

August 23, 2001 SCI 609.004

SEP 0 4 2001

Ms. Marianne Robison Buttner Properties 600 West Grand Avenue Oakland, California 94612

April 2001 Groundwater Monitoring Event 2250 Telegraph Avenue Oakland, California

Dear Ms. Robison:

This letter records the results of the April 2001 groundwater monitoring event for the referenced site. The groundwater monitoring program has been implemented in accordance with Regional Water Quality Control Board (RWQCB) and the Alameda County Health Care Services Agency (ACHCSA) guidelines due to past releases from former underground storage tanks (UST). In accordance with the current monitoring program, the six site wells are monitored on a semi-annual basis. The locations of the wells and former USTs are presented on the Site Plan, Plate 1.

BACKGROUND

In August 1990, two 10,000-gallon underground gasoline storage tanks and one 280-gallon waste oil tank were removed from the site. Approximately 500 cubic yards of gasoline-impacted soil were aerated onsite in 1990 and 1991 and disposed at a Class III sanitary landfill. In February 1994, SCI observed the excavation of contaminated soils near the former waste oil tank and installed four groundwater monitoring wells at the site. In May 1996, SCI installed five temporary well points and collected grab groundwater samples as part of a supplemental investigation to assist in determining locations for the installation of additional monitoring wells. SCI installed two monitoring wells (MW-5 and MW-6) at offsite locations, downgradient from the former UST excavations, in June 1997. In letters dated June 16, 1998 and November 8, 1999, ACHCSA requested that all groundwater monitoring wells (MW-1 through MW-6) be monitored and sampled on a semi-annual basis.

Ms. Marianne Robison Buttner Properties August 23, 2001 SCI 609.004 Page 2

GROUNDWATER SAMPLING

On April 27, 2001, SCI personnel visited the Site and sampled the six monitoring wells. Prior to sampling the presence of free product was checked and the depth to groundwater was measured in all wells. No free product was observed. Each well was then purged of approximately three casing volumes of water while monitoring pH, conductivity, and temperature. Once the wells had recovered to 80% of their initial level, they were sampled with clean disposable bailers. Samples were retained in glass containers pre-cleaned by the laboratory in accordance with EPA protocol. The containers were placed in an ice filled cooler and kept chilled pending delivery to the laboratory.

Analytical testing was performed by Curtis & Tompkins, Ltd., a laboratory certified by the State of California Department of Health Services for hazardous waste and water testing. A sample from each well was analyzed for the following:

- Total volatile hydrocarbons as gasoline (TVHg), EPA Methods 5030/8015,
- Total extractable hydrocarbons as diesel (TEHd), EPA Methods 3550/8015, using silica gel cleanup, and
- Benzene, toluene, ethylbenzene and xylenes (BTEX), and methyl tertiary butyl ether (MTBE), EPA Methods 8020.

Well sampling forms, chain-of-custody documents, and the analytical test reports are attached. Groundwater elevation data are summarized in Table 1.

CONCLUSIONS

Based on the groundwater elevation data presented in Table 1, the groundwater gradient remains generally consistent with previous measurements. The gradient is relatively flat, 0.003 feet per foot, and tends toward the south. The groundwater flow direction for this event is shown on Plate 1.

No free product was observed during this event. The chemical constituents measured in the samples are similar in concentration to those measured during previous events. Hence, it appears that the plume is relatively stabilized.

TVHg was detected during this event in samples from wells MW-1, MW-4, and MW-6 at 160, 1,900, and 1,600 micrograms per liter (ug/l), respectively. TEHd was detected in samples from wells MW-3, MW-4, and MW-6 at 690, 710, and 440 ug/l, respectively.

Ms. Marianne Robison Buttner Properties August 23, 2001 SCI 609.004 Page 3

MTBE was detected during this event using EPA Method 8020 in samples from wells MW-4 and MW-6. The presence of MTBE was not confirmed through application of EPA Method 8260 per the ACHCSA's November 8, 1999 letter. The detection of MTBE in samples other than well MW-6, since June 2000, is possibly associated with "false positives". MTBE results for analyses conducted using both test methods are summarized in Table 2.

ONGOING MONITORING

As requested by the ACHCSA groundwater monitoring events are to be conducted during the first and third quarters of each year until further notice. Hence, the next monitoring event should be conducted in October 2001.

New State Water Resources Control Board (SWRCB) guidelines (which become effective September 1, 2001) require that analytical data generated for this Site be submitted in a specific format to the SWRCB by the responsible party or their approved agent. Additional regulations effective in January 2002 will place further requirements on the responsible party to provide new well location information to the SWRCB. A summary of the new regulations is attached.

If you have any questions, please call either of the undersigned at (510)268.0461

Yours very truly,

Subsurface Consultants, Inc.

Emily Silverman Staff Geologist

Jeriann N. Alexander, PE, REA

Project Manager

Civil Engineer 40469 (exp. 3/31/03)

ES:JNA:ae \609.004\april 2001 qmr

Ms. Marianne Robison Buttner Properties August 23, 2001 SCI 609.004 Page 4

Attachments: Table 1 - Groundwater Elevation Data

Table 2 - Summary of Contaminants in Groundwater

Plate 1 - Site Plan Analytical Test Report Chain-of-Custody Form Well Sampling Forms

SWRCB Guideline for Electronic Submittal

cc: Mr. Tim Robison, Ph.D. 15311 Chinaberry Street North Potomac, MD 20878

> Mr. Don Huang Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Table 1
Groundwater Elevation Data
Buttner Properties
Oakland, California

Monitoring <u>Well</u>	<u>Date</u>	TOC Elevation (feet) MSL	DTW (feet)	Elevation (feet) MSL
MW-1	3/3/1994	20.55	10.39	10.16
	3/10/1994		10.54	10.01
	6/6/1994		11.36	9.19
	9/7/1994		11.92	· 8.63
	12/22/1994		10.83	9.72
	3/17/1995		9.73	10.82
	6/27/1995		10.51	10.04
•	9/18/1995		11.12	9.43
	5/30/1996		10.49	10.06
	7/9/1997		11.79	8.76
	8/21/1998		11.00	9.55
	10/6/1998		11.84	8.71
	2/24/1999		9.74	10.81
	6/30/2000		11.28	9.27
	4/27/2001		10.56	9.99
MW-2	3/3/1994	20.03	10.37	9.66
	3/10/1994		10.53	9.50
	6/6/1994		11.15	8.88
	9/7/1994		11.72	8.31
	12/22/1994		11.27	8.76
	3/17/1995		9.85	10.18
	6/27/1995		10.70	9.33
	9/18/1995		11.67	8.36
	5/30/1996		11 .5 6	8.47
	7/9/1997		11.52	8.51
	8/21/1998		11.91	8.12
	10/6/1998		11.57	8.46
	2/24/1999	-	9.91	10.12
	6/30/2000		11.16	8.87
	4/27/2001		11.32	8.71

Table 1
Groundwater Elevation Data
Buttner Properties
Oakland, California

Monitoring <u>Well</u>	<u>Date</u>	TOC Elevation (feet) MSL	DTW (feet)	Elevation (feet) MSL
MW-3	3/3/1994	18.97	9.50	9.47
	3/10/1994		9.51	9.46
	6/6/1994		10.28	8.69
	9/7/1994		10.75	8.22
	12/22/1994		9.74	9.23
	3/17/1995		8.85	10.12
	6/27/1995		9.94	9.03
	9/18/1995		10.54	8.43
	5/30/1996		9.69	9.28
	7/9/1997		10.60	8.37
	8/21/1998		10.36	8.61
	10/6/1998		10.64	8.33
	2/24/1999		8.58	10.39
	6/30/2000		10.21	8.76
	4/27/2001		9.85	9.12
MW-4	3/3/1994	19.88	10.89	8.99
	3/10/1994		11.19	8.69
	6/6/1994		11.85	8.03
	9/7/1994		12.86	7.02
	12/22/1994		12.26	7.62
	3/17/1995		10.10	9.78
•	6/27/1995		11.05	8.83
	9/18/1995		11.84	8.04
	5/30/1996		10.97	8.91
	7/9/1997		12.08	7.80
	8/21/1998		11.86	8.02
	10/6/1998		12.84	7.04
	2/24/1999		10.79	9.09
	6/30/2000		12.39	7.49
	4/27/2001		11.26	8.62
MW-5	6/26/1997	16.02	8.44	7.58
	7/9/1997		8.48	7.54
	8/21/1998		8.32	7.70
	10/6/1998		8.51	7.51
	2/24/1999	4	6.86	9.16
	6/30/2000		7.63	8.39
	4/27/2001		7.60	8.42

Table 1
Groundwater Elevation Data
Buttner Properties
Oakland, California

Monitoring <u>Well</u>	<u>Date</u>	TOC Elevation (feet) MSL	DTW (feet)	Elevation (feet) MSL
MW-6	6/26/1997	18.36	10.89	7.47
	7/9/1997		10.98	7.38
	8/21/1998		11.00	7.36
	10/6/1998		10.79	7.57
	2/24/1999		9.32	9.04
	6/30/2000		10.37	7.99
	4/27/2001		10.10	8.26

TOC = Top of Casing DTW = Depth to Water

Elevation Reference: USGS benchmark W1197, 1969 with a reported elevation of +21.06 feet MSL datum.

