A Report Prepared for

R.R. Zelielinski

Texaco Refining and Marketing Inc. 100 Cutting Boulevard Richmond, California 94804

QUARTERLY TECHNICAL REPORT THIRD QUARTER OF 1989 FORMER TEXACO STATION 2225 TELEGRAPH AVENUE OAKLAND, CALIFORNIA

12/18/89

HLA Job No. 2251,111.03

by

Michael A. Sides Project Engineer

Randolph Stone

Associate Hydrogeologist

NO. 1214

CERTIFIED

ENGINEERING

GEOLOGIST

OF CALIFORNIA

Harding Lawson Associates 1355 Willow Way, Ste. 109 Concord, California 94520 415/687-9660

December 18, 1989

INTRODUCTION

This quarterly technical report (QTR) presents the results of site investigation and remediation activities conducted by Harding Lawson Associates (HLA) at a service station site, formerly owned by Texaco Refining and Marketing Inc., at 2225 Telegraph Avenue, Oakland, California (see Plate 1). Exxon Company U.S.A. currently owns and operates the site.

This QTR summarizes HLA's work at the site, ongoing since June 1988, and presents results of the recent quarter's work. The contents of this QTR are divided as follows:

- Site description
- Hydrogeologic setting
- · Summary of previous work
- Work performed during the third quarter of 1989
- Discussion of results.

SITE DESCRIPTION

The site is on the southwest corner of the intersection of Telegraph and West Grand Avenues (Plate 2). The surrounding area consists of commercial/retail businesses, including a Chevron service station immediately across Telegraph Avenue and a Beacon service station northeast of the site. Adjacent to the site on the south is the First Baptist Church of Oakland. There is an apartment building, currently occupied, immediately west of the site.

Surface elevation at the site is approximately 20 feet above mean sea level. The land surface slopes gently southeast, toward Lake Merritt and the Oakland/Alameda Inner Harbor, an area of tidal flats that have been filled. This area has been extensively developed, and surface water runoff is mainly controlled by the municipal storm sewer system.

Structures at the service station include a building, three fuel pump islands, one underground waste oil tank, and three underground fuel storage tanks. Leaded and unleaded gasoline are dispensed from these tanks; automotive repair services are also provided.

HYDROGEOLOGIC SETTING

The East Bay Plain has been divided into seven ground-water subareas, defined by the California Department of Water Resources (DWR) on the basis of areal differences (i.e., faults and other geologic conditions). This site lies within the Oakland Upland and Alluvial Plain subarea. Most ground water used in the East Bay Plain is for irrigation or industrial, rather than domestic, purposes. The majority of domestic water is supplied by the East Bay Municipal Utility District (EBMUD).

The ground-water reservoir is made up of the Alameda and Temescal Formations, along with the Merritt Sand; these have an aggregate thickness of more than 1,100 feet. According to maps for the area, surface geology at the site is within the Temescal

Formation, an alluvial fan deposit. Approximately 1,000 feet west of the site is an outcrop of the Merritt Sand. Direction of regional ground-water flow is west-southwest, toward San Francisco Bay.

Subsurface materials at the site, down to the maximum depth explored of 20 feet, generally consist of stiff, silty clay (CL), underlain by a dense layer of silty sand of varying thickness. The hydraulic conductivity of the shallow, saturated sand aquifer beneath the site is estimated from slug tests to range from 1.2 to 5.9 feet per day (Table 5). Ground water is currently encountered at approximately 13 feet below grade.

The tops of well casings were surveyed to a temporary datum located at the western end of the dispenser island nearest West Grand Avenue, with an assumed elevation of 100.0 feet (HLA datum, see Plate 3). Well monitoring and survey data are presented in Table 1. The estimated direction of ground-water flow is to the southwest, with a gradient of 0.005 foot per foot, as shown on the Ground-water Surface Map, Plate 4.

SUMMARY OF PREVIOUS WORK

Previous Investigation

Since May 1988, HLA has investigated soil and ground-water conditions at this site. To date, the investigation has been performed in three sequential phases, and results were presented in reports issued on the following dates:

1. Sensitive Receptor Study May 24, 1988

2. Subsurface Investigation July 20, 1988

3. Environmental Assessment June 22, 1989

Soil-gas Survey

In September 1988, a soil-gas survey was conducted to help evaluate the lateral extent of petroleum hydrocarbons. Soil-gas probes were driven at seven locations on site and in streets near the site (Plate 3).

