

May 3, 2013

Ms. Dilan Roe

Shari London Program Manager Remediation Management

Phillips 66 3900 Kilroy Airport Way, Suite 210 Long Beach, CA 90806 Phone 562-290-1723 shari.a.london@p66.com

RECEIVED

By Alameda County Environmental Health at 11:06 am, May 07, 2013

Re: Report Submittal

1131 Harbor Bay Parkway Alameda, California 94502-6577

Alameda County Environmental Health

Pilot Test Evaluation and Additional Assessment Work Plan 76 (Former BP) Service Station No. 2611117 7210 Bancroft Avenue Oakland, California

Dear Ms. Roe,

I declare under penalty of perjury that, to the best of my knowledge, the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please contact Ms. Nicole Persaud with Antea Group at (407) 758-3428.

Sincerely,

Shari London

Program Manager, Phillips 66 Remediation Management

Enc: Antea Group, Pilot Test Evaluation and Additional Assessment Work Plan

Pilot Test Evaluation and Additional Assessment Work Plan

76 (Former BP) Service Station No. 11117 7210 Bancroft Avenue Oakland, California

Alameda County Environmental Health Case No. RO0000356

Antea Group Project No. 142611117 April 29, 2013

Prepared for:
Dilan Roe, P.E.
Alameda County Environmental Health
1131 Harbor Bay Parkway
Alameda, California 94502-6577

Prepared by:
Antea™Group
1155 North 1st Street, Suite 201
San Jose, CA 95112
+1 800 477 7411

Table of Contents

1.0	INTRODUCTION	1
1.0	INTRODUCTION	. 1
2.0	SITE DESCRIPTION	. 1
2.1	Summary of Geologic and Hydrogeologic Conditions	. 1
		_
3.0	PILOT TEST EVALUATION	
3.1	Plume Stop™ Pilot Test Summary	
3.2	Post-Injection Groundwater Monitoring	
3.3	Feasibility of Plume Stop™	. 2
1.0	ADDITIONAL ASSESSMENT WORK PLAN	. 3
4.1	Pre-Field Activities	
4.2	Cone Penetrometer Test/Ultraviolet Optical Screening Tool (CPT/UVOST) Investigation	
4.	.2.1 Soil Sampling	
4.3		
	Replacement of Well MW-4	
4.	.3.2 Installation of MW-4R	. 5
4.	.3.3 Well Development	. 6
1	.3.4 Well Survey	
4.	.3.5 Waste Disposal	. 6
	COUED IVING AND DEPONTING	
5.0	SCHEDULING AND REPORTING	. t
5.0	REMARKS	. 7
7.0	REFERENCES	. 8

Tables

Table 1	Soil Boring and Monitoring Well Construction Details
Table 2	Baseline and Post-Injection Groundwater Gauging and Analytical Data
Table 3	Historical Groundwater Gauging and Analytical Data

Figures

Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Baseline and Post-Injection Groundwater Analytical Data Map
Figure 4	MW-4 Contaminant Concentrations versus Time
Figure 5	Site Plan with Proposed Soil Boring Locations
Figure 6	Proposed Well Construction Diagram - MW-4R

Pilot Test Evaluation and Additional Assessment Work Plan 76 (Former BP) Service Station No. 11117 7210 Bancroft Avenue, Oakland, California Antea Group Project No. 142611117

Appendices

Appendix A Site Details and Summary of Previous Environmental Investigations
Appendix B Regenesis' Technical Memorandum dated November 28, 2012
Appendix C Laboratory Analytical Report and Validation Form – 90 Day Event
Appendix D Blaine Tech Services Field Data Sheets – 90 Day Event
Appendix E Antea Group's Standard Operating Procedures

Pilot Test Evaluation and Additional Assessment Work Plan

76 (Former BP) Service Station No. 11117 7120 Bancroft Avenue, Oakland, California Alameda County Environmental Health Case No. RO0000356

1.0 INTRODUCTION

Antea®Group is submitting this *Pilot Test Evaluation and Additional Assessment Work Plan* for the above referenced site located in Oakland, California (**Figure 1**) to report findings and propose additional work. This report presents analytical data from the 90-day sampling event following the Plume Stop™ Pilot Test conducted in March 2012 and evaluates the feasibility of continuing to use the Plume Stop™ technology. Additionally, this document outlines Antea Group's proposed strategy for assessing potential secondary source conditions beneath the site.

2.0 SITE DESCRIPTION

The site is an active gasoline station that includes a service station building, three 12,000-gallon gasoline underground storage tanks (USTs), one 10,000-gallon diesel UST, and the associated product piping and dispensers (Figure 2). Refer to Appendix A for additional site information and for a history of the environmental investigations and remedial actions.

2.1 Summary of Geologic and Hydrogeologic Conditions

Fine-grained sediments including clays and silts to depths varying from 6 feet to 10 feet below ground surface (bgs) underlay the site. Coarse-grained sediments consisting of sands, clayey sands, gravels, and clayey gravels underlay the fine-grained sediments to depths varying between approximately 10 feet to 35 feet bgs. The thickness of the coarse-grained sediments generally ranges between 10 feet to 20 feet across the site.

Table 1 summarizes the historical boring and well construction details. Historically, depth to water has ranged from 9.49 feet below top of casing (BTOC) in well MW-3 in second quarter 2000 to 34.07 feet BTOC in well MW-2 in fourth quarter 1993. Groundwater elevation has ranged from 15.43 feet in well MW-3 in fourth quarter 2008 to 40.46 feet in well MW-3 in second quarter 2000. Historical data shows that the groundwater flows predominantly to the northeast at the site, but is sometimes variable and has also been observed to the southeast. Antea Group calculated the average historical groundwater flow gradient to be 0.015 feet per foot (ft/ft) at the site.

Pilot Test Evaluation and Additional Assessment Work Plan 76 (Former BP) Service Station No. 11117 7210 Bancroft Avenue, Oakland, California Antea Group Project No. 142611117

3.0 PILOT TEST EVALUATION

3.1 Plume Stop™ Pilot Test Summary

Antea Group contracted with Regenesis, the developer of Plume Stop™, to perform pilot test activities. The Plume Stop™ Pilot Test was centered on monitoring well MW-4. Per our December 13, 2011 Remedial Investigation Work Plan Addendum, the pilot test involved three phases:

- Phase 1 Pre-application investigation work [principally Hydraulic Profile Testing (HPT) and baseline groundwater sampling],
- Phase 2 Plume Stop™ application using direct-push injection, and
- Phase 3 Post-injection groundwater monitoring of well MW-4 at a minimum of 30-days, 60-days, 90-days, and 6 months following the completion of injections.

Phases 1 and 2 were completed in the first quarter 2012. Phase 3 was completed in the third quarter 2012. Regenesis prepared a technical memorandum, dated November 28, 2012, summarizing work performed for all pilot test events and provided interpretation of their data and observations. A copy of Regenesis' technical memorandum is presented as **Appendix B.** A final evaluation of the completed pilot test is contained herein.

3.2 Post-Injection Groundwater Monitoring

Data collected from baseline monitoring through the 60-day post-injection monitoring event were reported in the *Site Investigation and Pilot Test Report* dated June 29, 2012. The 6-month post-injection monitoring event was reported with the *Semi-Annual Monitoring Report, Third Quarter 2012* dated November 15, 2012. The 90-day post-injection monitoring event was performed on June 27, 2012. This data was inadvertently omitted from previous reports and is therefore included with this report (**Appendix C** and **D**). Refer to **Table 2** and **Figure 3** for a summary of baseline and post-injection groundwater data collected at well MW-4. **Table 3** contains historical groundwater analytical data for all site monitoring wells.

3.3 Feasibility of Plume Stop™

Following a review of the site data and discussions with Regenesis, Antea Group does not propose to continue using Plume Stop[™] in the area surrounding MW-4. This decision is based upon reported increases in gasoline range organics (GRO) concentrations observed as soon as one month following the Plume Stop[™] application. **Figure 4** presents a time series graph of hydrocarbon concentrations in MW-4 relative to the Plume Stop[™] injection event. These increases in dissolved GRO concentrations suggest that additional hydrocarbon mass may have been desorbed by the injection of the Plume Stop[™] material. It appears that the pre-injection baseline data may not accurately represent the hydrocarbon mass present in the subsurface. However, Regenesis stated that Plume Stop[™] may have captured a portion of the contaminant mass. This presumption is supported by the decreased and stable concentrations of methyl tert-butyl ether (MTBE) and tertiary butyl alcohol (TBA) reported over the

Pilot Test Evaluation and Additional Assessment Work Plan
76 (Former BP) Service Station No. 11117
7210 Bancroft Avenue, Oakland, California
Antea Group Project No. I42611117

same period where GRO concentrations increased. MTBE and TBA are the more soluble and less adsorptive compounds present in gasoline.

The pilot test did demonstrate that subsurface soils are amenable to injection remediation techniques with little or no day lighting of the injection amendment at flow rates of 1.2 to 3.4 gallons per minute and pressures of 10 to 110 pounds per square inch. The further use of injectable remediation technologies may be considered in future strategies.

4.0 ADDITIONAL ASSESSMENT WORK PLAN

A more accurate understanding of subsurface conditions is required prior to the continuation of remediation efforts. Antea Group proposes additional investigation near MW-4 to evaluate the horizontal and vertical extent of potential secondary source materials in the subsurface using high resolution soil profiling tools, collecting soil samples and replacing well MW-4. All drilling activities will be performed by a licensed drilling contractor possessing a valid State of California C-57 license.

4.1 Pre-Field Activities

Prior to initiating field activities, Antea Group will produce a Health and Safety Plan (HASP) in accordance with Title 8, Section 5192 of the California Code of Regulations. The HASP will contain a list of emergency contacts, a hospital route map to the nearest emergency facility, and will be reviewed daily in the field. Antea Group will also obtain all necessary soil boring and well installation permits from the appropriate city and county agencies. All field activities will conform to Antea Group's *Standard Operating Procedures* (Appendix E).

4.2 Cone Penetrometer Test/Ultraviolet Optical Screening Tool (CPT/UVOST) Investigation

Antea Group proposes to utilize CPT/UVOST technology to assess hydrocarbon concentrations in the area of MW-4. CPT provides continuous lithologic and hydrogeologic data by advancing a piezocone via direct-push that collects relative density, strength, static and dynamic pore pressure, and hydraulic conductivity. The UVOST module is located behind the standard piezocone of a CPT probe and detects the presence of polycyclic aromatic hydrocarbons (PAH). PAHs are contained (to varying degrees) in gasoline, diesel, jet fuel, and hydraulic fluids. Different PAHs fluoresce at different wavelengths, and by measuring the intensity and wavelength of the fluoresced PAHs, UVOST is able to quantify the type and wavelength signal intensity of PAHs detected in a boring. Signal intensities of various wavelengths can be used to assess relative magnitudes of hydrocarbons in each boring.

A CPT/UVOST combination rig will be utilized to assess the presence of hydrocarbons at discrete soil depths and to define the vertical and lateral extent of detected hydrocarbons in the site's source area. Up to ten CPT/UVOST borings (CPT-4 through CPT-13) are proposed for this investigation. Final boring locations will be adjusted in the field and cleared of subsurface utilities to a depth of five feet bgs using a hand auger before borehole

Pilot Test Evaluation and Additional Assessment Work Plan 76 (Former BP) Service Station No. 11117 7210 Bancroft Avenue, Oakland, California Antea Group Project No. 142611117

advancement. Proposed CPT/UVOST boring locations are shown on **Figure 5**. Each boring will be completed to approximately 35 feet bgs and will be logged using the real-time data analysis capability provide by the CPT/UVOST system.

Once data logging is complete, each boring will be properly abandoned by backfilling the borehole with neat cement via a tremie pipe. The surface of each abandoned boring will be patched to match existing surface conditions.

4.2.1 Soil Sampling

Soil samples may be collected from CPT/UVOST locations at target depths identified by CPT/UVOST data. To collect soil samples, an additional boring will be advanced adjacent to the CPT/UVOST boring with a soil collection head. Soil samples will be screened in the field using a Photo-Ionization Detector (PID) and a Cheiron-brand Sudan OilScreenSoil field test kit (Sudan strips). The following is a description of the Sudan strip field kit provided by the Cheiron website:

Suspected petroleum or dense [non aqueous phase liquid] NAPL (DNAPL [and light NAPL (LNAPL)]) contaminated soil is added to the sample bottle, to which potable water is also added and the contents shaken vigorously. A rapidly dissolving cube is attached to the cap. The cube has a Sudan IV based red oil soluble dye and a fluorescing yellow/green water soluble dye disbursed throughout its surface.

The red dye stains petroleum products (including DNAPLs [and LNAPL]) red; while the green dye colors the water to provide a visual contrast between the two colors. When free petroleum floats to the surface it attaches to an expandable polystyrene (EPS) bead that is supplied with the kit and/or attaches to the walls of the container. From concentrations below about 2,500 ppm to the limit of detection (which is about 500 ppm) the EPS bead will turn pink. At very low concentrations we suggest using a used kit as a comparison for the color depth of the EPS bead as the color change may be slight.

The range of detection is approximate because a soil's affinity for oil will vary.

Based on field observations, soil samples will be selected and immediately capped, placed on ice and submitted for laboratory analysis to Kiff Analytical, LLC (Kiff), a National Environmental Laboratory Accreditation Program (NELAP) certified lab, No. 08263CA for the following:

- GRO by Environmental Protection Agency (EPA) Method 8260B;
- Benzene, toluene, ethylbenzene, total xylenes (BTEX compounds) by EPA Method 8260B.
- MTBE, ethyl tertiary-butyl ether (ETBE), di-isopropyl ether (DIPE), tertiary-amyl methyl ether (TAME), TBA, ethanol, 1,2 dichloroethane (1,2-DCA) and 1,2 dibromoethane (EDB) by EPA Method 8260B.

Pilot Test Evaluation and Additional Assessment Work Plan 76 (Former BP) Service Station No. 11117

7210 Bancroft Avenue, Oakland, California

Antea Group Project No. I42611117

4.3 Replacement of Well MW-4

Comparison of MW-4's screen interval and the typical depth to water recorded at this well since it's installation in 1992 indicates that the screened interval of MW-4 is likely submerged most of the year. During the 6 month post-Plume Stop™ sampling event, pre- and post-purge groundwater samples were collected from MW-4 in order to evaluate the effect of the submerged screen condition on groundwater samples. The post-purge sample concentrations were generally greater than those of the pre-purge sample indicating possible localized desorption of hydrocarbon mass as a result of actively purging groundwater at MW-4. Therefore, hydrocarbon concentrations previously reported in this well may not be representative due to the submerged screen condition.

4.3.1 Destruction of MW-4

Based on the well construction details, MW-4 was installed in an 8-inch borehole. In order to remove all annulus materials, Antea Group proposes to destroy MW-4 via over-drilling with 10-inch diameter hollow stem augers to approximately 40 feet bgs, the total depth of the original borehole. The well construction details are provided in **Table 1**.

Prior to over-drilling, the licensed well driller will use air knife technology or a hand auger to clear the upper 5 feet of the well annulus for subsurface utilities. After over-drilling, the borehole will be backfilled with neat cement and capped with concrete to match existing surface conditions.

4.3.2 Installation of MW-4R

Antea Group will determine, based on results of the CPT/UVOST investigation described in **Section 4.2** above, and historical soil data, the optimal location for installation of replacement monitoring well MW-4R. This location is anticipated to be within a 5-foot radius of MW-4's original location.

The proposed replacement well location will be cleared to a depth of five feet bgs using an air knife or hand auger to insure utility clearance. The driller will then advance the borehole to a total depth of approximately 29 feet below ground surface (bgs) using 8-inch diameter hollow stem augers. Depth to groundwater is typically encountered between 16 and 20 feet bgs in MW-4. Based on historical depth to water data recorded in well MW-4, Antea Group proposes to construct replacement monitoring well MW-4R with 2-inch diameter schedule 40 polyvinyl chloride (PVC) casing with 0.020-inch slotted screen placed from 14 to 29 feet bgs.. Completion of the well annular space will consist of a sand pack from the bottom of the boring to 12 feet bgs, topped with two feet of hydrated bentonite, and followed by neat cement grout up to 1.5 feet bgs. MW-4R will be completed at the surface with a locking well cap and a traffic-rated well box set in concrete dyed to match the existing surface. Figure 6 includes a construction diagram of MW-4R.

During the drilling of MW-4R, soil samples will be collected continuously to the total depth of the boring, logged according to the unified soil classification system (USCS), and screened with a PID. Signs of petroleum

Pilot Test Evaluation and Additional Assessment Work Plan 76 (Former BP) Service Station No. 11117 7210 Bancroft Avenue, Oakland, California Antea Group Project No. 142611117

contamination such as discoloration, elevated PID readings, or discernible odor from the soil samples may warrant submittal to the laboratory for analysis. If soil samples are selected for analyses, Antea Group will submit the soil samples to a certified laboratory as outlined in **Section 4.2.1**.

4.3.3 Well Development

A California licensed well driller will develop MW-4R a minimum of 72 hours after installation by surging the length of the screened interval for a minimum of 15 minutes and evacuating a minimum of ten well casing volumes of groundwater. Antea Group or the driller will record groundwater parameters (depth to water, temperature, pH, conductivity, and turbidity) during the well development process. Antea Group will include the well development log in the final report documenting this scope of work.

4.3.4 Well Survey

Subsequent to the completion of the replacement well MW-4R, a California Licensed Land Surveyor (CLLS) will survey the northing/easting and latitude/longitude using North American Datum 83. The CLLS will survey the top of casing elevations to North American Vertical Datum 88, with the precision of vertical survey data being at least 0.01 foot. Antea Group will include the well survey data in the final report and upload to the GeoTracker database.

4.3.5 Waste Disposal

The licensed driller will store all soil cuttings, wastewater and construction debris generated during field activities in Department of Transportation (DOT) approved 55-gallon drums and in accordance with the corresponding DOT protocols for non-hazardous waste. Antea Group will properly label and inventory all drums. The drums will be temporarily stored on-site, pending analysis and laboratory characterization. Upon receipt of the analytical characterization data, Antea Group will arrange for a licensed disposal contractor to transport and dispose of the waste at an appropriate facility.

5.0 SCHEDULING AND REPORTING

Sixty-days following the submittal of this *Pilot Test Evaluation and Additional Assessment Work Plan* or upon regulatory approval, Antea Group will commence pre-field activities, including permitting and scheduling the field events and execute the outlined scope of work. Upon the completion of field activities and evaluation of data, Antea Group will submit a report summarizing findings and recommendations. A California Professional Geologist will oversee the proposed activities outlined in this work plan and will oversee preparation of a corresponding technical report. In accordance with State of California requirements for the GeoTracker database, Antea Group will upload the reports, maps, and all analytical data to the GeoTracker system per current standards.

Pilot Test Evaluation and Additional Assessment Work Plan 76 (Former BP) Service Station No. 11117 7210 Bancroft Avenue, Oakland, California Antea Group Project No. I42611117

6.0 REMARKS

The recommendations contained in this document represent Antea USA, Inc.'s professional opinions based upon the currently available information and are arrived at in accordance with currently accepted professional standards. This document is based upon a specific scope of work requested by the client. For any reports cited that were not generated by Delta or Antea Group, the data from those reports is used "as is" and is assumed to be accurate. Antea Group does not guarantee the accuracy of this data for the referenced work performed nor the inferences or conclusions stated in these reports. The contract between Antea USA, Inc. and its client outlines the scope of work, and only those tasks specifically authorized by that contract or outlined in this document were performed. This document is intended only for the use of Antea USA, Inc.'s client and anyone else specifically identified in writing by Antea USA, Inc. as a user of this document. Antea USA, Inc. will not and cannot be liable for unauthorized reliance by any other third party. Other than as contained in this paragraph, Antea USA, Inc. makes no express or implied warranty as to the contents of this document.

Prepared by:

Nadine Periat

Project Professional

Antea Group

Nicole Persaud

Project Manager

Antea Group

Information, conclusions, and recommendations provided by Antea Group regarding the site have been prepared under the supervision of and reviewed by the licensed professional whose signature appears below.

Licensed Approver:

Douglas K. Umland

Senior Project Manager

California Registered Professional Geologist No. 6159

Antea Group

Pilot Test Evaluation and Additional Assessment Work Plan 76 (Former BP) Service Station No. 11117 7210 Bancroft Avenue, Oakland, California Antea Group Project No. 142611117

7.0 REFERENCES

Antea®Group, June 2012, Site Investigation & Pilot Test Report, San Jose, California.

Antea®Group, November 2012, Semi-Annual Monitoring Report, Third Quarter 2012, San Jose, California.

Cheiron Resources Ltd, (n.d.), "Product Catalogues - OilScreenSoil (Sudan IV)® " Cheiron Resources Ltd TPH Field Screening Test Kits for Soil, Water and Solid Surfaces Website: http://www.cheiron-resources.com/oss-sudanivtphtester.php Accessed: February 2012

Gregg Drilling & Testing, Inc. (n.d.), "Laser Induced Fluorescence (UVOST), Cone Penetrating Test" Website: http://www.greggdrilling.com/equipment/label?labelid=label_conepenetrationtesting&offset=7 Accessed: February 2012

Pilot Test Evaluation and Additional Assessment Work Plan 76 (Former BP) Service Station No. 11117 7210 Bancroft Avenue, Oakland, California Antea Group Project No. I42611117

Tables

Table 1	Soil Boring and Monitoring Well Construction Details
Table 2	Baseline and Post-Injection Groundwater Gauging and Analytical Data
Table 3	Historical Groundwater Gauging and Analytical Data

anteagroup

TABLE 1 SOIL BORING AND MONITORING WELL CONSTRUCTION DETAILS 76 (FORMER BP) SERVICE STATION NO. 11117 7210 BANCROFT AVENUE

•		<i>-,</i>				
	OAK	LAN	D, C	ALIF	ORN	NΙΑ

OARLAND, CALIFORNIA													
Boring/Well ID	Well/Boring Completion Date	TOC Elevation ¹ (ft)	Borehole Depth (ft bgs)	Borehole Diameter (in)	Well Depth (ft)	Well Casing Diameter (in)	_	Well Screen Slot Size (in)	i intervai	Cement Grout Seal Interval (ft bgs)	Bentonite Seal Interval (ft bgs)	Filter Pack Interval (ft bgs)	Comments
								Soil Borings	S				
B-5	Jul-92	NA	50.0	8.0	NA	NA	NA	NA	NA to NA	0.0 to 50.0	NA to NA	NA to NA	
THP-1	Sep-94	NA	45.0	1.75	NA	NA	NA	NA NA	NA to NA	0.0 to 45.0	NA to NA	NA to NA	
TB-2	Sep-94	NA	45.0	1.75	NA	NA NA	NA	NA NA	NA to NA	0.0 to 45.0		NA to NA	
TB-3	Sep-94	NA	45.0	1.75	NA	NA	NA	NA NA	NA to NA	0.0 to 45.0	NA to NA	NA to NA	
TB-4	Sep-94	NA	45.0	1.75	NA	NA	NA	NA NA	NA to NA	0.0 to 45.0		NA to NA	
A-1	Sep-05	NA	46.5	4.25	NA	NA	NA	NA NA	NA to NA	0.0 to 46.5	NA to NA	NA to NA	
A-2	Sep-05	NA	42.0	2.0	NA	NA	NA	NA NA	NA to NA	0.0 to 42.0		NA to NA	
A-3	Nov-05	NA	36.0	2.0	NA	NA	NA	NA	NA to NA	0.0 to 36.0	NA to NA	NA to NA	
A-4	Nov-05	NA	36.0	2.0	NA	NA	NA	NA	NA to NA	0.0 to 36.0		NA to NA	
A-5	Nov-05	NA	36.0	2.0	NA	NA	NA	NA	NA to NA	0.0 to 36.0	NA to NA	NA to NA	
A-7	Nov-05	NA	36.5	4.25	NA	NA	NA	NA	NA to NA	0.0 to 36.5		NA to NA	
A-8	Nov-05	NA	36.5	4.25	NA	NA	NA	NA	NA to NA	0.0 to 36.5	NA to NA	NA to NA	
A-9	Nov-05	NA	36.5	4.25	NA	NA	NA	NA	NA to NA	0.0 to 36.5	NA to NA	NA to NA	
A-10	Nov-05	NA	39.0	4.25	NA	NA	NA	NA	NA to NA	0.0 to 39.0	NA to NA	NA to NA	
CPT-1	Apr-07	NA	60.0	1.75	NA	NA	NA	NA	NA to NA	0.0 to 60.0	NA to NA	NA to NA	
CPT-2	Apr-07	NA	60.0	1.75	NA	NA	NA	NA	NA to NA	0.0 to 60.0	NA to NA	NA to NA	
CPT-3	Apr-07	NA	60.0	1.75	NA	NA	NA	NA	NA to NA	0.0 to 60.0	NA to NA	NA to NA	
C-1	Oct-11	NA	35.0	3.25	NA	NA	NA	NA	NA to NA	0.0 to 35.0	NA to NA	NA to NA	
C-2	Oct-11	NA	35.0	3.25	NA	NA	NA	NA	NA to NA	0.0 to 35.0	NA to NA	NA to NA	
C-3	Oct-11	NA	35.0	3.25	NA	NA	NA	NA	NA to NA	0.0 to 35.0	NA to NA	NA to NA	
C-4	Oct-11	NA	35.0	3.25	NA	NA	NA	NA	NA to NA	0.0 to 35.0	NA to NA	NA to NA	
C-5	Oct-11	NA	35.0	3.25	NA	NA	NA	NA	NA to NA	0.0 to 35.0	NA to NA	NA to NA	
CC-1	Mar-12	NA	41.0	2.25	NA	NA	NA	NA	NA to NA	0.0 to 41.0	NA to NA	NA to NA	
CC-2	Mar-12	NA	41.0	2.25	NA	NA	NA	NA	NA to NA	0.0 to 41.0	NA to NA	NA to NA	
CC-3	Mar-12	NA	41.0	2.25	NA	NA	NA	NA	NA to NA	0.0 to 41.0	NA to NA	NA to NA	
CC-4	Mar-12	NA	41.0	2.25	NA	NA	NA	NA	NA to NA	0.0 to 41.0	NA to NA	NA to NA	
CC-5	Mar-12	NA	41.0	2.25	NA	NA	NA	NA	NA to NA	0.0 to 41.0	NA to NA	NA to NA	
CC-6	Mar-12	NA	41.0	2.25	NA	NA	NA	NA	NA to NA	0.0 to 41.0	NA to NA	NA to NA	
CC-7	Mar-12	NA	41.0	2.25	NA	NA	NA	NA	NA to NA	0.0 to 41.0	NA to NA	NA to NA	
CC-8	Mar-12	NA	41.0	2.25	NA	NA	NA	NA	NA to NA	0.0 to 41.0	NA to NA	NA to NA	
CC-9	Mar-12	NA	41.0	2.25	NA	NA	NA	NA	NA to NA	0.0 to 41.0	NA to NA	NA to NA	
						-	Groundw	ater Monito	oring Wells	-			
MW-1	Dec-91	43.14	40	8	40	2	PVC	0.02	20.0 to 40.0	0.0 to 17.0	17.0 to 18.0	18.0 to 40.0	
MW-2	Dec-91	51.07	40	8	40	2	PVC	0.02	20.0 to 40.0	0.0 to 17.0		18.0 to 40.0	Well destroyed November 17, 2007
MW-3	Dec-89	43.27	45	8	45	2	PVC	0.02	30.0 to 45.0	0.0 to 17.0	3.0 to 25.0	25.0 to 45.0	
MW-4	Jul-92	43.64	40	8	40	2	PVC	0.02	20.0 to 40.0	0.0 to 3.0	17.0 to 18.0	18.0 to 40.0	
MW-6	Jul-92 Jul-92	43.64	40	8	40	2	PVC	0.02	20.0 to 40.0	0.0 to 17.0	17.0 to 18.0	18.0 to 40.0	
MW-7	Oct-94	44.21	45	8	45	2	PVC	0.02	25.0 to 45.0	0.0 to 17.0		23.0 to 45.0	
MW-8	Oct-94	44.18	40	8	40	2	PVC	0.02	25.0 to 40.0		21.0 to 23.0		
MW-9	Oct-94	44.35	40	8	40	2	PVC	0.02	25.0 to 40.0		21.0 to 23.0		
MW-10	Jul-97	46.17	37.5	8	35	2	PVC	0.02	15.0 to 35.0	0.0 to 13.0		14.0 to 37.5	Consider the facilities TD 07.01
MW-11	Nov-07	43.34	40	10	40	4	PVC	0.02	15.0 to 40.0	U.0 to 10.0	10.0 to 13.0	13.0 to 40.0	Graphic log indicates TD = 35 ft bgs

TABLE 1 SOIL BORING AND MONITORING WELL CONSTRUCTION DETAILS 76 (FORMER BP) SERVICE STATION NO. 11117 7210 BANCROFT AVENUE

