

ALCO HAZMAT Pachanana OA 94994 APR - 1 PM 12: 00

March 24, 1994

ENV - STUDIES, SURVEYS & REPORTS 2225 Telegraph Ave., Oakland, California

Mr. Thomas Peacock Alameda County Environmental Health Department 80 Swan Way, Room 200 Oakland, CA 94621

Dear Mr. Peacock:

This letter presents the results of groundwater monitoring and sampling conducted by Blaine Tech Services, Inc. on February 16, 1994, at the site referenced above (See Plate 1, Site Vicinity Map). Based on groundwater elevation measurements, the hydraulic gradient was determined to be approximately 0.02 and the general flow direction to be southeast (See Plate 2, Groundwater Gradient Map). The gradient map has been reviewed by a registered professional. TPHg and benzene concentrations are shown on Plate 3. Tables 1 and 2 list historical groundwater monitoring data and analytical results, respectively.

The certified analytical report, chain-of-custody, field data sheets, and bill of lading are in the Appendix along with Blaine Tech Services' Field Procedures and Protocols Summary.

If you have any questions or comments regarding this site, please call the Texaco Environmental Services' site Project Coordinator, Mr. Robert Robles at (818) 505-2476.

If you have any questions or comments regarding this report, please call Ms. Rebecca Digerness at (510) 236-0479.

Best Regards,

Karen E. Petryna

Engineer

Texaco Environmental Services

R. R. Zielinski Area Supervisor

Texaco Environmental Services

KEP/RBD:rbd

C:\QMR\2225T\1Q94QMR.LET

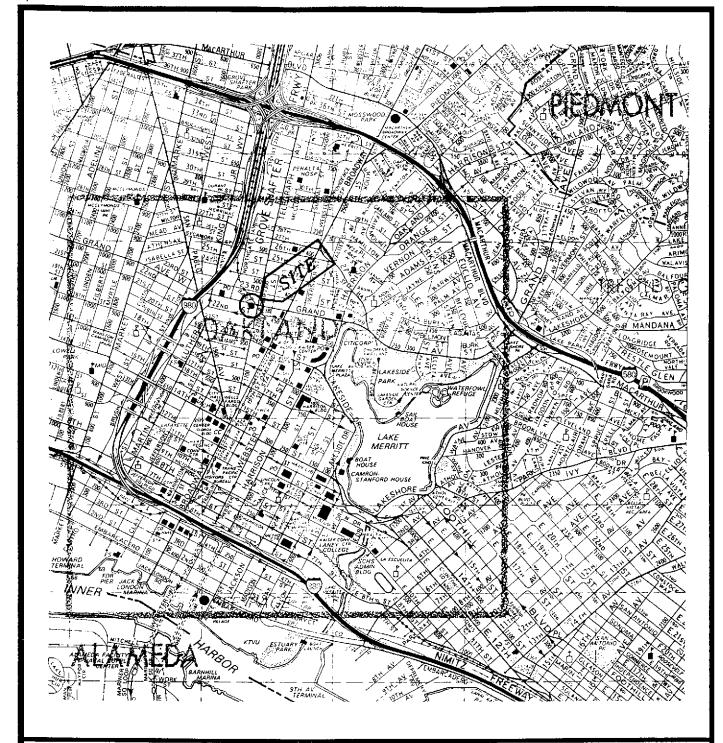
Enclosures

CC:

Mr. Richard Hiett

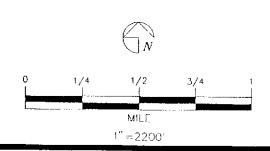
CRWQCB - San Francisco Bay Region

Mr. E. E. Villasenor Exxon Company, USA


RAOFile-UCPFile-RRobles (w/enclosures) RACoughlin-RRZielinski (w/o enclosures)

PR:KEP

GROUNDWATER MONITORING AND SAMPLING First Quarter 1994


at

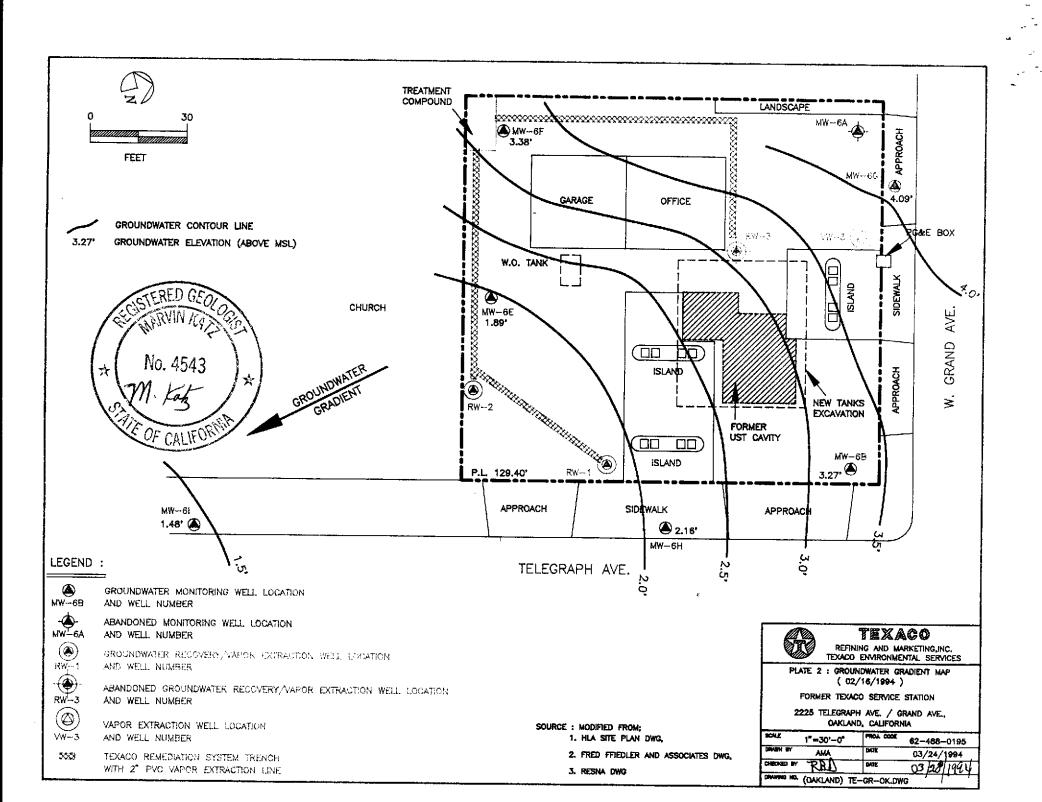
Former Texaco Station 2225 Telegraph Avenue Oakland, California

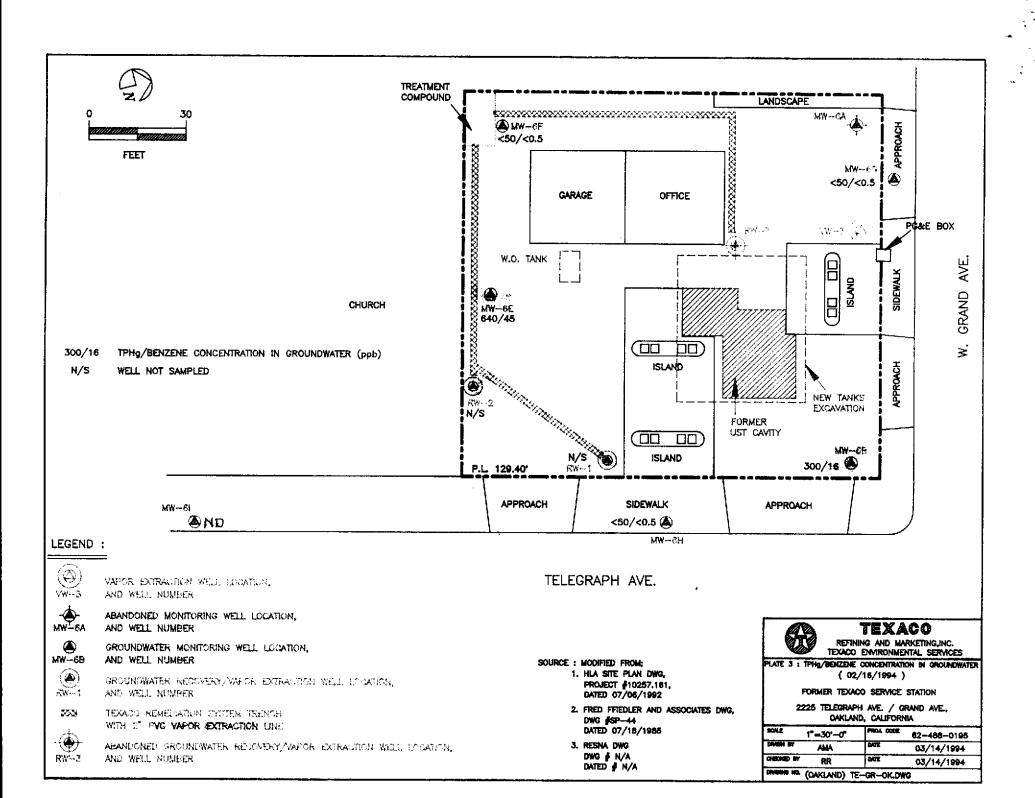
SOURCE.

