Ultramar

Ultramar, Inc. P.O. Box 466 525 W. Third Street Hanford, CA 93232-0466 (209) 582-0241 Telecopy:

209-585-5685 Credit 209-583-3330 Administrative 209-583-3302 Information Services 209-583-3358 Accounting

April 5, 1999

Mr. Scott Seery Senior Hazardous Materials Specialist Alameda County Health Care Services Agency, Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Oakland, CA 94502-6577

SUBJECT:

Supplement To Risk-Based Corrective Action

Tier 1 And Tier 2 Analyses Former Beacon Station #574

22315 Redwood Road, Castro Valley, California

Dear Mr. Seery:

Enclosed is a copy of the Supplement To Risk-Based Corrective Action, Tier 1 And Tier 2 Analyses, prepared by El Dorado Environmental Inc., for the above-referenced Ultramar facility. This report has been prepared in response to correspondence prepared by Alameda County Health Care Services Agency dated May 28, 1997, and July 23, 1998.

If you have questions regarding this report, please contact me at (559) 583-3231.

Sincerely,

ULTRAMAR INC.

Joseph A. Aldridge, RG Senior Project Manager

Retail Environmental Services

Enclosure: Supplement To Risk-Based Corrective Action, Tier 1 And Tier 2 Analyses

cc w/encl.: Mr. Rich Hiett, CRWQCB-San Francisco Bay Region

Mr. Paul Wilson, 1238 Stanyan Street, San Francisco, CA 94117

BEACON
#1 Quality and Service

FORMER BEACON STATION #574 22315 REDWOOD ROAD CASTRO VALLEY, CALIFORNIA

March 25, 1999

Prepared For: Ultramar Inc. 525 West Third Street Hanford, California 92320

Prepared By:
El Dorado Environmental, Inc.
2221 Goldorado Trail
El Dorado, California 95623

Dale A. van Dam, R.G.

Dal a. va &

NO. 4632

TABLE OF CONTENTS

1.0	INTRODUCTION							
	1.1	Purpo)se	• • • • • • • • • • • • • • • • • • • •	. 5			
2.0	SITE	ASSES	SMENT	······	. 5			
	2.1	Site L	ocation and	Description	. 5			
	2.2	Regio	nal Geologic	and Hydrogeologic Setting	6			
	2.3	Local	Water Supp	oly	6			
3.0	REST	ULTS O	F HYDROG	EOLOGIC INVESTIGATION	. 7			
	3.1	Under	rground Stor	rage Tank Removal, Previous Investigation				
				mediation	. 7			
	3.2	Instal		ditional Soil Borings, Monitoring Wells,				
			and Vapor	Extraction Wells	. 7			
	3.3	Hydro	ogeologic Tes	sting Results	9			
4.0	SUM	MARY (OF HYDRO	GEOLOGICAL ASSESSMENT	10			
	4.1			troleum Constituents in Soil				
	4.2	Distri	bution of Pet	troleum Constituents in Ground Water	10			
5.0	RBC	A EVAL	UATION		11			
	5.1	Site Classification and Initial Response Action						
	5.2	Tier 1	r 1 Evaluation					
		5.2.1	Tier 1 Loo	k-Up Tables	12			
		5.2.2	Tier 1 Exp	osure Assessment	13			
			5.2.2.1	Potentially Exposed Populations	13			
			5.2.2.2	Potential Exposure Pathways	14			
			5.2.2.3	Site-Specific Input Parameters	15			
		5.2.3	Evaluation	of Tier 1 Screening Results	17			
	5.3	Tier 2	Evaluation	***************************************	19			
		5.3.1 General Approach						
		5.3.2		osure Assessment				
			5.3.2.1	Potentially Exposed Populations	20			
			5.3.2.2	Potential Exposure Pathways				
			5.3.2.3	Exposure Equations and Assumptions				
			5.3.2.4	Calculation of Natural Attenuation Factors				
			5.3.2.5	Tier 2 Assessment Assumptions				
			5.3.2.6	Site-Specific Input Parameters				
	5.4	Tier 2		Screening Results				
6.0	CAL	CULATI	ON OF LIM	AIT OF TOXICITY ASSOCIATED WITH MTBE	28			
7.0	CON	CLUSIO	NS AND RE	ECOMMENDATIONS	28			
8.0	REFI	ERENCE	ES		30			

FIGURES

FIGURE 1	SITE LOCATION MAP
FIGURE 2	SITE MAP
FIGURE 3	GROUND WATER CONTOUR MAP, DECEMBER 12, 1998
FIGURE 4	DISSOLVED BENZENE DISTRIBUTION MAP, AUGUST 31, 1998
	TABLES
TABLE 1	GROUND WATER ELEVATION DATA
TABLE 2	GROUND WATER ANALYTICAL RESULTS
TABLE 3	SUMMARY OF TIER 1 EVALUATION RESULTS
TABLE 4	SUMMARY OF TIER 2 EVALUATION RESULTS

APPENDICES

APPENDIX A	SOIL BORING LOGS
APPENDIX B	SOIL SAMPLE ANALYTICAL RESULTS
APPENDIX C	MONITORING WELL CONSTRUCTION SPECIFICATION DIAGRAMS
APPENDIX D	GEOLOGIC CROSS-SECTIONS
APPENDIX E	ASTM LOOK-UP TABLES FOR SOIL AND GROUND WATER
APPENDIX F	PHYSICAL, CHEMICAL, CONCENTRATION, AND TOXICITY INFORMATION FOR BETX COMPOUNDS
APPENDIX G	TIER 1 EVALUATION INPUTS SUMMARY AND RESULTS TABLES
APPENDIX H	EQUATIONS AND ASSUMPTIONS USED TO DESCRIBE TRANSPORT AND ATTENUATION OF CONSTITUENTS OF CONCERN
APPENDIX I	TIER 2 EVALUATION INPUTS SUMMARY AND RESULTS TABLES
APPENDIX J	SUMMARY CALCULATION SHEET, LIMIT OF TOXICITY ASSOCIATED WITH MTBE

SUPPLEMENT TO RISK-BASED CORRECTIVE ACTION TIER 1 AND TIER 2 ANALYSES FORMER BEACON STATION #574 22315 REDWOOD ROAD, CASTRO VALLEY, CALIFORNIA

1.0 INTRODUCTION

1.1 Purpose

El Dorado Environmental, Inc. (EDE) has been authorized by Ultramar to prepare this supplement to a Risk-Based Corrective Action (RBCA) assessment initially prepared and submitted to the Alameda County Health Care Services Agency (ACHCSA) for review on December 21, 1996. This supplement to the original RBCA has been prepared to address concerns expressed in a letters from Ms. Amy Leech and Ms. Madhulla Logan, dated May 28, 1997 and Mr. Scott Seery, dated July 23, 1998. The subject property is located at 22315 Redwood Road, in Castro Valley, Alameda County, California (Figure 1), and was formerly operated as Beacon station #574. The site is currently operated as a small shopping center, with multiple retail tenants.

Information available to EDE indicates that all underground storage tanks (USTs) were removed from the site on May 5, 1987. Subsequent detection of petroleum hydrocarbon constituents in soil beneath the former USTs prompted a soil and ground water investigation, which included advancing soil borings and installation of ground water monitoring wells. Aquifer pumping and soil vapor extraction tests were also performed at the site. Quarterly ground water monitoring is currently being conducted at the site.

An overview of the RBCA process was described in the December 21, 1996, RBCA; as such, that information is not repeated here. The reader is referred to that document for an overview of the RBCA process.

The purpose of this supplemental RBCA assessment is to evaluate the risk to human health and the environment from exposure to soil and ground water which may contain petroleum constituents left in place at the subject site. This RBCA analysis was completed using the American Society for Testing and Materials (ASTM) standard guidelines ES 1739-95, "Standard Guide for Risk-Based Corrective Action Applied to Petroleum Release Sites" and was facilitated by use of the "Tier 2 RBCA Guidance Manual for Risk-Based Corrective Action" (Conner, et al, 1995). Specifically, this RBCA analysis is a revision of the analysis described in the December 21, 1996 report and the current analysis updates the former RBCA and is intended to address the comments of the Alameda County Health Care Services Agency (Alameda County) as received in correspondence dated May 28, 1997.

2.0 SITE ASSESSMENT

2.1 Site Location and Description

The site is located at the intersection of Redwood Road and Grove Way in Castro Valley, 700 feet

Former Beacon Station #574 22315 Redwood Road, Castro Valley, California Page 6

north of the southwestward-flowing San Lorenzo Creek. An unnamed creek (tributary to San Lorenzo Creek) is located approximately 500 feet north of the site. The elevation of the site is approximately 150 feet above sea level. Castro Valley is situated in the east San Francisco Bay Area, south of the San Leandro Hills and northwest of Walpert Ridge. Ground surface in the area of the site generally slopes toward the southwest. The site is bounded on the north by Grove Way and on the east by Redwood Road. The surrounding area is predominantly commercial properties with residences located wet and southwest of the subject site (Figure 2).

A total of eight monitoring wells have been installed on or near the site by Delta Environmental Consultants, Inc. (Delta) and Acton•Mickelson•van Dam, Inc. (AMV) since 1991. Ultramar leased the site and petroleum product storage and piping equipment and operated a retail gasoline service station at this site from 1981 to 1987. Prior to 1981, the site had reportedly been leased and operated by Shell Oil Company (Shell). Information provided by Ultramar indicates that in 1987, when Ultramar ceased leasing the property, all USTs then in existence were removed. Available data indicate that at least one previous generation of USTs had been installed and used at the site by Shell. The first generation of USTs was removed prior to Ultramar's lease of the property in 1981. It is EDE's understanding that Ultramar is not aware of any specific incidents in which gasoline leaked from the former USTs or was spilled during filling of any of the USTs. The site is currently occupied by commercial businesses in separate suites within a single building (Figure 2).

2.2 Regional Geologic and Hydrogeologic Setting

The site is located in Castro Valley, California, in the eastern San Francisco Bay Area. Ground water has been reported at depths ranging from 13 to 24 feet below grade at the site. The land surface in the Castro Valley area is covered with Quaternary, non-marine alluvium (referred to as "older alluvium" and described as dissected terrace deposits), probably deposited by San Lorenzo Creek and its tributaries (Wagner, et al., 1991). Cretaceous marine sedimentary rocks, assigned to the Panoche Formation, underlie the alluvium in the Castro Valley area, and form the surrounding hills and ridges. The northwest-trending Hayward Fault zone is present west of the site.

2.3 Local Water Supply

Potable water is supplied to the site and other local users in the area by the East Bay Municipal Utilities District (EBMUD). EBMUD imports water derived from surface water sources from the Sierra Nevada foothills; no municipal water wells are located in the area.

Well permit records available through the California State Department of Water Resources indicated the existence of a private water well, reportedly used for "irrigation" purposes at 22447 Charlene Way, approximately 400 feet south-southeast (cross-gradient) of the site. The "Water Well Drillers Report" for this well indicates a total depth of 52 feet below grade with perforated plastic casing

Former Beacon Station #574 22315 Redwood Road, Castro Valley, California Page 7

between 32 and 52 feet below grade. This well was installed in September 1977; neither the current status nor the current use of water produced by this well (if any) is known.

3.0 RESULTS OF HYDROGEOLOGIC INVESTIGATION

A portion of the information contained in this section first appeared in the "Problem Assessment Report/Remedial Action Plan, Former Beacon Station #574," dated November 10, 1994, by AMV.

3.1 Underground Storage Tank Removal and Remediation by Over-Excavation

According to a work plan prepared by Ultramar for the site dated January 12, 1993. all USTs were removed from the site on May 5, 1987. Underground fuel storage at the site had previously consisted of two 5,000-gallon-capacity diesel USTs, a 7,000-gallon-capacity gasoline UST, and one 8,000-gallon-capacity gasoline UST. In addition, a 500-gallon-capacity waste oil UST was present at the site. Records made available by Ultramar indicate that these tanks were originally installed and owned by Shell. These tanks replaced a set of three USTs that were removed by Shell sometime prior to the end of 1981, when Ultramar assumed the lease on the property. The results of soil samples collected at the time of UST removal in 1981 indicated the presence of petroleum hydrocarbon constituents in soil underlying the USTs. Over excavation of the UST basin to a depth of approximately 20 feet below grade was performed on May 18, 1987. After over excavation, three of the seven soil samples collected at the limits of the excavation contained total volatile hydrocarbons at concentrations of 125.5, 208.7, and 1,989 parts per million (ppm).

3.2 Installation of Soil Borings and Monitoring Wells

On March 26, 1991, three soil borings were advanced at the site to depths of approximately 30 feet below grade and completes as 4-inch-diameter monitoring wells MW-1, MW-2, and MW-3 (Figure 2). Ground water was encountered in the borings for these wells at approximately 22 feet below grade. Soil borings containing descriptions of soil encountered as the borings were advanced are contained in Appendix A. Soil samples collected as the borings for monitoring wells MW-1 and MW-2 were advanced consisted of gravelly sand to a depth of 6.5 feet below grade, underlain by sandy clay or clayey sand to approximately 22 feet, and sand and silty sand to the total boring depth of 30 feet below grade (Appendix A).

Soil samples collected from the soil borings were submitted for laboratory analysis of benzene, toluene, ethylbenzene, total xylenes (BTEX), total petroleum hydrocarbons as gasoline (TPHg), and total petroleum hydrocarbons as diesel (TPHd). The results are compiled in Appendix B, Table 1. None of the soil samples contained detectable concentrations of TPHd. The soil samples collected from above the water table in the boring for monitoring well MW-2 (near the northwest corner of the first generation of USTs operated by Shell) contained detectable concentrations of TPHg. The

Former Beacon Station #574 22315 Redwood Road, Castro Valley, California Page 8

samples collected from 10 and 15 feet below grade from this boring contained 8.1 and 3,200 ppm TPHg, respectively.

The monitoring wells were installed as described in well construction diagrams contained in Appendix C. Water level measurements made in monitoring wells MW-1, MW-2, and MW-3 on March 26 and April 1, 1991 (Table 1), indicated a direction of ground water flow toward the southwest. The gradient of ground water flow was approximately 0.015 foot per foot. Ground water samples collected from monitoring wells MW-1, MW-2, and MW-3 on April 1, 1991, did not contain detectable concentrations of TPHd. BTEX and TPHg were detected in ground water samples collected from these wells. Benzene concentrations ranged from 41 micrograms per Liter (μ g/L) in a sample from monitoring well MW-3 to 650 μ g/L in the sample collected from monitoring well MW-2 (Table 2).

Based on the results of installation of monitoring wells MW-1, MW-2, and MW-3, Ultramar prepared a work plan for installation of additional monitoring wells ("Work Plan, Subsurface Environmental Investigation at Former Beacon No. 574, 22315 Redwood Road, Castro Valley, California," dated January 11, 1993). The work plan proposed installation of five additional ground water monitoring wells. After approval of Ultramar's work plan by the Alameda County Health Care Services Agency, Environmental Health Services Division (Alameda County), the proposed work plan was executed by AMV on May 13 and 18, 1993. AMV advanced and sampled five soil borings which were then converted to 2-inch-diameter monitoring wells MW-4, MW-5, MW-6, MW-7, and MW-8 (Figure 2).

Soil encountered by AMV in the boring for monitoring well MW-6 included silty clay from the surface to 8.5 feet below grade, silty sand between 8.5 and 14 feet below grade, silty clay beneath the silty sand to a depth of 19.5 feet, sandy silt between 19.5 and 27 feet below grade, and gravelly sand between 27 and 30 feet (the total depth of the boring). Ground water was encountered at about 20 feet below grade in the borings for monitoring wells MW-4 through MW-8. Soil boring logs for monitoring wells MW-4 through MW-8 are contained in Appendix A.

AMV submitted a total of 23 soil samples for laboratory analysis of BTEX and TPHg. None of the soil samples collected from the borings for monitoring wells MW-4 through MW-8 contained detectable concentrations of petroleum constituents (Appendix B, Table 1).

AMV completed monitoring wells MW-4 through MW-8 as described on well construction diagrams contained in Appendix C. AMV measured depth to ground water in each existing monitoring well (MW-1 through MW-8) on May 18, 1993. Depth to ground water ranged from 15.72 to 22.66 feet below the top of the well casings (Table 1). AMV's water level measurements indicated a direction of ground water flow toward the southwest at a gradient of 0.01 foot per foot.

Former Beacon Station #574 22315 Redwood Road, Castro Valley, California Page 9

AMV collected ground water samples for analysis from monitoring wells MW-4 through MW-8 only on May 18, 1993 (monitoring wells MW-1 through MW-3 had been sampled on May 7, 1993) for laboratory analysis of BTEX and TPHg. BTEX constituents were not present at detectable concentrations in ground water samples collected from monitoring wells MW-4 through MW-8 on this date (Table 2). The sample collected from monitoring well MW-6 did contain 170 μ g/L TPHg.

The most recent quarterly monitoring event at the site was conducted on December 12, 1998, by Doulos Environmental and reported by EDE. Depth to ground water on this date ranged from 15.75 (MW-5) to 22.87 (MW-1) feet below grade. (Monitoring wells MW-7 and MW-8 were abandoned during the fall of 1998 as part of a street up-grade on Redwood Road.) The direction of ground water flow was generally toward the southwest (Figure 3), at a gradient of 0.01 foot per foot.

Ground water samples were also collected on December 12, 1998, but only from an abbreviated list of monitoring wells in accordance with an agreement with Alameda County. The most recent monitoring event for which analyses were performed on all wells at the site was conducted on August 31, 1998. Analytical results of ground water samples collected on August 31. 1998, indicate that BTEX constituents were detected in samples collected from monitoring wells MW-1, MW-2, and MW-3. Methyl-tertiary-butyl ether (MTBE) was detected in ground water samples collected from monitoring wells MW-1 through MW-3, MW-6, and MW-7. The inferred distribution of dissolved benzene in ground water on August 31, 1998, is illustrated in Figure 4.

3.3 Hydrogeologic Testing Results

On January 31 and February 1 and 2, 1994, AMV conducted an aquifer test, an air sparging test, and a vapor extraction test using monitoring wells at the site. Starting on January 31, 1994, a 24-hour continuous pumping test was conducted, using monitoring well MW-1 as the pumping well. The pumping rate throughout the test was maintained at approximately 0.25 gallon per minute (gpm). Water levels were recorded in the pumping well and monitoring well MW-2 using an automated data logger. Monitoring well MW-2 is located approximately 55 feet from MW-1. After 24 hours of pumping, a drawdown of approximately 4.2 feet was measured in the pumping well, and approximately 0.11 foot of drawdown was measured in monitoring well MW-2. AMV reported that aquifer test analytical methods indicated a calculated hydraulic conductivity (K) of approximately 0.005 foot per minute (ft/min). AMV inferred that the observed drawdown at monitoring well MW-2 (located northwest and cross gradient of the pumping well), indicated a down gradient capture zone extent of approximately 17 feet, and a cross gradient capture zone width of approximately 110 feet.

The soil vapor extraction test was performed over a 4 hour period using monitoring well MW-1 as the extraction well. Pumping of ground water from monitoring wells MW-1 was continued during the soil vapor extraction test to maximize the open screened area in this well during the vapor extraction test. AMV reported that the airflow rate during the test was approximately 43.6 standard

Former Beacon Station #574 22315 Redwood Road, Castro Valley, California Page 10

cubic feet per minute (scfm). Throughout the vapor extraction test, AMV measured a vacuum influence of about 0.35 inch of water column at monitoring well MW-2, indicating a zone of vacuum influence around monitoring well MW-1 with a radius of at least 55 feet. Air samples collected during the vapor extraction test by AMV contained 66 ppm benzene and 7,800 ppm TPHg at the start of the test and 42 ppm benzene and 4,500 ppm TPHg at the end of the test. Based on the analytical and air flow rate data, AMV calculated and initial extraction rate to TPHg of 67.7 pounds per day (lbs/day). AMV's calculated initial extraction rate for benzene was 0.57 lbs/day.

AMV conducted an 8-hour sparge test by injecting air through a temporary sparge point installed approximately 15 feet from monitoring well MW-1. Air was injected at a rate tanging from 7.0 to 7.7 scfm. Dissolved oxygen, carbon dioxide (CO₂), and TPHg concentrations in water and air from monitoring well MW-2 were monitored in the field and with samples collected for laboratory analysis during the test. Dissolved oxygen content in water samples collected from monitoring well MW-2 increased from 2.6 percent (sample collected before sparging began) to 6.5 percent (sample collected at the end of the sparge test). AMV inferred that these measurements indicated that a sparge rate averaging 7.4 scfm at monitoring well MW-1 had an influence at least 15 feet away at monitoring well MW-2.

