BUTTNER PROPERTIES, INC.

PROPERTY DEVELOPMENT • REAL ESTATE INVESTMENT • PROPERTY MANAGEMENT 600 West Grand Avenue, Oakland, California 94612
Telephone (510) 832-3456 • Facsimile (510) 465-4670
Email: Buttner@value.net

February 7, 2014

RECEIVED

By Alameda County Environmental Health at 3:16 pm, Feb 13, 2014

Alameda County Environmental Health Services Local Oversight Program 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Attention: Ms. Dilan Roe, LOP Program Manager

RE: 2250 Telegraph Avenue Oakland, California

Dear Ms. Roe:

The "1st Quarter 2014 Ground Water Monitoring Report, 2250 Telegraph Ave., Oakland, CA, February 2014" ("Report") was prepared by our consultant, Applied Water Resources ("AWR"), who we believe to be experienced and qualified to advise us in a technical area that requires a high degree of professional expertise. Therefore we have relied upon AWR's assistance, knowledge and expertise in their preparation of the Report. I am unaware of any material inaccuracy in the information in the Report or of any violation of government guidelines that are applicable to the Report. Accordingly, I am not aware of any reason to question the conclusions and recommendations contained in the Report.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1).

I declare under penalty of perjury that the foregoing is true and correct to the best of my knowledge.

Sincerely,

Marianne Robison

Mariaine Robisin

President

1st QUARTER 2014 GROUND WATER MONITORING REPORT

2250 Telegraph Ave, Oakland, CA

February 2014

ACEH Fuel Leak Case No. Ro359 GeoTracker Global ID To6oo100431

GROUND WATER MONITORING REPORT

1st Quarter 2014 February 2014

2250 Telegraph Ave Oakland, California

Prepared on behalf of: Buttner Properties, Inc. 600 W. Grand Ave, Oakland, CA 94612

Prepared by:

Applied Water Resources Corporation 1600 Riviera Avenue, Suite 310, Walnut Creek, CA 94596

TYSON R. FULMER
No. 9062
EXP. 11/30/14

OF CALIFORNIA

Prepared By:

Yola Bayram Staff Geologist Reviewed By:

Tyson Fulmer, PG Project Geologist

TABLE OF CONTENTS

1	IN	TRODUCTION1
	1.1	Site Description1
	1.2	Regional Setting1
	1.3	Site History
	1.4	Local Geology and Hydrogeologic Conditions2
2		cent Site Activities2
		2013 Site Remedial Activities
		INSTALLATION OF MW-4A
	2.3	GROUND WATER MONITORING AND SAMPLING
	2.3.1	
	2.3.2	1 0
3		ROUND WATER SAMPLING RESULTS AND DISCUSSION4
		Screening Criteria Selection4
		Ground Water Monitoring Results4
	3.3	Discussion of Ground Water Monitoring Results4
	3.3.1	0 , 10
	3.3.2	
	3.3.3	, 66
4		ndings5
5	RE	FERENCES
		LIST OF TABLES
7	able 1 -	Ground Water Elevations and Analytical Results
		LIST OF CHARTS
С	hart 1 -	Concentrations of TPHg vs. Time
С	hart 2 -	Concentrations of TPHd vs. Time
		Concentrations of Benzene vs. Time
		LIST OF FIGURES
Fi	gure 1 -	Location Map
Fi	gure 2 -	Ground Water Gradient January 2014
Fi	gure 3 -	TPH as Gasoline Iso-Concentration Contours
Fi	gure 4 -	TPH as Diesel Iso-Concentration Contours
Fi	gure 5 -	Benzene Iso-Concentration Contours
		LIST OF APPENDICES
Α	ppendix	A – MW-4 and MW-4A Boring Logs
Α	ppendix	B – Monitor Well Field Data Sheets

February 2014 II

Laboratory Analytical Reports

Appendix C –

1 INTRODUCTION

This Ground Water Monitoring Report was prepared by Applied Water Resources Corporation (AWR) on behalf of Buttner Properties. This Report summarizes site activities and environmental monitoring data at 2250 Telegraph Ave, Oakland, California (Site) in January 2014. Site activities included installing, developing and surveying a new monitor (MW-4A) and ground water monitoring. All work was conducted under the supervision of a California Registered Professional Geologist.

1.1 Site Description

The Site is located at 2250 Telegraph Avenue, situated at the northeast corner of Telegraph Avenue and West Grand Avenue, in Oakland, California (Figure 1). The Site and immediately adjacent properties are zoned for commercial development and use. The Site is currently paved and vacant.

The adjacent property to the east, also owned by Buttner Properties, Inc., is occupied by a single story structure, and paved parking and use areas (460 West Grand Avenue). The 460 Grand Avenue site has been used as a nursery school since December 1988. The nursery school building is situated approximately 90 feet east of the former service station building, which is cross-gradient of the former USTs which were removed in 1990.

1.2 Regional Setting

The Site is located in the East Bay Plain in the Oakland Sub Area, which consists of unconsolidated alluvial deposits that ranging from 300 to 700 feet in thickness (CRWQCB, 1999). The nearest significant surface water features are Lake Merritt, 0.4 mile to the east, and San Francisco Bay, 2.5 miles to the west. The Site is essentially flat at an approximate elevation of 24 feet above mean sea level (msl).

1.3 Site History

In the early 1950's, Union Oil Company entered into a lease to operate a service station at the Site. In 1958, Buttner Properties, Inc. acquired the property and the existing service station management and operator at that time were allowed to continue in their lease arrangement. Two underground storage tanks (USTs) (sizes unknown) were previously located in the southwest corner of the Site and records indicated that the USTs were removed from the Site in the 1960's (Fugro 2011).

Three USTs (two 10,000 gallon gasoline and one 280 gallon waste oil tank) were then installed at the Site along with two fuel dispensing islands (each with two dispensers) as shown in Figure 1. In the late 1980's, fuel dispensing ceased and the lease was changed to allow automobile servicing and repair activities. The Site was occupied by a one-story former service station

building that included two vehicle servicing bays and an office. The three USTs and two dispensing islands were removed in August 1990 (Fugro 2011). The service station building was demolished in early 2013. The Site is now vacant.

1.4 Local Geology and Hydrogeologic Conditions

Based on borings and excavations advanced at the Site, a layer of non-native fill consisting of clayey and sandy gravel is present from about 2 to 5 feet. The fill material is underlain by layers of silty clay to lean clay to approximately 17 feet below ground surface (bgs). Sandy clay was observed beginning at approximately 17 feet bgs to the maximum explored depth of 25 feet bgs with the sand content increasing with depth. Fill materials consisting of sand and gravel exist in the former UST excavations.

Initial ground water at the Site is encountered in the sandy clay layer beginning at 17 feet bgs. The ground water is under hydrostatic pressure equilibrating between 8 and 13 feet bgs based on numerous monitoring events conducted at the Site since 1994. In January 2014, the equilibrated ground water depth was measured between 8 and 12 feet bgs.

2 RECENT SITE ACTIVITIES

2.1 2013 Site Remedial Activities

In June 2013, two soil excavations were performed in the general vicinity of the former waste oil UST area and the former gasoline UST area. Approximately 975 cubic yards of contaminated soil was removed along with approximately 4,000 gallons of ground water. Prior to backfill, approximately 220lbs of oxygen releasing compound (ORC) advanced pellets, manufactured by Regenesis Bioremediation Products, was spread on the bottom of each excavation for a total of 440lbs of ORC placement. All excavations were then backfilled with a self-compacting aggregate crushed drain rock and filter fabric at the base, followed by 4-inch minus fill materials compacted to 90% in 12-inch lifts. The remedial activities are detailed in the Site Remediation Completion Report (AWR, 2013).

2.2 INSTALLATION OF MW-4A

MW-4 was located in the former waste oil UST area and was removed during the June 2013 remedial effort. On January 6, 2014, Vapor Tech Services was mobilized to the Site to install a replacement well (MW-4) to the east of the excavation. However, during installation, the well could not be completed to the designed specification and the boring was abandoned under Alameda County's approval. As a result, the well was located to the southeast of MW-4, downgradient of the excavation, and was successfully installed to 25 feet bgs on January 7, 2014. Boring logs for MW-4 and MW-4a are provided in Appendix A.

AWR returned on January 10, 2014 to develop MW-4A. The well was surged and then pumped using a trash pump until the purge water was relatively free of turbidity. Approximately 25 gallons, or approximately 11 case volumes, were removed from the well.

On January 17th, KSR Inc., a licensed survey company surveyed ground surface and the top of casing for the new well to the SWRCB's Geotracker survey standards.

2.3 GROUND WATER MONITORING AND SAMPLING

Ground water monitoring and sampling of the Site was performed on January 10, 2014 by AWR personnel, the first monitoring event conducted since the June 2013 remediation effort. Due to the location and traffic safety concerns, MW-6 was not sampled during the monitoring event. Work at the Site included measuring depth to water, subjectively evaluating the possible presence of petroleum in ground water in the wells, purging and sampling the wells using ASTM low-flow sampling techniques, and submitting the samples under chain of custody to a state-certified laboratory for analysis.

Ground water elevation data and analytical data are summarized in Table 1. Field sheets of recently recorded ground water monitoring data are included in Appendix B

2.3.1 Ground Water Gradient

Before purging and sampling ground water, depth to water was measured to the nearest hundredth of a foot from the top of each well casing using an electronic water level meter after the well was allowed to equilibrate. The depth to water measurement was subtracted from the surveyed top of casing elevation from all wells to calculate the ground water elevation. The ground water gradient direction is to the south-southeast at an average of 0.004 ft/ft.

2.3.2 Ground Water Sampling

Before ground water sampling, each well was purged using low-flow techniques described in the "Low-Flow (Minimal Drawdown) Ground Water Sampling Procedures" (ASTM No 6771-02, 2002). Dedicated tubing, attached to a peristaltic pump, was lowered to the mid-point of the reported screen zone. The pump was set to a rate of less than 1 liter per minute and pH, dissolved oxygen (DO), specific conductance (SC), oxidation reduction potential (ORP), depth to water (DTW) and temperature were measured in three to five minute intervals within a flow-through cell. When depth to water remained constant and parameters stabilized to within ±10% in consecutive readings, the pump rate was reduced, the tube was disconnected from the flow-through cell and samples were collected directly from the dedicated tubing.

From each monitor well, five laboratory-supplied 40-milliliter HCL-preserved sample vials were filled with ground water and sealed with zero headspace. Once filled, sample vials were inverted and tapped to test for air bubbles. Two amber colored glass containers and one unpreserved polycarbonate container were also filled with ground water and sealed. Ground water sample containers were labeled, stored in a pre-chilled, insulated container and

transported to Curtis & Tompkins, a state-certified analytical laboratory, following standard COC protocols. Ground water samples were analyzed for the following constituents of concern (COCs) at the Site by the following methods:

- Total petroleum hydrocarbon (TPH) as gasoline (TPHg) by EPA method 8015
- TPH as diesel (TPHd), and motor oil (TPHmo), by EPA Method 8015
- Benzene, toluene, ethylbenzene, total xylenes (BTEX), MTBE and fuel oxygenates by EPA Method 8260
- Lead by EPA method 6010.

Water purged during the development and sampling of the monitor wells is being temporarily stored onsite in a 55-gallon drum pending off-site disposal.

3 GROUND WATER SAMPLING RESULTS AND DISCUSSION

3.1 Screening Criteria Selection

Ground water concentrations are compared to RWQCB Environmental Screening Levels (ESLs) (RWQCB, 2013). Ground water use as a potential source of drinking water in this area is highly unlikely due to the Site location and the high quality public drinking water supplied by EBMUD. Therefore, ground water ESLs for evaluation of potential vapor intrusion were selected for the compounds. Because there is not an ESL listed for TPH and lead for ground water risk to indoor air, the drinking water quality goals are listed instead.

The State Water Resources Control Board's (SWRCB) Low Threat Closure Policy (LTCP) Guidelines are selected as screening criteria to evaluate concentrations in ground water (SWRCB, 2012). The lowest values in ground water under the LTCP guidance were selected to compare to Site data.

3.2 Ground Water Monitoring Results

Ground water analytical results are summarized in Table 1. Charts 1 through 3 depict the trends of TPHg, TPHd, and benzene respectively in the monitor wells MW-1, MW-3, MW-4, MW-4A and MW-8 over time. Figures 3 through 5 show the distribution of TPHg, TPHd, and benzene in ground water at the Site. Copies of the chain of custody record and laboratory analytical reports with individual and standard chromatograms are included as Appendix C.

3.3 Discussion of Ground Water Monitoring Results

The available data collected at 2250 Telegraph Ave indicate that ground water has been affected by fuel and waste oil from the former USTs. Data from the first monitoring event since

the remediation effort in 2013 show that ground water concentrations in the wells immediately adjacent to the excavation areas were lower compared to previous monitoring events.

3.3.1 TPHg and BTEX, MTBE and Fuel Oxygenate Concentrations

There were no detections of BTEX or fuel oxygenates measured above ESLs established for threat to indoor air quality from ground water. TPHg concentrations were measured above the drinking water goal in MW-1, MW-3 and MW-8, however, the laboratory indicates that the chromatographic patterns are not consistent with the gasoline standard.

TPHg concentrations increased in MW-1 and MW-8 in the January monitoring event compared to previous sampling events. However, MW-1 is located upgradient of the two excavation areas and MW-8 is located at least 40 feet in the down gradient direction of the excavations. Based on the location of these wells, the effects of the remedial action are not expected to impact concentrations in these particular wells. BTEX and fuel oxygenate concentrations in these wells are comparable to previous monitoring events

TPHg, BTEX and fuel oxygenate concentrations all dropped in MW-3 compared to previous monitoring events. Well MW-3 is the nearest downgradient well to southern excavation performed in 2013 (Charts 1 and 3). TPHg and BTEX concentrations were all non-detect in MW-4A, which is the nearest down gradient well to the northern excavation. Concentrations of MTBE and fuel oxygenates are minimal in well MW-4A.