1993 THE THOMAS GUIDE ALAMEDA COUNTY, PAGE 9 (B3)

TEXACO

REFINING AND MARKETING, INC. TEXACO ENVIRONMENTAL SERVICES


PLATE 1


SITE VICINITY MAP

FORMER TEXACO SERVICE STATION

2225 TELEGRAPH AVE. / GRAND AVE.,

OAKLAND, CALIFORNIA

Texaco Service Station 2225 Telegraph Avenue Oakland, California (Page 1)

Well	Date	Wellhead Elevation	Depth to Water	Groundwater Elevation*	Floating Product
MW-6A					
HLA	12/15/88	98.99*	13.77	85.22	NA
	10/03/89		13.40	85.59	NA
	05/11/90		12.87	86.12	NA NA
	10/16/90		13.27	85.72	NA NA
	12/06/90		13.28	85.71	NA NA
	01/14/91			Monitored	IVA
	02/08/91		12.49	86.50	NA
	04/02/91			Monitored	IVA
	05/07/91		11.94	87.05	NA
	05/31/91			Accessible	IVA
	06/26/91		12.87	86.12	NA
	08/05/91		13.44	85.55	NA NA
	08/14/91		13.47	85.52	NA NA
	09/11/91		13.48	85.51	NA NA
	10/16/91		13.64	85.35	NA NA
	12/30/91			Destroyed	NA
MW-6B					
HLA	12/15/88	98.81*	13.01	85.80	NA
	10/03/89	70.01	12.94	85.87	NA NA
	04/30/90		12.53	86.28	NA NA
	10/16/90		12.73	86.08	NA NA
	12/06/90		12.74	86.07 ₋	NA NA
	01/14/91		12.57	86.24	
	02/08/91		12.16	86.65	NA
	04/02/91		11.50	87.31	NA
	05/07/91		12.02	86.79	NA NA
	05/31/91		12.40	86.41	NA NA
	06/26/91		12.69	86.12	NA NA
	08/05/91		12.95	85.86	NA NA
	08/14/91		12.93	85.88	NA NA
	09/11/91		13.01	85.80	NA NA
	10/16/91		13.09		
	12/30/91		12.62	85.72	NA NA
	02/25/92		11.81	86.19	NA NA
	03/25/92		11.58	87.00 87.23	NA NA
	06/16/92	15.34**	12.54	87.23	NA NA
RESNA	09/08/92	10.04	12.87	2.80 2.47	NA Nama
	11/05/92		12.70		None
	12/14/92			2.64	None
	01/28/93		12.19 11.39	3.15	None
	02/11/93			3.95	None
	03/09/93		11.70 11.70	3.64	None
	04/14/93			3.64 3.47	None
	05/11/93		11.87 12.22	3.47	None
	06/17/93		12.46	3.12	None
	07/26/93			2.88	None
	08/10/93		12.72 12.82	2.58	None
	09/21/93			2.52	None
	10/27/93		13.08	2.26	None
	11/23/93		13.18	2.16	None
			13.07	2.27 NA	None
	12/17/94		NA		NA

Texaco Service Station 2225 Telegraph Avenue Oakland, California (Page 2)

Well	Date	Wellhead Elevation	Depth to Water	Groundwater Elevation*	Floating Product
RW-3 (former	dy MW-6C)				
HLA	12/15/88	99.89*	14.41	85.48	NA
	10/03/89		14.10	85.79	NA NA
	04/30/90		13.81	86.68	NA
	10/16/90	98.97*	13.29	85.68	NA
	01/14/91		14.50	84.47	NA NA
	02/08/91		12.54	86.43	NA
	04/02/91		11.39	87.58	NA NA
	05/07/91		12.47	86.50	- NA
	05/31/91		16.31	82.66	NA
	06/26/91		15.50	83.47	NA.
	08/05/91		13.69	85.28	NA.
	08/13/91		13.67	85.30	NA NA
	09/11/91		13.77	85.20	NA NA
	10/16/91		16.66	82.31	NA.
	11/05/91			Destroyed	****
BW 1/6	() Gu zp.			-	
RW-2 (former HLA	12/15/88	98.78*	13.53	96.06	
	10/03/89	90.76		85.25	NA
	04/30/90		13.44	85.34	NA
	10/16/90	98.11*	13.19 12.77	85.59	NA
	01/14/91	70.11		85.34	NA
	02/08/91			Monitored	3.4.4
	04/02/91		13.11	85.00 -	NA
	05/07/91		11.70	86.41	NA
	05/31/91		14.09	84.02	NA
	06/26/91		16.01	82.10	NA
	08/05/91		14.60	83.51	NA
	08/13/91		14.00	84.11	NA
	09/11/91		21.30	76.81	NA
	10/16/91		19.97	78.14	NA
	12/30/91		15.19	82.92	NA NA
	02/25/92		13.19	84.92	NA
	03/25/92		16.27	81.84 Monitored	NA
	06/16/92	14.61**	12.86		37.4
	09/08/92	17.01		1.75	NA
	11/05/92			Monitored	
	12/14/92			Monitored Monitored	
	01/28/93			Monitored Monitored	
	02/11/93			Monitored	
	03/09/93			Monitored	
	04/14/93			Monitored Monitored	
	05/11/93			Monitored Monitored	
	06/17/93			Monitored Monitored	
	08/10/93				
	09/21/93			Monitored Monitored	
	10/27/93			Monitored Monitored	
	11/23/93			Monitored	
	12/17/93			Monitored	
BLAINE	02/16/94		Liot	ATOTHOLES	

Texaco Service Station 2225 Telegraph Avenue Oakland, California (Page 3)

Well	Date	Wellhead Elevation	Depth to Water	Groundwater Elevation*	Floating Product
MW-6E					
HLA	12/15/88	98.99*	13.84	85.15	NA
	10/03/89		13.70	85.29	NA
	04/30/90		13.43	85.56	NA
	10/16/90		13.77	85.22	NA
	12/06/90		13.95	85.04	NA
	01/14/91		13.95	85.04	NA
	02/08/91		13.20	85.79	NA
	04/02/91		12.28	86.71	. NA
	05/07/91		13.48	85.51	NA
	05/31/91		14.09	84.90	NA
	06/26/91		12.54	86.45	NA
	08/05/91		14.39	84.60	NA
	08/14/91		14.18	84.81	NA
	09/11/91		14.73	84.26	NA
	10/16/91		14.40	84.59	NA
	12/30/91		13.39	85.60	NA
	02/25/92		13.16	85.83	NA
	03/25/92 06/16/92	15.23**	12.15	86.84	NA
RESNA	09/08/92	15.25**	13.54 14.78	1.69	NA
	11/05/92			0.45 Monitored	None
	12/14/92			Monitored	
	01/28/93		11.62	3.61 ₋	None
	02/11/93		12.85	2.38	None
	03/09/93		12.83	2.40	None
	04/14/93			Monitored	
	05/11/93		13.59	1.64	None
	06/17/93		13.74	1.49	None
	07/26/93		14.01	1.22	None
	08/10/93		14.13	1.10	None
	09/21/93		14.20	1.03	None
	10/27/93		14.34	0.89	None
	11/23/93		13.97	1.26	None
DI ATME	12/17/93		13.08	2.15	None
BLAINE	02/16/94		13.34	1.89	None
<u>MW-6F</u> HLA	12/15/80	00.01*	14.70	25.40	
	12/15/88 10/03/89	99.91*	14.73	85.18	NA
	04/30/90		14.48 14.14	85.43 85.77	NA NA
	10/16/90		14.77	85.77 85.14	NA Na
	12/06/90		14.81	85.10	NA NA
	01/14/91		14.73	85.18	NA NA
	02/08/91		13.73	86.18	NA NA
	04/02/91		12.38	87.53	NA
	05/07/91		13.67	86.24	NA
	05/31/91		14.43	85.48	NA
	06/26/91		14.81	85.10	NA
	08/05/91		14. 9 6	84.95	NA
	08/14/91		14.87	85.04	NA
	09/11/91		15.11	84.80	NA
	10/16/91		15.16	84.75	NA
	12/30/91		13.78	86.13	NA
	02/25/92		12.68	87.23	NA
	03/25/92	16 4/44	11.93	87.98	NA
	06/16/92	16.46**	14.34	2.12	NA
RESNA	09/08/92		14.75	1.71	None

Texaco Service Station 2225 Telegraph Avenue Oakland, California (Page 4)

<u>Well</u>	Date	Wellhead Elevation	Depth to Water	Groundwater Elevation*	Floating Product
	 -		·		<u></u>
MW-6F (cont'd)	12/14/92		12.90	3.56	None
	01/28/93		11.60	4.86	None
	02/11/93		12.25	4.21	None
	03/09/93		12.50	3.96	None
	04/14/93		12.71	3.75	None
	05/11/93		13.63	2.83	None
	06/17/93		14.02	2.44	None
	07/26/93			Monitored	HOME
	08/10/93			Monitored	
	09/21/93		14.80	1.66	None
	10/27/93		14.85	1.61	None
	11/23/93		Not Monitored - I		TOTAL
	12/17/94		13.86	2.60	None
BLAINE	02/16/94		13.08	3.38	None
MW-6G					
HLA	12/15/88	99.16*	12.39	86.77	NA
	10/03/89		12.22	86.94	NA
	04/30/90		11.73	87.43	NA NA
	10/16/90		12.28	86.88	NA.
	12/06/90		12.27	86.89	NA
	01/14/91		12.14	87.02	NA
	02/08/91		11.44	87.72	NA
	04/02/91		10.03	89.13 -	NA
	05/07/91		11.00	88.16	NA
	05/31/91		11.75	87.4 1	NA
	06/26/91		12.91	86.25	NA
	08/05/91		12.43	86.73	NA
	08/14/91		12.43	86.73	NA
	09/11/91		12.48	86.68	NA
	10/16/91		12.64	86.52	NA
	12/30/91		11.80	87.36	NA
	02/25/92		10.32	88.84	NA
	03/25/92		9.93	89.23	NA
Terrory .	06/16/92	14.71**	11.88	2.83	NA
RESNA	09/08/92		12.20	2.51	None
	11/05/92		12.02	2.69	None
	12/14/92		10.95	3.76	None
	01/28/93		9.56	5.15	None
	02/11/93		10.04	4.67	None
	03/09/93		10.10	4.61	None
	04/14/93		10.43	4.28	None
	05/11/93		11.05	3.66	None
	06/17/93		11.49	3.22	None
	07/26/93		11.98	2.73	None
	08/10/93		12.17	2.54	None
	09/21/93		12.42	2.29	None
	10/27/93 11/23/93		13.47	1.24	None
			12 40	2 22	Nt
	12/17/93		12.48 11.19	2.23 3.52	None None

