signature) Shipped Via 650 Resolved by (Signature) Resolved by (Signature) Associated (Sample Costo) And Date: 5/20/08 1700 Resolved by (Signature) Resolved by (Signature) Resolved by (Signature) Resolved by (Signature) Resolved by (Signature) Resolved by (Signature) Resolved by (Signature) Resolved by (Signature) Resolved by (Signature) Resolved by (Signature)	3 NW-2		1214		X			3	, X		X		X	X															
Minority of State of	4 NW-3		1		X			$\overline{}$			X		\mathbf{X}	X	\top	1					1	\top	1	1		\top			
Received by: (Signatury) Received by: (Signatury)	1141-4	1	 	1	K	+			- 1 -	-	ÍΥ		$\langle \cdot \rangle$	\mathbf{z}		-	-	-			+	+	1.	+		+			
Shipped VIA 650 Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature)		-	1678		/ 		 	- 5	4	-	+	\vdash	4	+	+		-	-	\dashv		+	+	+-	+	+	+			
Shipped VIA 650 Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature)	1888) 1888)						├	-	+	-	-		-	_	+	-		_				+	4-	4_		_		· · · · · ·	
Shipped VIA 650 Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature)			ļ		1			\perp	4	 							<u> </u>					\perp	\perp						
Shipped VIA 650 Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature)																			ľ							İ			
Shipped VIA 650 Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature)									\top						1			\neg				十			11	\dashv			
Shipped VIA 650 Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature)					1.	+-	_	+	+	+	-			- -	-	-	\vdash	-			+	+	-	+-	-	-			
Shipped VIA 650 Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature)	Manufacture Characters]						\perp	<u> </u>												$oldsymbol{\perp}$		L					
Inquiring by (Signature) Received by (Signature) Received by (Signature) Received by (Signature) Received by (Signature) Received by (Signature) Received by (Signature) Received by (Signature) Received by (Signature) Received by (Signature) Received by (Signature)	Mildoniad of Collingia			restained by: (S	(CHE)Ore)	,	/	77				-							1			-/	_	,	,				
Shipped VIA 650 Shipped VIA 650 Received by: (Signeture) Received by: (Signeture) Received by: (Signeture) Received by: (Signeture) Received by: (Signeture) Received by: (Signeture) Received by: (Signeture)	(Im-abille			1/2	2/2	_//		10		(<u> </u>	AN	M	ϵ		570.	11/4		<u>/_</u>			7/2	3/	08			04		
(d) / (m) TE S/21/09 8:47	minute (algunium)			rtelived by: (5	iignature)												-=				Onte:				- 1	Time;			
(d) / (m) TEI SIZA 100 8:40	9. 10																				5/23/08					<u> </u>			
	endnished pl. (2 duquse)			Received by: (S	Minture	_	_													1					- [
509637809	<u> </u>				/ <u> </u>	n	<u></u>	7	EL	-											2	<u> /2/</u>	4/	06	3[8:40		
	509637809			-																			1				05/2/06 Revision		

WORK ORDER #: 08 - 0 5 - 2 2 6 3

Cooler of 1

SAMPLE RECEIPT FORM

CLIENT: BLAINE TECH	DATE: 5-24-03
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature.	LABORATORY (Other than Calscience Courier): °C Temperature blank °C IR thermometer Ambient temperature.
C Temperature blank.	Initial:
CUSTODY SEAL INTACT: Sample(s): Cooler: No (Not In	ntact) : Not Present: Initial:
SAMPLE CONDITION: Chain-Of-Custody document(s) received with samples	
COMMENTS:	