3.3.2 TPHd and TPHmo Concentrations

TPHmo concentrations were not detected above the laboratory reporting limit in any of the wells. TPHd was detected in MW-4A, however the concentration was found to be significantly lower than concentrations detected previously in the MW-4, for which MW-4A was designed to replace. TPHd was also detected in the down gradient well MW-8, however that concentration was also found to be lower than previous detections.

3.3.3 Laboratory Flagged Data

All detected concentrations of TPHg and TPHd were Y-flagged because they did not match the laboratory's respective gasoline or diesel standard. Purgeable chromatograms show BTEX concentrations were relatively low compared with the overall TPHg concentrations. The extractable TPHd chromatograms indicate that concentrations are highest in the carbon chain range from C10 to C12, consistent with the heavier end of the TPHg range. The purgeable and extractable chromatogram data are consistent with an old gasoline release at the Site that has been significantly weathered.

4 FINDINGS

Based on the results of ground water monitoring performed on January 10, 2014 at 2250 Telegraph Ave:

- Ground water gradient direction is to the south-southeast at an average of 0.004 ft/ft.
- TPHmo concentrations were not detected above the laboratory reporting limit in any of the wells.
- All detected concentrations of TPHd and TPHg were Y-flagged because they did not match the laboratory's diesel standard. The laboratory chromatograms are consistent with significantly weathered gasoline.
- TPHg concentrations increased in MW-1 located upgradient of the excavations, and MW-8 located approximately 40 feet in the downgradient direction of the southern excavation.
- In well MW-3, the nearest well downgradient of the gasoline UST excavation, TPHg concentrations were slightly lower the previous monitoring event. Additionally, BTEX, MTBE and fuel oxygenates were all measured significantly lower than previous monitoring events.
- In well MW-4, the nearest well down gradient from the northern excavation, TPHg, BTEX and fuel oxygenate concentrations were either non-detect or minimal.
- All dissolved concentrations in ground water were measured below ESLs for ground water threat to indoor air quality and the LTCP guidelines.

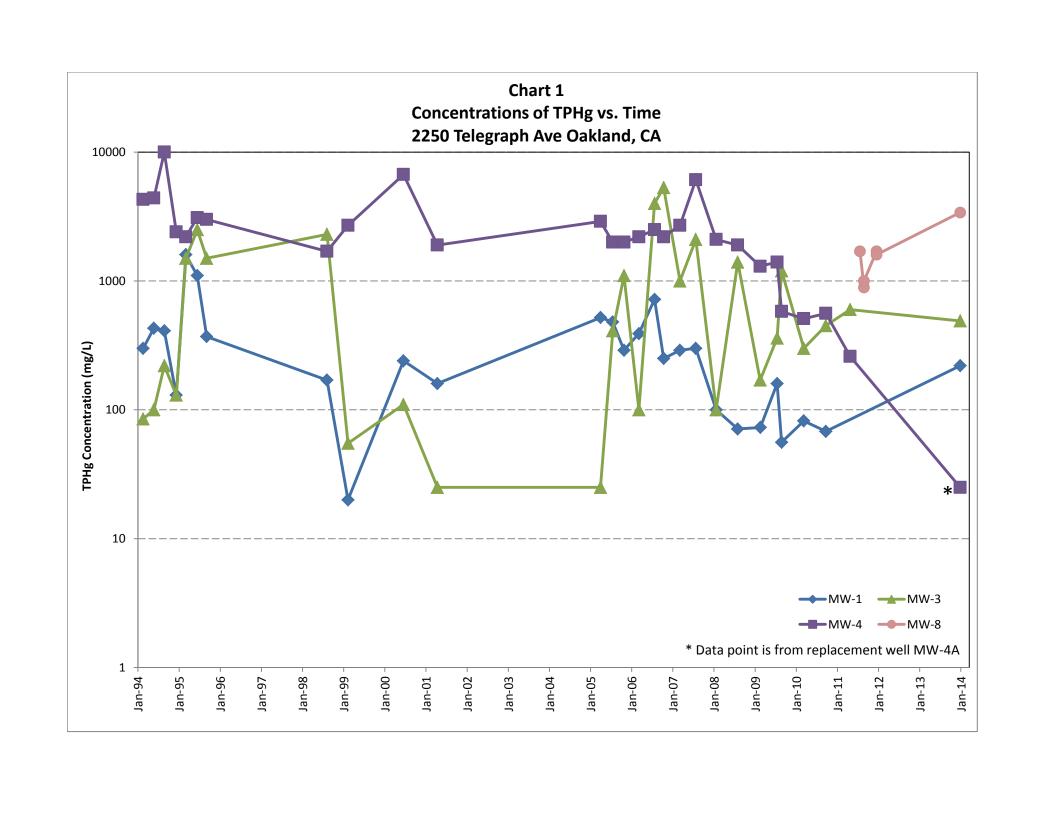
5 REFERENCES

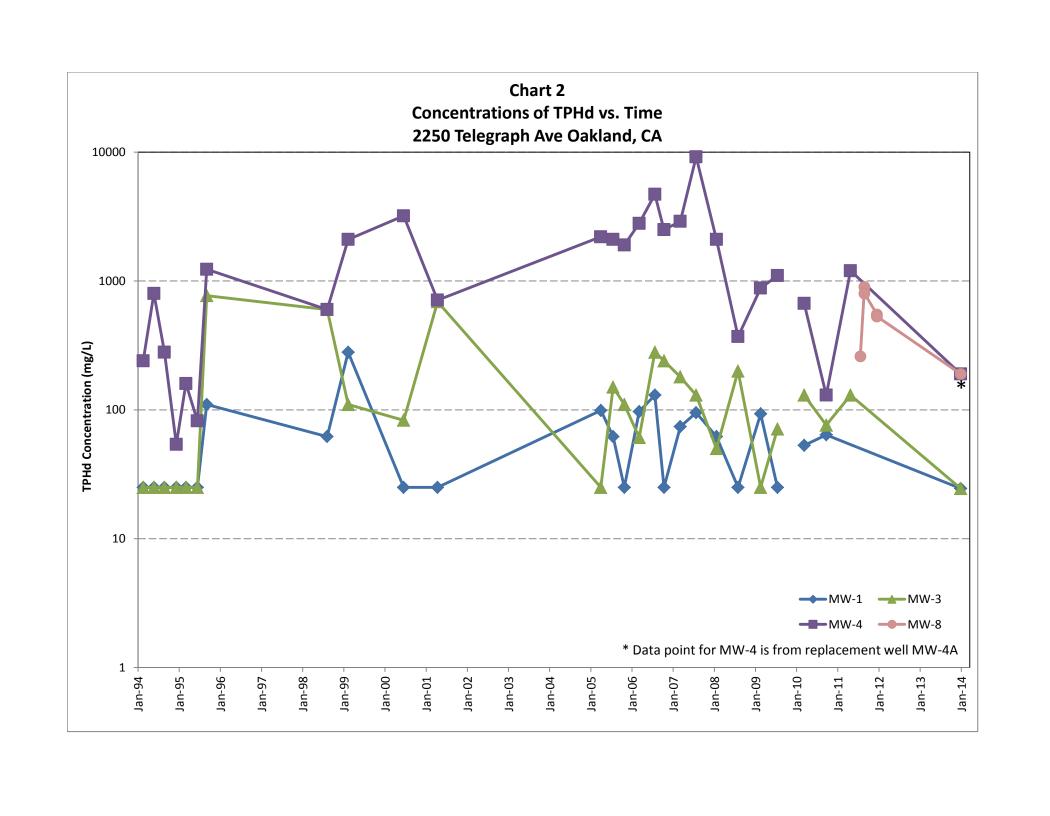
- Applied Water Resources Corp. Site Remediation Completion Report. December 2013.
- ASTM 2002. Standard Practice for Low-Flow Purging and Sampling for Wells and Devices Used for Ground-Water Quality Investigations. Designation: D 6771-02
- California Regional Water Quality Control Board San Francisco Bay Region Groundwater Committee, East Bay Plain Ground Water Beneficial Use Evaluation Report, Alameda and Contra Costa Counties, CA. June 1999,
- California Regional Water Quality Control Board Region 2 Environmental Screening Levels, San Francisco Bay Regional Water Quality Control Board, California Environmental Protection Agency, updated December 2013
- Cardno ERI, Feasibility Study Corrective Action Plan, Former Exxon Service Station 70235, 2225 Telegraph Oakland CA, SWRCB Geotracker database T0600101354, April 2012
- Fugro Consultants, Inc. Corrective Action Plan. November 2011
- Fugro Consultants, Inc. Remediation Progress Report and Quarterly Groundwater Monitoring Report (4th Qtr 2012). February 2013
- State Water Resources Control Board, Low Threat Underground Storage Tank Case Closure Policy, Resolution No 2012-0016, May 2012

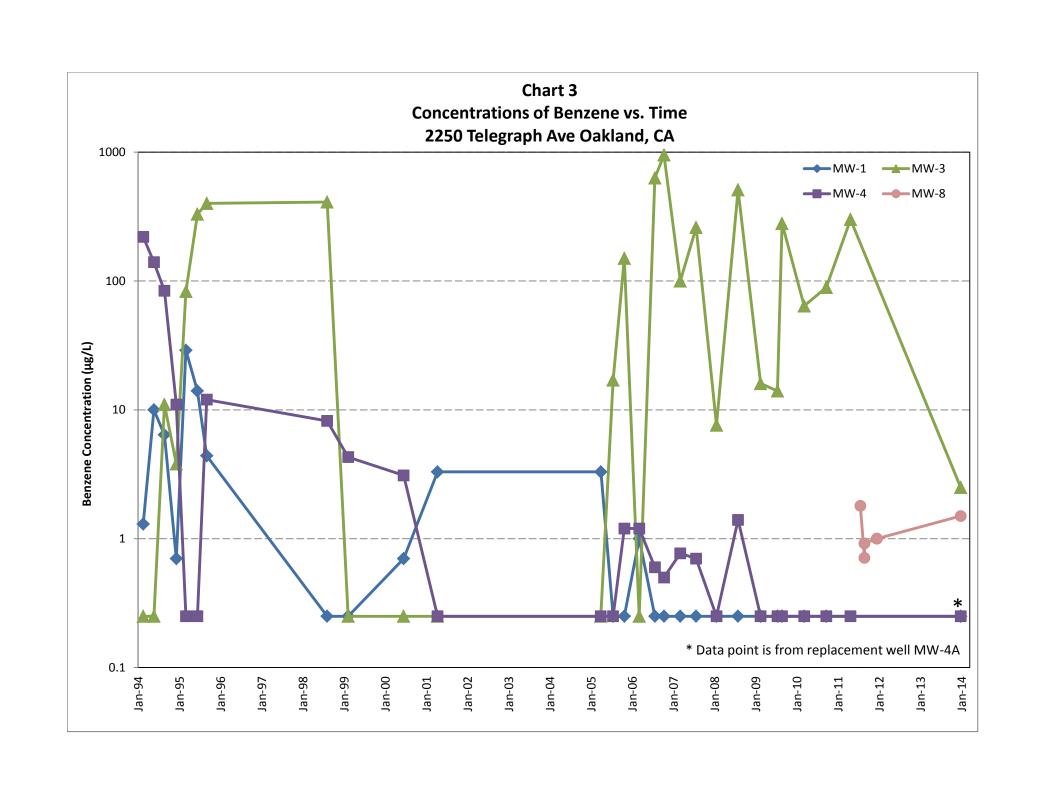
TABLES

Table 1 Ground Water Elevations and Analytical Results 2250 Telegraph Ave Oakland, CA