							OAKL	AND, CALIF	ORNIA				
Boring/Well ID	Well/Boring Completion Date	TOC Elevation ¹ (ft)	Borehole Depth (ft bgs)	Borehole Diameter (in)	Well Depth (ft)	Well Casing Diameter (in)	Well Casing Material	Well Screen Slot Size (in)	Well Screen Interval (ft bgs)	Cement Grout Seal Interval (ft bgs)	Bentonite Seal Interval (ft bgs)	Filter Pack Interval (ft bgs)	Comments
							Rei	mediation W	/ells				
EX-1	Nov-99	44.20	39.5	10	40	4	PVC	0.02	18.0 to 38.0	0.0 to 15.0	15.0 to 16.0	16.0 to 39.5	
EX-2	Nov-99	45.33	36.5	10	40	4	PVC	0.02	15.0 to 35.0	0.0 to 13.0	13.0 to 13.0	13.0 to 36.5	
DPE-1	Nov-07	44.28	40	10	38	4	PVC	0.02	15.0 to 40.0	0.0 to 10.0	10.0 to 13.0	13.0 to 40.0	
DPE-2	Nov-07	43.03	40	10	40	4	PVC	0.02	15.0 to 40.0	0.0 to 10.0	10.0 to 13.0	13.0 to 40.0	
DPE-3	Nov-07	43.27	40	10	40	4	PVC	0.02	13.0 to 38.0	0.0 to 8.0	8.0 to 11.0	11.0 to 40.0	
DPE-4	Nov-07	44.08	45	10	38	4	PVC	0.01	15.0 to 40.0	0.0 to 10.0	10.0 to 13.0	13.0 to 45.0	Installed in same borehole as destroyed well MW-2
DPE-5	Nov-07	44.60	40	10	35	4	PVC	0.01	15.0 to 40.0	0.0 to 10.0	10.0 to 13.0	13.0 to 40.0	Log indicates Screen Interval at 15-38 ft bgs
SVE-1	Oct-11	44.78	28	10	22	4	PVC	0.02	10.0 to 22.0	0.0 to 6.0	6.0 to 8.0	8.0 to 22.0	Boring backfilled from 22-28' with bentonite
AS-1	Oct-11	44.64	33	4.25	33	0.5	0.25" OD Teflon/SS	NA	33.0 to 32.5	0.0 to 28.5	30.5 to 28.5	30.5 to 33.0	6" SS sparge tip

Notes:

ft = feet B and C = soil boring

in = inches A = hydropunch boring

TOC = Top of Casing CPT = cone pentrometer boring

bgs = below ground surface MW = monitoring well

NA = not applicable EX = extraction well

PVC = polyvinyl chloride DPE = extraction well

SS = stainless steel AS=air sparge well

OD = outside diameter SVE=soil vapor extraction well

MW-2 -- January 1, 1992 by HETI

MW-1, MW-3 hrough MW-11, EX-1, EX-2, DPE-1 through DPE-5, AS-1, and SVE-1 -- October 24, 2011 by Mid Coast Engineers

Updated 11/19/2012

 $^{^{1}}$ = TOC Elevations were surveyed to a local datum on the following dates:

TABLE 2 BASELINE AND POST-INJECTION GROUNDWATER GAUGING AND ANALYTICAL DATA 76 (FORMER BP) SERVICE STATION NO. 11117 7210 BANCROFT AVENUE OAKLAND, CALIFORNIA

		Gi	ROUNDWATER GA	UGING DATA							GROUND	WATER ANALY	TICAL DATA					
Well I.D.	Date	TOC Elevation (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Water Elevation* (ft)	GRO (ug/L)	Benzene (ug/L)	Ethylbenzene (ug/L)	Toluene (ug/L)	Total Xylenes (ug/L)	MTBE (ug/L)	TBA (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	1,2-DCA (ug/L)	EDB (ug/L)	Ethanol (ug/L)
	3/7/2012	43.64	17.75	NP	25.89	8500	4000	480	42	1090	400	4900	<50	<50	<50	<12	<25	<2500
	3/19/2012	43.64	16.42	NP	27.22	15200	4800	562	125	512	768	25200	<0.50	3.2	6.0	<1.0	<1.0	<250
	4/27/2012	43.64	13.52	NP	30.12	17000	2800	1500	490	3230	370	2900	<50	<50	<50	<12	<25	<2500
MW-4	5/29/2012	43.64	15.29	NP	28.35	17000	2800	1400	380	2570	210	2700	<50	<50	<50	<12	<25	<2500
	6/27/2012	43.64	16.50	NP	27.14	16000	2500	1100	390	2400	250	3200	<50	<50	<50	<12	<25	<2500
	8/31/2012	43.64	18.82	NP	24.82	230000	2800	600	6100	17000	240	1800	<25	<25	<25	<25	<25	<300
	9/27/2012 ¹	43.64	19.30	NP	24.34	58000	2600	530	7700	15000	160	2400	<100	<100	<100			<5000

Gauging Notes:

TOC - Top of Casing ft - Feet NP - LNAPL not present

LNAPL - Light non-aqueous phase liquid

- * Corrected for LNAPL if present (assumes LNAPL specific gravity = 0.75)
- -- No information available
- ¹ Sample collected post-purge

Analytical Notes:

TBA- Tertiary-butyl alcohol TAME- Tertiary-amyl methyl ether GRO- Gasoline range organics MTBE- Methyl tertiary-butyl ether DIPE- Di-isopropyl ether

ETBE- Ethyl tertiary-butyl ether 1,2-DCA - 1,2-Dichloroethane EDB - 1,2-Dibromoethane

< - Not detected at or above indicated laboratory reporting limit

ug/L - micrograms/liter

		•	GROUNDWATER	GAUGING DATA								GROUNDWATER	R ANALYTICAL DA	TA					
Well I.D.	Date	TOC Elevation	Depth to Water	LNAPL	Water	222 (//)	CDO (- /1)			Ethylbenzene	Total Xylenes				Table 1 (1)		511 17 (1)	1,2-	1,2-
		(ft)	(ft)	Thickness (ft)	Elevation* (ft)	DRO (ug/L)	GRO (ug/L)	Benzene (ug/L)	Toluene (ug/L)	(ug/L)	(ug/L)	MTBE (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	Ethanol (ug/L)	Dibromoethane (EDB) (ug/L)	Dichloroethane (ug/L)
	12/14/2007	38.95	21.62	NP	17.33		360	24	<0.5	3.4	<0.5	28	<0.5	3.4	<0.5	1300	<300	<0.5	<0.5
	2/12/2008	38.95	16.13	NP	22.82		4700	2000	310	130	360	66	<10	<10	<10	3900	<2000	<10	<10
DPE-1	5/22/2008 8/25/2008	38.95 38.95	18.03 20.95	NP NP	20.92 18.00		16000 1300	3900 250	94 <20	510 <20	1700 <20	<40 <20	<40 <20	<40 <20	<40 <20	4400 4000	<24000 <12000	<40 <20	<40 <20
DPE-1	12/17/2008	38.95	20.93	NP NP	16.62		480	<5	<5	<5	<5	5.3	<5	<5	<5	1200	<3000	<5	<5
	2/25/2009	38.95	18.15	NP	20.80		1100	170	<10	<10	<10	<10	<10	<10	<10	2400	<6000	<10	<10
	8/15/2011	38.95	16.46	NP	22.49		571	16.4	5.4	6.3	12.0	1.1	<0.50	<0.50	<0.50	140	<250	<1.0	<1.0
	12/14/2007	37.64	20.09	NP	17.55		2500	1.2	0.99	12	32	0.71	<0.5	<0.5	<0.5	<20	<300	<0.5	<0.5
	2/12/2008	37.64	14.35	NP	23.29	-	1100	9.1	9.3	33	91	<0.50	<0.5	<0.5	<0.5	<10	<100	<0.5	<0.5
	5/22/2008	37.64	16.60	NP	21.04		1000	1.2	3.7	11	18	<0.50	<0.5	<0.5	<0.5	<10	<300	<0.5	<0.5
DPE-2	8/25/2008	37.64	19.47	NP	18.17		780	0.52	<0.5	7.1	6.6	<0.50	<0.5	<0.5	<0.5	<10	<300	<0.5	<0.5
	12/17/2008	37.64	21.35	NP	16.29		21000	230	180	630	1900	34	<10	<10	<10	<200	<6000	<10	<10
	2/25/2009	37.64	16.60	NP	21.04		16000	170	180	580	1500	<10	<10	<10	<10	<200	<6000	<10	<10
	8/15/2011	37.64	15.29	NP NP	22.35		1200	1000			1200					1700			
	12/14/2007 2/12/2008	37.82 37.82	20.45 14.88	NP NP	17.37 22.94		1300 5500	1800 31	840 55	830 140	1200 300	770 <5	<25 <5	<25 <5	<25 <5	1700 <100	<15000 <1000	<25 <5	<25 <5
	5/22/2008	37.82	16.92	NP NP	20.90		8600	950	160	890	330	120	<20	<20	<20	<400	<12000	<20	<20
DPE-3	8/25/2008	37.82	19.77	NP	18.05		3900	8.5	21	91	260	<2.5	<2.5	<2.5	<2.5	<50	<1500	<2.5	<2.5
	12/17/2008	37.82	21.61	NP	16.21		24000	410	210	980	2900	46	<20	<20	<20	<400	<12000	<20	<20
1	2/25/2009	37.82	17.18	NP	20.64		4400	22	12	130	150	<2.5	<2.5	<2.5	<2.5	<50	<1500	<2.5	<2.5
	8/15/2011	37.82	15.59	NP	22.23														
	12/14/2007	38.46	21.00	NP	17.46		510000	12000	27000	4900	27000	8000	<500	<500	<500	<20000	<300000	<500	<500
	2/12/2008	38.46	15.43	NP	23.03		100000	6600	21000	3800	22000	2900	<50	<50	55	<1000	<10000	<50	<50
	5/22/2008	38.46	17.38	NP	21.08		130000	9700	26000	5000	28000	4600	<400	<400	<400	<8000	<240000	<400	<400
DPE-4	8/25/2008	38.46	20.36	NP	18.10		190000	9100	19000	4100	22000	4100	<400	<400	<400	<8000	<240000	<400	<400
	12/17/2008	38.46	21.89	NP	16.57		160000	10000	20000	4500	22000 22000	5500	<400	<400	<400	<8000 <8000	<240000	<400	<400
	2/25/2009 8/15/2011	38.46 38.46	17.59 16.15	NP NP	20.87 22.31		130000 57600	9900 5920	21000 7240	4600 3830	12100	4500 5560	<400 <0.50	<400 12.2	<400 132	6920	<240000 <250	<400 <1.0	<400 <1.0
	12/14/2007	38.23	20.86	NP	17.37		300000	9200	4100	4600	20000	16000	<500	<500	<500	<20000	<300000	<500	<500
	2/12/2008	38.23	15.20	NP	23.03		63000	5600	2200	3400	12000	8400	<50	<50	<50	2000	<10000	<50	<50
	5/22/2008	38.23	17.37	NP	20.86		34000	6800	620	2600	6000	4900	<200	<200	<200	4500	<120000	<200	<200
DPE-5	8/25/2008	38.23	21.80	NP	16.43		40000	5200	940	2100	5400	1800	<100	<100	<100	5100	<60000	<100	<100
	12/17/2008	38.23	21.96	NP	16.27		33000	4800	130	1700	2500	1300	<100	<100	<100	6100	<60000	<100	<100
	2/25/2009	38.23	17.47	NP	20.76		50000	6600	590	2300	6100	3100	<100	<100	<100	5100	<60000	<100	<100
	8/15/2011	38.23	15.96	NP	22.27		15900	2420	127	1340	1650	773	<0.50	1.2	10.0	2510	<250	<1.0	<1.0
	5/4/2004	NSVD	16.29	NP			12000	2300	430	740	1100	2500	<25	<25	38	<1000	<5000	<25	<25
	8/31/2004	NSVD	19.39	NP			13000	2500	95	650	1500	2100	<50	<50	<50	<2000	<10000	<50	<50
	11/23/2004	NSVD	17.90	NP			13000	2700	94	460	1700	3000	<25	<25	74	<1000	<5000	<25	<25
	1/18/2005	NSVD	14.20	NP			16000	2100	390	570	2500	2200	<25	<25	54	<1000	<5000	<25	<25
	6/29/2005 9/1/2005	NSVD NSVD	14.22 17.22	NP NP			6400 7900	1100 2000	52 94	280 400	790 870	1400 2000	<25 <25	<25 <25	30 46	<1000 <1000	<5000 <5000	<25 <25	<25 <25
	11/3/2005	NSVD	19.92	NP NP			22000	3200	640	550	3300	3000	<25	<25	87	<1000	<5000	<25	<25
	2/14/2006	NSVD	15.40	NP NP			3500	<25	<25	<25	74	1100	<25	<25	<25	<1000	<15000	<25	<25
	5/30/2006	NSVD	13.43	NP			8600	1400	120	490	1300	1400	<25	<25	37	<1000	<15000	<25	<25
	8/29/2006	NSVD	17.74	NP			22000	2900	210	1400	3600	2500	<25	<25	56	<1000	<15000	<25	<25
	11/29/2006	NSVD	20.25	NP			15000	4000	110	770	2700	2700	<50	<50	75	<2000	<30000	<50	<50
1	2/20/2007	NSVD	16.75	NP			10000	2500	<50	550	1300	920	<50	<50	<50	<2000	<30000	<50	<50
EX-1	5/25/2007	NSVD	17.04	NP			8600	2100	88	700	1400	890	<50	<50	<50	<2000	<30000	<50	<50
1	8/9/2007	NSVD	19.76	NP			4800	870	40	230	460	530	<10	<10	15	440	<6000	<10	<10
	11/9/2007	NSVD	21.57	NP			5300	2700	29	220	200	370	<25	<25	<25	1900	<15000	<25	<25
	12/14/2007	38.98	21.60	NP	17.38	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/12/2008	38.98	15.92	NP	23.06		19000	2500	<50	360	860	320	<50	<50	<50	2200	<10000	<50	<50
	5/22/2008	38.98	17.85	NP	21.13		9300	1600	<50	310	1100	970	<50	<50	<50	<1000	<30000	<50	<50
	8/25/2008	38.98	20.71	NP	18.27		6100	1100	29	360	370	430	<25	<25	<25	830	<15000	<25	<25
	12/17/2008	38.98	22.20	NP	16.78		11000	1400	47	720	360	690	<25	<25	<25	980	<15000	<25	<25
	2/25/2009	38.98	18.01	NP	20.97		3300	880	110	190	120	440	<25	<25	<25	<500	<15000	<25	<25
	5/21/2009	38.98	17.10	NP	21.88		5000	2100	100	350	89	570	<20	<20	<20	1300	<12000	<20	<20
	8/14/2009	38.98	20.55	NP	18.43														
	2/10/2010	38.98	15.61	NP	23.37		4040	308	488	393	975	133	<0.50	<0.50	<0.50	43.7	<250	<1.0	<1.0

		1	GROUNDWATER	GAUGING DATA								GROUNDWATE	R ANALYTICAL DA	TA					
W. II . B	B.1.				l							- GROONDWATE	(AIVALI IICAL DA	IA	1			1,2-	1,2-
Well I.D.	Date	TOC Elevation (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Water Elevation* (ft)	DRO (ug/L)	GRO (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	MTBE (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	Ethanol (ug/L)	Dibromoethane (EDB) (ug/L)	Dichloroethane (ug/L)
	8/20/2010	38.98	17.44	NP	21.54		14600	1090	1610	1030	3360	267	<0.50	0.78	8.9	275	<250	<1.0	<1.0
	2/7/2011	38.98	15.20	NP	23.78		15900	642	1100	846	2500	364	<0.50	0.78	9.3	151	<250	<1.0	<1.0
EX-1	8/15/2011	38.98	16.21	NP	22.77		1470	470	516	472	1270	54.2	<5.0	<5.0	17.8	188	<2500	<10.0	13.3
LX-1	2/20/2012 8/31/2012	44.20 44.20	18.27 19.55	NP NP	25.93 24.65		10300 5100	1810 1600	586 40	350 53	712 150	312 59	<2.5 <3.0	<2.5 <3.0	12.9 <3.0	481 1100	<1250 <30	<5.0 <3.0	44.1 <3.0
	9/27/2012	44.20	19.62	NP	24.58														
	2/5/2013	44.20	16.5	NP	27.7		9200	1900	170	250	720	500	<3.0	3.1	19	1100	<30	<3.0	<3.0
	5/4/2004	NSVD	16.65	NP			<50	0.63	<0.5	<0.5	0.66	46	<0.5	<0.5	<0.5	<20	<100	<0.5	<0.5
	8/31/2004	NSVD	19.90	NP			<250	<2.5	<2.5	<2.5	<2.5	130	<2.5	<2.5	3.4	<100	<500	<2.5	<2.5
	11/23/2004 1/18/2005	NSVD NSVD	18.36 14.67	NP NP			<50 <50	0.74 <0.5	<0.5 <0.5	0.83 <0.5	3 0.69	5.8 6.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<20 <20	<100 <100	<0.5 <0.5	<0.5 <0.5
	6/29/2005	NSVD	14.60	NP			<50	<0.5	<0.5	<0.5	0.5	24	<0.5	<0.5	<0.5	<20	<100	<0.5	<0.5
	9/1/2005	NSVD	17.28	NP			<50	<0.5	1.4	<0.5	1.4	55	<0.5	<0.5	0.56	<20	<100	<0.5	<0.5
	11/3/2005	NSVD	20.42	NP			<50	0.5	<0.5	<0.5	1.4	39	<0.5	<0.5	0.8	<20	<100	<0.5	<0.5
	2/14/2006	NSVD	14.54	NP			220	<0.5	3.2	7.5	33	0.72	<0.5	<0.5	<0.5	<20	<300	<0.5	<0.5
	5/30/2006	NSVD	13.35	NP			<50	<0.5	<0.5	<0.5	0.7	7.8	<0.5	<0.5	<0.5	<20	<300	<0.5	<0.5
	8/29/2006	NSVD	17.92	NP ND			66	0.67	<0.5	0.79	1.9	94	<0.5	<0.5	0.98	<20	<300	<0.5	<0.5
	11/29/2006 2/20/2007	NSVD NSVD	20.63 17.58	NP NP			<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5	4.4 12	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<20 <20	<300 <300	<0.5 <0.5	<0.5 <0.5
	5/25/2007	NSVD	17.23	0.01			<50	<0.5	<0.5	<0.5	<0.5	10	<0.5	<0.5	<0.5	<20	<300	<0.5	<0.5
	8/9/2007	NSVD	20.40	NP			<50	<0.5	<0.5	<0.5	<0.5	27	<0.5	<0.5	<0.5	<20	<300	<0.5	<0.5
	11/9/2007	NSVD	22.07	NP			120	<0.5	0.53	0.57	2.7	140	<0.5	<0.5	<0.5	<20	<300	<0.5	<0.5
EX-2	12/14/2007	39.63	21.97	NP	17.66	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/12/2008	39.63	16.73	NP	22.90		<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<100	<0.5	<0.5
	5/22/2008 8/25/2008	39.63 39.63	18.09 21.51	NP NP	21.54 18.12		<50 <50	<0.5 <0.5	2.4 <0.5	0.95 <0.5	5.5 <0.5	0.54	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<10 <10	<300 <300	<0.5 <0.5	<0.5 <0.5
	12/17/2008	39.63	NG	NG	NG	NS	NS NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS
	2/25/2009	39.63	16.79	NP	22.84		<50	<0.50	<0.50	<0.50	<0.50	0.58	<0.50	<0.50	<0.50	<10	<300	<0.50	<0.50
	5/21/2009	39.63	18.56	NP	21.07		<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<300	<0.50	<0.50
	8/14/2009	39.63	21.00	NP	18.63														
	2/10/2010	39.63	16.11	NP	23.52		<50.0	<0.50	<0.50	<0.50	<1.5	<0.50	<0.50	<0.50	<0.50	<5.0	<250	<1.0	<1.0
	8/20/2010 2/7/2011	39.63 39.63	17.20 15.59	NP NP	22.43 24.04		<50.0 <50.0	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.5 <1.5	26.1 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	5.6 <5.0	<250 <250	<1.0 <1.0	<1.0 <1.0
	8/15/2011	39.63	16.39	NP	23.24		<50.0	<0.50	<0.50	<0.50	<1.5	3.6	<0.50	<0.50	<0.50	<5.0	<250	<1.0	<1.0
	2/20/2012	45.33	19.10	NP	26.23		<50.0	<0.50	<0.50	<0.50	<1.5	<0.50	<0.50	<0.50	<0.50	<5.0	<250	<1.0	<1.0
	8/31/2012	45.33	19.99	NP	25.34		<50	<0.50	<0.50	<0.50	<0.50	6.3	<0.50	<0.50	<0.50	<5.0	<5.0	<0.50	<0.50
	9/27/2012	45.33	20.60	NP	24.73														
	2/5/2013 1/5/1992	45.33 49.80	16.53 33.16	NP NP	28.8 16.64	50000	<50 57000	<0.50 2400	<0.50 1000	<0.50 1100	<0.50 3100	<0.50	<0.50	<0.50	<0.50	<5.0 	<5.0 	<0.50	<0.50
	1/10/1992	49.80	33.16	NP	16.64	NS	NS	NS NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/5/1992	49.80	29.01	NP	20.79		31000	2800	2100	800	2300			-					
	7/24/1992	49.80	29.45	NP	20.35	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/27/1992	49.80	29.45	NP	20.35	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/15/1992	49.80	30.53	NP NP	19.27 18.54	1200 1100	40000 27000	3400 1700	3000 580	1300	3400								
	12/15/1992 3/15/1993	49.80 49.80	31.26 24.80	NP NP	25.00	580	17000	1700	1200	700 590	1900 1800								
	6/7/1993	49.80	25.01	NP	24.79	100	750	0.8	0.8	<0.5	<0.5								
B 40 47 4	9/23/1993	49.80	28.70	NP	21.10	770	40000	4000	500	920	3000	6619							
MW-1	12/27/1993	49.80	28.66	NP	21.14		27000	2000	400	940	2600	13558							
	4/5/1994	49.80	26.37	NP	23.43		27000	3400	930	950	2900	8595							
	7/22/1994	49.80	26.54	NP	23.26		1700	220	2.3	2	3.4	262							
	10/13/1994	49.80 49.80	27.46 20.96	NP NP	22.34 28.84		1200	250 420	21 8	<0.5 13	3.2 4	321							
	4/19/1995	49.80	19.59	NP NP	30.21		5200	420	51	230	340								
	7/5/1995	49.80	19.61	NP	30.19		320	4.2	<0.5	<0.5	<1								
	10/5/1995	49.80	24.40	NP	25.40		5800	1000	40	31	180	7800							
	1/12/1996	49.80	25.44	NP	24.36		370	<0.5	<0.5	<0.5	<1	<5.0							
	4/22/1996	49.80	18.02	NP	31.78		<50	<0.5	<1	<1	<1	<10							

			GROUNDWATER	GAUGING DATA								GROUNDWATER	R ANALYTICAL DA	ıΤΑ					
Well I.D.	Date	TOC Elevation (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Water Elevation* (ft)	DRO (ug/L)	GRO (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	MTBE (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	Ethanol (ug/L)	1,2- Dibromoethane (EDB) (ug/L)	1,2- Dichloroethane (ug/L)
	7/2/1996	49.80	19.72	NP	30.08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/3/1996	49.80	NG	NG	NG		<250	<2.5	<5	<5	<5	<50							
	11/8/1996	49.80	19.98	NP	29.82		<50	<0.5	<1	<1	<1	<10							
	1/3/1997	49.80	19.49	NP	30.31		<50	<0.5	14	<1	<1	<10							
	4/28/1997 7/1/1997	49.80 49.80	20.20 22.53	NP NP	29.60 27.27		<50 <50	<0.5 <0.5	<1 <1	<1 <1	<1 <1	<10 <10							
	10/2/1997	49.80	24.27	NP NP	25.53		<50	<0.5	<1	<1	<1	<10							
	1/9/1998	49.80	21.07	NP	28.73		<50	<0.5	<1	<1	<1	<10							
	5/6/1998	49.80	14.94	NP	34.86		60	<0.5	<1	<1	<1	<10							
	7/21/1998	49.80	15.11	NP	34.69		70	<0.5	<1	<1	<1	<10							
	12/30/1998	49.80	19.95	NP	29.85	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/2/1999	49.80	19.12	NP	30.68		420	<1	<1	<1	<1	390							
	5/10/1999	49.80	15.51	NP	34.29	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/23/1999	49.80	21.65	NP	28.15		440	49	<1	<1	<1	910.0							
	12/23/1999	49.80	22.32	NP ND	27.48	NS 	NS 2500	NS 220	NS 2	NS oo	NS 26	NS 4400	NS 	NS	NS 	NS	NS	NS	NS
	3/27/2000 5/22/2000	49.80 49.80	15.72 16.92	NP NP	34.08 32.88	NS	2500 NS	230 NS	3 NS	83 NS	36 NS	4400 NS	NS	NS	NS	NS	NS	 NS	NS
	8/31/2000	49.80	20.12	NP	29.68		1700	18	5.5	7.9	5	510							
	12/11/2000	49.80	20.72	NP	29.08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/20/2001	49.80	15.91	NP	33.89		880	38.2	<0.5	24.1	<1.5	391							
	6/19/2001	49.80	18.38	NP	31.42	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/20/2001	49.80	21.23	NP	28.57		3200	400	19.8	42	32.5	2510							
	12/27/2001	49.80	16.72	NP	33.08		750	70.1	0.536	4.74	3.76	649							
	2/28/2002	49.80	15.25	NP	34.55		<50	<0.5	<0.5	<0.5	<1	8.7							
	6/28/2002	49.80	16.57	NP	33.23		110	0.977	<0.5	0.818	<1	8.35							
	9/12/2002	49.80	18.41	NP NP	31.39 29.54		98	2.7	1.5	1.5 <0.5	5.4 <0.5	48 32							
	12/12/2002 3/10/2003	49.80 49.80	20.26 16.22	NP NP	33.58		210 <50	1.9 <0.5	<0.5 <0.5	<0.5	<0.5	3.2							
MW-1	5/12/2003	49.80	14.30	NP	35.50		<50	<0.5	<0.5	<0.5	<0.5	<2.5							
	8/27/2003	49.80	18.15	NP	31.65		<50	<0.5	<0.5	<0.5	<0.5	4.2	<0.5	<0.5	<0.5	<20	<100		
	11/10/2003	49.80	19.24	NP	30.56		<50	<0.5	<0.5	<0.5	<0.5	0.57	<0.5	<0.5	<0.5	<20	<100		
	2/3/2004	49.80	14.84	NP	34.96		<50	<0.5	<0.5	<0.5	<0.5	<0.50	<0.5	<0.5	<0.5	<20	<100	<0.5	<0.5
	5/4/2004	49.80	14.67	NP	35.13		<50	<0.5	<0.5	<0.5	<0.5	<0.50	<0.5	<0.5	<0.5	<20	<100	<0.5	<0.5
	8/31/2004	49.80	17.75	NP	32.05		<50	<0.5	<0.5	<0.5	<0.5	<0.50	<0.5	<0.5	<0.5	<20	<100	<0.5	<0.5
	11/23/2004	49.80	16.03	NP	33.77	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/18/2005	49.80	12.47	NP	37.33		<50	<0.5	<0.5	<0.5	<0.5	<0.50	<0.5	<0.5	<0.5	<20	<100	<0.5	<0.5
	6/29/2005	49.80	12.65	NP	37.15	NS NC	NS NC	NS NS	NS	NS NS	NS NC	NS NS	NS NS	NS NC	NS NS	NS NC	NS NC	NS NS	NS NC
	9/1/2005 11/3/2005	49.80 49.80	15.79 18.55	NP NP	34.01 31.25	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	2/14/2006	49.80	12.29	NP NP	37.51		51	a <0.5	<0.5	<0.5	<0.5	<0.50	<0.5	<0.5	<0.5	<20	<300	<0.5	<0.5
	5/30/2006	49.80	12.15	NP	37.65	NS	NS	NS	NS NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS NS	NS NS
	8/29/2006	49.80	16.37	NP	33.43	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/29/2006	49.80	18.73	NP	31.07	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/20/2007	49.80	14.71	NP	35.09		110	<0.5	<0.5	0.58	<0.5	<0.50	<0.50	<0.50	<0.50	<20	<300	<0.50	<0.50
	5/25/2007	49.80	15.59	NP	34.21	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/9/2007	49.80	18.38	NP	31.42	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/9/2007	49.80	20.00	NP NP	29.80	NS NC	NS NC	NS NC	NS NS	NS NC	NS NC	NS NC	NS NC	NS NC	NS NS	NS NC	NS NG	NS NS	NS NS
	12/14/2007	37.41	19.83	NP ND	17.58	NS	NS 100	NS <0.5	NS <0.5	NS OFF	NS <0.F	NS <0.E0	NS <0.F0	NS <0.50	NS <0.50	NS <10	NS <100	NS <0.50	NS <0.50
	2/12/2008 5/22/2008	37.41 37.41	14.00 16.31	NP NP	23.41 21.10	 NS	100 NS	<0.5 NS	<0.5 NS	0.55 NS	<0.5 NS	<0.50 NS	<0.50 NS	<0.50 NS	<0.50 NS	<10 NS	<100 NS	<0.50 NS	<0.50 NS
	8/25/2008	37.41	19.20	NP NP	18.21	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	12/17/2008	37.41	NG	NG	NG	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/25/2009	37.41	16.30	NP	21.11		370	<0.50	<0.50	0.79	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<300	<0.5	<0.50
	5/21/2009	37.41	15.97	NP	21.44														
	8/14/2009	37.41	19.30	NP	18.11														
	2/10/2010	37.41	14.37	NP	23.04		<50.0	<0.50	<0.50	<0.50	<1.5	<0.50	<0.50	<0.50	<0.50	<5.0	<250	<1.0	<1.0
	8/20/2010	37.41	15.72	NP	21.69														