4.0 SUMMARY OF HYDROGEOLOGIC ASSESSMENT

4.1 Distribution of Petroleum Constituents in Soil

Soil samples collected from the soil borings for monitoring wells MW-4, MW-5, MW-6, MW-7, and MW-8 did not contain detectable concentrations of petroleum constituents. Soil samples collected from the borings for monitoring wells MW-1 and MW-3 at 20 feet below grade contained detectable concentrations of petroleum constituents; however, these samples were collected within the zone of water table fluctuation and probably reflect the presence of these constituents in ground water rather than the presence of these constituents in the vadose zone above ground water. Only the samples collected from above the water table in the boring for monitoring wells MW-2, located near or possibly adjacent to the tank basin of the first generation tanks operated by Shell, contained detectable concentrations of TPHg. Soil sample analytical results (Appendix B) and the results of a vapor extraction test performed on monitoring well MW-1 indicate that only soil in the vicinity of the former USTs contains petroleum constituents.

AMV constructed two soil cross-sections to illustrate the inferred distribution of petroleum constituents in soil underlying the site. The cross-sections and a location map are contained in Appendix D.

Former Beacon Station #574 22315 Redwood Road, Castro Valley, California Page 11

4.2 Distribution of Petroleum Constituents in Ground Water

The direction of ground water flow beneath the site has been consistently toward the southwest. The ground water gradient has typically been 0.01 foot per foot.

The distribution of petroleum constituents in ground water is defined up gradient, down gradient, and cross gradient of the site. Ground water samples collected from monitoring wells MW-8 (up gradient), MW-5 (down gradient), and MW-4 (cross gradient) have historically not contained detectable concentrations of petroleum constituents.

Ground water samples collected from monitoring well MW-1, MW-2, and MW-3 have consistently contained detectable concentrations of petroleum constituents. Benzene concentrations have been, on average, highest in ground water samples collected from monitoring well MW-2, ranging from 1,500 to 14,000 μ g/L (the maximum benzene concentration in ground water (15.000 μ g/L) was detected in a sample collected from monitoring well MW-1 on March 19, 1998, after an anomalously wet winter had resulted in the highest ground water levels ever measured at the site). The most recent benzene distribution map (Figure 4) indicates ground water containing dissolved petroleum constituents is limited to the area of the former USTs, with some dispersion toward the north (monitoring well MW-3). The nearest monitoring wells at off-site locations do not contain dissolved benzene.

5.0 RBCA EVALUATION

5.1 Site Classification and Initial Response Action

As site information is gathered and evaluated, ASTM RBCA guidance recommends classifying the site based on the urgency for response. The four possible site categories include: immediate, short-term, long-term, or no demonstrable threat to human health, safety, or sensitive environmental receptors. Once a site is classified, ASTM RBCA recommends appropriate initial response actions corresponding to each classification category.

As described in the preceding section, initial response at the site has been limited to removal of the USTs and product piping and excavation of impacted soils in the area of the former UST basin. Current site conditions indicate that the site does not pose an immediate or short-term threat to receptors. Available records indicate that the nearest water well in the vicinity of the site is located approximately 400 feet south-southeast (cross-gradient) of the subject site. Since ground water beneath the site has been impacted, the site would be classified under the ASTM RBCA scheme as potentially representing a long-term threat. Therefore, the potential for a long-term threat from the site is evaluated in this tiered approach and the appropriate response is recommended in Section 6.0 of this report.

Former Beacon Station #574 22315 Redwood Road, Castro Valley, California Page 12

5.2 Tier 1 Evaluation

This section of the report presents the results of a Tier 1 screening. The first subsection introduces the Tier 1 Look-Up Tables and discusses their components and their development. The second subsection presents the exposure assessment which helps identify appropriate populations and pathways for consideration in screening. The last subsection discusses the Tier 1 screening results.

5.2.1 Tier 1 Look-Up Tables

The RBSL Look-Up Tables, as developed by ASTM, were used for the initial screening. The Look-Up Tables are compilations of media-specific chemical concentrations based on potential exposure pathways and acceptable risk levels. The Look-Up Tables containing RBSLs for chemicals of concern in soil and ground water are contained in Appendix E. Appendix F contains information regarding the potential chemicals of concern included in the Look-Up Tables. The information in Appendix F includes physical, chemical, and toxicity information, and fate and transport characteristics that subsequently influence the likelihood of exposure pathways becoming complete. Exposure pathways are discussed in detail in Section 5.2.2.

RBSLs are determined by combining target risk levels with toxicity values and standard default values for specific exposure scenarios. As recommended by ASTM, the information used to develop RBSLs was verified as current with accepted USEPA methodology prior to using the published Tier 1 Look-Up Tables. Exposure frequency and duration variables used in the calculations are considered standard default values and represent the reasonable maximum exposure (RME) expected to occur under both current and future land-use conditions. RME values are considered plausible estimates of the individual exposure for persons at the upper, or high, end of an exposure distribution. The high end of the distribution means above the 90 percentile of the population distribution, but not higher than the individual in the population who has the highest exposure.

RBSLs for some of the exposure pathways were calculated using attenuation factors. Attenuation factors adjust for reduction in chemical concentrations with distance and time due to processes such as diffusion, dispersion, adsorption, degradation, and other natural processes. The attenuation factors used by ASTM to calculate RBSLs were developed using the Johnson and Ettinger (1991) fate and transport equation.

Tier 1 target risk levels are numeric values that are determined using conservative assumptions in order to be protective of human health. Target risk levels are established for both carcinogens and non-carcinogens. For non-carcinogens, the target risk level is set at one (refer to Appendix F). For carcinogens, USEPA states that to be protective of human health, exposure should be limited so as to result in an individual upper bound excess lifetime carcinogenic risk level of 1 in 10,000 or less (USEPA, 1989). USEPA has set the target risk level range for carcinogens between 1 in 10,000 to

Former Beacon Station #574 22315 Redwood Road, Castro Valley, California Page 13

1 in 1,000,000. The mid-range, 1 in 100,000, is a commonly accepted remediation goal for a commercial or industrial setting. For the purposes of this evaluation, the risk level used in this Tier 1 evaluation for commercial exposure to carcinogens has been set at 1 in 100,000; for evaluating any potential residential exposure to carcinogens, the conservative target risk of 1 in 1,000,000 is used.

The following sections present the evaluation of exposure potential at the site and identify the potential exposure populations and pathways at the source. Section 5.2.3 presents the tables, compares the appropriate RBSLs to the maximum concentrations detected at the site, and evaluates the results.

5.2.2 Tier 1 Exposure Assessment

In the Tier 1 exposure assessment, potentially exposed populations near the source and potential exposure pathways are identified. The site physical description, hydrogeological conditions, land zoning, and water use in the surrounding area are all considered in determining potential exposure at the site. The site is not suitable habitat for wildlife, therefore, the following sections focus on potentially exposed human populations.

5.2.2.1 Potentially Exposed Populations

The site is located in a well-developed area of Castro Valley and is surrounded by commercial and residential properties. A discussion of land use in the area is contained in Section 2.1.

The site is currently used for commercial purposes, with several units in a single building, each with a separate commercial business. Potentially exposed populations at the site under current conditions are business workers who spend most of their time indoors. This receptor group is considered in the Tier 1 evaluation. Customers are not typically evaluated in Tier 1 RBCA assessments due to their sporadic, short-term exposure and because their potential exposures would be less than that estimated for a full-time worker.

There are no known construction or excavation activities ongoing at the site, although these activities could occur in the future. Future activities, such as building erection or underground utilities work, could feasiblely bring a construction worker into contact with hydrocarbon-impacted soil at the site. Although exposure would be of short duration, hypothetical future construction workers are conservatively considered in the Tier 1 evaluation.

Future land use of the property and surrounding area is not expected to change due to the current development in the area and the property's current commercial zoning, therefore, future receptors at the site are not expected to change. Since the zoning of the property is not expected to change from commercial to residential, a future resident on site was not evaluated.

Former Beacon Station #574 22315 Redwood Road, Castro Valley, California Page 14

The nearest offsite buildings to the site are the residences and apartments located to the west/southwest and the commercial building and restaurant located south of the site. Zoning of the off-site properties is assumed to remain unchanged. The general direction of ground water flow has historically been toward the south-southwest. The residents of the houses and the apartment building are considered as the potentially exposed off-site population. Since the property to the south is used commercially, the maximally potentially exposed population in the future for the adjacent property on the south would be a full-time office worker. However, exposure for this hypothetical receptor would be less than that for a full-time office worker on site. Therefore the potential risk to a full-time off-site office worker were not evaluated in this assessment.

Other residences and commercial buildings are located further from the source than the buildings identified above. Because exposure concentrations decrease rapidly with distance, the risk to occupants in a building located further from the site will be lower than the risk to occupants in buildings identified above. Therefore, exposure and risk were not determined for occupants of buildings located at greater distances.

5.2.2.2 Potential Exposure Pathways

An exposure pathway is the course that a chemical takes from the hydrocarbon source to the exposed individual. An exposure pathway consists of the following four elements:

- A source of chemical released to the environment (such as impacted soil or ground water).
- An environmental transport medium (soil, ground water, or air).
- A point of potential human contact with the hydrocarbon-impacted medium (a Tier 1 evaluation considers the point of contact as near the source).
- An exposure route (ingestion, inhalation, or dermal contact).

Each exposure pathway describes a unique mechanism by which a population may be exposed to the hydrocarbons from the site. For an exposure pathway to be complete, all four elements listed above must be present. Pathways that are incomplete, such as when a hydrocarbon compound is released but there is no potential for contact with a receptor, are excluded from this evaluation.

One potential exposure pathway is consumption of ground water pumped from on-site wells. Currently, drinking water for the site and local area is supplied by EBMUD. Although ground water beneath the site has been found to contain detectable concentrations of petroleum constituents, there are no drinking water wells on site. According to records researched at the California State

Former Beacon Station #574 22315 Redwood Road, Castro Valley, California Page 15

Department of Water Resources by others, there is a potential water supply well in existence within approximately 1,000 feet north (up-gradient) of the site. The Tier 1 evaluation is limited to on- or near-site receptors. Since it is unlikely that a water well will ever be drilled on this property with the intent of supplying potable water, this exposure pathway will not be considered complete for the Tier 1 analysis.

All hydrocarbon-impacted soils and ground water are located beneath the surface. Because of the asphalt and concrete surface coverings, current direct human exposure such as through ingestion or dermal contact to hydrocarbon-containing media is not likely. Although no future construction activities are planned for the property, should future construction or excavation take place, direct exposure to hydrocarbon-impacted soil and ground water may occur. Construction-worker exposure to hydrocarbon-impacted soil is conservatively evaluated in the Tier 1 analysis.

Although vapors containing petroleum constituents have never been reported by occupants of the on-site buildings, it is possible that vapors from hydrocarbon-containing soil and ground water could migrate through the soil to the surface or into buildings. The most likely receptor point is inside the on-site building, since potential office workers at the commercial building are indoors full-time.

Historical ground water monitoring indicates that BTEX constituents have not been detected in the off-site monitoring wells. Although available data indicate the possibility is unlikely, should hydrocarbon-impacted ground water migrate from the site to beneath a down gradient building, it is theoretically possible that vapor intrusion into an off-site structure may occur. However, off-site receptors are not considered as part of the Tier 1 evaluation. Therefore, this pathway is ignored for the Tier 1 evaluation.

In summary, based on current site conditions and anticipated future conditions as described, potentially completed exposure pathways for the purpose of a Tier 1 evaluation include:

- Vapor transport from hydrocarbon-impacted soil and ground water through the soil into indoor air and inhalation by on-site workers.
- Direct exposure by ingestion, inhalation, and dermal contact as a result of future onsite excavation into hydrocarbon-impacted soil or ground water (construction exposure).

5.2.2.3 Site Specific Input Parameters

All parameters regarding RBCA chemical exposure (i.e., averaging times, body weight, exposure duration, ingestion rates, etc.) were default values as provided by Connor, et al., 1995. A site specific value for the contaminated soil area was calculated by measuring the inferred extent of soil

Former Beacon Station #574 22315 Redwood Road, Castro Valley, California Page 16

containing detectable concentrations of petroleum constituents as depicted on soil cross-sections contained in Appendix D; the area used was 9,600 square feet.

To calculate the length of affected soil parallel to the prevailing wind direction, it was assumed that the prevailing wind was westerly-northwesterly. The distance across all soil areas containing detectable petroleum hydrocarbons was then measured; the distance used was 80 feet.

To calculate the length of affected soil parallel to the direction of ground water flow, a southwest flow direction was assumed. The distance across all soil areas containing detectable petroleum hydrocarbons was then measured; the distance used was 120 feet.

The thickness of affected surface soil was assumed to be 5 feet; any soil sample collected within 5 feet of the surface was assumed to represent "surface soil."

The ground water infiltration rate was calculated by multiplying the average rainfall for Castro Valley (approximately 25 inches annually) by 10%. Since the site is almost fully capped by either asphalt or concrete, it is likely that at least 90% of all precipitation runs over the surface and off the site.

The value used for saturated hydraulic conductivity was taken from an aquifer pumping test conducted on the site (see Section 3.3). This value was 7.2 feet per day. The ground water gradient (0.01 foot per foot) was calculated using measurements made on August 31, 1998.

The effective porosity of the water-bearing unit was approximated by noting the soil types encountered in soil borings for monitoring wells MW-1 through MW-8 (sand, silty sand, silty clay, clayey sand, sandy silt, and clayey silt) at the water table, then consulting a textbook for correlative porosity values. The value used (20%) appeared in Blatt, Middleton, and Murray (1980).

Because no site-specific data regarding the total organic carbon content of soils was available, the default value of 0.001 (unit-less) as provided by Connor, et. al., 1995, was used.

The depth to ground water was calculated for the site by averaging the depth to ground water in all eight wells over the last 4 quarters of ground water monitoring. The depth used for this parameter was 19.63 feet. Based on information contained in Conner, et. al., 1995, the zone of capillary action was considered to be 1.6% of the depth to ground water (at this site, approximately 0.31 feet).

Although the pH of soil beneath the site has not been measured, the pH of ground water samples recovered during quarterly monitoring events has averaged 6.00. This value was used for soil and ground water pH after assuming that soil and ground water would be in equilibrium with regards to pH.

Former Beacon Station #574 22315 Redwood Road, Castro Valley, California Page 17

Volumetric water content within the saturated zone was calculated as $^{9}/_{10}$ of total porosity using information contained in Connor, et. al., 1995. In the vadose zone, a volumetric water content value of approximately $\frac{1}{2}$ was used in accordance with values from Connor, et. al., 1995. The balance of the pore space in both cases was assumed to be filled with air.

Representative chemical concentrations in hydrocarbon-impacted ground water samples were determined by selecting the mean concentration values for benzene, ethylbenzene, toluene, total xylenes, methyl-tertiary-butyl ether detected in ground water samples collected from monitoring wells MW-1 through MW-7 between December 1997 and August 1998 (the last 4 quarterly monitoring events). These monitoring wells were selected because petroleum constituents (specifically MTBE) have consistently been detected in ground water samples collected from these wells between December 1997 and August 1998; ground water samples collected from monitoring well MW-8 have never contained detectable concentrations of petroleum constituents. Representative concentrations of BETX in surficial soils (less than 5 feet below grade) were determined by calculating the 95% upper confidence limit concentration values in soil samples collected from within 5 feet of the surface in soil borings for monitoring wells MW-4 through MW-8 (no shallow soil samples were collected from soil borings MW-1 through MW-3).

Representative concentrations of BETX in subsurface soil were determined by calculating the 95% upper confidence limit concentration values in soil samples collected from around the UST basin in May 1987 and from soil borings for monitoring wells MW-1, MW-2, and MW-3 (these are the only soil borings in which BETX constituents were detected in soil samples). The benzene concentration in UST basin soil samples was calculated (as suggested in the Alameda County letter dated May 28, 1997) by multiplying the TPHg values by 3.2%.

5.2.3 Evaluation of Tier 1 Screening Results

This section of the report compares representative constituents of concern concentrations detected in on-site soil and ground water samples to media specific RBSLs and evaluates the results. The Tier 1 analysis was facilitated using software developed by Conner, et. al., 1995. Representative chemical concentrations of hydrocarbon-impacted surface (collected at depths of 5 or less feet below grade) and sub-surface soil samples (collected at depths of 5 or more feet below grade) were determined by calculating the upper confidence limit (UCL) benzene, ethylbenzene, toluene, and xylenes concentrations detected in selected samples between 1987 and 1993 at the site. If soil samples did not contain detectable concentrations of petroleum constituents, the value used for benzene, toluene, ethylbenzene, and total xylenes in soil samples was 0.0025 mg/Kg (one half of the method detection limit). For subsurface soil samples, the UCL values were 0.030, 0.052, 0.047, and 0.15 mg/Kg for benzene, toluene, ethylbenzene, and total xylenes, respectively. None of the soil samples collected were analyzed for MTBE. Appendix G contains tables which compare the representative concentrations of COCs detected at the site to relevant Tier 1 RBSLs based on

Former Beacon Station #574 22315 Redwood Road, Castro Valley, California Page 18

potentially completed exposure pathways.

The two completed, Tier 1 exposure pathways for this site are volatilization from hydrocarbon-impacted soil and ground water through soil into indoor air and inhalation by on-site commercial workers and direct exposure to surface soils by temporary, on-site construction workers. Of these two completed pathways, the Tier 1 analysis indicates that volatilization to indoor air and inhalation by on-site commercial workers is the most critical path (i.e., the path with the lowest RBSLs). The Tier 1 analysis calculated an RBSL for benzene in subsurface soil of 0.035 mg/Kg. When corrected for California's more restrictive MCL by multiplying by 0.29, this value for the allowable concentration of benzene in surface soil becomes 0.010 mg/Kg. This value was exceeded by the UCL subsurface soil benzene concentration of 8.6 mg/Kg. The Tier 1 risk assessment indicates that RBSLs for ethylbenzene and total xylenes in subsurface soils would not be exceeded even with concentrations of these constituents equal to residual saturation values. The RBSLs for MTBE and toluene in subsurface soil were calculated to be 310 mg/Kg and 42 mg/Kg, respectively. None of the soil samples collected at this site have been analyzed for MTBE. The calculated RBSL for toluene was not exceeded by the UCL value for toluene in subsurface soils of 1.2 mg/Kg.

The calculated RBSL for benzene in surface soil (which may volatilize to indoor air) beneath the site was 71 mg/Kg. When corrected for California's more restrictive MCL by multiplying by 0.29, this value for the allowable concentration of benzene in sub-surface soil becomes 20.59 mg/Kg. This value was not exceeded by the UCL surface soil benzene concentration of 0.0025 mg/Kg (none of the surface soil samples collected were reported to contain detectable concentrations of benzene). The Tier 1 risk assessment indicates that RBSLs for toluene, ethylbenzene, and total xylenes in surface soils would not be exceeded even with concentrations of these constituents equal to residual saturation values. The RBSL calculated for MTBE was 240 mg/Kg; none of the surface soil samples collected at the site were analyzed for MTBE.

The calculated RBSL for benzene in ground water (which may volatilize to indoor air) beneath the site was 0.022 mg/Kg. When corrected for California's more restrictive MCL by multiplying by 0.29, this value for the allowable concentration of benzene in ground water becomes 0.006 mg/Kg. This value was exceeded by the mean ground water benzene concentration of 0.011 mg/Kg. The Tier 1 risk assessment indicates that RBSLs for ethylbenzene and total xylenes in ground water would not be exceeded even with concentrations of these constituents equal to solubility limits. The RBSLs calculated for toluene and MTBE are 260 and 6,700 mg/Kg, respectively. The RBSLs for toluene and MTBE are not exceeded by the mean concentration values for these compounds in ground water of 0.0058 and 0.059 mg/Kg, respectively.

Results of the Tier 1 analysis are summarized in Table 3.