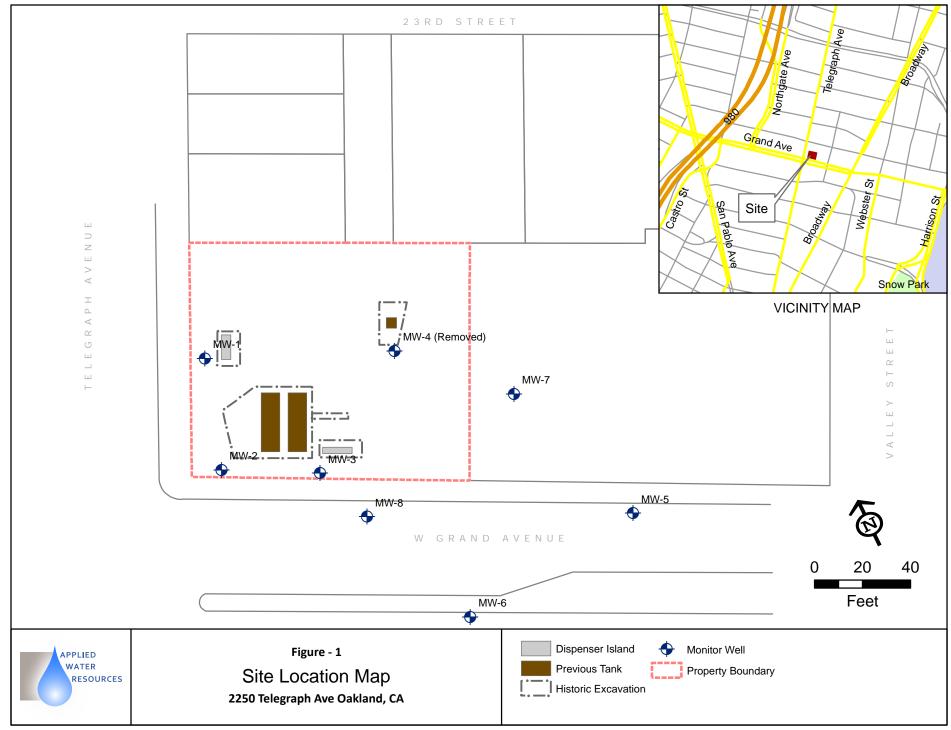
Well ID	Date	Groundwater Elevation (ft msl)	TPH as Gasoline	TPH as Kerosene	TPH as Diesel	TPH as Motor Oil	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE-8020	MTBE-8260	TBA	DIPE	ETBE	TAME	1,1,1-TCA	1,2-DCA	1,2-DBA	PCE	Lead	Chlorobenzene
Environ	mental Screenii	. ,	100	100	100	100	27	95,000	310	μg, 37,000	9,900	9,900						1,000	770	640	15	
	3/3/1994	10.16	300	 <50	<50	<500	100 1.3	<0.5	2.7	3.1	1,000	1,000					<0.5	5.5		<0.5		<0.5
-	6/6/1994 9/7/1994	9.19 8.63	430 410	180+	<50 <50	<500 <500	10 6.4	2.2 0.8	6.1 2.6	7.6 3.8							<0.5	<0.5		<0.5		<0.5
	12/22/1994	9.72	130	<50	<50	<500	0.7	<0.5	0.6	0.8							<0.5	3.4		<0.5		<0.5
-	3/17/1995 6/27/1995	10.82 10.04	1,600 1,100	170 <50	<50 <50	<500 <500	29 14	<0.5	9.1 7.1	6.9 5							<0.5	<0.5		<0.5		<0.5
	9/18/1995	9.43	370		110+		4.4	0.6	2	1.4							<0.5	2.4		<0.5		<0.5
-	8/21/1998 2/24/1999	9.55 10.81	170 20		62+ 280+		<0.5 <0.5	0.76 <0.5	0.79 <0.5	<0.5 <0.5	<2.0	<2.0										
-	6/30/2000 4/27/2001	13.47 9.99	240 160		<50 <50		0.7 3.3	0.8 <0.5	<0.5	0.74 <0.50	4 <2.0											
-	4/15/2005	10.43	520		99LY	<300	3.3C	1.8	<0.5	4.6		<0.5	<10	<0.5	<0.5	<0.5		0.6	<0.5			
-	8/1/2005 11/9/2005	9.99 8.02	480 290Y		62LY <50	<300 <300	<0.5 <0.5	<0.5 <0.5	<0.5	2.3 <0.5		<0.5 <0.5	18 14	<0.5	<0.5	<0.5		<0.5	<0.5			
MW-1	3/21/2006 8/7/2006	10.84 9.15	390 720		97LY 130LY	<300	1 <0.5	<0.5 <0.5	0.6 <0.5	<0.5 <0.5		<0.5 <0.5	16 18	<0.5	<0.5 <0.5	<0.5		<0.5 <0.5	<0.5			
IVIVV-1	10/27/2006	9.15	250		<50	<300 <300	<0.5	<0.5	<0.5	<0.5		<0.5	12	<0.5	<0.5	<0.5		<0.5	<0.5			
-	3/20/2007 8/8/2007	9.61 9.34	290Y 300LY		74LY 95LY	<300 <300	<0.5 <0.5	<0.5 <0.5	0.58 <0.5	<0.5 <0.5		<0.5	<10 <10	<0.5	<0.5	<0.5		<0.5	<0.5			
-	2/5/2008	11.03	100Y		62Y	<300	<0.5	<0.5	<0.5	< 0.5		< 0.5	<10	< 0.5	< 0.5	< 0.5		<0.5	< 0.5			
-	8/14/2008 3/3/2009	9.55 10.86	71Y 73Y		<50 93Y	<300 <300	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5 <1.0		<0.5	<10 <10	<0.5	<0.5 <0.5	<0.5		<0.5	<0.5			
-	7/30/2009 9/8/2009*	9.45 8.78	160Y 56Y		<50	<300	<0.5 <0.5	<0.5 <0.5	<0.5	<1.0 0.56C		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5			
-	3/24/2010	10.4	82Y		53Y	<300	<0.5	<0.5	<0.5	<1.0		< 0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5			
-	10/6/2010 5/9/2011	9.57 10.86	68Y		64Y	<300	<0.5	<0.5	<0.5	<1.0 Not Sar	npled	<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5			
-	9/9/2011 12/29/2011	9.92 9.82								Not Sar	•											
-	11/12/2012	10.02								Not Sai	<u> </u>											
	1/10/2014 3/3/1994	9.17 9.66	220Y 110	 <50	<49 <50	<290 <500	<0.5 <0.5	<0.5 1.7	<0.5	<0.5 2.7		<0.5	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5
-	6/6/1994	8.88	100	<50	<50	<500	11	<0.5	0.7	1.1							<0.5	<0.5		<0.5		< 0.5
-	9/7/1994 12/22/1994	8.31 8.76	<50 <50	<50 <50	<50 <50	<500 <500	<0.5 0.8	<0.5	<0.5	<0.5							<0.5	<0.5		<0.5		<0.5
	3/17/1995 6/27/1995	10.18 9.33	180 80	100 <50	<50 <50	<500 <500	31 6	<0.5 <0.5	1 <0.5	1.8 <0.5							<0.5	<0.5		<0.5		<0.5
-	9/18/1995	8.36	<50		<50		<0.5	<0.5	<0.5	< 0.5							<0.5	<0.5		<0.5		<0.5
	8/21/1998 2/24/1999	8.12 10.12	<50 <50		<50 <50		<0.5 <0.5	<0.5 <0.5	<0.5	<0.5 <0.5	<2.0	<2.0										
	6/30/2000 4/27/2001	14.24 8.71	<50 <50		<50 <50		<0.5 <0.5	<0.5 <0.5	<0.5	<0.5 <0.5	2 <2.0											
-	4/15/2005	9.03	<50		<50	<300	<0.5	<0.5	<0.5	< 0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5			
-	8/1/2005 11/9/2005	8.36 8.49	<50 <50		<50 <50	<300 <300	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5 <0.5		<0.5 <0.5	<10 <10	<0.5	<0.5	<0.5		<0.5	<0.5			
MW-2	3/21/2006 8/7/2006	9.01 8.19	<50 <50		<50 <50	<300 <300	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5 <0.5		<0.5	<10 <10	<0.5	<0.5	<0.5		<0.5	<0.5			
-	10/27/2006	8.11	<50		<50	<300	<0.5	<0.5	<0.5	<0.5		< 0.5	<10	< 0.5	< 0.5	< 0.5		<0.5	< 0.5			
-	3/20/2007 8/8/2007	7.51 7.21	<50 <50		<50 <50	<300 <300	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5		<0.5 <0.5	<10 <10	<0.5	<0.5	<0.5		<0.5	<0.5			
-	2/5/2008 8/14/2008	9.64 10.93	<50 <50		<50 <50	<300 <300	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5		<0.5	<10 <10	<0.5	<0.5	<0.5		<0.5	<0.5			
-	3/3/2009	7.72	<50		<50	<300	<0.5	<0.5	<0.5	<1.0		< 0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5			
-	7/30/2009 3/24/2010	8.62 Not Measured	<50	<50	<300	<0.5	<0.5	<0.5	<1.0	Not Sai	<0.5 npled	<10	<0.5	<0.5	<0.5		<0.5	<0.5				
-	10/5/2010 5/9/2011	7.71 10								Not Sar												
-	9/9/2011	9.57								Not Sar	npled											
	12/29/2011 11/12/2012	9.31 9.1								Not Sar												
	1/10/2014	8.94	<50		<49	<290	<0.5	<0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		1.1	
-	3/3/1994 6/6/1994	9.47 8.69	85 100	<50 110+	<50 <50	<500 <500	<0.5 <0.5	0.77 <0.5	<0.5	3.7 <0.5							<0.5 2.5	<0.5		<0.5 2.1		<0.5
-	9/7/1994 12/22/1994	8.22 9.23	220 130	<50 95+	<50 <50	<500 <500	11 3.8	1.8 0.5	2.6 0.6	3.5 1.2							<0.5	<0.5		0.6 <0.5		<0.5
-	3/17/1995	10.12	1,500	270	<50	<500	83	6	10	15							<0.5	<0.5		<0.5		<0.5
	6/27/1995 9/18/1995	9.03 8.43	2,500 1,500	<50	<50 770 +	<500 	330 400	8.9 11	8.1 2.2	20 3.3							<0.5	<0.5		<0.5		<0.5
	8/21/1998 2/24/1999	8.61 10.39	2,300 55		600+ 110+		410 <0.5	9.3	36 <0.5	25 <0.5	<10	<2.0										
-	6/30/2000	10.83	110		83+		<0.5	<0.5	0.51	< 0.5	<2.0											
-	4/27/2001 4/14/2005	8.67 9.12	<50 <50		690+ <50	<300	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5 <0.5	<2.0	<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5			
	8/1/2005 11/9/2005	9.39 8.73	410 1,100Y		150HLY 110LY	750 <300	17 150	<0.5	0.87c 6.1	1.4 3.8		<0.5 <0.5	<10 13	<0.5	<0.5	<0.5		<0.5	<0.5			
-	3/21/2006	10.2	100		61Y	<300	<0.5	<0.5	<0.5	<0.5		< 0.5	12	< 0.5	< 0.5	< 0.5		<0.5	< 0.5			
MW-3	8/7/2006 10/27/2006	8.67 8.34	4,000Y 5,300		280LY 240LY	<300 <300	630 950	9 13	31 17	12 11		<0.5 <10	18 <200	<0.5 <10	<0.5 <10	<0.5 <10		<0.5 <10	<0.5 <10			
	3/20/2007 8/8/2007	9.25 8.49	1,000LY 2,100LY		180LY 130LY	<300 <300	100 260	1.5 5.1	2.1 5.8	3.3 3.6		<0.5	<10 <40	<0.5	<0.5	<0.5		<0.5	<0.5			
	2/5/2008	10.36	100		50Y	<300	7.6	<0.5	<0.5	0.5		< 0.5	<10	<0.5	<0.5	<0.5		<0.5	< 0.5		-	
	8/14/2008 3/2/2009	8.44 10.86	1,400 170Y		200Y <50	<300 <300	510 16	8.2 <0.5	22 <0.5	7.2 2.4		<3.6 <0.5	<71 <10	<3.6	<3.6 <0.5	<3.6		<3.6 <0.5	<3.6			
	7/30/2009 9/8/2009*	8.56 8.37	360 1200Y		71Y 	<300	14 280	<0.5	1.2 9.2C	<1.0 3.08C		<0.5	13	<0.5	<0.5	<0.5		<0.5	<0.5			
	3/24/2010	10.1	300		130Y	<300	64	2.5	0.78	3.3		< 0.5	<10	<0.5	<0.5	< 0.5		<0.5	<0.5		_	
	10/6/2010 5/9/2011	8.46 10.1	450 600		76Y 130Y	<300 <300	89 300	3.7	4.6 5.2	5.2 11.81		<0.5	<10 12	<0.5	<0.5	<0.5		<0.5	<0.5			
	9/9/2011	9.41								Not Sai		•		•	•	·	•		*			
	12/29/2011 11/12/2012	9.23 9.14								Not Sar												
	1/10/2014	8.8	490Y		<49	<290	2.5	<0.5	<0.5	0.5		< 0.5	<10	< 0.5	<0.5	< 0.5		<0.5	< 0.5		<1	

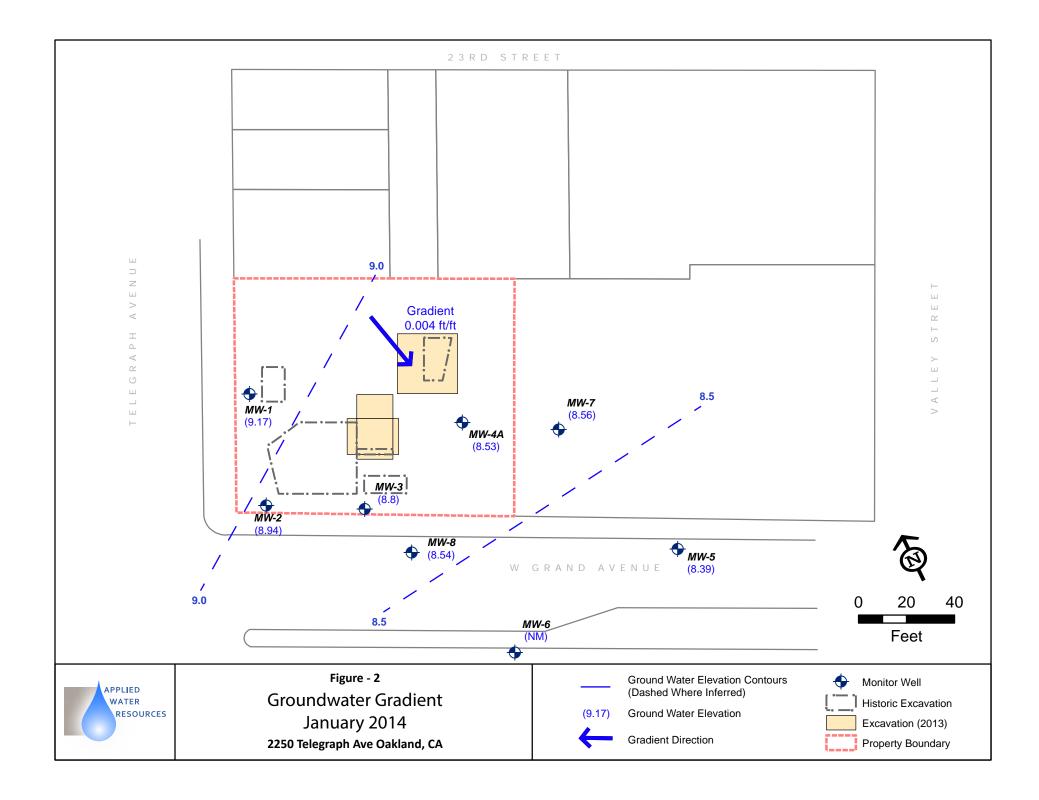

Table 1 **Ground Water Elevations and Analytical Results** 2250 Telegraph Ave Oakland, CA