Texaco Service Station 2225 Telegraph Avenue Oakland, California (Page 5)

<u>Well</u>	Date	Wellhead Elevation	Depth to Water	Groundwater Elevation*	Floating Product
					<u></u>
<u>MW-6H</u>	12/15/88	97.93*	12.39	85.54	NA
HLA	10/03/89		12.36	85.57	NA
	04/30/90		12.10	85.83	NA
	10/16/90		12.18	85.75	NA
	12/06/90		12.29	85.64	NA
	01/14/91		12.22	85.71	NA
	02/08/91 04/02/91		11.93	86.00	NA
	05/07/91		11.59 12.24	86.34	- NA
	05/31/91		12.22	8 5.69 8 5.71	NA NA
	06/26/91		14.34	83.59	NA NA
	08/05/91		12.62	85.31	NA NA
	08/14/91		12.43	85.50	NA
	09/11/91		12.83	85.10	NA
	10/16/91		12.71	85.22	NA
	12/30/91		12.16	85.77	NA
	02/25/92		12.17	85.76	NA
	03/25/92		11.65	86.28	NA
RESNA	06/16/92	14.47**	12.12	2.35	NA
RESINA	09/08/92		12.30	2.17	None
	11/05/92 12/14/92		12.05	2.42	None
	01/28/93		11.65 11.57	2.82	None
	02/11/93		12.22	2.90 - 2.25	None None
	03/09/93		12.02	2.45	None
	04/14/93		12.02	2.45	None
	05/11/93		12.35	2.12	None
	06/17/93		12.22	2.25	None
	07/26/93		12.32	2.15	None
	08/10/93		12.30	2.17	None
	09/21/93		12.79	1.68	None
	10/27/93		13.93	0.54	None
	11/23/93		12.46	2.01	None
DI AINE	12/17/94		12.08	2.39	None
BLAINE	02/16/94		12.31	2.16	None
<u>MW-6I</u> HLA	12/15/88	97.60*	12.82	84.78	NA
	10/03/89		12.83	84.77	NA NA
	04/30/90		12.66	84.94	NA
	10/16/90		12.71	84.89	NA
	12/06/90		12.75	84.85	NA
	01/14/91		12.55	85.05	NA
	02/08/91		12.32	85.28	NA
	04/02/91		12.22	85.38	NA
	05/07/91 05/31/91		12.61	84.99	NA
	06/26/91		12.82 12.93	84.78 84.67	NA NA
	08/05/91		13.01	84.67 84.59	NA NA
	08/14/91		12.98	84.62	NA NA
	09/11/91		13.11	84.49	NA NA
	10/16/91		13.04	84.56	NA NA
	12/30/91		12.72	84.88	NA
	02/25/92		12.45	85.15	NA
	03/25/92		12.12	85.48	NA
	06/16/92	14.14**	12.75	1.39	NA
	09/08/92		12.84	1.30	None
RESNA	11/05/92		12.75	1.39	None

Texaco Service Station 2225 Telegraph Avenue Oakland, California (Page 6)

Well	Date	Wellhead Elevation	Depth to Water	Groundwater Elevation*	Floating Product
		<u> </u>			 -
MW-6I(cont'd)	12/14/92		12.40	1.74	None
	01/28/93		12.20	1.94	None
	02/11/93		12.40	1.74	None
	03/09/93		12.45	1.69	None
	04/14/93		12.43	1.71	None
	05/11/93		12.73	1.41	None
	06/17/93		12.78	1.36	None
	07/26/93		12.92	1.22	None
	08/10/93		12.97	1.17	None
	09/21/93		13.02	1.12	None
	10/27/93		13.10	1.04	None
	11/23/93		13.02	1.12	None
	12/17/94		12.65	1.49	None
BLAINE	02/16/94		12.66	1.48	None
<u>RW-1</u>					
HLA	10/16/90	97.89*	12.24	85.65	NA
	01/14/91	27102	12.80	85.09	NA NA
	02/08/91		12.53	85.36	NA NA
	04/02/91		NA	NA	NA NA
	05/07/91		NA	NA.	NA NA
	05/31/91		12.86	85.03	NA NA
	08/05/91		13.19	84.70	NA
	08/13/91		14.05	83.84 _	NA.
	09/11/91		15.96	81.93	NA
	10/16/91		16.00	81.89	NA
	12/30/91		12.65	85.24	NA
	02/25/92		14.40	83.49	NA
	03/25/92		NA	NA	NA
	06/16/92	14.42**	12.37	2.05	NA
RESNA	09/08/92	Not M	lonitored		
	11/05/92		lonitored		
	12/14/92	Not M	lonitored		
	01/18/93		lonitored		
	02/11/93		lonitored		
	03/09/93		lonitored		
	04/14/93		lonitored		
	05/11/93		Ionitored		
	06/17/93		Monitored .		
	07/26/93	Not N	Monitored		
	08/10/93		Aonitored .		
	09/21/93		Aonitored		
	10/27/93		Monitored		
	11/23/93	Not N	Monitored		
	12/17/93		Monitored		
BLAINE	02/16/94	Not N	Monitored		

Measurements in feet.

* : Based on assigned benchmark with elevation arbitrarily set at 100 feet.

Elevation relative to mean sea level (MSL).

NA : Not Available

HLA : Monitoring by Harding Lawson Associates
RESNA : RESNA Industries Inc. began monitoring.
BLAINE : Blaine Tech Services, Inc. began monitoring.

Texaco Service Station 2225 Telegraph Avenue Oakland, California (Page 1)

Well					Ethyl-	Total	Total Oil
	Date	ТРНд	Benzene	Toluene	benzene	Xylenes	and Grease
MW-6A							
HLA	06/24/88	NA	ND	ND	ND	ND	NA
	10/20/88	NA	1.0	ND	ND	ND	NA NA
	09/07/89	ND	2.0	ND	ND	ND	NA NA
	05/11/90	< 500	150	6.2	< 0.25	13	NA
	05/07/91	2,700	700	64	67	74	NA
	08/14/91	ND	3.6	< 0.5	< 0.5	< 0.5	NA
	12/31/91			Well Damage			
	03/25/92			Well Damage			
	05/02/92			Well Destroy			
<u>1W-6B</u>							
ILA	06/24/88	NA	ND	ND	ND	5.0	NA
	10/20/88	NA	4.0	ND	ND	ND	NA
	09/07/89	2,700	70	3.0	ND	160	NA
	04/30/90	168	45	8.0	60	22	NA
	05/07/91	3,300	240	6.0	20	660	NA
	08/14/91	980	9.1	42	310	150	NA
	12/31/91	1,200	46	<5.0	85	220	ND
	03/25/92	190	31	8.6	84	8.6	NA
ESNA	06/16/92	1,700	44	1.7	7.2	230	NA
ESINA	09/08/92	2,900	35	8.3	110	330 -	NA
	11/05/92	1,400	29	< 0.5	75	190	NA
	02/11/93 05/11/93	210	1.2	<0.5	2.8	4.3	NA
	08/10/93	570	54	2.4	37	36	NA
		1,300	48	2.4	28	44	NA
LAINE	10/27/93 02/16/94	1,300	23	1.7	25	250	NA
LAINE	02/10/94	300 >-	16	<0.5	3.5	2.4	NA
	erly MW-6C)		_				
ILA	06/24/88	NA.	7,400	7.0	170	2,300	NA
	10/20/88	NA	9,500	65	170	850	NA
	09/07/89	18,000	7,900	430	350	1,100	NA
	04/30/90	30,000	6,100	1,500	1,000	2,700	NA
	05/07/91	5,800	4,200	640	220	670	NA
	08/14/91	3,800	2,300	300	. 49	360	NA
	11/05/91			Well Destroye	:d		
W-2 (forme	o7(11/88		***				
ILA	07/11/88	NA	220	27	< 20	< 10	NA
	10/20/88	NA 2.200	710	74	22	110	NA
	09/07/89	2,200	600	26	58	31	NA
	04/30/90	3,600	800	150	310	280	NA
	05/07/91 08/14/91	11,000	3,200	480	150	780	NA
	12/31/91	NA NA	NA NA	NA	NA	NA	NA
	03/25/92	NA NA	NA NA	NA NA	NA	NA	NA
	05/25/92	28,000	NA 2.000	NA 1.000	NA 120	NA A Soo	NA
ESNA	09/08/92	20,000	2,900	1,000	120	2,700	NA
	11/05/92			Not Sampled			
	05/11/93			Not Sampled			
	08/10/93			Not Sampled			
	10/27/93			Not Sampled Not Sampled			
LAINE				DStqmsc Juri			