Soil-gas testing is conducted using a mobile van. A hollow steel probe is driven 6 to 10 feet into the ground, and a vacuum pump is attached to its above-ground end. Immediately upon extraction, soil-gas and/or water samples are analyzed with a portable gas chromatograph for concentrations of benzene, toluene, ethylbenzene, and xylenes (BTEX) and total petroleum hydrocarbons (TPH).

At this site, detectable concentrations of petroleum products in soil-gas samples were limited to probe locations SG-3 and SG-4 (Plate 3). Both SG-3 and SG-4 were placed along the edge of Telegraph Avenue, which lies over underground sewer and storm drain lines. The chromatography produced by analysis of these samples resembled patterns associated with paint or varnish more than those of gasoline. Results of the soil-gas survey are summarized in Table 2.

Soil Borings

HLA explored subsurface conditions on and off site by drilling and sampling 15 soil borings between June 1988 and August 1989. Nine of these were completed as monitoring wells (MW-6A through MW-6I). Boring locations are shown on Plate 3. Because of restricted subsurface access on Telegraph and West Grand Avenues, no off-site exploration was conducted north or east of the site. These restrictions were imposed by the City of Oakland and the Bay Area Rapid Transit (BART), whose tunnel is in this area (see Plate 2).

Borings were advanced using truck-mounted, hollow-stem auger drilling equipment. Sampling was conducted with a 2.5-inch-diameter (I.D.), Sprague and Henwood (S&H), split-barrel sampler lined with three 6-inch-long, stainless steel tubes. Drilling was performed under the direction of an HLA field geologist, who logged the borings.

Soil samples were screened in the field for volatile organic vapors. Selected samples were preserved and transported under chain-of-custody protocol to ChemWest Analytical Laboratories, Inc. (ChemWest), in Sacramento, California. They were analyzed for levels of BTEX and TPH as gasoline (see Table 3).

Water Quality Sampling

Within two weeks after installation, each monitoring well was developed, sampled, and surveyed by an HLA technician. All monitoring wells are resampled periodically, using the following procedures.

Each monitoring well is purged of at least three well volumes. A ground-water sample is then collected with a clean, stainless steel bailer and decanted into laboratory-prepared, 40 milliliter, volatile organic analysis (VOA) vials. The vials are immediately sealed, labeled, and placed in a cooler with ice; transported under chain-of-custody protocol to ChemWest; and analyzed for BTEX content. Results are presented in Table 4.

Aguifer Hydraulic Testing

Hydraulic conductivity was estimated from the results of three single-well slug tests, using monitoring wells MW-6H, MW-6D, and MW-6E. A volume (slug) of water was injected into MW-6D and pumped from MW-6E and MW-6H. A pressure transducer, placed near the bottom of the wells, measured the rate of water level recovery. The output of the transducer was recorded by a data logger for subsequent analysis. The most permeable stratum adjacent to the well screen in the saturated zone was classified as hydraulically confined or unconfined by comparing the water level in the well to its stratigraphic log. Slug test results are presented in Table 5.

WORK PERFORMED DURING THE THIRD QUARTER OF 1989

HLA performed the following activities during the third quarter of 1989:

 Drilled three shallow soil borings near the pump islands, collected soil samples, and analyzed them for BTEX and TPH

- 2. Measured water levels in all monitoring wells
- Purged and sampled ground water from all monitoring wells, collected water samples, and analyzed them for BTEX and TPH
- Prepared a remedial work plan.

Soil Borings

On August 3, 1989, to gain information on hydrocarbons in vadose-zone soils near the pump islands, borings B-5, B-6, and B-7 were drilled to a depth of 10 feet at locations shown on Plate 3. An HLA field geologist logged these borings. Soil samples were obtained from the vadose zone, sealed, and transported to ChemWest, under chain-of-custody protocol, for analyses of TPH as gasoline and BTEX content (Table 3).

The borings were backfilled to the ground surface with a cement-bentonite grout. Drill cuttings were disposed of at a Class III landfill.

Ground-water Sampling

On September 7, 1989, ground-water samples were collected from each well. The ground-water samples were delivered to ChemWest, under chain-of-custody protocol, for chemical analyses of BTEX and TPH as gasoline. Results are presented in Table 4 and the distribution of hydrocarbons is shown on Plate 5. Water levels recorded on October 3, 1989 are presented in Table 1 and used to prepare the Ground-Water Surface Map, Plate 4.