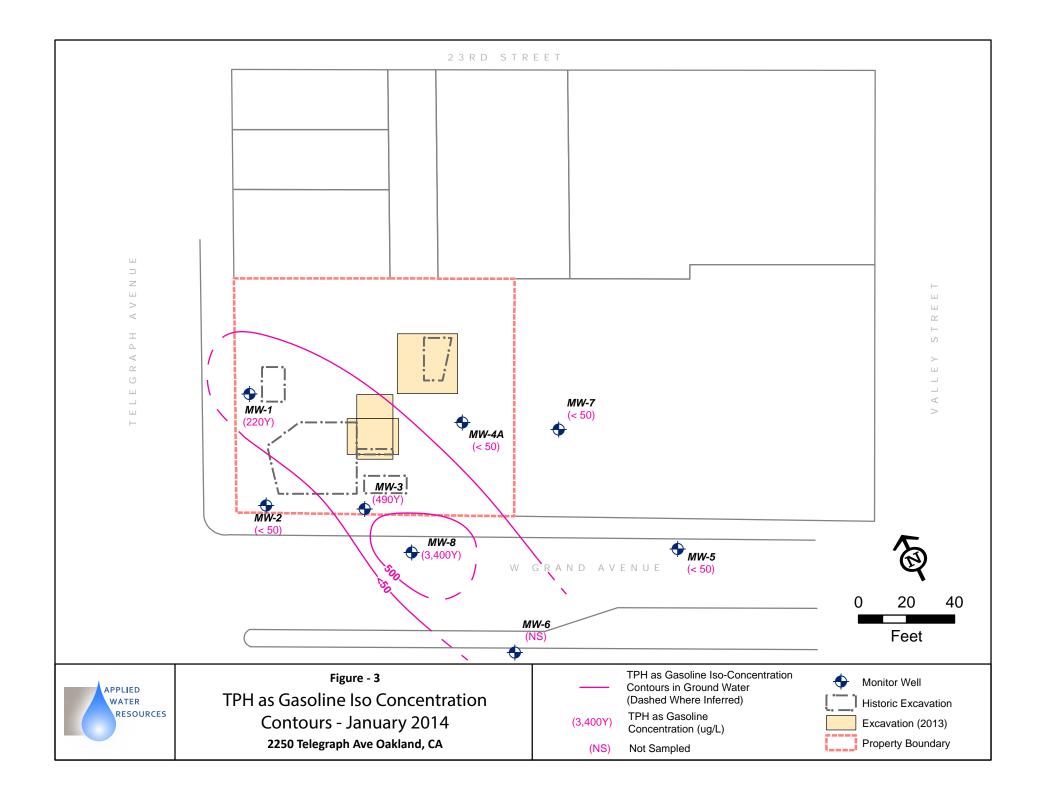

Well ID	Date	Groundwater Elevation (ft msl)	TPH as Gasoline	TPH as Kerosene	TPH as Diesel	TPH as Motor Oil	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE-8020	MTBE-8260	ТВА	DIPE	ETBE	TAME	1,1,1-TCA	1,2-DCA	1,2-DBA	PCE	Lead	Chlorobenzene
Environ	mental Screenii	ng Levels (ESLs)	100	100	100	100	27	95,000	310	μg/ 37,000		9,900						1,000	770	640	15	
	3/3/1994	8.99	4,300	<50	240	<500	220	20	7.5	17							<0.5	5.9		< 0.5		4.4
	6/6/1994 9/7/1994	8.03 7.02	4,400 10,000	<50 490 +	800+ 280+	<500 <500	140 84	<0.5 <0.5	<0.5 42	<0.5 69							<0.5	<0.5 4.4		<0.5		<0.5
	12/22/1994	7.62	2,400	450+	54+	<500	11	<0.5	7.1	11							<0.5	3.6		3.6		<0.5
	3/17/1995	9.78	2,200	380	160+	<500	<0.5	<0.5	7.9	10							<0.5	1.7		<0.5		4.5
	6/27/1995 9/18/1995	8.83 8.04	3,100 3,000	<50	82 1,231+	<500 	<0.5 12	<0.5 <0.7	13 6.9	19 8.3							<0.5	2.3 1.9		<0.5		4.8
	8/21/1998	8.02	1,700		600+		8.2	12	13	5.2	<2.0	-										
	2/24/1999	9.09	2,700		2,100+		4.3	0.64	< 0.5	0.54		<2.0										
	6/30/2000 4/27/2001	11.74 8.62	6,700 1,900		3,200+ 710		3.1 <0.5	1.7 <0.5	11 <0.5	16.7 <0.5	27 14											
	4/14/2005	7.87	2,900		2,200HLY	2,500	<0.5	<0.5	<0.5	5.1		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5			
	8/1/2005 11/9/2005	8.1 7.46	2,000 2,000Y		2,100HLY 1,900HLY	3,400L 2,300L	<0.5 1.2	<0.5 <0.5	<0.5	5.8c 0.8		<0.5	<10 <10	<0.5	<0.5	<0.5		<0.5	<0.5			
MW-4	3/21/2006	9.88	2,200		2,800HLY	4,000L	1.2	<0.5	<0.5	0.7		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5			
	8/7/2006	7.98	2,500y		4,700HLY	7,200L	0.6	<0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5			
	10/27/2006 3/20/2007	7.13 8.68	2,200y 2,700		2,500HLY 2,900HLY	3,200L 3,500L	0.5 0.77	<0.5 <0.5	<0.5	<0.5 0.67		<0.5	<10 <10	<0.5	<0.5	<0.5		<0.5	<0.5			
	8/8/2007	7.88	6,100LY		9,200HL	12,000HL	0.7	<0.5	<0.5	0.5		< 0.5	<10	<0.5	<0.5	< 0.5		<0.5	< 0.5			
	2/5/2008 8/14/2008	9.48 8.41	2,100 1,900Y		2,100Y 370Y	2,200 <300	<0.5 1.4	<0.5 0.59	<0.5	<0.5 0.85		<0.5	<10 <10	<0.5	<0.5	<0.5		<0.5	<0.5			
	3/2/2009	8.75	1,300Y		880Y	850	<0.5	<0.5	<0.5	<1.0		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5			
	7/30/2009	8.07	1,400Y		1,100Y	1,300	<0.5	<0.5	<0.5	<1.0		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5			
	9/8/2009* 3/24/2010	7.77 9.93	580Y 510Y		670	980	<0.5 <0.5	<0.5 <0.5	<0.5	7.5C <1.0		2.4C <0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5			
	10/6/2010	8.5	560Y		130Y	<300	<0.5	<0.5	<0.5	<1.0		< 0.5	<10	<0.5	<0.5	<0.5		<0.5	< 0.5			
	5/9/2011 9/9/2011	9.42 8.93	260		1,200	1,500	<0.5	<0.5	<0.5	<1.0 Not Sar	nnled	<0.5	<10	<0.5	<0.5	< 0.5		<0.5	<0.5			
	12/29/2011	8.85								Not Sar	•											
MW-4A	11/12/2012 1/10/2014	9.17	<50		190Y	-210	<0.5	<0.5	<0.5	Not Sar	npled	1.8	<10	<0.5	<0.5	<0.5	1	11	<0.5		<1	
IVIVV-4A	6/26/1997	8.53 7.58	120		<50	<310	<0.5	<0.5	<0.5	<0.5		1.8	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.6	 <1	<0.5
	8/21/1998	7.7	<50		<50		<0.5	<0.5	<0.5	<0.5	<2.0											
	2/24/1999 6/30/2000	9.16 8.39	<50 <50		<50 <50		<0.5 <0.5	<0.5 <0.5	<0.5	<0.5 <0.5	5.1	<2.0										
	4/27/2001	8.42	<50		<50		<0.5	<0.5	<0.5	<0.5	<2.0											
	4/14/2005 8/1/2005	8.82 7.86	<50 <50		<50 <50	<300 <300	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5 <0.5		<0.5	<10 <10	<0.5	<0.5	<0.5		<0.5	<0.5			
	11/9/2005	8.1	<50		<50	<300	<0.5	<0.5	<0.5	< 0.5		< 0.5	<10	<0.5	<0.5	<0.5		<0.5	< 0.5			
	3/21/2006 8/7/2006	9.44 7.75	<50 <50		<50 <50	<300 <300	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5 <0.5		<0.5	<10 <10	<0.5	<0.5	<0.5		<0.5	<0.5			
	10/27/2006	7.54	<50		<50	<300	<0.5	<0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5			
MW-5	3/20/2007 8/8/2007	8.35 7.59	<50 <50		<50 <50	<300 <300	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5 <0.5		<0.5 <0.5	<10 <10	<0.5	<0.5	<0.5		<0.5	<0.5			
	2/5/2008	9.26	<50		<50	<300	<0.5	<0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5			
	8/14/2008	7.71	<50		<50	<300	<0.5	<0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5			
	3/2/2009 7/30/2009	9.82 7.89	<50 <50		<50 <50	<300 <300	<0.5 <0.5	<0.5 <0.5	<0.5	<1.0 <1.0		<0.5	<10 <10	<0.5	<0.5	<0.5		<0.5	<0.5			
	3/24/2010	Not Measured																				
	10/5/2010 5/9/2011	7.84 9.05	<50		<50	<300	<0.5	<0.5	<0.5	<1.0 Not Sar	npled	<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5			
	9/9/2011	8.64								Not Sar												
	12/29/2011 11/12/2012	8.51 Not Measured								Not Sar Not Sar	-											
	1/10/2014	8.39	<50		<49	<290	<0.5	<0.5	<0.5	< 0.5		< 0.5	<10	<0.5	<0.5	<0.5		< 0.5	< 0.5		<1	
	6/26/1997 8/21/1998	7.47 7.36	1,500+ 1,400		450+ 540+		<0.5 <0.5	<0.5	11 5.6	<0.5	5.7	3.2					<0.5	<0.5		<0.5		1.7
	2/24/1999	9.04	1,600		600+		<0.5	<0.5	0.56	<0.5		2.3										
	6/30/2000 4/27/2001	8.04 8.26	1,900 1,600		360+ 440		0.56 <0.5	3 <0.5	5.4 <0.5	3.5 <0.5	30											
	4/14/2005	8.81	2,100		890LY	<300	<0.5	<0.5	<0.5	5.9		0.7	<10	<0.5	<0.5	<0.5		<0.5	<0.5			
	8/1/2005 11/9/2005	7.82 Not Measured	2,100		670LY	<300	<0.5	<0.5	<0.5	<0.5 Not Sar		< 0.5	<10	<0.5	<0.5	<0.5		<0.5	< 0.5			
	3/21/2006	9.25	1,900		850LY	<300	<0.5	<0.5	<0.5	<0.5		0.5	<10	<0.5	<0.5	<0.5		<0.5	< 0.5			
	8/7/2006	7.77	2,200Y		940LY	<300	<0.5	<0.5	<0.5	<0.5		0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5			
	10/27/2006 3/20/2007	Not Measured 8.26	2,000Y		670LY	<300	<0.5	<0.5	<0.5	Not Sar	npiea 	<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5			
MW-6	8/8/2007	7.51	2,100HLY		680LY	<300	<0.5	<0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5			
	2/5/2008 8/14/2008	9.09 7.65	1,400 1,100Y		560Y 390Y	<300 <300	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5 <0.5		<0.5	<10 <10	<0.5	<0.5	<0.5		<0.5	<0.5			
	3/3/2009	9.76	990Y		230Y	<300	<0.5	<0.5	<0.5	<1.0		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5			
	7/30/2009 3/24/2010	Not Measured Not Measured								Not Sar Not Sar												
	10/5/2010	7.74	910Y		420	<300	<0.5	< 0.5	<0.5	<1.0		<0.5	14	<0.5	<0.5	<0.5		<0.5	<0.5			
	5/9/2011 9/9/2011	Not Measured Not Measured								Not Sar Not Sar												
	12/29/2011	Not Measured Not Measured								Not Sar	npled											
	11/12/2012	Not Measured		-						Not Sar												
	1/10/2014 5/9/2011	Not Measured 9.25	<50		<50	<300	<0.5	2.4	<0.5	Not Acc	91016	< 0.5	<10	<0.5	<0.5	<0.5		< 0.5	<0.5			
	9/9/2011	8.79	<50		<50	<300	< 0.5	<0.5	<0.5	<1.0		< 0.5	<10	<0.5	<0.5	<0.5		<0.5	< 0.5			
MW-7	12/29/2011 11/12/2012	8.67 9.16	<50		<50	<300	<0.5	<0.5	<0.5	<1.0 Not Sar	npled	<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5			
	1/10/2014	8.56	<50		<49	<290	<0.5	<0.5	<0.5	< 0.5		<0.5	<10	<0.5		<0.5		<0.5	<0.5		<1	
	8/4/2011 9/9/2011	9.25 8.96	1700 890		260 900	<300 <300	1.8 0.71	9.4 0.78	57 13	17.1 4.8		<0.5 <0.5	<10 <10	<0.5	<0.5	<0.5		3 1.4	<0.5			
	9/9/2011	Not Measured	1000		800	<300	0.92	1.1	18	6.95		<0.5	<10	<0.5	<0.5	<0.5		1.4	<0.5			
MW-8	12/29/2011 12/29/2011	Not Measured 8.84	1700 1600		550 530	<300 <300	1	1.2	32 31	17.72 15.69		<0.5 <0.5	<10	<0.5	<0.5	<0.5		1.3	<0.5			
	11/12/2012	9.05						1.4	J1	Not Sar	npled	\U.J	\TU	.0.3		.0.3			\U.J			
	1/10/2014	8.54	3,400Y		190Y	<290	1.5	1.5	5.1	8.2		< 0.5	<10	< 0.5	< 0.5	< 0.5		0.8	< 0.5		1.3	


- TPH = Total Petroleum Hydrocarbons
- DCA = Dichloroethane
- DBA = Dibromoethane
- TCA = Trichloroethane
- PCE = Tetrachloroethene
- $\mathsf{MTBE} = \mathsf{tert}\text{-}\mathsf{Butyl} \; \mathsf{methyl} \; \mathsf{ether} \;$
- TBA = Tert butyl alcohol DIPE = Diisopropyl Ether
- ETBE = Ethyl tert butyl ether
- TAME = Methyl tert amyl ether -- = not analyzed/not applicable
- + = Uncategorized hydrocarbons quantified in ranges specified
- μ g/L = micrograms per liter
 - < = Concentration is below the reporting limit of the lab
 - C = Presence Confirmed, but RPD between columns exceeds 40%
 - Y = Sample exhibits chromatogrpahic pattern which does not resemble the standard
 - H = Heavier hydrocarbons contributed to the quantitation
- L = Lighter hydrocarbons contributed to the quantitation
- ESLs = Environmental Screening Levels San Francisco Bay Regional Water Quality Control Board revised May 2013. Ground $water\ to\ indoor\ air\ value\ is\ selected\ where\ applicable.\ \ No\ ground\ water\ to\ indoor\ air\ value\ listed\ for\ TPH\ and\ Lead,$ drinking water value is listed instead
- LTCP: Low Threat Closure Policy Guidelines (SWRCB, 2012) the lowest ground water value is selected where applicable