Table 2
Chemical Concentrations in Groundwater
Buttner Properties
Oakland, California

				Petrol	eum Hydroc	arbons	Volatile Organics									
Well	Date	Groundwater Elevation	TVH as Gasoline	TEH as Kerosene	TEH as Diesel	TEH as Motor Oil	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE -8020	MTBE -8260	1,1,1-TCA	1,2-DCA	PCE	Chloro- Benzene
igsquare		MSL (feet)	μg/l	μg/l	μg/l	mg/l	μg/l	μg/l	μg/l	μg/l	μg/I	μg/l	μg/l	μg/l	μg/l	μg/l
MW-1	3/3/94	10.16	300	<50	~£0	-0 F	1.2	~0. <i>5</i>	2.7	2.1			-0.5		-0.5	-0.5
IVI VV - I	3/3/9 4 6/6/94	9.19	430	<50 180+	<50 <50	<0.5 0.5	1.3 10	<0.5	2.7	3.1		~-	< 0.5	5.5	< 0.5	<0.5
	9/7/94	8.63						2.2	6.1	7.6			<0.5	<0.5	< 0.5	<0.5
	12/22/94	8.63 9.72	410 130	<50 <50	<50 <50	<0.5 <0.5	6.4	0.8	2.6	3.8			<0.5	3.8	<0.5	<0.5
	3/17/95	10.82		\S\0 170			0.7	<0.5	0.6	0.8			<0.5	3.4	<0.5	< 0.5
	3/1 //93 6/27/95	10.82	1,600		<50	<0.5	29	<0.5	9.1	6.9			<0.5	<0.5	<0.5	<0.5
			1,100	<50	< 50	<0.5	14	<0.5	7.1	5			<0.5	3.3	<0.5	<0.5
	9/18/95	9.43	370		110+		4.4	0.6	2	1.4			<0.5	2.4	<0.5	< 0.5
	8/21/98	9.55	170		62+		<0.5	0.76	0.79	<0.5	<2.0					
	2/24/99	10.81	20		280+		<0.5	<0.5	<0.5	< 0.5		<2.0				
	6/30/00	13.47	240		<50		0.7	0.8	<0.5	0.74	4.0					
	4/27/01	9.99	160		<50		3.3	<0.5	0.86	<0.50	<2.0			**		~~
MW-2	3/3/94	9.66	110	<50	<50	< 0.5	<0.5	1.7	0.58	2.7			<0.5	<0.5	<0.5	< 0.5
	6/6/94	8.88	100	<50	<50	< 0.5	11	< 0.5	0.7	1.1			<0.5	< 0.5	< 0.5	< 0.5
	9/7/94	8.31	< 50	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			< 0.5	< 0.5	< 0.5	< 0.5
	12/22/94	8.76	< 50	<50	<50	< 0.5	0.8	< 0.5	< 0.5	0.8			< 0.5	< 0.5	<0.5	< 0.5
	3/17/95	10.18	180	100	<50	< 0.5	31	< 0.5	1	1.8		aller size	< 0.5	< 0.5	< 0.5	< 0.5
	6/27/95	9.33	80	<50	<50	< 0.5	6	< 0.5	< 0.5	< 0.5			<0.5	<0.5	<0.5	< 0.5
	9/18/95	8.36	<50		<50		< 0.5	< 0.5	<0.5	< 0.5			< 0.5	< 0.5	< 0.5	<0.5
	8/21/98	8.12	<50		< 50		< 0.5	< 0.5	<0.5	<0.5	< 2.0					
	2/24/99	10.12	<50		<50		< 0.5	< 0.5	< 0.5	< 0.5		<2.0				
	6/30/00	14.24	<50		< 50		< 0.5	< 0.5	< 0.5	<0.5	2.0					
	4/27/01	8.71	<50		<50	· · ·	<0.5	<0.5	< 0.5	<0.5	<2.0					
MW-3	3/3/94	9.47	85	<50	<50	<0.5	<0.5	0.77	<0.5	3.7			<0.5	<0.5	<0.5	<0.5
	6/6/94	8.69	100	110+	<50	<0.5	<0.5	<0.5	<0.5	<0.5			2.5	0.8	2.1	<0.5
	9/7/94	8.22	220	<50	<50	<0.5	11	1.8	2.6	3.5			<0.5	<0.5	0.6	<0.5
	12/22/94	9.23	130	95+	<50	< 0.5	3.8	0.5	0.6	1.2			<0.5	< 0.5	<0.5	<0.5
	3/17/95	10.12	1,500	270	<50	<0.5	83	6	10	15			<0.5	<0.5	< 0.5	< 0.5
	6/27/95	9.03	2,500	<50	<50	<0.5	330	8.9	8.1	20			<0.5	<0.5	< 0.5	< 0.5
	9/18/95	8.43	1,500		770+		400	11	2.2	3.3			<0.5	<0.5	<0.5	<0.5
	8/21/98	8.61	2,300		600+		410	9.3	36	25	<10					
	2/24/99	10.39	55		110+		<0.5	<0.5	<0.5	<0.5		<2.0				
	6/30/00	10.83	110		83+		<0.5	<0.5	0.51	<0.5	<2.0					
	4/27/01	8.67	<50		690+		<0.5	<0.5	<0.5	<0.5	<2.0					

Table 2
Chemical Concentrations in Groundwater
Buttner Properties
Oakland, California

				<u> </u>		Volatile	e Organics					·				
Well	Date	Groundwater Elevation	TVH as Gasoline	TEH as Kerosene	TEH as Diesel	TEH as Motor Oil	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE -8020	MTBE -8260	1,1,1-TCA	1,2-DCA	PCE	Chloro- Benzene
		MSL (feet)	μg/l	μg/l	μg/l	mg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/I	μg/I	μg/l	μg/l	μg/l
MW-4	3/3/94	8.99	4,300	<50	240	<0.5	220	20	7.5	17			<0.5	5.9	<0.5	4.4
	6/6/94	8.03	4,400	<50	+008	<0.5	140	< 0.5	< 0.5	< 0.5		**	< 0.5	< 0.5	< 0.5	<0.5
	9/7/94	7.02	10,000	490+	280+	< 0.5	84	< 0.5	42	69			< 0.5	4.4	0.5	4.3
	12/22/94	7.62	2,400	450+	54+	< 0.5	11	< 0.5	7.1	11			< 0.5	3.6	3.6	< 0.5
	3/17/95	9.78	2,200	380	160+	< 0.5	< 0.5	< 0.5	7.9	10			< 0.5	1.7	< 0.5	4.5
	6/27/95	8.83	3,100	<50	82	<0.5	< 0.5	< 0.5	13	19			< 0.5	2.3	< 0.5	4.8
	9/18/95	8.04	3,000		1,231+		12	< 0.7	6.9	8.3			< 0.5	1.9	< 0.5	4.0
	8/21/98	8.02	1,700		600+		8.2	12	13	5.2	<2.0	-				
	2/24/99	9.09	2,700		2,100+		4.3	0.64	< 0.5	0.54		<2.0				
	6/30/00	11.74	6,700		3,200+		3.1	1.7	11	16.7	27					
	4/27/01	8.62	1,900		710		<0.5	<0.5	<0.5	<0.5	14	 .	**			
MW-5	6/26/97	7.58	120		<50		<0.5	< 0.5	<0.5	<0.5			< 0.5	<0.5	1.6	< 0.5
	8/21/98	7.70	<50		<50		<0.5	< 0.5	< 0.5	< 0.5	<2.0					
	2/24/99	9.16	<50		<50		< 0.5	< 0.5	< 0.5	<0.5		<2.0				
	6/30/00	8.39	<50		<50		< 0.5	< 0.5	< 0.5	< 0.5	5.1					
	4/27/01	8.42	<50		<50		<0.5	<0.5	<0.5	<0.5	<2.0					
MW-6	6/26/97	7.47	1,500+		450+		<0.5	<0.5	11	<0.5	-	_	<0.5	<0.5	<0.5	1.7
	8/21/98	7.36	1,400		540+		< 0.5	3.6	5.6	0.4	5.7	3.2				
	2/24/99	9.04	1,600		600+		< 0.5	< 0.5	0.56	<0.5		2.3				
	6/30/00	8.04	1,900		360+		0.56	3	5.4	3.5	30					
	4/27/01	8.26	1,600		440		< 0.5	< 0.5	< 0.5	< 0.5	3.3					

DCA = Dichloroethane

TCA = Trichloroethane

PCE = Tetrachloroethene

- = Chemical not tested for

NR = Hydrocarbon range not reported by laboratory

mg/l = milligrams per liter = parts per million

μg/l = micrograms per liter = parts per billion

<1 = Chemical not present at a concentration greater than the laboratory detection limit shown or stated on test reports</p>

^{+ =} Uncategorized hydrocarbons quantified in ranges specified

GROUNDWATER DEPTHS

Project N	Vame:	22SD 7	ele grap	h	•
Job No.:		609.			
Measure	d by:	Obi			
:		<u>.v. y</u>	7 0 17 02 17 (1)		
Well	Date	Time	Groundwater Depth (feet)	Comments	
	·				
1-WM	4/27/01	0915	10.56	·	
MW-2	11	0405	11-32		
MW-3	11	0900	9.85		
MW-4	1/	0925	11-26		
MW-5	17	09/003	7.60		
MW-b	11	1200	16.1		
			:	<u> </u>	
				.^	
			-		
				A Company of the Comp	
!			·-		· · · · · · · · · · · · · · · · · · ·
	_			· · · · · · · · · · · · · · · · · · ·	
	`				···
					<u></u>
				,	

######################################		WEELSAM	PLING FORM	Literatur	护式强化 。	· 的最高性高度性和原理性。
PROJECT NAME: 2 JOB NO. SAMPLED BY: (graph			L CASING WELL	WELL NO.: MW - 1 DIAMETER: 2'' MATERIAL: PV C LEVATION:
TOTAL DEPTH OF CASING (BTOO DEPTH TO GROUNDWATER (BTO FEET OF WATER IN WELL		_FEET _FEET	CALCULATED (feet of water * c	casing dia ² * .04	UME 108 * # of Vo	1
MEASUREMENT METHOD		TAPE & PASTE		OD TRONIC SOU	NDER	OTHER
GALLONS REMOVED TIME O 10 H	6 6-69 18-6	CONDUCTIVITY (µMHOS/CM)	TURBIDITIY	ORP (mV)	DO (mg/l)	COMMENTS (odor, color,)
2 10H H 10,5	2 1.56 12.6	111,3 308.9				
DEPTH TO GROUNDWATER WHE	N 80% RECOVERED		12.06	57		
ACTUAL DEPTH TO GROUNDWAT				11.68		
CONTAINERS / PRESERVATIVE	3/1-100 40 MI.	.	-	<u>2</u> 11	/ Av	<u>wher</u>
ANALYSES:	OTHER		•	от	HER	
MISC FIELD OBSERVATION:						