Remediation Work Plan

A work plan for remediation is being prepared and will be issued in the fourth quarter of 1989.

DISCUSSION OF RESULTS

<u>Vadose-Zone Soil Condition</u>

No significant concentrations of petroleum hydrocarbons have been found in vadose-zone soils. BTEX constituents and TPH in excess of 100 parts per million (ppm) have been detected exclusively in soils at 12 to 13.5 feet below the ground surface; this depth is within the zone of fluctuation of the ground-water table.

Ground-water Conditions

No free product has been observed in any of the monitoring wells. As shown on Plate 5, hydrocarbons dissolved in the ground water are generally limited to the vicinity of the tanks and pump islands, extending southwest.

Water from five on-site wells near the tanks and pump islands contains detectable levels of TPH as gasoline. As of September 1989, the lateral limits of the plume are delineated by MW-6G, MW-6A, MW-6F, and MW-6I; samples from these wells show no detectable hydrocarbons (detection limit for TPH = <50 parts per billion [ppb]). Upgradient plume definition is incomplete because of restricted subsurface access imposed by the City of Oakland and BART.

Hydrocarbon contaminants may be migrating to the site from an upgradient source. In water from upgradient well MW-6B, combined concentrations of BTEX have increased from 7 to 160 ppb (samplings of October 20, 1988, and July 11, 1989, respectively). Water samples from every monitoring well besides MW-6B and downgradient well MW-6E have exhibited a reduction in BTEX over the same time period.

Source of Dissolved Hydrocarbons

Our results to date suggest that gasoline handling operations on site have produced the BTEX components found in ground water both on and off site. Tank system integrity testing in 1988 showed that the fuel storage and dispensing systems were tight. It is therefore likely that the fuel hydrocarbons encountered have resulted either from surface spillage, overfilling during product delivery, or line or tank leakage that occurred before the current storage and dispensing systems were installed.

LIST OF TABLES

Table 1	Well Monitoring and Survey Data
Table 2	Analytical Results of Soil-gas Survey
Table 3	Results of Soil Chemical Analyses
Table 4	Results of Ground-water Chemical Analyses
Table 5	Slug Test Results

LIST OF ILLUSTRATIONS

Plate	1	Site Location Map
Plate	2	Vicinity Plan
Plate	3	Site Plan
Plate	4	Ground-water Surface Map
Plate	5	Distribution of Hydrocarbons in Ground Water

Table 1. Well Monitoring and Survey Data

Well No.	Top of Casing Elevation* (feet)	Depth to Ground Water**(feet)	Ground-Water Surface Elevation+ (feet)
MW-6A	98.99	13.77	85.22
MW-6B	98.81	13.01	85.80
MW-6C	99.89	14.41	85.48
MW-6D	98.78	13.53	85.25
MW-6E	98.99	13.84	85.15
MW-6F	99.91	14.73	85.18
MW-6G	99.16	12.39	86.77
MW-6H	97.93	12.39	85.54
MW-6I	97.60	12.82	84.78

Notes:

- * Elevation relative to HLA temporary benchmark located at the western end of the dispenser island nearest West Grand Avenue, with an arbitrary elevation of 100.0 feet (see Plate 3).
- ** Depth to ground water on October 3, 1989.
- + Ground-water surface elevation = top of casing elevation depth to water.

Table 2. Analytical Results of Soil-gas Survey Conducted on September 19, 1988

Concentrations in micrograms per liter $(\mu g/L)$

Sample	Depth <u>(feet)</u>	<u>Benzene</u>	Ethyl- benzene	<u>Toluene</u>	<u>Xylenes</u>	Total Petroleum <u>Hydrocarbons</u>
Air	N/A	<0.7	<0.8	<0.8	<0.8	<0.7
SG-01						
SG-02	5.0	<0.7	<0.8	<0.8	<0.8	<0.7
SG-03	12.0	10	4	<0.8	2,800	6,100
SG-04	13.0	<0.7	<0.8	<0.8	140	780
WS-05*	12.0	<75	<76	<77	<77	<75
SG-06	13.0	<0.7	<0.8	<0.8	<0.8	<0.7
SG-07						
Air	N/A	<0.7	<0.8	<0.8	<0.8	<0.7

^{-- -} Not able to obtain sample

N/A - Not applicable
Air - Ambient air sample
* - WS-05 was a sample of ground water