Texaco Service Station 2225 Telegraph Avenue Oakland, California (Page 2)

Well	Date	ТРНg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total Oil and Grease
				· · · · · · · · · · · · · · · · · · ·		Aylenes	and Grodec
MW-6E							
HLA	10/20/88	NA	1.0	ND	ND	3.0	NA
	09/07/89	220	3.0	ND	ND	ND	NA
	04/30/90	250	57	< 5.0	<5.0	53	NA
	05/07/91	160	32	1.0	2.2	1.4	NA
	08/14/91	ND	0.9	< 0.5	< 0.5	< 0.5	NA
	12/31/91	90	3.1	< 0.5	< 0.5	< 0.5	ND
	03/25/92	830	41	1.0	3.8	16	NA
	06/16/92	3,400	300	23	68	510	NA
RESNA	09/08/92	480	27	< 0.5	3.6	2 1	NA
	11/05/92			Not Sample	i		
	02/11/93	270	15	< 0.5	< 0.5	8.7	NA
	05/11/93	<50	2.3	< 0.5	1.4	3.2	NA
	08/10/93	1,700	130	2.7	23	140	NA
	10/27/93	100	6.0	< 0.5	< 0.5	< 0.5	NA
BLAINE	02/16/94	640	45	< 0.5	12	15	NA
MW-6F	4.0.40 - 1						
ILA	10/25/88	ND	ND	ND	2.0	NA	NA
	09/07/89	ND	ND	ND	ND	ND	NA
	04/30/90	ND	ND	ND	ND	ND	NA
	05/07/91	ND	ND	< 0.5	< 0.5	< 0.5	NA
	08/14/91	ND	ND	< 0.5	< 0.5	< 0.5	NA
	12/31/91	ND	ND	< 0.5	< 0.5	<0.5	ND
	03/25/92	ND	ND	< 0.5	< 0.5	< 0.5	NA
	06/16/92	ND	ND	< 0.5	< 0.5	< 0.5	NA
ESNA	09/08/92	<50	< 0.5	< 0.5	< 0.5	< 0.5	NA
	11/05/92	<50	< 0.5	< 0.5	< 0.5	< 0.5	NA
	02/11/93	<50	< 0.5	< 0.5	< 0.5	< 0.5	NA
	05/11/93	< 50	< 0.5	< 0.5	< 0.5	< 0.5	NA
	08/10/93			Not Sample			
NT 4 Th !-	10/27/93	<50	< 0.5	<0.5	< 0.5	< 0.5	NA
BLAINE	02/16/94	<50	<0.5	< 0.5	<0.5	< 0.5	NA
MW-6G	10/05/00						
łLA	12/07/88	ND	ND	ND	ND	NA	NA
	09/07/89	ND	ND	ND	ND	ND	NA
	04/30/90	ND	ND	ND	ND	ND	NA
	05/07/91	ND	ND	< 0.5	<0.5	< 0.5	NA
	08/14/91	ND	ND	< 0.5	< 0.5	< 0.5	NA
	12/31/91	ND	ND	< 0.5	<0.5	< 0.5	ND
	03/25/92 06/16/92	ND	ND	<0.5	< 0.5	< 0.5	NA
ECMA		ND	ND	< 0.5	<0.5	< 0.5	NA
ESNA	09/08/92 11/05/92	<50	< 0.5	< 0.5	<0.5	<0.5	NA
		<50	< 0.5	< 0.5	< 0.5	< 0.5	NA
	.02/11/93	<50	< 0.5	<0.5	<0.5	<0.5	NA
	05/11/93	<50	< 0.5	< 0.5	< 0.5	<0.5	NA
	08/10/93	<50	< 0.5	< 0.5	< 0.5	< 0.5	NA
OT A DATE:	10/27/93	<50	< 0.5	< 0.5	< 0.5	< 0.5	NA
BLAINE	02/16/94	<50	< 0.5	< 0.5	< 0.5	< 0.5	NA

Texaco Service Station 2225 Telegraph Avenue Oakland, California (Page 3)

Well	Date	ТРНg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total Oil and Grease
MW-6H							
HLA	12/07/88	NA	1,200	320	110	220	NA
	09/07/89	660	480	<10	16	<15	NA
	04/30/90	630	700	39	31	50	NA
	05/07/91	570	95	14	15	21	NA
	08/14/91	540	52	9.9	11	18	NA
	12/31/91	790	52	28	22	42	NB
	03/25/92	920	170	52	25	54	NA
	06/16/92	460	31	11	6.8	16	NA
RESNA	09/08/92	780	69	23	17	18	NA
	11/05/92	3,400	500	260	85	160	NA
	02/11/93	2,500	410	170	28	130	NA
	05/11/93	4,200	490	270	80	210	NA
	08/10/93	650	83	22	14	29	NA
	10/27/93	1,600	130	90	29	130	NA
BLAINE	02/16/94	<50	< 0.5	< 0.5	< 0.5	2.9	NA
MW-61							
HLA	12/07/88	ND	ND	ND	ND	NA	NA
	09/07/89	ND	ND	ND	ND	ND	NA NA
	04/30/90	ND	ND	ND	ND	ND	NA NA
	05/07/91	ND	ND	<0.5	<0.5	<0.5 ⁻	
	08/14/91	ND	ND	<0.5	< 0.5		NA
	12/31/91	ND	ND	< 0.5		< 0.5	NA
	03/25/92	ND	ND ND		< 0.5	<0.5	ND
	06/16/92	ND	ND ND	<0.5 <0.5	< 0.5	< 0.5	NA NA
RESNA	09/08/92	<50	<0.5	< 0.5	< 0.5	< 0.5	NA
	11/05/92	<50			< 0.5	< 0.5	NA
	02/11/93	<50 <50	<0.5 <0.5	< 0.5	< 0.5	< 0.5	NA
	05/11/93	<50		<0.5	< 0.5	< 0.5	NA
	08/10/93	<50 <50	<0.5 <0.5	<0.5	< 0.5	< 0.5	NA
	10/27/93	<50 <50		<0.5	< 0.5	< 0.5	NA
BLAINE	02/16/94	<50 <50	< 0.5	< 0.5	< 0.5	1.1	NA
PULLE	VZ/10/94	₹30	<0.5	<0.5	<0.5	< 0.5	NA
<u>RW-1</u>							
HLA	06/16/9 2	6,200	620	1,400	240	1,400	NA
RESNA	09/08/92			Not Sampled		•	
	11/05/92			Not Sampled			
	02/11/93			Not Sampled			
BLAINE	02/16/94			Not Sampled			

Texaco Service Station 2225 Telegraph Avenue Oakland, California (Page 4)

Well	Date	ТРНg	Веплепе	Toluene	Ethyl- benzene	Total Xylenes	Total Oil and Grease	
MCLs DWAL			1.0	 100	680 	1,750		

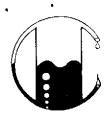
Results in parts per billion (ppb).

<

TPHg : Total petroleum hydrocarbons analyzed as gasoline.

Less than the detection limit for the specified method of analysis.

MCLs : Adopted Maximum Contaminant Levels in Drinking Water, DHS (October 1990)


DWAL : Recommended Drinking Water Action Levels, DHS (October 1990)

Not Analyzed

NA : ND : Not detectable at or above method detection limit.

Not Applicable ---

HLA : Sampled by Harding Lawson Associates RESNA : RESNA Industries Inc. began sampling. BLAINE : Blaine Tech Service, Inc. began sampling.

5011 Blum Road, Suite 1 • Martinez, CA 94553 Phone (510) 372-3700 • Fax (510) 372-6955

624880195\1718\013330

Texaco Environmental Services

108 Cutting Blvd.

Richmond, ČA 94804 Attn: Rebecca Digerness

Environmental Technician

Date Sampled: 02-16-94 Date Received: 02-18-94

Date Analyzed: 03-02-94

Sample Number

024459

Sample Description

Texaco - Oakland

2225 Telegraph Ave.

MW6B

WATER

ANALYSIS

	Detection Limit	Sample Results
	ppb	ppb
Total Petroleum Hydrocarbons as Gasoline	50	300
Benzene	. 0.5	16
Toluene	0.5	<0.5
Xylenes	0.5	2.4
Ethylbenzene	0.5	3.5

Note:

Analysis was performed using EPA methods 5030 and TPH

LUFT with method 602 used for BTX distinction.

 $(ppb) = (\mu q/L)$

MOBILE CHEM LABS

5011 Blum Road, Suite 1 • Martinez, CA 94553 Phone (510) 372-3700 • Fax (510) 372-6955

624880195\1718\013330

Texaco Environmental Services

108 Cutting Blvd. Richmond, CA 94804

Attn: Rebecca Digerness

Environmental Technician

Date Sampled: 02-16-94

Date Received: 02-18-94 Date Analyzed: 03-02-94

Sample Number

024460

Sample Description

Texaco - Oakland 2225 Telegraph Ave.

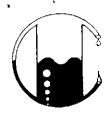
MW6E

WATER

ANALYSIS _____

	Detection Limit	Sample Results
	ppb	ppb
Total Petroleum Hydrocarbons as Gasoline	50	640
Benzene	.0.5	45
Toluene	0.5	<0.5
Xylenes	0.5	15
Ethylbenzene	0.5	12

Duplicate Deviation is 5.4% QA/QC:


Note:

Analysis was performed using EPA methods 5030 and TPH

LUFT with method 602 used for BTX distinction.