		¥1.45		" WEEL SAM	PLING FORM		有一种		
PROJECT NAME: JOB NO. SAMPLED BY: DATE: WEATHER:	<u> </u>	250	Tel	egvaph		-	LL CASING I WELL M	WELL NO.: M W - DIAMETER: MATERIAL: LEVATION:	
TOTAL DEPTH OF CASII DEPTH TO GROUNDWA' FEET OF WATER IN WEI	TER (BTOC)	16.8 11.35	2.	FEET FEET	CALCULATEI (feet of water * FREE PRODUC	casing dia ² * .0.	408 * # of Vol	2.7 January	gailo
MEASUREMENT METHO)D			TAPE & PASTE	ELE	CTRONIC SOL		OTHER	
	Et.			HEIRIAD MICASUR	EMENTS -				
GALLONS REMOVED	102522	pH) 6 88	TEMP 18 4 18 3	CONDUCTIVITY (µMHOS/CM)	TURBIDITIY	ORP (mV)	DO (mg/l)	COMMENTS (odor, color,)	
2	1030	6.25 6.12	18 H 18 H	66.6 66.7					
DEPTH TO GROUNDWAT					13.	58			
ACTUAL DEPTH TO GRO SAMPLING METHOD	UNDWATER	BEFORE	SAMPLING	(BTOC)		<u>95</u>	<u> </u>	, , , , , , , , , , , , , , , , , , ,	
SAMPLING METHOD	 								<u> </u>
CONTAINERS/PRESERV	ATIVE	40 1	MIL.			LI	TER		
ANALYSES:		OTE	HER		· •	ОТ	HER		
MISC FIELD OBSERVATIO	N:								
] }									

	□ () () () () () () () () () (1-18 Trus	WELLSAM	PLING FORM		第五十二十二	- - 10 是 国大型全等。	
PROJECT NAME: JOB NO. SAMPLED BY: DATE: WEATHER:	- 27 - 6	50 I	elegy DH Die	aph		-	L CASING WELL	WELL NO.:	
TOTAL DEPTH OF CAS	ATER (BTOC)			_feet _feet	CALCULATED (feet of water * c	asing dia ² * .04		3 · 2 olumes)	gailo
FEET OF WATER IN WI		<u>b.#</u>		FEET TAPE & PASTE		OD TRONIC SOU		balor	ŒR
GALLONS REMOVED	TIME	pН	ТЕМР	CONDUCTIVITY (µMHOS/CM)	EMENTS: TURBIDITTY	ORP (mV)	DO (mg/l)	COMME	
7 2 3	1010 1012 1013 1015	7 BH 6.70 6.65 6.46	12.7 12.4 14.8 18.1	34./ 32./ 36./ 38.3		(MV)	(1191)	(odor, cole 81, ght 3	Steen
DEPTH TO GROUNDWA	ATER MATCH O	DECOY			11-82				
ACTUAL DEPTH TO GR			,	G (BTOC)	11.5				
SAMPLING METHOD CONTAINERS / PRESER	VATIVE	40	/ ML		<u> </u>	Lr	/ TER		
ANALYSES:		OT	HER		- -	от	HER		
]									
MISC FIELD OBSERVAT	ION:								

The state of the s	I (+)			WELL SAMI	LING FORM			
PROJECT NAME: JOB NO.	·)	250 19-00	Tele H	graph		<u>-</u>	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	WELL NO.: MW-H
SAMPLED BY: DATE:	 41:	bi N	Jzern	<u> </u>		WEI	L CASING	DIAMETER:
WEATHER:	71.	27701		· · · · · · · · · · · · · · · · · · ·		_		MATERIAL:
				-			TOC	ELEVATION:
TOTAL DEPTH OF CASING		<u> 18, .</u> 11.∂		_FEET	CALCULATED	PURGE VOLI	UME 108 * # of V	Olumes) galle
FEET OF WATER IN WELL		7.0		FEET	FREE PRODUC	CT CT		
					PURGE METH	OD		<u>eulev</u>
MEASUREMENT METHOL	D			TAPE & PASTE	ELE	CTRONIC SOU	NDER	OTHER
				AND SAME TO THE PROPERTY OF TH	EMENTS			
GALLONS REMOVED	TIME 09#0	Hq L(/2	TEMP	CONDUCTIVITY (µMHOS/CM)	TURBIDITTY	ORP (mV)	DQ (mg/l)	COMMENTS (odor, color,)
	09 <i>770</i> 0943	6 63	12.4	33.5 21.7				hydroiston oclor steen
. 3 (0950	10 11	120	19:5		<u> </u>	 	1/
# /	1000	6.73	17.0	77.4				//
1								
						·		
DEPTH TO GROUNDWATE	ER WHEN 8	0% RECOV	ÆRED		3.51			
ACTUAL DEPTH TO GROU	NDWATER	BEFORE	SAMPLING	(BTOC)		·34		
SAMPLING METHOD _					•			
CONTAINERS / PRESERVA	TIVE	3 /				2	/	
ı		40 1	MIL		•	LI	TER	````
1		/			~		,	
ANALYSES:	•	OTE	IER			ОТ	HER	•
-							· · · · · · · · · · · · · · · · · · ·	<u> </u>
					 	·		
							<u> </u>	
·								
MISC FIELD OBSERVATION	vi:		•					
	·· •	······		•	<u> </u>			
-								-
1					-			

				WELLSAM	PLING FORM		建筑最大多 的		i Aute I	
PROJECT NAME: JOB NO. SAMPLED BY: DATE: WEATHER:	- 2-2 b Ob		Teleg H	eraph	WELL NO.:					
TOTAL DEPTH OF CAS DEPTH TO GROUNDW FEET OF WATER IN W MEASUREMENT METI	/ATER (BTOC	17·1 7·6 9.8	0	FEET FEET TAPE & PASTE	CALCULATED (feet of water * FREE PRODUC PURGE METHO	casing dia ² * ,04 CT	UME 408 * # of Volume	H.8	gailo	
				iginodaVidasjur	EVIENTS				a serve	
GALLONS REMOVED		pH I O VO	TEMP	CONDUCTIVITY (µMHOS/CM)	TURBIDITTY	ORP (mV)	DO (mg/l)	COMMENTS (odor, color,)		
	1443	7.70	18.5	H5·2 HH·1	<u> </u>					
3	1449	6 68	18.7	44.7					_ `	
5	1 H 52	10.69	18.8	HH .4						
		 					 			
						·- · · · · · · · · · · · · · · · · · ·				
_										
DEPTH TO GROUNDWA	ATER WHEN	80% RECOV	/ERED		9.17					
ACTUAL DEPTH TO GR				G (BTOC)	7.6	2			·	
SAMPLING METHOD	·				-			47		
CONTAINERS/PRESER	VATTUE	,	· '				/			
		40	MIL		•	Y.1	TER	-	-	
					**					
		OTT	nen-		-		<u> </u>	_		
ANALYSES:		OII	iek		•	O	HER	•		
•										
	· · · · · · · · · · · · · · · · · · ·	 			-					
			· · · · ·							
MISC FIELD OBSERVAT	TION:									
				<u>-:</u>						
				····	·					
-					···		<u> </u>			

		. WELLSAMI	PLING FORM		李志泰 生态	- - 한 통료 변화 2명 3일 118 (2011 - 12)
PROJECT NAME: 225	O Tolem					The state of the s
	Del-Opt 8	7.47		-		WELL NO. 10.11
	Obi No	servi)	-	- Wei	LL CASING	WELL NO.: WW -6 DIAMETER:
DATE: ///	27/01			-		MATERIAL:
WEATHER:	· · · · · · · · · · · · · · · · · · ·	·		-		LEVATION:
- -						
TOTAL DEPTH OF CASING (BTOC)	18.95	FEET	CALCULATED	PURGE VOL	UME	H-3 gall
DEPTH TO GROUNDWATER (BTOC	10-1	FEET	(feet of water *	04, * casing dia	408 * # of Vo	olumes)
FEET OF WATER IN WELL	8.85	FEET	FREE PRODUC	T		
		,	PURGE METHOD			barler
MEASUREMENT METHOD		TAPE & PASTE	ELECTRONIC SOUNDER			OTHER
		anaen Mizakania	EMENTS			
		CONDUCTIVITY		ORP	DO	
GALLONS REMOVED TIME	pH TEMP	(µMHOS/CM)	TURBIDITTY	(mV)	(mg/l)	COMMENTS (odor, color,)
0 1345	706 20.3	116.5				(6001, 50101,)
3 350	h 92 20 2	16.6				
3 13 52 4 13 55	6.79 19:4	1/6.5	·			
7 13 53	0 - 05 19 -9	116.7				
						
				<u></u>		
·					 	
DEPTH TO GROUNDWATER WHEN	80% RECOVERED) (2.12	'	ŝ
ACTUAL DEPTH TO GROUNDWATE	R BEFORE SAMPLING	G (BTOC)			15	
SAMPLING METHOD				 / //		
						
CONTAINERS / PRESERVATIVE		_			_	
	40 ML	. 3		L	TER	•
_			-		,	
	OTHER	•			<u> </u>	
ANALYSES:	OTHER		•	OI	HER	
						•
						· · · · · · · · · · · · · · · · · · ·
		·				
		<u> </u>	· · · · · · · · · · · · · · · · · · ·			
						
MISC FIELD OBSERVATION:	•			,		
						-

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

Subsurface Consultants 3736 Mt. Diablo Blvd. Suite 200 Lafayette, CA 94549

Date: 22-MAY-01 Lab Job Number: 151700

Project ID: N/A Location: 2250 TELEGRAPH

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by: Project Manager

Reviewed by:

This package may be reproduced only in its entirety.