Table 3. Results of Soil Chemical Analyses Concentrations in milligrams per kilogram (mg/kg)

Sample <u>Number</u>	Depth (feet)	l <u>Benzene</u>	Ethyl- 2 benzene	3 Toluene	3 Xylenes	TPH as 4 Gasoline
B-1	8.0	0.05	ND	ND	ND	ND
B-1	13.0	ND (5)	10 (10)	16 (10)	41 (10)	2,000 (1,000)
B-2	7.0	ND	ND	ND	ND	ND
B-2	13.5	ND	ND	ND	ND	ND
B-3	7.0	0.06	ND	ND	ND	ND
B-3	13.5	40 (25)	84 (50)	390 (50)	370 (50)	11,000 (5,000)
B-4	13.5	ND	ND	ND	ND	ND
B-5	5.5	ND	ND	ND	ND	ИD
B-5	9.5	ND	ND	ND	ND	ND
B-5	12.5	ND	ND	ND	ND	ND
B-6	6.0	ND	ND	ND	ND	ND
B-6	9.5	ND	ND	ND	ND	ND
B-6	12.0	40 (5)	40 (20)	110 (10)	450 (10)	3,000 (1,000)
B-7	6.0	0.64	0.4	0.9	3.4	24
B-7	9.5	0.5	ND	0.7	1.0	ND
B-7	12.0	20 (5)	20 (20)	72 (10)	190 (10)	1,400 (1,000)
MW-6E	13.0	ND	ND	ND	ND	ND
MW-6F	13.0	ND	ND	ND	ND	ND
MW-6G	13.5	ND	ND	ND	ND	5.2
MW-6H	13.5	11 (0.5)	8.8 (2)	3.2 (1)	19 (1)	1,000 (495)
MW-6I	13.5	ND	ND	ND	ND	ND

ND = Not detected.

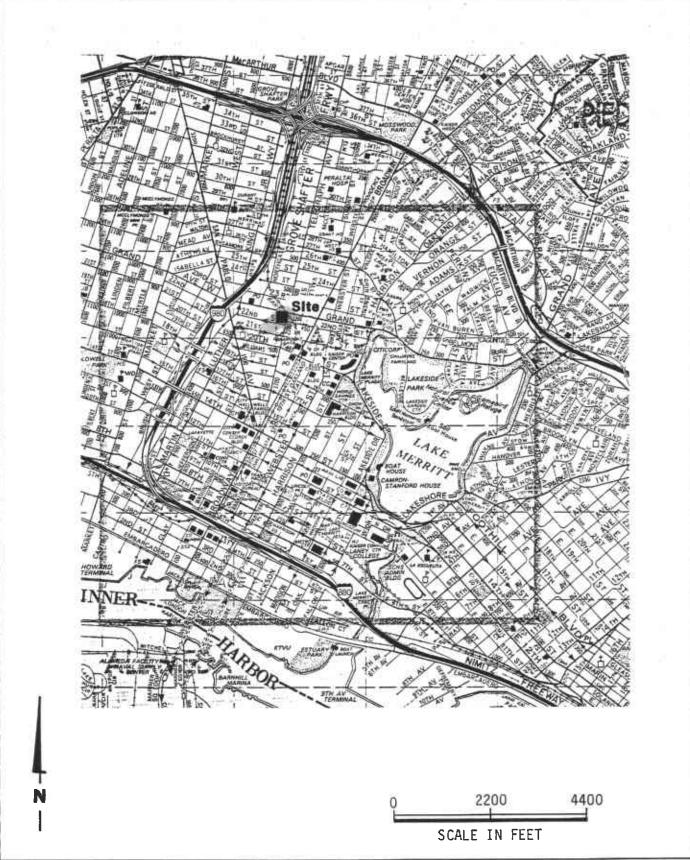
- Detection limit 0.05 mg/kg except as noted in parentheses.
- Detection limit 0.2 mg/kg except as noted in parentheses.
- 3 Detection limit 0.1 mg/kg except as noted in parentheses.
- 4 Detection limit 10 mg/kg except as noted in parentheses.