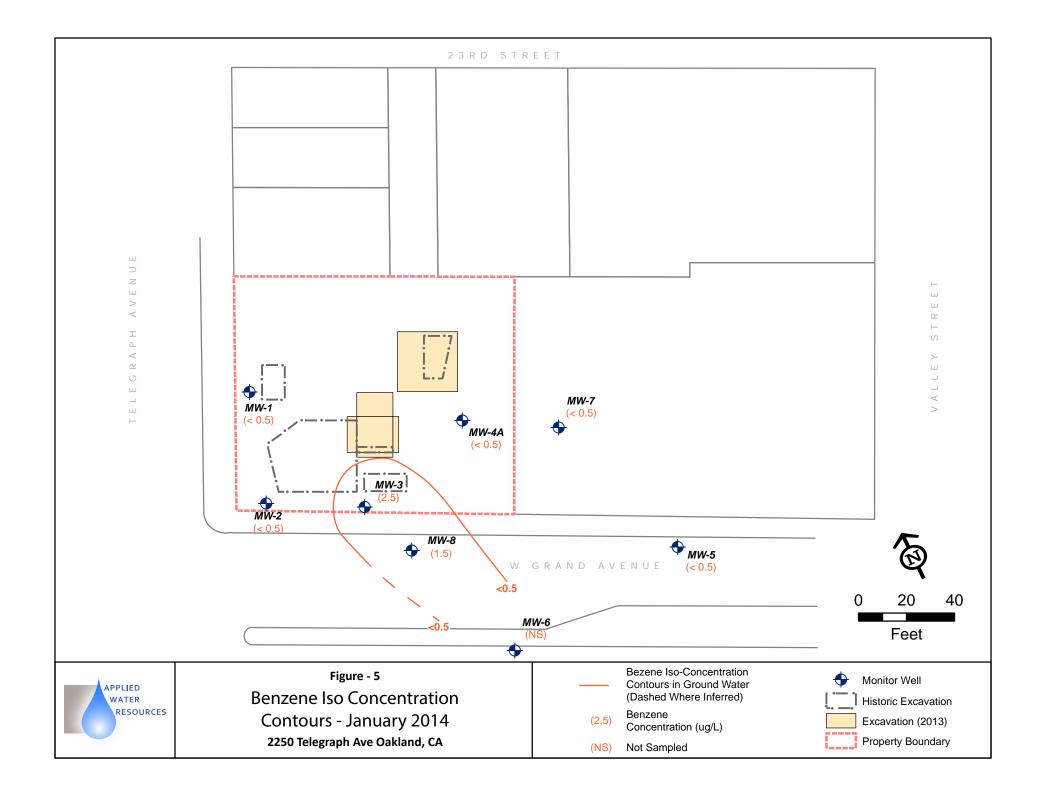
CHARTS







FIGURES



APPENDIX A: MW-4 AND MW-4A BORING LOGS

Da	ite:	01/	07/2	201	4		Logged By: Yola Bayram	Well Specifications
							Oakland, CA	Elevation
		· • • • •	ner F					GSE: TOC:
			: Va				Drilley Closs	Depth to Water
			Filte			ow Ste	m Auger Driller: Glenn Well Seal: Bentonite	Initial: 10.05 in. Static: in. Total Well Depth: 25 in.
						thod:	Neat cement/Tremie	Lat.: Long:
	mple							PVC Diameter: 2
Gro	ound	lwat	er S	amp	ling	Metho	od:	Screen Interval: 20-25 in.
Soi	I Sa	mpli	ing l	Vleth	od:			Screen Slot Size: 0.02"
Depth, bgs (in)	Recovery	OVM (ppm)	Water Sample	Saturated Zone	nscs	Graphic Log	Material Description	Well Diagram
						XXXX	Asphalt	
-						-	Asphalt base rock	JØ Ø
-							Pushed to 20 feet bgs.	
-							_	
_							_	
_							_	
							_	
-	-					•	-	
-	-					•	-	
_							-	
_							_	
				•				
)—						•	-	
-							-	
-	-						-	
_	-						_	
_							_	
5							-	
-	-					•	-	
-	-						-	
-	-						-	
_							_	
,		_						
)		0					Sandy clay (CL), light brown to gray, meidum stiff to stiff, damp, some gravel	
-		0					- and brick.	()
-		0			CL		Softens at 22'	
_		0					-	
_		0					T Gravel and pebbles increase at 24'	
5—		0,			SC		Clayey sand (SC), brown, high plasticity, dense, medium-grained, moist to damp.	
<i>,</i> —		``					Total Depth: 25 ft.	
-	1						Total Deptil. 20 It.	
-	1							
-								
_								

Da	te:	01/0	06/2	201	4		Logged By: Yola Bayram	Well Specifications
					<u> </u>		Oakland, CA	Elevation
		Buttr Co.						GSE: TOC:
Dril We	ling II Sa	Met and F	hod ilte	: Dii r: #3	rect I	Push	Driller: Glenn Well Seal: Bentonite	Depth to Water Initial: 10.05 in. Static: in. Total Well Depth: 25 in.
• • • •	• • • •		• • • • •	an	d Me	thod:	Neat cement/Tremie	Lat.: Long:
		etion				Metho	ndi	PVC Diameter: 2 Screen Interval: 20-25 in.
	• • • •	mpli				Metric	JU.	Screen Slot Size: 0.02"
Depth, bgs (in)	Recovery	(F	Water Sample	Saturated Zone	nscs	Graphic Log	Material Description	Well Diagram
							Asphalt	
		0			CL-		Asphalt base rock	
		0 0			ML		Silty clay (CL), dark brown, stiff, low plasticity with brick pieces and pebbles, dry.	
_		0			SW SM		Sand (SW), brown, well-graded, angular, fine-grained to medium-grained, soft, dense, some silt, damp.	
; —		0			ML		Silty sand (SM), dark brown, fine-grained sand, dense, ~25% silt, damp.	Well abandoned due to
_		0					Clayey silt (ML), dark brown, brick pieces, moderate plasticity, damp.	drilling issues.
					CL- ML		Silty clay (CL), dark gray, stiff, hard, low plasticity, some gravel, dry.	
-		.2 .4 1.1		•	CL		Clay (CL), mottled, gray, low plasticity, very stiff, hard, dense, dry	
_		31.2 40.7					- Moist at 11.5	Green/gray staining from 10.75 to 14.5' TPH odor at 11'
		21.9 18.7					Silty clay (CH), gray, soft, high plasticity, damp.	
5 		5.9 .9			СН		grades to brown at 14.5'	
-		0			СН		Sandy clay (CH), light brown, soft, high plasticity, 20% sand, moist to wet.	
-		0 0			CL		Sandy clay (CL), light brown, sand and gravel, medium to coarse-grained, stiff, damp.	
0		0 0 0 0			СН		Sandy clay (CH), gray, moderate plasticity, pieces of brick, some sand and gravel, soft, damp.	
		0			SW- SM		Sand with silt (SW), red-brown, loose, medium-grained, wet.	
5		(0)				<u>~ ∘ 0 6 </u>	Total Depth: 25 ft.	
-								

APPENDIX B: MONITOR WELL FIELD DATA SHEETS

						7,11.0					
Site Name: 22	250 Telegr	aph Ave		Well/Samp	le ID: M	N-1		<i>)</i>			
Location: 225	0 Telegrap	oh Ave		Initial Deptl	h to Water (DTW):	86				
Client: Buttne	r Propertie	es		Total Well	Depth (TD):	15.7	0				
Sampler: YB				Well Diame	eter: Z						
Date: 1-10-20)14			Purge Rate	Purge Rate: 0 % 4						
Purge Method	d: Peri w/ c	ded tube		Sampling F	Sampling Rate: 3						
Sample Meth	od: Peri w	ded tube	· · · · · · · · · · · · · · · · · · ·								
			12 18.	1							
Time	рН	SC	DO	Temp	ORP	DTW	Cumulative Volume <u>(</u>	Observations			
1444	\$ (e.b)	899	0.21	71.08	10.3	12.11	1.24				
1447	7عاما	904	0.34	21.16	-31.9	12.11	2.41				
1450	1,59		(230	21.23	-5H.7	12.11	3.4				
1453	6.58	929	0.30	71.31	-59.7	12.11	4.8				
1456	6.50	937	0.30	21.35	-63.4	12.11	60				
Did Well Dew	vater?	12	Start Purge	e Time:		DTW prior	to sample:	12.11			
Total Liters P	urged:	6	Stop Purge	e Time:	1456	Start Samp	le Time:	1456			
Total Sample	Volume:	1.74	Odor:	Pega 1913	Ma 4	Sheen:	N				
Instrument ID)(s):	26			W 3	Last Calibra	ated: 1000)			
Notes:					· · · · · · · · · · · · · · · · · · ·			(4)			
			il de la companya de								
					y		and the second	The state of the s			
		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1									

Site Name: 22	250 Telegr	aph Ave		Well/Samp	le ID:	5-WM					
Location: 225	0 Telegrap	h Ave		Initial Depti	n to Water (DTW):	59				
Client: Buttne	r Propertie	s		Total Well	Depth (TD):	17.00					
Sampler: YB				Well Diame				N.			
Date: 1-10-20)14			Purge Rate	Purge Rate:						
Purge Method	d: Peri w/ d	led tube		Sampling F	Rate: 💍 .	3		•			
Sample Meth	od: Peri w/	ded tube									
: 8											
Time	рН	SC	DO	Temp	ORP	DTW	Cumulative Volume	Observations			
1413	692	577	187	20.38	81.2	12.10	2				
1418	690	577	0.43	2035	87.4	1210	+				
15+1	(0.89	577	0,50	7038	97.7	12.10	5.2				
1474	6.88	577	14.0	70.39	967	12.10	6.4	2.			
1477	690	576	035	2042	99.3	12.10	7.6	4			
1430	681	576	033	Z04Z	09.4	12.10	8.8	3			
1433	689	576	032	20,41	100,8	17.10	10.0				
Did Well Dew	vater?	N	Start Purge	Time.	hind	DTW prior t	o sample:	17 10			
Total Liters P		10	Stop Purge		1408	Start Sampl		1433			
Total Sample		121	Odor:		N	Sheen:	1				
*		1.70	Ouoi.			Last Calibra	ted: 100				
1000											
Notes:						w.	# T	· `\$			
W <u>E</u>						r	(Q				

011- N	050 T - ! -	A		\A/=!!/O=:::	ie ID:	A47.1 ~	<u> </u>				
Site Name: 2	250 Telegr	aph Ave		Well/Samp	ie iu:	MW-	<u> </u>				
Location: 225	50 Telegrap	oh Ave		Initial Dept	h to Water	(DTW): [(1.64				
Client: Buttne	er Propertie	es		Total Well	Depth (TD)	: 18.4	2				
Sampler: YB				Well Diame	eter:	7	-				
Date: 1-10-20)14			Purge Rate: 0,4							
Purge Metho	d: Peri w/ c	led tube		Sampling F	Rate: 🔘 🛴	3					
Sample Meth	od: Peri w	ded tube									
Time	рН	SC	DO	Temp	ORP	DTW	Cumulative Volume	Observations			
1513(o.55	1///	0,86	70.28	31.0	11.51	1.6				
1516	654	100	059	20.26	58.8	11.51	2.8				
1519	6.52	1097	()43	2018	65.5	11.51	4.0				
1522	6.51	1096	0.37	70.70	58.3	11.51	5.2				
1525	652	106	0.38	70.20	35.2	11.51	6.4				
1528	6.53	9	0.37	7012	78.1	11.51	7.6				
							_				
Did Well Dew	/ater?	7	Start Purge	Time:	1509	DTW prior t	o sample:	11.51			
Total Liters P	urged:	7.6	Stop Purge	Time:		Start Sampl	e Time:	1528			
Total Sample	Volume:	1.76	Odor:		V	Sheen:	N				
Instrument ID	(s):	126	Last Calibra	ted: 100	0						
Notes:							*				
						+,					
						,					
		5 / L Cana									

							 ,				
Site Name: 22	250 Telegr	aph Ave		Well/Samp	le ID: M	W-HA					
Location: 225	i0 Telegrap	h Ave		Initial Depth	n to Water (DTW): \\	15				
Client: Buttne	er Propertie	es .		Total Well I	Depth (TD):	25	>				
Sampler: YB				Well Diame	eter: 2	•					
Date: 1-10-20	014			Purge Rate	Purge Rate: (O, H						
Purge Method	d: Peri w/ c	led tube		Sampling F	Rate: 0.3	2					
Sample Meth	od: Peri w/	ded tube									
					0.00						
Time	рН	SC	DO	Temp	ORP	DTW	Cumulative Volume ப்	Observations			
1101	654	1224	2.51	21.24	1892	12-47	ZL				
1106	6.59	1266	1.75	21.00	178.5	1247	4				
1111	659	1259	1.84	21.17	177,5	12.47	6				
1114	6.58	17241	1.82	74.70	178.5		7.2	ue ^{rr}			
1117	6.58	1235	1.79	21.19	176.4	12.47	8.4				
11.											
							·				
Did Well Dew	vater?	2	Start Purge		1056	DTW prior t	o sample:	1247			
Total Liters P	urged:	WAR THE	Stop Purge	e Time:	1117	Start Sampl	e Time:	1117			
Total Sample	Volume:	1.7L	Odor:		7	Sheen:		N			
Instrument ID)(s):	126			Last Calibra	ated: IOC)0				
Notes: De	evelop ea	& /Surg	ed Well	l prior	- to 5	Sampling	/purging.	Deseloped unti			
		als gai		A .	e .						
								y.			