CA ELAP # 1459

Page 1 of ZO

Laboratory Number: 151700

Client: Subsurface Consultants, Inc.

Project Name: 2250 Telegraph

Receipt Date: 04/27/01

CASE NARRATIVE

This hardcopy data package contains sample results and batch QC results for six water samples received from the above referenced project. The samples were received cold and intact.

Total Volatile Hydrocarbons: The trifluorotoluene surrogate recoveries for samples MW-4 (151700-004) and MW-6 (151700-006) were outside acceptance limits due to coelution of the surrogate peak with hydrocarbon peaks. The associated bromofluorobenzene surrogate recoveries were acceptable. No other analytical problems were encountered.

BTXE:

No analytical problems were encountered.

Total Extractable Hydrocarbons:

No analytical problems were encountered.

CHAIN OF	custody Fol	RM		*		-	.=	7	5/7	D	T			•			,			١		-	•		_			-		24.6		-		,		-		_
PROJECT NAME	= 2250 ex	ŽŽ.	Te'	ie e	281/5	EL S	يلا		,	_	·									•								•	ľ	PAG		_	u.ye	SIS R	O FOU		=17	_
OOD NOWHEH.									-		LAB:			···	4	<u> </u>										 -			- [\exists	1			Ť	T	=5,.	T	T
PROJECT CONT/	ACT: Emily	رج ٠	مام	1,0	مدخدد	صمدا	21 41	^		-	77 10.				•••	γ.,	<u> </u>	+,	<u> </u>	- ~/			_()	.					- [3	ŀ						
SAMPLED BY: _	Obi Na	<u>e</u> _	<u></u> '	خ	_		_			• •	BEO		.61. س	CU.	IU,			ري م ت	<u>(v</u>		<u> </u>	<u> </u>	<u>2K</u>	<u> </u>			 -		-]		3	7					'	1
I	·					_				•	The target	بال	Dir	ED	D)	: <u>-</u>		()	641	 !	U:	20_	4	\sim				_	- [E	À	77	02					
i .				MATI	RIX		T	C	ONT	-AJN	IERS	7	Γ,		ETH			T	-		<u></u>		<u> </u>					T	1	S	TW (50)	<u></u>	60					
LABORATORY	SCI SAMPLE		П	П	T	T	+	T	T	Т	П	7	H	² H⊏	ESEF	IVE:	뭐	1	400000000000000000000000000000000000000	1	SAN	/PL	ING	i DA	TE				ľ	7	9	4) 田					
I.D. NUMBER	NUMBER	WATER			·			l ^{tt}	ا . ا		$\ \ $		1 1	*			 	L],	<u>. </u> -	비.	て	X	9					
		≸	8	WASTE	[₹		ğ	川	FIN	12			호	1.8C	HNOS	띯	Š	MO	MTH	D/	ĮY.	YE	ΑĦ		7	IME	=	Ę];	\geq	<u>B1</u>	Σ					
<u> </u>	MW-1.	M		1	1	工	17	·Τ	上	Ľ	廿	ナ				¥	灭	D	<i>H</i>	7	Ŧ	C	j	╀	T2	13	10		+	1	,	,	$\frac{1}{\sqrt{1}}$	4	_	_	<u> </u> _	L
	M N - 2	##	-	-	+	+	11	\prod	\Box'		\prod	I	\prod	\Box				Ť			1		- <u>-</u> -	片	12	ぱ	0	, 1 4	#	+	╁	╫	7	+	╀	+	 	Ł
	MW-3 MW-H	#+	+	+	+	+	+	#	#	 -	++	4	4	4		7			П	\Box	1		I		2	0	tc) (Î	打	-	#	+ -	+	+	十	+-	 	\vdash
	MW-5		, —	+	+	+	+	#	1-1	-	+	+	+	\dashv		\mathcal{H}	-	H		+	4	4		1	1	12	0	U				廿	士	士	士	1	一	-
-	m w-6	四	丁	工	工	土	\bot	世				+	廿	7	-	\downarrow	4	#	+	#	ψ	#	+	1.	5 1L	무	0	Ç,	4		4	4	7	7	T		匚	上
	M-10-	1-1	—	4		<u>I</u> .				\Box	口	1	丁	I				门		7	7	Ť		/	生	+	+	4	4	+	+	+	+	+	igapha	\vdash	 -	L
		H	+	+	+	+-	1-	+'	1	\vdash		4	4	4	1	1				丁	口	口					上	士	+	+	+	+	十	十	 -	H		-
		片	#	十	+	+	1	\vdash	 		+	#	+	4	4	4		$\vdash \vdash$	4	4	4	_	_		•		L		L	I	I	工	I	士	<u> </u>	$ \cdot $		-
	Preservation Correct?	口	士	士	#	 -		Ri	cei	/ed	1	(Tr	nte	+	十	-	H		+	+	十		-	\dashv	 '	 	Ļ	1	1	1	1	1	I	I		口		_
<u> </u>	Yes D No D N/			I		0	PY	ola		IA	nbien	4	棋	int	इट्य	+	H	+	+	+	+	+	+	\dashv		\vdash	 -	\vdash	╀	+	+	+	+	+		\sqcup		_
·		<u> </u>	-			•						-		ينخز	يند	لنادد			-										<u>Ļ</u>	1_		上			ليلا			- ,
	CHAIN OF	F CI	JST	ימס	Y RI	ECC)AD		-		—						T	CON	MEN	UTB	- N	<u>~</u>						-										
RELEASED BY: (Signal	ature) DATE/1				EIVE				ture)		4/	$\overline{\mathcal{T}}$	DA'	TE/	TIM	=	1	0	TD	H _C	L	υ ν	~` ~`	44	_	S-	il	ИC	α	α	ol	, · (c Á	ee	20 _{AC}	1 1:	/	1
Marin	H127/01 /	1629					> ييور	<	Ż	;	4	37	Zo	/				_	• 1	" -	7					-	' -	• -	~_	Q	(,	- (~~	, C	\ v	4	,
RELEASED BY: (Signat	ture) - DATE/T				EIVE			<u>کالا</u> سیار	\geq	<u>=</u>	\preceq	=	7		16 TIM		 		Washington and American						•													
				179			to form	∯i res.	ردهن				Ung		i livu	2			100 V**																			
RELEASED BY: (Signat	iture) DATE/T	TIME	十	REC	EIVE	ים מי	V. /Q/						247	ᆣ			Ļ		<u> </u>							•												
				Niv.	ži y	יים ע	; (or	A Selection	Hej.			L	ЭAI	E,	TIME	Ξ		1		11.7	1	S	- 	.	177	fa	ne		۲,		1	4.	4	s, l	 -			-
RELEASED BY: (Signati	hire) DATE/TI	UME	十	DEC.	EIVE				1				~		·				Ŋ	UI		17	i - 1	ZU)	94	86 1.	. Sui	ta 2	102.	Oak	-	-		2004	.nc	•		
		Tit bear	.	1Ev.	4 A Feb	7 D 1,	. (on	#FREEL.	теј			D	JAT	E/°	TIME	=	l	1			m i			AL D)iabi	lo B	livd.	467 86	- F e. Z	FAX:	: (61 efs	10) 2 sveti	268-C	7607 2137 :A 94				
														1			L		Î					. (925) 20	9-71	160	- (925)	201	9-70	70	W =>	545			

Gasoline by GC/FID CA LUFT Lab #: Client: 2250 TELEGRAPH EPA 5030 151700 Location: Subsurface Consultants Prep: Project#: STANDARD Analysis: EPA 8015M 63352 04/27/01 04/27/01 Matrix: Water Batch#: Units: ug/L Sampled: Diln Fac: 1.000 Received:

'ield ID: `ype:

MW-1

SAMPLE

Lab ID: Analyzed: 151700-001 05/01/01

Analyte Result Gasoline C7-C12 160 50

Surrogate Limits Trifluorotoluene (FID) 111 59-135 109 60-140 Bromofluorobenzene (FID)

'ield ID: 'ype:

MW-2

SAMPLE

Lab ID:

151700-002

Analyzed: 05/02/01

Analyte		Result	RL
Gasoline C7-C12	NI)	50
Surrogate	*REC	Limits	
Trifluorotoluene (FID)	106	59-135	
Bromofluorobenzene (FID)	109	60-140	

'ield ID:

lype:

MW - 3 SAMPLE

Lab ID: Analyzed: 151700-003

05/02/01

Gasoline C7-C12	ND	50	*
Surrogate	%REC Limi	ts	
Trifluorotoluono (PID)	302 E0 1	25	

Surrogate	%REC	Limits		
Trifluorotoluene (FID)	103	59-135		
Bromofluorobenzene (FID)	106	60-140		

ield ID:

lype:

MW-4

SAMPLE

Lab ID: Analyzed: 151700-004 05/02/01

Analyte		Result	RL
Gasoline C7-C12		1,900	50
Surrogate	%REC	Limits	
Trifluorotoluene (FID)	172 *	59-135	
Bromofluorobenzene (FID)	134	60-140	

^{*=} Value outside of QC limits; see narrative ID= Not Detected L= Reporting Limit Page 1 of 2