Former Beacon Station #574 22315 Redwood Road, Castro Valley, California Page 19

TABLE 3 SUMMARY OF TIER 1 EVALUATION RESULTS FORMER BEACON STATION #574 22315 REDWOOD ROAD, CASTRO VALLEY, CALIFORNIA

Completed Exposure Pathway		RBSL Benzene Concentrations (California) (mg/Kg)	Site Benzene Concentrations (mg/Kg)	RBSL Exceeded?	
Volatilization to Indoor Air and	from Sub- Surface Soils	0.010	8.61	Yes	
Inhalation by On-Site Commercial	from Surface Soils	20.59	0.0025^{1}	No	
Workers	from Ground Water	0.006	0.0112	Yes	
Ingestion, Inhalation, and Dermal Contact by Temporary Construction Workers		20.59	0.00251	No	

UCL Concentration Values Notes: 1

Mean Concentration Values

Because RBSLs for benzene in sub-surface soils were exceeded by UCL concentration values of samples actually collected from the site, RBCA Tier 2 analysis is necessary. The only completed pathway for which RBSL values were exceeded is volatilization from sub-surface soil to indoor air and subsequent inhalation by on-site commercial workers. To conservatively assess the risk to other potential off-site receptors, a Tier 2 analysis was also performed for other pathways.

5.3 Tier 2 Evaluation

This section of the report presents the Tier 2 evaluation for determining site-specific target levels (SSTLs) at the site. A Tier 2 evaluation may include a recommendation for alternative compliance points, use of site-specific data in the RBCA Tier 1 fate and transport algorithms. or use of sitespecific data in other predictive models.

5.3.1 General Approach

Predictive models are used to account for chemical attenuation with time and distance from the

Former Beacon Station #574 22315 Redwood Road, Castro Valley, California Page 20

source and are usually characterized by the following:

- The models are relatively simple and are often algebraic or semi-analytical expressions.
- Input to the model is limited to practicably attainable site-specific data, or easily estimated quantities, such as soil bulk density and total porosity.
- The models are based on descriptions of relevant physical/chemical phenomena. These simple models may neglect certain mechanisms; however, this generally results in lower, more conservative SSTLs (for example, assuming constant concentrations in the source area).
- The models involve some degree of uncertainty, but are based on assumptions that tend to over-estimate the predicted exposure risk and, therefore, are conservative and protective of human health and the environment.

The approach taken and the specific equations applied in this Tier 2 evaluation are described in Conner, et. al, 1995. The attenuation factors calculated for vapor and ground water transport by the model equations are applied in the SSTL calculations to account for dispersion, adsorption, and natural attenuation. The procedures used to develop attenuation factors are described in Section 5.3.2.4.

5.3.2 Tier 2 Exposure Assessment

The Tier 2 exposure assessment reviews potentially exposed populations and potential exposure pathways both on and off site, as described in the Tier 1 exposure assessment.

5.3.2.1 Potentially Exposed Populations

Potentially exposed on-site populations evaluated in this Tier 2 are the full-time indoor, on-site office worker and the construction worker, whose exposure would be temporary. As discussed in Section 5.2.2.1, customers are not considered in either a Tier 1 or Tier 2 evaluation because their potential for exposure is short-term and sporadic. Future on-site residential receptor populations are not evaluated in this Tier 2 analysis because the current commercial development of the site and its land use zoning make it unlikely that land use will revert to residential in the future.

As described in Section 5.2.2.1, the nearest, down-gradient, potentially exposed off-site receptors for impacted ground water are residents of a house located toward the southwest, approximately 120 feet from the on-site source of petroleum constituents. Ground water flows toward the south-

Former Beacon Station #574 22315 Redwood Road, Castro Valley, California Page 21

southwest beneath the site, but there is no known use of ground water on the adjacent properties and the nearest permitted water well is located 400 feet cross-gradient from the subject site. In addition, ground water samples collected from peripheral monitoring wells MW-4, MW-5, MW-6, MW-7, and MW-8 (located approximately 130, 120, 60, 45, and 180 feet from the on-site source of petroleum constituents, respectively) have never contained detectable concentrations of BETX. MTBE has been detected in ground water samples collected from monitoring wells MW-5, MW-6, and MW-7.

The predominant wind direction at the site is assumed to be from the west-northwest. Therefore the nearest potential receptors for airborne contaminants are located across Redwood Road, at least 300 feet from the source of petroleum constituents on-site. For the purposes of completing a conservative RBCA analysis, the nearest potential receptors for airborne contaminants were assumed to be full time residents. If this assessment demonstrates that there is no risk from airborne contaminants to the nearest potential receptors, then it is reasonable to assume that there would be no risk to occupants of more distant properties.

5.3.2.2 Potential Exposure Pathways

The potential exposure pathways for *on-site* indoor workers are the same as those described in Section 5.2.2.2 for the Tier 1 analysis, as follows: Since the site is paved and underlying ground water is not consumed on- or adjacent to the site, there are only two realistic exposure pathways - vapor transport from hydrocarbon-impacted soil and ground water through the soil into indoor air and inhalation by on-site workers and direct exposure by ingestion, inhalation, and dermal contact as a result of future on-site excavation into hydrocarbon-impacted soil or ground water (construction exposure).

Potentially completed exposure pathways for the nearest *off-site* commercial receptor populations include the following:

- Vapor migration from hydrocarbon-impacted soil at the site to outdoor air and subsequent inhalation by off-site commercial workers and/or residents.
- As noted, a permitted water well is located approximately 400 feet cross gradient from the subject site, with a permitted use as an "irrigation" well. Based on the availability, convenience, and cost of potable water supplied by EBMUD in the area, it is thought generally unlikely that homeowners or commercial property owners would install additional private water wells for potable water use in the future. However, to conservatively evaluate risks of exposure, this exposure pathway was considered complete for a commercial water well located 400 feet from the site.

Former Beacon Station #574 22315 Redwood Road, Castro Valley, California Page 22

5.3.2.3 Exposure Equations and Assumptions

Equations used to develop Tier 2 SSTLs for those pathways identified as potentially complete are contained in Appendix H. The first step in the Tier 2 evaluation is to calculate target values of COCs in air by using risk equations that include exposure variables, toxicity values, and target risk goals. Air target values are then divided by soil and ground water attenuation factors to determine target levels in soil and ground water. Definitions of the terms used in equations are also contained in Appendix H.

Full time indoor workers are assumed to breath 20 cubic meters of air per day (m⁵ day) (USEPA, 1990) and weigh an average of 70 kilograms (Kg) (OSWER, 1991). Workers at the site are assumed to work 8 hours each day for 250 days each year (OSWER, 1991). Based on information provided in Conner, et al (1995), a mean exposure duration of 4 years is the Most Likely Exposure (MLE) for commercial workers.

Averaging time (AT) is the time period over which the dose is averaged. For carcinogens, the biological response is described in terms of lifetime probabilities, and the averaging time is a 70-year lifetime (LT) (OSWER, 1991). For chronic exposure to non-carcinogens, the AT is the time period over which the exposure occurs (equal to the exposure duration).

Chemical-specific information for BETX and MTBE, such as toxicity values, site-specific concentrations, and accepted risk levels, are presented in Appendix I. Since it is not practical to evaluate every compound present in a petroleum product to assess risk from a release, indicator chemicals are usually selected to characterize risk. Selection is dependent on consideration of exposure routes, concentrations, mobilities, and toxicological properties. BETX constituents and MTBE were selected for the Tier 2 analysis based on their mobility, volatility, and toxicity characteristics.

5.3.2.4 Calculation of Natural Attenuation Factors

Equations and assumptions used to calculate natural attenuation factors are documented in Appendix H. These formulas and associated assumptions are from Conner, et al, 1995. The effect of each assumption on the numerical clean up standard is also documented in Appendix H.

5.3.2.5 Tier 2 Assessment Assumptions

For the purposes of vapor transport modeling, the soil vapor concentration at the source is assumed to be in equilibrium with the impacted soil. Values used for total organic carbon and chemical-specific properties are default values provided by Conner, et al, 1995. These data are documented in a summary of Tier 2 inputs contained in Appendix I.

Former Beacon Station #574 22315 Redwood Road, Castro Valley, California Page 23

Vapor transport into buildings is dependent upon the chemical flow into the building, the volume of the building, and the number of building air exchanges per day. Building volume to area ratios assumed for model input are those default values provided by Conner, et al, 1995.

Ground water transport of COCs is determined by such factors as the conductivity (K) of the soil and rock media, the natural geochemistry of the ground water and aquifer, the physical/chemical properties of the COCs, the length of ground water pathways through saturated and unsaturated zones, the rate of ground water flow, and aquifer heterogeneity. The model used for ground water transport is described in Appendix H. Assumptions used to model ground water transport include:

- Dispersion is three-dimensional.
- The source concentration is constant over time (an infinite mass or continual leak). Since the leaking USTs have been removed from this site and replaced by dual-wall USTs and the mass of impacted soil is finite, this assumption results in a conservatively low target COC level.
- Default estimates of the organic carbon coefficient and the ground water mixing, as provided in Conner, et al, were used.
- Bio-attenuation is assumed to operate along the ground water transport path based on the general availability of dissolved oxygen in natural aquifers.

5.3.2.6 Site Specific Input Parameters

All parameters regarding RBCA chemical exposure (i.e., averaging times, body weight, exposure duration, ingestion rates, etc.) were default values as provided by Connor, et al.. 1995. A site specific value for the contaminated soil area was calculated by measuring the inferred extent of soil containing detectable concentrations of petroleum constituents as depicted on soil cross sections contained in Appendix D; the area used was 9,600 square feet.

To calculate the length of affected soil parallel to the prevailing wind direction, it was assumed that the prevailing wind was westerly-northwesterly. The distance across all soil areas containing detectable petroleum hydrocarbons was then measured; the distance used was 120 feet.

The depth of the ground water source zone was assumed to be the full thickness of the unsaturated zone, or 19.63 feet.

To calculate the length of affected soil parallel to the direction of ground water flow, a southwest flow direction was assumed. The distance across all soil areas containing detectable petroleum

Former Beacon Station #574 22315 Redwood Road, Castro Valley, California Page 24

hydrocarbons was then measured; the distance used was 120 feet.

The thickness of affected surface soil was assumed to be 5 feet; any soil sample collected within 5 feet of the surface was assumed to represent "surface soil."

The ground water infiltration rate was calculated by multiplying the average rainfall for Castro Valley (approximately 25 inches annually) by 10%. Since the site is almost fully capped by either asphalt or concrete, it is likely that at least 90% of all precipitation runs over the surface and off the site.

The value used for saturated hydraulic conductivity was taken from an aquifer pumping test conducted on an adjacent site (see Section 3.3). This value was 7.2 feet per day. The ground water gradient (0.01 foot per foot) was calculated using measurements made on August 31, 1998.

The effective porosity of the water-bearing unit was approximated by noting the soil types encountered in soil borings for monitoring wells MW-1 through MW-8 (sand, silty sand, silty clay, clayey sand, sandy silt, and clayey silt) at the water table, then consulting a textbook for correlative porosity values. The value used (20%) appeared in Blatt, Middleton, and Murray (1980).

Because no site-specific data regarding the total organic carbon content of soils was available, the default value of 0.001 (unit-less) as provided by Connor, et. al., 1995, was used.

The depth to ground water was calculated for the site by averaging the depth to ground water in all four wells over the last 4 quarters of ground water monitoring. The depth used for this parameter was 19.63 feet. Based on information contained in Conner, et. al., 1995, the zone of capillary action was considered to be 1.6% of the depth to ground water (at this site, approximately 0.31 feet).

Although the pH of soil beneath the site has not been measured, the pH of ground water samples recovered during quarterly monitoring events has averaged 6.00. This value was used for soil and ground water pH after assuming that soil and ground water would be in equilibrium with regards to pH.

Volumetric water content within the saturated zone was calculated as $\frac{9}{10}$ of total porosity using information contained in Connor, et. al., 1995. In the vadose zone, a volumetric water content value of approximately $\frac{1}{3}$ was used in accordance with values from Connor, et. al., 1995. The balance of the pore space in both cases was assumed to be filled with air.

The distance to the nearest ground water receptor (assumed to be an irrigation well) is 400 feet. The distance to the nearest residential air receptor is conservatively assumed to be at least 300 feet (it appears likely that the nearest residence is even farther from the site).

Former Beacon Station #574 22315 Redwood Road, Castro Valley, California Page 25

Representative chemical concentrations in hydrocarbon-impacted ground water samples were determined by selecting the mean concentration values for benzene, ethylbenzene, toluene, total xylenes, and MTBE detected in ground water samples collected from monitoring wells MW-1 through MW-7 between December 1997 and August 1998 (the last 4 quarterly monitoring events). Representative concentrations of BETX in surficial soils (less than 5 feet below grade) were determined by calculating the 95% upper confidence limit concentration values in soil samples collected from within 5 feet of the surface in soil borings for monitoring wells MW-4 through MW-8 (no shallow soil samples were collected from soil borings MW-1 through MW-3).

Representative concentrations of BETX in subsurface soil were determined by calculating the 95% upper confidence limit concentration values in soil samples collected from around the UST basin in May 1987 and from soil borings for monitoring wells MW-1, MW-2, and MW-3 (these are the only soil borings in which BETX constituents were detected in soil samples). The benzene concentration in UST basin soil samples was calculated (as suggested in the Alameda County letter dated May 28, 1997) by multiplying the TPHg values by 3.2%.

5.4 Tier 2 SSTLs and Screening Results

The calculated Tier 2 SSTLs for air, soil, and ground water are compiled in Appendix I. As indicated on the summary sheets in Appendix I, most of the SSTL values calculated exceed chemical saturation limits in soil or are greater than the water solubility of the pure substance in ground water. This indicates that the COCs would not pose risk at any plausible concentration under these exposure conditions.

The two completed, *on-site* exposure pathways for this site are volatilization to indoor air and inhalation by on-site commercial workers and direct exposure to surface soils by temporary on-site construction workers. Of these two completed pathways, the Tier 2 analysis indicates that potential exposure to on-site full-time employees is the most critical path (i.e., the path with the lowest SSTLs). The Tier 2 analysis calculated an SSTL for benzene in sub-surface soil at the site of 0.035 mg/Kg. When corrected for California's more restrictive MCL by multiplying by 0.29, this value for the allowable concentration of benzene in sub-surface soil becomes 0.010 mg/Kg. This value was exceeded by the UCL sub-surface soil benzene concentration of 8.6 mg/Kg. The Tier 2 risk assessment indicates that SSTLs for ethylbenzene and total xylenes in sub-surface soils would not be exceeded even with concentrations of these constituents equal to residual saturation values. The calculated SSTL value for toluene was 42 mg/Kg. This SSTL value was not exceeded by the UCL value for toluene at this site of 1.2 mg/Kg.

The calculated RBSL for benzene in surface soil (which may volatilize to indoor air) beneath the site was 71 mg/Kg. When corrected for California's more restrictive MCL by multiplying by 0.29, this value for the allowable concentration of benzene in sub-surface soil becomes 20.59 mg/Kg. This

Former Beacon Station #574 22315 Redwood Road, Castro Valley, California Page 26

value was not exceeded by the UCL surface soil benzene concentration of 0.0025 mg/Kg (none of the surface soil samples collected were reported to contain detectable concentrations of benzene). The Tier 2 risk assessment indicates that SSTLs for toluene, ethylbenzene, and total xylenes in surface soils would not be exceeded even with concentrations of these constituents equal to residual saturation values. The SSTL calculated for MTBE was 240 mg/Kg; none of the surface soil samples collected at the site were analyzed for MTBE.

Volatilization from ground water to soil vapor and then entry into the on-site office building also poses a potential risk to on-site office workers. The SSTL for this pathway was calculated at 0.022 mg/L, which is corrected to 0.006 mg/L for California's more restrictive benzene standard. This corrected SSTL is exceeded by the mean concentration of benzene in ground water beneath the site of 0.011 mg/L. The mean concentration of other petroleum constituents in ground water did not exceed calculated SSTLs.

The potential routes of *off-site* exposure evaluated as part of the Tier 2 assessment include volatilization from sub-surface soils containing residual petroleum hydrocarbons to outdoor air and inhalation by off-site residents, assumed to be located at least 300 feet from the on-site source of the petroleum constituents. The calculated SSTL for benzene in sub-surface soil beneath the site (which may volatilize to outdoor air and be inhaled by off-site residents) was 20 mg/Kg. When corrected for California's more restrictive MCL by multiplying by 0.29, the value for the allowable concentration of benzene in sub-surface soil becomes 5.80 mg/Kg. This value was exceeded by the UCL sub-surface soil benzene concentration of 8.6 mg/Kg, The Tier 2 risk assessment indicates that SSTLs for ethylbenzene and total xylenes in sub-surface soils would not be exceeded even with concentrations of these constituents equal to residual saturation values. Calculated SSTLs for MTBE and toluene were 310 and 42 mg/Kg, respectively; these values were not exceeded by the UCL subsurface soil MTBE and toluene.

The other completed exposure pathway for off-site receptors was ingestion of ground water containing petroleum constituents. The calculated SSTL for benzene in ground water used for irrigation purposes at a distance of 400 feet from the site is 1,100 mg/L. Corrected for California, this is a concentration of 319 mg/L, which is not exceeded by the mean reported concentration of benzene in ground water samples collected from existing monitoring wells of 0.011 mg/L. Table 4 summarizes the results of the Tier 2 evaluation.

Former Beacon Station #574 22315 Redwood Road, Castro Valley, California Page 27

TABLE 4 SUMMARY OF TIER 2 EVALUATION RESULTS FORMER BEACON STATION #574 22315 REDWOOD ROAD, CASTRO VALLEY, CALIFORNIA

	Completed Exposure l	SSTL Benzene (California) (mg/Kg or mg/L)	Site Benzene Value (mg/Kg or mg/L)	SSTL Exceeded?	
	Volatilization to Indoor Air and Inhalation by On-Site Commercial Workers	from Subsurface Soils	0.010	8.6 ¹	Yes
thways		from Surface Soils	20.59	0.00251	No
On-Site Pathways		from Ground Water	0.064	0.0112	No
On-	Ingestion, Inhalation, ar by Temporary Construc	20.59	0.00251	No	
hways	Volatilization from soil inhalation by off-site co	5.80	8.61	Yes	
Off-Site Pathways	Ingestion of ground wat hydrocarbons from com located off-site 400 feet	319	0.0112	No	

Notes: 1 = UCL Concentration Values 2 = Mean Concentration Values

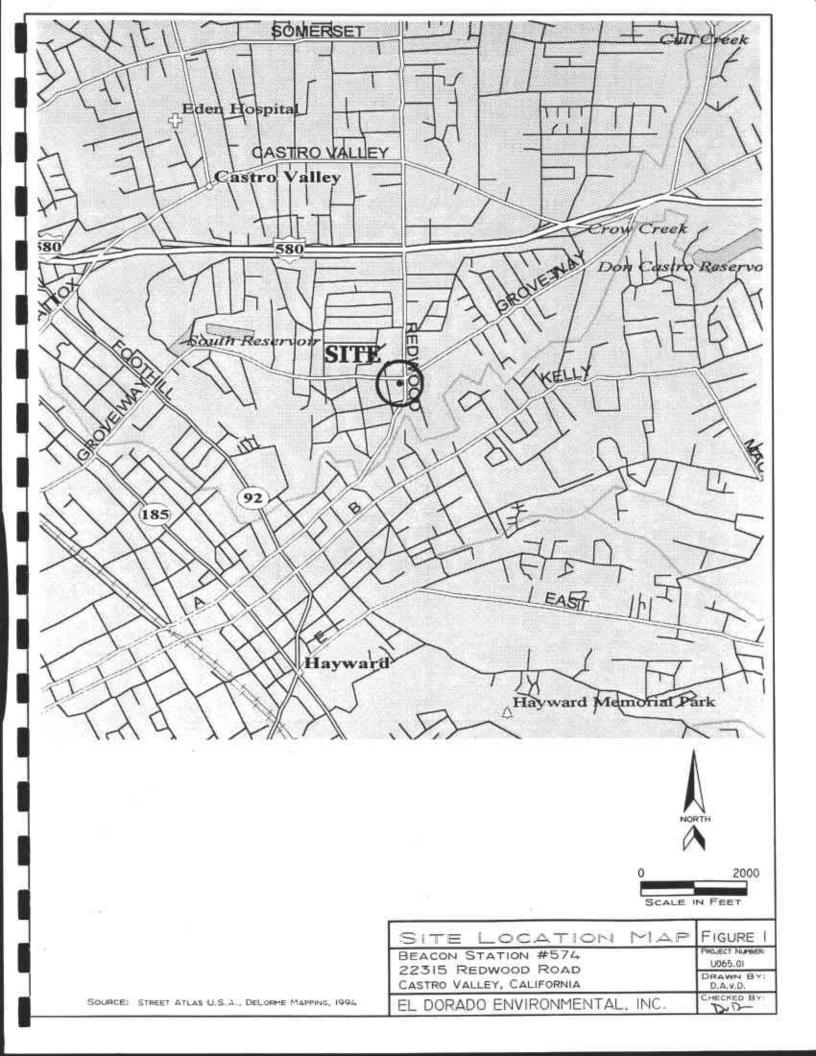
The SSTL for benzene calculated for the pathway consisting of volatilization from soil to outdoor air and inhalation by off-site commercial workers (5.80 mg/Kg) is very near to the UCL value for benzene (8.6 mg/Kg), which is based on soil sample analytical data which was collected in 1991 and 1993. Based on typical reductions in petroleum hydrocarbon constituent concentrations accomplished via biodegradation, it is likely that benzene concentrations in soil are now substantially less than those used to calculate the UCL for benzene in the Tier 2 analysis.