Site Name: 2	250 Telegra	aph Ave		Well/Sample ID: MW -5							
Location: 225	0 Telegrap	h Ave		Initial Depth	n to Water (DTW): 8	01.				
Client: Buttne	r Propertie	s		Total Well I	Depth (TD):	172	-5				
Sampler: YB				Well Diame	eter:	2					
Date: 1-10-20	014			Purge Rate		4					
Purge Metho	d: Peri w/ d	led tube		Sampling F	Rate: 💍	.3					
Sample Meth	od: Peri w/	ded tube									
Time	рН	sc	DO	Temp	ORP	ртW	Cumulative Volume	Observations			
1020	632	415	080	70.14	195.7	8.14	2				
1025	630	414	0.74	70.70	2005	8.14	4				
1029	(e,30)	412	0,53	20,21	202.7	8.14	5,6				
1034	6.29	412	0,43	70.25	705.F	8.14	7.6				
1037	6.76	412	0,40	70.75	7019	8.14	88				
1040	6.79	412	0,39	70.73	203.3	8,14	10.0	<u> </u>			
								, , , , , , , , , , , , , , , , , , , ,			
Did Well Dev	vater?	N	Start Purge	e Time:	1015	DTW prior	to sample:	8.14			
Total Liters F	Purged:	î0	Stop Purge	e Time:	1040	Start Samp	le Time:	1040			
Total Sample	Volume:	1.71	Odor:		N	Sheen:	N				
Instrument IE	D(s):	26				Last Calibra	ated: (OO	0			
Notes:											
				-							
							140				

Site Name: 2	250 Telegr	aph Ave		Well/Sampl	le ID:	MW	7	
Location: 225	0 Telegrap	h Ave		Initial Depth	n to Water (DTW): [(11.	
Client: Buttne	er Propertie	es .		Total Well [Depth (TD):	20.	41	
Sampler: YB				Well Diame	eter:	2		
Date: 1-10-20	014			Purge Rate	: 0	,4		
Purge Method	d: Peri w/ o	led tube		Sampling R	Rate:	3		
Sample Meth	od: Peri w	ded tube					-	
Time	pН	SC	DO	Temp	ORP	DTW 🦠	Cumulative Volume	Observations
1241	6.46	509	0.599	20728		11.51	2	
1746	6:44	510	0.60	20.82	204.9	11.51	4	
1251	6.43	510	0,49	20182	205.7	11.51	6	
1754	6.44	510	0,47	7082	207.2	11.51	7.2	
1257	642	510	0.45	20,85	705,1	11.51	8.4	
i.								
Did Well Dev	vater?	N	Start Purge	e Time:	1236	DTW prior t	o sample:	11,51
Total Liters F	Purged:	8.4	Stop Purge	e Time:	1257	Start Sampl	le Time:	1257
Total Sample	Volume:	171	Odor:		N	Sheen:		N
Instrument IE	D(s):	26				Last Calibra	ated: /00()
Notes:						·		
					1.			

Site Name: 2	2250 Telegi	aph Ave		Well/Samp	ole ID:	R-WM		
Location: 22	50 Telegra	oh Ave		Initial Dept	h to Water	(DTW):).4	
Client: Buttne	er Propertie	es		Total Well	Depth (TD)	: 20	.81	
Sampler: YB				Well Diam	eter:	2		
Date: 1-10-2	014	•	· · · · · · · · · · · · · · · · · · ·	Purge Rate	e :	0,4 L	/min	
Purge Metho	d: Peri w/ o	ded tube		Sampling I	Rate:	0.3	(<	
Sample Meth	nod: Peri w	ded tube						
		\						
Time	рН	SC	DO	Temp	ORP	DTW	Cumulative Volume	Observations
1332	657	903	2.12	21.55	-4.0	10.48	2	
1335	6.57	893	OD M	2152	6.0	10.48	3.2	
1340	6.58	892	(50) ²⁵	21.42	-9.8	10.48	5.2	
1343	6.58	895	1.20	21.44	-28,4	10.48	6.4	
1346	658	897	1/1	71.41	-33.9	10,48	7.6	
Did Well Dev	vater?	N	Start Purge	Time:	1327	DTW prior t	o sample:	10:48
Total Liters F	ourged:	1. J.	Stop Purge	Time:	1346	Start Sampl	e Time:	1346
Total Sample	Volume:	1.71	Odor:		105	Sheen:	N	5
Instrument ID	D(s): \	W			•	Last Calibra	ited:	1000
Notes:								
					•			
				**				

APPENDIX C: LABORATORY ANALYTICAL RESULTS

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 252210 ANALYTICAL REPORT

Applied Water Resources Project : AWR 13-05

1600 Rivera Ave Suite 310 Location : 2250 Telegraph

Walnut Creek, CA 94596 Level : II

Sample ID	<u>Lab ID</u>
MW-1	252210-001
MW-2	252210-002
MW-3	252210-003
MW-4A	252210-004
MW-5	252210-005
MW-7	252210-006
MW-8	252210-007

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Tracy Babjar
Project Manager
tracy.babjar@ctberk.com
(510) 204-2226

NELAP # 01107CA

Date: <u>01/22/2014</u>

CASE NARRATIVE

Laboratory number: 252210

Client: Applied Water Resources

Project: AWR 13-05

Location: 2250 Telegraph

Request Date: 01/10/14 Samples Received: 01/10/14

This data package contains sample and QC results for seven water samples, requested for the above referenced project on 01/10/14. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B):

High surrogate recoveries were observed for bromofluorobenzene (FID) in MW-3 (lab # 252210-003) and MW-8 (lab # 252210-007). MW-8 (lab # 252210-007) had pH greater than 2. No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

Metals (EPA 6020):

No analytical problems were encountered.

CHAIN OF CUSTODY

Project I Project I Project I EDD Form	Name: 11 2 O. No: AWR 13 000 mat: Report Level□ II	Phone (5 Fax (5 € € € € € € € € € € € € € € € € € €	siness Since 18 10) 486-09 10) 486-05 impler: eport To: empany:	978 100	BC N HZ	offin#	M N Z			OWH A	D7 6020 ,	AN	ALY			of Cus		#_	of	
Lab No. 1 2 3 4 5 9 7	Sample ID. MIN-1 MIN-2 MIN-3 MW-4A MW-5 MW-7 MW-8	SAMPI Date Collected 1~10-14		MATRIX	f Containers	CHE PRESE	MICAL RVATIV		, 10H XYHHHHH	K RICK	V X Lead									
-	Geogrammer FDF	SAMPLE RECEIPT Intact Cold On Ice Ambient		REL	INQUIS	DATE	t-1014∫T : T	IME:	25		Pai	12	1	RECE	IVEC	DATE	:	TIM	1E: / 1 1E:	6,Z; —

COOLER RECEIPT CHECKLIST

Login # 253210 Date Received 110/14 Number of coolers 1 Client AWR CORP Project 2250 TELEGIRAPH (AWR 13-0)	·S)
Date Opened 1/10/14 By (print) 1R (sign) ImaRcullar Date Logged in 1 By (print) (sign)	•
1. Did cooler come with a shipping slip (airbill, etc)YES NO	
2A. Were custody seals present? TYES (circle) on cooler on samples How many Name Date 2B. Were custody seals intact upon arrival? 3. Were custody papers dry and intact when received? 4. Were custody papers filled out properly (ink, signed, etc)? S. Is the present identify the first papers.	
5. Is the project identifiable from custody papers? (If so fill out top of form) YES NO 6. Indicate the packing in cooler: (if other, describe)	
☐ Bubble Wrap ☐ Foam blocks ☐ Bags ☐ None ☐ Cloth material ☐ Cardboard ☐ Styrofoam ☐ Paper towels 7. Temperature documentation: * Notify PM if temperature exceeds 6°C	
Type of ice used: ▼ Wet □ Blue/Gel □ None Temp(°C)	
☐ Samples Received on ice & cold without a temperature blank; temp. taken with IR gun	
Samples received on ice directly from the field. Cooling process had begun	
8. Were Method 5035 sampling containers present? YES NO If YES, what time were they transferred to freezer?	
10. The there ally missing / extra samples'	
11. Ale samples in the appropriate containers for indicated tests?	
12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. W. Sample labels agree with custody papers?	
14. Was sufficient amount of sample sent for tests requested?	
13. Are the samples appropriately preserved?	
10. Did you check preservatives for all hottles for each sample?	
17. Did you document vour preservative check?	
20. Did you change me noid time in LIMS for inpresented VOAs?	
19. Did you change the hold time in LIMS for preserved terracores? YES NO N/A 20. Are bubbles > 6mm absent in VOA samples? YES NO N/A	
21. Was the client contacted concerning this	
If YES, Who was called? By Date:	
COMMENTS	

Total Volatile Hydrocarbons 2250 Telegraph EPA 5030B Lab #: 252210 Location: Client: Applied Water Resources Prep: Project#: AWR 13-05 Analysis: EPA 8015B 01/10/14 Matrix: Water Sampled: 01/10/14 Units: ug/L Received: Diln Fac: 1.000 01/13/14 Analyzed: Batch#: 207041

Field ID: Lab ID: 252210-001 MW-1

SAMPLE Type:

Analyte Result RLGasoline C7-C12 220

Surrogate %REC Limits Bromofluorobenzene (FID) 77-128

Field ID: Lab ID: MW-2252210-002

SAMPLE Type:

Analyte Result C7-C12 Gasoline

%REC Limits Surrogate 77-128 Bromofluorobenzene (FID) 105

Field ID: MW-3Lab ID: 252210-003

SAMPLE Type:

Analyte Result RL 490 Y Gasoline C7-C12 50

%REC Limits Surrogate Bromofluorobenzene (FID)

Field ID: MW-4ALab ID: 252210-004

Type: SAMPLE

Analyte Result Gasoline C7-C12 ND 50

Surrogate %REC Limits Bromofluorobenzene (FID)

SAMPLE Type:

Result Analyte RLGasoline C7-C12 ND

Lab ID:

252210-005

%REC Limits Surrogate Bromofluorobenzene (FID) 105

*= Value outside of QC limits; see narrative

MW-5

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

Field ID:

RL= Reporting Limit

Page 1 of 2

Total Volatile Hydrocarbons 2250 Telegraph EPA 5030B 252210 Lab #: Location: Client: Applied Water Resources Prep: Analysis: Sampled: Project#: AWR 13-05 EPA 8015B 01/10/14 Matrix: Water Units: ug/L Received: 01/10/14 Diln Fac: 1.000 Analyzed: 01/13/14 Batch#: 207041

Field ID: MW-7 Lab ID: 252210-006

Type: SAMPLE

Analyte Result RL
Gasoline C7-C12 ND 50

Surrogate %REC Limits
Bromofluorobenzene (FID) 111 77-128

Field ID: MW-8 Lab ID: 252210-007

Type: SAMPLE

 Analyte
 Result
 RL

 Gasoline C7-C12
 3,400 Y
 50

Surrogate %REC Limits
Bromofluorobenzene (FID) 137 * 77-128

Type: BLANK Lab ID: QC723926

AnalyteResultRLGasoline C7-C12ND50

Surrogate %REC Limits
Bromofluorobenzene (FID) 111 77-128

*= Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

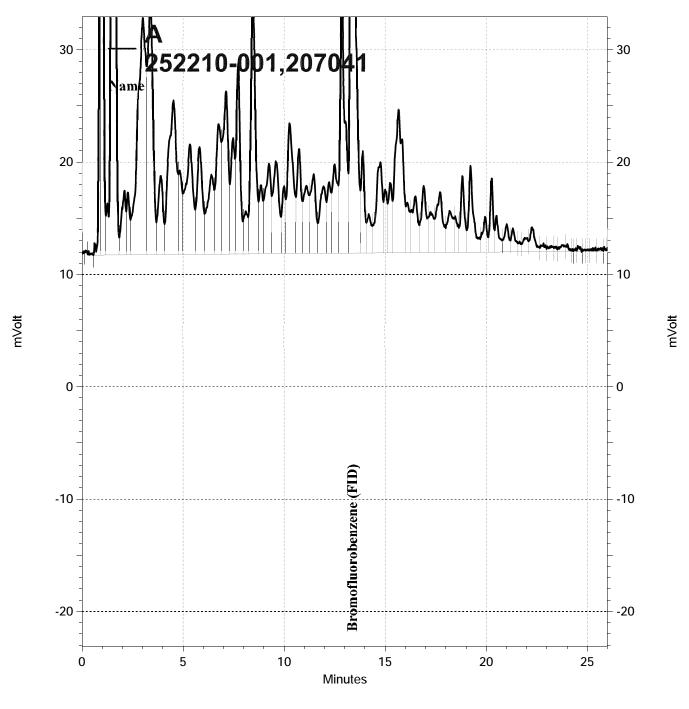
Total Volatile Hydrocarbons							
Lab #:	252210	Location:	2250 Telegraph				
Client:	Applied Water Resources	Prep:	EPA 5030B				
Project#:	AWR 13-05	Analysis:	EPA 8015B				
Type:	LCS	Diln Fac:	1.000				
Lab ID:	QC723925	Batch#:	207041				
Matrix:	Water	Analyzed:	01/13/14				
Units:	ug/L						

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	1,028	103	80-120

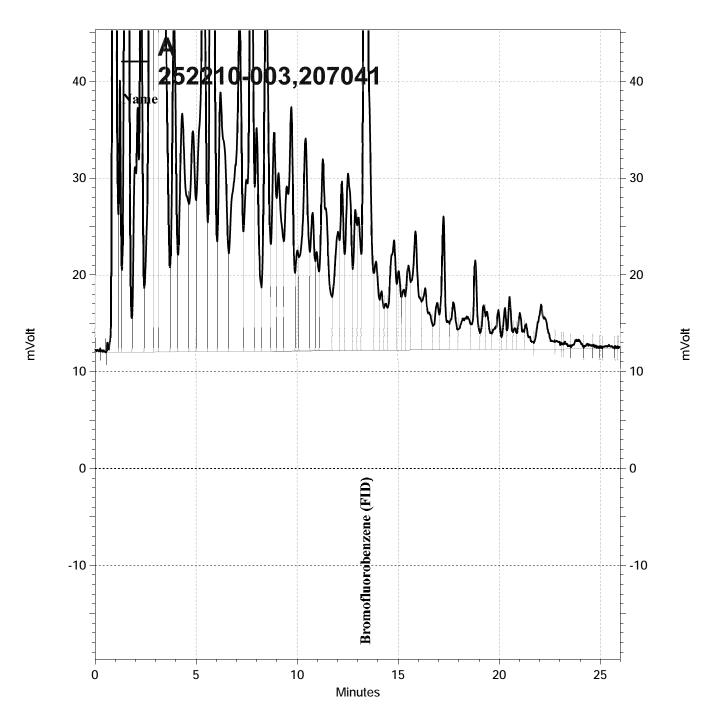
Surrogate	%REC	Limits
Bromofluorobenzene (FID)	108	77-128