1			GROUNDWATER	GAUGING DATA								GROUNDWATER	R ANALYTICAL DA	TA					
Well I.D.	Date	TOC Elevation (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Water Elevation* (ft)	DRO (ug/L)	GRO (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	MTBE (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	Ethanol (ug/L)	1,2- Dibromoethane (EDB) (ug/L)	1,2- Dichloroethane (ug/L)
i	2/7/2011	37.41	14.02	NP	23.39		<50.0	<0.50	<0.50	<0.50	<1.5	<0.50	<0.50	<0.50	<0.50	<5.0	<250	<1.0	<1.0
i	8/15/2011	37.41	15.40	NP	22.01														
MW-1	2/20/2012	43.14	17.10	NP	26.04		<50.0	<0.50	<0.50	<0.50	<1.5	<0.50	<0.50	<0.50	<0.50	<5.0	<250	<1.0	<1.0
I	6/27/2012 8/31/2012	43.14 43.14	15.63 18.23	NP NP	27.51 24.91														
I	2/5/2013	43.14	14.71	NP	28.43		<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<5.0	<0.50	<0.50
	1/5/1992	51.07	NG	NG	NG	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
I	1/10/1992	51.07	NG	NG	NG	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
i	6/5/1992	51.07	30.05	NP	21.02		11000	2000	180	490	1900								
i	7/24/1992	51.07	30.72	NP	20.35	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
i	7/27/1992	51.07	30.52	NP NP	20.55	NS 2200	NS 7F000	NS 2000	NS	NS 2200	NS	NS	NS	NS	NS	NS	NS	NS	NS
i	9/15/1992	51.07 51.07	31.56 32.40	NP NP	19.51 18.67	3200 1600	75000 34000	2000 6200	6500 8900	2300	13000 7900								
i	3/15/1993	51.07	26.14	NP	24.93	8400	150000	12000	18000	3200	22000	82000							
i	6/7/1993	51.07	26.38	NP	24.69	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
I	9/23/1993	51.07	31.43	1.92	19.64	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
I	12/27/1993	51.07	34.07	1.07	17.00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
i	4/5/1994	51.07	30.44	3.30	20.63	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1	7/22/1994	51.07	28.51	0.80	22.56	NS	NS NS	NS NS	NS	NS NS	NS NS	NS NS	NS	NS NS	NS	NS	NS NS	NS NG	NS NS
i	10/13/1994	51.07 51.07	29.33 25.55	0.70 4.25	21.74 25.52	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1	4/19/1995	51.07	19.78	0.12	31.29	NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS NS	NS
i	7/5/1995	51.07	20.88	0.09	30.19		140000	14000	30000	3500	26000								
i	10/5/1995	51.07	24.68	0.10	26.39	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
i	1/12/1996	51.07	25.72	0.06	25.35	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1	4/22/1996	51.07	19.33	0.08	31.74	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
i	7/2/1996	51.07	20.01	0.04	31.06	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
i	11/8/1996	51.07 51.07	20.28 19.87	0.01	30.79	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NC	NS NS	NS NS	NS NE	NS NS	NS NE
i	1/3/1997 4/28/1997	51.07	20.59	0.02	31.20 30.48		560000	1200	1300	290	2310	6100		NS 	INS		NS 	NS 	NS
i	7/1/1997	51.07	22.90	0.01	28.17		24000	15000	16000	4900	24400	63000							
MW-2	10/2/1997	51.07	24.65	0.02	26.42	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
i	10/3/1997	51.07	NG	NG	NG		250000	32000	39000	6000	42000	160000							
1	1/9/1998	51.07	21.22	0.01	29.85		420000	23000	29000	5800	43000	75000							
i	2/2/1998	51.07	20.11	NP	30.96		410000	27000	43000	6700	50000	20000							
1	5/6/1998	51.07	15.10	0.01	35.97		180000	25000	26000	3400	22900	35000							
i	7/21/1998	51.07 51.07	15.31 21.10	0.01	35.76 29.97		270000 300000	21000 22000	20000 24000	2700 4200	18800 26000	34000 95000							
1	5/10/1999	51.07	16.68	NP	34.39		220000	20000	20000	2800	20000	100000							
1	9/23/1999	51.07	22.50	NP	28.57		160000	21000	24000	2900	20000	44000							
1	12/23/1999 b	51.07	22.64	NP	28.43		170000	25000	41000	3100	24000	40000							
1	3/27/2000	51.07	16.88	NP	34.19		140000	15000	25000	3400	21000	19000							
1	5/22/2000	51.07	17.75	NP	33.32		150000	18000	31000	3500	22000	26000							
1	8/31/2000	51.07	21.97	NP	29.10		200000	16000	26000	2500	16000	38000							
i	12/11/2000 3/20/2001	51.07 51.07	22.05 17.75	NP NP	29.02 33.32		130000 140000	18600 15900	30000 24800	3250 3700	20600 22100	21700 12900							
1	6/19/2001	51.07	20.15	NP NP	30.92		130000	15900	19500	3300	21400	20300							
1	9/20/2001	51.07	22.14	NP	28.93		110000	12400	12600	2230	13000	39500							
1	12/27/2001	51.07	18.17	NP	32.90		150000	17500	26000	3050	19500	27500							
1	2/28/2002	51.07	17.42	NP	33.65		120000	13900	18800	3030	19600	17300							
1	6/28/2002	51.07	17.04	NP	34.03		3700	190	23.3	139	287	826							
1	9/12/2002	51.07	19.52	NP	31.55		100000	13000	22000	3600	20000	18000							
1	12/12/2002	51.07	21.08	NP	29.99		120000	13000	21000	4400	25000	16000							
1	3/10/2003	51.07	17.84	NP	33.23		100000	17000	21000	3400	20000	4400							
i	5/12/2003 8/27/2003	51.07 51.07	16.66 19.65	NP NP	34.41 31.42		150000 120000	16000 14000	24000 12000	3500 3900	22000 20000	3600 5100	<120	<120	140	<5000	<25000		
	0/2//2003	31.07	15.05	145	31.42		120000	14000	12000	3600	15000	4200	<250	<250	<250	<10000	~23000		

		1	GROUNDWATER	GAUGING DATA								GROUNDWATER	R ANALYTICAL DA	ΤΑ					
Well I.D.	Date	TOC Elevation (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Water Elevation* (ft)	DRO (ug/L)	GRO (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	MTBE (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	Ethanol (ug/L)	1,2- Dibromoethane	1,2- Dichloroethane
	2/2/2004						120000	14000	10000			1000	4500	4500	4500	*20000	1100000	(EDB) (ug/L)	(ug/L)
	2/3/2004 5/4/2004	51.07 51.07	16.82 16.19	NP NP	34.25 34.88		130000 120000	14000 12000	19000 16000	3400 3700	20000 22000	1900 2500	<500 <250	<500 <250	<500 <250	<20000 <10000	<100000 <50000	<500 <250	<500 <250
	8/31/2004	51.07	19.50	NP	31.57		99000	10000	13000	3700	18000	3400	<250	<250	<250	<10000	<50000	<250	<250
	11/23/2004	51.07	18.20	NP	32.87		110000	8200	17000	4000	23000	2400	<250	<250	<250	<10000	<50000	<250	<250
	1/18/2005	51.07	14.91	NP	36.16		96000	6500	14000	3500	21000	3700	<100	<100	<100	<4000	<20000	<100	<100
	6/29/2005	51.07	13.98	NP	37.09		54000	6200	4900	3300	12000	3600	<50	<50	72	<2000	<10000	<50	<50
	9/1/2005 11/3/2005	51.07 51.07	17.00 20.25	NP NP	34.07 30.82		58000 63000	6300 7400	6000 3700	3300 3300	15000 10000	5100 3700	<100 <100	<100 <100	100 100	<4000 <4000	<20000 <20000	<100 <100	<100 <100
MW-2	2/14/2006	51.07	13.72	NP	37.35		97000	7500	11000	4300	16000	3400	<100	<100	<100	<4000	<60000	<100	<100
	5/30/2006	51.07	13.50	NP	37.57		28000	5200	2500	1500	3300	2300	<100	<100	<100	<4000	<60000	<100	<100
	8/29/2006	51.07	18.16	NP	32.91		65000	7200	4500	3200	11000	13000	<100	<100	100	<4000	<60000	<100	<100
	11/29/2006	51.07	20.06	NP	31.01		46000	8500	4600	3300	10000	11000	<120	<120	120	<5000	<75000	<120	<120
	2/20/2007 5/25/2007	51.07 51.07	16.43 16.80	NP NP	34.64 34.27		78000 62000	9700 7400	12000 9500	4100 4100	16000 15000	10000 3400	<100 <200	<100 <200	<100 <200	<4000 <8000	<60000 <120000	<100 <200	<100 <200
	8/9/2007	51.07	19.55	NP	31.52		58000	7400	5000	3800	12000	4100	<100	<100	<100	<4000	<60000	<100	<100
	11/9/2007	51.07	21.53	NP	29.54		49000	6300	3300	2900	8300	9500	<100	<100	<100	<4000	<60000	<100	<100
	1/5/1992	49.95	33.69	NP	16.26	4000	7400	790	23	210	40								
	1/10/1992	49.95	33.74	NP	16.21	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/5/1992	49.95	29.65	NP NP	20.30	NS	2000 NS	130 NS	5.3 NS	93 NS	20 NS	NS	 NS	 NC	 NS	NS	NS	NS	NS
	7/24/1992 7/27/1992	49.95 49.95	30.14 30.14	NP NP	19.81 19.81	NS NS	NS NS	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	9/15/1992	49.95	31.07	NP	18.88	<50	450	55	3.1	34	7.1								
	12/15/1992	49.95	31.93	NP	18.02	710	12000	940	<50	310	120					-			
	3/15/1993	49.95	25.71	NP	24.24	60	<50	<0.5	<0.5	<0.5	<0.5								
	6/7/1993	49.95	25.80	NP	24.15	<50	150	3.6	<0.5	0.9	1.3								
	9/23/1993 9/24/1993	49.95 49.95	29.18 NG	NP NG	20.77 NG	NS <50	NS 160	NS 8.4	NS <0.5	NS 3.7	NS 1.3	NS 15.3	NS 	NS 	NS 	NS 	NS 	NS 	NS
	12/27/1993	49.95	29.25	NP NP	20.70		9400	1100	48	530	1.3	2871							
	4/5/1994	49.95	26.84	NP	23.11		7000	860	19	330	52	10414							
	7/22/1994	49.95	26.90	NP	23.05		<50	<0.5	<0.5	<0.5	<0.5	<5							
	10/13/1994	49.95	27.83	NP	22.12		<50	<0.5	<0.5	<0.5	<0.5	<5							
	1/25/1995 4/19/1995	49.95 49.95	21.65 19.33	NP NP	28.30 30.62		<50 2400	<0.5 170	<0.5 8	<0.5 130	<1 27								
	7/5/1995	49.95	20.27	NP NP	29.68		<50	<0.5	<0.5	<0.5	<1								
	10/5/1995	49.95	23.73	NP	26.22		2300	210	3.1	10	5.1	2400							
	1/12/1996	49.95	24.84	NP	25.11		<50	<0.5	<0.5	<0.5	<1	<5							
MW-3	4/22/1996	49.95	18.60	NP	31.35		<50	<0.5	<1	<1	<1	<10							
	7/2/1996	49.95	18.88	NP	31.07		<50	<0.5	<1	<1	<1	<10							
	11/8/1996 1/3/1997	49.95 49.95	19.14 18.72	NP NP	30.81 31.23		<50 <50	<0.5 <0.5	<1 <1	<1 <1	<1 <1	<10 <10							
	4/28/1997	49.95	19.38	NP	30.57		<50	<0.5	<1	<1	<1	<10							
	7/1/1997	49.95	21.65	NP	28.30		<50	<0.5	<1	<1	<1	<10							
	10/2/1997	49.95	23.45	NP	26.50		<50	<0.5	<1	<1	<1	<10							
	1/9/1998	49.95	20.10	NP	29.85		<50	<0.5	<1	<1	<1	<10							
	5/6/1998 7/21/1998	49.95 49.95	15.57 15.88	NP NP	34.38 34.07		<50 51	<0.5 <0.5	<1 <1	<1	<1 <1	<10 <10							
	12/30/1998	49.95	20.30	NP NP	29.65	NS	NS NS	NS	NS NS	NS NS	NS NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/2/1999	49.95	19.75	NP	30.20		<50	<1	<1	<1	<1	<10							
	5/10/1999	49.95	16.17	NP	33.78	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/23/1999	49.95	22.05	NP	27.90	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/23/1999	49.95	22.55	NP	27.40	NS	NS 2E0	NS 22	NS -O.F	NS <0.F	NS 40 F	NS E80	NS	NS	NS	NS	NS	NS	NS
	3/27/2000 5/22/2000	49.95 49.95	16.40 9.49	NP NP	33.55 40.46	 NS	350 NS	22 NS	<0.5 NS	<0.5 NS	<0.5 NS	580 NS	 NS	NS	 NS	NS	NS	NS	NS
	8/31/2000	49.95	13.02	NP	36.93	NS	NS	NS	NS NS	NS	NS NS	NS	NS	NS	NS NS	NS	NS	NS	NS
	12/11/2000	49.95	13.30	NP	36.65	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/20/2001	49.95	16.49	NP	33.46		1000	66.4	0.597	6.96	<1.5	398							
	6/19/2001	49.95	18.82	NP	31.13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

	Γ					1													
1			GROUNDWATER	R GAUGING DATA			<u> </u>				<u> </u>	GROUNDWATE	R ANALYTICAL DA	ITA		1	1	1.2	1.2
Well I.D.	Date	TOC Elevation (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Water Elevation* (ft)	DRO (ug/L)	GRO (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	MTBE (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	Ethanol (ug/L)	1,2- Dibromoethane (EDB) (ug/L)	1,2- Dichloroethane (ug/L)
	9/20/2001	49.95	21.59	NP	28.36		230	<0.5	0.593	<0.5	<1.5	289							
	12/27/2001	49.95	17.37	NP	32.58	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/28/2002	49.95	15.81	NP	34.14	 NC	<50	<0.5	<0.5	<0.5	<1	0.58	 NG		 NG			 NG	
	6/28/2002 9/12/2002	49.95 49.95	17.09 18.80	NP NP	32.86 31.15	NS 	NS 52	NS 3.3	NS 8.6	NS 1.7	NS 12	NS 11	NS 	NS 	NS 	NS 	NS 	NS 	NS
	12/12/2002	49.95	20.57	NP NP	29.38	NS	NS	NS NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS	NS
	3/10/2003	49.95	16.68	NP	33.27		<50	<0.5	<0.5	<0.5	<0.5	<2.5							
	5/12/2003	49.95	14.72	NP	35.23	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/27/2003	49.95	18.50	NP	31.45		<50	<0.5	<0.5	<0.5	0.5	<0.50	<0.5	<0.5	<0.5	<20	<100		
	11/10/2003	49.95	19.66	NP	30.29	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/3/2004	49.95	15.33	NP	34.62		<50	<0.5	<0.5	<0.5	<0.5	<0.50	<0.5	<0.5	<0.5	<20	<100	<0.5	<0.5
	8/31/2004	49.95	18.13	NP	31.82		<50	<0.5	<0.5	<0.5	<0.5	<0.50	<0.5	<0.5	<0.5	<20	<100	<0.5	<0.5
	11/23/2004 1/18/2005	49.95 49.95	16.48 13.06	NP NP	33.47 36.89	NS	NS <50	NS <0.5	NS <0.5	NS <0.5	NS <0.5	NS <0.50	NS <0.5	NS <0.5	NS <0.5	NS <20	NS <100	NS <0.5	NS <0.5
	6/29/2005	49.95	13.00	NP NP	36.95	 NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS	NS
	9/1/2005	49.95	16.00	NP	33.95	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/3/2005	49.95	18.91	NP	31.04	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/14/2006	49.95	12.90	NP	37.05		86	<0.5	<0.5	<0.5	0.55	<0.50	<0.5	<0.5	<0.5	<20	<300	<0.5	<0.5
	5/30/2006	49.95	12.55	NP	37.40	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-3	8/29/2006	49.95	16.68	NP	33.27	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/29/2006	49.95	19.10	NP	30.85	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/20/2007	49.95	15.29	NP	34.66		56	<0.5	<0.5	<0.5	<0.5	0.89	<0.5	<0.5	<0.5	<20	<300	<0.5	<0.5
	5/25/2007 8/9/2007	49.95 49.95	15.94 18.70	NP NP	34.01 31.25	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	11/9/2007	49.95	20.27	NP NP	29.68	NS NS	NS	NS NS	NS NS	NS	NS	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS
	12/14/2007	37.56	20.21	NP	17.35	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/11/2008	37.56	14.68	NP	22.88		<50	<0.5	<0.5	<0.5	<0.5	<0.50	<0.5	<0.5	<0.5	<10	<100	<0.5	<0.5
	5/22/2008	37.56	16.64	NP	20.92	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/25/2008	37.56	19.40	NP	18.16	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/17/2008	37.56	22.13	NP	15.43	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/25/2009	37.56	16.81	NP NP	20.75		71	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<300	<0.50	<0.50
	5/21/2009 8/14/2009	37.56 37.56	16.40 19.60	NP NP	21.16 17.96														
	2/10/2010	37.56	14.81	NP	22.75		<50.0	<0.50	<0.50	<0.50	<1.5	<0.50	<0.50	<0.50	<0.50	<5.0	<250	<1.0	<1.0
	8/20/2010	37.56	16.80	NP	20.76														
	2/7/2011	37.56	14.39	NP	23.17		<50.0	<0.50	<0.50	<0.50	<1.5	<0.50	<0.50	<0.50	<0.50	<5.0	<250	<1.0	<1.0
	8/15/2011	37.56	15.56	NP	22.00														
	2/20/2012	43.27	17.41	NP	25.86		<50.0	<0.50	<0.50	<0.50	<1.5	<0.50	<0.50	<0.50	<0.50	<5.0	<250	<1.0	<1.0
	8/31/2012	43.27 43.27	18.51 15.10	NP NP	24.76 28.17		 <50	<0.50	<0.50	<0.50	<0.50	 <0.F0	 <0.F0	<0.50	<0.50	 <5.0	 <5.0	<0.50	<0.50
	2/5/2013 7/24/1992	50.76	30.02	NP NP	20.74		42000	3200	3600	1400	4100	<0.50	<0.50 	<0.50 			<5.0 		<0.50
	7/27/1992	50.76	30.02	NP	20.74	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/15/1992	50.76	31.14	NP	19.62	1700	55000	7600	13000	2800	9500								
	12/15/1992	50.76	31.98	NP	18.78	2200	36000	3700	4700	1200	4000								
	3/15/1993	50.76	25.34	NP	25.42	1200	69000	7600	15000	2500	11000								
	6/7/1993	50.76	25.67	NP	25.09	2500	73000	10000	19000	3400	14000								
	9/23/1993	50.76	29.37	NP	21.39	NS F700	NS	NS	NS 2400	NS	NS 000	NS 200	NS	NS	NS	NS	NS	NS	NS
	9/24/1993 12/27/1993	50.76 50.76	NG 29.40	NG NP	NG 21.36	5700 	68000 32000	11000 2500	2100 4400	8600 1300	990 4400	390 387							
MW-4	4/5/1994	50.76	29.40	NP NP	23.67		64000	6500	14000	1900	9600	413							
	7/22/1994	50.76	27.33	NP	23.43		85000	10000	20000	3200	13000	796							-
	10/13/1994	50.76	28.25	NP	22.51		51000	7100	13000	2100	8900	506							
	1/25/1995	50.76	21.85	NP	28.91		26000	3600	9600	1200	6400								
	4/19/1995	50.76	19.44	NP	31.32		89000	12000	24000	3500	18000								
	7/5/1995	50.76	20.52	NP	30.24		130000	13000	29000	3300	25000								
	10/5/1995	50.76	24.23	NP ND	26.53		110000	10000	23000	3600	17000	34000							
	1/12/1996	50.76 50.76	25.34	NP NP	25.42 31.63		46000 40000	3500 5100	8300 9600	1100 980	8000 11800	3000 29000							
	4/22/1996	50.76	19.13	I NP	31.03		40000	2100	9000	980	11900	25000							

			GROUNDWATER	GAUGING DATA								GROUNDWATE	R ANALYTICAL DA	TA					
Well I.D.	Date	TOC Elevation (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Water Elevation* (ft)	DRO (ug/L)	GRO (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	MTBE (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	Ethanol (ug/L)	1,2- Dibromoethane (EDB) (ug/L)	1,2- Dichloroethane (ug/L)
	7/2/1996	50.76	20.67	NP	30.09		74000	9800	21000	2100	16600	41000							
	11/8/1996	50.76	20.95	NP	29.81		100000	7900	16000	2500	13700	37000							
	1/3/1997	50.76	20.54	NP	30.22		99000	17000	30000	4300	22700	79000							
	4/28/1997	50.76	21.28	NP	29.48		130000	12000	28000	3800	21000	37000							
	7/1/1997	50.76	23.61	NP	27.15	 NG	110000	16000	25000	4900	24400	37000	 NG					 NG	 NG
	10/2/1997 10/3/1997	50.76 50.76	25.39 NG	NP NG	25.37 NG	NS 	NS 66000	NS 8200	NS 8600	NS 2700	NS 13400	NS 80000	NS 	NS 	NS 	NS 	NS 	NS 	NS
	1/9/1998	50.76	21.25	NP NP	29.51		100000	9700	3200	1500	4700	92000							
	5/6/1998	50.76	15.96	NP	34.8		430000	6900	31000	11000	56000	<5000							
	7/21/1998	50.76	16.10	NP	34.66		250000	11000	26000	5500	26900	29000							
	12/30/1998	50.76	20.91	NP	29.85		370000	11000	22000	8500	40000	92000							
	2/2/1999	50.76	20.13	NP	30.63		190000	4100	19000	4800	32000	28000							
	5/10/1999	50.76	16.63	NP	34.13		2700	23	7.1	8.1	25	120							
	9/23/1999	50.76 50.76	22.48 22.94	NP NP	28.28 27.82		180000 66000	11000 6300	29000 5200	7000 2200	38000 7800	12000 35000							
	12/23/1999 b 3/27/2000	50.76	16.84	NP NP	33.92		120000	8700	12000	3800	16000	27000							
	5/22/2000	50.76	17.85	NP	32.91		110000	7600	16000	4400	20000	25000							
	8/31/2000	50.76	21.71	NP	29.05		110000	8800	7600	3400	14000	18000							
	12/11/2000	50.76	22.05	NP	28.71		70000	4580	3480	2550	9220	24400							
	3/20/2001	50.76	17.68	NP	33.08		100000	7100	4530	2540	9370	63100							
	6/19/2001	50.76	19.40	NP	31.36		180000	7430	14600	5400	25300	36100							
	9/20/2001	50.76	22.01	0.03	28.75	NS	NS 120000	NS	NS	NS 2010	NS 11600	NS	NS	NS	NS	NS	NS	NS	NS
	12/27/2001 2/28/2002	50.76 50.76	17.96 17.06	NP NP	32.8 33.7		120000 80000	6880 4920	9030 5450	2840 2220	14600 12300	32300 35900							
	6/28/2002	50.76	17.76	NP NP	33.7		48000	2780	2770	1530	6790	25100							
	9/12/2002	50.76	19.45	NP	31.31		46000	4500	6800	2600	10000	9100							
	12/12/2002	50.76	21.29	NP	29.47		36000	5200	3400	2000	6500	12000							
	3/10/2003	50.76	17.16	NP	33.6		70000	7000	4800	3300	13000	29000							
MW-4	5/12/2003	50.76	14.51	NP	36.25		75000	7600	3700	3400	13000	26000							
	8/27/2003	50.76	19.32	NP	31.44		77000	7500	1300	2100	4000	32000	<250	<250	250	<10000	<50000		
	11/10/2003	50.76	20.36	NP NP	30.4		110000	7100	3100	2100	5800	25000	<500	<500	<500	<20000	<100000		
	2/3/2004 5/4/2004	50.76 50.76	16.51 16.47	NP NP	34.25 34.29		160000 110000	8400 8100	9700 7500	5000 4300	23000 17000	26000 <250	<500 <250	<500 <250	<500 <250	<20000 <10000	<100000 <50000	<500 <250	<500 <250
	8/31/2004	50.76	19.16	NP	31.6		91000	6600	8400	3700	14000	14000	<250	<250	<250	<10000	<50000	<250	<250
	11/23/2004	50.76	18.02	NP	32.74		7400000	20000	150000	320000	1400000	23000	<2500	<2500	<2500	<100000	<500000	<2500	<2500
	1/18/2005	50.76	14.21	NP	36.55		170000	5400	14000	6900	33000	8800	<250	<250	<250	<10000	<50000	<250	<250
	6/29/2005	50.76	13.86	NP	36.9		640000	3500	25000	24000	110000	1700	<250	<250	<250	<10000	<50000	<250	<250
	9/1/2005	50.76	16.89	NP	33.87		100000	3800	11000	4900	33000	1100	<500	<500	<500	<20000	<100000	<500	<500
	11/3/2005	50.76 50.76	19.33 13.55	NP NP	31.43 37.21		490000 970000	4700 60000	11000 7000	10000 36000	49000 140000	1500 38000	<500 <500	<500 <500	<500 1000	<20000 <20000	<100000 <300000	<500 <500	<500 <500
	2/14/2006 5/30/2006	50.76	13.55	NP NP	37.21 37.24		140000	3000	6600	6200	29000	560	<500 <500	<500 <500	<500	<20000	<300000	<500 <500	<500 <500
	8/29/2006	50.76	17.52	NP	33.24		52000	4700	2500	3500	12000	1800	<500	<500	<500	<20000	<300000	<500	<500
	11/29/2006	50.76	19.93	0.11	30.83	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/20/2007	50.76	16.14	NP	34.62		68000	8400	2600	4100	13000	15000	<250	<250	<250	<10000	<150000	<250	<250
	5/25/2007	50.76	16.65	NP	34.11		37000	5100	1200	2800	6900	3500	<200	<200	<200	<8000	<120000	<200	<200
	8/9/2007	50.76	19.29	NP	31.47		180000	5600	7700	5700	21000	2900	<100	<100	<100	4100	<60000	<100	<100
	11/9/2007	50.76	21.27	NP ND	29.49	 NC	110000	3300	2400	3600	13000	1200	<100	<100	<100	5700	<60000	<100	<100
	12/14/2007 2/11/2008	38.35 38.35	21.10 15.45	NP 0.01	17.25 22.91	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	5/22/2008	38.35	17.44	NP	20.91		48000	4500	880	1400	5000	1000	<100	<100	<100	6600	<60000	<100	<100
	8/25/2008	38.35	20.32	0.05	18.07	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/17/2008	38.35	22.20	NP	16.15		45000	3300	520	910	3000	270	<100	<100	<100	6100	<60000	<100	<100
	2/25/2009	38.35	17.60	NP	20.75		39000	4600	2100	1800	6300	1300	<100	<100	<100	5600	<60000	<100	<100
	5/21/2009	38.35	17.02	NP	21.33		51000	3900	1100	1900	6800	3700	<100	<100	<100	4700	<60000	<100	<100
	8/14/2009	38.35	20.09	NP	18.26														
	2/10/2010	38.35	16.09	NP ND	22.26		2500	4.7	1.5	1.3	4.1	3.4	<0.50	<0.50	<0.50	248	<250	<1.0	<1.0
	8/20/2010	38.35	17.29	NP	21.06		3530	39.8	0.89	1.3	15.8	7.0	<0.50	<0.50	<0.50	689	<250	<1.0	<1.0