Chromatogram

Chromatogram

Gasoline by GC/FID CA LUFT Lab #: 151700 2250 TELEGRAPH Location: Subsurface Consultants Prep: Analysis: EPA 5030 EPA 8015M Client: Project#: STANDARD Matrix: Water Batch#: 63352 ug/L 1.000 04/27/01 04/27/01 Units: Sampled: <u>Diln Fac:</u> Received:

Field ID: Type:

MW-5

SAMPLE

Lab ID: Analyzed: 151700-005 05/02/01

Analyte Result Gasoline C7-C12 ND

Surrogate Trifluorotoluene (FID) Limits 59-135 %REC 102 Bromofluorobenzene (FID) 106 60-140

Field ID:

Type:

MW-6 SAMPLE Lab ID:

151700-006

Analyzed:

05/02/01

Analyte		Result	RL	
Gasoline C7-C12		1,600	50	
Surrogate	%REC	Limits		
Trifluorotoluene (FID)	144 *	59-135		
Bromofluorobenzene (FID)	134	60-140		
			• • • • • • • • • • • • • • • • • • • •	

уре:

Lāb ID:

BLANK QC144412 Analyzed:

05/01/01

	Lab Ib.	X			
	Analy	te	Result	RL	
Γ	Gasoline C7-C12	NI		50	
	S(Tempro)e	ate %REC	Limita		
Ţ	Trifluorotoluene	(FID) 106	59-135		
L	Bromofluorobenze	ne (FID) 106	60-140		
_					

RL= Reporting Limit Page 2 of 2

^{*=} Value outside of QC limits; see narrative
ND= Not Detected

Chromatogram

Chromatogram

	Benzene, Toluene,	Ethylbenzene,	Xylenes
Lab #:	151700	Location:	2250 TELEGRAPH
Client:	Subsurface Consultants	Prep:	EPA 5030
Project#:	STANDARD	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	63352
Units:	ug/L	Sampled:	04/27/01
Diln Fac:	1.000	Received:	04/27/01

Field ID: Гуре:

MW-1 SAMPLE Lab ID: Analyzed:

151700-001 05/01/01

Analyte	Result	RL
MTBE	ND	2.0
Benzene	3.3	0.50
Toluene	ND	0.50
Ethylbenzene	0.86	0.50
m,p-Xylenes	ND	0.50
o-Xvlene	ND	n 50

Surrogate	9 R I	C Limits	
Trifluorotoluene (PID)	84	56-142	·
Bromofluorobenzene (PID)	91	55-149	

Field ID: Type:

MW-2 SAMPLE Lab ID: Analyzed:

151700-002 05/02/01

Kersin (e ND ND MTBE 2.0 0.50 Benzene Toluene ND 0.50 Ethylbenzene ND0.50 m,p-Xylenes o-Xylene ND 0.50 ND 0.50

Surrogate	%REC		
Trifluorotoluene (PID)	80	56-142	
Bromofluorobenzene (PID)	88	55-149	

Field ID: Type:

MW-3

SAMPLE

Lab ID: Analyzed:

151700-003 05/02/01

Analyte	Result	RL
MTBE	ND	2.0
Benzene	ND	0.50
Toluene	ND	0.50
Ethylbenzene	ND	0.50
m,p-Xylenes	ND	0.50
o~Xylene	ND	0.50

Trifluorotoluene (PID) 81 56-142 Bromofluorobenzene (PID) 86 55-149	Succepta	%RE	C Limits
	Trifluorotoluene (PID)	81	56-142
		86	55-149

C= Presence confirmed, but confirmation concentration differed by more than a factor of two ND= Not Detected RL= Reporting Limit Page 1 of 3

	Benzene, Toluene, I	Sthylbenzene, X	ylenes
Lab #:	151700	Location:	2250 TELEGRAPH
Client:	Subsurface Consultants	Prep:	EPA 5030
Project#:	STANDARD	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	63352
Units:	ug/L	Sampled:	04/27/01
Diln Fac:	1.000	Received:	04/27/01

Field ID: Type:

MW-4 SAMPLE Lab ID: Analyzed: 151700-004 05/02/01

Result MTBE 2.0 0.50 NDBenzene Toluene ND 0.50 ND Ethylbenzene m,p-Xylenes o-Xylene ND

SREC Limits Surrogate Trifluorotoluene (PID) 109 56-142 Bromofluorobenzene (PID) 93 55-149

ND

Field ID: ľype:

MW-5 SAMPLE Lab ID:

151700-005

0.50

Analyzed: 05/02/01

Analyte	Result	RL
MTBE	ND	2.0
Benzene	ND	0.50
Toluene	ND	0.50
Ethylbenzene	ND	0.50
m,p-Xylenes	ND	0.50
o-Xylene	ND	0.50

	200000000000000000000000000000000000000	C Limits
Trifluorotoluene (PID)	82	56-142
Bromofluorobenzene (PID)	87	55-149

Field ID: Гуре:

MW-6 SAMPLE Lab ID: Analyzed: 151700-006 05/02/01

Analyte	Result	RL	
MTBE	3.3 C	2.0	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xvlene	ND	0.50	

Surrogate	%RE	C Limits		
Trifluorotoluene (PID)	99	56-142		
Bromofluorobenzene (PID)	108	55 -14 9	 	

C= Presence confirmed, but confirmation concentration differed by more than a factor of two ND= Not Detected RL= Reporting Limit Page 2 of 3

	Benzene, Toluene,	Ethylbenzene,	Xylenes
Lab #:	151700	Location:	2250 TELEGRAPH
Client:	Subsurface Consultants	Prep:	EPA 5030
Project#:	STANDARD	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	63352
Units:	ug/L	Sampled:	04/27/01
Diln Fac:	1.000	Received:	04/27/01

lype: Lab ID: BLANK QC144412 Analyzed:

05/01/01

Analyte	Result	RL	
MTBE	ND	2.0	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
<u>o-Xylene</u>	ND	0.50	j

Surrogate	9 R	SC Limits
Trifluorotoluene (PID)	84	56-142
Bromofluorobenzene (PID)	86	55-149

	Gasoline by	GC/FID CA LUFT	
Lab #:	151700	Location:	2250 TELEGRAPH
Client:	Subsurface Consultants	Prep:	EPA 5030
Project#:	STANDARD	Analysis:	EPA 8015M
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC144410	Batch#:	63352
Matrix:	Water	Analyzed:	05/01/01
Units:	ug/L	=.	·

Gasoline C7-C12	2,000	1,902	95	73-121	
Surrogate	%RBC Limits				

	Surrogate	*re	C Limits			
٦	Trifluorotoluene (FID)	120	59-135	*		
_	Bromofluorobenzene (FII) 114	60-140		-	

	Benzene, Toluene,	Ethylbenzene,	Xylenes
Lab #:	151700	Location:	2250 TELEGRAPH
Client:	Subsurface Consultants	Prep:	EPA 5030
Project#:	STANDARD	Analysis:	EPA 8021B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC144411	Batch#:	63352
Matrix:	Water	Analyzed:	05/01/01
Units:	ug/L		

MTBE 20.00 19.15 96 51-125 Benzene 20.00 20.37 102 67-117 Toluene 20.00 20.18 101 69-117 Ethylbenzene 20.00 21.17 106 68-124 m,p-Xylenes 40.00 43.04 108 70-125 o-Xylene 20.00 21.56 108 65-129	Analyte	Spiked	Result	%REC	Limits	
Toluene 20.00 20.18 101 69-117 Ethylbenzene 20.00 21.17 106 68-124 m,p-Xylenes 40.00 43.04 108 70-125	MTBE	20.00	19.15	96	51-125	
Ethylbenzene 20.00 21.17 106 68-124 m,p-Xylenes 40.00 43.04 108 70-125	Benzene	20.00	20.37	102	67-117	
m,p-Xylenes 40.00 43.04 108 70-125	Toluene	20.00	20.18	101	69-117	
, p 1 20100	Ethylbenzene	20.00	21.17	106.	68-124	
o-Xylene 20.00 21.56 108 65-129	m,p-Xylenes	40.00	43.04	108	70-125	
	o-Xylene	20.00	21.56	108	65-129	

Surrogate	%REC	Limits
Trifluorotoluene (PID)	85	56-142
Bromofluorobenzene (PID)	90	55-149

	Gasoline b	y GC/FID CA LU	IFT
Lab #:	151700	Location:	2250 TELEGRAPH
Client:	Subsurface Consultants	Prep:	EPA 5030
Project#:	STANDARD	Analysis:	EPA 8015M
Field ID:	ZZZZZZZZZ	Batch#:	63352
MSS Lab ID:	151703-011	Sampled:	04/27/01
Matrix:	Water	Received:	04/27/01
Units:	ug/L	Analyzed:	05/02/01
Diln Fac:	1.000		

Туре:

MŞ

Lab ID:

QC144413

Analyte	MSS Result	Spiked	Result	%RE(: Limits
Gasoline C7-C12	61.71	2,000	1,828	88	65-131
Sucrepate	ABEC Limits				

Bromofluorobenzene (FID) 117 60-140		112		
Bromofluorobenzene (FID) 117 60-140	Trifluorotoluene (FID)	113	59-135	
	Bromofluorobenzene (FID)	117	60-140	

Type:

MSD

Lab ID:

QC144414

	Analyte		Result	%RE€	Limits	RPD	Lin
Gasoline C	7-C12	2,000	1,804	87	65-131	1	20

Surrogate	%REC	Limits
Trifluorotoluene (FID)	112	59-135
Bromofluorobenzene (FID)	115	60-140

Total Extractable Hydrocarbons Lab #: 151700 Location: 2250 TELEGRAPH Client: Subsurface Consultants EPA 3520 Prep: Project#: EPA 8015M 04/27/01 04/27/01 STANDARD <u>Analysi</u> Matrix: Water Sampled: Units: ug/L Received: Prepared: Analyzed: Diln Fac: 1.000 04/30/01 Batch#: 63334 05/01/01

ield ID:

'ype:

MW - 1

SAMPLE

Lab ID:

151700-001

Cleanup Method: EPA 3630C

Analyte Result Diesel C10-C24 $\overline{\text{ND}}$ 50

> %RBC Limits Surrogate

Hexacosane

78 44-121

'ield ID: 'ype:

MW-2

SAMPLE

Lab ID:

151700-002

Cleanup Method: EPA 3630C

50

Analyte Result Diesel Cl0-C24 ND

Surroqate %REC Limits

Hexacosane 44-121

'ield ID:

MW - 3

SAMPLE

Lab ID:

151700-003

Cleanup Method: EPA 3630C

Analyte Result RL Diesel C10-C24 ND 50

Surrogate

%REC Limits

44-121

'ield ID:

Hexacosane

'ype:

MW-4 SAMPLE

Lab ID:

Cleanup Method: EPA 3630C

Analyte Result RL Diesel Cl0-C24 ND 50

Surrogate %REC Limits

Hexacosane 44-121

'ield ID: 'ype:

MW - 5

SAMPLE

Lab ID:

151700-005

151700-004

Cleanup Method: EPA 3630C

50

Analyte Result RL ND

Diesel C10-C24

Surrogate %REC Limits

Hexacosane

L= Lighter hydrocarbons contributed to the quantitation

Y= Sample exhibits fuel pattern which does not resemble standard

ID= Not Detected

L= Reporting Limit age 1 of 2

Total Extractable Hydrocarbons 2250 TELEGRAPH Lab #: 151700 Location: EPA 3520 EPA 8015M 04/27/01 04/27/01 04/30/01 05/01/01 Prep: Analysis: Client: Subsurface Consultants STANDARD Project#: Sampled: Matrix: Water Units: ug/L Received: 1.000 63334 Prepared: Analyzed: Diln Fac: Batch#:

Field ID: Type:

MW-6

SAMPLE

Lab ID:

151700-006

Cleanup Method: EPA 3630C

Analyte Diesel ClO-C24

Result 440 L Y

44-121

Surrocate

Hexacosane

%REC bimits.

ype: ab ID:

BLANK

QC144336

Cleanup Method: EPA 3630C

Analyte Result RL ND

Diesel C10-C24

50

%REC Limits Surrogate

Hexacosane

78

44-121

L= Lighter hydrocarbons contributed to the quantitation

Y= Sample exhibits fuel pattern which does not resemble standard

D= Not Detected

L= Reporting Limit Page 2 of 2

Chromatogram

Sample Name: 151700-006sg,63334

: G:\GC15\CHB\120B040.RAW FileName

Method : BTEH107.MTH

Start Time : 0.01 min

Scale Factor: 0.0

End Time : 31.91 min

Plot Offset: 16 mV

Sample #: 63334

Date: 05/02/2001 09:40 AM

Time of Injection: 05/01/2001 10:40 PM

Low Point : 16.07 mV High Point : 388.78 mV

Page 1 of 1

Plot Scale: 372.7 mV

ample Name : ccv,01ws0904,dsl

: G:\GC11\CHA\120A002.RAW <u>l</u>eName

: ATEH097.MTH hod

: 0,01 min rt Time

Plot Offset: 38 mV

End Time : 31.91 min Sample #: 500mg/L

Date: 4/30/01 12:25 PM

Time of Injection: 4/30/01 11:49 AM

Plot Scale: 323.8 mV

Page 1 of 1

Total Extractable Hydrocarbons Lab #: 151700 2250 TELEGRAPH Location: Client: Subsurface Consultants EPA 3520 Prep: Project#: STANDARD Analysis: EPA 8015M Matrix: Water Batch#: 63334 Units: ug/L 04/30/01 Prepared: Diln Fac: 1.000 Analyzed: 05/01/01

ype: ab ID: BS

QC144337

Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,339	1,500	64	45-110

Surrogate %REC Limits Hexacosane

ype:

BSD

ab ID: QC144338 Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%rec	Limits	RPD	Lim
Diesel C10-C24	2,339	1,543	66	45-110	3	22

Surro	gate %	EC Limits		
Hexacosane	76	44-121		_

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

Subsurface Consultants 3736 Mt. Diablo Blvd. Suite 200 Lafayette, CA 94549

Date: 22-MAY-01 Lab Job Number: 151820

Project ID: N/A

Location: 2250 TELEGRAPH

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Project Manage

Reviewed by:

perations Manager

This package may be reproduced only in its entirety.

CA ELAP # 1459

Laboratory Number: 151820

Order Date: 04/27/01

Client: Subsurface Consultants, Inc.

Project Name: 2250 Telegraph

CASE NARRATIVE

This hardcopy data package contains sample results and batch QC results for three water samples ordered from the above referenced project. The samples were received cold and intact.

These samples were analyzed to confirm results obtained from C&T login number 151700. Results for the volatile constituents confirmed the original results, however, the extractables produced different results from the original. Further investigation confirmed that the two bottles submitted for analysis had different levels of extractable hydrocarbons.

Total Volatile Hydrocarbons: No analytical problems were encountered.

BTXE: No analytical problems were encountered.

Total Extractable Hydrocarbons: No analytical problems were encountered.

CURTIS & TOMPKINS, LTD. BERKELEY

LOGIN CHANGE FORM

Reason for change:	<i>N</i> :	_Client Request:	By: E.	Silverman	Date/Time:_	5/4/01	2:30P	nitials: SES
•		_Login Review _		_ Data Review		1 7		

Current Lab ID	Previous Lab ID	Client ID	Matrix	Add/Cancel	Analysis	Duedate
151820 - 001	151700-003	MW-3	Water	Add	TV4, TEH	5/11/01
- 002	-004	MW-4		1	TEH, BTXE	
-003	-006	MW-6	d	1	BTXE	9
				Constitution of		
				1		

Subject: Login 151700

Date: Fri, 04 May 2001 14:18:13 -0700

From: "Emily Silverman" <esilverman@subsurfaceconsultants.com>

To: <steve@ctberk.com>

Hi Steve -

As discussed please reanalyze MW-3 for TVHg and TEHd, MW-4 for TEHd and BTEX, and MW-6 for BTEX. Please use silica gel cleanup for the extractables.

Thanks very much.

Emily Silverman Subsurface Consultants, Inc.

tel: 925.299.7960 fax: 925.299.7970

e-mail: esilverman@subsurfaceconsultants.com

	Gasoline l	oy GC/FID CA LU	FT
Lab #:	151820	Location:	2250 TELEGRAPH
Client:	Subsurface Consultants	Prep:	EPA 5030
Project#:	STANDARD	Analysis:	EPA 8015M
Field ID:	MW-3	Batch#:	63452
Matrix:	Water	Sampled:	04/27/01
Units:	ug/L	Received:	04/27/01
Diln Fac:	1.000	Analyzed:	05/05/01

Type:

SAMPLE

Lab ID:

151820-001

Analyte		Result	RL
Gasoline C7-C12	NE		50
Surrogate	erec	Limits	
Trifluorotoluene (FID)	102	59-135	
Bromofluorobenzene (FID)	105	60-140	

Type:

BLANK

Lab ID:

QC144763

		Analyte		Result	RL
	Gasoline	C7-C12	NI	1	50
ı					
		Surrogate	*REC	Limits	
	Trifluoro	toluene (FID)	104	59-135	
	Bromofluo	robenzene (FI	D) 105	60-140	
			•		

	Benzene, Toluene,	Ethylbenzene,	Xylenes	
Lab #:	151820	Location:	2250 TELEGRAPH	٦
Client:	Subsurface Consultants	Prep:	EPA 5030	
Project#: Matrix:	STANDARD Water	Analysis:	EPA 8021B	4
Units:	ug/L	Sampled: Received:	04/27/01	1
Diln Fac:	1.000	Analyzed:	05/05/01	
Batch#:	63452		· ·	

Field ID: Type:

MW-4

SAMPLE

Lab ID:

151820-002

Analyte	Result	RI
MTBE	13	2.0
Benzene	ND	0.50
Toluene	ND	0.50
Ethylbenzene	ND	0.50
m,p-Xylenes	ND	0.50
o-Xylene	ND	0.50

Surrogate	*REC	Limits	
Trifluorotoluene (PID)	108	56-142	
Bromofluorobenzene (PID)	95	55-149	

Field ID: Type:

MW-6

SAMPLE

Lab ID:

151820-003

Analyte	Result	RL	
MTBE	3.3 C	2.0	
Benzene	ND	0.50	i
Toluene	ND	0.50	į
Ethylbenzene	ND	0.50	1
m,p-Xylenes	ND	0.50	į
o-Xylene	ND	0.50	

Surrogate	%R	RC Limits	
Trifluorotoluene (PID)	97	56-1 4 2	
Bromofluorobenzene (PID)	94	55-149	

Type:

BLANK

Lab ID:

QC144763

Analyte	Result	RL	
MTBE	ND	2.0	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

	Surrogate	450		
	Trifluorotoluene (PID)	84	56-142	
	Bromofluorobenzene (PID)	85	55-149	
1				

C= Presence confirmed, but confirmation concentration differed by more than a factor of two ND= Not Detected RL= Reporting Limit Page 1 of 1 $\,$

	Benzene, Toluene, I	Ethylbenzene, X	ylenes
Lab #:	151820	Location:	2250 TELEGRAPH
Client:	Subsurface Consultants	Prep:	EPA 5030
Project#:	STANDARD	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	63452
Units:	ug/L	Analyzed:	05/06/01
Diln Fac:	1.000		

Type:

BS

Lab ID:

QC144767

Analyte	Spiked	Result	*REC	Limits
MTBE	20.00	19.46	97	51-125
Benzene	20.00	21.13	106	67-117
Toluene	20.00	20.18	101	69-117
Ethylbenzene	20.00	20.94	105	68-124
m,p-Xylenes	40.00	43.38	108	70-125
o-Xylene	20.00	22.21	111	65-129