Page 1 of 1 15.0

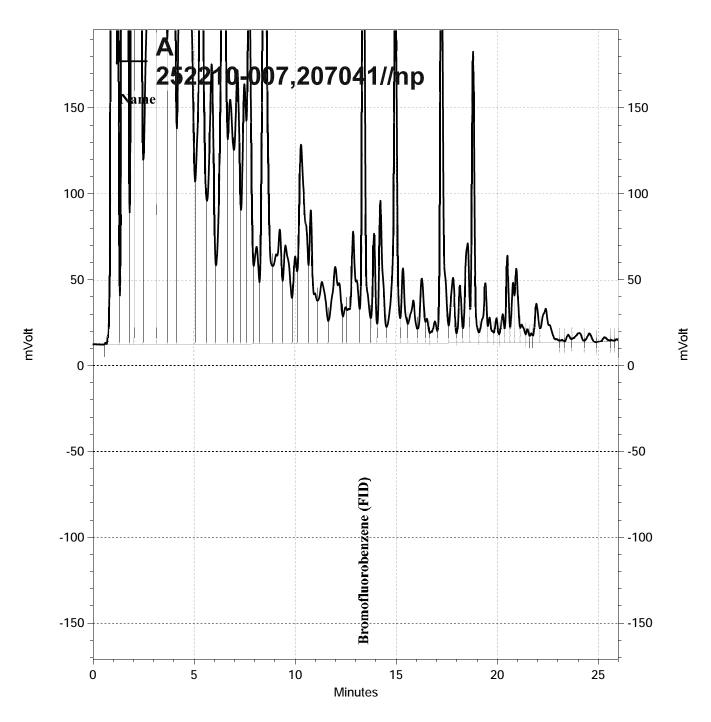
Total Volatile Hydrocarbons							
Lab #:	252210	Location:	2250 Telegraph				
Client:	Applied Water Resources	Prep:	EPA 5030B				
Project#:	AWR 13-05	Analysis:	EPA 8015B				
Field ID:	ZZZZZZZZZ	Batch#:	207041				
MSS Lab ID:	252175-005	Sampled:	01/09/14				
Matrix:	Water	Received:	01/09/14				
Units:	ug/L	Analyzed:	01/13/14				
Diln Fac:	1.000						

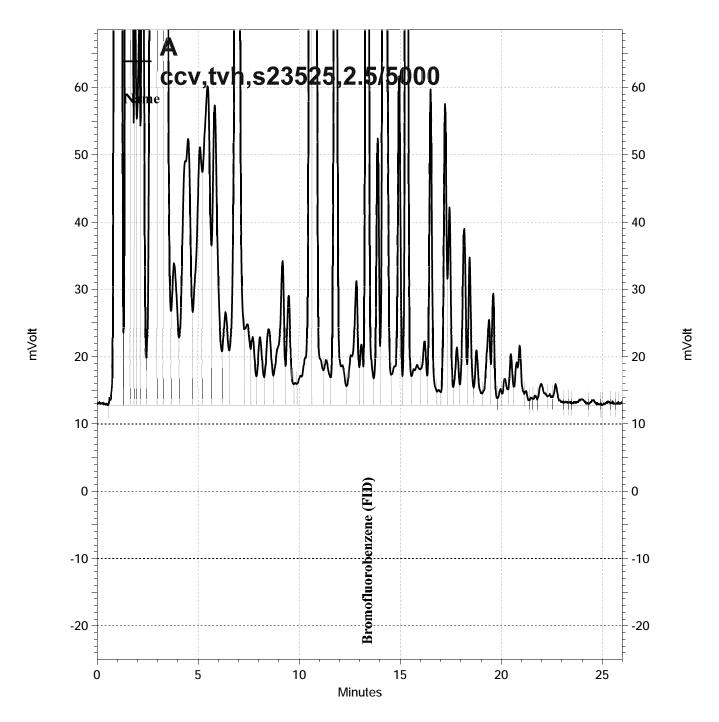

Type: MS

Lab ID: QC723927


Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	18.86	2,000	1,993	99	74-120

Type: MSD Lab ID: QC723928


Analyte	Spiked	Result	%REC	Limits	RPD Li
Gasoline C7-C12	2,000	1,990	99	74-120	0 27


\Lims\gdrive\ezchrom\Projects\GC04\Data\013-015, A

\Lims\gdrive\ezchrom\Projects\GC04\Data\013-013, A

\Lims\gdrive\ezchrom\Projects\GC04\Data\013-009, A

\Lims\gdrive\ezchrom\Projects\GC04\Data\013-002, A

Total Extractable Hydrocarbons 2250 Telegraph EPA 3520C Lab #: 252210 Location: Client: Applied Water Resources Prep: Project#: AWR 13-05 Analysis: EPA 8015B 01/10/14 Matrix: Water Sampled: 01/10/14 Units: ug/L Received: Diln Fac: 1.000 01/10/14 Prepared: Batch#: 207011

Field ID: MW-1 Analyzed: 01/14/14
Type: SAMPLE Cleanup Method: EPA 3630C
Lab ID: 252210-001

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 49

 Motor Oil C24-C36
 ND
 290

Surrogate %REC Limits
0-Terphenyl 106 66-129

Field ID: MW-2 Analyzed: 01/14/14
Type: SAMPLE Cleanup Method: EPA 3630C

Lab ID: 252210-002

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 49

 Motor Oil C24-C36
 ND
 290

 Surrogate
 %REC
 Limits

 o-Terphenyl
 107
 66-129

Field ID: MW-3 Analyzed: 01/14/14 Type: SAMPLE Cleanup Method: EPA 3630C

Lab ID: 252210-003

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 49

 Motor Oil C24-C36
 ND
 290

Surrogate %REC Limits
o-Terphenyl 107 66-129

Field ID: MW-4A Analyzed: 01/14/14
Type: SAMPLE Cleanup Method: EPA 3630C

Lab ID: 252210-004

 Analyte
 Result
 RL

 Diesel C10-C24
 190 Y
 51

 Motor Oil C24-C36
 ND
 310

 Surrogate
 %REC
 Limits

 o-Terphenyl
 106
 66-129

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

Total Extractable Hydrocarbons 252210 2250 Telegraph Lab #: Location: Client: Applied Water Resources EPA 3520C Prep: Analysis: Sampled: Project#: AWR 13-05 EPA 8015B 01/10/14 Matrix: Water Units: ug/L Received: 01/10/14 Diln Fac: 1.000 Prepared: 01/10/14 Batch#: 207011

Field ID: MW-5 Analyzed: 01/14/14 Type: SAMPLE Cleanup Method: EPA 3630C

Lab ID: 252210-005

Analyte	Result	RL	
Diesel C10-C24	ND	49	
Motor Oil C24-C36	ND	290	

Surrogate	%REC	Limits	
Builogate	∂KEC	птштср	
o-Terphenyl	100	66-129	
O TELBITETIVE	109	00-129	

Field ID: MW-7 Analyzed: 01/14/14 Type: SAMPLE Cleanup Method: EPA 3630C

Lab ID: 252210-006

Analyte	Result	RL	
Diesel C10-C24	ND	49	
Motor Oil C24-C36	ND	290	

Surrogate	%REC	Limits		
Surrogate		TIMILES		
o-Terphenyl	106	66-129		

Field ID: MW-8 Analyzed: 01/14/14 Type: SAMPLE Cleanup Method: EPA 3630C

Lab ID: 252210-007

Analyte	Result	RL	
Diesel C10-C24	190 Y	49	
Motor Oil C24-C36	ND	290	

Surrogate	%REC	Limits	
o-Terphenyl	102	66-129	

Type: BLANK Analyzed: 01/13/14 Lab ID: QC723813 Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits
o-Terphenyl	96	66-129
		•

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

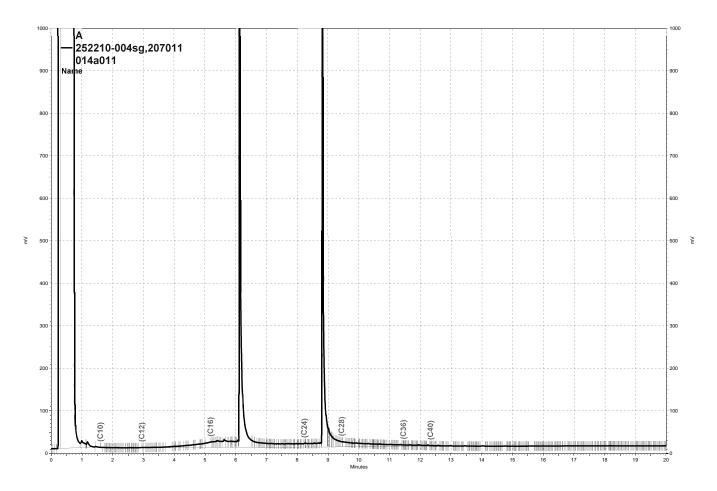
Page 2 of 2

Total Extractable Hydrocarbons					
Lab #:	252210	Location:	2250 Telegraph		
Client:	Applied Water Resources	Prep:	EPA 3520C		
Project#:	AWR 13-05	Analysis:	EPA 8015B		
Matrix:	Water	Batch#:	207011		
Units:	ug/L	Prepared:	01/10/14		
Diln Fac:	1.000	Analyzed:	01/13/14		

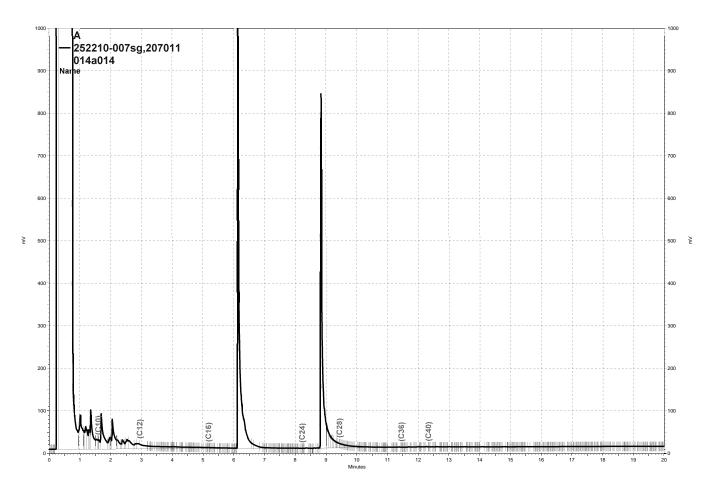
Type: BS Cleanup Method: EPA 3630C

Lab ID: QC723814

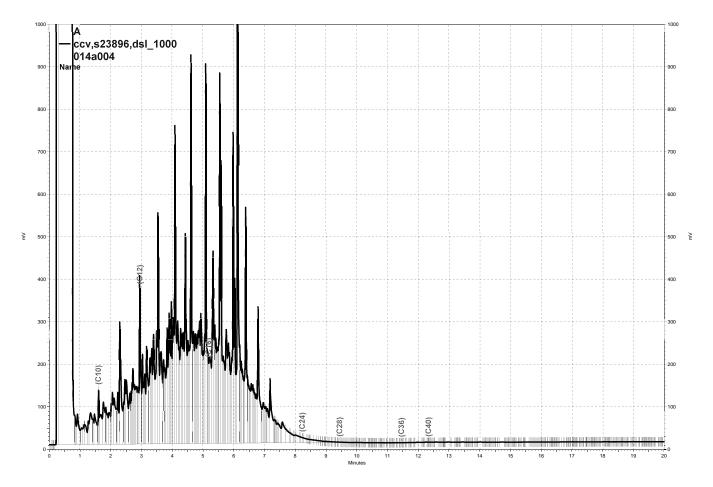
Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,028	81	61-120

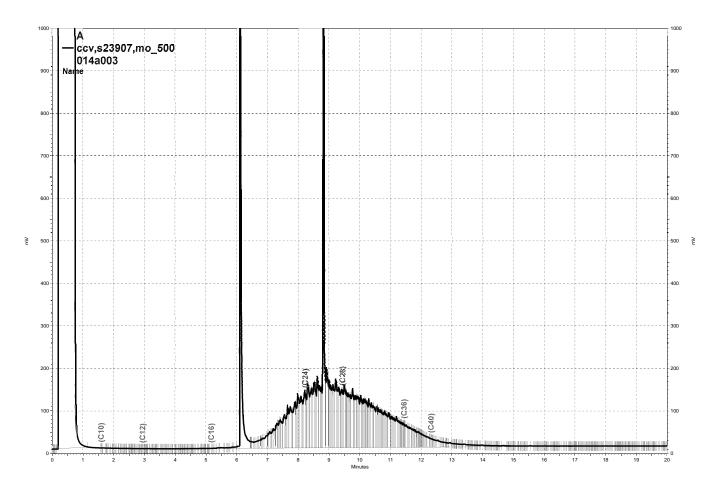

Surrogate	%REC	Limits
o-Terphenyl	99	66-129

Type: BSD Cleanup Method: EPA 3630C


Lab ID: QC723815

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,047	82	61-120	1	45


Surrogate	%REC	Limits
o-Terphenyl	97	66-129


\Lims\gdrive\ezchrom\Projects\GC17A\Data\014a011, A

\Lims\gdrive\ezchrom\Projects\GC17A\Data\014a014, A

\Lims\gdrive\ezchrom\Projects\GC17A\Data\014a004, A

\Lims\gdrive\ezchrom\Projects\GC17A\Data\014a003, A

	BTXE &	Oxygenates		
Lab #:	252210	Location:	2250 Telegraph	
Client:	Applied Water Resources	Prep:	EPA 5030B	
Project#:	AWR 13-05	Analysis:	EPA 8260B	
Field ID:	MW-1	Batch#:	207059	
Lab ID:	252210-001	Sampled:	01/10/14	
Matrix:	Water	Received:	01/10/14	
Units:	ug/L	Analyzed:	01/14/14	
Diln Fac:	1.000			