Table 4. Results of Ground-water Chemical Analyses Concentrations in micrograms per liter ($\mu g/L$)

EPA TEST METHOD 602

Well <u>Number</u>	Date <u>Sampled</u>	1 Benzene	<u>Ethylbenzene</u> 2	<u>Toluene³</u>	3 Xylenes	TPH ⁴ (as gasoline)
MW-6A	06/24/88	ND	ND	ND	ND	-
MW-6A	10/20/88	1	ND	ND	ND	
MW-6A	09/07/89	2	ND	ND	ND	ND
MW-6B	06/24/88	ND	ND	ND	5	•
MW-6B	10/20/88	4	ND	3	NĐ	-
MW-6B	09/07/89	70 (2.5)	60 (3)	8 (3)	160 (4)	2,700 (25)
MW-6C	06/24/88	7,400	170	7	2,300	-
MW-6C	10/20/88	9,500 (50)	170 (2)	65 (100)	850 (1)	-
MW-6C	09/07/89	7,900 (25)	350 (25)	430 (25)	1,100 (38)	18,000 (2,500)
MW-6D	07/11/88	220 (5)	ND (20)	27 (10)	ND (10)	-
MW-6D	10/20/88	710 (5)	22 (20)	74 (10)	110 (10)	-
MW-6D	09/07/89	600 (12.5)	58 (13)	26 (13)	31 (19)	2,200 (1,250)
MW-6E	10/20/88	1	ND	ND .	3	
MW-6E	09/07/89	3	ND	ND	ND	220
MW-6F	10/25/88	ND	ND	ND .	2	
MW-6F	09/07/89	ND	ND	ND	ND	ND
MW-6G	12/07/88	ND	ND	ND	ND	-
MW-6G	09/07/89	DИ	ND	ND	ND	ND
MW-6H	12/07/88	1 ,200 (25)	110 (20)	320 (10)	220 (10)	_
MW-6H	09/07/89	480 (10)	16 (10)	ND (10)	ND (15)	660 (500)
MW-6I	12/07/88	ND	ND	ND	ND	-
MW-61	09/07/89	ND	ND	ND	ND	ND

ND = Not detected.


Detection limits given in parentheses, where applicable. If not:

- 1. Detection limit = 0.5
- 2. Detection limit = 2
- 3. Detection limit = 1
- 4. Detection limit = 50

Table 5. Slug Test Results

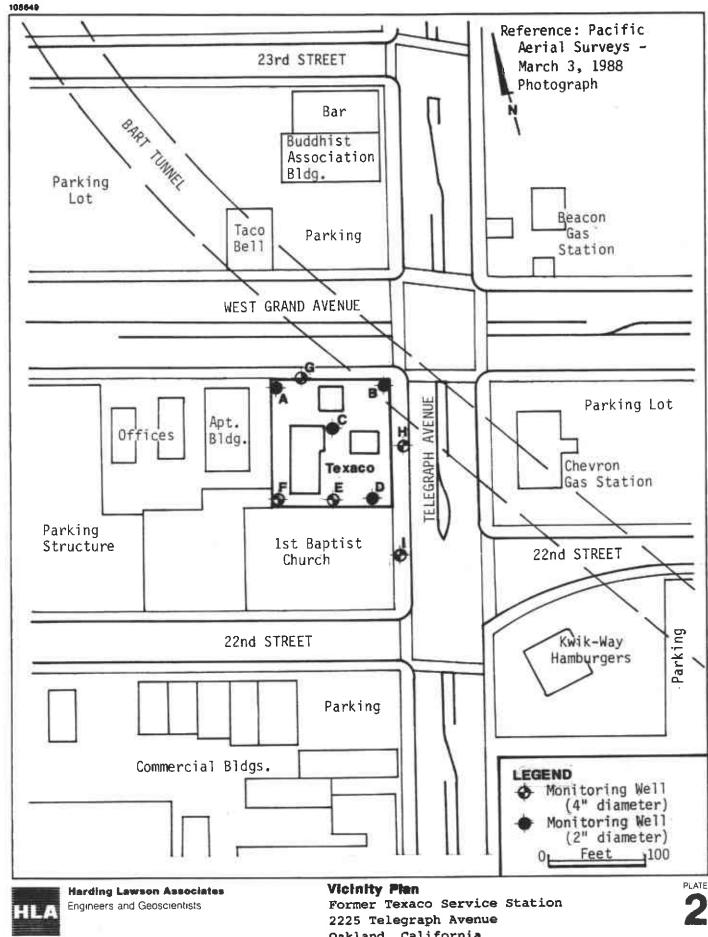
	Most Permeab	le Stratum Adjacen	t to Well Scr	een
				Estimated Hydraulic
Well <u>Number</u>	Lithology	Classification	Thickness (feet)	Conductivity (feet/day)
MW-6D	sand	confined	2	5.9
MW-6E	sand, fine-grained	confined	2.5	1.2
мw-6н	sand, medium-grained	unconfined	6	4.8