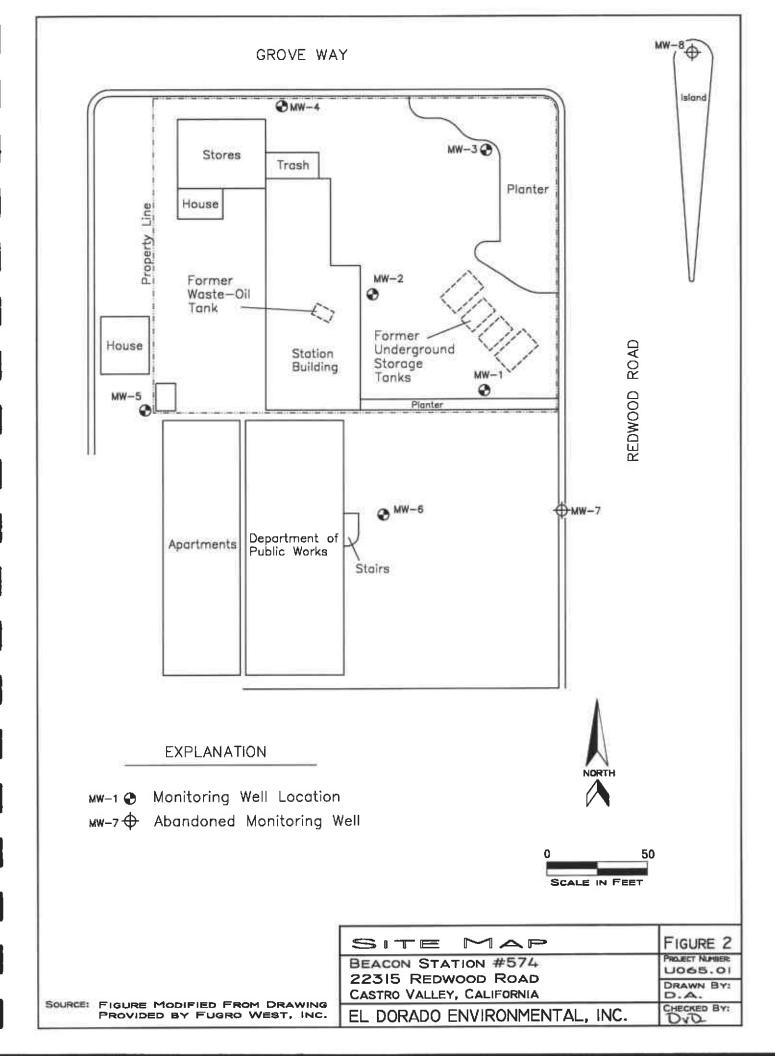
Former Beacon Station #574 22315 Redwood Road, Castro Valley, California Page 28

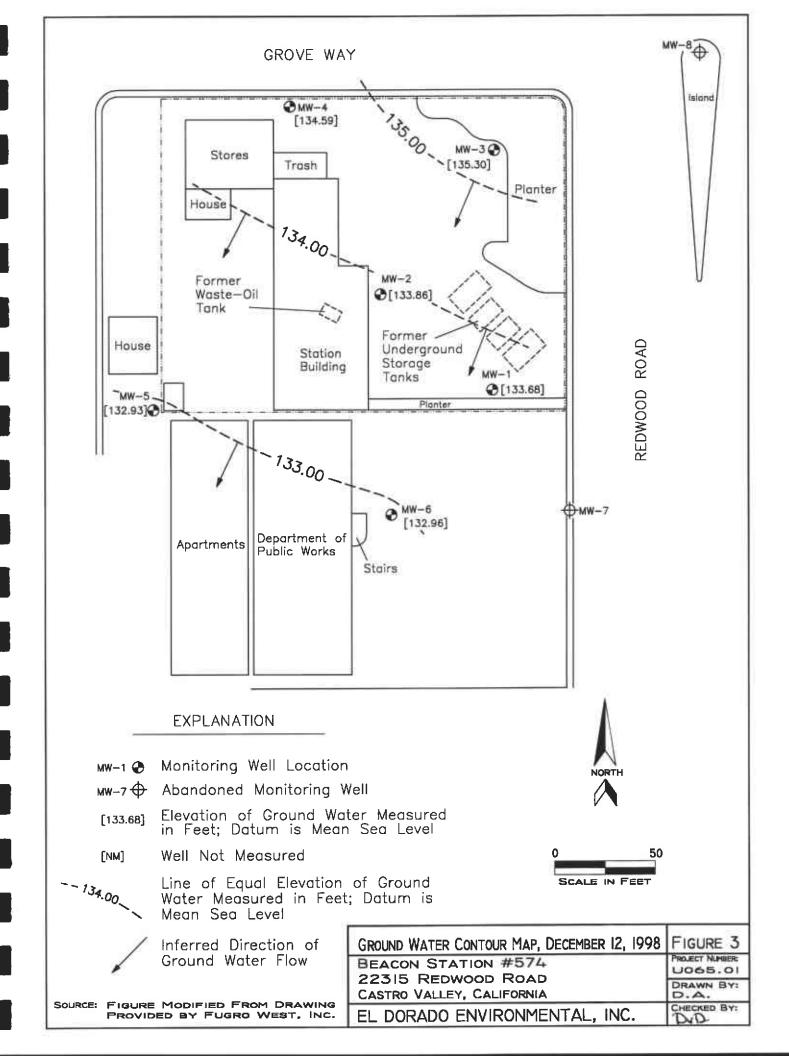
The Tier 2 evaluation indicates that potential health risks from benzene exceeds the 1 in 1,000,000 level (residential exposure) and the 1 in 100,000 level (commercial exposure) for on-site workers and the nearest potential residents.

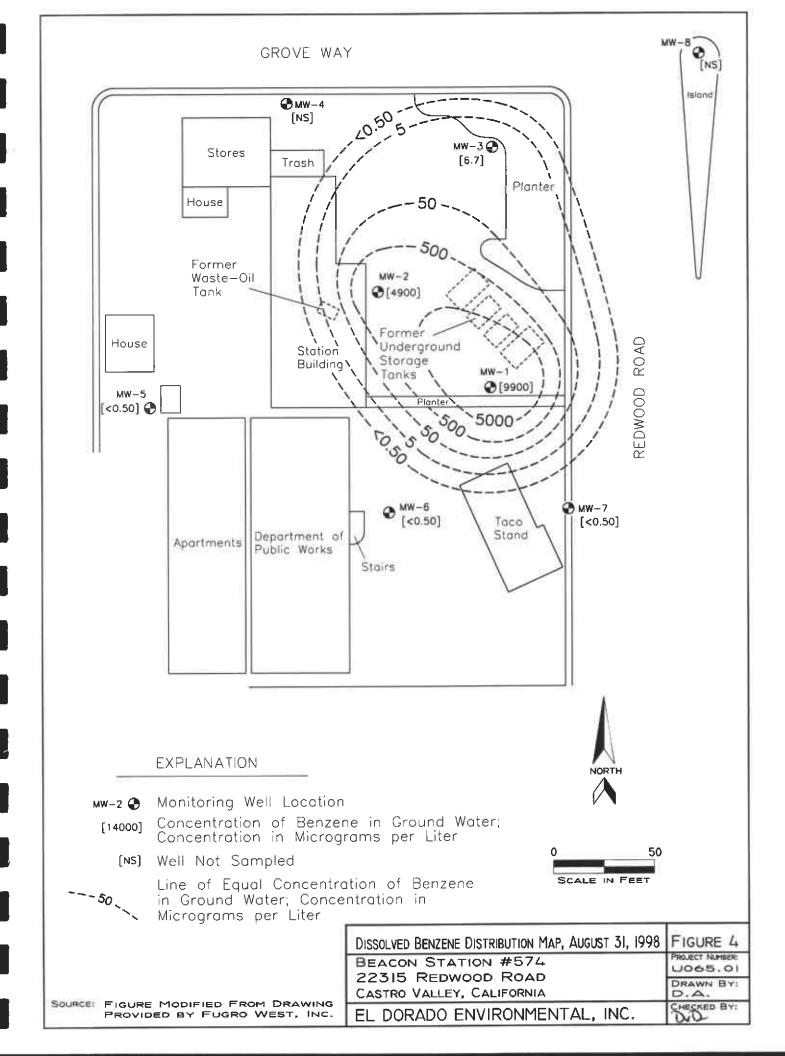
6.0 CALCULATION OF LIMIT OF TOXICITY ASSOCIATED WITH MTBE

The RBCA evaluation software (Conner, et al., 1995) was used to model the limit of ground water potentially containing MTBE at concentrations which would exceed a 1 in 1,000,000 cancer risk. The same input parameters as were used to run the Tier 2 evaluation were used to iteratively calculate the distance at which conditions corresponding to a 1 in 1,000,000 cancer risk attributable to MTBE were met. A distance was guessed, the model run, and if the calculated allowable SSTL concentration exceeded the average of all concentrations of MTBE reported from samples collected in monitoring well MW-6 (the well located furthest down-gradient which contains MTBE), the point was assumed to be too close to MW-6. The distance was adjusted and the SSTL re-calculated. When the calculated SSTL equaled the average MTBE concentration in MW-6 (284 μ g/L), the guessed distance represented the furthest point down-gradient where exposure would constitute an unacceptable risk. This distance was found to be approximately 71 feet down-gradient (southsouthwest) of monitoring well MW-6, or about 114 feet down-gradient of the southern property boundary. The nearest known location of a potential ground water receptor is an "irrigation" well at a distance of 400 feet south-southeast (cross-gradient) of the site, well beyond the limit of ground water potentially containing MTBE at concentrations that would exceed a 1 in 1,000.000 cancer risk. A summary calculation sheet is contained in Appendix J.


7.0 CONCLUSIONS AND RECOMMENDATIONS


Based on the results of the Tier 1 and 2 evaluations, concentrations of petroleum constituents in soil and ground water beneath the site do not meet the RBCA Tier 1 or Tier 2 criteria for closure. The potential exposure pathways identified by modeling described in this report that do not meet RBCA criteria are volatilization from soil to indoor and outdoor air and potential inhalation by on-site indoor workers and off-site outdoor workers. It is significant to note that there are no known reports of hydrocarbon vapors observed at locations either on- or off-site. Also, Ultramar is not aware of any complaints from owners or occupants of nearby properties regarding hydrocarbon odors in interior or exterior air. Monitoring of interior and exterior air with a photoionization detector, Drager® tubes, or other applicable devices would allow verification that these vapors are not reaching potential receptors. The existing ground water monitoring results (Tables 1 and 2) dating back to May of 1993 indicate that the extent of the dissolved BETX plume in ground water is constrained and apparently not expanding.


8.0 REFERENCES


- Berry, D.F., A.J. Francis, and J.-M. Bollag, 1987. Microbial metabolism of homocyclic and heterocyclic aromatic compounds under anaerobic conditions. Microbiological Review, vol. 51, p. 43-59.
- Blatt, Harvey, Middleton, Gerard, and Murray, Raymond, 1980. Origin of Sedimentary Rocks. Prentice Hall, Englewood Cliffs, New Jersey.
- Borden, R.C., C.A. Gomez, and M.T. Becker, 1995. Geochemical indicators of intrinsic bioremediation. Ground Water, vol. 33, no. 2, p. 180-189.
- Chiang, C.Y., J.P. Salanitro, E.Y. Chai, J.D. Colthart, and C.L. Klein, 1989. Aerobic biodegradation of benzene, toluene, and xylene in a sandy aquifer: Data analysis and computer modeling. Ground Water, vol. 27., no. 6, p. 823-834.
- Conner, J.A., Nevin, J.P., Malander, M., Stanley, C., and DeVaull, G., Tier 2 Guidance Manual for Risk-Based Corrective Action, Groundwater Services, Inc. 1995.
- Davis, J.W., N.J. Klier, and C.L. Carpenter, 1994. Natural biological attenuation of benzene in ground water beneath a manufacturing facility. Ground Water, vol. 32, no. 2, p. 215-226.
- Grbiċ-Galiċ, D. and T.M. Vogel, 1987. Transformation of toluene and benzene by mixed methanogenic cultures. Applied Environmental Microbiology, vol. 53, p. 254-260.
- Hutchins, S.R., W.C. Downs, J.T. Wilson, G.B. Smith, and D.K. Kovacs, 1991. Effect of nitrate addition on biorestoration of fuel-contaminated aquifer-field demonstration. Ground Water, vol. 29, p. 571.
- Johnson, P.C., and Ettinger, R.A., "Heuristic Model for Predicting the Intrusion Rate of Contaminant Vapors into Buildings," *Environmental Science and Technology*, Vol 25, No. 8, 1991, pp. 1445-1452.
- Kemblowski, M.W., J.P. Salanitro, G.M. Deeley, and C.C. Stanley, 1987. Fate and transport of dissolved hydrocarbons in groundwater-A case study. In *Proceedings of petroleum hydrocarbons and organic chemicals in ground water: Prevention, detection, and restoration conference*, Houston, Texas, 4-6 November. Dublin, Ohio: NGWA, p. 207-231.
- Kuhn, E.P., J. Zeyer, P. Eicher, and R.P. Schwarzenbach, 1988. Anaerobic degradation of alkylated benzene in denitrifying laboratory aquifer columns. Applied Environmental Microbiology, vol. 54, p. 490-496.
- Litchfield, J.H. and L.C. Clark, 1973. Bacterial activity in ground waters containing petroleum products. Committee on Environmental Affairs, American Petroleum Institute, Washington D.C., API. Publication No. 4211.

- Lovley, D.R., 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiological Review, vol. 55, p. 259-287.
- Maquire, S.R., June 1993, "Employer and Occupational Tenure: 1991 Update," Monthly Labor Review, 45-56.
- McAllister, P.M. and Chiang, C.Y., 1994. A practical approach to evaluating natural attenuation of contaminants in ground water. Ground Water Monitoring Review, Spring 1994, p. 161-173.
- McKee, J.E., F.B. Laverty, and R.M Hertel, 1972. Gasoline in ground water. Journal of Water Pollution, Conf. Fed. vol. 44, p. 293.
- Mihelcic, J.R. and R.G. Luthy, 1991. Sorption and microbial degradation of napthalene in soil-water suspensions under denitrification conditions. Environ. Sci. Tech., vol. 25, p. 169-177.
- Office of Solid Waste and Emergency Response (OSWER), 1991, Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors," Directive 9285.6-03.
- Salanitro, J.P., 1992. Criteria for evaluating the bioremediation of aromatic hydrocarbons in aquifers. Presented at the National Research Council (Water Science and Technology Board) Committee on In site bioremediation: How do we know when it works? Washington D.C. 26-29 October.
- Schink, B., 1985. Degradation of unsaturated hydrocarbons by methanogenic enrichment cultures. FEMS Microbiol. Ecol., vol. 31, p. 69-77.
- Siegel, D.I., W.E. McFarland, and T.R. Byrnes, 1992. Geochemical implications of mineral scaling in remediation equipment. In *Proceedings of the 1992 petroleum hydrocarbons and organic chemicals in ground water: Prevention, detection, and restoration conference,* Houston, Texas, 4-6 November. Dublin, Ohio: NGWA.
- Smolenski, W.J. and J.M. Suflita, 1987. Biodegradation of creosol isomers in anoxic aquifers. Applied Environmental Microbiology, vol. 53, p. 710-716.
- USEPA, December 1989, Risk Assessment Guidance for Superfund (Vol. 1) Human Health Evaluation Manual (Part A), EPA/540/1-89/002.
- USEPA, March 1990, Exposure Factors Handbook, EPA/600/8-89/043.

TABLE 1 GROUND WATER ELEVATION DATA **BEACON STATION #574** 22315 REDWOOD ROAD, CASTRO VALLEY, CALIFORNIA

(Measurements in feet)

Monitoring Well	Date	Reference Elevation (top of casing)	Depth to Ground Water ¹	Ground Water Elevation ²	Well Depth	Comments
) (D) 1	02/27/02	150 55	22.43	134,12		
MW-1	03/27/92	156.55	23.40	133.15		
	06/04/92		24.07	132.48		
	09/23/92 11/12/92		24.07	132.39	29.33	
	02/02/93		21.87	134.68	29.80	
	05/07/93		22.58	133.97	29.84	
	05/18/93		22.66	133.89		
	08/11/93		23.41	133.14	29.81	
	11/05/93		24.09	132.46	29.81	
	03/01/94		22.76	133.79	29.85	
	06/02/94		23.24	133.31	29.85	
	09/09/94		23.93	132.62	29.86	
	12/20/94		22.94	133.61	29.85	
	03/08/95		22.20	134.35	29.71	
	06/14/95		22.65	133.90	29.70	
	09/26/95		23.44	133.11	29.71	
	12/27/95		23.04	133.51	29.72	
	03/26/96		21.39	135.16	29.71	
	06/05/96		22.43	134.12	29.73	
	09/16/96	İ	24.42	132.13	29.74	
	12/02/96		23.14	133.41	29.75	1
	03/10/97		22.30	134.25	29.76	
	06/12/97		22.97	133.58	29.76	
	09/29/97		23.35	133.20	29.78	
	12/01/97		22.73	133.82	29.79	
	03/19/98		20.56	135.99	29.78	
	05/28/98		21.78	134.77	29.76	
	08/31/98		22.64	133.91	29.78	!
	12/08/98		22.87	133.68	29.76	

NOTES:

Measurement and reference elevation taken from notch/mark on top north side of well casing. Elevation referenced to mean sea level. Measurement from top of casing to bottom of well.

2 Well Depth

Well abandoned.

(Measurements in feet)

Monitoring Well	Date	Reference Elevation (top of casing) ¹	Depth to Ground Water ¹	Ground Water Elevation ²	Well Depth	Comments
NAW 2	03/27/92	155.17	20.82	134,35		
MW-2	06/04/92	133.17	21.81	133.36		
	09/23/92		22.45	132.72		
	11/12/92		22.60	132.57	29.71	
	02/02/93		20.28	134.89	29.73	
	05/07/93		20.20	134.20	29.73	
	05/18/93		21.06	134.11		
	08/11/93		21.85	133.32	29.70	
	11/05/93		22.32	132,85	29.70	
	03/01/94		21.19	133.98	29.68	
	06/02/94		21.59	133.58	29.69	
	09/09/94		22.33	132.84	29.66	
	12/20/94		21.37	133.80	29.65	
	03/08/95		20.60	134.57	29.52	
	06/14/95		21.04	134.13	29.54	
	09/26/95	İ	21.84	133.33	29.53	
	12/27/95		21.44	133.73	29.56	
	03/26/96		19.81	135.36	29.56	
	06/05/96		20.83	134.34	29.59	
	09/16/96		21.93	133,24	29.58	
	12/02/96		21.54	133.63	29.58	
	03/10/97		20.71	134.46	29.58	ļ
	06/12/97]	21.41	133.76	29.52	ĺ
	09/29/97		21.26	133.91	29.51	
	12/01/97		20.97	134.20	29.50	
	03/19/98		18.98	136.19	29.51	İ
	05/28/98		20.22	134.95	29.50	
	08/31/98		21.09	134.08	29.51	
	12/08/98	1	21.31	133.86	29.50] .

NOTES:

Measurement and reference elevation taken from notch/mark on top north side of well casing. Elevation referenced to mean sea level.

Measurement from top of casing to bottom of well.

Well abandoned.