<u> </u>		1	GROUNDWATER	GAUGING DATA								GROUNDWATER	R ANALYTICAL DA	ΤΔ					
												GROONDWATE	(ANALITICAL DA	IA				1,2-	1,2-
Well I.D.	Date	TOC Elevation (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Water Elevation* (ft)	DRO (ug/L)	GRO (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	MTBE (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	Ethanol (ug/L)	Dibromoethane (EDB) (ug/L)	Dichloroethane (ug/L)
	2/7/2011	38.35	15.59	NP	22.76		3600	7.1	0.76	1.2	5.1	3.7	<0.50	<0.50	<0.50	210	<250	<1.0	<1.0
	8/15/2011	38.35	16.06	NP	22.29		87600	3430	280	2880	8500	317	<12.5	<12.5	<12.5	3410	<6250	<25.0	<25.0
	2/20/2012	43.64	17.94	NP	25.70		692000	4870	505	7080	29800	228	<25.0	<25.0	<25.0	4700	<12500	<50.0	115
	3/7/2012	43.64	17.75	NP	25.89		8500	4000	42	480	1090	400	<50	<50	<50	4900	<2500	<12	<25
	3/19/2012 4/27/2012	43.64 43.64	16.42 13.52	NP NP	27.22 30.12		15200 17000	4800 2800	125 490	562 1500	512 3230	768 370	<0.50 <50	3.2 <50	6 <50	25200 2900	<250 <2500	<1.0 <12	<1.0 <25
MW-4	5/29/2012	43.64	15.29	NP NP	28.35		17000	2800	380	1400	2570	210	<50 <50	<50	<50	2700	<2500	<12	<25
	6/27/2012	43.64	16.50	NP	27.14		16000	2500	390	1100	2400	250	<50	<50	<50	3200	<2500	<12	<25
	8/31/2012 d	43.64	18.82	NP	24.82		230000	2800	600	6100	17000	240	<25	<25	<25	1800	<300	<25	<25
	9/27/2012 1	43.64	19.30	NP	24.34		28000	2300	420	2000	6000	150	<40	<40	<40	3800	<2000		
	9/27/2012 2	43.64	19.30	NP	24.34		58000	2600	530	7700	15000	160	<100	<100	<100	2400	<5000		
	2/5/2013	43.64	15.60	NP	28.04		63000	2200	280	2600	7600	380	<15	<15	<15	3000	<150	<15	<15
	7/24/1992	50.32	30.63	NP	19.69			1.6											
	7/27/1992	50.32	30.63	NP	19.69	NS 450	NS 450	NS 10.5	NS 10.5	NS 10.5	NS 10.5	NS	NS	NS	NS	NS	NS	NS	NS
	9/15/1992 12/15/1992	50.32 50.32	31.52 32.42	NP NP	18.8 17.9	<50 <50	<50 58	<0.5 1.3	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5								
	3/15/1993	50.32	26.29	NP	24.03	<50	<50	<0.5	0.6	<0.5	0.7								
	6/7/1993	50.32	26.33	NP	23.99	<50	<50	<0.5	<0.5	<0.5	1.5								
	9/23/1993	50.32	29.64	NP	20.68	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/24/1993	50.32	NG	NG	NG	<50	<50	<0.5	<0.5	<0.5	<0.5	28.5							
	12/27/1993	50.32	29.75	NP	20.57		<50	<0.5	<0.5	<0.5	<0.5	55.4							
	4/5/1994	50.32	27.26	NP	23.06		<50	<0.5	<0.5	<0.5	<0.5	295							
	7/22/1994 10/13/1994	50.32 50.32	27.34 NG	NP NG	22.98 NG	NS	350 NS	<0.5 NS	<0.5 NS	<0.5 NS	<0.5 NS	419 NS	NS	NS	NS	NS	NS	NS	NS
	1/25/1995	50.32	22.16	NP NP	28.16		240	6	<0.5	<0.5	<1								
	4/19/1995	50.32	NG	NG	NG	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/5/1995	50.32	20.80	NP	29.52		180	<0.5	<0.5	<0.5	<1								
	10/5/1995	50.32	24.20	NP	26.12		860	<5	<5	<5	<10	3600							
	1/12/1996	50.32	25.30	NP	25.02		860	<5	<5	<5	<10	2800							
	4/22/1996 7/2/1996	50.32 50.32	19.13 20.66	NP NP	31.19 29.66		<50 100	<0.5 <0.5	<1 <1	<1 <1	<1 <1	470 1100							
	11/8/1996	50.32	20.98	NP	29.34		1100	<5	<10	<10	<10	1500							
	1/3/1997	50.32	20.53	NP	29.79		<50	<0.5	<1	<1	<1	450							
	4/28/1997	50.32	21.25	NP	29.07		1400	<0.5	<1	<1	<1	3500							
MW-6	7/1/1997	50.32	23.40	NP	26.92		6100	<0.5	<1	<1	<1	9100							
	10/2/1997	50.32	25.16	NP	25.16	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/3/1997	50.32 50.32	NG 21.13	NG NP	NG 29.19		330 <50	<0.5 <0.5	<1	<1	<1	2600							
	1/9/1998 5/6/1998	50.32	16.11	NP NP	34.21		410	<0.5	<1 <1	<1 <1	<1 <1	<10 500							
	7/21/1998	50.32	16.33	NP	33.99		4300	<5	<10	<10	<10	3800							-
	12/30/1998	50.32	20.89	NP	29.43	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/2/1999	50.32	20.20	NP	30.12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/10/1999	50.32	16.75	NP	33.57	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/23/1999	50.32	22.55	NP ND	27.77	 NC	<50	<1 NC	<1 NC	<1 NC	<1 NC	1600						 NC	
	12/23/1999 3/27/2000	50.32 50.32	23.00 16.89	NP NP	27.32 33.43	NS 	NS 1700	NS 4.4	NS 0.54	NS <0.5	NS 1	NS 14000	NS 	NS 	NS 	NS 	NS 	NS 	NS
	5/22/2000	50.32	18.02	NP NP	32.3	NS	NS NS	NS NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/31/2000	50.32	21.62	NP	28.7		1200	<0.5	<0.5	<0.5	<0.5	3900							
	12/11/2000	50.32	21.81	NP	28.51	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/20/2001	50.32	16.97	NP	33.35		3300	<0.5	<0.5	<0.5	<1.5	3760							
	6/19/2001	50.32	19.30	NP	31.02	NS	NS	NS	NS 0.1	NS 2.52	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/20/2001	50.32	22.00	NP ND	28.32		2200	2.04	8.1	3.62	13.7	2460							
	12/27/2001 2/28/2002	50.32 50.32	17.85 16.31	NP NP	32.47 34.01		830 1100	0.59 <0.5	<0.5 <0.5	<0.5 <0.5	<1 <1	1040 1450							
	6/28/2002	50.32	17.57	NP NP	32.75		<50	<0.5	<0.5	<0.5	<1	1020							
	9/12/2002	50.32	19.27	NP	31.05		190	1.9	4.6	1	7.3	480							
	12/12/2002	50.32	20.94	NP	29.38		270	<2.5	<2.5	<2.5	<2.5	500							

		1	GROUNDWATER	GALIGING DATA								GROUNDWATER	R ANALYTICAL DA	ΤΔ					
Wall I D	Data											GROONDWATE	ANALITICALDA				1	1,2-	1,2-
Well I.D.	Date	TOC Elevation (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Water Elevation* (ft)	DRO (ug/L)	GRO (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	MTBE (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	Ethanol (ug/L)	Dibromoethane (EDB) (ug/L)	Dichloroethane (ug/L)
	3/10/2003	50.32	17.11	NP	33.21		110	<0.5	<0.5	<0.5	<0.5	190							
	5/12/2003	50.32	15.18	NP	35.14		<50	<0.5	<0.5	<0.5	<0.5	36							
	8/27/2003 11/10/2003	50.32 50.32	18.90 20.13	NP NP	31.42 30.19		<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	8.9 4.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<20 <20	<100 <100		
	2/3/2004	50.32	15.83	NP	34.49		<50	<0.5	<0.5	<0.5	<0.5	<0.50	<0.5	<0.5	<0.5	<20	<100	<0.5	<0.5
	5/4/2004	50.32	15.62	NP	34.7		<50	<0.5	<0.5	<0.5	<0.5	24	<0.5	<0.5	<0.5	<20	<100	<0.5	<0.5
	8/31/2004	50.32	18.56	NP	31.76		<50	<0.5	<0.5	<0.5	<0.5	27	<0.5	<0.5	<0.5	<20	<100	<0.5	<0.5
	11/23/2004	50.32	16.95	NP	33.37	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/18/2005	50.32	13.61	NP	36.71		<50	<0.5	<0.5	<0.5	<0.5	1.3	<0.5	<0.5	<0.5	<20	<100	<0.5	<0.5
	6/29/2005 9/1/2005	50.32 50.32	13.55 16.52	NP NP	36.77 33.8	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	11/3/2005	50.32	19.28	NP NP	31.04	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	2/14/2006	50.32	NG	NG	NG	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/30/2006	50.32	NG	NG	NG	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/29/2006	50.32	17.15	NP	33.17	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/29/2006	50.32	19.50	NP	30.82	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
NAVA C	2/20/2007	50.32	15.81	NP	34.51	 NC	<50	<0.5	<0.5	<0.5	<0.5	24	<0.5	<0.5	<0.5	<20	<300	<0.5	<0.5
MW-6	5/25/2007 8/9/2007	50.32 50.32	16.38 19.15	NP NP	33.94 31.17	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	11/9/2007	50.32	20.70	NP	29.62	NS NS	NS NS	NS	NS	NS NS	NS	NS NS	NS	NS	NS NS	NS	NS NS	NS	NS
	12/14/2007	50.32	NG	NG	NG	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/11/2008	50.32	15.08	NP	35.24		<50	<0.5	<0.5	<0.5	<0.5	<0.50	<0.5	<0.5	<0.5	<10	<100	<0.5	<0.5
	5/22/2008	50.32	17.07	NP	33.25	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/25/2008	50.32	19.82	NP	30.5	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/17/2008	50.32	21.58	NP	28.74	NS	NS 120	NS 10.50	NS 10.50	NS -0.50	NS 10.50	NS 12	NS -0.50	NS -0.50	NS 10.50	NS -10	NS :200	NS 10.50	NS 10.50
	2/25/2009 5/21/2009	50.32 50.32	17.34 16.85	NP NP	32.98 33.47		120	<0.50	<0.50	<0.50	<0.50	13 	<0.50	<0.50	<0.50	<10	<300	<0.50	<0.50
	8/14/2009	50.32	20.03	NP	30.29														
	2/10/2010	50.32	15.31	NP	35.01		<50.0	<0.50	<0.50	<0.50	<1.5	<0.50	<0.50	<0.50	<0.50	<5.0	<250	<1.0	<1.0
	8/20/2010	50.32	16.60	NP	33.72														
	2/7/2011	50.32	14.86	NP	35.46		<50.0	<0.50	<0.50	<0.50	<1.5	<0.50	<0.50	<0.50	<0.50	<5.0	<250	<1.0	<1.0
	8/15/2011	50.32	16.07	NP	34.25														
	2/20/2012 8/31/2012	43.64 43.64	17.83 18.82	NP NP	25.81 24.82		<50.0	<0.50	<0.50	<0.50	<1.5	0.66	<0.50	<0.50	<0.50	<5.0 	<250	<1.0	<1.0
	2/5/2013	43.64	15.53	NP	28.11		<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<5.0	<0.50	<0.50
	1/25/1995	51.40	21.67	NP	29.73		<50	<0.5	<0.5	<0.5	<1							-	
	4/19/1995	51.40	25.27	NP	26.13		<50	<0.5	<0.5	<0.5	<1								
	7/5/1995	51.40	24.63	NP	26.77		<50	<0.5	<0.5	<0.5	<1								
	10/5/1995	51.40	28.21	NP	23.19		83	<0.5	<0.5	<0.5 <0.5	<1	77 120							
	1/12/1996 4/22/1996	51.40 51.40	29.29 23.11	NP NP	22.11 28.29		63 <50	<0.5 <0.5	<0.5 <1	<0.5	<1 <1	120 13							
	7/2/1996	51.40	23.56	NP	27.84		<50	<0.5	<1	<1	<1	<10							
	11/8/1996	51.40	20.06	NP	31.34		<50	<0.5	<1	<1	<1	<10							
	1/3/1997	51.40	23.42	NP	27.98		<50	<0.5	<1	<1	<1	<10							
	4/28/1997	51.40	24.12	NP	27.28		<50	<0.5	<1	<1	<1	<10							
MW-7	7/1/1997	51.40 51.40	26.40 28.14	NP NP	25.00 23.26		<50 <50	<0.5 <0.5	<1	<1 <1	<1 <1	<10 <10							
1V1VV-/	10/2/1997 1/9/1998	51.40	24.02	NP NP	27.38		<50 <50	<0.5	<1 <1	<1	<1	<10							
	5/6/1998	51.40	21.00	NP	30.40		1900	<0.5	<1	<1	<1	1800							
	7/21/1998	51.40	21.17	NP	30.23		50	<0.5	<1	<1	<1	<10							
	12/30/1998	51.40	22.13	NP	29.27	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/2/1999	51.40	22.08	NP	29.32	NS NC	NS NC	NS NS	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	NS NS	NS NC	NS NC	NS	NS
	5/10/1999 9/23/1999	51.40 51.40	18.58 24.29	NP NP	32.82 27.11	NS 	NS 70	NS <1	NS <1	NS <1	NS <1	NS 4700	NS 	NS 	NS 	NS 	NS 	NS 	NS
	12/23/1999	51.40	24.23	NP	26.87	NS	NS NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/27/2000	51.40	18.58	NP	32.82		910	<0.5	<0.5	<0.5	<0.5	2600							
	5/22/2000	51.40	19.49	NP	31.91	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/31/2000	51.40	22.53	NP	28.87		440	<0.5	<0.5	<0.5	<0.5	900							

	1	T	GROUNDWATER	R GAUGING DATA								GROUNDWATE	R ANALYTICAL DA	ΤΔ					
												GROONDWATE	N ANALITICAL DA					1,2-	1,2-
Well I.D.	Date	TOC Elevation (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Water Elevation* (ft)	DRO (ug/L)	GRO (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	MTBE (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	Ethanol (ug/L)	Dibromoethane (EDB) (ug/L)	Dichloroethane (ug/L)
	12/11/2000	51.40	22.75	NP	28.65	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/20/2001	51.40	18.79	NP	32.61		1100	<0.5	<0.5	<0.5	<1.5	1210							
	6/19/2001	51.40	19.82	NP	31.58	NS	NS 1200	NS 1.21	NS -0.5	NS -0.5	NS	NS 4550	NS	NS	NS	NS	NS	NS	NS
	9/20/2001 12/27/2001	51.40 51.40	21.35	NP NP	30.05 31.04		1300 510	1.21 <0.5	<0.5 <0.5	<0.5 <0.5	<1.5 <1	1550 643							
	2/28/2002	51.40	21.86	NP NP	29.54		250	<0.5	<0.5	<0.5	<1	317							
	6/28/2002	51.40	22.64	NP	28.76		<50	<0.5	<0.5	<0.5	<1	102							
	9/12/2002	51.40	23.51	NP	27.89		<50	<0.5	<0.5	<0.5	1	14							
	12/12/2002	51.40	23.75	NP	27.65	-	<50	<0.5	<0.5	<0.5	<0.5	<2.5							
	3/10/2003	51.40	21.25	NP	30.15		61	<0.5	<0.5	<0.5	<0.5	99	-						
	5/12/2003	51.40	21.44	NP	29.96		<100	<1	<1	<1	<1	120							
	8/27/2003	51.40	23.30	NP	28.10		120	<0.5	<0.5	<0.5	<0.5	84	<0.5	<0.5	<0.5	<20	<100		
	11/10/2003 2/3/2004	51.40 51.40	20.24	NP NP	31.16 30.77		230 <250	<1 <2.5	<1 <2.5	<1 <2.5	<1 <2.5	92 91	<1 <2.5	<1 <2.5	<1 <2.5	<40 <100	<200 <500	<2.5	<2.5
	5/4/2004 b	51.40	21.89	NP NP	29.51		<250	<2.5	<2.5	<2.5	<2.5	190	<2.5	<2.5	<2.5	<100	<500	<2.5	<2.5
	8/31/2004	51.40	23.16	NP	28.24		<500	<5	<5	<5	<5	220	<5	<5	<5	<200	<1000	<5	<5
	11/23/2004	51.40	21.65	NP	29.75		590	<2.5	5	11	51	290	<2.5	<2.5	<2.5	<100	<500	<2.5	<2.5
	1/18/2005	51.40	16.28	NP	35.12		<250	<2.5	<2.5	<2.5	2.5	92	<2.5	<2.5	<2.5	<100	<500	<2.5	<2.5
	6/29/2005	51.40	14.50	NP	36.90		2200	43	97	92	390	250	<2.5	<2.5	<2.5	<100	<500	<2.5	<2.5
	9/1/2005	51.40	20.41	NP	30.99		<500	<5	<5	<5	<5	60	<5	<5	<5	<200	<1000	<5	<5
MW-7	11/3/2005	51.40	21.00	NP	30.40		130 a	<1	<1	<1	1	130	<1	<1	<1	<40	<200	<1	<1
	2/14/2006	51.40	16.31	NP NP	35.09		100	<0.5 <0.5	<0.5	<0.5	0.87	62	<0.5 <0.5	<0.5	<0.5 <0.5	<20	<300	<0.5 <0.5	<0.5 <0.5
	5/30/2006 8/29/2006	51.40 51.40	17.58 18.64	NP NP	33.82 32.76		<50 100	<2.5	<0.5 <2.5	<0.5 <2.5	<0.5 <2.5	9.1 140	<2.5	<0.5 <2.5	<2.5	<20 <100	<300 <1500	<2.5	<2.5
	11/29/2006	51.40	20.35	NP	31.05		84	<2.5	<2.5	<2.5	<2.5	190	<2.5	<2.5	<2.5	<100	<1500	<2.5	<2.5
	2/20/2007	51.40	17.09	NP	34.31		160 a	<2.5	<2.5	<2.5	<2.5	170	<2.5	<2.5	<2.5	<100	<1500	<2.5	<2.5
	5/25/2007	51.40	17.20	NP	34.20		70 a	<1	<1	<1	<1	93	<1	<1	<1	<40	<600	<1	<1
	8/9/2007	51.40	19.95	NP	31.45		<50	<0.5	<0.5	<0.5	<0.5	42	<0.5	<0.5	<0.5	<20	<300	<0.5	<0.5
	11/9/2007	51.40	23.28	NP	28.12		61	<0.5	<0.5	<0.5	1.3	71	<0.5	<0.5	<0.5	<20	<300	<0.5	<0.5
	12/14/2007	38.99	23.07	NP	15.92														
	2/11/2008	38.99	17.21	NP	21.78		<50	<0.5	<0.5	<0.5	<0.5	200	<0.5	<0.5	<0.5	<10	<100	<0.5	<0.5
	5/22/2008 8/25/2008	38.99 38.99	17.55 20.55	NP NP	21.44 18.44		200 <50	<1 <0.5	<1 <0.5	<0.5	<1 <0.5	81 30	<1 <0.5	<1 <0.5	<0.5	<20 <10	<600 <300	<1 <0.5	<1 <0.5
	12/17/2008	38.99	21.86	NP	17.13		<50	<0.5	<0.5	<0.5	<0.5	2.6	<0.5	<0.5	<0.5	<10	<300	<0.5	<0.5
	8/14/2009	38.99	20.31	NP	18.68														
	8/20/2010	38.99	16.82	NP	22.17		<50.0	<0.50	<0.50	<0.50	<1.5	17.2	<0.50	<0.50	<0.50	9.8	<250	<1.0	<1.0
	8/15/2011	38.99	16.28	NP	22.71		<50.0	<0.50	<0.50	<0.50	<1.5	14.8	<0.50	<0.50	<0.50	13.1	<250	<1.0	<1.0
	2/20/2012	44.21	18.48	NP	25.73		<50.0	<0.50	<0.50	<0.50	<1.5	9.6	<0.50	<0.50	<0.50	<5.0	<250	<1.0	<1.0
	6/27/2012	44.21	16.70	NP	27.51														
	8/31/2012 2/5/2013	44.21 44.21	19.39 15.83	NP NP	24.82 28.38		<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	20 25	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<5.0 <5.0	<5.0 <5.0	<0.50 <0.50	<0.50 <0.50
	1/25/1995	50.88	31.59	NP NP	19.29		54	<0.5	<0.5	<0.5	<1								
	4/19/1995	50.88	19.18	NP	31.70		<50	<0.5	<0.5	<0.5	<1								
	7/5/1995	50.88	19.03	NP	31.85		<50	<0.5	<0.5	<0.5	<1								
	10/5/1995	50.88	24.40	NP	26.48	-	<50	<0.5	<0.5	<0.5	<1	<5	-						
	1/12/1996	50.88	25.51	NP	25.37		<50	<0.5	<0.5	<0.5	<1	<5							
	4/22/1996	50.88	18.00	NP ND	32.88		<50 <50	<0.5	<1	<1	<1	<10							
	7/2/1996 11/8/1996	50.88 50.88	19.83 20.09	NP NP	31.05 30.79		<50 <50	<0.5 <0.5	<1	<1 <1	<1 <1	<10 <10							
MW-8	1/3/1997	50.88	19.72	NP NP	31.16		<50	<0.5	<1	<1	<1	<10							
	4/28/1997	50.88	20.44	NP	30.44		<50	<0.5	<1	<1	<1	<10							
	7/1/1997	50.88	22.72	NP	28.16		<50	<0.5	<1	<1	<1	<10							
	10/2/1997	50.88	24.51	NP	26.37		<50	<0.5	<1	<1	<1	<10							
	1/9/1998	50.88	21.17	NP	29.71		<50	<0.5	<1	<1	<1	<10		-					
	5/6/1998	50.88	18.34	NP	32.54		<50	<0.5	<1	<1	<1	<10							
	7/21/1998	50.88	18.55	NP	32.33		90 NG	<0.5	<1 NG	<1 NC	<1 NC	<10							
	12/30/1998	50.88	20.40	NP ND	30.48	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	2/2/1999	50.88	19.28	NP	31.60	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

	1	1	GROUNDWATER	GAUGING DATA								GROUNDWATE	R ANALYTICAL DA	TΔ					
	5									T			TANALI HEAL DA	in .				1,2-	1,2-
Well I.D.	Date	TOC Elevation (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Water Elevation* (ft)	DRO (ug/L)	GRO (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	MTBE (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	Ethanol (ug/L)	Dibromoethane (EDB) (ug/L)	Dichloroethane (ug/L)
	5/10/1999	50.88	15.62	NP	35.26	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/23/1999	50.88	21.74	NP	29.14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/23/1999	50.88	22.83 16.25	NP NP	28.05 34.63	NS	NS <fo< td=""><td>NS <0.5</td><td>NS <0.5</td><td>NS <0.5</td><td>NS <0.5</td><td>NS <0.50</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td></fo<>	NS <0.5	NS <0.5	NS <0.5	NS <0.5	NS <0.50	NS	NS	NS	NS	NS	NS	NS
	3/27/2000 5/22/2000	50.88 50.88	17.06	NP NP	33.82	NS	<50 NS	NS	NS	NS	NS	NS	 NS	NS	 NS	 NS	NS	 NS	NS
	8/31/2000	50.88	21.72	NP	29.16	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/11/2000	50.88	22.03	NP	28.85	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/20/2001	50.88	16.23	NP	34.65		<50	<0.5	<0.5	<0.5	<1.5	0.991							
	6/19/2001	50.88	19.35	NP	31.53	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/20/2001	50.88	21.95	NP	28.93	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/27/2001 2/28/2002	50.88 50.88	16.98 15.38	NP NP	33.90 35.50	NS 	NS <50	NS <0.5	NS <0.5	NS <0.5	NS <1	NS <0.50	NS 	NS 	NS 	NS 	NS 	NS 	NS
	6/28/2002	50.88	16.97	NP NP	33.91	NS	NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/12/2002	50.88	19.47	NP	31.41	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/12/2002	50.88	20.84	NP	30.04	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/10/2003	50.88	16.56	NP	34.32		<50	<0.5	<0.5	<0.5	<0.5	3		-					
	5/12/2003	50.88	13.63	NP	37.25	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/27/2003	50.88	18.90	NP NP	31.98	NS NS	NS NS	NS NS	NS NC	NS NC	NS NC	NS NS	NS NC	NS NC	NS NC	NS NS	NS NS	NS NS	NS NC
	11/10/2003 2/3/2004	50.88 50.88	19.68 14.76	NP NP	31.20 36.12	NS 	NS <50	NS <0.5	NS <0.5	NS <0.5	NS <0.5	NS <0.50	NS <0.5	NS <0.5	NS <0.5	NS <20	NS <100	NS <0.5	NS <0.5
	5/4/2004	50.88	14.69	NP	36.19	NS	NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS
	8/31/2004	50.88	18.08	NP	32.80	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/23/2004	50.88	15.77	NP	35.11	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/18/2005	50.88	12.04	NP	38.84		<50	<0.5	<0.5	<0.5	<0.5	<0.50	<0.50	<0.50	<0.50	<20	<100	<0.50	<0.50
MW-8	6/29/2005	50.88	NG	NG	NG	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/1/2005	50.88	16.12	NP	34.76	NS NS	NS NS	NS	NS NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS	NS
	11/3/2005 2/14/2006	50.88 50.88	19.42 12.43	NP NP	31.46 38.45	NS 	NS <50	NS <0.5	NS <0.5	NS <0.5	NS <0.5	NS <0.50	NS <0.5	NS <0.5	NS <0.5	NS <20	NS <300	NS <0.5	NS <0.5
	5/30/2006	50.88	12.40	NP	38.48	NS	NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/29/2006	50.88	17.16	NP	33.72	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/29/2006	50.88	19.35	NP	31.53	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/20/2007	50.88	14.57	NP	36.31		<50	<0.5	<0.5	<0.5	<0.5	<0.50	<0.5	<0.5	<0.5	<20	<300	<0.5	<0.5
	5/25/2007	50.88	16.11	NP	34.77	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/9/2007 11/9/2007	50.88 50.88	19.25 20.92	NP NP	31.63 29.96	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	12/14/2007	38.44	21.26	NP	17.18	NS	NS	NS NS	NS NS	NS	NS	NS	NS NS	NS	NS NS	NS NS	NS	NS	NS
	2/12/2008	38.44	14.00	NP	24.44		<50	<0.5	<0.5	<0.5	<0.5	<0.50	<0.5	<0.5	<0.5	<10	<100	<0.5	<0.5
	5/22/2008	38.44	16.86	NP	21.58	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/25/2008	38.44	19.92	NP	18.52	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/17/2008	38.44	21.45	NP	16.99	NS	NS .EQ	NS 10.50	NS 10.50	NS -0.50	NS -0.50	NS 10.50	NS 10.50	NS 10.50	NS 10.50	NS -10	NS -200	NS 10.50	NS -0.50
	2/25/2009 5/21/2009	38.44 38.44	16.19 16.10	NP NP	22.25 22.34		<50 	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50 	<0.50	<10	<300	<0.50	<0.50
	8/14/2009	38.44	20.17	NP NP	18.27														
	2/10/2010	38.44	15.33	NP	23.11		<50.0	<0.50	<0.50	<0.50	<1.5	<0.50	<0.50	<0.50	<0.50	<5.0	<250	<1.0	<1.0
	8/20/2010	38.44	16.29	NP	22.15		-							-					-
	2/7/2011	38.44	14.35	NP	24.09		<50.0	<0.50	<0.50	<0.50	<1.5	<0.50	<0.50	<0.50	<0.50	<5.0	<250	<1.0	<1.0
	8/15/2011	38.44	15.83	NP	22.61														
	2/20/2012	44.18	17.50	NP	26.68		<50.0	<0.50	<0.50	<0.50	<1.5	<0.50	<0.50	<0.50	<0.50	<5.0	<250	<1.0	<1.0
	8/31/2012 2/5/2013	44.18 44.18	18.81 15.00	NP NP	25.37 29.18		<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	 <5.0	 <5.0	<0.50	<0.50
	1/25/1995	51.05	22.32	NP	28.73		<50	<0.5	<0.5	<0.5	<1								
	4/19/1995	51.05	19.86	NP	31.19		<50	<0.5	<0.5	<0.5	<1								
	7/5/1995	51.05	20.78	NP	30.27		<50	<0.5	<0.5	<0.5	<1								
MW-9	10/5/1995	51.05	24.33	NP	26.72		<50	<0.5	<0.5	<0.5	<1	160							
	1/12/1996	51.05	25.44	NP	25.61		<50	<0.5	<0.5	<0.5	<1	<5							
	4/22/1996 7/2/1996	51.05 51.05	18.01 19.70	NP NP	33.04 31.35		<50 <50	<0.5 <0.5	<1 <1	<1 <1	<1 <1	11 <10							
	11/8/1996	51.05	19.70	NP NP	31.35		<50 <50	<0.5	<1	<1	<1	<10							
	11/0/1220	31.03	13.30	INF	31.03		\30	\U. 3	<u> </u>	<u> </u>	<u> </u>	/10							