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	10	
MTBE	ND	0.5	
Isopropyl Ether (DIPE)	ND	0.5	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane 1	L03	77-136
1,2-Dichloroethane-d4 9	99	75-139
Toluene-d8 9	99	80-120
Bromofluorobenzene 9	98	80-120

ND= Not Detected RL= Reporting Limit

Page 1 of 1

	BTXE &	Oxygenates		
Lab #:	252210	Location:	2250 Telegraph	
Client:	Applied Water Resources	Prep:	EPA 5030B	
Project#:	AWR 13-05	Analysis:	EPA 8260B	
Field ID:	MW-2	Batch#:	207031	
Lab ID:	252210-002	Sampled:	01/10/14	
Matrix:	Water	Received:	01/10/14	
Units:	ug/L	Analyzed:	01/13/14	
Diln Fac:	1.000			

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	10	
MTBE	ND	0.5	
Isopropyl Ether (DIPE)	ND	0.5	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	97	77-136
1,2-Dichloroethane-d4	86	75-139
Toluene-d8	94	80-120
Bromofluorobenzene	98	80-120

ND= Not Detected RL= Reporting Limit

Page 1 of 1

	BTXE &	Oxygenates	
Lab #:	252210	Location:	2250 Telegraph
Client:	Applied Water Resources	Prep:	EPA 5030B
Project#:	AWR 13-05	Analysis:	EPA 8260B
Field ID:	MW-3	Batch#:	207031
Lab ID:	252210-003	Sampled:	01/10/14
Matrix:	Water	Received:	01/10/14
Units:	ug/L	Analyzed:	01/13/14
Diln Fac:	1.000		

Analyte	Resu	lt RL	
tert-Butyl Alcohol (TBA)	ND	10	
MTBE	ND	0.5	5
Isopropyl Ether (DIPE)	ND	0.5	5
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	5
1,2-Dichloroethane	ND	0.9	5
Benzene		2.5 0.9	5
Methyl tert-Amyl Ether (TAME)	ND	0.9	5
Toluene	ND	0.9	5
1,2-Dibromoethane	ND	0.9	5
Ethylbenzene	ND	0.9	5
m,p-Xylenes		0.5	5
o-Xylene	ND	0.9	5

Surrogate	%REC	Limits
Dibromofluoromethane	98	77-136
1,2-Dichloroethane-d4	86	75-139
Toluene-d8	95	80-120
Bromofluorobenzene	96	80-120

Page I of I

	BTXE &	Oxygenates		
Lab #:	252210	Location:	2250 Telegraph	
Client:	Applied Water Resources	Prep:	EPA 5030B	
Project#:	AWR 13-05	Analysis:	EPA 8260B	
Field ID:	MW-4A	Batch#:	207031	
Lab ID:	252210-004	Sampled:	01/10/14	
Matrix:	Water	Received:	01/10/14	
Units:	ug/L	Analyzed:	01/13/14	
Diln Fac:	1.000			

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	10	
MTBE	1.8	0.5	
Isopropyl Ether (DIPE)	ND	0.5	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
1,2-Dichloroethane	11	0.5	
Benzene	ND	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane 9	99	77-136
1,2-Dichloroethane-d4 8	37	75-139
Toluene-d8 9	95	80-120
Bromofluorobenzene 9	96	80-120

ND= Not Detected RL= Reporting Limit

Page 1 of 1

	BTXE &	Oxygenates		
Lab #:	252210	Location:	2250 Telegraph	
Client:	Applied Water Resources	Prep:	EPA 5030B	
Project#:	AWR 13-05	Analysis:	EPA 8260B	
Field ID:	MW-5	Batch#:	207031	
Lab ID:	252210-005	Sampled:	01/10/14	
Matrix:	Water	Received:	01/10/14	
Units:	ug/L	Analyzed:	01/13/14	
Diln Fac:	1.000			

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	10	
MTBE	ND	0.5	
Isopropyl Ether (DIPE)	ND	0.5	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane 99	9	77-136
1,2-Dichloroethane-d4 90	0	75-139
Toluene-d8 94	4	80-120
Bromofluorobenzene 98	8	80-120

Page 1 of 1

	BTXE &	Oxygenates	
Lab #:	252210	Location:	2250 Telegraph
Client:	Applied Water Resources	Prep:	EPA 5030B
Project#:	AWR 13-05	Analysis:	EPA 8260B
Field ID:	MW-7	Batch#:	207031
Lab ID:	252210-006	Sampled:	01/10/14
Matrix:	Water	Received:	01/10/14
Units:	ug/L	Analyzed:	01/13/14
Diln Fac:	1.000		

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	10	
MTBE	ND	0.5	
Isopropyl Ether (DIPE)	ND	0.5	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane 98	8	77-136
1,2-Dichloroethane-d4 89	9	75-139
Toluene-d8 94	4	80-120
Bromofluorobenzene 9	6	80-120

	BTXE &	Oxygenates		
Lab #:	252210	Location:	2250 Telegraph	
Client:	Applied Water Resources	Prep:	EPA 5030B	
Project#:	AWR 13-05	Analysis:	EPA 8260B	
Field ID:	MW-8	Batch#:	207059	
Lab ID:	252210-007	Sampled:	01/10/14	
Matrix:	Water	Received:	01/10/14	
Units:	ug/L	Analyzed:	01/14/14	
Diln Fac:	1.000			

Analyte	Result	RL
tert-Butyl Alcohol (TBA)	ND	10
MTBE	ND	0.5
Isopropyl Ether (DIPE)	ND	0.5
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
1,2-Dichloroethane	0.8	0.5
Benzene	1.5	0.5
Methyl tert-Amyl Ether (TAME)	ND	0.5
Toluene	1.5	0.5
1,2-Dibromoethane	ND	0.5
Ethylbenzene	5.1	0.5
m,p-Xylenes	7.3	0.5
o-Xylene	0.9	0.5

Surrogate	%REC	Limits
Dibromofluoromethane 1	L01	77-136
1,2-Dichloroethane-d4 9	96	75-139
Toluene-d8 9	9	80-120
Bromofluorobenzene 9	97	80-120

	BTXE &	Oxygenates	
Lab #: Client: Project#:	252210 Applied Water Resources AWR 13-05	Location: Prep: Analysis:	2250 Telegraph EPA 5030B EPA 8260B
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Analyzed:	207031 01/13/14

Type: BS Lab ID: QC723883

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	112.9	90	37-151
MTBE	25.00	22.58	90	64-121
Isopropyl Ether (DIPE)	25.00	24.31	97	56-124
Ethyl tert-Butyl Ether (ETBE)	25.00	24.03	96	61-122
1,2-Dichloroethane	25.00	20.72	83	77-137
Benzene	25.00	25.20	101	80-124
Methyl tert-Amyl Ether (TAME)	25.00	21.23	85	65-120
Toluene	25.00	25.75	103	80-122
1,2-Dibromoethane	25.00	25.34	101	80-120
Ethylbenzene	25.00	26.61	106	80-124
m,p-Xylenes	50.00	55.07	110	80-122
o-Xylene	25.00	28.71	115	77-120

Surrogate	%REC	Limits
Dibromofluoromethane	106	77-136
1,2-Dichloroethane-d4	79	75-139
Toluene-d8	93	80-120
Bromofluorobenzene	93	80-120

Type: BSD Lab ID: QC723884

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	125.0	95.26	76	37-151	17	30
MTBE	25.00	20.69	83	64-121	9	20
Isopropyl Ether (DIPE)	25.00	22.02	88	56-124	10	20
Ethyl tert-Butyl Ether (ETBE)	25.00	21.83	87	61-122	10	22
1,2-Dichloroethane	25.00	20.97	84	77-137	1	20
Benzene	25.00	25.70	103	80-124	2	20
Methyl tert-Amyl Ether (TAME)	25.00	21.74	87	65-120	2	22
Toluene	25.00	26.28	105	80-122	2	20
1,2-Dibromoethane	25.00	26.41	106	80-120	4	20
Ethylbenzene	25.00	27.16	109	80-124	2	20
m,p-Xylenes	50.00	55.93	112	80-122	2	20
o-Xylene	25.00	29.38	118	77-120	2	20

Surrogate	%REC	Limits	
Dibromofluoromethane	94	77-136	
1,2-Dichloroethane-d4	79	75-139	
Toluene-d8	93	80-120	
Bromofluorobenzene	93	80-120	

BTXE & Oxygenates						
Lab #:	252210	Location:	2250 Telegraph			
Client:	Applied Water Resources	Prep:	EPA 5030B			
Project#:	AWR 13-05	Analysis:	EPA 8260B			
Type:	BLANK	Diln Fac:	1.000			
Lab ID:	QC723885	Batch#:	207031			
Matrix:	Water	Analyzed:	01/13/14			
Units:	ug/L					

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	10	
MTBE	ND	0.5	
Isopropyl Ether (DIPE)	ND	0.5	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane 96	6	77-136
1,2-Dichloroethane-d4 85	5	75-139
Toluene-d8 93	3	80-120
Bromofluorobenzene 94	4	80-120

ND= Not Detected RL= Reporting Limit Page 1 of 1

	BTXE & Oxygenates							
Lab #: Client: Project#:	252210 Applied Water Resources AWR 13-05	Location: Prep: Analysis:	2250 Telegraph EPA 5030B EPA 8260B					
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Analyzed:	207059 01/14/14					

Type: BS Lab ID: QC723977

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	104.0	83	37-151
MTBE	25.00	22.55	90	64-121
Isopropyl Ether (DIPE)	25.00	24.64	99	56-124
Ethyl tert-Butyl Ether (ETBE)	25.00	23.58	94	61-122
1,2-Dichloroethane	25.00	26.95	108	77-137
Benzene	25.00	27.10	108	80-124
Methyl tert-Amyl Ether (TAME)	25.00	23.67	95	65-120
Toluene	25.00	26.64	107	80-122
1,2-Dibromoethane	25.00	26.20	105	80-120
Ethylbenzene	25.00	26.96	108	80-124
m,p-Xylenes	50.00	57.00	114	80-122
o-Xylene	25.00	28.71	115	77-120

Surrogate	%REC	Limits
Dibromofluoromethane	101	77-136
1,2-Dichloroethane-d4	99	75-139
Toluene-d8	99	80-120
Bromofluorobenzene	94	80-120

Type: BSD Lab ID: QC723978

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	125.0	108.4	87	37-151	4	30
MTBE	25.00	22.33	89	64-121	1	20
Isopropyl Ether (DIPE)	25.00	24.30	97	56-124	1	20
Ethyl tert-Butyl Ether (ETBE)	25.00	23.43	94	61-122	1	22
1,2-Dichloroethane	25.00	25.57	102	77-137	5	20
Benzene	25.00	25.87	103	80-124	5	20
Methyl tert-Amyl Ether (TAME)	25.00	23.08	92	65-120	3	22
Toluene	25.00	25.55	102	80-122	4	20
1,2-Dibromoethane	25.00	25.89	104	80-120	1	20
Ethylbenzene	25.00	25.73	103	80-124	5	20
m,p-Xylenes	50.00	54.13	108	80-122	5	20
o-Xylene	25.00	27.41	110	77-120	5	20

Surrogate	%REC	Limits
Dibromofluoromethane	101	77-136
1,2-Dichloroethane-d4	94	75-139
Toluene-d8	99	80-120
Bromofluorobenzene	96	80-120

BTXE & Oxygenates						
Lab #:	252210	Location:	2250 Telegraph			
Client:	Applied Water Resources	Prep:	EPA 5030B			
Project#:	AWR 13-05	Analysis:	EPA 8260B			
Type:	BLANK	Diln Fac:	1.000			
Lab ID:	QC723979	Batch#:	207059			
Matrix:	Water	Analyzed:	01/14/14			
Units:	ug/L					

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	ND	10	
MTBE	ND	0.5	
Isopropyl Ether (DIPE)	ND	0.5	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane 1	.03	77-136
1,2-Dichloroethane-d4 9	8	75-139
Toluene-d8 9	9	80-120
Bromofluorobenzene 9	95	80-120

ND= Not Detected RL= Reporting Limit

Page 1 of 1

Dissolved Lead					
Lab #:	252210	Location:	2250 Telegraph		
Client:	Applied Water Resources	Prep:	METHOD		
Project#:	AWR 13-05	Analysis:	EPA 6020		
Analyte:	Lead	Batch#:	207077		
Matrix:	Filtrate	Sampled:	01/10/14		
Units:	ug/L	Received:	01/10/14		
Diln Fac:	5.000	Prepared:	01/14/14		

Field ID	Type	Lab ID	Re	sult	RL	Analyzed
MW-1	SAMPLE	252210-001	ND		1.0	01/14/14
MW-2	SAMPLE	252210-002		1.1	1.0	01/16/14
MW-3	SAMPLE	252210-003	ND		1.0	01/14/14
MW-4A	SAMPLE	252210-004	ND		1.0	01/16/14
MW-5	SAMPLE	252210-005	ND		1.0	01/14/14
MW-7	SAMPLE	252210-006	ND		1.0	01/14/14
MW-8	SAMPLE	252210-007		1.3	1.0	01/16/14
	BLANK	QC724041	ND		1.0	01/17/14

ND= Not Detected RL= Reporting Limit

Page 1 of 1

Dissolved Lead					
Lab #:	252210	Location:	2250 Telegraph		
Client:	Applied Water Resources	Prep:	METHOD		
Project#:	AWR 13-05	Analysis:	EPA 6020		
Analyte:	Lead	Batch#:	207077		
Field ID:	MW-1	Sampled:	01/10/14		
MSS Lab ID:	252210-001	Received:	01/10/14		
Matrix:	Filtrate	Prepared:	01/14/14		
Units:	ug/L	Analyzed:	01/16/14		
Diln Fac:	5.000				

Type	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
BS	QC724042		100.0	106.9	107	78-120		
BSD	QC724043		100.0	107.8	108	78-120	1	20
MS	QC724044	0.2195	100.0	102.3	102	73-120		
MSD	QC724045		100.0	100.2	100	73-120	2	23