Surrogate	8R)	SC Limits
Trifluorotoluene (PID)	80	56-142
Bromofluorobenzene (PID)	84	55-149

Type:

BSD

Lab ID:

QC144768

Analyte	Spiked	Result	4REC	Limita	RPD	Lim
MTBE	20.00	19.69	98	51-125	1	20
Benzene	20.00	20.92	105	67-117	1	20
Toluene	20.00	20.57	103	69-117	2	20
Ethylbenzene	20.00	20.93	105	68-124	0	20
m,p-Xylenes	40.00	42.91	107	70-125	1	20
o-Xylene	20.00	22.49	112	65-129	1	20

Surrogate	%RE(Limits
Trifluorotoluene (PID)	81	56-142
Bromofluorobenzene (PID)	85	55-149

	Gasoline l	y GC/FID CA LU	IFT
Lab #:	151820	Location:	2250 TELEGRAPH
Client:	Subsurface Consultants	Prep:	EPA 5030
Project#:	STANDARD	Analysis:	EPA 8015M
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC144764	Batch#:	63452
Matrix:	Water	Analyzed:	05/05/01
Units:	ug/L	-	

	Spiked	Result	%REC	Limits	
Gasoline C7-C12	2,000	2,028	101	73-121	

Surrogat	e	%RBC	Limits	
	FID)	119	59-135]
Bromofluorobenzene	(FID)	112	60-140	1

	Gasoline by	y GC/FID CA LU	FFT
Lab #:	151820	Location:	2250 TELEGRAPH
Client:	Subsurface Consultants	Prep:	EPA 5030
Project#:	STANDARD	Analysis:	EPA 8015M
Field ID:	ZZZZZZZZZ	Batch#:	63452
MSS Lab ID:	151817-009	Sampled:	05/04/01
Matrix:	Water	Received:	05/04/01
Units:	ug/L	Analyzed:	05/05/01
Diln Fac:	1.000	•	

MS

Lab ID:

QC144765

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	<24.00	2,000	2,000	100	65-131
Surrogate	%REC Limits				

Surrogate	%REC	Limits
Trifluorotoluene (FID)	116	59-135
Bromofluorobenzene (FID)	112	60-140

MSD

Lab ID:

QC144766

Gasorine C7-C12			<u>∠,</u> 000	 ,00/	94	02-T2T	9	20
·								
Surroga	ıte	%REC	Limite					
Trifluorotoluene	(FID)	115	59-135					

Surrogate	*REC	Limite	
Trifluorotoluene (FID)	115	59-135	
Bromofluorobenzene (FID)	111	60-140	

Total Extractable Hydrocarbons

Lab #: 151820 Client: Subsurface Consultants

STANDARD

Matrix: Water Units: ug/L Diln Fac 1,000

Location:

2250 TELEGRAPH EPA 3520

Prep:

EPA 8015M 04/27/01 04/27/01

Analysis: Sampled:

Received:

ield ID:

Project#

ype: āb ID: MW - 3SAMPLE

151820-001

Prepared: Analyzed: 05/04/01

Cleanup Method:

05/08/01 EPA 3630C

atch#: 63446

Analyte Diesel C10-C24

Result

690 H L

44-121

RL 50

Surrogate Hexacosane

%REC Limits

120

ield ID:

ype: āb ID: MW-4

151820-002

SAMPLE

Prepared:

05/09/01

Analyzed:

Cleanup Method:

05/11/01 EPA 3630C

atch#: 63539

Surrogate

Analyte

Result...

710 H L

50

Diesel C10-C24

Hexacosane

Limits 84 44-121

ype:

ab ID: atch#: QC144740

BLANK 63446

Prepared:

Cleanup Method:

05/04/01

Analyzed:

05/08/01 EPA 3630C

Analyte

Result ND

RL

Diesel C10-C24

50

Surrogate

%REC Limits

Hexacosane

44-121

ype: ab ID: atch#:

BLANK

OC145075

Prepared:

05/09/01

Analyzed:

05/10/01

Cleanup Method:

EPA 3630C

63539

Result

RL

Diesel C10-C24

Analyte

ND

Surrogate

%REC

Hexacosane

76

Limits 44-121

 $\mbox{\sc H=}$ Heavier hydrocarbons contributed to the quantitation $\mbox{\sc L=}$ Lighter hydrocarbons contributed to the quantitation

D= Not Detected

L= Reporting Limit 'age 1 of 1

Chromatogram

Sample Name : 151820-001sg,63446

: G:\GC11\CHA\126A054.RAW

: ATEH097.MTH Method

Start Time : 0.01 min

End Time : 31.91 min

Sample #: 63446 Date : 5/8/01 04:10 PM

Time of Injection: 5/8/01 02:50 PM

Low Point: 37.38 mV

High Point: 251.03 mV

Page 1 of 1

Chromatogram

Sample Name : 151820-002sg,63539
FileName : G:\GC11\CHA\130A014.RAW

1ethod : ATEH097.MTH

Start Time : 0.01 min Scale Factor:

End Time : 31.91 min Plot Offset: 44 mV

Sample #: 63539 Date : 5/11/01 09:41 AM

12:36 AM

Time of Injection: 5/11/01 Low Point: 43.97 mV Plot Scale: 252.0 mV High Point: 296.01 mV

Page 1 of 1

Total Extractable Hydrocarbons Lab #: 151820 Location: 2250 TELEGRAPH Client: Subsurface Consultants Prep: EPA 3520 Project#: STANDARD Analysis: EPA 8015M Matrix: Water Batch#: 63446 Units: ug/L Prepared: 05/04/01 Diln Fac: 1.000 Analyzed: 05/08/01

ype:

BS

ab ID:

QC144741

Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%REC	Limits	88.4
Diesel C10-C24	2,500	1,978	79	45-110	

Surrogate %REC Limits Hexacosane 44-121

ype:

BSD

ab ID: QC144742 Cleanup Method: EPA 3630C

Analyte S	7-10-914	Result		Limits	KYL	LIM
Diesel C10-C24	,500	2,106	84	45-110	6	22

Surrogate %REC Limits Hexacosane 93 44-121

Total Extractable Hydrocarbons Lab #: 151820 Location: 2250 TELEGRAPH Client: Subsurface Consultants Prep: EPA 3520 Project#: STANDARD Analysis: EPA 8015M Matrix: Water Batch#: 63539 Units: ug/L Prepared: 05/09/01 Diln Fac: 1.000 Analyzed: 05/10/01

ype:

BŞ

Lab ID:

QC145076

Cleanup Method: EPA 3630C

Analyte	Spiked		%REC	' Limits	
Diesel C10-C24	2,339	1,495	64	45-110	

Surrogate %REC Limits Hexacosane 44-121

Туре:

Lab ID:

BSD

QC145077

Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%RE(Limits	RPD	Lim
Diesel C10-C24	2,339	1,529	65	45-110	2	22

Surrogate	%REC Limits					

Hexacosane

44-121

Winston H. Hickox
Secretary for
Environmental
Protection

State Water Resources Control Board

Division of Clean Water Programs

1001 I Street, Sacramento, California 95814
P.O. Box 944212, Sacramento, California 94244-2120
(916) 341-5650 ◆ FAX (916) 341-5808 ◆ www.swrcb.ca.gov

The energy challenge facing California is real. Every Californian needs to take immediate action to reduce energy consumption.

For a list of simple ways you can reduce demand and cut your energy costs, see our website at www.swrcb.ca.gov.

TO: All Interested Parties - Underground Storage Tanks (USTs)

NEW REGULATORY REQUIREMENT FOR ELECTRONIC SUBMITTAL OF LABORATORY DATA TO THE STATE GEOTRACKER INTERNET DATABASE

This letter is to inform interested parties of new requirements for submission of electronic laboratory data for Underground Storage Tank Program reports effective September 1, 2001. These requirements are contained in emergency regulations (CCR Title 23, Chapter 16, Article 12) recently adopted by the State Water Resources Control Board (Board). The Board adopted these regulations to implement Assembly Bill 2886 (Chapter 727, Statutes of 2000, "AB 2886"). The regulations and other background information are available on the Internet by going to http://geotracker.swrcb.ca.gov and clicking on "AB 2886".

The emergency regulations (Water Code Sections 13195-13198) require persons to ensure electronic submission of laboratory data (i.e. soil or water chemical analysis) and locational data (i.e. location and elevation of groundwater monitoring wells), via the Internet to the SWRCB's GeoTracker database. Persons currently provide these data in paper format to the lead regulatory agency [Regional Water Quality Control Board or local agency]. The pre-existing requirement for paper reports that include the laboratory and locational data covered in the emergency regulations will not change. However, as of **September 1, 2001**, persons must also ensure electronic submittal of laboratory analytical reports to GeoTracker in the Electronic Deliverable Format (EDF) specified in the emergency regulations, as described below. For eligible sites, the Underground Storage Tank Cleanup Fund will cover the additional costs incurred by claimants for electronic submission of laboratory and locational data, to the extent these costs are reasonable and necessary.

EDF is a data dictionary that enables laboratories to produce data of known quality in a standardized format that can be transmitted electronically. EDF data is essentially an electronic version of analytical test results and quality assurance information that laboratories send to their clients, who may use the data for site characterization or compliance monitoring. Following data interpretation and review, the data must be submitted in the EDF format. We expect that most laboratories will modify their Laboratory Information Management System (LIMS) or other reporting format to conform to the EDF format.