2 Well Depth 3

(Measurements in feet)

Monitoring Well	Date	Reference Elevation (top of casing) ¹	Depth to Ground Water ^t	Ground Water Elevation ²	Well Depth	Comments
MW-3	03/27/92	157.13	21.46	135.67		
	06/04/92		22.34	134.79 134.29		
	09/23/92		22.84 23.04	134.09	29.55	
	11/12/92 02/02/93		21.03	136.10	29.45	
	05/07/93		21.59	135.54	29.53	
	05/18/93		21.73	135.40		İ
	08/11/93	•	22.31	134.82	29.41	
	11/05/93		22.85	134.28	29.41	
	03/01/94		21.97	135.16	29.55	
	06/02/94		22.29	134.84	29.56	
	09/09/94		22.91	134.22	29.56	
	12/20/94		22.11	135.02	29.54	
	03/08/95		21.40	135.73	29.38	
	06/14/95		21.80	135.33	29.36	1
	09/26/95		22.38	134.75	29.37	
	12/27/95		22.07	135.06	29.37	
	03/26/96		20.73	136.40	29.38 29.40	
	06/05/96		21.54	135.59	29.43	
	09/16/96		22.37	134.76 134.78	29.45	
	12/02/96		22.35 21.44	135.69	29.47	
	03/10/97		21.44	135.16	29.45	
	06/12/97		22.30	134.83	29.45	
	09/29/97 12/01/97		21.78	135.35	29.46	
	03/19/98		19.88	137.25	29.46	
	05/28/98		20.91	136.22	29.47	
	08/31/98		21.61	135.52	29.47	
	12/08/98		21.83	135.30	29.47	<u> </u>
MW-4	05/18/93	151.96	17.55	134.41		
	08/11/93	i	17.50	134.46	28.43	
	11/05/93		15.84	136.12	28.43	
	03/01/94		17.35	134.61	28.11 28.12	
	06/02/94		17.68	134.28	28.13	
	09/09/94		18.19 17.52	133.77 134.44	28.10	
	12/20/94	•	16.82	135.14	27.97	
	03/08/95		17.22	134.74	27.97	
	06/14/95		17.79	134.17	27.91	
	09/26/95 12/27/95		17.47	134.49	27.89	
	03/26/96		16.32	135.64	27.89	
	06/05/96		17.10	134.86	27.88	
İ	09/16/96		17.85	134.11	27.89	
	12/02/96		17.59	134.37	27.88	
	03/10/97		16.79	135.17	27.89	
	06/12/97		17.49	134.47	27.90	
	09/29/97		18.33	133.63	27.91	
	12/01/97		17.36	134.60	27.90	
	03/19/98		15.90	136.06	27.91	
	05/28/98		16.34	135.62	27.90	
	08/31/98	1	16.83	135.13	27.90	
	12/08/98		17.37	134.59	27.91	.L

NOTES:

Measurement and reference elevation taken from notch/mark on top north side of well casing. Elevation referenced to mean sea level.

Measurement from top of casing to bottom of well.

2 Well Depth 3

Well abandoned.

(Measurements in feet)

Monitoring Well	Date	Reference Elevation (top of casing) ¹	Depth to Ground Water ¹	Ground Water Elevation ²	Well Depth	Comments
MW-5	05/18/93	148.68	15.72	132.96		
141 44 -2	08/11/93		16.42	132.26	25.43	
	11/05/93		16.92	131.76	25.43	
	03/01/94		15.54	133.14	25.00	
	06/02/94		16.19	132.49	25.00	
	09/09/94		16.87	131.81	25.00	
	12/20/94		15.84	132.84	25.01	
	03/08/95		15.11	133.57	24.85	
	06/14/95		15.69	132.99	24.86	
	09/26/95		16.46	132.22	24.81	
	12/27/95		15.91	132.77	24.80	
	03/26/96		14.31	134.37	24.81	
	06/05/96		15.43	133.25	24.75	
	09/16/96		16.52	132.16	24.74	
	12/02/96		16.05	132.63	24.76 24.74	
	03/10/97		14.80	133.88	24.74 24.75	
	06/12/97		15.95	132.78	24.75	
	09/29/97		16.33	132.35	24.78	i
	12/01/97		15.48	133.20	24.77	
	03/19/98		13.16	135.52 134.64	24.78	
	05/28/98		14.04 14.81	133.87	24.79	
	08/31/98		15.75	132.93	24.76	
	12/08/98		13.73	134.73	211.10	
MW-6	05/18/93	153.96	20.80	133.16		
	08/11/93		21.64	132.32	31.15	
	11/05/93		22.11	131.85	31.15	
	03/01/94		20.80	133.16	29.96	
	06/02/94		21.37	132.59	29.98	
	09/09/94		22.05	131.91	29.96	
	12/20/94		21.06	132.90	29.89	!
	03/08/95	1	20.29	133.67	29.67 29.65	
	06/14/95		20.81	133.15	29.66	
	09/26/95		21.62	132.34 132.84	29.63	1
	12/27/95		21.12		29.60	l
	03/26/96		19.50	134.46 133.40	29.63	1
ł	06/05/96		20.56	133.40	29.65	1
	09/16/96	1	21.70 21.25	132.26	29.66	
	12/02/96		21.25 20.16	133.80	29.64	1
	03/10/97		21.16	132.80	29.62	
	06/12/97		21.51	132.45	29.62	
	09/29/97		20.89	133.07	29.61	
1	12/01/97 03/19/98		18.71	135.25	29.60	
	05/28/98		19.99	133.97	29.62	
	08/31/98		20.81	133.15	29.63	
1	12/08/98		21.00	132.96	29.64	

NOTES:

Measurement and reference elevation taken from notch/mark on top north side of well casing.

Well Depth

Elevation referenced to mean sea level.
 Measurement from top of casing to bottom of well.

1

Well abandoned.

(Measurements in feet)

Monitoring Well	Date	Reference Elevation (top of casing) ¹	Depth to Ground Water	Ground Water Elevation ²	Well Depth	Comments
MW-7	05/18/93 08/11/93 11/05/93 03/01/94 06/02/94 09/09/94 12/20/94 03/08/95 06/14/95 09/26/95 12/27/95 03/26/96 06/05/96 09/16/96 12/02/96 03/10/97 06/12/97 09/29/97 12/01/97 03/19/98 05/28/98 08/31/98	156.09	22.64 23.25 23.93 22.72 23.22 23.90 22.98 22.14 22.61 23.43 23.01 21.32 22.37 23.51 23.08 21.94 22.96 23.35 22.68 20.52 21.76 22.66	133.45 132.84 132.16 133.37 132.87 132.19 133.11 133.95 133.48 132.66 133.08 134.77 133.72 132.58 133.01 134.15 133.13 132.74 133.41 135.57 134.33 133.43	30.75 30.75 30.11 30.12 30.12 30.10 29.91 29.90 29.90 29.87 29.91 29.90 29.91 29.90 29.88 29.88 29.88 29.88 29.88	
MW-8	12/08/98 ³ 05/18/93 08/11/93 11/05/93 03/01/94 06/02/94 09/09/94 12/20/94 03/08/95 06/14/95 09/26/95 12/27/95 03/26/96 06/05/96 09/16/96 12/02/96 03/10/97 06/12/97 12/01/97 03/19/98 05/28/98 08/31/98 12/08/98 ³	158.04	21.55 22.43 23.00 22.05 22.29 22.99 22.14 21.25 21.70 22.29 21.96 20.48 21.50 22.38 22.39 20.89 21.80 22.81 21.70 19.35 20.52 21.40	136.49 135.61 135.04 135.99 135.75 135.05 135.90 136.79 136.34 135.75 136.08 137.56 136.54 135.65 137.16 136.24 135.23 136.34 138.69 137.52 136.64	34.82 34.82 34.04 34.04 34.04 33.98 34.48 34.49 34.40 34.43 34.42 34.41 34.43 34.42 34.41 34.42 34.41 34.42 34.41 34.42 34.41 34.42	

NOTES:

Measurement and reference elevation taken from notch/mark on top north side of well casing. Elevation referenced to mean sea level.

Measurement from top of casing to bottom of well.

Well abandoned.

2 Well Depth 3

TABLE 2 GROUND WATER ANALYTICAL RESULTS **BEACON STATION #574** 22315 REDWOOD ROAD, CASTRO VALLEY, CALIFORNIA

(All results in micrograms per Liter)

Monitoring Well	Date Collected	Total Pe	troleum Hydr	ocarbons		Arom	atic Volatile Orga	anics	ı
		Gasoline	Diesel	Motor Oil	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes
	00/05/00	5.600	<50	<50		760	900	230	1,100
MW-1	03/27/92	5,600	<800	NA NA		270	57	230	440
	06/04/92	2,600	NA	NA NA		480	430	110	550
	09/23/92 11/12/92	3,400 2,700	NA NA	NA NA		5.8	<5.0	140	340
	02/02/93		NA NA	NA NA		760	770	250	1,200
	02/02/93	8,500 7,700	NA NA	NA NA		970	630	280	1,500
	08/11/93	11,000	NA NA	NA NA		1,400	1,000	250	1,600
	11/05/93	36,000	NA NA	NA NA		6,200	4,700	1.400	7,100
	03/01/94	3,800	NA NA	NA NA		580	490	i 10	620
	06/02/94	8,900	NA NA	NA		1,900	1,200	420	2,100
	09/09/94	4,300	NA NA	NA NA		740	290	2:10	630
	12/20/94	3,900	NA NA	NA NA		550	260	150	510
	03/08/95	8,100	NA NA	NA NA		1,100	540	250	1,100
	06/14/95	8,100 NS	NS NS	NS		NS	NS	NS	NS
	09/26/95	8,600	NA NA	NA NA		2,100	550	420	1,300
	12/27/95	8,000 NS	NS NS	NS		NS	NS	NS	NS
	03/26/96	21,000	NA NA	NA NA		7,000	2,700	590	7,000
	06/05/96	21,000 NS	NS	NS		NS	NS	NS	NS
	09/16/96	13,000	NA NA	NA NA	1,400	3,200	770	4~0	2,900
	12/02/96	NS	NS	NS	NS	NS	NS	NS	NS
	03/10/97	30,000	NA NA	NA NA	1,100	7,300	1,900	850	7,100
	06/12/97	30,000 NS	NS NS	NS	NS	NS NS	l NS	NS	NS
	09/29/97	25,000	NA NA	NA NA	840	5,500	920	920	4,000
	12/01/97	23,000 NS	NS	NS NS	NS	NS	NS	NS	NS
	03/19/98	90,000	NA	NA NA	<1,500	15,000	7,000	3,300	20,000
	05/28/98	90,000 NS	NS NS	NS	NS NS	NS	NS	NS	NS
	08/31/98	50,000	NA NA	NA NA	890	9,900	1,500	2,100	9,400
	12/08/98	NS	l NS	NS	NS	NS	NS	NS	NS_

NOTES:

Below indicated detection limit. Not sampled. Not analyzed. Product is not typical gasoline. Well abandoned.

K NS NA 1

TABLE 2 **GROUND WATER ANALYTICAL RESULTS BEACON STATION #574**

22315 REDWOOD ROAD, CASTRO VALLEY, CALIFORNIA

(All results in micrograms per Liter)

Monitoring Well	Date Collected	Total Pe	troleum Hydr	ocarbons		Arom	atic Volatile Org	anics	
		Gasoline	Diesel	Motor Oil	MTBE ¹	Benzene	Toluene	Ethyl- benzene	Total Xylenes
MW-2	03/2 7 /92	18,000	<50	<50		2,400	2,300	8-0	3,300
	06/04/92	14,000	<5,000	NA		1,900	1,700	580	2,300
	09/23/92	22,000	NA	NA		2,100	1,500	760	2,900
	11/12/92	29,000	NA	NA		2,400	860	540	3,500
	02/02/93	24,000	NA	NA		2,700	1,900	590	2,600
	05/07/93	19,000	NA	NA		1,800	1,300	460	2,600
	08/11/93	23,000	NA	NA NA		2,300	1,500	550 850	2,300
	11/05/93	30,000	NA NA	NA NA		3,100 1,500	2,900 490	350	3,700 1,000
	03/01/94 06/02/94	13,000 12,000	NA NA	NA NA		2,000	790 790	450	1,300
	09/09/94	13,000	NA NA	NA NA		1,800	660	440 440	1,000
	12/20/94	16,000	NA	NA NA		2,300	1,000	650	1,900
	03/08/95	16,000	NA	NA NA		2,200	1,000	550	2,100
	06/14/95	NS	NS	NS		NS	NS	NS	NS
	09/26/95	18,000	NA	NA		2,500	1,000	7~0	2,700
	12/27/95	ŃS	NS	NS		NS	NS	NS	NS
	03/26/96	33,000	NA	NA		4,200	2,600	1.000	5,000
	06/05/96	NS	NS	NS		NS	NS	NS	NS
	09/16/96	19,000	NA	NA	940	2,600	490	5e0	2,000
	12/02/96	NS	NS	NS	NS	NS	NS 850	NS 110	NS
	03/10/97	23,000	NA	NA NA	1,400	3,700	870	650	3,000
	06/12/97	NS 20,000	NS	NS	NS	NS 4.000	NS 880	NS 990	NS 3,800
ļ	09/29/97 12/01/97	30,000 NS	NA NS	NA NS	1,400 NS	4,900 NS	NS NS	NS	3,800 NS
i	03/19/98	72,000	NA NA	NA NA	<1,500	14,000	9,500	2,300	11,000
	05/28/98	72,000 NS	NS	NS NS	NS	NS	NS NS	NS NS	NS
ļ	08/31/98	29,000	NA	NA	890	4,900	1,600	950	3,900
	12/08/98	NS	NS	NS	NS	NS	NS	NS	NS
MW-3	03/27/92	160	<50	<50		9.2	4.8] ()	23
	06/04/92	120	<50	NA		7.5	2.7	0.5	15
	09/23/92	220	NA	NA		8.3	4.3	6.2	19
	11/12/92	230	NA	NA NA		12	5.5	7 7	19
į	02/02/93	86	NA	NA NA		2.4 2.6	0.71 1.2	2 7 3 9	6.2 8.4
ļ	05/07/93 08/11/93	140 490	NA NA	NA NA		15	8.1	14	37
-	11/05/93	820	NA NA	NA NA		45	24	34	93
j	03/01/94	410	NA	NA NA		7.4	2.7	5.6	10
	06/02/94	440	NA NA	NA NA		13	4.9	14	31
	09/09/94	620	NA	NA NA		12	4.8	9.7	20
j	12/20/94	770	NA	NA		24	11	16	36
	03/08/95	300	NA	NA		6.1	0.97	4 8	7.5
l	06/14/95	NS	NS	NS		NS	NS	NS.	NS
l	09/26/95	130	NA	NA .		4.8	1.6	4 8	9.4
l	12/27/95	NS	NS	NS		NS 10.50	NS 10.50	NS 20.50	NS co.so
l	03/26/96	<50	NA NO	NA NG		<0.50	<0.50	<() 50	<0.50
	06/05/96	NS 170	NS NA	NS NA	<5.0	NS 10	NS 2.9	NS 4.4	NS 15
l	09/16/96 12/02/96	170 NS	NA NS	NA NS	<5.0 NS	NS NS	NS NS	NS	NS
	03/10/97	84	NA	NA NA	<5.0	2.3	< 0.50	14	2.6
	06/12/97	NS	NS NS	NS NS	NS NS	NS NS	NS	NS	NS
	09/29/97	740	NA	NA NA	<5.0	61	9.8	42	61
l	12/01/97	NS	NS	NS	NS	NS	NS	NS	NS
	03/19/98	<50	NA	NA.	<5.0	< 0.50	<0.50	<0.50	< 0.50
	05/28/98	NS	NS	NS	NS	NS	NS	NS	NS
	08/31/98	320	NA	NA	3.4	6.7	1,0	Ю	9.3
	12/08/98	NS	NS	NS	NS	NS	NS	_NS	NS

NOTES:

Below indicated detection limit.

Not sampled.

NS NA 1 2

Not analyzed.
Product is not typical gasoline.
Well abandoned.

TABLE 2 GROUND WATER ANALYTICAL RESULTS

BEACON STATION #574 22315 REDWOOD ROAD, CASTRO VALLEY, CALIFORNIA

(All results in micrograms per Liter)

Monitoring Well	Date Collected	Total Pe	troleum Hydro	ocarbons		Arom	atic Volatile Org	anics	
		Gasoline	Diesel	Motor Oil	MTBE'	Benzene	Toluene	Ethyl- ben≥ene	Total Xylenes
MW-4	05/18/93	<50	NA	NA		<0.5	<0.5	<11.5	<0.5
	08/11/93	<50	NA	NA	:	< 0.5	< 0.5	<□.5	< 0.5
	11/05/93	<50	NA	NA		< 0.5	< 0.5	<0.5	< 0.5
	03/01/94	< 50	NA	NA		< 0.5	< 0.5	<0.5	< 0.5
	06/02/94	<50	NA	NA		<0.5	< 0.5	<□.5	< 0.5
	09/09/94	<50	NA	NA		< 0.5	< 0.5	<0.5	< 0.5
	12/20/94	<50	NA	NA		< 0.5	< 0.5	<□,5	< 0.5
	03/08/95	NS	NS	NS		NS	NS	NS	NS
	06/14/95	N\$	NS	NS		NS	NS	NS	NS
	09/26/95	NS	NS	NS		NS	NS	NS	NS
	12/27/95	NS	NS	NS		NS	NS	NS	NS
İ	03/26/96	NS	NS	NS		NS	NS	NS	NS
	06/05/96	NS	NS	NS		NS	NS	NS	NS
	09/16/96	<50	NA	NA	<5.0	<0.50	< 0.50	<0.50	<0.50
	12/02/96	NS	NS	NS	NS	NS	NS	NS	NS
	03/10/97	NS	NS	NS	NS	NS	NS	NS	NS
ļ į	06/12/97	NS	NS	NS	NS	NS	NS	NS	NS
	09/29/97	NS	NS	NS	NS	NS	NS	NS	NS
1	12/01/97	NS	NS	NS	NS	NS	NS	NS	NS
	03/19/98	NS	NS	NS	NS	NS	NS	NS	NS
l	05/28/98	NS	NS	NS	NS	NS	NS	NS	NS
	08/31/98	NS	NS	NS	NS	NS	NS	NS	NS
	12/08/98	NS	NS	NS	NS	NS	NS	NS	NS
MW-5	05/18/93	<50	NA	NA		<0.5	<0.5	<0.5	<0.5
	08/11/93	<50	NA	NA		< 0.5	< 0.5	<0.5	<0.5
	11/05/93	<50	NA	NA		< 0.5	< 0.5	<0.5	<0.5
	03/01/94	<50	NA	NA		<0.5	< 0.5	<0.5	<0.5
	06/02/94	<50	NA	NA		<0.5	< 0.5	<0.5	<0.5
	09/09/94	<50	NA	NA		< 0.5	<0.5	<0.5	<0.5
	12/20/94	<50	NA	NA :		< 0.5	<0.5	<0.5	<0.5
	03/08/95	< 50	NA	NA		< 0.5	< 0.5	<0.5	<0.5
	06/14/95	<50	NA	NA		< 0.5	< 0.5	<0.5	<0.5
	09/26/95	<50	NA	NA		<0.50	<0.50	<(+50	<0.50
ļ. 1	12/27/95	<50	NA	NA		<0.50	<0.50	<(+50	<0.50
	03/26/96	<50	NΑ	NA		< 0.50	<0.50	<(+50	< 0.50
ļ	06/05/96	<50	NA	NA	15	<0.50	< 0.50	<(+50	<0.50
	09/16/96	<50	NA	NA	20	<0.50	< 0.50	<(+50	<0.50
 	12/02/96	<50	NA	NA	12	< 0.50	< 0.50	<0.50	< 0.50
]	03/10/97	<50	NA	NA	7.0	< 0.50	< 0.50	<0.50	<0.50
	06/12/97	<50	NA	NA	7.2	< 0.50	< 0.50	<0.50	< 0.50
	09/29/97	<50	NA	NA	<5.0	<0.50	< 0.50	<0.50	<0.50
	12/01/97	<50	NA	NA.	<5.0	<0.50	<0.50	<0.50	< 0.50
	03/19/98	<50	NA	NA	<5.0	<0.50	< 0.50	<0.50	<0.50
	05/28/98	<50	NA	NA NA	<5.0	<0.50	<0.50	<(:50	< 0.50
	08/31/98 12/08/98	<50 <50	NA NA	NA NA	<0.50 <5.0	<0.50 <0.50	<0.50 <0.50	<(±50 <(±50	<0.50 <0.50

NOTES:

Below indicated detection limit, Not sampled, Not analyzed.