Harding Lawson AssociatesEngineers and Geoscientists

JOB NUMBER

2251,111.03

Site Location Map Former Texaco Service Station 2225 Telegraph Avenue Oakland, California PLATE


YC

APPROVED

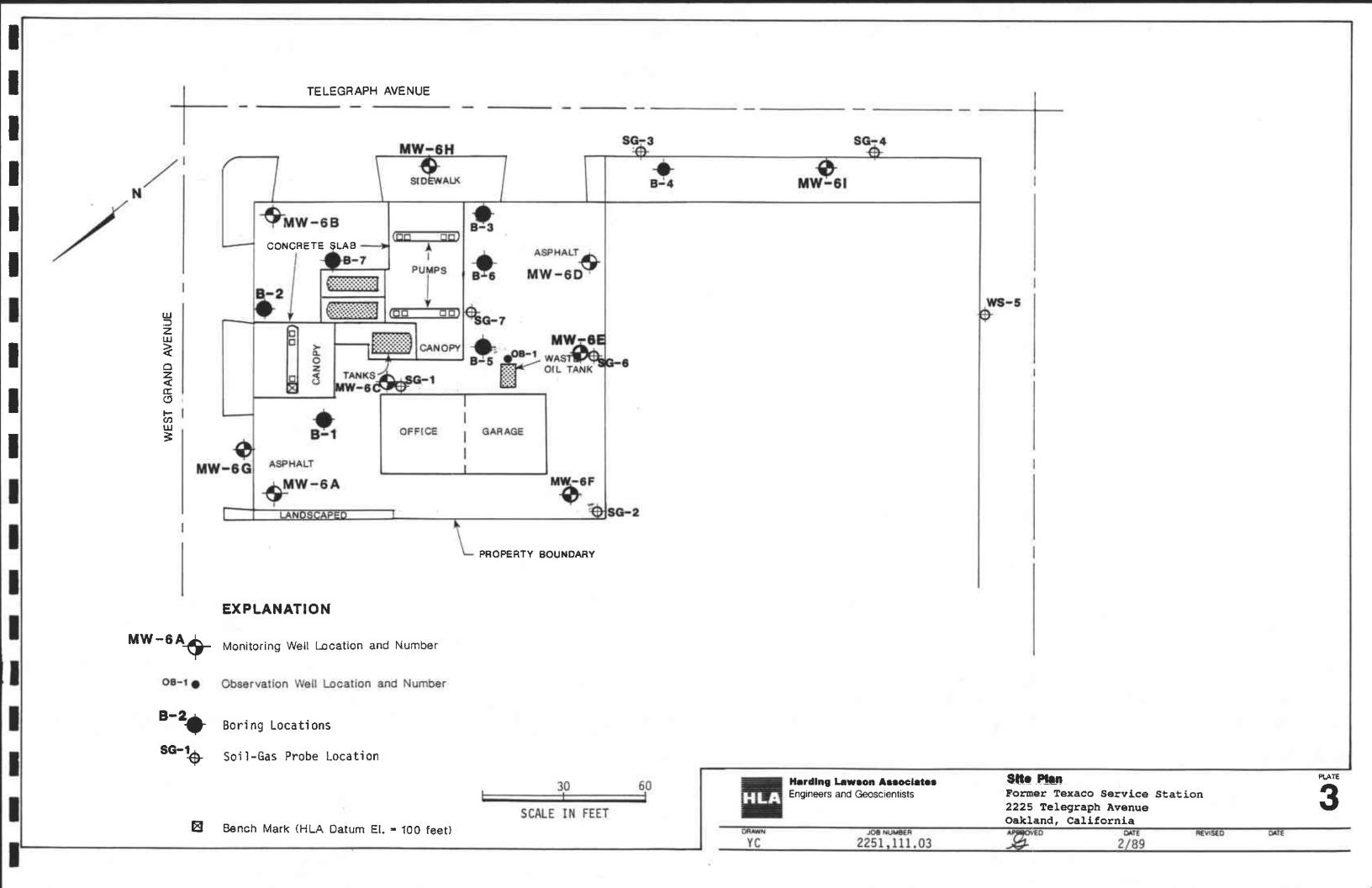
DATE 2/89

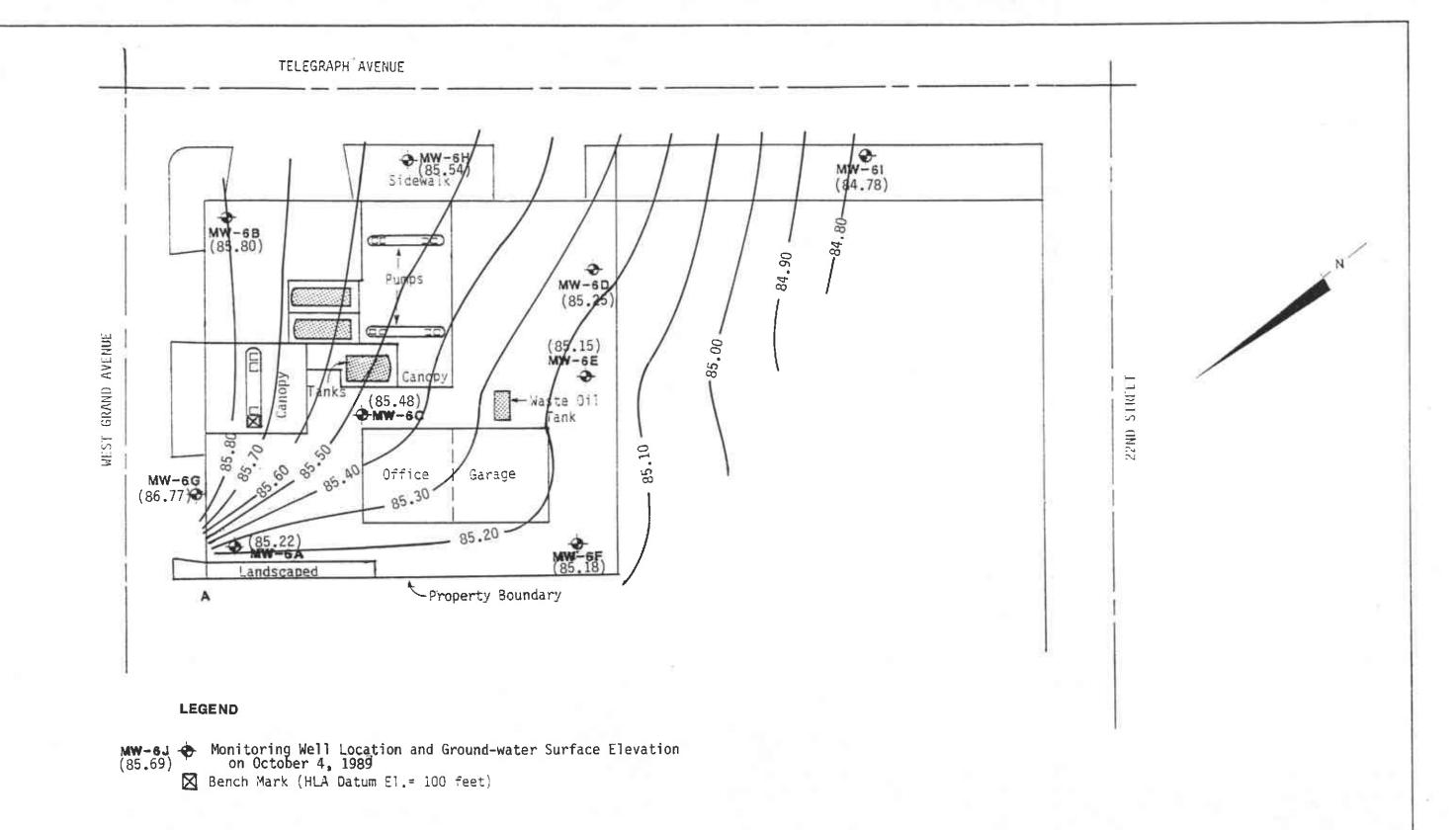
REVISED

DATE