 $(ppb) = (\mu q/L)$

MOBILE CHEM LABS

5011 Blum Road, Suite 1 • Martinez, CA 94553 Phone (510) 372-3700 • Fax (510) 372-6955

624880195\1718\013330

Texaco Environmental Services 108 Cutting Blvd.

Richmond, CA 94804 Attn: Rebecca Digerness

Environmental Technician

Date Sampled: 02-16-94

Date Received: 02-18-94

Date Analyzed: 03-02-94

Sample Number

024461

Sample Description

Texaco - Oakland 2225 Telegraph Ave.

MW6F

WATER

ANALYSIS

	Detection Limit	Sample Results	
	ppb	ppb	
Total Petroleum Hydrocarbons as Gasoline	50	<50	
Benzene	. 0.5	<0.5	
Toluene	0.5	<0.5	
Xylenes	0.5	<0.5	
Ethylbenzene	0.5	<0.5	

QA/QC: Spike Recovery is 105%

Note:

Analysis was performed using EPA methods 5030 and TPH

LUFT with method 602 used for BTX distinction.

 $(ppb) = (\mu q/L)$

MOBILE CHEM LABS

5011 Blum Road, Suite 1 • Martinez, CA 94553 Phone (510) 372-3700 • Fax (510) 372-6955

624880195\1718\013330

Texaco Environmental Services 108 Cutting Blvd.

Richmond, CA 94804 Attn: Rebecca Digerness

Environmental Technician

Date Sampled: 02-16-94 Date Received: 02-18-94

Date Analyzed: 03-02-94

Sample Number

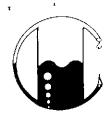
024462

Sample Description

Texaco - Oakland 2225 Telegraph Ave. MW6G

WATER

ANALYSIS ------


	Detection Limit	Sample Results
	ppb	ppb
Total Petroleum Hydrocarbons as Gasoline	50	<50
Benzene	,0.5	<0.5
Toluene	0.5	<0.5
Xylenes	0.5	<0.5
Ethylbenzene	0.5	<0.5

Note:

Analysis was performed using EPA methods 5030 and TPH LUFT with method 602 used for BTX distinction.

 $(ppb) = (\mu g/L)$

MOBILE CHEM LABS

5011 Blum Road, Suite 1 • Martinez, CA 94553 Phone (510) 372-3700 • Fax (510) 372-6955

624880195\1718\013330

Texaco Environmental Services 108 Cutting Blvd.

Richmond, CA 94804 Attn: Rebecca Digerness

Environmental Technician

Date Sampled: 02-16-94 Date Received: 02-18-94

Date Analyzed: 03-02-94

Sample Number

024463

Sample Description

Texaco - Oakland 2225 Telegraph Ave.

MW6H

WATER

ANALYSIS _____

	Detection Limit	Sample Results
	ppb 50	ppb
Total Petroleum Hydrocarbons as Gasoline	50	<50
Benzene	. 0 . 5	<0.5
Toluene	0.5	<0.5
Xylenes	0.5	2.9
Ethylbenzene	0.5	<0.5

Note:

Analysis was performed using EPA methods 5030 and TPH LUFT with method 602 used for BTX distinction.

 $(ppb) = (\mu q/L)$

MOBILE CHEM LABS

5011 Blum Road, Suite 1 • Martinez, CA 94553 Phone (510) 372-3700 • Fax (510) 372-6955

624880195\1718\013330

Texaco Environmental Services 108 Cutting Blvd.

Richmond, CA 94804 Attn: Rebecca Digerness

Date Sampled: 02-16-94 Date Received: 02-18-94 Date Analyzed: 03-02-94

Environmental Technician

Sample Number

024464

Sample Description

Texaco - Oakland 2225 Telegraph Ave. MW6I WATER

ANALYSIS _____


	Detection Limit ppb	Sample Results ppb
Total Petroleum Hydrocarbons as Gasoline	50	<50
Benzene	.0.5	<0.5
Toluene	0.5	<0.5
Xylenes	0.5	<0.5
Ethylbenzene	0.5	<0.5

Note:

Analysis was performed using EPA methods 5030 and TPH LUFT with method 602 used for BTX distinction.

 $(ppb) = (\mu g/L)$

MOBILE CHEM LABS

5011 Blum Road, Suite 1 • Martinez, CA 94553 Phone (510) 372-3700 • Fax (510) 372-6955

624880195\1718\013330

Texaco Environmental Services 108 Cutting Blvd.

Richmond, CA 94804

Attn: Rebecca Digerness

Environmental Technician

Date Sampled: 02-16-94

Date Received: 02-18-94 Date Analyzed: 03-02-94

Sample Number

024465

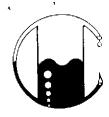
Sample Description

Texaco - Oakland 2225 Telegraph Ave.

rb water

ANALYSIS

	Detection Limit	Sample Results
	ppb	ppb
Total Petroleum Hydrocarbons as Gasoline	50	<50
Benzene	. 0 • 5	<0.5
Toluene	0.5	<0.5
Xylenes	0.5	<0.5
Ethylbenzene	0.5	<0.5


Note:

Analysis was performed using EPA methods 5030 and TPH

LUFT with method 602 used for BTX distinction.

 $(ppb) = (\mu q/L)$

MOBILE CHEM LABS

5011 Blum Road, Suite 1 • Martinez, CA 94553 Phone (510) 372-3700 • Fax (510) 372-6955

624880195\1718\013330

Texaco Environmental Services

108 Cutting Blvd. Richmond, CA 94804

Attn: Rebecca Digerness

Environmental Technician

Date Sampled: 02-16-94

Date Received: 02-18-94

Date Analyzed: 03-02-94

Sample Number

024466

Sample Description

Texaco - Oakland 2225 Telegraph Ave.

B WATER

ANALYSIS

	Detection Limit	Sample Results
	ppb	ppb
Total Petroleum Hydrocarbons as Gasoline	50	<50
Benzene	.0.5	<0.5
Toluene	0.5	<0.5
Xylenes	0.5	<0.5
Ethylbenzene	0.5	<0.5

Note:

Analysis was performed using EPA methods 5030 and TPH LUFT with method 602 used for BTX distinction.

 $(ppb) = (\mu g/L)$

MOBILE CHEM LABS

BLA	INE			SAN JO	MOTHY DRIVE DSE, CA 95133	}		CON	DUCT	ANAL'	YSIS T	O DE	rect		LAB Mobile Ch	iem 3	Laborati	n mur	IDHS#
TECH SE					(408) 995-5535 (408) 293-8773			l								TME	ET SPECIFI		DETECTION LIMITS
CHAIN OF CUST	ODY					7									□ EPA			RWQ	CB REGION
9-	10216 - ご	2													LIA				
CLIENT Texaco Environmental Services						CONTAINERS									OTHER				
SITE	·					\frac{1}{2}									SPECIAL INSTRUCT	IONS	Report	& Invoi	
	cation #		5 017	<i>)</i>		- 5	J. Y.												nental Service
2225 Te	elegraph	Aue	~~~			EALL	BT											tting Bland, CA 94	
Oakla	med; cl	Α.			·	JSIT	Gas										Attn: H	Rebecca 1	oigerness
	1		MATRIX HSOIL #	CC	ONTAINERS 40 mc 1 HCL VOAs	COMPOSITE	TPH-G									I	(510) 2:	36-3541	
SAMPLE I.D.	<u> </u>		ທ້≯	TOTAL	· 	Ü		-							ADD'L INFORMATION	A _S	STATUS	CONDITION	LAB SAMPLE #
MW-GB	शाक्षा	:500	w	2	ļ. <u></u>	<u> </u>	<u> </u>										TRACTED		
MW-GE	2/16/94	140	ب	z			X												
MW-6F	2/16/94	1420	w	z		<u> </u>	X					_							
MW-6G	2/16/91	1320	w	z			X												
MW-6H	2/16/94	1515	w	z		<u> </u>	×												
Mw-61.	2/16/91	1340	<u>u</u>	己		ļ	×												
TB	2(16/94	-	w	2			×												
EB	2/16/94	1345	w	z	1	<u> </u>	×										<u> </u>		
							ļ			ı									
SAMPLING COMPLETED	DATE ITI	ME BO	SAMPI PERFO	ING DRMED	BY Bre	. H	Ble	an		- - -					RESULTS NEEDED NO LATER THAN			<u> </u>	
RELEASED BY	·		· · · · ·		DAT 2-1	E ይ- <i>Q</i>	4	TIME	50,		REC	EIVE	D BY	 و,	Levie			DATE 2-18-6-4	1TIME 2:00
RELEASED BY					DAT	Έ		TIME			REC	EIVE	D BY					DATE	TIME
RELEASED BY	<u></u>				DAT	E		TIME	<u> </u>		<u> </u>	EIVE	D BY					DATE	TIME
SHIPPED VIA					DAT	E SEI	NT	TIME	SEN	T	COOL V &	ER#	 LC⊱ }\$0\	ĊL					· · · · · · · · · · · · · · · · · · ·