To support the implementation of electronic reporting, we will conduct training workshops for interested parties (see enclosed training schedule). We will also notify those persons who are on the Underground Storage Tank Program's Interested Parties' list regarding the workshops. These workshops will be conducted at different locations throughout the state beginning in July, 2001. For laboratory personnel, we will offer comprehensive training on Days 3-5. Since training

California Environmental Protection Agency

capacity on Days 3-5 of the five-day training is limited, only one representative at most from each laboratory will be able to sign up for these three-day sessions. This representative will be introduced to the COELT (Corps of Engineers Loading Tools) software and its downloading, EDF format, and the Electronic Data Consistency Checker (EDCC) or error-checking program. Other representatives from laboratories are welcome to attend Day 1 or Day 2 (same material repeated each day) of the five-day training, which will concentrate on the new regulations and the GeoTracker database. To sign up for the workshops online through the SWRCB website go to http://www.swrcb.ca.gov/cwphome/ust/docs/ab2886/register.html.

If you have any questions or comments regarding this new reporting requirement, please call Mr. Hamid Foolad at (916) 341-5791 or Mrs. Terry Brazell at (916) 341-5645. After July 5, 2001, Mr. Michael Gjerde, the primary contact for the AB 2886 emergency regulations, will be available at (916) 341-5682.

Sincerely,

Elizabeth L. Haven, Manager

Underground Storage Tank Program

Elizabet L. Haven

Enclosure

cc: Regional Water Quality Control Boards

Local Oversight Program Agencies

Local Agencies

Western States Petroleum Association

California Independent Oil Marketers Association

Mr. Ryan Hill, Santa Barbara County, CUPA UST Liaison

AB2886 Frequently Asked Questions

- Who will submit electronic compliance data to the SWRCB?
- 2. Why was EDF chosen as a standard for the SWRCB for reporting of analytical laboratory data?
- 3. How does EDF work?
- 4. What is the latest version of EDF?
- 5. How will analytical laboratories produce EDF?
- 6. How would Responsible Parties (RPs) or their agents submit EDF to GeoTracker?
- 7. Who will authorize the final movement of data into GeoTracker?
- 8. How will agencies download EDF Lab data from GeoTracker?
- 9. Can agencies load the EDF data into their own custom databases?
- 10. How much will it cost analytical Labs to produce electronic data in the EDF format?
- 11. How much will it cost for RPs to implement EDF reporting?
- 12. Who will support and provide training for EDF data Transfer?

Contact us with comments or questions to add to the FAQs.

1. Who will submit electronic compliance data to the SWRCB?

AB2886 (Water Code Sections 13195-13198) requires responsible parties (RPs) to electronically submit compliance data, such as soil or water chemistry analysis, location, and elevation data to the SWRCB Geographical Environmental Information Management System (GeoTracker). This data is currently reported in paper format in site investigations and quarterly monitoring reports. By September 1, 2001 the laboratory analytical data from all LUST sites will be required to be electronically reported to GeoTracker. After January 1, 2002, location data and well data related to elevation (i.e. depth to water) will also need to be electronically reported.

Back to Top

2. Why was EDF chosen as a standard for the SWRCB for reporting of analytical laboratory data?

There are many examples of electronic data delivery or reporting formats produced by analytical laboratories in California and nation-wide. A wide variety of custom, government derived, and commercial formats are currently utilized. A format developed by the Army Corp of Engineers, Electronic Deliverable Format (EDF/COELT), was chosen as a primary standard reporting format for the SWRCB GeoTracker system because the GeoTracker advisory committee and the SWRCB desired a reporting format that met the following criteria. No other electronic data deliverable met all of the criteria listed below.

- Presently in-use and produced by commercial laboratories in California
- Well-documented (detailed documentation readily available)
- Non-proprietary, in public domain
- Must have publicly available software tools for producing and verifying the reporting format (software tools must be free-of-charge to the commercial lab or responsible party) – these are available from http://www.swrcb.ca.gov/cwphome/ust/usthmpg.htm
- Use of this reporting format would not cause responsible parties to incur a fee to report data to SWRCB GeoTracker.

Back to Top

3. How does EDF work?

EDF is a data dictionary that provides an instruction set for a laboratory to produce data of a known quality, in a standardized format, that can be transmitted electronically. EDF data is essentially an electronic version of analytical test results that the laboratory sends to their client (responsible party) in standard hard-copy analytical reports. The EDF data is sent to the responsible party, who may use the data for site characterization or monitoring. Following interpretation and review, the responsible party or their agent will submit the electronic EDF data via the Internet to the SWRCB Geographical Environmental Information Management System (GeoTracker). In addition, the responsible party or their agent will continue to send the hard copy site investigation and quarterly monitoring reports to the lead oversight agency.

Back to Top

4. What is the latest version of EDF?

EDF version 1.2i dated April 2001. This is available also from links to the SWRCB tanks web page. http://www.swrcb.ca.gov/cwphome/ust/usthmpg.htm

Back to Top

5. How will analytical laboratories produce EDF?

The labs may produce EDF by two methods: 1) by using their own Laboratory Information Management System (LIMS) system software or 2) using free COELT software (also available from the SWRCB Tanks webpage). In the first case, the laboratory may produce EDF directly from their LIMS without using the additional COELT software. Presently there are several LIMS that currently support and produce the EDF data standard. Laboratories that have a LIMS will download the free EDF documentation and set up translation tables between their LIMS and EDF. These tables will relate the laboratory's nomenclature to EDF's nomenclature. For example, if a laboratory identifies a Field Sample as *CLIENTSAMP*, to convert the data to EDF, the laboratory will need to identify the EDF information field that has the same meaning, which is *SAMPID*. Similarly, the laboratory will need to translate valid values. For example, if the laboratory identifies gasoline as *GAS*, they will need to identify the valid value with the same meaning in the EDF system, which is *GASOLINE*. Once these tables are populated, the LIMS will be programmed to export the translated data out of the system as five relational tables. This export generally can be created using wizard functions provided by the LIMS vendor.

Laboratories that do not have LIMS will need to use a data-loading tool. The EDF data-loading tool is COELT and may be downloaded for free from the SWRCB web site. COELT is somewhat akin to a stripped-down LIMS. Because of its LIMS functions, COELT is a more complicated application than a standard database entry package, and therefore training is recommended.

Once the EDF is produced the laboratory can use a free on-line consistency checking program provided by the SWRCB, to verify that the data format is correct and that logic errors (e.g., sample collection date later than sample analysis date) do not exist within the data. A standalone format consistency-checking program (EDCC) is also available and can be downloaded free from SWRCB and run locally on a desktop machine within the commercial laboratory to verify the EDF data structure.

Back to Top

6. How would Responsible Parties (RPs) or their agents submit EDF to GeoTracker?

The analytical laboratory will forward the EDF file to the responsible party. The responsible party can submit the EDF file to GeoTracker. Given the volume of data that will be received via the LUST program in California, the SWRCB will utilize a web upload GeoTracker tool for submission of EDF data (note that emailing EDF or sending EDF on disk to the SWRCB will NOT be accepted). In this approach, the RP (or their authorized agent) would use a security identification and GeoTracker web upload tools to submit analytical and site data by clicking on a browse or an attach button to choose among files on their local machine. (This is analogous to how one attaches a file to a Yahoo email.)

Back to Top

7. Who will authorize the final movement of data into GeoTracker?

The analytical data will reside within a holding center within GeoTracker until the lead regulatory agency reviews the data and authorizes movement of data into GeoTracker. Once the data is within the holding center, the analytical data is available (read only) to the lead regulatory agency for the site. Once the regulatory agency accepts the data, the data will be displayed and fully available to the public via the GeoTracker system. As was stated in SB 1189 and AB 592 (1997), GeoTracker must collect, store, retrieve, analyze, and display environmental geographic data in a database that is accessible to the public. Therefore, all data will be accessible to the public, RPs and other interested parties, unless it is information that may be already restricted by state law, in which case only those with password authority would have access.

Back to Top

8. How will agencies download EDF Lab data from GeoTracker?

The GeoTracker includes web download tools and query/export functions for regulatory users. Additionally, many of the web reports will be available for download as excel spreadsheets.

Back to Top

9. Can agencies load the EDF data into their own custom databases?

Regulatory users can download GeoTracker analytical data for custom analysis. GeoTracker also offers web-based reports and tools (on-line graphing) to review and analyze analytical data for LUST monitoring wells.

Back to Top

10. How much will it cost analytical Labs to produce electronic data in the EDF format?

Some laboratories in California will not incur any new costs because they already are capable of producing EDF format. For other laboratories with a standard Laboratory Information Management System (LIMS), the cost to the laboratory is no more than one week of a technician's time. Costs are estimated to be up to ~\$2,000.

There are also laboratories that do not have a standard LIMS or a that may not engaged in

any reporting or tracking of electronic laboratory data, therefore, implementation time for producing any type of detailed electronic format can take several months. We do not have an estimate as to how much this might cost, as it will be very lab specific. The cost for these labs to transition to electronic reporting is not a function of EDF, but due to infrastructure costs related to being able to report any data electronically.

Back to Top

11. How much will it cost for RPs to implement EDF reporting?

RPs costs will originate from several sources. First, the laboratory may charge a service fee to produce EDF on a per report basis. This fee may be as much as 5-15 % higher than the laboratory's standard reporting cost. Second, the RPs will need to pay other minor "hidden" costs for the management of meeting EDF regulatory requirements. These costs will include writing and enforcing contract language that meets the EDF regulations. And third, the RPs/consultants will probably wish to engage in some orientation or training. These items are difficult to quantify.

Back to Top

12. Who will support and provide training for EDF data Transfer?

A help desk will be available for EDF and supported by the SWRCB. Additional support will include:

- 1. On-going Help desk support for commercial labs, agencies, and responsible parties.
- 2. On-going security identification and tracking for regulators, responsible parties, and commercial labs.
- Training sessions for commercial laboratories.
- 4. Outreach for all clean-up agencies (Regional Boards, LIAs, and LOPs).
- 5. Training/Outreach for Responsible Parties and Consultants.