Well I.D. Date TOC Elevation Depth to Water LNAPL Water 1,2- 1,2-			T	GROUNDWATER	GAUGING DATA								GROUNDWATE	R ANALYTICAL DA	TA					
	Well I.D.	Date		Depth to Water	LNAPL	Water	DRO (ug/L)	GRO (ug/L)	Benzene (ug/L)	Toluene (ug/L)	1	,				TAME (ug/L)	TBA (ug/L)	Ethanol (ug/L)	'	1,2- Dichloroethane
Colored Colo		1/2/1207			` `			250		_										
\$\frac{9}{19}\text{PMP}			1						1		1		+							
NOTIFIED 1970 197			1								1			1					1	1
Marging Marg					NP		NS							NS	NS	NS	NS	NS	NS	NS
Section Sect		10/3/1997	51.05	NG	NG	NG		<50	<0.5	<1	<1	<1	<10							
1,000 1,00			1	21.11					<0.5	<1	<1	<1	<10							
120/1978 1.5.8 1.5.5 1			1	1					+		†	1	+							
\$\frac{1}{2}\frac{1}\frac{1}{2}\frac{1}\frac{1}{2}\frac{1}{2}\frac{1}{2}\fr			1	1					+		1	1	+			+	-		1	ł
\$\frac{950}{100} \$1.65 \$1.					1					ł						ł				ł
100,000 150,				-												ł	-			
1777 1779		9/23/1999	51.05	NG	NG	NG	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
\$\text{\$		12/23/1999	51.05	NG	NG	NG	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Mail			1	1	1						1		+	1		1	•		1	
			1		1					+						ł				
Marie Mari										ł										
MARGINGE 1,000 MG MG MG MG MG MG MG			1		1						1					ł	•			
12777/001 15.106			1	+					1		1		+			1			1	ł
248/2002 23.00 37.42 NP 23.84 3900 1540 154 84 111 2200		9/20/2001	51.05	22.20	NP	28.85		6300	2.87	<0.5	<0.5	<1.5	8640							
6/8/2002 51.05 18.20 1			1				NS		1	+	1		+	NS	NS	NS	NS	NS	NS	NS
\$\frac{912}{17770703}										ł										ļ
\$\frac{137/27/2002}{37/27/2002}											ļ					1	-		1	1
\$\frac{1}{1}\frac{1}\frac{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}			1	1					+			1	+						1	
Mary			1	1					1		1	1	+			 				
March Marc			1	1	NP		NS		1				+	NS	NS	NS	NS	NS	NS	NS
\$\frac{7}{3}\frac{1}{2}\frac{1}		8/27/2003	51.05	19.69	NP	31.36		11000	830	<50	<50	<50	6300	<50	<50	<50	<2000	<10000		
\$\frac{54/2004}{893/2009}\$\frac{1}{5.105}\$\frac{1}{5.177}\$\frac{1}{NP}\$\frac{1}{3.388}\$\frac{NS}{NS}	MW-9	11/10/2003	51.05	19.97	NP	31.08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
8/31/2004 51.05 10.71 NP 91.34 - <2500 210 -25			+		1						1					1			1	
11/13/17/2014 5.1.05			1	1					1	+	1		+	1		ł				
1/18/1008 5.105										ł			+			ł	•			
9/1/2005 5.1.05 17.42 NP 33.63 3500 1300 4.25 4.25 2.8 240 4.25				-																
11/3/2005		6/29/2005	51.05	14.74	NP	36.31	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
2/14/2006		9/1/2005	51.05	17.42	NP	33.63		3500	1300	<25	<25	28	240	<25	<25	<25	2700	<5000	<25	<25
S/30/2006 S1.05 13.76 NP 37.29 NS NS NS NS NS NS NS N				1						ł						ł				ł
8/29/2006 51.05 17.86 NP 33.19 - 1200 580 <25																				
11/29/2006 51.05 20.25 NP 30.80 NS NS NS NS NS NS NS N																				
2/20/2007 51.05 16.91 NP 34.14 780 66 1.5 2 1.4 3.2 <1 <1 <1 380 <600 <1 <1 <1 <1 <1 <1 <1												1				ł	•			ł
8/9/2007 51.05 19.71 NP 31.34 650 150 <-0.5										ł	1			1		ł			1	
11/9/2007 51.05 21.62 NP 29.43 NS		5/25/2007	51.05	17.28	NP	33.77	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
12/14/2007 38.63 21.66 NP 16.97 NS NS <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td> <td>1</td> <td></td> <td>+</td> <td>1</td> <td></td> <td></td> <td></td>			1						1		1			1		+	1			
2/12/2008 38.63 16.30 NP 22.33 - 890 27 2.5 28 5.4 <0.50			1	+					1		1		+	1					1	
5/2/2/008 38.63 18.10 NP 20.53 NS			1		1					+	1			1			1			ł
8/25/2008 38.63 20.93 NP 17.70 180 <0.5			1							+	1		+	1		ł				
12/17/2008 38.63 22.86 NP 15.77 NS NS <td></td> <td>ļ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											ļ									
5/21/2009 38.63 17.95 NP 20.68		12/17/2008	38.63	22.86	NP	15.77	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
8/14/2009 38.63 20.81 NP 17.82			1	1	1			600	11	0.86	1.1	2.2	<0.50	<0.50	<0.50	<0.50	17	<300	<0.50	<0.50
2/10/2010 38.63 16.71 NP 21.92 <50.0 <0.50 <0.50 <1.5 <0.50 <0.50 <0.50 <5.0 <250 <1.0 <1.0 8/20/2010 38.63 17.22 NP 21.41 137 26.5 <0.50			1	+	1														<u> </u>	†
8/20/2010 38.63 17.22 NP 21.41 - 137 26.5 <0.50 <0.50 <1.5 0.91 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 </td <td></td> <td></td> <td>1</td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td>1</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>1</td> <td>ł</td>			1	+					+	1			1				-		1	ł
2/7/2011 38.63 16.18 NP 22.45 - 78.5 1.6 <0.50 <0.50 <1.5 0.64 <0.50 <0.50 <0.50 <7.6 <250 <1.0 <1.0			1													ł				ł
										ł						ł				
									1	1		1	+	t		1	1		 	<u> </u>

			GROUNDWATER	GAUGING DATA								GROUNDWATER	ANALYTICAL DA	ıΤΑ					
Well I.D.	Date	TOC Elevation (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Water Elevation* (ft)	DRO (ug/L)	GRO (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	MTBE (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	Ethanol (ug/L)	1,2- Dibromoethane (EDB) (ug/L)	1,2- Dichloroethane (ug/L)
	2/20/2012	44.35	18.88	NP	25.47	-	204	43.2	<0.50	<0.50	<1.5	<0.50	<0.50	<0.50	<0.50	59.1	<250	<1.0	<1.0
MW-9	8/31/2012	44.35	19.68	NP	24.67		<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<5.0	<0.50	<0.50
	9/27/2012	44.35	20.25	NP	24.10														
	2/5/2013 1/9/1998	44.35 NSVD	16.44 20.97	NP NP	27.91		<50 <50	<0.50 <0.5	<0.50 <1	<0.50 <1	<0.50 <1	<0.50 <10	<0.50	<0.50	<0.50	<5.0 	<5.0	<0.50	<0.50
	5/6/1998	NSVD	18.07	NP			800	<0.5	<1	<1	<1	980							
	7/21/1998	NSVD	18.28	NP			80	<0.5	<1	<1	<1	<10							
	12/30/1998	NSVD	22.22	NP		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/2/1999	NSVD	21.83	NP			940	<10	<10	<10	<10	690							
	5/10/1999	NSVD	17.99	NP		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/23/1999	NSVD	22.61	NP			<50	<1	<1	<1	1.4	1000							
	12/23/1999	NSVD	23.75	NP ND		NS	NS 1000	NS 40 F	NS -O.F	NS 40 F	NS 40 F	NS 2800	NS	NS	NS	NS	NS	NS	NS
	3/27/2000 5/22/2000	NSVD NSVD	18.83 19.47	NP NP		 NS	1900 NS	<0.5 NS	<0.5 NS	<0.5 NS	<0.5 NS	2800 NS	NS	NS	NS	NS	NS	NS	NS
	8/31/2000	NSVD	22.64	NP			1700	<0.5	<0.5	<0.5	<0.5	13000							
	12/11/2000	NSVD	22.84	NP		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/20/2001	NSVD	19.57	NP			16000	<0.5	<0.5	<0.5	<1.5	11900							
	6/19/2001	NSVD	20.63	NP		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/20/2001	NSVD	23.07	NP			5800	<0.5	<0.5	<0.5	<1.5	8160							
	12/27/2001	NSVD	20.92	NP			6600	17.3	14.5	<12.5	<25	7750							
	2/28/2002	NSVD	18.52	NP			3600	10.8	<0.5	<0.5	<1	5380							
	6/28/2002	NSVD	18.41	NP ND			<50	<0.5	<0.5	<0.5	<1	2570							
	9/12/2002 12/12/2002	NSVD NSVD	20.57 22.80	NP NP			660 1400	<5 <5	<5 <5	<5 <5	<5 <5	3300 3300							
	3/10/2003	NSVD	19.26	NP			1700	<5	<5	5.3	15	2800							
	5/12/2003	NSVD	17.90	NP			1500	<12	<12	<12	<12	2200							
	8/27/2003	NSVD	20.82	NP			4100	<25	<25	<25	<25	2800	<25	<25	<25	<1000	<5000		
	11/10/2003	NSVD	21.92	NP			<5000	<50	<50	<50	<50	3300	<50	<50	<50	<2000	<10000		
	2/3/2004	NSVD	18.52	NP			5100	<50	<50	<50	<50	2300	<50	<50	<50	<2000	<10000	<50	<50
	5/4/2004	NSVD	17.63	NP			<2500	<25	<25	<25	<25	1600	<25	<25	<25	<1000	<5000	<25	<25
MW-10	8/31/2004	NSVD	20.67	NP			<5000	<50	<50	<50	<50	1900	<50	<50	<50	<2000	<10000	<50	<50
	11/23/2004	NSVD	19.79	NP ND			2600	<25	<25	<25	<25	2300	<25	<25	<25	<1000	<5000	<25	<25
	1/18/2005 6/29/2005	NSVD NSVD	16.13 15.56	NP NP			560 110	<5 1.9	<5 4.6	<5 4.2	<5 17	530 71	<5 <0.5	<5 <0.5	<5 <0.5	<200 <20	<1000 <100	<5 <0.5	<5 <0.5
	9/1/2005	NSVD	18.10	NP			<250	<2.5	<2.5	<2.5	<2.5	280	<2.5	<2.5	<2.5	<100	<500	<2.5	<2.5
	11/3/2005	NSVD	20.90	NP			800 a	<5	<5	<5	7	770	<5	<5	<5	<200	<1000	<5	<5
	2/14/2006	NSVD	15.58	NP			600	<0.5	<0.5	<0.5	<0.5	400 c	<0.5	<0.5	1.2	34	<300	<0.5	<0.5
	5/30/2006	NSVD	14.70	NP			95	<0.5	<0.5	<0.5	<0.5	<0.50	<0.5	<0.5	<0.5	<20	<300	<0.5	<0.5
	8/29/2006	NSVD	18.69	NP			250	<5	<5	<5	<5	490	<5	<5	<5	<200	<3000	<5	<5
	11/29/2006	NSVD	21.35	NP			650 a	<5	<5	<5	<5	1400	<5	<5	5.8	<200	<3000	<5 -	<5
	2/20/2007	NSVD	18.65	NP			720	<5	<5	<5	<5	850	<5	<5	<5	<200	<3000	<5	<5
	5/25/2007	NSVD	18.15	NP NP			130 a	<0.5	<0.5	<0.5	<0.5 <10	170 1600	<0.5 <10	<0.5 <10	0.69	<20 <400	<300	<0.5	<0.5
	8/9/2007 11/9/2007	NSVD NSVD	20.83 22.53	NP NP			1100	<10 <10	<10 <10	<10 <10	13	1600	<10	<10	<10 <10	<400 <400	<6000 <6000	<10 <10	<10 <10
	12/14/2007	40.45	22.62	NP	17.83	NS	NS NS	NS NS	NS NS	NS	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS	NS NS
	2/11/2008	40.45	17.86	NP	22.59		<50	<0.5	<0.5	<0.5	<0.5	770	<0.5	<0.5	2.6	<10	<100	<0.5	<0.5
	5/22/2008	40.45	19.05	NP	21.40		81	<0.5	<0.5	<0.5	<0.5	2.8	<0.5	<0.5	<0.5	<10	<300	<0.5	<0.5
	8/25/2008	40.45	21.88	NP	18.57		<50	<0.5	1	<0.5	0.98	500	<0.5	<0.5	2.2	<10	<300	<0.5	<0.5
	12/17/2008	40.45	23.32	NP	17.13	-	<50	<20	<20	<20	<20	910	<20	<20	<20	<400	<12000	<20	<20
	2/25/2009	40.45	20.07	NP	20.38		84	<5.0	<5.0	<5.0	<5.0	290	<5	<5	<5	<100	<3000	<5	<5
	5/21/2009	40.45	18.80	NP	21.65		<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<300	<0.50	<0.50
	8/14/2009 2/10/2010	40.45 40.45	21.76 17.80	NP NP	18.69 22.65		<50.0	<0.50	<0.50	<0.50	<1.5	21.9	<0.50	 <0.50	<0.50	<5.0	<250		
	8/20/2010	40.45	17.80	NP NP	22.65		<50.0 <50.0	<0.50	<0.50	<0.50	<1.5	<0.50	<0.50	<0.50 <0.50	<0.50	<5.0 <5.0	<250 <250	<1.0 <1.0	<1.0 <1.0
	2/7/2011	40.45	17.02	NP	23.43		<50.0	<0.50	<0.50	<0.50	<1.5	0.53	<0.50	<0.50	<0.50	<5.0	<250	<1.0	<1.0
	8/15/2011	40.45	17.76	NP	22.69		<50.0	<0.50	<0.50	<0.50	<1.5	13.8	<0.50	<0.50	<0.50	13.1	<250	<1.0	<1.0
	2/20/2012	46.17	20.00	NP	26.17		<50.0	<0.50	<0.50	<0.50	<1.5	65.1	<0.50	<0.50	<0.50	5.3	<250	<1.0	<1.0
	8/31/2012	46.17	20.79	NP	25.38		<50	<0.50	<0.50	<0.50	<0.50	57	<0.50	<0.50	<0.50	<5.0	<5.0	<0.50	<0.50

HISTORICAL GROUNDWATER GAUGING AND ANALYTICAL DATA 76 (FORMER BP) SERVICE STATION NO. 11117 7210 BANCROFT AVENUE OAKLAND, CALIFORNIA

			GROUNDWATER	GAUGING DATA								GROUNDWATE	R ANALYTICAL DA	TA					
Well I.D.	Date	TOC Elevation (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Water Elevation* (ft)	DRO (ug/L)	GRO (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	MTBE (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	Ethanol (ug/L)	1,2- Dibromoethane (EDB) (ug/L)	1,2- Dichloroethane (ug/L)
MW-10	2/5/2013	46.17	17.59	NP	28.58		<50	<0.50	<0.50	<0.50	<0.50	3.1	<0.50	<0.50	<0.50	<5.0	<5.0	<0.50	<0.50
	12/14/2007	37.64	20.16	NP	17.48		8000	<10	72	230	760	<10	<10	<10	<10	<400	<6000	<10	<10
	2/12/2008	37.64	14.35	NP	23.29		5500	46	13	220	160	<2.5	<2.5	<2.5	<2.5	<50	<500	<2.5	<2.5
	5/22/2008	37.64	16.63	NP	21.01		5700	80	21	320	150	<5	<5	<5	<5	<100	<3000	<5	<5
	8/25/2008	37.64	19.48	NP	18.16		5300	<5	20	120	320	<5	<5	<5	<5	<100	<3000	<5	<5
	12/17/2008	37.64	21.26	NP	16.38		12000	2.4	2.6	30	54	<0.50	<0.5	<0.5	<0.5	<10	<300	<0.5	<0.5
	2/25/2009	37.64	16.38	NP	21.26		6800	0.86	20	150	390	<0.50	<0.50	<0.50	<0.50	<10	<300	<0.50	<0.50
	5/21/2009	37.64	16.16	NP	21.48		2500	1.5	4.4	36	82	1.5	<0.50	<0.50	<0.50	<10	<300	<0.50	<0.50
	8/14/2009	37.64	19.27	NP	18.37														
MW-11	2/10/2010	37.64	13.35	NP	24.29		820	0.53	0.86	9.0	15.4	1.4	<0.50	<0.50	<0.50	6.1	<250	<1.0	<1.0
	8/20/2010	37.64	15.66	NP	21.98		1740	0.52	1.4	16.5	26.1	1.2	<0.50	<0.50	<0.50	8.2	<250	<1.0	<1.0
	2/7/2011	37.64	13.55	NP	24.09		1530	<0.50	1.3	14.3	24.1	1.1	<0.50	<0.50	<0.50	<5.0	<250	<1.0	<1.0
	8/15/2011	37.64	14.58	NP	23.06		1530	<0.50	0.80	9.2	8.0	<0.50	<0.50	<0.50	<0.50	<5.0	<250	<1.0	<1.0
	2/20/2012	43.34	16.24	NP	27.10		2180	0.65	3.5	48.9	70.6	0.73	<0.50	<0.50	<0.50	<5.0	<250	<1.0	<1.0
	6/27/2012	43.34	15.4	NP	27.94														
	8/31/2012	43.34	17.61	NP	25.73		1800	<0.50	2.3	40	46	0.58	<0.50	<0.50	<0.50	5.1	<5.0	<0.50	<0.50
	9/27/2012	43.34	18.45	NP	24.89														
	2/5/2013	43.34	14.30	NP	29.04		870	<0.50	<0.50	8.5	8.4	<0.50	<0.50	<0.50	<0.50	<5.0	<8.0	<0.50	<0.50

Gauging Notes:

TOC - Top of Casing

ft - Feet

NP - LNAPL not present

LNAPL - Light non-aqueous phase liquid

* - Corrected for LNAPL if present (assumes LNAPL specific gravity = 0.75)

NG - Not gauged

VO - Vehicle Obstruction

NSVD - Not surveyed
--- - No information available

¹ - Sample taken pre-purge

²- Sample taken post-purge

Analytical Notes:

- -- No information available
- < Not detected at or above indicated laboratory reporting limit

NS - Well not sampled.

ug/L - micrograms/liter

DRO- diesel range organics

GRO- gasoline range organics

MTBE- Methyl tertiary-butyl ether

TBA- Tertiary-butyl alcohol

DIPE- Di-isopropyl ether

ETBE- Ethyl tertiary-butyl ether

TAME- Tertiary-amyl methyl ether

- a The hydrocarbon result for GRO was partly due to individual peaks in the quantitation range
- b Samples run outside of hold time
- c Initial analysis for MTBE within holding time but required dilution
- d Repeat analysis of EPA Method 8260B yielded inconsistent results; the concentrations appear to vary between the bottles. The highest concentration results are reported.

Pilot Test Evaluation and Additional Assessment Work Plan 76 (Former BP) Service Station No. 11117 7210 Bancroft Avenue, Oakland, California Antea Group Project No. I42611117

Figures

igure 1	Site Location Map
igure 2	Site Plan
igure 3	Baseline and Post-Injection Groundwater Analytical Data Map
igure 4	MW-4 Contaminant Concentrations versus Time
igure 5	Site Plan with Proposed Soil Boring Locations
igure 6	Proposed Well Construction Diagram - MW-4R

GENERAL NOTES: BASE MAP FROM USGS, 7.5 MINUTE TOPOGRAPHIC OAKLAND, CA. PHOTO REVISED 1980 OAKLAND CALIFORNIA

	PROJECT NO.	PREPARED BY	DRAWN BY
	142611117	DK	JH
	DATE	REVIEWED BY	FILE NAME
)	03/30/11	DU	11117-TOPO

anteagroup

4/23/13

DU

11117-SMS

SCALE

FIGURE 6

PROPOSED WELL CONSTRUCTION DIAGRAM $\,$ MW-4R $\,$

FORMER BP SERVICE STATION NO. 11117 9210 BANCROFT AVENUE OAKLAND, CALIFORNIA

PROJECT NO.	DRAWN BY	
I42611117	JH 4/23/13	
FILE NO.	PREPARED BY	
11117-SG_Well	NP	
REVISION NO.	REVIEWED BY	
1	DU	

NOT TO SCALE

Pilot Test Evaluation and Additional Assessment Work Plan 76 (Former BP) Service Station No. 11117 7210 Bancroft Avenue, Oakland, California Antea Group Project No. 142611117

Appendix A

Site Details and Summary of Previous Environmental Investigations

Site Details and Summary of Previous Environmental Investigations 76 (Former BP) Service Station No. 11117 Updated 10/2/2012 Page 1 of 6

SITE LOCATION AND BACKGROUND

The Site is an active 76-brand gasoline retail outlet located on the northern corner of Bancroft Avenue and 73rd Avenue at 7210 Bancroft Avenue in Oakland, Alameda County, California. The site consists of a service station building, three 12,000-gallon gasoline underground storage tanks (USTs), and one 10,000-gallon diesel UST with associated piping and dispensers. The site is covered with asphalt or concrete surfacing except for planters along the southeastern and southwestern property boundaries and at the north corner of the property.

Land use in the immediate vicinity of the site is mixed commercial and residential. BP acquired the facility from Mobil Oil Corporation in 1989. In January 1994, BP transferred the property to TOSCO Marketing Company (TOSCO) and has not operated the facility since that time.

SUMMARY OF PREVIOUS ENVIRONMENTAL INVESTIGATIONS

<u>1984 UST Replacement</u>: In 1984, the pre-existing USTs at the site were removed and three single-walled fiberglass gasoline USTs (6,000-gallon, 10,000-gallon, and 12,000-gallon) and one 6,000-gallon diesel UST were installed in a cavity immediately to the northeast of the former USTs. A UST removal/installation report is not on file, and it is unknown if one was ever prepared. No documentation was reportedly found referencing the conditions of the removed USTs or reporting evidence of the hydrocarbon impacts in the soil and groundwater, if any, at the time of the UST removal.

1989 Phase II Environmental Audit: In December 1989, Hunter Environmental Services, Inc. (Hunter) performed a Phase II Environmental Audit on the adjacent Eastmont Town Center site located to the north and northwest of the former BP Site. Part of the Phase II study included the installation monitoring well MW-3 near the western boundary of the former BP Site. Soil samples collected from 10 and 20 feet below ground surface (bgs) from MW-3 were analyzed for total petroleum hydrocarbons (TPH), benzene, toluene, ethyl benzene, and total xylenes (BTEX), and oil and grease. No analytes were reported above their respective laboratory reporting limits (LRLs). A groundwater sample collected from MW-3 was reported to contain TPH and benzene at concentrations of 2,700 micrograms per liter (μg/L) and 530 μg/L, respectively (Hunter, 1989).

1991 Phase I Subsurface Investigation: In December 1991, Hydro Environmental Technologies, Inc. (Hydro) drilled two on-site soil borings (MW-1 and MW-2) to total depths of 40 feet bgs, and soil samples were collected at 10-foot intervals between 5 and 25 feet bgs. First groundwater was encountered at approximately 30 feet bgs. The analytical results of the soil samples from MW-1 and MW-2 reported total petroleum hydrocarbons as gasoline (TPH-g) and BTEX at concentrations below their respective LRLs (Hydro, 1991).

1992 Phase I Subsurface Investigation: In July 1992, Hydro advanced boring MW-4 and MW-6 to total depths of 40 feet bgs, and boring B-5 was advanced to 50 feet bgs, First groundwater was encountered at approximately 30 feet bgs in borings MW-4 and MW-6, and no free water was encountered in boring B-5. The analytical results of soil samples collected at 30 feet bgs from B-5 and MW-6 reported TPH-g and BTEX at concentrations below their respective LRLs. The maximum TPH-g and BTEX concentrations in soil reported in MW-4 were 6,000 milligrams per kilogram (mg/kg) and 34 mg/kg, respectively, from a depth of 20 feet bgs. Borings MW-4 and MW-6 were subsequently converted into monitoring wells (Hydro, 1992).

<u>1994 Baseline Assessment Report</u>: In September 1994, EMCON performed a Supplemental Site Assessment at the site. Four exploratory soil borings (THP-1, TB-2, TB-3, TB-4) were advanced to a maximum depth of 45 feet bgs north of the

Site Details and Summary of Previous Environmental Investigations 76 (Former BP) Service Station No. 11117 Updated 10/2/2012 Page 2 of 6

former and existing UST complexes (THP-1), at the former service bays (TB-2), north of the northern pump island (TB-3), and at a former pump island (TB-4). Additionally, one soil sample was collected from beneath each of the five dispensers (TD-1 through TD-5). Groundwater was encountered in TB-2 and TB-3 at approximately 33 to 36 feet bgs and groundwater samples were collected from TB-2 and TB-3 via temporarily well points. Maximum concentrations of 16 mg/kg TPH-g (TD-3), TPH as diesel (TPH-d) at concentrations ranging from 110 mg/kg to 5,000 mg/kg (TD-1 through TD-5), and benzene at concentrations below LRLs were reported in soil samples. TPHg was not reported above the LRLs and a maximum concentration of 0.7 μg/L benzene (TB-3) was reported in groundwater samples (EMCON, 1994).

<u>1994 Well Installation</u>: In October 1994, Hydro advanced boring MW-7 to a total depth of 45 feet bgs, and borings MW-8 and MW-9 were advanced to total depths of 40 feet bgs. First encountered groundwater was at approximately 27 feet bgs to 32 feet bgs. TPH-g and BTEX were not detected above their respective LRLs in soil samples collected from 25 feet bgs in each boring. The three borings were subsequently converted into monitoring wells MW-7 through MW-9 (Hydro, 1995).

<u>1997 Offsite Well Installation</u>: In July 1997, Pacific Environmental Group (PEG) drilled one boring (MW-10) offsite to a depth of approximately 37.5 feet bgs. Soil samples were collected and the boring was subsequently converted into a monitoring well. First groundwater was encountered at approximately 26 feet bgs. No TPH-g, BTEX or methyl tertiary butyl ether (MTBE) was detected in soil samples at concentrations above their respective LRLs in MW-10. TPH-g and BTEX were not detected in the groundwater sample from MW-10 at concentrations above their respective LRLs. However, MTBE was detected at concentration of 13 μ g/L using EPA Method 8020 (PEG, 1997).

1998 UST and Associated Piping and Dispenser Removal: In August 1998, Environmental Resolutions, Inc. (ERI) removed the three gasoline USTs (6,000-gallon, 10,000-gallon, and 12,000-gallon), one 6,000-gallon diesel UST, and associated dispensers and piping from the site. There was no visible evidence of leakage from the USTs removed. A total of eight native soil samples were collected from beneath each end of the removed USTs (denoted as A through H on Figure 2) at depths of 14 to 16 feet bgs, and a total of 18 soil samples (denoted as I through Z on Figure 2) were collected from the former dispenser locations and from beneath the associated product lines at three feet bgs (ERI, 1998).

TPH-g was reported in five of the eight UST excavation samples at concentrations ranging from 3.7 mg/kg (S-15-T2S) to 5,300 mg/kg (S-15-T1S). TPH-d was detected at 630 mg/kg (S-15-T1N) and 800mg/kg (S-15 T1S) into two samples, benzene concentrations ranged between 0.40 mg/kg (S-15-T1N) to 0.95 mg/kg (S-16-T3N) in three samples, MTBE concentrations ranged between 0.028 mg/kg (S-14-T4S) to 5.3 mg/kg (S-16-T3N) in seven samples, and lead was not reported in the sample analyzed for lead. TPH-g was reported in nine of the eighteen dispenser and product line samples with concentrations ranging between 1.4 mg/kg (S-3-PL12) to 7,200 mg/kg (S-3-D4). TPH-d was detected between 4.8 mg/kg (S-3-PL12) to 190 mg/kg (S-3-PL11) in five samples, benzene was detected between 0.0089 mg/kg (S-3-PL12) to 22 mg/kg (S-3-D4) in three samples and MTBE was detected between 0.048 mg/kg (S-3-PL12) to 15 mg/kg (S-3-PL1) in ten samples (ERI, 1998).