MONTHLY MONITORING

FIELD REPORT/ DATA SHEET

rder	Well JD	Diam.	Lock	Exp. Cap	Total Depth	DTW Intial	DTW Final	Depth to Product	Product Thickness	Time Sampled	Comment
(0)	-					11.99					0 (201 10 0do
/_						13.56					No Cope
=		ļ				13.68					u II
T_	· · · · · · · · · · · · · · · · · · ·					12.65		ļ			, ।
1_		<u> </u>	 			12-58		<u> </u>			oles slightos futo pas muel
3_						NIA	<u> </u>				muel
	<u> </u>		-					<u> </u>		<u> </u>	
		<u> </u>	 				 				
			 			<u> </u>				<u> </u>	<u></u>
		1	 								
		-	1			1					
											<u></u>
lote	s:										
							-				

WELL GAUGING DATA

Project	##	40216- ZZ	Da	ate	4	Client	lexaco:	
		•		Oakland	* 4			
Well I.D.	Well Size (in.)	Sheen/ Odor	Depth to Immiscible Liquid (feet)	Thickness	Volume of Immiscibles Removed	Depth to Water (feet)	Depth to Well Bottom (feet)	Survey Poin TOB or TOC
MM-09	2_					12.07	18 04	TOC
MW 65	4	•				13.34	19.60	
-44-6F	4					13.08	19.70	
Mw-66-	4			· .		10.62	· (4.57	
MW-6H	4					17.31	1946	
MW-61	ય	-			-	17.66	1948	
		-						
					· .			
					[. *		
		ļ 				, 		
<u> </u>								
	· · · · · · · · · · · · · · · · · · ·							

Project #: 940216-72 Client: TEXACO ENVIRONMENTAL SERVICES										
Sampler					2/16/94					
Well I.I	٠.: . Mښ-	(eB	7,	ell Diameter:	(circle one)	2 3 4 6				
Total Well Depth: Depth to Water:										
Eefore	·									
Depth to Free Product: Thickness of Free Product (feet):										
Measurements referenced to: (PV) Grade Other										
Volume Generalia Feder (VCF):										
.90	, جا	x	3		7.9					
1 Case	· Volume		Specified	Volumes =	gallons	•				
Purging: Bailer (Sampling: Bailer (Middleburg O Middleburg O Slectric Submersible O Suction Fump O Suction Fump O Installed Fump O Installed Fump O										
TIKE	(F)	PH	ÇCKÐ.	TURBIDITY:	VOLUME REMOVED:	OBSERVATIONS:				
1449	(<u>4.7</u>	7.2	900	7200	1	oder				
1452	७५७	7.2	900	7 200	2	N.				
14554	65.I	7.4	1000	7200	3	11				
•										
Did Well	Dewater? N	o If ye:	s, gals.	Gallons A	ctually Eva	cuated: 3				
Sampling	Time: 150	0								
Sample I.	D.: Mw	ωB	<u>ን</u> ջ <u>1</u>	porstory: Mo	bile Chem					
Analyzed	for: TP	H-6 B	rex							
Duplicate	1.D.:	•	CI	eening Blank I.	D.:					
Analyzed	for:	•								
wellhead	maintenance	perform	ed:			· /				
Additiona	1 Notations	:		*		<u> </u>				

Project #: 940216-32 Client: TEXACO ENVIRONMENTAL SERVICES										
Sampler: PB Date Sampled: 2/16/94										
Well I.I	Well I.D.: Mu-CoE Kell Diameter: (circle one) 2 3 4 6									
Total Well Depth: Depth to Water:										
Before	19.60	lfter	Se1	fore 13.34	After					
Depth to	Eree Produ	ict:	ទូវ៉ាន់	ickness of Fre	e Product (feet):				
Measurem	ents refere	enced to:	PVC	Grade	Other					
€12 = ₩2124 12 6	Volume Generation Forces (VCF)2									
4.1		٠,٠	3		12,3					
l ————	Volume	x	Specified V	folumes =	gallons	· ·				
Purging: Bailer Middleburg Blectric Submersible Suction Fump Type of Installed Fump Sampling: Bailer Middleburg Siddleburg Silectric Submersible Suction Fump Installed Fump Installed Fump Installed Fump Installed Fump Installed Fump Installed Fump Installed Fump Installed Fump Installed Fump Installed Fump Installed Fump Installed Fump Installed Fump Installed Fump Installed Fump Installed Fump Installed Fump Installed Fump Installed Fump Installed Fum										
TIME	75VP. (F)	рН	ÇOND.	TURBIDITY:	VOLUME REMOVED:	OBSERVATIONS:				
1428	G3.3	7.6	SC10	7.1	. 5					
1431	しらら	7.5	800	2.9	10					
1434	ૂપ.પ	7.4	700	7.0	13					
· .										
•										
Did Well	Dewater? N	o If ye	s, gals.	Gallons 2	Actually Eva	cuated: (3				
Sampling	Time: 144	Ď								
Sample I.	.P.: Mw	- GE	Leb	oratory: Mob	ile Chem					
Analyzed	for: TP	H-G, BT	モメ							
Duplicate	1.D.:	•	Cle	ening Blank I.	.D.:					
Analyzed	for:				· · · · · · · · · · · · · · · · · · ·					
wellhead	maintenanc	e perfori	ned:							
Additions	1 Notation	s :	510w rech	a ge		1				

1						· · · · · · · · · · · · · · · · · · ·				
Project	#: 940216	-72	C1	Client: TEXACO ENVIRONMENTAL SERVICES						
Sampler:	BB		Da	Date Sampled:						
Well I.).: Mw-c	F	ñe	ll Diameter:	(circle one)	2 3 4 6				
Total We	ell Depth:		₽e:	oth to Water:						
Before	-	fter		fore (3.08	After					
Depth to	Free Produ	ct:	ទីង	ickness of Fre	e Product (feet):				
Measuren	ents refere	nced to:	PVC	Grade	Other					
(12 e 	Volume Generalize Forder (VCr);									
4.3			3		.2.64					
ļ - 	· Volume	_ x	Specified V	Tolumes ≔	12.91 gallons	· ·				
Purging:	Purging: Bailer of Sampling: Bailer of Middleburg C Middleburg C Selectric Submersible C Suction Fump C Suction Fump C Installed Fump C									
, TIYZ	TEVE.	рH	сохэ.	TURBIDITY:	VOLUME VOLUME	OBSERVATIONS:				
1402	(01/9	78	ω	31.6	-5					
409	42.5	7,6	600	70.9	iO					
1416	42.7	7.6	(eQ)	52.3	13					
•••										
Did Well	Dewater? No	If ye	s, gals.	Gallons A	ctually Eva	ecuated: 13				
Sampling	Time: 1420	>		•						
Sample I.	.D.: TMW	-6F	Lab	oratory: Mob	ale Chem					
Analyzed	for: TPH-	G, BTE	X							
Duplicate	I.D.:	<u> </u>	Cle	ening Blank I.	D.: EB @	9 1345				
Analyzed	for: 7PH-	G, BTE	x							
	maintenance		red:							
Additiona	1 Notations					7				

Project	Project #: 940216-20 Client: TEXACO ENVIRONMENTAL SERVICES					
Sampler: PP				Date Sampled: 2/16/94		
Well I.D.: Mw-66				ll Diameter:	(circle one)	2 3 4 6
Total We	ell Depth:		Dej	oth to Water:		
Before 19.57 After Before 10.62 After						
Depth to Free Product: Thickness of Free Product (feet):						
Measurem	ents refere	nced to:	PVC	Grade	Other -→	
Veture Converte feries (VCS): \$12 \(e^T \) \(e^n \) \(fix) \) \times 22 \(e^T \) \(e^n \) \(fix) \) \times 22 \(e^n \) \(fix) \) \times 2.246 \times 2.246 \times 2.246						
5.4	5.4 x 3 Ne.Z 1 Case Volume Specified Volumes = gallons					· · · · · · · · · · · · · · · · · · ·
Purging: Bailer Middleburg Blectric Submersible Suction Pump Type of Installed Pump Surging: Bailer Middleburg Hiddleburg Sempling: Bailer Middleburg Sempling: Bailer Middleburg Suction Submersible Suction Pump Installed Pump Insta						
TIYE	75V2. (2)	Hq	ÇOND.	TURBIDITY:	VOLUME REMOVED:	OBSERVATIONS:
1310	ن 8،۵	٦.٥	1300	178	۵ .	
1311	48,6	7.8	1200	كالهاليه	12_	
13/2	<u>(18.6</u>	7.8	ilW	13.4	17	
••	<u> </u>		,			
•						
Did Well Dewater? No If Yes, gals. Gallons Actually Evacuated: 17						
Sampling Time: 1320						
Sample I.D.: MW-66 Laboratory: Mobile Chem						
Analyzed for: TPH-G BTEX						
Duplicate I.D.: Cleaning Blank I.D.:						
Analyzed for:						
	wellhead maintenance performed:					
Additional Notations:						