< NS NA 1 2 Product is not typical gasoline.

Well abandoned.

TABLE 2 GROUND WATER ANALYTICAL RESULTS **BEACON STATION #574** 22315 REDWOOD ROAD, CASTRO VALLEY, CALIFORNIA

(All results in micrograms per Liter)

Monitoring Well	Date Collected	Total Pe	troleum Hydro	ocarbons		Arom	atic Volatile Orga	anies	
		Gasoline	Diesel	Motor Oil	MTBE ¹	Benzenc	Toluene	Ethyl- benzene	Total Xylenes
MW-6	05/18/93	170	NA	NA		<0.5	<0.5	<=.5	<0.5
	08/11/93	78	NA	NA		< 0.5	< 0.5	<0.5	<0.5
-	11/05/93	170	NA	NA		<0.5	< 0.5	<0.5	0.65
	03/01/94	210	NΑ	NA		<0.5	< 0.5	<0.5	<0.5
	06/02/94	190	NA	N.A		<0.5	< 0.5	<0.5	<0.5
	09/09/94	140	NA	NA		< 0.5	< 0.5	<(1,5	<0.5
	12/20/94	210	NA	NA		< 0.5	<0.5	<0.5	< 0.5
	03/08/95	180*	NA	NA		< 0.5	<0.5	<0.5	<0.5
	06/14/95	220*	NA	NA		< 0.5	< 0.5	<0.5	< 0.5
	09/26/95	110*	NA	NA		< 0.50	< 0.50	<(+50	< 0.50
	12/27/95	130*	NA	NA		< 0.50	< 0.50	<(1.50	< 0.50
	03/26/96	100*	NA	NA		< 0.50	< 0.50	<(1.50	< 0.50
	06/05/96	100*	NA	NA	430	<0.50	< 0.50	<0.50	< 0.50
	09/16/96	170	NA	NA	430	< 0.50	<0.50	<0.50	< 0.50
	12/02/96	160	NA	NA	160	< 0.50	< 0.50	<0.50	< 0.50
	03/10/97	140	NA	NA	390	<0.50	< 0.50	<0.50	< 0.50
	06/12/97	<50	NA	NA	330	< 0.50	< 0.50	<0.50	< 0.50
	09/29/97	<50	NA	NA	130	< 0.50	< 0.50	<0.50	< 0.50
	12/01/97	<50	NA	NA	200	<0.50	< 0.50	<0.50	< 0.50
	03/19/98	<50	NA	NA	240	< 0.50	< 0.50	<0.50	< 0.50
	05/28/98	<50	NA	NA	290	< 0.50	< 0.50	<(+50	< 0.50
	08/31/98	<50	NA	NA	290	<0.50	< 0.50	< 0.50	< 0.50
	12/08/98	<50	NA	NA	230	<0.50	< 0.50	<0.50	< 0.50
MW-7	05/18/93	<50	NA	NA		<0.5	<0.5	<r.5< td=""><td><0.5</td></r.5<>	<0.5
JVI VV = 7	08/11/93	<50	NA	NA NA		<0.5	<0.5	<0.5	<0.5
	11/05/93	<50 <50	NA	NA NA		<0.5	<0.5	<(.5	<0.5
	03/01/94	60	NA	NA NA		<0.5	<0.5	<r.5< td=""><td><0.5</td></r.5<>	<0.5
	06/02/94	<50	NA	NA NA		<0.5	<0.5	<r5< td=""><td>< 0.5</td></r5<>	< 0.5
	09/09/94	<50 <50	NA	NA NA		<0.5	<0.5	<1.5	<0.5
	12/20/94	<50	NA	NA NA		<0.5	<0.5	<0.5	<0.5
	03/08/95	<50	NA	NA NA		<0.5	<0.5	<0.5	<0.5
	06/14/95	<50	NA	NA NA		<0.5	<0.5	<0.5	<0.5
	09/26/95	<50	NA	NA NA		<0.50	<0.50	<0.50	<0.50
	12/27/95	<50	NA	NA NA		<0.50	<0.50	< 0.50	<0.50
i	03/26/96	<50	NA NA	NA NA	ļ	<0.50	<0.50	<(+50	<0.50
	06/05/96	<50	NA NA	NA NA	20	<0.50	<0.50	<(+50	< 0.50
	09/16/96	<50	NA NA	NA NA	26	<0.50	<0.50	<0.50	<0.50
	12/02/96	140	NA NA	NA NA	140	<0.50	<0.50	<(+50	<0.50
	03/10/97	<50	NA NA	NA NA	29	<0.50	<0.50	<(+50	< 0.50
	05/10/97	<50	NA NA	NA NA	28	<0.50	<0.50	<0.50	<0.50
	09/29/97	<50	NA NA	NA NA	27	<0.50	<0.50	<0.50	<0.50
	12/01/97	<50	NA NA	NA NA	29	<0.50	<0.50	<0.50	<0.50
	03/19/98	<50	NA NA	NA NA	6.0	<0.50	<0.50	<0.50	<0.50
	05/28/98	<50	NA NA	NA NA	25	<0.50	<0.50	<0.50	<0.50
	03/28/98	<50	NA NA	NA NA	20	<0.50	<0.50	<0.50	<0.50
	12/08/982	~50	1473	117.	1 20	30.50	1	```	1 3

NOTES: Below indicated detection limit.

NS NA 1 2

Not sampled. Not analyzed. Product is not typical gasoline. Well abandoned.

TABLE 2 **GROUND WATER ANALYTICAL RESULTS BEACON STATION #574** 22315 REDWOOD ROAD, CASTRO VALLEY, CALIFORNIA

(All results in micrograms per Liter)

Monitoring Well	Date Collected	Total Pe	troleum Hydr	ocarbons		Arom	atic Volatile Org	anics	
		Gasoline	Diesel	Motor Oil	мтве	Benzene	Toluene	Ethyl- benzene	Total Xylenes
MW-8	05/18/93	<50	. NA	NA		<0.5	<0.5	<(.5	<0.5
	08/11/93	<50	NA	NA		<0.5	<0.5	<0.5	< 0.5
	11/05/93	<50	NA	NA		<0.5	<0.5	<∪.5	< 0.5
	03/01/94	<50	NA	NA		<0.5	<0.5	<0.5	<0.5
	06/02/94	<50	NA	NA		<0.5	<0.5	<0.5	<0.5
	09/09/94	<50	NA	NA		<0.5	<0.5	<0.5	<0.5
	12/20/94	<50	NA	NA		<0.5	<0.5	<0.5	<0.5
	03/08/95	NS	NS	NS		NS	NS	NS	NS
	06/14/95	NS	NS	NS		NS	NS NS	NS	NS
	09/26/95	NS	NS	NS		NS	NS NS	NS	NS
	12/27/95	NS	NS	NS		NS	NS	NS	NS
	03/26/96	NS	NS	NS		NS	NS	NS	NS
	06/05/96	NS	NS	NS		NS	NS	NS	NS
	09/16/96	<50	NΑ	NA	< 5.0	< 0.50	< 0.50	<0.50	< 0.50
	12/02/96	NS	NS	NS	NS	NS	NS	NS	NS
	03/10/97	NS	NS	NS	NS	NS	NS	NS	NS
	06/12/97	NS	NS	NS	NS	NS	NS	NS	NS
	09/29/97	NS	NS	NS	NS	NS	NS	УS	NS
	12/01/97	NS	NS	NS	NS	NS	NS	NS	NS
	03/19/98	NS	NS	NS	NS	NS	NS	NS	NS
	05/28/98	NS	NS	NS	NS	NS	NS	NS	NS
	08/31/98	NS	NS	NS	NS	NS	NS	NS	NS
	12/08/98 ²			1	1	1			I

NS NA 1 2 NOTES Below indicated detection limit.

Not sampled. Not analyzed. Product is not typical gasoline.

Well abandoned.

APPENDIX A

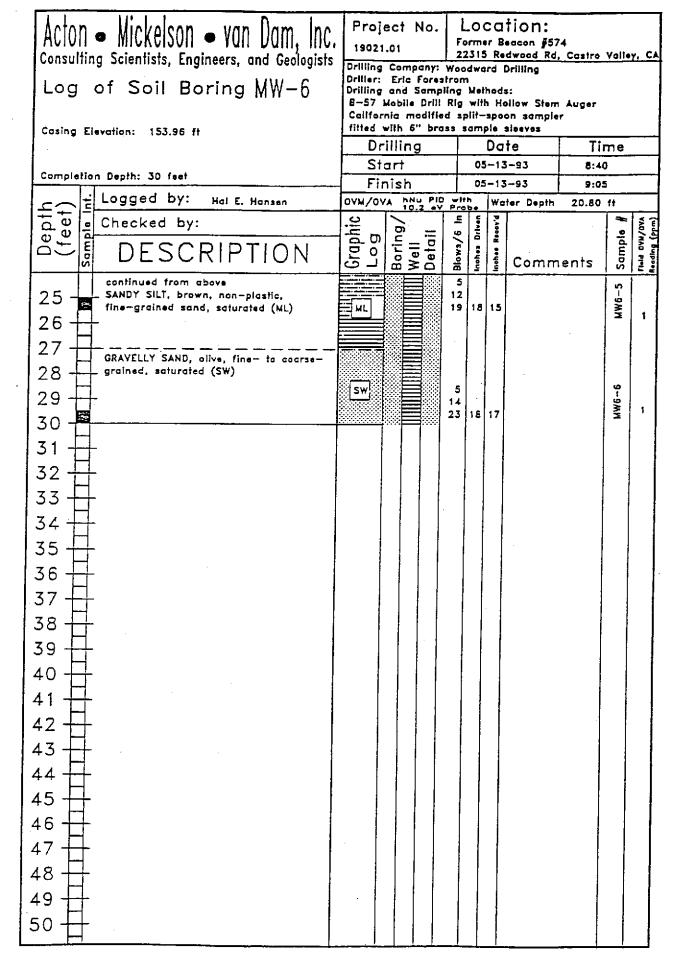
SOIL BORING LOGS (SSB ENVIRONMENTAL CONSULTANTS, INC.)

CONTRACTOR: Section 1574 CONTRACTOR: West Hazmat Drilling METHLING METHOD: H.S.A.				•	CATION		PROJECT NUMBER: 40-90-818	BORING NUMBER: M	W-1	SHEET	1	OF	2
START: 815/03-26-91 COMPLETED: 9:30/03-26-91	2	2315	Redw	rood Ro	ad	#5/4	CONTRACTOR: West Hazi	at Drilling	DRILL METHOL	ING D: 1	H.S.A		
CA MM SO SO SO SO SO SO SO							DRILLER: Gene Rein	hart	DRILLI RIG:	ING	Acker		
GAMER: Raul Wilson A T S N B C S N A B C A Y A V O O A T A C DEFTH A Y A V O O A T A C DEFTH B C W N T L L V SCALE L COCKENDATION ON THE CONTROL ON THE COLOR OF MATERIALS AND CONDITIONS A Y A V O O A T A C DEFTH B C W N T L L V SCALE L L V SCALE L L V SCALE L L V SCALE L L V SCALE L L V SCALE L L V SCALE L L V SCALE L COCKENDATION ON THE COCK							START: 8:15/03-2	6-91	COMPLI	EIED: 9	9:30/	03-26	91
CA MA- 24/ 10.0 18" 15 10 15 11 15 15 15 15	OW LA	ND NER:	Paul	Wilso	n		SURFACE ELEVATION: 156.55		LOGGEI	BY:	Hal H	ansen	1
CA MA- 24/ 10.0 18" 15 10 15 11 15 15 15 15	S T A Y M F	S N A U M M	B C L O O U	SI AN MT	SR AE MC	DEPTH	DESCRIPTIONS OF MA	IERIALS	OBSER	MOITA	OBSE	RVATI	ON
CA MW- 15/ 5.0- 18" 5 - 0 0 15 0 15 0 18" 10 - 0 0 15 0 15 0 16 0 11 0 0 16 0 16 0 16	P E L E	P B L E E R	W N T S	P L	P O	SCALE 1"= 4	AND CONDITION	S		hNu	N	OTES	
CA MW- 15/5 5.0- 18" 5 5 5 5 5 6 7 5 5 5 7 11.5 5 5 5 5 5 5 5 5 5					·	,	ASPHALIT AND ROA	DBASE					
CA MW 15/50	1					⊢	CONTEST V CAND. oli	vo fino					
CA MW 24/ 10.0 - 18" 5	-					3 -	to coarse-grained, plastic fines, moi	common - st (SP) -		<u>.</u> .			
1 30/ 6.5 6 7 7						4 —							-
CA MW 24 10.0 18" 10 12 13 14 15 15 16 15 15 16 16 17 16 16 17 17 17	_ CA	MW-	15/		18"	5 —			0				
CA MW 24/ 10.0 18" 10 11 12 13 14 15 16" 16.5 16.5 16 17 18 19 18 18	I	ī	50	0.3		6 —							
CA MW 24/ 10.0 18" 10			5"	:		7 📗	SANDY CLAY: olive.	moderately					
CA MW 24/ 10.0 18" 10						8 —	plastic, fine to o	oarse — moist (CL)					
The color of the						9 🛨	can, come graves,						
CA MW	CA	MW-	24/	10.0-	18"	10 —		· 	0				}
CA MW 50 15.0 7" 15 15 16.5 16 16 16 16 16 16 16 1	•	2	20	11.0		11 🕂							
CA MW 50 15.0 7" 15 CIAYEY SAND; olive-brown, fine 18 SAND; olive-brown, fine 23 grained, saturated (SP) WATER LEVEL DATA GEOLOGIST DATE 03-26 TIME 6:29 GWL 22.43 14 CIAYEY SAND; olive-brown, fine 30 SIGNATURE 41 Hal Hansen	•			:		12							
CA MW- 50 16.5 7" 15 — CIAYEY SAND; olive-brown, fine- 17 — 18 — 19 — 180 CA MW- 30/ 1- 50 for 5" 21.5 8" 20 — 180 WATER LEVEL DATA GEOLOGIST DATE 03-26 TIME 6:29 GWL 22.43 Hal Hansen						13 🕂							İ
CA MW- 50 15.0- 7" 15 — fine to coarse sand, moist — 60 16.5 16.5 16.5 16.5 16.5 16 — (SC) 17 — 18 — 19 — 180 19 —	_					14 ———	CTAVEY SAND: olive	-brown -					
17 18 19 19 180 18	CA		50 for	15.0-	7"	15 —	fine to coarse san	i, moist —	60				
18	_	3	6"	10.5		16 —	(50)						
19	1					17 —			l				
CA MW 30/ 1- 50	-					18 —							
TIME 6:29 GWL 22.43 A SOND; olive-brown, fine-grained, saturated (SP) 21 - 22 - SAND; olive-brown, fine-grained, saturated (SP) 21 - 22 - SAND; olive-brown, fine-grained, saturated (SP) SIGNATURE Hal Hansen	•					19 —		-					
WATER LEVEL DATA DATE 03-26	■ _{CA}		30/ 50	20.0-	ġıı	20 —			180				
WATER LEVEL DATA DATE 03-26 TIME 6:29 GWL 22 SAND; olive-brown, fine- grained, saturated (SP) SAND; olive-brown, fine- grained, saturated (SP) SEQUENCE Hal Hansen	•	4	for			21 🕂							
WATER LEVEL DATA GEOLOGIST DATE 03-26 TIME 6:29 GWL 22.43 Hal Hansen						22 ————	SAND: olive-brown.	fine-					
DATE 03-26 TIME 6:29 CWL 22.43 Hal Hansen	_					23 —	grained, saturated	(SP)					
DATE 03-26		لــــــــــــــــــــــــــــــــــــ	TER L	EVEL D	ATA	GEOLOGIS	sr I		<u></u>	<u>l</u>			\neg
TIME 6:29 GWL 22.43 Hal Hansen	_ DA				•	0,00	2 .						
GWL 22.43 SIGNATURE Hal Hansen						Hule							
Hal Hansen					- 							-	
DEPTH TYPED NAME			↓						-				
	DE	PIH				TYPED NAM	E						

DRILLER: Gene Reinhart START: 8:15/03-26-91 COMPLETED: 9 LAND OWNER: Paul Wilson SURFACE ELEVATION: 156.55 CONTAMINANT OBSERVATION	i.S.A. cker :30/03-26-91 Mal Hansen
Castro Valley, CA	cker :30/03-26-91 al Hansen
START: 8:15/03-26-91 COMPLETED: 9	:30/03-26-91 Mal Hansen
LAND OWNER: Paul Wilson	al Hansen
OWNER: Paul Wilson ELEVATION: 156.55 Hateland S T S N B C A VA U L O A N M F M M O U M F M M O U M F M M O U M F M M O U M T DESCRIPTIONS OF MATERIALS AND CONDITIONS DESCRIPTIONS OF MATERIALS AND CONDITIONS INSTRUMENT: have units in the limit of t	
A VA U L O A N A E M C DEPTH DESCRIPTIONS OF MATERIALS AND CONDITIONS A VA U L O A N A E M C DEPTH DESCRIPTIONS OF MATERIALS AND CONDITIONS INSTRUMENT: have unit of the second of	
CA MW- 12/ 30.0- 7" 30 - 3 1.5 for for solid single stands and saturated (SM) - 3 1.5 solid single single sand saturated (SM) - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	GENERAL OBSERVATION
CA MW- 12/ 30.0- 7" 30 - 3 31.5 50 for solid control of the stand of t	NOTES
CA MW-12/ 30.0- 7" 30 - 3 1- 14/ 50 50 50 50 50	
27 — 28 — — — — — — — — — — — — — — — — —	
CA MW-12/30.0-7" 30 - 3 1- 14/50 50 50 50 50 50	
CA MW-12/30.0-7" 30.0-7" 30.0-31.5 31.5	
CA MW- 12/ 30.0- 7" 30 - 31.5 31 - 31 - 3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
for +	•
33 —	
34 +	
35 —	
36 +	
37 🕇	
38 —	
39 🕇	
- 40 + -	
	ļ
_ 45 + -	
46 +	
WATER LEVEL DATA GEOLOGIST	
DATE 03-26	
TIME 6:29 SIGNATURE	
GWL 22.43 SIGNATURE	
CASING 30' Hal Hansen TYPED NAME	•
DEFIN TIPED WAVE	