During the 1998 UST replacement activities, approximately 389 tons of soil and backfill were transported off-site disposal. The existing 10,000-gallon diesel and three 12,000-gallon gasoline USTs were installed as replacements (ERI, 1998).

<u>1999 Groundwater Recovery Test</u>: In April 1999, Alisto Engineering Group (Alisto) conducted groundwater recovery tests on wells MW-1 through MW-4, MW-6, MW-7 and MW-10 to assess the spatial variation in hydraulic conductivity in the

Site Details and Summary of Previous Environmental Investigations 76 (Former BP) Service Station No. 11117 Updated 10/2/2012 Page 3 of 6

shallow water-bearing zone across the Site. Testing by the Bouwer-Rice method yielded hydraulic conductivities of 2.46×10^{-2} ft/min for MW-1, 2.42×10^{-4} ft/min for MW-2, 3.82×10^{-4} ft/min for MW-3, 5.75×10 -4 ft/min for MW-4, 1.99×10^{-2} ft/min for MW-6 1.09×10^{-4} ft/min for MW-7 and 8.78×10^{-5} ft/min for MW-10. The geometric mean of the hydraulic conductivity and flow velocity values were calculated to be 1.37×10 -5 feet per second and 73.85 feet per year, respectively (Alisto, 1999).

<u>1999 Extraction Well Installation</u>: In November 1999, Cambria Environmental Technology, Inc. (Cambria) installed two 4-inch diameter wells (EX-1 and EX-2) on-site to facilitate potential remedial activities at the site. Well EX-1 was drilled to 39.5 feet bgs and EX-2 was drilled to 36.5 feet bgs. Groundwater was first encountered at 26 feet bgs. No TPH-G or BTEX, and relatively low MTBE concentrations (below 0.012 mg/kg) were reported in soil samples collected from EX-1 and EX-2 (Cambria, 2000).

2000 Interim Remedial Action and Recovery Testing: Between March 16 and April 30, 2000, Cambria conducted interim remedial activities at the site to evaluate the effectiveness of hydrocarbon and MTBE reduction using short-term groundwater extraction. During eight extraction events, approximately 10,900 gallons of groundwater was extracted from wells EX-1, EX-2 and MW-2. During the extraction events, stable to slightly decreasing hydrocarbon and MTBE concentration trends were reported in samples collected from wells MW-2 and EX-1, located immediately southwest of the existing USTs. Samples from well EX-2, located north of the existing USTs, exhibited lower hydrocarbon and MTBE concentrations than MW-2 and EX-1. In April 2000, during the batch extraction events, recovery tests were conducted on wells EX-1, EX-2 and MW-2. Based on the recovery test measurements, the calculated hydraulic conductivity values ranged from 1.85 x 10⁻⁴ ft/min to 8.33 x 10⁻⁴ ft/min with resulting flow velocities of 16 ft/year to 73 ft/year at well MW-2 (Cambria, 2000).

The calculated hydraulic conductivity values ranged from 2.02×10^5 ft/min to 3.85×10^{-5} ft/min for well EX-1 with resulting flow velocities of 1.8 to 3.4 Ft/yr. And a well EX-2, the calculated hydraulic conductivity values ranged from 3.04×10^{-4} ft/min to 2.13×10^{-3} ft/min for resulting flow velocities of 27 ft/year to 187 ft/year. The geometric mean of these values is a hydraulic conductivity of 3.0×10^{-4} ft/min and resulting flow velocity of 26 ft/year (Cambria, 2000).

2001 Dual-Phase Extraction Pilot Test: From October 29, through November 2, 2001, Cambia performed a dual phase soil vapor and groundwater extraction (DPE) pilot test on the monitoring wells with the highest historical hydrocarbon concentrations (i.e., MW-2 and MW-4) and the extraction wells (EX-1 and EX-2) at the site. The DPE test results indicated that the vacuum influence was limited to within 18 to 28 feet of the extraction well. Water levels typically decreased several feet in the extraction wells and had a varied response in the observation wells. Estimated vapor-phase removal rates were approximately 200-pounds of hydrocarbon per day in wells MW-4 and EX-1, and less than 5-pounds of hydrocarbon per day in wells MW-2 and EX-2 (Cambria 2002).

Soil vapor concentrations showed a decreasing trend in wells MW-4 and EX-1 during the short-term pilot tests. Grab water samples collected before and after the pilot tests remained the same order of magnitude. A total of 6,500 gallons of water was extracted during the DPE pilot test and appropriately disposed off-site. Overall, the test results indicated that DPE is a feasible remedial alternative for the site (Cambria, 2002). Alameda County Environmental Health (ACEH) approved Cambria's August 8, 2002, *Dual Phase Extraction Pilot Test Report* as a Corrective Action Plan (CAP).

Site Details and Summary of Previous Environmental Investigations 76 (Former BP) Service Station No. 11117 Updated 10/2/2012 Page 4 of 6

2005 Soil and Water Investigation: In Fall 2005, URS completed nine Geoprobe soil borings with co-located Hydropunch borings. The first phase of work was on-site source area characterization: five boring locations (A-1 through A-5) were advanced in the vicinity of the possible hydrocarbons source areas such as locations of former and current USTs, products dispensers, and in the vicinity of MW-4 to adequately characterize the lateral and vertical extent of petroleum hydrocarbons in soils in the identified source areas. An off-site assessment was completed during the second phase of work (borings A-7 through A-10) to further define the downgradient, cross-gradient, and up-gradient extent of the groundwater plume (soil boring A-6 was unable to be advanced due to close proximity to electric lines and product piping). Maximum concentrations of gasoline range organics (GRO), benzene, and MTBE were detected in soil at concentrations of 490 mg/kg [A-4 (23.5-24)], 0.11 mg/kg [A-5 (35-35.5)], and 0.84 mg/kg [A-1 (46-46.5)], respectively. Maximum concentrations of GRO, benzene, and MTBE were detected in ground water at concentrations of 510,000 μg/L [A-2 (21.3)], 11,000 μg/L [A-4 (34-36)], and 39,000 μg/L [A-4 (34-36)], respectively (URS, 2005).

The cross-gradient and downgradient lateral extents of the dissolved hydrocarbon plume were characterized during the last investigation. However, the vertical extent of the dissolved-phase hydrocarbons on the southern portion of the site was not defined. Specifically, significantly elevated concentrations were detected in Hydropunch groundwater samples collected from the bottom depths of soil borings A-2, A-3 and A-4. The bottom Hydropunch sample from boring A-2 (40-42 ft bgs) contained concentrations of GRO, benzene, and MTBE at 36,000 μ g/L. 1,800 μ g/L, and 110 μ g/L, respectively. The bottom Hydropunch sample from boring A-3 (34-36 ft bgs) contained concentrations of GRO, benzene, and MTBE at 12,000 μ g/L, 21 μ g/L, and 8.3 μ g/L respectively. The bottom Hydropunch sample from boring A-4 (34-36 ft bgs) contained GRO, benzene, and MTBE concentrations of 120,000 μ g/L, 11,000 μ g/L and 39,000 μ g/L respectively (URS, 2005).

Therefore, the vertical extent of dissolved phase petroleum hydrocarbon contamination remains unknown in this southern area of the site (URS, 2005). A work plan for soil and water investigation to delineate the vertical extent of contamination in the southern portion of the site was submitted to ACEH in October 2006.

2007 Soil and Groundwater Investigation: In April 2007, Stratus Environmental, Inc. (Stratus) advanced cone penetrometer test (CPT) borings in three locations onsite (CPT-1 through CPT-3) to maximum depths of 60 feet bgs. CPT-1 was advanced southwest of the dispenser islands and southeast of monitoring well MW-1; CPT-2 was advanced south of the dispenser islands and southwest of monitoring well MW-4; CPT-3 was advanced in the eastern corner of the side as requested by the ACEH. An Ultraviolet Induced Fluorescence (UVIF) module was used at each CPT boring location, analyzing the vertical extent of petroleum hydrocarbons in additional to providing soil profiling data. Groundwater samples were collected from multiple depths at each boring locations; physical soil samples were not collected during this investigation.

- GRO was detected above laboratory reporting limits in five of the seven groundwater samples, ranging from 170 μ g/L (CPT-3-28-32') to 170,000 μ g/L (CPT-1-37-41').
- Benzene was detected above laboratory reporting limits in four of the seven groundwater samples, ranging from 0.51 μg/L (CPT-3-23-27') to 7,700 μg/L (CPT-2-37-41').
- Toluene was detected above laboratory reporting limits in three of the seven groundwater samples, ranging from 57 μ g/L (CPT-1-30-34') to 670 μ g/L (CPT-2-28-32').

Site Details and Summary of Previous Environmental Investigations 76 (Former BP) Service Station No. 11117 Updated 10/2/2012 Page 5 of 6

- Ethylbenzene was detected above laboratory reporting limits in four of the seven groundwater samples, ranging from 530 μg/L (CPT-2-37-41') to 2,600 μg/L (CPT-1-37-41').
- Total xylenes were detected above laboratory reporting limits in four of the seven groundwater samples, ranging from 290 μg/L (CPT-2-37-41') to 9,600 μg/L (CPT-1-37-41').
- MTBE was detected above laboratory reporting limits in five of the seven groundwater samples, ranging from 4.4 μ g/L (CPT-3-56-60') to 6,500 μ g/L (CPT-2-37-41').
- TBA was detected above laboratory reporting limits in groundwater sample CPT-2-37-41' at 2,400 μg/L.

2007-2008 DPE System Installation: Construction of the DPE system was started by Broadbent & Associates, Inc (BAI) and Stratus in late 2007. The system consists of a thermal/catalytic oxidizer with a 25 horsepower liquid ring blower designed to extract water and vapor from six on-site extraction wells. Extracted vapor were to be treated by thermal/catalytic oxidation and discharged to the atmosphere under the oversight of the Bay Area Air Quality Management District. Extracted groundwater was to be treated by a sediment filter and three 1,000 pounds carbon vessels before being discharged into the City of Oakland sanitary sewer system. DPE wells DPE-1 through DPE-5 were installed at the site to total depths ranging from 35 feet to 40 feet bgs. Well MW-2 was overdrilled and destroyed to allow DPE-4 to be installed in the same borehole. The system is currently connected to six wells (DPE-1 through DPE-5 and EX-1) (BAI, 2008a).

As of the end of the fourth quarter 2008 the system had not been started. BAI and Stratus were still coordinating with Pacific Gas & Electric (PG&E) to install electrical service to the system. Natural gas was completed to the site and system in third quarter 2008 (BAI, 2008a).

During DPE construction activities, on-site groundwater monitoring well MW-11 was installed to a total depth of 40 feet bgs on the southern corner of the site. Soil samples collected at 20 feet and 30 feet bgs reported maximum concentrations of 1.9 mg/kg GRO and 0.0089 mg/kg benzene. MTBE was not reported above the LRL in either of the soil samples (BAI, 2008a).

2009-2011 DPE System Startup Efforts: In 2009, Antea Group (formerly Delta Consultants) began coordinating with nearby businesses (Eastmont Mall and Burger King) for the 3-phase power source. Due to financial considerations, Antea Group also explored another alternative for the startup of the DPE system, which included reconfiguring the current system for single phase power.

2011-2012 Remedial Action Site Investigation: Antea Group submitted the Remedial Action Investigation Work Plan, dated August 03, 2011 to the ACEH. The ACEH approved the proposed scope of work in an agency letter to Antea Group dated September 1, 2011. In October 2011, Antea Group and subcontractors advanced borings C-1 through C-5, and advanced and installed remedial wells SVE-1 and AS-1 per the August 2011 Work Plan. Antea Group submitted a Remedial Investigation Work Plan Addendum, dated December 13, 2011 which proposes a postponement of the AS/SVE pilot test described in the August 3, 2011 Remedial Action Investigation Work Plan to utilize a new remedial strategy called Plume Stop, a product created by Regenesis. Between March 26 and 30, 2012, Antea Group and Regenesis oversaw subcontractor Vironex inject Plume Stop at nine soil boring locations using direct push technology. Antea Group is currently conducting the post injection groundwater monitoring events as outlined in the December 2011 Work Plan Addendum.

Site Details and Summary of Previous Environmental Investigations 76 (Former BP) Service Station No. 11117 Updated 10/2/2012 Page 6 of 6

FREE PRODUCT RECOVERY DURING GROUNDWATER MONITORING EVENTS

Free product was observed in groundwater monitoring well MW-2 between 1993 and 1998, at thicknesses ranging from 2.60 feet (3/30/1994) to less than 0.01 feet (10/2/1997 to 7/21/1998). When free product was observed in the well, it was removed by bailer. Between 1993 and 1998, a cumulative total of 24.9 gallons of free product had been removed from the well (Alisto, 1998).

Free product was also observed in well MW-4 during the third quarter 2001 (0.03 inches), fourth quarter 2006 (0.11 inches), first quarter 2008 (0.01 inches), and third quarter 2008 (0.05 inches); and in EX-2 during the second quarter 2007 (0.01 inch). With the exception of 1.5 gallons of a free product/water mixture recovered from MW-4 during the third quarter 2008 (BAI, 2008b), free product was not recovered from these wells when observed.

SENSTIVE RECEPTORS

2000 Potential Receptor Survey, Expanded Site Plan and Well Search: In October 2000, Alisto completed a potential receptor survey, prepared an expanded site plan with neighboring property parcel information and underground utilities mapped, and identified wells in the vicinity of the site. A review of the files of the California Department of Water Resources (DWR) was performed to identify all known wells within one-half mile radius of the site. The results of the well search revealed that there were 17 wells other than the on-site monitoring sells. Of these, 11 were offsite monitoring wells; four were cathodic protection wells, one an industrial well, and one an irrigation well for a nearby cemetery. No domestic/municipal water supply wells were identified from review of the DWR files (Alisto, 2000).

2010 Sensitive Receptor Survey: Delta Consultants (Delta) submitted a Sensitive Receptor Survey in October 2010. As part of that receptor survey, Delta conducted a records review (environmental database search), a well radius search, and a search for other sensitive receptors which have the potential to be affected by the petroleum hydrocarbon release at the site. Delta's review of the historical aerial photographs indicated that the site in 1939 was primarily used for agricultural purposes with small family residences. In general, the site was developed to the current conditions with the station building in 1974. The historical topographic maps support the indication of residential houses and agriculture in the site region as early as 1915 to 1948. The well search indicated that 10 wells were within a one-mile radius of the site. DWR indicated the presence of 7 wells within a one-mile radius of the site. However, no records were found for the status of these wells as being active or abandoned. The main surface water bodies were Lake Merritt located northwest of the site and San Leandro Bay located west of the site. Several churches, schools and day care centers were located within a one-mile radius of the site. Based on the above identified receptors' distances form the site, directions from the site, and extent of hydrocarbon impact at the site, they were not anticipated to be affected by the petroleum hydrocarbon release at the site.

Pilot Test Evaluation and Additional Assessment Work Plan 76 (Former BP) Service Station No. 11117 7210 Bancroft Avenue, Oakland, California Antea Group Project No. 142611117

Appendix B

Regenesis' Technical Memorandum dated November 28, 2012

From: Craig Sandefur and Ben Mork, Ph.D. November 28, 2012

To: Antea Group

RE: Project Summary: New Remediation Technology Application at 76 (Former BP) Station No. 11117 Oakland, CA

Regenesis and Antea Group (Antea) collaborated on the field testing of a new groundwater remediation technology to assist in the immobilization and remediation of Total Petroleum Hydrocarbons-Gasoline (TPH-G) present in groundwater at the 76 Site Former BP Station No. 1117. This new technology, tentatively named "Plume Stop™", is in development by Regenesis' Research & Development department, and serves the purpose of trapping groundwater contaminants to minimize their health risks and facilitate in-place biodegradation. This memo serves to outline the work performed at the service station located at 7210 Bancroft Avenue in Oakland, CA, present data collected for the project, and summarize Regenesis' hypotheses regarding the data and observations.

Technology Description

Plume Stop™ is comprised of water-soluble, non-toxic ingredients typically applied via direct push injection or injection wells. This technology is protected by Regenesis patents and patents pending. It is an environmentally friendly, water-soluble composition (see attached MSDS) that is injected into soil and groundwater. After the material is distributed in the subsurface, it undergoes a cross-linking process on the order of days to weeks which forms a sorbent network on the surface of soil without plugging the formation. Plume Stop™ reacts in situ to form a sorbent network throughout the contaminated zone. The intended function of the Plume-Stop™ technology is to 1) Adsorb contaminants and reduce groundwater concentrations, 2) Inhibit transport of contaminants in groundwater, and 3) Provide a matrix for bacteria and contaminants to facilitate natural attenuation.

Recent laboratory and field studies on the Plume Stop™ technology indicate that it should have negligible impacts on groundwater oxidation-reduction potential (redox) and geochemistry. The sorbent network is intended to last in excess of a few years, and possibly 10 years or more. Laboratory studies have also shown that the biodegradation of the Plume Stop™ itself is negligible under both anaerobic and aerobic conditions for time periods of at least one year.

Project Goals

The intended result of the Plume Stop™ application is a substantial and sustained reduction of contaminant concentrations in groundwater of the targeted treatment area. This capture of contamination will inhibit migration and hold the contaminant in-place. Laboratory studies on this technology indicate that Plume Stop™ causes on the order of 50-90% drop in groundwater contaminant concentrations within weeks of application due to a sorption of contaminant onto the Plume Stop™ material. Additional Regenesis objectives of this study are to validate and optimize performance of the new Plume Stop™ technology, and possibly to demonstrate its expected longevity of multiple years.

Site Background and Treatment Plan

Hydrocarbon contamination in the groundwater at this site is in the form of Total Petroleum Hydrocarbons - Gasoline (TPH-g) and benzene, toluene, ethyl benzene and total xylenes (BTEX). In addition to the fuel hydrocarbons the fuel additive/oxygenate Methyl Tertiary Butyl Ether (MTBE) and its biodegradation daughter product Tertiary Butyl Alcohol (TBA) were also detected. The targeted treatment area for this Plume Stop™ application was based on analytical results from existing monitoring well (MW-4) and for which long term data was available. As part of the Plume Stop™ Test, baseline groundwater monitoring of Well MW-4 was performed in March 2012. The laboratory analysis results indicated the presence of TPH-G (8.5 mg/L), BTEX (5.6 mg/L), MTBE (0.4 mg/L) and TBA (4.9 mg/L). These concentration levels were generally consistent with previous groundwater monitoring results. Based on this data as well as previous analytical results from this well, an injection of Plume Stop™ was designed. The intent of this design was to partition the hydrocarbons and fuel additives out of groundwater in the vicinity of this well resulting in demonstrable reduction in concentration over time. The approved application plan was for injection of approximately 6,300 gallons of Plume Stop™ solution via 12 injection points arranged around a central monitoring well (MW-4). Well DPE-5 was not sampled as part of this study due to its' immediate proximity to MW-4.

Application of Plume Stop™

Due to the orientation of underground utilities a total of 9 injection points were cleared and advanced at the site. Overall the application volume was less than specified in the original plan; however, the field injection volume per point was increased slightly from approximately 525 to 598 gallons per point. This resulted in a total Plume Stop application volume of 4,186 gallons. A map of the Plume Stop™ application array is shown in Figure 1.

Results and Discussion

After application, groundwater in Well MW-4 was monitored monthly for 3 months and again at six months. Based on prior experience, Plume Stop™ effects are expected to occur in less than 3 months after injection. The monitoring well data collected are provided in Table 1. We have made the following observations based on the information collected in this study:

- Following the Plume Stop™ application, groundwater in the treatment area well exhibited the following post-application changes in hydrocarbon:
 - o TPH-G Concentrations
 - Increased approximately 2X
 - Stable across months 1 3
 - Increased approximately 10X
 - Between months 3 and 6
 - BTEX Concentrations
 - Increased by 1-3 mg/L
 - Across months 1 3
 - Increased by a factor of 10X

- Between months 3 and 6
- MTBE+TBA (total of the combined concentrations)
 - Declined by 1.9 2.8 mg/L
 - Across months 1-3
 - Lowest combined concentration
 - Month 6: 2.5 mg/L or about 50% reduction
 - Generally trended lower over the course of the test
 - Geochemistry was relatively unchanged through the test period (Table 1.)

Our initial approach to this site as well as the overall Plume Stop™ test was assumptions that the petroleum hydrocarbons as well as fuel oxygenate concentrations were relatively stable and homogeneous in the soil and groundwater matrix surrounding MW-4. This was based on the long term groundwater data for the site made available to Regenesis as well as soil and GW data collected as part of the baseline assessment and groundwater sampling event. It appears, based on the results in Table 1, that a significant hydrocarbon mass may have been perturbed/desorbed by the Plume Stop™ injection program. This contaminant mass has subsequently become represented in the MW-4 groundwater results.

Using the 1-month time point as a baseline level and supported by pre-baseline long term data from MW-4, we believe that it is reasonable to hypothesize that Plume StopTM appears to have significantly reduced MTBE, TBA and benzene fractions in groundwater in the area of MW-4. Over a period of 3-6 months following Plume StopTM application MTBE+TBA was reduced from its baseline level of 5.3 mg/L to between 2.5 and 3.5 mg/L and benzene was reduced from its baseline level of 4 mg/L to \leq 2.8 mg/L. Over the same time frame TPH-G rose from a baseline level of 8.5 mg/L to \geq 17 mg/L.

The reductions presented above for MTBE+TBA and benzene in GW were significant given the overall elevation in TPH-G concentrations. The reduction in MTBE+TBA as a percentage of baseline ranged from 35% to >50% while benzene reduction percentages remained relatively stabilized at between 30-38%.

Conclusions

A careful review of the Plume Stop™ technology was performed at the Oakland site. While data interpretation is somewhat challenging, it is Regenesis' hypothesis that an additional hydrocarbon mass was disturbed/desorbed by the injection of the Plume Stop™ material. Thus, the pre-application baseline data does not represent the full nature and/or extent of the hydrocarbon mass present. This is demonstrated by the elevated levels of TPH-G observed in the 1 month monitoring event. This elevated concentration remained relatively stable for 3 months followed by what is interpreted as an in-flux of elevated levels of TPG-G (10X) between months 3 and 6. Presumably capture of a portion of the contaminant mass was achieved by the Plume Stop™ material. We believe this is indicated by the lower

and stable concentrations of MTBE and TBA (less adsorptive species) over the same time frame as the increased TPH-G levels in this area.

Some additional benefits of the study are 1) emplaced plume-stop material should assist in minimizing future transport and dissolution of contamination remaining at the Oakland site 2) Regenesis continues to learn and improve Plume $Stop^{TM}$ form, function, and field application.

Table 1. Antea Group Groundwater Monitoring Data, 76 (former BP) SS No. 11117, 7210 Bancroft Avenue, Oakland, CA.

Well ID					MW-4			DPT-1-36	DPT-2-32	DPT-2-40
Sample ID			MW-4	MW-4	MW-4	MW-4	MW-4 20120930	DPT-1-36	DPT-2-32	DPT-2-40
Date Sampled			3/7/2012	4/27/2012	5/30/2012	6/27/2012	9/27/2012	3/7/2012	3/7/2012	3/7/2012
Monitoring Event			baseline	1 month	2 month	3 month	6 month	baseline	baseline	baseline
Analyte	Units	Reporting Limit								
Dissolved Oxygen (DO)	mg/L		2.66	0.56	1.76	0.6	1.6			
ORP (Redox Potential)	mV		-32.5	-244.3	-113.8	-110.9	-67.2			
Conductivity	μS/cm		1058	1242	1351	1215	1080			
pH			6.64	6.55	6.55	6.53	6.56			
Turbidity	NTU		35	17	218	60	73			
Temperature	°C		19.83	22.17	20.52	19.02	17.44			
Water Levels			17.76	13.67	15.33	16.51	20.65			
Alkalinity, Total (as CaCO ₃)	mg/L	5	525	742	496	510	556			
Total Iron	mg/L	0.1	4.55	4.89	5.62	8.33	27.1			
Dissolved Iron	mg/L	0.1	2.08	2.23	3.88	4.55	6.57			
Methane	μg/L	8	5,870	5,020	4,300	6,060	4,340		1,880	4,790
Sulfate	mg/L	1		13	< 1.0	< 1.0	< 1.0			·
Sulfide	mg/L	0.05	< 0.05	0.2	0.25	0.3	0.2			
Nitrate (as N)	mg/L	0.1		< 0.10	< 0.10	< 0.10	< 0.10			
TOC	mg/L	5	7.8	25	63	84	73			
COD	mg/L	5	63	120	100	78	520			
TPH-G	μg/L	50	8,500	17,000	17,000	16,000	58,000	4,900	5,700	2,400
Benzene	μg/L	0.5	4,000	2,800	2,800	2,500	2,600	480	76,00	920
Ethylbenzene	μg/L	1	480	1,500	1,400	1,100	7,700	170	760	58
Toluene	μg/L	1	42	490	380	390	530	15	47	44
p/m-Xylene	μg/L	1	890	2,500	2,000	2,400	15,000	710	78	150
o-Xylene	μg/L	1	200	730	570	2,400	15,000	270	18	71
Methyl-t-Butyl Ether (MTBE)	μg/L	1	400	370	210	250	160	11	13	11
Tert-Butyl Alcohol (TBA)	μg/L	10	4,900	2,900	2,700	3,200	2,400	2,400	6,700	4,600
Diisopropyl Ether (DIPE)	μg/L	2	< 50	< 50	< 50	< 50	< 100	< 10	< 2	< 2
Ethyl-t-Butyl Ether (ETBE)	μg/L	2	< 50	< 50	< 50	< 50	< 100	< 10	< 2	3.7
Tert-Amyl-Methyl Ether (TAME)	μg/L	2	< 50	< 50	< 50	< 50	< 100	< 10	< 2	< 2
Ethanol	μg/L	100	< 200	< 2,500	< 2,500	< 2,500	< 5,000	< 500	< 100	< 100

Key to Abbreviations

TPH-G Total Petroleum Hydrocarbons - Gasoline Range

TPH Total Petroleum Hydrocarbons
ORP Oxidation Reduction Potential
TOC Total Organic Carbon
COD Chemical Oxygen Demand
mg/L milligrams per liter
mV millivolts

μs/cm microseimens per centimeter
NTU Nephelometric Turbidity Units

MATERIAL SAFETY DATA SHEET for

Plume Stop™ Part A (CCM Part A)

Last Revised: October 27, 2011

Section 1 - Material Identification

Supplier: Regenesis Bioremediation Products, Inc.

1011 Calle Sombra #100 San Clemente, CA 92673

Telephone: (949) 366-8000 Facsimile: (949) 366-8090

Trade Name: Plume Stop Part A

......

Section 2 - Hazardous Ingredients

......

Classification: None of the ingredients of this material meets the definition of "Dangerous" as defined in European Directives 67/548/EEC, 1999/45/EC, 2001/58/EC.

DOT Hazard Classification: Non-hazardous material

Slip Hazard: Slip hazard when spilled materials becomes wet.

Eyes: Gel may cause foreign body irritation in some individuals.

Skin: Prolonged contact with gel may cause drying or chapping.

Ingestion: Not toxic if swallowed (less than a mouthful) based

on available information.

CAS # Chemical

9000-07-1 food grade biopolymer

7732-18-5 Water

************* Section 3 - Physical Data ************* Melting Point: N/ABoiling Point: N/A Physical State: Gel Solubility in Water: Soluble. Beige Gelatinous Material Appearance: Odor: odorless рΗ 6.0 - 8.0************* Section 4 - Fire-Fighting Measures *************** General Advice: Treat as "Class A" fire. Product will burn when in contact with a flame. Self extinguishes when ingnition source is removed. Tends to smoulder. Suitable Extinguishing Media: Water. Dry Chemical. Carbon dioxide. Hazardous Combustion Products: Carbon Monoxide Carbon Dioxide Specific Hazards: Do not breathe smoke, gases or vapors generated. Special Protective Equipment for Firefighters: In the event of a fire, wear self-contained breathing apparatus. NPPA: Health 1 Flammability 1 Instability 0 Flammability 1 Reactivity 0 HMIS: Health 1

 General Advice: Remove material from eyes, skin and

clothing. In case of doubt or when

symptoms persist, seek medical

attention. Wash heavily contaminated

clothing before reuse.

Eye Contact: Hold eyelids apart and flush eyes with a

steady, gentle stream of water for several minutes. If eye irritation persists, seek medical attention.

Skin Contact: Wash off with soap and plenty of water.

Inhalation: Move to fresh air. If symptoms persist,

call a physician. If not breathing,

give artifical respiration.

Ingestion: No signficant adverse health effects are

expected to develop if only small amount (less than a mouthful) are swallowed.

Stability: Material is stable under certain conditions

Materials to Avoid: Strong oxidizing agents.

Hazardous Decomposition Products: Thermal decomposition products are carbon monoxide and carbon dioxide.