DRAWN YC

JOB NUMBER 2251,111.03


Oakland, California DATE


REVISED

DATE

APPROVED

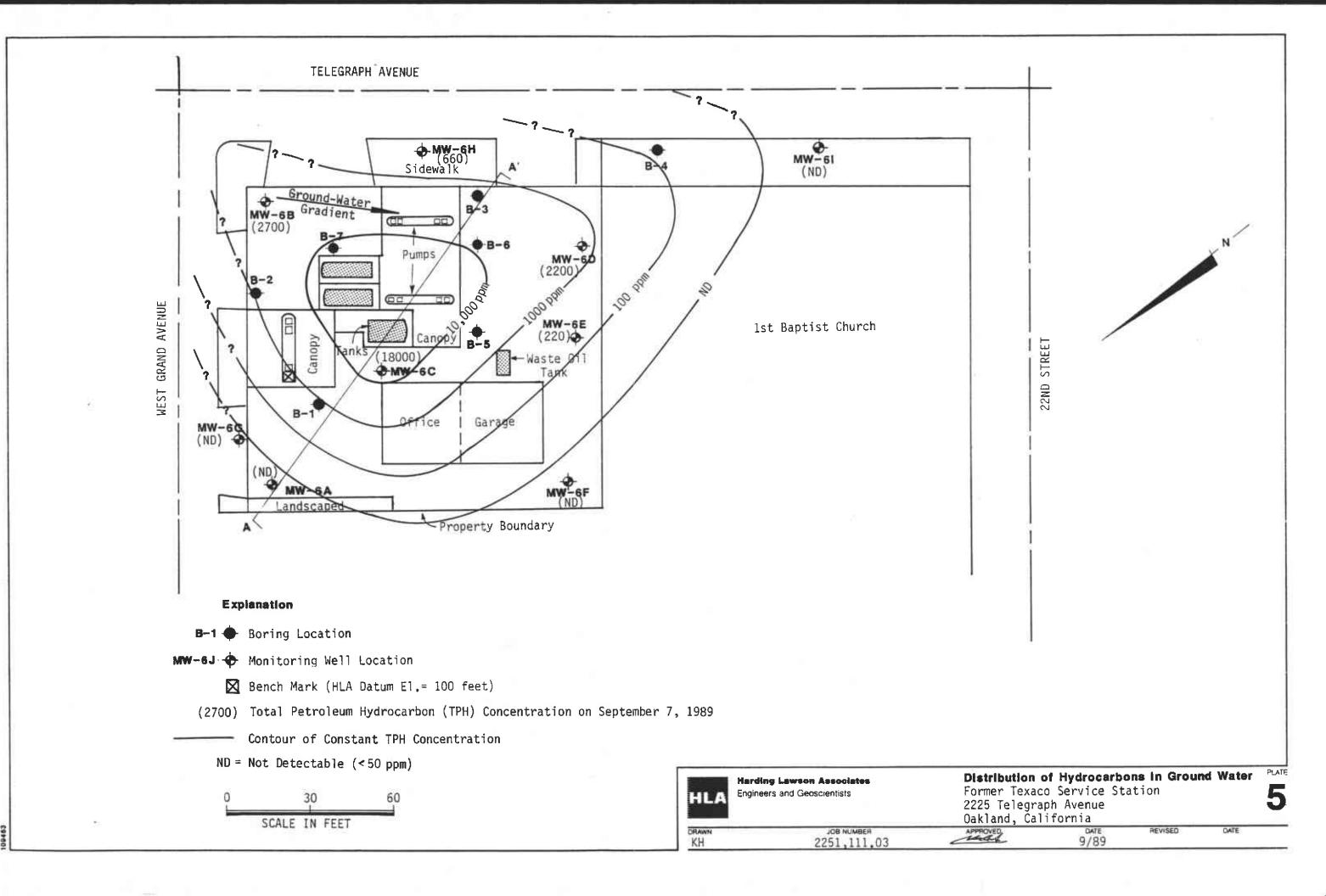
12/88

SCALE IN FEET

HLA Harding Lawson Associates
Engineers and Geoscientists

Ground-Water Surface Map Former Texaco Service Station 2225 Telegraph Avenue Oakland, California

9/89


4

KH JOB NUMBER 2251,111.03

APPROVED

REVISEO

4.6.2

DISTRIBUTION

3 copies: Texaco Refining and Marketing Inc. 100 Cutting Boulevard

Richmond, California 94804

Attention: Mr. R. R. Zielinski

MAS/RS/ly 031018T/R30

QUALITY CONTROL REVIEWER

Stephen J. Osborne Principal Engineer