Project #: 940216-72				Client: TEXACO ENVIRONMENTAL SERVICES				
				Date Sampled: 2/16/94				
Well I.D.: Hw-6H				Well Diameter: (circle one) 2 3 4 6				
Total We	Total Well Depth:				Depth to Water:			
Before	<u>۱۹</u> .66	fter		Sefore (Z.3) After				
Depth to Free Product: Thickness of Free Product (feet):								
Keasuren	ents refere	nced to:	PVC	Grade Other				
Volume Generales Factor (VCF);			65. ver - 6.65 - 6.65 - 6.65 - 6.65 - 6.65 - 6.65 - 6.64 - 6.11		•			
4,5		×	3		13.5			
· · · · · · · · · · · · · · · · · · ·	Volume	_ ^ -		d Volumes =	gallons			
Purging: Bailer () Middleburg () Blectric Submersible () Suction Pump () Type of Installed Pump () Sampling: Bailer () Middleburg () Silectric Submersible () Suction Pump () Installed Pump ()								
LIKE	TEVE.	pH.	ÇOND.	TURBIDITY:	VOLUME REMOVED:	OBSERVATIONS:		
1503	55.9	7,4	800	13.9	. 5	oder		
1507	47.0	7.7	8xx5	48.8	10	· ·		
1501	ورد.ر.	J. I	8(1)	34.3	ι4	11		
•								
Did Well Devater? No If yes, gals. Gallons Actually Evacuated: 14								
Sampling Time: (515								
Sample I.D.: MW-6H Laboratory: Mobile Chem								
Analyzed for: TPH-6 BTEX								
Duplicate T.D.: Cleaning Blank T.D.:								
Analyzed for:								
wellhead	wellhead maintenance performed:					八		
Additional Notations: Slow recharge								

Product Ho						
Project #: 940216-C2 Client: TEXACO ENVIRONMENTAL SERVICES						
Sampler: Date Sampled: Z/16/94						
Well I.D.: Mw-6 Well Diameter: (circle one) 2 3 4 6						
Total We	ell Depth:	•	Dep	th to Water:		
Before (9.48 A	fter	Sef	Tore 12.66	After	
Depth to Free Product: Thickness of Free Product (feet):						
Measurements referenced to: (PVC) Grade Other						
Volume Generalis Forter (NCF); (12 = (e ⁷ /e) = n)/(12 -2 = 1s free			Section Ver			
4.4		x	3		13.2	
	Volume	→ ^ -	Specified V	olumes =	gallons	· · · · · · · · · · · · · · · · · · ·
Purging: Bailer of Sampling: Bailer of Middleburg of Middleburg of Blectric Submersible of Suction Pump of Typa of Installed Pump of Insta						
, TIKE	TEVE.	рН	сскэ.	TURBIDITY:	NOTOKE	OBSERVATIONS:
1328	لون.٩	7.6	800	49.7	. 5	
1331	45.7	7.8	<u>300</u>	38.2	10	
1334	ا کیمالیا	7.7	800	37.5	iΨ	
 ;						
· ·						
<u>. </u>						
Did Well Dewater? Ho If Yes, gals. Gallons Actually Evacuated: 14						
Sampling Time: 1340						
Sample I.D.: Mw-61 Laboratory: Mobile Chem						
Analyzed for: TPH-G, BTEL						
Duplicate I.D.: Cleaning Blank I.D.:						
Analyzed for:						
wellhead maintenance performed:						
Additional Notations: Sow racharge						

SOURCE RECORD BILL OF LADING
FOR NON-HAZARDOUS PURGEWATER RECOVERED FROM
GROUNDWATER WELLS AT TEXACO FACILITIES IN THE
STATE OF CALIFORNIA. THE NON-HAZARDOUS PURGEWATER WHICH HAS BEEN RECOVERED FROM GROUNDWATER WELLS IS COLLECTED BY THE CONTRACTOR,
MADE UP INTO LOADS OF APPROPRIATE SIZE AND
HAULED TO THE DESTINATION DESIGNATED BY
TEXACO ENVIRONMENTAL SERVICES (TES).

The contractor performing this work is BLAINE TECH SERVICES, INC., 985 Timothy Drive, San Jose, CA 95133 (phone [408] 995-5535). Blaine Tech Services, Inc. is authorized by TEXACO ENVIRONMENTAL SERVICES to recover, collect, apportion into loads, and haul the Non-Hazardous Well Purgewater that is drawn from wells at the TEXACO facility indicated below and to deliver that purgewater to an appropriate destination designated by TEXACO ENVIRONMENTAL SERVICES in either Redwood City, California or in Richmond, California. Transport routing of the Non-Hazardous Well Purgewater may be direct from one Texaco facility to the designated destination point; from one Texaco facility to the designated destination point via another Texaco facility; from a Texaco facility to the designated destination point via the contractor's facility, or any combination thereof. The Non-Hazardous Well Purgewater is and remains the property of Texaco Environmental Services (TES).

This Source Record BILL OF LADING was initiated to cover the recovery of Non-Hazardous Well Purgewater from wells at the Texaco facility described below:

TEXACO # 624 88 0195			
street number	street name	city	state
2225 Telegraph	Ave. Oakland	, CA.	

WELL I.D. GALS.	WELL I.D. GALS.
MM-6B 3	
MW-6E / 13	
MW-6F 13	
NW-64 17	
MW-6H / 14	
Mw-61 / H	
added equip. rinse water/	any other adjustments/
TOTAL GALS. RECOVERED 8년	loaded onto BTS vehicle # _ 년
BTS event # マンローマス signature	time date
**************************************	*********************
unloaded by signature	

BLAINE TECH SERVICES, INC. A SUMMARY OF FIELD PROCEDURES AND PROTOCOLS

WELL GAUGING (MONITORING)

All field notations are made on preprinted field data collection forms which are supplied to our personnel in a field notebook specific to each assignment at each site. All notations are contemporaneous and completed field notebooks (which we call Sampling Event Folders) are turned in daily and reviewed by our office personnel.

Water-level information is obtained from groundwater monitoring wells either as a preliminary step before evacuation or as a separate activity which is performed on wells that will not be sampled. In cases where none of the wells at the site are scheduled to be evacuated and sampled, the gauging of the wells for the purpose of collecting water-level information is conducted during a designated gauging event.

Wells should be gauged in Clean-to-Dirty Order.

Well gauging instruments and devices are cleaned after each use and before use in the next well. Well gauging is performed prior to well evacuation and sampling.

Well gauging is to be completed in as short a time period as possible.

Normal gauging activities include the following Wellhead Maintenance checks:

- 1. Is there a lid on the grade level utility box that encloses the wellhead? Yes/No
- 2. Is the lid whole or damaged? Okay/Cracked/Chipped/Broken
- 3. Is the lid secured in the intended manner? Yes/No/Loose/Missing bolts
- 4. Is the lid equipped with a seal? Yes/No/Damaged
- 5. Is there water standing in the utility box? Yes/No
- 6. Water stood in what relationship to the top of the well? Above/Below/Even with the top
- 7. Is there a cap or plug in the well, itself? Yes/No (Cap/Plug)
- 8. Is there a lock to secure the cap or plug? Yes/No
- 9. Is the lock closed so as to secure the well? Yes/No
- 10. Is the lock functional? Yes/No
- 11. Is the cap or lid on the wellhead capable of sealing out water? Yes/No seal is possible
- 12. Is the cap or plug sealing tightly? Yes/No/Can be pulled loose

The foregoing 12 checks are drawn from our more extensive Wellhead Survey Forms. They will be included in the next revision of the Sampling Event Field Folder forms.

Well gauging includes the following measurements:

- 1. Depth to Water (DTW)
- 2. Total Depth (TD)
- 3. Odor and Sheen (O&S),
- 4. Separate Phase Hydrocarbon (SPH) thickness (to the nearest 0.01').

Depth to Water measurements are referenced to the surveyed elevation of the wellhead to calculate the elevation of the groundwater in each well (for groundwater gradient mapping). Depth to Water and Total Depth measurements are used in calculating the volume of the water column standing in the wellcase (for evacuation calculation). Odor, sheen and Separate Phase Hydrocarbon thickness are used in evaluating whether or not the well meets standards set by the client that determine when a well should be evacuated and sampled and when that well should not be evacuated and sampled.

EVACUATING GROUNDWATER WELLS

Wells are selected for evacuation and sampling in Clean-to-Dirty order.

Blaine Tech Services, Inc. field personnel select well evacuation devices based on efficiency. They can select from the following:

- 1. Bailers. Teflon and stainless steel are the only materials used in Blaine Tech Services bailers. Our shop fabricates stainless steel bailers in any size we need. Typical bailers are hand operated, but we have hydraulic booms and high speed winches to handle the larger versions.
- 2. Pneumatic purge pumps. These evolved from the USGS/Middleburg bladder type sampling pumps which we began using in 1982. We retain the Teflon air pressure and water discharge hoses, but have modified the pump to increase efficiency and allow more certain cleaning than was possible with the original design. These pumps are ideal for certain types of wells and turbidity control situations.
- 3. Variable speed electric submersible pump. This 2" Grundfos pump has become an accepted tool of the environmental industry in recent years. Despite claims to the contrary, we do not see it as a suitable sampling pump (except in dedicated applications) and use it only as a well evacuation device.
- 4. Fixed speed electric submersible pumps. These 3" and 4" pumps (made by Grundfos and others) are also useful evacuation tools where the well depth or volume of water needing to be removed warrants their use.
- 5. Suction pumps. Grade level pneumatic diaphragm pumps (and similar devices) can be used to evacuate shallow wells when the proper type of hose and footvalves are assembled.

Normal field instrument readings are taken during the evacuation process. These include pH, temperature and electrical conductivity (EC) readings taken within each case volume of groundwater removed and at least one final set of readings taken just prior to sampling. The volume of water evacuated from the well is typically three case volumes and whatever additional volume is needed to achieve stable parameters.

We routinely remove four case volumes of water in those jurisdictions where the regulatory agency requests this level of purging. Our personnel are also equipped to take turbidity readings

and adjust our evacuation protocol to conform to regulatory standards for achieving specific NTU levels prior to collecting samples.