After Spillage or Leakage: Neutralization is not required. Sweep up dry or wet. For dry sweep beware of limitations on dust. Wet sweep is preferable. Collect in suitable containers. Wash remainder with copious quantities of water.

Disposal: Laws and regulations for disposal vary widely by locality. Observe all applicable regulations and laws. This

material, may be disposed of in solid waste in a manner similar to other nuisance dust materials. Disposal in sanitary landfill is usual but local regulations should be checked and observed.

Extinguishing Media: Large quantities of water. In case of a fire in close proximity, all means of extinguishing are acceptable. Self containted breathing apparatus or approved gas mask should be worn due to small particle size. Use extinguishing media appropriate for surrounding fire. Apply cooling water to sides to transport or storage vessels that are exposed to flames until the fire is extinguised. Do not approach hot vessels that ocntain the product.

First Aid: After contact with skin, wash immediately with plenty of water and soap. In case of contact with eyes, rinse immediately with plenty of water and seek medical attention. Consult an opthalmologist in all cases.

Section 8 - Special Protection or Handling

Storage: Store in a roofed and well ventilated area in the

unopened original package.

Protective Gloves: Vinyl or Rubber

Eyes: Splash Goggles or Full Face Shield

Area should have approved means of washing

eyes.

Ventilation: General exhaust.

Storage: Store in cool, dry, ventilated area.

Protect from incompatible materials.

Section 9- Toxicology

LD50 Oral: >5000 mg/kg rat

Carcinogenicity: Not listed as a carcinogen by NTP. Not regulated as a carcinogen by OSHA.

Reported Human Effects: No human toxicity studies have been carried out with this product. Due to the physical nature of this product, may cuase eye, skin and respiratory irritation.

Reported Animal Effects: Eye irritation (rabbit) mild. Fedding studies of this or smilar products indicate no evidence of risk at anticipated workplace exposure levels. Species tested: mice, rats and monkeys.

Section 10- Ecological Information
Ecotocity: Contains no substance known to be hazardous to the environment or not degradalbe in waste water treatment plants.
Section 11-Regulatory Information

Internation Inventories:

Components of the product are on the following Inventory Lists:

- *TSCA
- *Canada (DSL)
- *Europe (EINECS/ELINCS)
- *Australia (AICS)
- *Philippines (PICCS)
- *China

Materials containing reactive chemicals should be used only by personnel with appropriate chemical training.

MATERIAL SAFETY DATA SHEET

For

Plume Stop™ Part B (CCM Part B)

Last Revised: October 27, 2011

SECTION 1-----Chemical Identification-----

Supplier: Regenesis Bioremediation Products, Inc.

1011 Calle Sombra #100 San Clemente, CA 92673

Telephone: (949) 366-8000 Facsimile: (949) 366-8090

Trade Name: Plume Stop Part B

SECTION 2-----Composition on Ingredients-----

CAS #	Chemical
10035-04-8	Calcium Chloride
7732-18-5	Water

SECTION 3-----Hazards Identification-----

Label Precautionary Statements:

Harmful if swallowed.

Irritating to eyes, respiratory system and skin.

In case of contact with eyes, rinse immediately with plenty of water and seek medical advice.

Wear suitable protective clothing.

SECTION 4-----First-Aid Measures-----

In case of contact, immediately flush eyes or skin with copious amounts of water for at least 15 minutes while removing contaminated clothing and shoes.

If inhaled, remove to fresh air. If not breathing give artificail respiration. If breathing is difficult, give oxygen. If swallowed, wash out mouth with water provided person is conscious.

Call physician.

Wash contaminated clothing before reuse.

SECTION 5-----Fire Fighting Measures-----

Extinguishing Media: Noncombustible. Use extinguishing media appropriate to surround fire conditions.

Special Firefighting Procedures

Wear self-contained breathing apparatus and protective clothing to prevent contact with skin and eyes.

Usual Fire and Explosions Hazards

Emits toxic fumes under fire conditions.

SECTION 6-----Accidental Release Measures-----

Evacuate area.

Wear self-contained brathing apparatus, rubber boots and heavy rubber gloves.

Keep in a closed containter and hold for waste disposal. Ventilate area and wash spill site after material pickup is complete.

SECTION 7-----Handling and Storage-----

Refer to section 8.

Additional Information:

Calcium chloride is attacked by bromine trifluoride.

SECTION 8-----Exposure Controls/Personal Protection----

Wear approporiate safety goggles, for breathing use NIOSH/MSHA-approved respirator, chemical-resistant gloves and other protetive clothing.

Have access to safety shower or eye wash station.

Do not get into eyes, on skin or clothing.

Avoid prolonged and repeated exposure.

Wash thoroughly after handling.

Eye Irritant

Keep tightly closed

Store in a cool dry place.

SECTION 9----Physical and Chemical Properites-----

Appearance Liquid Odor None

Density 1.30-1.40 g/ml

SECTION 10----Stability and Reactivity------

Incompatibilities Strong acids

Hazardous Combutions or Decomposition Products
Hydrogen chloride gas

SECTION 11----Toxicological Information-----

Acute Effects

May be harmful by inhalation, ingestion, or skin absorption.

Causes eye and skin irritation.

Material is irritating to mucous membranes and upper respiratory tract.

To the best of our knowledge the chemical, physical and toxicological properties have not been thoroughly investigated.

For Pure Calcium Chloride Dihydrate (Solid)

Toxidity Data

IPR-MUS LD50: 20500 MG/KG CYLPDN 4,110,83

SECTION 12-----Disposal Considerations-----

Contact a licensed professional waste disposal service to dispose of this material.

Ovserve all federal, state and local environmental regulaitons.

SECTION 13----Other Information-----

Materials containing reactive chemicals should be used only by personnel with appropriate chemical training.

Pilot Test Evaluation and Additional Assessment Work Plan 76 (Former BP) Service Station No. 11117 7210 Bancroft Avenue, Oakland, California Antea Group Project No. 142611117

Appendix C

Laboratory Analytical Report and Validation Forms – 90 Day Event

Is the Data Set Valid? (circle) Yes / No

Preservation Temperature

(if Known): <u>1.1</u> <u>°</u>C

$\textbf{Antea}^{\text{TM}}\textbf{Group Laboratory Data Validation Sheet}$

Proje	ct/Client:E	T			0'	$\overline{}$
Proje	ct #:14	261117			Circle	ノ
Date	of Validation:	11/21/2012	Date of Analysis: 6/28/2012	Н	lighligh	t
Samp	le Date:	6/27/2012	Completed By: Josh Wolff		_	
		Cian	nature:	(Ye	es N	o
		Sign	lature:	(below))
Analy	rtical Lab Used and	l Report # (if any):	Cal Science #12-06-1887			
1. V	Vere the analyses t	the ones requested?	,	Yes	1	No
	o the sample num lata sheet?	ber(s) on the chain-	of-custody (COC) match the one(s) that appear on the laboratory	Yes	1	No
3. _\ \	Vere samples prep	ared (extracted, filte	ered, etc.) within EPA holding times?	Yes	1	No
4. (Once prepared/ext	racted, were the san	nples analyzed within the EPA holding times?	Yes	1	No
5. V	Vere Laboratory bl	anks performed, if s	o, were they non-detect?	Yes	1	No
6. A	are the units correct colume mg/m³,etc.	ct? (i.e., soil samples)	in mg/kg or ug/g, water samples mg/L, ug/L, and air samples in	Yes	1	No
	Vere appropriate Natch sample?	Лatrix Spike (MS) an	d Matrix Spike Duplicate (MSD) samples included in the laboratory	Yes	1	No
	n lieu of MS/ MSD, aboratory batch sa	72	ke (SS) or surrogate spike duplicate (SSD) samples included in the	Yes	1	<mark>No</mark>
	Vere MS/ MSD (or lepending on the a		acceptable range of % recovery (i.e., approximately 80-120%,	Yes	1	No
10. V	Vere MS/MSD (or S	SS/SSD) values used	to calculate Relative Percent Difference (RPD)?	Yes	1	No
11. V	Vere Relative Perce	ent Difference value	s within the acceptable range (i.e. ±25%)?	Yes	1	No
				<u> </u>	00000000	

If any answer is no, explain why and what corrective action was taken (use additional sheet(s), as necessary:

Data	Qua	lifiers:

See Page 24 of 27.

CALSCIENCE

WORK ORDER NUMBER: 12-06-1887

The difference is service

AIR SOIL WATER MARINE CHEMISTRY

Analytical Report For

Client: Regenesis

Client Project Name: Antea Oakland

Attention: Joy Gravitt

1011 Calle Sombra

San Clemente, CA 92673-4204

Richard Vellas

Approved for release on 07/6/2012 by: Richard Villafania

Project Manager

ResultLink >

Email your PM >

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: Antea Oakland Work Order Number: 12-06-1887

1	Detections Summary	3
2	Client Sample Data	4 4 5
	2.3 EPA 8260B Volatile Organics + Oxygenates (Aqueous)	6 7 9
3	Quality Control Sample Data	10 10 17
4	Glossary of Terms and Qualifiers	24
5	Chain of Custody/Sample Receipt Form	25

Client:

Regenesis

1011 Calle Sombra

San Clemente, CA 92673-4204

Attn:

Joy Gravitt

Work Order:

12-06-1887

Project name: Received: Antea Oakland 06/28/12 10:30

DETECTIONS SUMMARY

	3E1E0110110 0011				
) Re	ult Qualifiers	Reporting Limit	Units	Method	Extraction
87-1)					
60)	20.0	ug/L	RSK-175M	N/A
8.		0.100	mg/L	EPA 6010B	EPA 3010A Total
4.		0.100	mg/L	EPA 6010B	EPA 3005A Filt.
5 CaCO3) 51		5.00	mg/L	SM 2320B	N/A
Demand 78		5.0	mg/L	EPA 410.4	N/A
0.		0.050	mg/L	SM 4500 S2 - D	N/A
anic 84		25	mg/L	SM 5310 D	N/A
16	00	500	ug/L	EPA 8015B (M)	EPA 5030C
25)	12	ug/L	EPA 8260B	EPA 5030C
11)	25	ug/L	EPA 8260B	EPA 5030C
39		25	ug/L	EPA 8260B	EPA 5030C
24)	25	ug/L	EPA 8260B	EPA 5030C
er (MTBE) 25		25	ug/L	EPA 8260B	EPA 5030C
(TBA) 32)	250	ug/L	EPA 8260B	EPA 5030C
. (– –))	V			

Subcontracted analyses, if any, are not included in this summary.

Regenesis

1011 Calle Sombra

San Clemente, CA 92673-4204

Date Received:

Work Order No:

Preparation:

Method:

06/28/12

12-06-1887

N/A

RSK-175M

Project: Antea Oakland

Page 1 of 1

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-4		12-06-1887-1-D	06/27/12 09:25	Aqueous	GC 61	N/A	06/29/12 12:10	120629L01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Methane	6060	20.0	20		ug/L			
Method Blank		099-12-663-1,652	N/A	Aqueous	GC 61	N/A	06/29/12 11:15	120629L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Methane	ND	1.00	1		ug/L			21

Regenesis

1011 Calle Sombra

San Clemente, CA 92673-4204

Date Received:

Work Order No:

Preparation:

Method:

06/28/12

12-06-1887 EPA 5030C

EPA 8015B (M)

Project: Antea Oakland

Page 1 of 1

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-4		12-06-1887-1-G	06/27/12 09:25	Aqueous	GC 25	06/28/12	06/28/12 20:03	120628B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	16000	500	10		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	108	38-134						
Method Blank	1	099-12-436-7,589	N/A	Aqueous	GC 25	06/28/12	06/28/12 12:36	120628B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	90	38-134						

Regenesis

1011 Calle Sombra

San Clemente, CA 92673-4204

Date Received:

Work Order No:

Preparation:

Method: Units: 06/28/12 12-06-1887

EPA 5030C

EPA 8260B

ug/L

Project: Antea Oakland

Page 1 of 1

Client Sample Number				o Sample lumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Anal		QC Batch ID
MW-4			12-06-1	887-1-A	06/27/12 09:25	Aqueous	GC/MS W	06/28/12	06/2 03:		120628L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	2500	12	25		Methyl-t-Buty	Ether (MTB	BE)	250	25	25	
1,2-Dibromoethane	ND	25	25		Tert-Butyl Alc	cohol (TBA)		3200	250	25	
1,2-Dichloroethane	ND	12	25		Diisopropyl E	ther (DIPE)		ND	50	25	
Ethylbenzene	1100	25	25		Ethyl-t-Butyl I	Ether (ETBE)	ND	50	25	
Toluene	390	25	25		Tert-Amyl-Me	ethyl Ether (T	AME)	ND	50	25	
Xylenes (total)	2400	25	25		Ethanol			ND	2500	25	
Surrogates:	REC (%)	Control Limits	Qua	Į.	Surrogates:			REC (%)	Control Limits	. 9	<u>Qual</u>
1,4-Bromofluorobenzene	98	80-120			Dibromofluoro	omethane		106	80-126		
1,2-Dichloroethane-d4	109	80-134			Toluene-d8			102	80-120		
Method Blank			099-14-	001-8,177	N/A	Aqueous	GC/MS W	06/28/12	06/2 00:		120628L02
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.50	1		Methyl-t-Buty	l Ether (MTB	BE)	ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1		Tert-Butyl Alc	cohol (TBA)		ND	10	1	
1,2-Dichloroethane	ND	0.50	1		Diisopropyl E	ther (DIPE)		ND	2.0	1	
Ethylbenzene	ND	1.0	1		Ethyl-t-Butyl B	Ether (ETBE)	ND	2.0	1	
Toluene	ND	1.0	1		Tert-Amyl-Me	ethyl Ether (T	AME)	ND	2.0	1	
Xylenes (total)	ND	1.0	1		Ethanol			ND	100	1	
Surrogates:	REC (%)	Control Limits	Qual	l	Surrogates:			REC (%)	Control Limits	. (Qual
1,4-Bromofluorobenzene	97	80-120			Dibromofluoro	omethane		109	80-126		
1,2-Dichloroethane-d4	111	80-134			Toluene-d8			102	80-120		

DF - Dilution Factor ,

Qual - Qualifiers

Regenesis

1011 Calle Sombra

San Clemente, CA 92673-4204

Date Received:

Work Order No:

Preparation:

Method:

06/28/12

12-06-1887

EPA 3005A Filt.

EPA 6010B

Project: Antea Oakland

Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
MW-4		12-06-1887-1-L	06/27/12 09:25	Aqueous	ICP 7300	06/29/12	06/30/12 12:23	120629LA2F
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Iron	4.55	0.100	1		mg/L			
Method Blank		097-01-003-12,741	N/A	Aqueous	ICP 7300	06/29/12	06/30/12 11:36	120629LA2F
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Iron	ND	0.100	1		mg/L			

Regenesis

1011 Calle Sombra

San Clemente, CA 92673-4204

Date Received:

Work Order No:

Preparation:

Method:

06/28/12

12-06-1887

EPA 3010A Total

EPA 6010B

Project: Antea Oakland

Page 2 of 2

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-4		12-06-1887-1-M	06/27/12 09:25	Aqueous	ICP 7300	06/29/12	06/30/12 12:24	120629LA2
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
ron	8.33	0.100	1		mg/L			
Method Blank		097-01-003-12,740	N/A	Aqueous	ICP 7300	06/29/12	06/30/12 11:38	120629LA2
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
ron	ND	0.100	1		mg/L			

06/28/12

06/29/12

06/29/12

SM 2320B

SM 5310 D

SM 4500 S2 - D

Regenesis 1011 Calle Sombra San Clemente, CA 92673-4204 Date Received: Work Order No:

06/28/12 12-06-1887

Project: Antea Oakland

Alkalinity, Total (as CaCO3)

Carbon, Total Organic

Sulfide, Total

Page 1 of 1

Client Sample Number		ı	_ab Sample	e Number	Date Collected	Matrix		
MW-4			12-06-188	37-1	06/27/12	Aqueous		
<u>Parameter</u>	<u>Results</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>	<u>Date</u>	<u>Date</u>	<u>Method</u>
Nitrate (as N)	ND	0.10	1		mg/L	<u>Prepared</u> N/A	Analyzed 06/28/12	EPA 300.0
Sulfate (as iv)	ND	1.0	4		mg/L	N/A	06/28/12	EPA 300.0
Chemical Oxygen Demand	78	5.0	1		mg/L	07/02/12	07/02/12	EPA 410.4
Alkalinity, Total (as CaCO3)	510	5.00	1		mg/L	N/A	06/28/12	SM 2320B
Sulfide, Total	0.30	0.050	1		mg/L	06/29/12	06/29/12	SM 4500 S2 - D
Carbon, Total Organic	84	25	50		mg/L	06/29/12	06/29/12	SM 5310 D
Method Blank					N/A	Aqueous		
	Decelle	DI	DE	Our	Unite	P	Duta	Weiters I
<u>Parameter</u>	Results	RL	DF	Qual	<u>Units</u>	<u>Date</u> Prepared	<u>Date</u> Analyzed	Method
Nitrate (as N)	ND	0.10	1		mg/L	N/A	06/28/12	EPA 300.0
Sulfate (as N)	ND	1.0	4		mg/L	N/A	06/28/12	EPA 300.0
Chemical Oxygen Demand	ND	5.0	1		mg/L	07/02/12	07/02/12	EPA 410.4
Chomical Oxygen Demand	,,,,	0.0			5. –	~.,.— —		2012 N 1015 N

mg/L

mg/L

mg/L

N/A

06/29/12

06/29/12

ND

ND

ND

1.0

0.050

0.50

Quality Control - Spike/Spike Duplicate

Regenesis 1011 Calle Sombra San Clemente, CA 92673-4204 Date Received: Work Order No: Preparation: Method: 06/28/12 12-06-1887 EPA 3010A Total EPA 6010B

Project Antea Oakland

Quality Control Sample ID			Matrix	Instrument		Date Prepared 06/29/12		Date Analyzed	MS/MSD Batch Number 120629SA2	
12-06-1803-3			Aqueous					06/30/12		
<u>Parameter</u>	SAMPLE CONC	SPIKE ADDED	MS CONC	MS %REC	MSD CONC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Iron	1.541	0.5000	2.016	95	2.021	96	65-149	0	0-21	

Quality Control - PDS / PDSD

Regenesis

1011 Calle Sombra

San Clemente, CA 92673-4204

Date Received

Work Order No:

Preparation:

Method:

06/28/12

12-06-1887 EPA 3010A Total

EPA 6010B

Quality Control Sample ID		Matrix		Instrument		Date Prepared		/zed	PDS/PDSD E Number	
12-06-1803-3		Aqueou	Aqueous		06/29/12		06/30/12		120629SA2	
Analysis Comment:	* - Analyzed 7/2/20	12 6:11:00 PM								
<u>Parameter</u>	SAMPLE CONC	SPIKE PDS ADDED	S CONC	PDS %REC	PDSD CONC	PDSD %REC	%REC CL	RPD	RPD CL	Qualifie
Iron	1.541	0.5000	2.038	99	2.010	94	75-125	1	0-21	

Quality Control - Spike/Spike Duplicate

Regenesis 1011 Calle Sombra San Clemente, CA 92673-4204 Date Received: Work Order No: Preparation: Method: 06/28/12 12-06-1887 N/A EPA 300.0

Quality Control Sample ID			Matrix	Instrument			ate oared	Date Analyzed	233,737	ISD Batch umber
MW-4			Aqueous			N	/A	06/28/12	120628S01	
<u>Parameter</u>	SAMPLE CONC	SPIKE ADDED	MS CONC	MS %REC	MSD CONC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Nitrate (as N) Sulfate	ND ND	500 5000	500 4900	101 98	500 4900	100 98	80-120 80-120	0 0	0-20 0-20	

Quality Control - Spike/Spike Duplicate

Regenesis 1011 Calle Sombra San Clemente, CA 92673-4204 Date Received: Work Order No: Preparation: Method: 06/28/12 12-06-1887 N/A SM 5310 D

Quality Control Sample ID			Matrix	Instru	ument		ate pared	Date Analyzed	1117	ISD Batch umber
MW-4			Aqueous	TOC 6		06/2	9/12	06/29/12	C0629TOCS1	
<u>Parameter</u>	SAMPLE CONC	SPIKE ADDED	MS CONC	MS %REC	MSD CONC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Carbon, Total Organic	84	250	340	102	330	100	75-125	1	0-25	

Quality Control - Spike/Spike Duplicate

Regenesis 1011 Calle Sombra San Clemente, CA 92673-4204 Date Received: Work Order No: Preparation: Method: 06/28/12 12-06-1887 EPA 5030C EPA 8015B (M)

Quality Control Sample ID			Matrix	Matrix Instrument			ate pared	Date Analyzed	MS/MSD Batch Number	
12-06-1840-1			Aqueous	GC 2	5 06/28/12			06/28/12	120628S01	
<u>Parameter</u>	SAMPLE CONC	SPIKE ADDED	MS CONC	MS %REC	MSD CONC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	ND	2000	1822	91	1973	99	68-122	8	0-18	

alscience nvironmental aboratories, Inc.

Quality Control - Spike/Spike Duplicate

Regenesis 1011 Calle Sombra San Clemente, CA 92673-4204 Date Received: Work Order No: Preparation: Method: 06/28/12 12-06-1887 EPA 5030C EPA 8260B

Project Antea Oakland

Quality Control Sample ID			Matrix	Instru	ıment		ate pared	Date Analyzed		ISD Batch umber
12-06-1917-1			Aqueous	GC/MS W		06/28/12		06/29/12	120	628S02
<u>Parameter</u>	SAMPLE CONC	SPIKE ADDED	MS CONC	MS %REC	MSD CONC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	ND	50.00	57.45	115	56.44	113	78-120	2	0-20	
1,2-Dibromoethane	ND	50.00	55.00	110	55.48	111	80-123	1	0-20	
1,2-Dichloroethane	ND	50.00	57.85	116	57.29	115	76-130	1	0-20	
Ethylbenzene	ND	50.00	56.69	113	56.22	112	73-127	1	0-20	
Toluene	ND	50.00	57.04	114	56.12	112	72-126	2	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	50.00	47.76	96	48.39	97	69-123	1	0-20	
Tert-Butyl Alcohol (TBA)	ND	250.0	220.3	88	206.3	83	65-131	7	0-22	
Diisopropyl Ether (DIPE)	ND	50.00	53.82	108	54.24	108	68-128	1	0-22	
Ethyl-t-Butyl Ether (ETBE)	ND	50.00	51.07	102	51.37	103	69-123	1	0-21	
Tert-Amyl-Methyl Ether (TAME)	ND	50.00	49.10	98	49.13	98	70-124	0	0-20	
Ethanol	ND	500.0	748.8	150	718.6	144	41-155	4	0-35	

urn to Contents

Quality Control - Duplicate

Regenesis

1011 Calle Sombra

San Clemente, CA 92673-4204

Date Received:

Work Order No:

N/A

12-06-1887

Matrix: Aqueous or Solid			<u> </u>					
Parameter	Method	QC Sample ID	Date Analyzed	Sample Conc	DUP Conc	RPD	RPD CL	Qualifiers
Alkalinity, Total (as CaCO3)	SM 2320B	12-06-1535-6	06/28/12	834	838	0	0-25	
Sulfide, Total	SM 4500 S2 - D	12-06-1723-7	06/29/12	ND	ND	NA	0-25	
Chemical Oxygen Demand	EPA 410.4	MW-4	07/02/12	78	77	1	0-25	

Regenesis 1011 Calle Sombra San Clemente, CA 92673-4204 Date Received: Work Order No: Preparation: Method: N/A 12-06-1887 N/A RSK-175M

Quality Control Sample ID		Matrix		Instrument		Date Prepared		d	LCS/LCSD Batch Number	
099-12-663-1,652		Aqueous		GC 61	N/A		06/29/12		120629L01	
<u>Parameter</u>	¥.	SPIKE ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Methane		98.50	90.77	92	89.81	91	79-109	1	0-20	

Regenesis 1011 Calle Sombra San Clemente, CA 92673-4204 Date Received: Work Order No: Preparation: Method: N/A 12-06-1887 EPA 3010A Total EPA 6010B

Quality Control Sample ID	Matrix		Instrument	700000	ate pared	Date Analyzed	I	LCS/LCSD Batch Number	
097-01-003-12,740	Aqueous	g g	ICP 7300	06/2	29/12	06/30/12		120629LA2	15 1986
<u>Parameter</u>	SPIKE ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifier
Iron	0.5000	0.5326	107	0.5332	107	80-120	0	0-20	

Regenesis 1011 Calle Sombra San Clemente, CA 92673-4204 Date Received: Work Order No: Preparation: Method: N/A 12-06-1887 EPA 3005A Filt. EPA 6010B

Quality Control Sample ID	Matrix		Instrument		Date Prepared		d	LCS/LCSD Batch Number	
097-01-003-12,741	Aqueous		ICP 7300	06/29/12		06/30/12		120629LA2F	
<u>Parameter</u>	SPIKE ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD %REC	%REC CL	RPD	RPD CL	Qualifier
Iron	0.5000	0.5326	107	0.5332	107	80-120	0	0-20	

Regenesis 1011 Calle Sombra San Clemente, CA 92673-4204 Date Received: Work Order No: Preparation: Method: N/A 12-06-1887 N/A EPA 300.0

Quality Control Sample ID	Matrix		Instrument		ate pared	Date Analyzed		LCS/LCSD Batch Number	
099-12-906-2,836	Aqueous		IC 7	N	/A	06/28/12	elle:	120628L01	
<u>Parameter</u>	SPIKE ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Nitrate (as N) Sulfate	5.0 50	5.1 50	102 100	4.9 48	97 96	90-110 90-110	4 4	0-15 0-15	

Regenesis 1011 Calle Sombra San Clemente, CA 92673-4204 Date Received: Work Order No: Preparation: Method: N/A 12-06-1887 N/A SM 5310 D

Quality Control Sample ID	Matrix		Instrument	-	ate pared	Date Analyzed	i	LCS/LCSD Batch Number	
099-05-097-4,646	Aqueous		TOC 6	06/2	29/12	06/29/12		C0629TOCL1	
<u>Parameter</u>	SPIKE ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Carbon, Total Organic	5.0	4.6	92	4.5	90	80-120	2	0-20	

Regenesis 1011 Calle Sombra San Clemente, CA 92673-4204 Date Received: Work Order No: Preparation: Method: N/A 12-06-1887 EPA 5030C EPA 8015B (M)

Quality Control Sample ID	Matrix		Instrument	100	ate pared	Date Analyzed	I	LCS/LCSD Batch Number	
099-12-436-7,589	Aqueous	134.	GC 25	06/	28/12	06/28/12		120628B01	
<u>Parameter</u>	SPIKE ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	2000	2070	103	2115	106	78-120	2	0-10	

alscience nvironmental aboratories, Inc.

Quality Control - LCS/LCS Duplicate

Regenesis 1011 Calle Sombra San Clemente, CA 92673-4204 Date Received: Work Order No: Preparation: Method:

12-06-1887 EPA 5030C EPA 8260B

Project: Antea Oakland

Quality Control Sample ID	М	atrix	Instrument	t	Date Prepared	-	ate llyzed	LCS		
099-14-001-8,177	Aque	eous	GC/MS W		06/28/12	06/28	8/12	1		
Parameter	SPIKE ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	50.00	55.39	111	56.50	113	80-120	73-127	2	0-20	
1,2-Dibromoethane	50.00	54.92	110	55.73	111	80-120	73-127	1	0-20	
1,2-Dichloroethane	50.00	56.28	113	56.95	114	80-129	72-137	1	0-20	
Ethylbenzene	50.00	55.74	111	56.77	114	80-123	73-130	2	0-20	
Toluene	50.00	55.52	111	56.66	113	79-121	72-128	2	0-20	
Methyl-t-Butyl Ether (MTBE)	50.00	47.28	95	48.55	97	72-126	63-135	3	0-22	
Tert-Butyl Alcohol (TBA)	250.0	233.3	93	230.8	92	71-125	62-134	1	0-25	
Diisopropyl Ether (DIPE)	50.00	52.57	105	53.71	107	69-129	59-139	2	0-20	
Ethyl-t-Butyl Ether (ETBE)	50.00	50.38	101	51.46	103	69-129	59-139	2	0-20	
Tert-Amyl-Methyl Ether (TAME)	50.00	49.31	99	49.77	100	67-133	56-144	1	0-20	
Ethanol	500.0	690.2	138	669.8	134	47-155	29-173	3	0-36	

Total number of LCS compounds: 11

Total number of ME compounds: 0

Total number of ME compounds allowed:

LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order Number: 12-06-1887

C. The special control of the control of the control	paradicinate and participate a
Qualifier	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS/LCSD Recovery Percentage is within Marginal Exceedance (ME) Control Limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis. MPN - Most Probable Number

(Flobal ID) T0600100201

nvironmental aboratories, Inc.