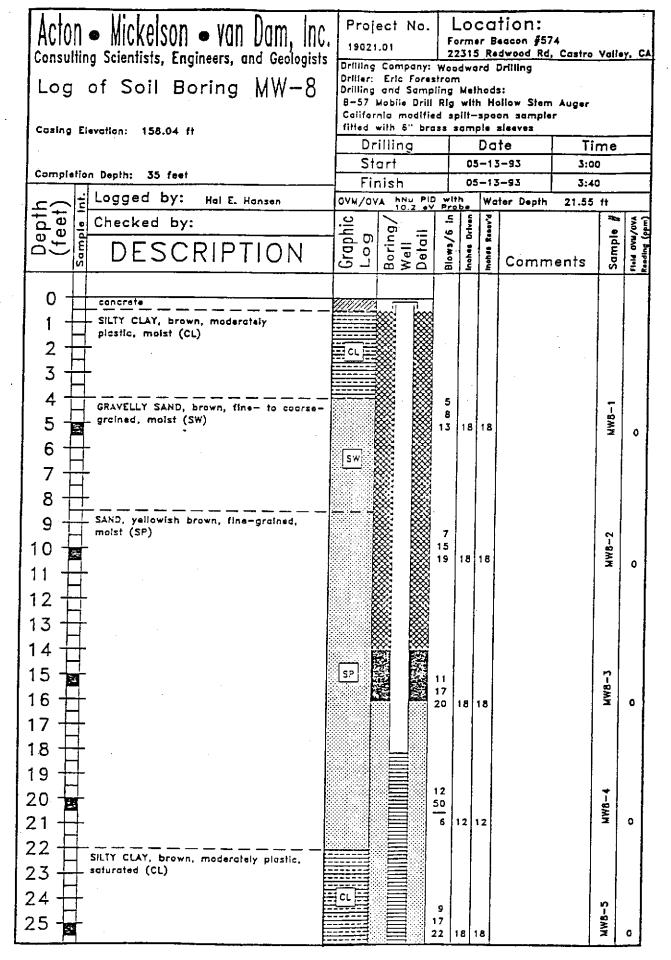
Contractors Contractors	PR	OJEC	r nam	E / LO	CATION		PROJECT BORING SHEET 1 OF 2 NUMBER: MW-2
DRILLER: Gene Reinhart RIG: Acker	F 2	onne 2315 astri	r Bea Redw Val	con Stood Ro	ation a ad A	574	CONTRACTOR: DRILLING
CANDER: Paul Wilson			-				DRILLER: DRILLING RIG: Acker
STEVATION: 155.17 STEV	•					. •	START: 10:30/03-26-91 COMPLETED:11:45/03-26-91
A MA	LA OW	ND NER:	Paul	Wilso	n		
1	TY	S N A U	B C L O	SIAN	S R A E	DEDIM	OBSERVATION GENERAL
1	No E		W W	P L	PO LV	SCALE	AND CONDITIONS INSTRUMENT: NOTES
1		7 2		5(10)	13 (21.7)		
2A MW 20/ 5.0 7" 5						1 —	-
2A MW 20/ 5.0 7" 5						2 📗	GRAVELLY SAND; olive, fine—
2A MW- 20/ 6.5 7" 5 — — — — — — — — — — — — — — — — — —	_		-			3 🕂	plastic fines, moist (SP)
A MW 10/ 10.0 12" 10 30 25 50 2 50 11.5 20 11.5 20 30 21 30 22 3 50 15.0 7" 15 30 20 21 3 30 30 30 30 30 30 30 30 30 30 30 30 3						4	
1 50 6	_CA	MW-	20/	5.0- 6.5	7"	5 🕂	$\frac{15}{1}$
TA MW 10/ 2- 50 11.5 12" 10		ĩ	50´	0.0		6	SANDY CIAY; olive, moderately
TA MW 10/ 2- 50 11.5 12" 10	_					7 —	plastic, fine to coarse sand— some gravel, moist (CL)
CA MW- 10/ 50 for 6" 11.5 for 6" 12						8 —	
12 13 14 15 15 15 15 15 15 15						9 🕂	
2 for 11 12 13 14 15 15 16 17 15 16 17 18 19 19 19 19 19 19 19	₽ ^C A	MW-	10/	10.0-	12"	10	30
12	•	2	for	11.5		11 —	-
TA MW- 30/ 15.0- 7" 15 90 16 90 17 18 90 18 19 90 18 90 19 90 21 90 21 90 WATER LEVEL DATA GEOLOGIST DATE 03-26	•		ŭ			12	
TA MW- 30/ 15.0- 7" 15 90 16.5 for 50 for 5" 16.5 16 17 18 19 19 18 19 14 15 15 15 15 15 15 15						13 🕂	
16.5 16.5 16.5 16.5 16.5 16.5 16 17 18 19 19 19 19 19 19 19	_					14 🕂	
3 for 5" 16 17 18 19 19 19 19 19 19 19	CA	MW-	30/	15.0-	7"	15 🕂	- 90
TA MW	_	3	for	10.5		16 —	-
19			5			17 —	
A MW				İ		18 —	<u>-</u>
2- 14 21.5 21 -				ĺ		19 🕂	<u> </u>
WATER LEVEL DATA DATE 03-26 TIME 6:22 GWL CASING 30' SAND; olive-brown, fine-grained, saturated (SP) SAND; olive-brown, fine-grained, saturated (SP) SIGNATURE Hal Hansen	A	WM-	7/	20.0-	15"	20 —	90
WATER LEVEL DATA GEOLOGIST DATE 03-26 TIME 6:22 GWL 20.91 CASING 30' SAND; olive-brown, fine- grained, saturated (SP) Jal January SIGNATURE Hal Hansen	•	4	15	21.5		21 —	-]
WATER LEVEL DATA GEOLOGIST DATE 03-26 TIME 6:22 GWL 20.91 CASING 30' Hal Hansen						22 —	SAND: olive-hown fine-
DATE 03-26 TIME 6:22 CWL 20.91 CASING 30' Hal Hansen	_					23 —	grained, saturated (SP)
DATE 03-26 TIME 6:22 CWL 20.91 CASING 30' Hal Hansen		ילוט	ד כניבוין	EORT. D	<u>ן</u> אַרדיאַ	CEOT CO	TST
TIME 6:22 CWL 20.91 CASING 30' Hal Hansen					1		
GWL 20.91 Hal Hansen CASING 30'			<u> </u>			- Da	Hansen
CASING 301 Hal Hansen						SIGNAT	RE ;
DEPIH TYPED NAME					 -	Hal Har	nsen
	DE	DEPIH TYPED NAME					

			-	CATION	New a	PROJECT NUMBER: 40-90-	818	BORING NUMBER: 1	W-2	SHEET	2	OF	2
2	2315	Redw	con St cod Ro ley, C	ation : ad 'A	#5/ 4	CONTRACTOR: West H	azma	t Drillin	DRILL METHO	ING D:	H.S./	٨.	
ı						DRILLER: Gene R	einh	art	DRILL RIG:	ING	Ackei	<i>-</i>	
1 .				•		START: 10:30/	03-2	6-91	COMPI	ETED: 1	1:45/	/03-26	5–91
LA OW	ND NER:	Paul	Wilso	n		SURFACE ELEVATION: 155	.17		LOGGE	D BY:	Hal H	ianser	1
S TY M P P E L	S N A U	#0148	S I A N M T P L	S R A E M C	DEPIH	DESCRIPTIONS OF	MAT	ERTALS	CONTA	MINANT VATION	GI OBSI	NERAL RVATT	
PE	PB	ÄÄ	P T	P O L V	SCALE	AND CONDIT	TONS		1	UMENT: hNu	1	OTES	
Ē	ĒŔ	និ	Ĕ(ft)	Ē(in)	1"= 4"	<u> </u>			UNITS	: ppm			
CA	₩ - 105	15/ 16/ 18	25.0- 26.5	16"	25 — S 26 — 9	THITY SAND; oliv rained sand, sa	e-br tura	own, fine- ted (SM)	3				ļ
•					27 🛨			-]	21			
					28 —				}	•			
•			·		29 —			′ . -	1				
CA	MW- 2- 6	14/ 22/ 43	30.0 - 31.5	14"	30 —				9				
•	6	43			31 — 32 — T	otal Depth 31.5	fee]				İ
					33 1	our beput it.	100	_					
_			:		34				1				
					35 +			_	1				
•					36]				
					37 🛨			-	-				
_					38 —			-	1				
				-	39 —	•		· -	1				
•					40				1				
				,	41 + 42 + 42 + 42 + 42 + 42 + 42 + 42 +			_]				
•				,	43			<u>-</u>	-				
					44				- -				
•					45 +			-	1				
					46 —]				
•			:		47 —			_	1				
	WA'	TER L	EVEL D	ATA	GEOLOGIS	T					I		
DA		03-			9 7 1	01							
TI	ME	6:2	2		SIGNATURE	Hansen	\dashv	v.					
GW		20.	91		Hal Hanse							;	
CA DE	SING PIH	30	'		TYPED NAM		1						
						<u>-</u>	1						


				•	CATION ation :		PROJECT NUMBER: 40-	-9 0-818	BORING NUMBER: M	W−3 SHE	EET 1 OF 2
	2	2315	Redw	ood Ro ley, C	adi	#37 4	CONTRACTOR:	st Hazmat	t Drilling	DRILLING METHOD:	H.S.A.
							DRILLER: Ger	ne Reinha	art	DRILLING RIG:	Acker
							START: 1:4	10/03-26	-91	COMPLETE	D: 3:00/03-26-91
	IA W	ND NER:	Paul	Wilso	n		SURFACE ELEVATION:	157.13		LOGGED BY	: Hal Hansen
	S T	S N A U	BLOW BLOW	S I A N M T	S R A E M C					CONTAMINA OBSERVATI	ON GENERAL
	YPE	M M P B	OUN	I ₽	M C P O L V	1	DESCRIPTIONS AND CON	OF MATE NDITIONS	ERLALS	INSTRUMEN	
	E	LER	TS	E(ft)	E(in)	SCALE 1"= 4'				UNITS: pr	m
							—ASPHALIT AN	ND ROADB	ASE		
						1 + s	AND; brown, well sorted m	fine gra	ained, -		
						+	vell sorted m	morse (Si	P) —		•
						3 —			7		
			/	_ ^	20"	4				0	
	ΩA.	MW-	15/ 26/ 37	5.0- 6.5	18"	5 —				U	
		ī	37			6 —	-				
						7 +	IAY; dark gr clastic, mois	ay, ligh	ntly -		
						+ ⁻	orastic, mors	st (CL)	-		
			3.5.1	20.0	7"	9 +				0	!
	CA	MW-	16/ 18/ 32	10.0- 11.5	/"	10 —				U	
		2	32			11 -					
						12	SANDY CLAY; o moderately pl	olive-bro	own,		
						14 — ((CL)	tascic, i	MOISC -		
	73	NEAT	22/	15 A_	8"	15	-			1	:
	CA	MW-	50	15.0- 16.5	•	16				*	;
		3	for 5"			17					
						18				I	
						19 —			-		
	~3	367	E0 1	20.0	7"	20 + 5	SHITY CLAY; olastic, very	olive, m	oderately -	8	
	CA.	MW-	50 for 6"	20.0- 21.5	'	20 — F	mascic, very	MOISC	(CL)		
		4	B	,		+					
						22 ———			_		
						23 	•				
		WA	TER L	EVEL D	ATA	GEOLOGIS	ST				
	DA	TE	03-	26] 9,0	11				:
5	TI	ME	6:1	4		SIGNATURE	Hans	in	,		
 •	GW	L	21.	62			Hal Hansen				÷
	CA	SING PIH	30	'		TYPED NAME					
_		- 111		!	l	111111111111111111111111111111111111111	·	l			

				•	CATION			PROJECT NUMBER:	40-90-818	BORING NUMBER: M	: MW-3 SHEET 2 OF					
	2	2315	Redw	con St cod Ro ley, C	ation ; ad A	‡57 4		CONTRAC	TOR: West Hazma	at Drilling	DRILL METHO	ING D:	H.S.A			
			÷					DRILLER	Gene Reinh	nart	DRILL RIG:	ING	Acker	•		
								START:	1:40/03-26	6-91	COMPL	EIED:	3:00/	03-26	5-91	
	LAI	ND NER:	Paul	Wilso	n			SURFACE ELEVATION	ON: 157.13		LOGGE	D BY:	Hal H	lanser	1	
	STAY	SNAU	BLO	S I A N M T	R A E C O P L	DEPIH	·	DESCRIPT	IONS OF MAI	TERTALS		IMANIM NOITAV	GE	NERAI RVATI	ION	
	A Y M P P L E		BLOWERS	P L E(ft)	PO LV E(in)	SCALE 1"= 4"		AND	CONDITIONS	5		UMENT: hNu : ppm	N	OTES		
5	E CA	MW-		25.0- 26.5		25	(IAYEY SAI	ND; olive-	orown, —						
5		3 - 5	50 for 6"	26.5		26		nedium-gra (SC)	ained sand,	, saturated						
			Ů		ļ !	27 - 28 -	-			_		-				
					}	29	<u> </u>									
	CA	MW- 3-	14/ 50	30.0- 31.5	8"	30 -					0		!			
		6	for 6"			31 -		Intal Dem	th 31.5 fe							
						33	 _	rour bep	Q1 J1.5 10.	-						
	į					34										
						35 36	<u>-</u>									
						37 —				<u>-</u>	1					
						38										
						39 - 40 -	-									
						41	- -			—						
				<u> </u>		42	- 									
						43 -	-			<u></u>	1					
_				:		45	<u> </u>			<u>.</u>	-					
						46	<u>-</u>									
						47 —										
		WA		EVEL D	ATA	GEOI	LOGI:	ST								
		TE ME	03-			- Wa	L'	Vano	in							
	GW		21.		_	SIGN	ATURI	E						;		
	CA	SING PIH	—			Hal I										

Acton	Mickelson • van Dam, Inc. ing Scientists, Engineers, and Geologists				F 22	rme 2315	r B∢	tion: •acon #57 dwood Rd		Velle	ıy, ÇA
1	of Soil Boring MW-4	Drilling B-57		Fore Samp Drill	stron ling Rig	n Meti with	hods Ho	s: ollow Stem			
Casing I	Elevation: 151.96 ft	fitted	with 6	" bro	9d 3;	amp	le s				
			rilling tart	3	\dashv		Da -13	1 <u>e</u> i–93	11:-	me 40	
<u> </u>	on Depth: 28 feet	Fi	nish				-13	-93	12:0	00	
	Logged by: Hol E. Honson	O/W/O	VA 10	u Pl:	Pro		-	ter Depth	17.55	ft	
Depti (feet	Checked by:	[윤 [<u>β</u>	=	,6 In	Drive	Heest'd		÷	9	(ppm)
) (,	DESCRIPTION	Graphic Log	Boring,	Deta	Blows/6	Inahes Driven	inches M	Comm	ents	Sample	field OVIL/DVA Reading (ppm)
0 1 2 3 4 5 6 7 8 9 10 11	Igwn SILTY CLAY, olive brown, moderately plastic, moist (CL) GRAYELLY SAND, brown, fine— to coarse—grained, maist (SW)	CL.			8 9 10 50 6	18	18			WW4-2 WW4-1	0
11 12 13 14 15 16 17 18 19 20 21 22 23	SILTY CLAY, brown, moderately plastic, very moist (CL) SILTY SAND, brown, fine-grained, saturated (SM) SAND, greenish gray, fine-grained saturated (SP)	2 S 1 1 1 1 1 1 1 1 1			27 37 40	18				S WW4-4 WW4-3	0
24 25	-	SP		1.1	8 12 14	18	6			MW4-5	0


Acton • Mickelson • van Dam, Consulting Scientists, Engineers, and Geolog	nc.	Pro	ect 1.01	No	#	arme	ır B	tion: •ccon ∦57 dwood Rd		Voll*	
Log of Soil Boring MW-4		Driller: Drilling 8-57	: Eric ; and Mobile	For San Drl	r: Wo estro apling	odwa m Met	rd hod: h He	Drilling s: ollow Stem	Auger		
Casing Elevation: 151.96 ft		fitted		6" Ь		som		on sample siceves to	,	me	
			art	9				5-93	11:4		
Completion Depth: 28 feet		-	nish			0.5	-13	93	12:0	00	
Logged by: Hal E. Hansen		0/M/0	VA h	lu P	10 U	lth obe		ter Depth	17.55	ft	
Checked by:		္ဗ			ع أ		Resov'd			*	\$ E
Checked by: DESCRIPTION		Graphic Log	Boring,	Well Detai	Blows /6	Inohes Driven	Inches Re	Comm	ents	Sample	Fleid OVW/OVA Reading (ppm)
25 SAND, greenish gray, fine-grained, saturated (SP)		SP			12 14		8			MW4-5	0
27 🕂									-		
!											
28 Terminated drilling at 28 feet.				7	Ĩ			٠.		,	
29 🛨											
30 🕂											
31 ++							ı				
32 🕂											
33 🕂											
34 +]	İ				
35 ++											
Γ [−-]											
36 +											
37 🕁										İ	
38 🕂											1
39 ++							ŀ				
40 🕂									1		
41 🕂											
42 🕂		1									
43											
44 +							İ				
 											
45		ľ								İ	
46 +											
47											
48 🕌											
49 🕌					j						
50 🗍											

11 1011		 				
Acton - Mickelson - van Dam, Inc.	Project No.		cation: or Beacon #51	7.4		
Consulting Scientists, Engineers, and Geologists	1	22315	Redwood Rd	, Castro \	Valley,	, cı
	Orilling Company: Driller: Eric Fares	trom	_			
Log of Soil Boring MW-6	Drilling and Sample 8-57 Mobile Drill	Rig wiff	h Hollow Sterr			
Casing Elevation: 153.96 ft	California modifie fitted with 6" bra			ir .		
	Drilling		Date	Tin	ne	
Completion Depth: 30 feet	Start	,	-13-93	8:40		
Logged by: Hal E. Hansen	Finish		-13-93 Water Depth	9:05		
	OVM/OVA NNU PID		2 Debiu	25.50		\$?
	Graphic Log Boring/ Well Detail	Blows/6 In		-	<u>a</u>	Field OVIL/OVA Reading (ppm)
DESCRIPTION	Gra Lo Bor Wel	Blows/6 Inches Dri	comm	nents	Sample	ם 1914 כי השפלה
			-			
0 asphalt / roadbase	0101010131					
SILTY CLAY, dark gray, moderately plastic, slightly moist (CL)						
2 +				,		
3 —].	
1 4 开						
5 color change to olive		5			<u>.</u>	
6 +		8 18 18	18		MW6-1	٥
				İ		
1 7 1						
8 +		.				
9 SILTY SAND, yellowish brown, fine-grained, maist (SM)				-		
10		12			9-2	
111 ++		17 18	18		MW6-	٥
12 🗐						
13 🕂					Ī	
111						
SILTY CLAY, clive, moderately plastic, very moist (CL)					_	
i S 🔼		5			MW6-3	
16 +		21 18	18		≨ '	°
117 +						1
18 🛨						
19 +		7			.	
20 SANDY SILT, brown, non-plastic, fine-grained sand, saturated (ML)		14			₩	,
21 +		16 18	18	1	_	
22 开						
23 🕂						
J. ┡━┥ ╞		5			0 - 9 M	1
25 -		19 18 1	5	[]	£ 1	ٔ ا

		.,							
	Acton - Mickelson - van Dam, Inc.	Proj	ect No.			tion:			
	Acion - mickelson - van built, ille.	19021	1.01	Form	1er 9	eccon # 57 dwood Rd	74 Contra	V-II.	54
	Consulting Scientists, Engineers, and Geologists	12,,,,,,,,,,,,,	Сотралу:	Woodw	ord	Drilling	COSTFO	¥ (3) (1)	y, CX
	Log of Soil Boring MW-7	Oriller:	Eric Fores	strom					
İ		8-57	Mobile Drill	Rig wi	th H	ollow Stem			
i	Casing Elevation: 156.09 ft	Califor	nia modlfie with 6" bro	ed spilt 133 san	-spo nple	on sample sleeves	Г		
	120.03		illing	T	Da		Ti	me	
1			art	- 0	5-13	5-93	9:5	٥	
	Completion Depth: 30 feet	- Fi	nish	C	5-13	3-93	10:	40	
	Logged by: Hal E. Hansen	יס/אעס	/A hnu PIC) with Probe	Wo	iter Depth	22.64	fŧ	
ļ	Checked by: DFSCRIPTION	Graphic Log	6 -	/6 tn	7.			782	A (Ed
	DESCRIPTION	급하	Boring, Well Detail	lows/6				Sample	9 5
ļ	- S DESCRIPTION	ر ر	Bo We De	Blows,	frehea	Comm	ents	Sar	Fleid OVIL/DVA Reading (ppm)
ł									
	0 asphalt	0:0:0:0:0:0:				İ			
١	SILTY CLAY, dark gray, moderately plastic, slightly moist (CL)		\bowtie		İ			ĺ	}
1	2 +	a	₩ ₩				-		
	3 🕂		₩ ₩				•		
1	<u> </u>	0.0000000	₩ ₩	1					
	GRAVELLY SAND, brown, fine- to course- grained, moist (SM)		₩ ₩	19				-	
	5		፠ ፠	21 23 18	18			M₩7-	
	6 🕂			23 16	` '°	i		_	"
1	7 🛱	6	₩ ₩						
	H !		፠ ፠						
	8 🛨	8	፠ ፠						
ı	9 🛨	8							
	10 🖟	sw		17					
İ	11 🕂			25				WW7-2	
	· · · -			40 18	18			ž	0
	12 📊								ł
	13 🛨								-
	14 🕂							-	
	15			_				_	
ł	i i i i i i i i i i i i i i i i i i i			25 50			İ	- LMM	
1	16			6 12	12			٤	0
l '	17 🕁								
۱	18 CLAYEY SILT, brown, non-plastic,								
	saturated (ML)			İ				ļ	- 1
1	<u></u>			7				Ţ,	
	20 -			11 23 18	1.8			MW7-4	
i	21 🛨				"			₹	0
2	22 🕂	ML =							İ
2	23 🕂]		
	24 🕂						1		
į.	F F		=	8				WW7-5	
4	25			6 18	18			ž	2
_							ī	i	1