Wells that dewater are handled according to the protocol specified by each client. In most cases this is based on 80% recovery of the original water column or an evaluation of the volume of water that recharges into the well within a period not greater than 24 hours. In view of the volatile constituents being sought, most clients and their consultants are willing to have samples collected from whatever volume of water has recharged into a dewatered well by the end of the day or the end of the work being performed by our personnel at that particular site.

Instruments are calibrated daily and calibration logs are maintained at our office. In addition, each vehicle has calibration fluids on board so that pH and EC meters can be recalibrated in the field. Parameter readings are recorded (along with case volume calculations and other important information) on the preprinted Well Data sheet. Effluent water from the evacuation process is contained and transported in tanks on the sampling vehicle or in tanks on one of our water hauling trailers.

SAMPLE COLLECTION

Blaine Tech Services, Inc. several years ago standardized its sample collection procedures. With few exceptions, all groundwater samples are taken with a **bailer**. We have a large number of stainless steel and/or Teflon bailers. Specialized bailers are used to perform field filtration of water that will receive metals analyses and other bailers can be rigged as flow-through devices which are attached to the evacuation pump so that the entire volume of evacuated water moves through the bailer which then collects the final volume when the evacuation pump is turned off. Normal sampling is simple and straightforward. It involves removing the evacuation device from the well and promptly collecting water in a stainless steel sampling bailer which is lowered into the well and retracted with a disposable cotton line.

Typically, sample bottles appropriate to the intended analyses are supplied by the laboratory along with prepared trip blanks and a volume of organic free water sufficient to take any equipment rinsate blanks and/or field blanks that have been requested. These sample bottles are filled in accordance with EPA requirements as specified in the SW-846 and the T.E.G.D. Our personnel verify the correct composition of the sample set by referring to the Scope of Work statement provided by our office, and authorized by the client or client's consultant. In addition to notations required by the client, our personnel complete the preprinted Well Data Sheet, the multi-part Chain of Custody form and the blank portions of our computer generated sample bottle labels (time, date and sampler's initials). The samples are placed in an ice chest for storage and transport to the laboratory. We comply with regulatory agency specifications for both temperature and the material by which temperature is achieved and maintained. (e.g. Southern Alameda County Water District requires the use of ice rather than frozen blocks of ice substitutes such as Blue Ice and Super Ice.) Strict adherence to Chain of Custody requirements is maintained.

DECONTAMINATION

Blaine Tech Services, Inc. field personnel are trained and equipped to decontaminate all the devices which have been used to inspect, measure, evacuate and sample each well before moving on to the next well. All apparatus is brought to the site in clean and serviceable condition. It is then thoroughly cleaned after each every use.

Our QA program includes spot audits of our field personnel while they are working at a client's site and the collection of various blanks which are in-addition-to and outside of the normal project QA measures and therefore analyzed at our expense.

All vehicles used for petroleum sites are equipped with steam cleaners which we have had the supplier detune to function as hot pressure washers. After modification these units produce a high pressure jet of very hot water which retains its heat better than jets of steam which start off hotter but cool very quickly. (Steam cools so rapidly that it falls to the same temperature as hot water only 8" out from the nozzel and is far cooler than hot water thereafter.) These hot pressure washer units are supplied with deionized water from an onboard tank. (Deionized water is very hard on the steel components of our steam cleaners, but using it increases our cleaning efficiency.) Hot deionized water from the steam cleaner is supplemented with scrub brushes, soak tanks, and the application of aqueous cleaners which we test and evaluate. We do not use solvents or petroleum products as cleaning agents.

All effluent liquids are captured and retained. The effluent from all on site decontamination procedures is classified the same as the evacuated water from the well in which that equipment was used.

In most cases this means that the effluent from the cleaning of pumps and bailers will be classified as a non-hazardous effluent material which we will be able to transport away from the site as a non-hazardous material. (See Water Hauling below.) In those few cases where the concentration of fuel hydrocarbons in the groundwater causes the well's effluent water to be classified as a hazardous material, we will treat the effluent from our on site cleaning the same way and contain that effluent material along with the well effluent for proper on site storage, transport and disposal. (See Free Product Bailing & Transportation below).

NON-HAZARDOUS PURGEWATER HAULING

Blaine Tech Services, Inc. has evolved a paperwork tracking system for hauling non-hazardous purge water that uses two Bill of Ladings.

The effluent from wells which can be classified as non-hazardous is collected in onboard storage tanks and recorded on a Source Record Bill of Lading by our personnel as they collect effluent in the course of doing their work in the field. The small additional volume of water that is used to clean the evacuation and sampling equipment is added to the onboard non-hazardous effluent tank and recorded on the Source Record Bill of Lading. Each vehicle creates a Source Record Bill of Lading to cover all the non-hazardous purgewater hauled away from any Texaco site. If three

vehicles work on the same site each will have a Source Record Bill of Lading to cover the water being hauled away from that site by that vehicle. If a vehicle collects water from more than one Texaco site, it will have a Source Record Bill of Lading to cover the water obtained at each Texaco site. The Source Record Bill of Ladings covers the legal transport of non-hazardous purgewater and related effluent from one Texaco site to the Blaine Tech Services, Inc. facility in San Jose, California. There the water is offloaded from the individual sampling vehicles into a storage tank dedicated exclusively to non-hazardous purgewater from Texaco sites.

When a sufficient volume of Texaco purgewater has been collected in the Texaco storage tank to make up an efficient load to the destination designated by Texaco Environmental Services, we will create such a load. Purgewater is pumped out of the Texaco storage tank into an appropriate water hauling vehicle (we have both truck mounted tanks and trailers). The person loading the vehicle makes up a Bulk Load Disposition Bill of Lading. This documentation covers the load of purgewater during its movement from our facility to the destination designated by Texaco Environmental Services (whether to the Gibson Pilot facility in Redwood City or to the TES offloading point in Richmond).

We maintain a file for both Source Record Bill of Ladings and for Bulk Load Disposition Bill of Ladings. Periodic audits can be easily performed by reviewing this file.

FREE PRODUCT BAILING AND TRANSPORT

Blaine Tech Services, Inc. is not in the hazardous waste hauling business. The insurance overhead is so great that it is not economical to haul hazardous waste on an occasional or casual basis. Since we are in the sampling and objective data collection business, it makes sense to leave hazardous waste hauling to firms that are in the hazardous waste hauling business.

There is a fair amount of attention being put on clarifying EPA regulations which may offer exemptions to hazardous waste classification rules that apply to fuel facility waste material and debris that is being moved from a retail fuel dispensing facility to a refinery. It is thought that this or some similar loophole will be found that will eliminate some or all of the restrictions which are now being applied to fuel facility materials. As these openings develop, we will perform all the actions which are appropriate for us to perform. However, we are cautious because we certainly do not want to bring discredit to ourselves or to our client by presuming too much, too quickly.

Pending the clarification of exemptions that might allow us to transport such materials, we continue to remove place all the highly contaminated effluent materials we pump or bail from wells in properly labeled drums which remain on the site. Drums or the waste materials in the drums is removed and transported off the site by a properly licensed hazardous waste hauler.

There are several different arrangements that can be made, but most involve some liaison between ourselves and the licensed hazardous waste hauler who will need to offhaul any hazardous materials we place in the barrels within 90 days. Our personnel are involved in tracking the actual performance of the hazardous waste hauler by noting when new barrels are delivered to the

site and when resident barrels are emptied and labeled as empty. Our personnel fill out labels when adding material to a barrel and are careful to follow all the barrel preparation and closure protocols specified by our client and the hazardous waste hauler. The management of barrels and hauling requires tracking systems we have already developed for other clients.

ABILITY TO PERFORM

In the first quarter of 1993 one of our clients awarded us an additional territory and new sites that added more than 600 new gas station wells to our workload. These were not the only increases we took on and completed at the start of 1993, but they illustrate the fact that we can flex our organization to handle sudden increases.

Blaine Tech Services, Inc. performed all its 1993 commitments with never more than 10 field technicians working out of four (4) General Purpose Sampling Vehicles and six (6) Big Rigs. We managed all our commitments without relying on our #11 truck which was out of service during 1993, receiving a new body and serving as the test bed for the development of the new electric pump hose handling and cleaning package which you saw a week or so before it was completed. That #11 truck is now back in service and we are preparing to add field personnel.

We have also placed in service a new water hauling vehicle (#18) and have taken delivery of another new Ford Super Duty (#19) which is now in the shop to receive the same equipment package that was prototyped on #11. We hope to have #19 out of the shop by the time #20 arrives later in the first quarter of 1994. These added vehicles represent our commitment to a reasonable rate of growth which we achieve by backing up our field personnel with efficient equipment.

However, we do not require any additional vehicles to handle Texaco work in the amounts you are likely to limit us to. The #11 truck which is now in service can handle all the wells in any two Texaco territories with a 30% safety margin. That translates into a little more than one (1) site per day or one territory per month with the third month of each quarter free to pursue other work. The safety margin is actually even wider because our field personnel work only four days a week. If we found ourselves running behind we could add either more personnel or require overtime.

In practice we always assign several trucks to perform work of this type so that we can quickly build a broad base of experienced personnel. However, the single truck yardstick is useful for calculating the overall level of stress which a new assignment adds to the organization.

We have every reason to believe that we can handle whatever work you would like to award us. If we are fortunate enough to be successful in our bidding, we will commence work at Texaco sites during the first week of 1994.

Richard Blaine President