7440 LINCOLN WAY

GARDEN GROVE, CA 92841-1427

TEL: (714) 895-5494 . FAX: (714) 894-7501

CHAIN OF CUSTODY RECORD

DATE: June 27,2012 PAGE:

	Regenesis	S					CLIE	NT PR	OJECT	NAME /	NUMBE	R:	-						***************************************	P,O.	NO.;		-1678(6804600000	Militeration	***************************************
ADDRE	ss: 1011 Calle	∋ Sombra			***************************************		Ar	ntea C	aklan	d															
CITY:			STATE:		************************	The state of the s	PRO	JECT (CONTAC	CT:		***************************************	************	*****************	and an elementary state with	Anna Santanian dia	LAB (CONTA	CT OR	QUOTE	NO.:	(()()()()()()	adada an	***************************************	various associati
TEL:	San Clemente		STATE:	CA	92673			y Gra		-	***************************************			***************************************	rotaminus suu sa		Alan I	Kemp)		,				_
9	949.366.8000 ROUND TIME:	FAX: 949.366.8090		E-MAIL: jgra	avitt@re	***************************************	SAM	IPLER(S	S): (SIGI	NATURE	:)									LAB	USE ON		6 -1	R	R 7
□ SA		□ 48 HR □ 72 HR &	5 DAYS	☐ 10 DAY:	***************************************								i	REQ	UES	STE	D AN	IAL	YSIS						
□ RW	CONTRACTOR (ADDITIONAL C	OSTS MAY APPLY) I ARCHIVE SAMPLES UN	The state of the s	'/	-	William Commission (1990)		3260)			<u>8</u>				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										
Please	see Joy Gravitt for questic	ons or concerns. TBE, TBA, ETBE, TAME, DIPE	≣, EDB, etha	inol, 1,2-DCA			тРН-д (ЕРА 8015)	BTEX/Oxygenates* (EPA 8260)	Nitrate/Sulfate (EPA 300.0)	Total Iron (EPA 6010B)	Dissolved Iron (EPA 6010B)	Sulfide (SM4500S2D)	Wethane (RSK-175)	TOC (SM5310D)	COD (SM5220D)	Alkalinity (SM2320B)									
USE ONLY	SAMPLE ID	LOCATION / DESCRIPTION	DATE	MPLING TIME	MATRIX	NO. OF CONT.	PH-9 (I	TEX/O	litrate/S	otal Iro	issolve	ulfide (lethane	oc (sn	OD (SA	Ikalinit									
4	MW-4	7210 Bangroft Ave Oakland, CA	6/27/2012	0925	W	13	X X	Х	x	* ×	· X	×	<u>≥</u> X	, ×	; , ×	• X									
																***************************************								_	
																								\dashv	
			***************************************			······································										kimionunzan									
						······································														······································					
linquished	d by: (Signature)	A									9900000							***************************************						\top	
	l by: (Signature)		<u>~</u>			y: (Signatur			·										Date:	11	20/2	_	Time:	94	15
	11/1/1/1/1				Received b	y: (Signatur		ly	C	E		9			***************************************	***************************************	***************************************		Date:	1/27, 128	// 2	2_		5	
<u>~</u> (mally 70	650 6/27/12	173	?o	Received b	7.1	e) Ges				1 •	h	2				General Park	······································	Date:	28	-//2		Time:	53,	<u> </u>

Return to Contents

Page 25 of 27

<WebShip>>

800-322-5555 www.gso.com

Ship From: ALAN KEMP

CAL SCIENCE- CONCORD 5063 COMMERCIAL CIRCLE #H CONCORD, CA 94520

Ship To:

SAMPLE RECEIVING CEL 7440 LINCOLN WAY GARDEN GROVE, CA 92841

COD: \$0.00

Reference:

ERM, APEX, REGENESIS, PHILLIPS 66

Delivery Instructions:

Signature Type: SIGNATURE REQUIRED

519431666 Tracking #:

GARDEN GROVE

D92841A

Print Date: 06/27/12 16:34 PM

NPS

Package 1 of 1

Send Label To Printer

Print All

Edit Shipment

Finish

LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode.

STEP 1 - Use the "Send Label to Printer" button on this page to print the shipping label on a laser or inkjet printer.

STEP 2 - Fold this page in half.

STEP 3 - Securely attach this label to your package, do not cover the barcode.

STEP 4 - Request an on-call pickup for your package, if you do not have scheduled daily pickup service or Drop-off your package at the nearest GSO drop box. Locate nearest GSO dropbox locations using this link.

ADDITIONAL OPTIONS:

Send Label Via Email

Create Return Label

TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all the service terms and conditions described in this section. Our liability for loss or damage to any package is limited to your actual damages or \$100 whichever is less, unless you pay for and declare a higher authorized value. If you declare a higher value and pay the additional charge, our liability will be the lesser of your declared value or the actual value of your loss or damage. In any event, we will not be liable for any damage, whether direct, incidental, special or consequential, in excess of the declared value of a shipment whether or not we had knowledge that such damage might be incurred including but not limited to loss of income or profit. We will not be liable for your acts or omissions, including but not limited to improper or insufficient packaging, securing, marking or addressing. Also, we will not be liable if you or the recipient violates any of the terms of our agreement. We will not be liable for loss, damage or delay caused by events we cannot control, including but not limited to acts of God, perils of the air, weather conditions, act of public enemies, war, strikes, or civil commotion. The highest declared value for our GSO Priority Letter or GSO Priority Package is \$500. For other shipments the highest declared value is \$10,000 unless your package contains items of "extraordinary value", in which case the highest declared value we allow is \$500. Items of "extraordinary value" include, but or not limited to, artwork, jewelry, furs, precious metals, tickets, negotiable instruments and other items with intrinsic value.

WORK ORDER #: 12-06- ☐ 图 图 尹

SAMPLE RECEIPT FORM

Cooler / of /

CLIENT: REGENESIS DAT	E: <u>06 /</u>	28/12
TEMPERATURE: Thermometer ID: SC2 (Criteria: 0.0 °C - 6.0 °C, not frozen) Temperature		PC
CUSTODY SEALS INTACT: Cooler		ial:/X ial: ≤+
SAMPLE CONDITION: Yes Chain-Of-Custody (COC) document(s) received with samples. ✓ COC document(s) received complete. ✓	No	N/A
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels. ☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished. Sampler's name indicated on COC	Z	- :
Sample container label(s) consistent with COC		
Analyses received within holding time		
☐ Unpreserved vials received for Volatiles analysis Volatile analysis container(s) free of headspace		
Tedlar bag(s) free of condensation	erraCores [®] □	
Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp □1AG □500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □1PB □250PB □250PBn □125PB □125PBznna □100PJ □100PJna₂ □ □	B □1PB na □[□500PB
Air: Tedlar [®] Summa [®] Other: Trip Blank Lot#: Label Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envelope Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ u: Ultra-pure znna: ZnAc ₂ +NaOH f: Fi	Reviewed b	by: hu

Pilot Test Evaluation and Additional Assessment Work Plan 76 (Former BP) Service Station No. 11117 7210 Bancroft Avenue, Oakland, California Antea Group Project No. I42611117

Appendix D

Blaine Tech Services Field Data Sheets – 90 Day Event

						We	ell- <i>k</i>	leac	Inspec	tion & W	/ell Gauc	jing For	m	
Ante	ea Group Project No:	26		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				Site A	ddress:	210 E	3ancroi	er A	ven (jarkland
Field	l Technician: <u>し</u> ない	rel		4-11	en	1	BT	S			12711	2	,	Jakland Weather: Clear
	(Print Full Nai	ne & (Compa	ny*) In		(
Sample Order	Field Point	Bolts	Seal	Lid Secure	Lock	Expanding Cap	Water in Well Box	Well Casing Dia.	Time Gauged	Depth to Water (Feet)	Depth to Bottom (Feet)	Depth to LNAPL (Feet)	LNAPL Thickness (Feet)	Comments
72	MW-I	6	6-	6-	6	C	1	2	0851	15,73	38.50			
4	MW-4 MW-7	G	G	G-	NA	MA	W	7	0844	16,50	38.90			vault
verment	MW-7	6	G	Ĝ		6	N	2	0826	16.70	44,20			
3	MW-IT	G	6	G-	G	6	1			15,40			,	

						-							2.07	
														\$
								·						
													1	
														74.
													2	
Note	s:													** All well caps opened at least 15 minutes or longer before gauging wells: CIRCLE ONE: YES of NO**

*Form provided by Antea Group

Page _____ of ____

		*						
		Ground	water S	ampling	Form			
Site Address:	7210) Ban	(rof)	· Ave.	1 Oq	Rland	CA	
Project No:	2611	1)	Fie	eld Technician:	" O~	J		
Field Point:	Mw-	Euro P	A STATE OF THE STA	Date:	6/2	4117		
Depth to Water (DTW) (ft bgs):	165	50	Weil	Diameter (in):	②	4 6 8		
Depth to LNAPL (ft bgs):	o-governor excellent system	and the state of t	Thickness	of LNAPL (ft):	june	pour s'averier più l'en embeloiste () (inscius s'animalistic dans anim	Same of the same o	
Total Depth of Well (ft bgs):	38,	90	Water Colui	mn Height (ft):	2	2,40)	A CONTRACTOR OF THE CONTRACTOR
				d Calculations				
Purge Method:		Purge Eq	puipment:		:	Sample Colle	ction Method	* Andrews
Low-Flow 3 casing volumes Other:		Electric Su Peristal	ble Bailer ubmersible tic Pump er Pump			Extrac Dedicat	ble Bailer tion Port ed Tubing ole Tubing	no. i i i i i i i i i i i i i i i i i i i
		Other:		•	Ot	her:		
Water Column Height (ft):	/_	X Conversion	Factor (gai/ft):/	= Casi	ing Volume (g	al):	
Casing Volume (gal):	Jane Brand	X Specified V	olumes:		_ = Calculated	l Purge (gal):		
Conversion Factors (gal/ft): 2":	= 0.17 4"	= 0.66 6"	= 1.5 8" =		= radius ² * 0	.163	
Purge: Start	Time:				Stop Time:			
Time	Temp (°C)	рН	Conductivity (µS/cm)	ORP (mV)	Turbidity (NTU)	D.O. (mg/L)	Volume Purged (gal)	Water Level (for Low-Flow only)
Pre-Purge								
O ^o o ®	18,55	6,47	1273	-89,0	331	1,62	600 ml	16,51
0906	18,46	0,35	1276	-98,7-	307	1.35	1200m(16.51
6909	18.60	6,38	1266	-105,4	190	1,46	1800m1	16,51
6917	18,76	6,45	1247	-108.4	108	0.81	2400 ml	16,51
6915	18,82	6.49	1224	-111.8	91	0.68	3500ml	16,51
0918	18.91	6,51	1220	-110,9	82)	0,65	3600ml	16.51
0921	19,02	6.53	1215	-110.2	60	0,60	4200ml	16.51
						1.5		ADELECTION OF THE PERSONS ASSESSMENT ASSESSMENT OF THE PERSONS ASSESSMENT OF THE PERSONS ASSESSMENT OF THE PERSONS ASSESSMENT OF THE PERSONS ASSESSMENT A
Post-Purge				-				
Did Well dewater?	Yes (N	lò')		Purge volume	(gal):			
Other Comments:	Flow	2 Kuh	e, zx) milmi	M	7	-fursed	through
Other Comments.	Pam	n Deo-	Hn! 30		•		flow	cell
Sample Info:								
Sample ID:	MW-	4		Sample Date	and Time: (012711	2/209	25
Selected Analysis:	SEE	200	Mirchippe.					- Williams
This form was provided by Ant completed by: (Print Full Name		Dani		llen	, 5	ın employee d	f Blaine Tech S	Services, Inc.
Signature:	No.	200.	and the second second	Date:	6/2	7117		
\$P		LNAPL= light non	-aniipous nhasa l	liavide	gal = gallon/s			
anteagroup		bgs = below grou	ind surface		temp = temperal			
Antea TM Group, 1-800-477-7411		ORP = Oxidation- D.O.= dissolved (NTU = Nephelom mV = millivolts	etric Turbidity U	nts	

Page _____ of ____

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	ne Okland	.7210 Ra	ncroft Ave	PROJECT NUM	MBER 761111	: Process	
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	.6	INITIALS
YS1 556	098100592	6/27/12 CX030	Do 100%	(00	Yes	20	pw
,			ph 13:00	7,50	Yes	2	pu
			3900 us/cm	3900	Yes	21	pu
			238 mi	238	Yes	7	pw

Pilot Test Evaluation and Additional Assessment Work Plan 76 (Former BP) Service Station No. 11117 7210 Bancroft Avenue, Oakland, California Antea Group Project No. 142611117

Appendix E

Antea Group's Standard Operating Procedures

Appendix E - Standard Operating Procedures 76 (Former BP) Service Station No. 11117 Page 1 of 6 Updated 05/31/2011

STANDARD OPERATING PROCEDURES

Utility Locating

Prior to drilling, boring and excavation locations and an approximate 15-foot by 15-foot box are marked with white paint or other distinct marking and cleared for underground utilities through Underground Service Alert (USA). In addition, Antea Group will contract an independent locator services to clear boring or excavation locations of subsurface assets. The first five feet (or more in instances where utilities are suspected in close proximity) of each borehole are air-knifed, or carefully advanced with a hand auger if shallow soil samples are necessary, to help evaluate the borehole location for underground structures or utilities in accordance with Antea Group's subsurface hazard avoidance policy.

Subsurface Investigation Methods – GeoProbe®, Sonic, Hollow Stem Auger Drilling, Sampling, and Borehole Completion

Borehole Advancement using Single-Wall GeoProbe®

Pre-cleaned push rods (typically one to two inches in diameter) are advanced using a hydraulic direct push-type rig for the purpose of collecting samples and evaluating subsurface conditions. The sample barrel located at the leading end of the drill rod serves as a soil sampler, and an acetate liner is inserted into the sample barrel rod prior to advancement of the push rod. Once the sample is collected, the rods and sampler are retracted and the acetate sample tubes are removed from the sampler. The sample barrel is then cleaned, filled with clean sample tubes, inserted into the borehole and advanced to the next sampling point where the sample collection process is repeated.

Undisturbed soil samples selected for laboratory analysis are cut away from the acetate sample liner using a hacksaw, or equivalent tool, in sections approximately 6 inches in length. The 6 inch samples are lined at each end with Teflon® sheets and capped with plastic caps. Labels documenting project number, borehole identification, collection date, and depth are affixed to each sample. The samples are then placed into an ice-filled cooler for delivery under chain-of-custody to a laboratory certified by the State of California for analysis. The remaining collected soil that has not been selected for laboratory analysis is logged using the United Soil Classification System (USCS) under the direction of a State Registered Professional Geologist, and is field screened for organic vapors using a photo ionization detector (PID), or an equivalent tool.

Borehole Advancement using Sonic Drilling

Pre-cleaned heavy-walled down-hole casings (typically 6 to 8 inches in diameter) are advanced using a sonic head. A smaller diameter core barrel (typically 4 to 6 inches in diameter) is advanced through the inside of the down-hole casings to remove the soil cuttings from the borehole for sample collection and evaluation of subsurface conditions.

During drilling, soil samples are collected continuously using the sonic core barrel. A physical description of soil characteristics (i.e. moisture content, consistency or density, odor, color, and plasticity), drilling difficulty, and soil type as a function of depth are described on boring logs. The soil cuttings are classified in accordance with the USCS and field screened for organic vapors using a PID.

Appendix E - Standard Operating Procedures 76 (Former BP) Service Station No. 11117 Page 2 of 6 Updated 05/31/2011

Borehole Advancement using Hollow Stem Auger

Pre-cleaned hollow stem augers (typically 8 to 10 inches in diameter) are advanced using a drill rig for the purpose of collecting samples and evaluating subsurface conditions. A pre-cleaned split spoon sampler is lined with three 6-inch long brass or stainless steel tubes and attached to the drill rods. The sampler is then driven 18 inches into the underlying soils at the target sample interval by repeatedly dropping a 140-pound hammer over a 30-inch free fall distance. The number of blow counts to drive the sampler each 6-inch interval of sampler advancement are recorded on the field logs. The sampler is driven 18 inches or until the sampler has met refusal (typically 50 blows per six inches), then the sampler is retrieved. Alternatively, soil samples are retrieved by driving the sampler using a pneumatic hammer, when using a limited access rig.

Generally the bottom sample tube is selected for laboratory analysis. The middle tube is extruded for logging and PID screening, and the top tube is considered slough caved off from the sides of the boring prior to sampling.

The retained sample is carefully packaged for chemical analysis by capping each end of the sample with a Teflon sheet followed by a tight-fitting plastic cap and stored in a zip-type plastic bag. A label is affixed to the sample indicating the sample identification number, borehole number, sampling depth, sample collection date, and job number. The sample is then annotated on a chain-of-custody form and placed in an ice-filled cooler for transport to the laboratory.

During the drilling process, a physical description of the encountered soil characteristics (i.e. moisture content, consistency or density, odor, color, and plasticity), drilling difficulty, and soil type as a function of depth are described on boring logs. The soil cuttings are classified in accordance with the USCS.

Grab Groundwater Sample Collection

Once the target groundwater sampling depth has been reached, a Hydropunch[™] tip is placed on leading end of the sampling rods. The Hydropunch[™] tip is advanced approximately 2 feet to place the sample port within the target groundwater sampling zone (effort is made to position the center of the Hydropunch[™] screen across the water table surface, if appropriate), and retracted to expose the Hydropunch[™] screen. Grab groundwater samples are collected by lowering a pre-cleaned, single-sample polypropylene, disposable bailer or pre-cleaned stainless steel bailer down the inside of the sampler rod. The groundwater sample is decanted from the bailer to the sample container through a bottom emptying flow control valve to minimize volatilization. Alternatively, groundwater samples are collected by lowering a disposable bailer through the sampler rod or into the borehole.

Collected water samples are decanted directly into laboratory provided, pre-cleaned, vials or containers and sealed with Teflon-lined septum, screw-on lids. Labels documenting sample number, well identification, collection date, and type of preservative (if applicable, i.e. HCl for GRO, BTEX, and fuel oxygenates) are affixed to each sample. The samples are then placed into an ice-filled cooler for delivery under chain-of-custody to a laboratory certified by the State of California to perform the specified tests.

Borehole Completion

Upon completion of drilling and sampling, the inner casing rods are retracted. Neat cement grout, mixed at a ratio of 6 gallons of water per 94 pounds of Portland cement, is introduced via a tremie pipe to displace standing water in the

Appendix E - Standard Operating Procedures 76 (Former BP) Service Station No. 11117 Page 3 of 6 Updated 05/31/2011

borehole, through the annulus of the outer casing rods. The outer rods are retracted as the grout is introduced to bottom of the boring to prevent the cross contamination of encountered water bearing zones. Displaced groundwater is collected at the surface and placed into DOT approved 55-gallon steel drums, or an equivalent storage container. In areas where the borehole penetrates asphalt or concrete, the borehole is capped with an equivalent thickness of asphalt or concrete patch to match finished grade.

Well Construction (typical)

Selected borings will be converted to groundwater monitoring wells by the installation of 2-inch or 4-inch diameter Schedule 40 polyvinyl chloride well casing with 0.020-inch factory slotted well screen as stated in the body of the work plan. A filter pack of Monterey #3 grade sand (or equivalent) will be placed in the annular space of the monitoring well borings, extending from the bottom of each well casing to approximately 2-feet above the top of the screened casing. A sanitary seal consisting of a 2-foot bentonite will be placed on above the filter sand and charged with water to create a seal. Neat cement grout, mixed at a ratio of 6 gallons of water per 94 pounds of Portland cement, is introduced via a tremie pipe to displace standing water in the well annulus bentonite to within two feet of the ground surface. Antea Group will install a minimum of a 5-foot annual seal. A traffic-rated well box will be installed on each well to protect and finish the well to surface grade.

The groundwater monitoring wells will be allowed to stabilize for a minimum of 72 hours after installation prior to development. Following development, the wells will be allowed stabilize for a minimum of 48 hours prior to the collection of any groundwater samples.

Organic Vapor Procedures

Soil samples are collected for analysis in the field for ionizable organic compounds using a PID with a 10.2 eV lamp. The test procedure involves measuring approximately 30 grams from an undisturbed soil sample, placing this sub-sample in a Zip-type bag. The container is warmed for approximately 20 minutes in the sun; then the head-space within the container is tested for total organic vapor, measured in parts per million as benzene (ppm; volume/volume). The instrument is calibrated prior to drilling. The results of the field-testing are noted on the boring logs. PID readings are useful as a qualitative indication of relative levels of contamination, but cannot be used to quantify petroleum hydrocarbon concentrations with the confidence of laboratory analyses.

Equipment Decontamination

Equipment that could potentially come in contact subsurface media and compromise the integrity of the samples is carefully decontaminated prior to drilling and sampling. Drilling auger and other large pieces of equipment are decontaminated using high pressure hot water spray. Soil and groundwater sampling apparatus, groundwater pumps, liners and other equipment are decontaminated in an Alconox scrub solution and double rinsed in clean tap water rinse followed by a final distilled water rinse.

The rinsate and other wastewater are contained in 55-gallon DOT-approved drums, labeled (to identify the contents, generation date and project) and stored on-site pending waste profiling and disposal.

Appendix E - Standard Operating Procedures 76 (Former BP) Service Station No. 11117 Page 4 of 6 Updated 05/31/2011

Waste Handling and Disposal (Soil Cuttings and Rinsate/Purge Water)

Soil cuttings and rinsate/purge water generated during drilling and sampling are stored on-site in DOT-approved 55-gallon steel drums pending characterization. A label is affixed to the drums indicating the contents of the drum, suspected contaminants, date of generation, and the boring number from which the waste is generated. The drums are removed from the site by a licensed waste disposal contractor to an appropriate facility for treatment/recycling.

SOIL VAPOR WELLS STANDARD FIELD AND SAMPLING PROCEDURES

Utility Locating

Prior to drilling, boring and excavation locations and an approximate 15-foot by 15-foot box are marked with white paint or other distinct marking and cleared for underground utilities through Underground Service Alert (USA). In addition, Antea Group will contract an independent locator services to clear boring or excavation locations of subsurface assets. Soil vapor wells are not air-knifed, and are instead carefully advanced using hand auger drilling techniques.

Borehole Advancement using Hand Auger

A pre-cleaned hand auger (typically three inches in diameter) is advanced by hand for the purpose of collecting samples and evaluating subsurface conditions. If required, soil samples are collected into one 6-inch brass or stainless steel tube inserted into the hand auger during advancement. Soil samples may also be collected into pre-cleaned certified laboratory-provided glass jars.

The retained sample is carefully packaged for chemical analysis by capping each end of the sample with a Teflon sheet followed by a tight-fitting plastic cap and stored in a zip-type plastic bag. A label is affixed to the sample indicating the sample identification number, borehole number, sampling depth, sample collection date, and job number. The sample is then annotated on a chain-of-custody form and placed in an ice-filled cooler for transport to the laboratory.

During the drilling process, a physical description of the encountered soil characteristics (i.e. moisture content, consistency or density, odor, color, and plasticity), drilling difficulty, and soil type as a function of depth are described on boring logs. The soil cuttings are classified in accordance with the USCS.

Soil Vapor Well Completion (Typical)

Shallow soil vapor well borings are typically advanced to 5.5 feet below ground surface (bgs), but may be completed deeper if necessary or shallower if groundwater is present. The borings will be completed into soil vapor wells by placing one foot of Monterey #3 or #30 sand into the borehole. A soil vapor probe connected to seven feet of 0.25-inch outside diameter Teflon tubing and installed in center of the sand pack at a depth of five feet bgs. A one foot interval of dry granular bentonite transition seal is placed on top of the sand pack. A neat cement sanitary seal is placed on top of the transition seal to approximately one foot bgs. Concrete is placed from 1.0 feet bgs to approximately 4 inches below the surface and a traffic-rated well box is installed at the surface. The well is completed by installing a Swagelok valve on the terminating end of the Teflon tubing.

Appendix E - Standard Operating Procedures 76 (Former BP) Service Station No. 11117 Page 5 of 6 Updated 05/31/2011

Organic Vapor Procedures

Soil samples are collected for analysis in the field for ionizable organic compounds using a PID with a 10.2 eV lamp. The test procedure involves measuring approximately 30 grams from an undisturbed soil sample, placing this sub-sample in a Zip-type bag. The container is warmed for approximately 20 minutes in the sun; then the head-space within the container is tested for total organic vapor, measured in parts per million as benzene (ppm; volume/volume). The instrument is calibrated prior to drilling. The results of the field-testing are noted on the boring logs. PID readings are useful as a qualitative indication of relative levels of contamination, but cannot be used to quantify petroleum hydrocarbon concentrations with the confidence of laboratory analyses.

Equipment Decontamination

Equipment that could potentially come in contact subsurface media and compromise the integrity of the samples is carefully decontaminated prior to drilling and sampling. Drilling auger and other large pieces of equipment are decontaminated using high pressure hot water spray. Soil and groundwater sampling apparatus, groundwater pumps, liners and other equipment are decontaminated in an Alconox scrub solution and double rinsed in clean tap water rinse followed by a final distilled water rinse.

The rinsate and other wastewater are contained in 55-gallon DOT-approved drums, labeled (to identify the contents, generation date and project) and stored on-site pending waste profiling and disposal.

Waste Handling and Disposal (Soil Cuttings and Rinsate/Purge Water)

Soil cuttings and rinsate/purge water generated during drilling and sampling are stored on-site in DOT-approved 55-gallon steel drums pending characterization. A label is affixed to the drums indicating the contents of the drum, suspected contaminants, date of generation, and the boring number from which the waste is generated. The drums are removed from the site by a licensed waste disposal contractor to an appropriate facility for treatment/recycling.

Soil Vapor Well Sampling

Following installation, the soil vapor wells will be allowed to equilibrate for a minimum of three days and then sampled using the standard operating procedure described below:

- 1. One-foot sections of 0.25-inch outside diameter Teflon tubing will be used to connect the Swagelok wellhead valve to a Swagelok T-union fitting, one 6-liter Summa canister (purge), and one 1-liter or 6-liter Summa canister (sample). Each Summa canister will be outfitted with its own particulate filter, vacuum gauge, and flow regulator calibrated to a flow rate of between 100 and 200 milliliters per minute (ml/min). With the exception of the 6-liter purge Summa canister, dedicated equipment and materials will be used at each well to avoid cross-contamination.
- 2. Once the sampling train is assembled, a vacuum test will be performed to ensure the integrity of the sampling train. With the Swagelok wellhead valve closed, the 6-liter purge Summa canister will be opened for a minimum of 10 minutes. If a vacuum is not maintained for at least 10 minutes, the fittings will be tightened and the vacuum test repeated.
- 3. Once the integrity of the sampling train has been verified by the vacuum test, the well will be purged. The purge

Appendix E - Standard Operating Procedures 76 (Former BP) Service Station No. 11117 Page 6 of 6 Updated 05/31/2011

amount will be based on Department of Toxic Substances Control (DTSC) guidelines, which involves purging three dead space volumes (tubing volume + void space of the sand pack). Assuming a total well and sampling train tubing length of 10 feet and 35% porosity of the well's sand pack, the well will be purged approximately 1.4 liters (1,400 ml). Assuming a sustained flow rate of 150ml/min, a purging time of 9 minutes and 20 seconds should be anticipated. Total purge times may be adjusted based on actual flow rates observed in the field.

- 4. After purging activities are complete, Antea Group will construct a sampling shroud and place it over the well and wellhead valve. During sample collection, Antea Group field staff will continually utilize laboratory-grade helium as a leak check compound to evaluate the integrity of the system. Prior to vapor sample collection, the vapor sampling manifold where it exits the well will be enclosed in a vapor containment shroud that will be filled with a known concentration of helium in order to provide an accurate leak test. The shroud will be sealed with a bentonite slurry or appropriate substitute, and a helium detector will be used to verify the percent saturation within the shroud is achieved and maintained throughout the sampling process. It is recommended that a predetermined concentration of 10 to 30 percent by volume of helium be added to the shroud, and that concentration must then be maintained for the duration of sampling activities. If the percent helium cannot maintained at the desired concentration, all fittings, joints, and seals will be checked and helium reapplied until the concentration is maintained at a steady percent. Laboratory analytical results for the leak check compound will be used to determine the air-tightness of the sampling system.
- 5. Upon completion of shroud construction, the sample Summa canister will be opened and sample collected. Once the sample Summa canister is filled to -5 inches mercury (in Hg), the canister will be closed. All general sampling information, purge times, sample times, and PID readings will be recorded on field sampling forms.
- 6. After sampling, the Swagelok wellhead valve will be returned to the closed position. Collected samples will be given unique sample names and transported under chain of custody protocol to a California-certified analytical laboratory. Analyzed compounds will include the constituents of concern and the leak check compound used during sampling.