	Acton - Mickelson - van Dam, Inc.	Proj 19021		No	F	orme	r B	tion: eacon #57 dwood Rd,	74 Costro	Val	av.	
	Consulting Scientists, Engineers, and Geologists Log of Soil Boring MW-7	Drilling Driller: Drilling	Eric and	For Sam	r: Wo estroi pling	odwd m Met	rd hod:	Drilling s:			<u>-,,-</u>	
	Casing Elevation: 156.09 ft		nla m	rodif	ied s	plit-	зро	oliow Stem on sample sleeves				
		Dr	illin				Dα		Ti	me		
	Completion Depth: 30 feet		<u>art</u>					Z-93	9:5			_
- 1	Logged by: Hal E. Hansen	OVM/OV	nish /A hh		10 -			i-93 ter Depth	22.64	40		
	Checked by:	.ల			<u> </u>	Ę	Resev'd			778	×	E
	Checked by: DESCRIPTION	Graphic Log	Boring,	well Defail	Blows/6	Inches Driven	Inahee Ree	Comm	ents	Sample	Fletd OVL/OVA	(b) Bulpus
	continued from above CLAYEY SILT, brown, non-plastic				8	1				MW7-5		Ì
1	26 saturated (ML)	u.			16		18	J		3	2	
					함 				-			
ı	SILTY SAND, greenish blue, fine- to							-	٠.			
	28 coarse-grained, saturated, common plastic fines (SM)									٥		I
۱	29 🕂	- SM -			22			•		MW7-6		
1	Terminated drilling at 30 feet.	· · - ·	₩⊨	₹	23	18	12			1 3	٥	1
	31 🕌	Ì										ļ
	32 -						İ				İ	
	33 🗐	ŀ					j					1
	34 🕂											
1	35											ĺ
ı	36 🕂											
ı	<u>}</u>				İ							İ
ı	37 🕂		ĺ			<u> </u> .						
	38 +	-										l
1	39											
	40 🛨											
	41 +	1										
	42 🕂											l
	43 🕌]										ı
	44 🕂				ı				ĺ			
	45 —				ĺ							
4	46 🗍					ł			ľ			
-	47 🕂				-							
	48 🕂											:
	19								İ			
	50											
`	~ Н ·	- 1		-					- 1		Į	

	Acton - Mickelson - van Dam, Inc.	Proj	ect	No				tion:			
	Consulting Scientists, Engineers, and Geologists	1902			2	2315	Re	eacon # 57 <u>dwo</u> od Rd,		Yall <u>e</u>	y, CA
		Drilling Driller:	Com Eric	pany For	: Woo	odwa n	rd I	Drilling			
	Log of Soil Boring MW-8	Drilling	and	Sam	pling	Met		s: ollow Stem			
ł	·	Califo	rnia n	nodif	ied s	piit-	spo	on sample			
١	Casing Elevation: 158.04 ft		rillin		rass :		Da	eleeves to	Т:	me	
1			art	9				1 - 93	3:0		
ŀ	Completion Depth: 35 feet		nish			05	-13	-93	3:40		
1	Logged by: Hal E. Hansen	OVM/O		Nu P	ID wi	th obe	Wa	ter Depth	21.55	ff	
l	Checked by: DFSCRIPTION	Graphic Log	/6	_	드	5	P.AGGE	İ		782	Field OVIL/OVA Reading (ppm)
	DESCRIPTION	dp 0	기년 :	well Detail	Blows/6	Inohes Oriven				Sample	OVIL,
ļ	DESCRIPTION	لق	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ž <u>a</u>	a a	ş	inches	Comm	ents	Sa	Field
1	25 continued from above SILTY CLAY, brown, moderately plastic,				9 17					WWB-5	
	solutated (CL)	- C			22	18	18			XX.	0
ı	26 +										
١	27 SILTY SAND, greenish gray, fine-										
	28 grained, saturated (SM)	==:	ı								
	29 🕂	— · · · ·			8					ې	
	30 🗐	SM .		∄▒	13	18	18			MWB-6	
1	31 -									_	
	32						1				
1	SAND, greenish gray, medium-grained, 🔯										
ł		SP							;		
ı	34 ++				50					WW8-7	Ì
	Terminated drilling at 35 feet.				5	5	5			*	0
١,	36 🕕									l	
] ,	37 🗐			1						İ	
	38 🕂										-
ı	39										
1									1	İ	
	40 🛨										I
	41 ++	İ									- 1
4	42 					ı					
4	43 🕂					ŀ				İ	
4	14 🗐				İ				ļ.		
	45 🛱										
	16 +										
	 										
	17 +										
	18 🛨										
. 4	19 								1		
5	50 	İ					ļ		}		
	<u></u>	ı	- 1	1 1	- 1	- 1	- 1		1		

APPENDIX B

SOIL SAMPLE ANALYTICAL RESULTS LOCATIONS AND ANALYTICAL RESULTS (SSB)

TABLE 1

SOIL SAMPLE ANALYTICAL RESULTS

Former Beacon Station #574

22315 Redwood Road, Castro Valley, California (concentrations in milligrams per kilogram)

Monitoring Well	Date Sampled	Depth Sampled (feet)	Benzene	Toluene	Ethylbenzene	Xylenes	TPHg*	TPHd*
MW-1	03-26-91	15	0.16	0.10	0.010	0.050	<1.0	<10
	03-26-91	20	13	110	33	300	3,200	<10
MW-2	03-26-91	10	0.013	0.26	0.11	0.68	8.1	<10
	03-26-91	15	19	120	42	240	3,200	<10
	03-26-91	20	0.39	0.22	0.11	0.41	14,000	<10
MW-3	03-26-91	15	<0.005	<0.005	<0.005	<0.005	<1.0	<10
	03-26-91	20	<0.005	0.18	0.44	5.9	230	<10
MW-4	05/14/93	5	<0.0050	<0.0050	<0.0050	<0.0050	<0.50	NA
	05/14/93	15	<0.0050	<0.0050	<0.0050	<0.0050	<0.50	NA
	05/14/93	20	<0.0050	<0.0050	<0.0050	<0.0050	<0.50	NA
MW-5	05/14/93	5	<0.0050	<0.0050	<0.0050	<0.0050	<0.50	NA
	05/14/93	10	<0.0050	<0.0050	<0.0050	<0.0050	<0.50	NA
	05/14/93	15	<0.0050	<0.0050	<0.0050	<0.0050	<0.50	NA
	05/14/93	20	<0.0050	<0.0050	<0.0050	<0.0050	<0.50	NA
MW-6	05/14/93	5	<0.0050	<0.0050	<0.0050	<0.0050	<0.50	NA
	05/14/93	10	<0.0050	<0.0050	<0.0050	<0.0050	<0.50	NA
	05/14/93	15	<0.0050	<0.0050	<0.0050	<0.0050	<0.50	NA
	05/14/93	20	<0.0050	<0.0050	<0.0050	<0.0050	<0.50	NA
MW-7	05/14/93	5	<0.0050	<0.0050	<0.0050	<0.0050	<0.50	NA
	05/14/93	10	<0.0050	<0.0050	<0.0050	<0.0050	<0.50	NA
	05/14/93	15	<0.0050	<0.0050	<0.0050	<0.0050	<0.50	NA
	05/14/93	20	<0.0050	<0.0050	<0.0050	<0.0050	<0.50	NA
MW-8	05/14/93	5	<0.0050	<0.0050	<0.0050	<0.0050	<0.50	NA
	05/14/93	10	<0.0050	<0.0050	<0.0050	<0.0050	<0.50	NA
	05/14/93	15	<0.0050	<0.0050	<0.0050	<0.0050	<0.50	NA
	05/14/93	20	<0.0050	<0.0050	<0.0050	<0.0050	<0.50	NA

^aTPHg = Total petroleum hydrocarbons as gasoline. ^bTPHd = Total petroleum hydrocarbons as diesel.

APPENDIX C

MONITORING WELL CONSTRUCTION DIAGRAMS COLLECTED FROM SOIL STOCKPILE (SSB)

INSTALLATION OF FLUSH GRADE MONITORING WELL

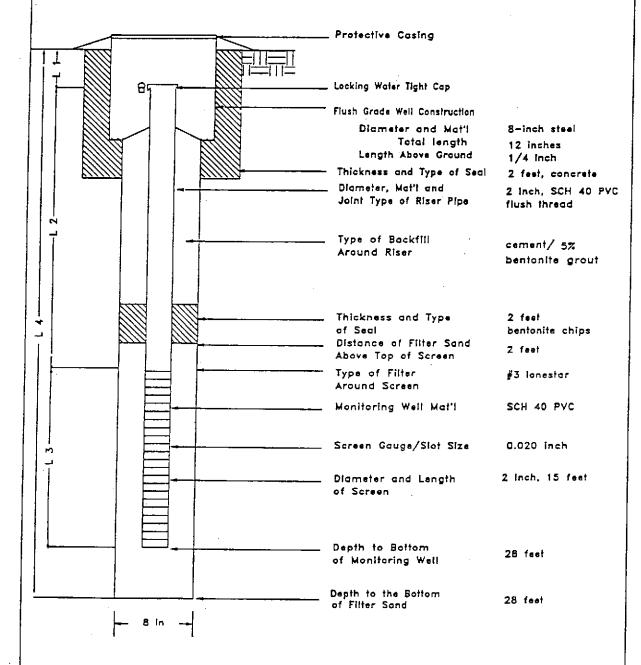
PROJECT Former Beacon Station #574 MONITORING WELL NO. 22315 Redwood Road, Castro Valley, ELEVATIONS, TOP OF RISER 156.55 CA GROUND LEVEL _ DELTA NO. 40-90-818 LECKING VATER TIGHT CAP FLUSH GRODE VELL CONSTRUCTION 12-inch steel BLANETER AND MATERIAL 12 inches TUTAL LENGTH 才 inch LENGTH ABOVE GROUND 2-feet concrete - THEODYESS AND TYPE OF SEAL 4-inch Sch 40 PVC STANETER, HATERIAL AND JOINT TYPE OF RISER PIPE .. Flush Thread Neat cement containing - TYPE OF BACKFOLL AROUND RESER 5% bentonite 2-feet bentonite THICKNESS AND TYPE OF SEAL pellets 2 feet DISTANCE OF FILTER SAND ABOVE TOP OF SCREEN #3 lonestar TYPE OF FILTER AROUND SCREEN Sch 40 PVC HONETERING VELL HATERIAL 0.01 inch SCREEN GAUGE OR SIZE OF OPENINGS COLUT SIZED -4 inch x 20 feet DIAMETER AND LENGTH OF SCREEN 30 feet - DEPTH TELTHE BOITON OF HONOTORING VELL 30 feet DEPTH TO THE BOTTOM OF FILTER SAND THECKNESS AND TYPE OF SEAL 10 inches - DIAHETER OF BOREHOLE 0.25 MONITORING VELL VATER LEVEL MEASUREMENTS 9.75 WATER LEVEL = TIME DATE 6:29 22.43 3-26-91 20 30 INSTALLATION COMPLETED 3/26/91 DATE Top of casing 10:30 TDE Environmental Consultants, Inc. 1022 B/3-89

MONITURING VELL

PROJECT Former Beacon Station #574 22315 Redwood Road, Castro	WONITORING WELL NO. MW-2 O Valley, ELEVATIONS, TOP OF RISER 155.17 CA CROUND LEVEL
DELTA NO. 40-90-818	CA GROUND LEVEL
PROTECTIV	EVE CASING
COCKING VATES	THE LEAST AND MATERIAL 12 inches
THUCKS	LENGTH ABOVE GROUND ½ inch 2-feet concrete 2-feet concrete
MANETER, NATER	RIAL AND JUNE TYPE OF RISER PIPE 4-inch Sch 40 PVC. Flush Thread
TYPE OF SACOF	Neat cement containing 5% bentonite
THEORYSESS AND	0 feet
<u> </u>	#3 lonestar
HONOTORING VE	
	UPHGTH OF SCREEN O.01 inch 4 inch x 20 feet
DEPTH TO THE	BOTTOM OF MONITORING VELL 30 feet
DEPTH TO THE	BOTTOM OF FILTER SAME 30 feet
THOOKNESS AND	D TYPE OF SEAL N/A
- DIAMETER OF I	ionatus 10 inches
0.25 FT.	MONITORING VELL VATER LEVEL MEASUREMENTS
9.75 FT.	DATE TIME VATER LEVEL *
L 3 = FT.	3-26-91 6:22 20.91
L 4 = FT.	
DATE 3/26/91 12:45	Top of casing
	Environmental

.1022 B/3-89

INSTALLATION OF FLUSH GRADE MONITORING WELL


PROJECT Former Beacon Station #574 MONITORING VELL NO. MW-3 22315 Redwood Road, Castro Valley, ELEVATIONS, TOP OF RISER 157.13 CA DELTA NO. 40-90-818 GROUND LEVEL _____ PRITECTIVE CASING LUCKING VATER TIGHT CAP - FLUSH GROBE VOLL CONSTRUCTION 12-inch steel STANETER AND MATERIAL 12 inches TOTAL LENGTH inch LENGTH ABOVE GROUND 2-feet concrete THE TO STIT DIA 223-KINHT -4-inch Sch 40 PVC - DIAMETER, MATERIAL AND JOINT TYPE OF RISER PIPE _ Flush Thread Neat cement containing - TYPE OF BACKFULL AROUND RESER 5% bentonite 2 feet bentonite - THECKNESS AND TYPE OF SEAL pellets 2 feet DISTANCE OF FILTER SANS ABOVE TOP OF SCREEK #3 lonestar TYPE OF FILTER AROUND SCREEN Sch 40 PVC - HONITORING VELL HATERIAL - screen сачае ок size of оменика сашт size 0.01 inch 4 inch x 20 feet - DIAMETER AND LENGTH OF SCREEN 30 feet - DEPTH TO THE BOTTOM OF MONOTORING VELL. 30 feet - DEPTH TO THE BOTTOM OF FILTER SAMB N/A - THICKNESS AND TYPE OF SEAL 10 inches - DIAHETER OF BOREHOLE 0.25 MUNITURING VELL VATER LEVEL MEASUREMENTS 9.75 DATE TIME VATER LEVEL ≥ 20 3-26-91 6:14 21_62 30 DISTALLATION CONFLETED BATE 3/26/91 TD46 4:30 ■ NEASURE POINT: Top of casing Consultants, Inc. 1022 B/3-89

- MONITORING WELL -CONSTRUCTION DETAILS

PROJECT: Former Beacon #574 22315 Redwood Rd Castro Valley, CA

MONITORING WELL NO .: MW-4

ELEVATION: 151.96 ft

0.25 ft L2 = 12.75 ft

L3 = 15 ft

28 ft

MONITORING WELL WATER LEVEL MEASUREMENTS

DATE	TIME	WATER LEVEL*
05-18-93	8:22	17.55 ft

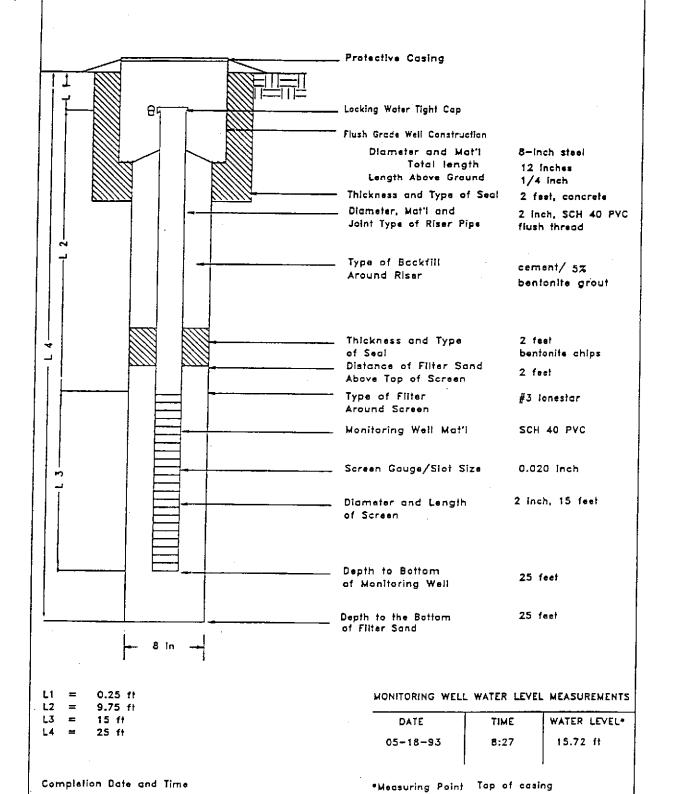
Completion Date and Time

05-13-93 12:25

*Measuring Point Top of casing

. ACTON • MICKELSON • VAN DAM, INC. ___

File #19021010


MONITORING WELL CONSTRUCTION DETAILS

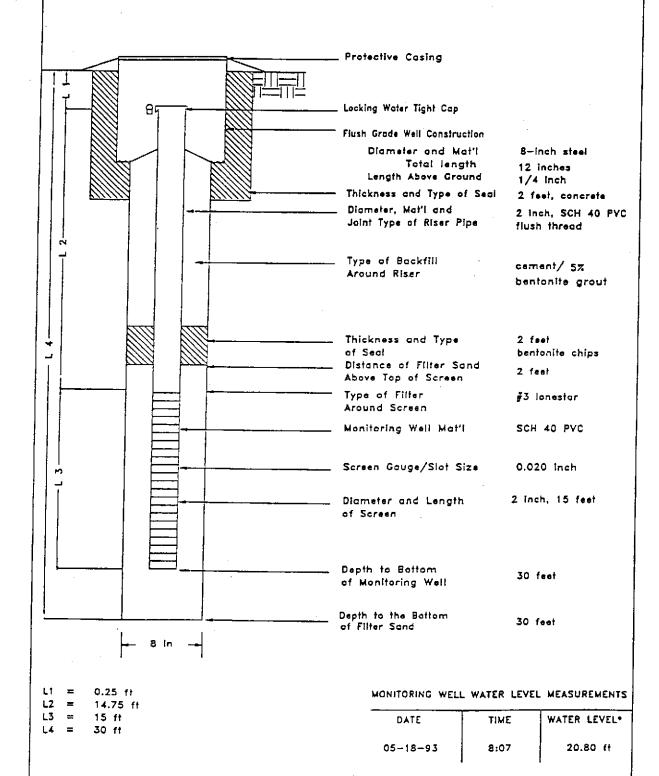
PROJECT: Former Beacon #574 22315 Redwood Rd

Castro Valley, CA

MONITORING WELL NO.: MW-5

ELEVATION: 148.68 ft

ACTON • MICKELSON • VAN DAM, INC. ____


05-13-93 2:30

- MONITORING WELL -CONSTRUCTION DETAILS

PROJECT: Former Beacon #574 22315 Radwood Rd Castro Valley, CA

MONITORING WELL NO .: MW-5

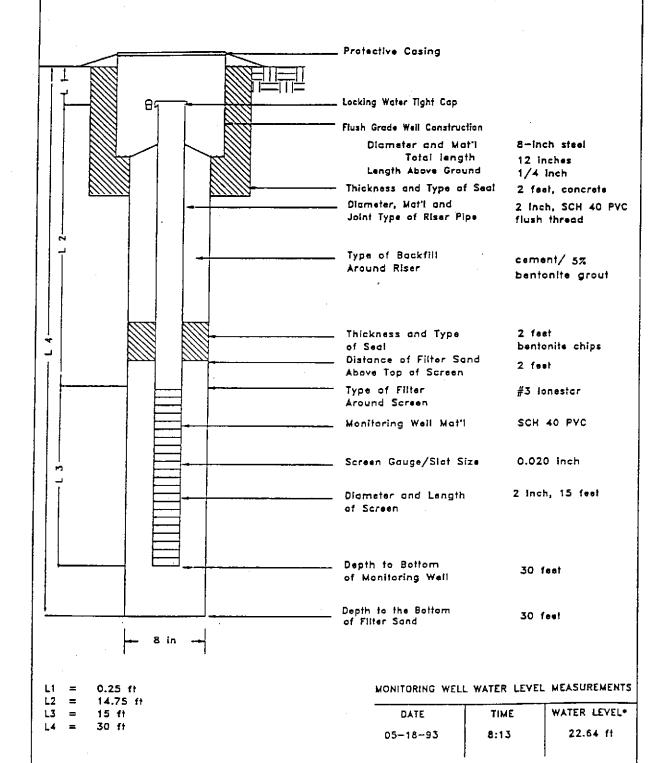
ELEVATION: 153.96 ft

Completion Data and Time 05-13-93 9:30

*Measuring Point Top of casing

ACTON . MICKELSON . VAN DAM, INC. ___

File #19021012


MONITORING WELL -- CONSTRUCTION DETAILS

PROJECT: Former Beacon #574

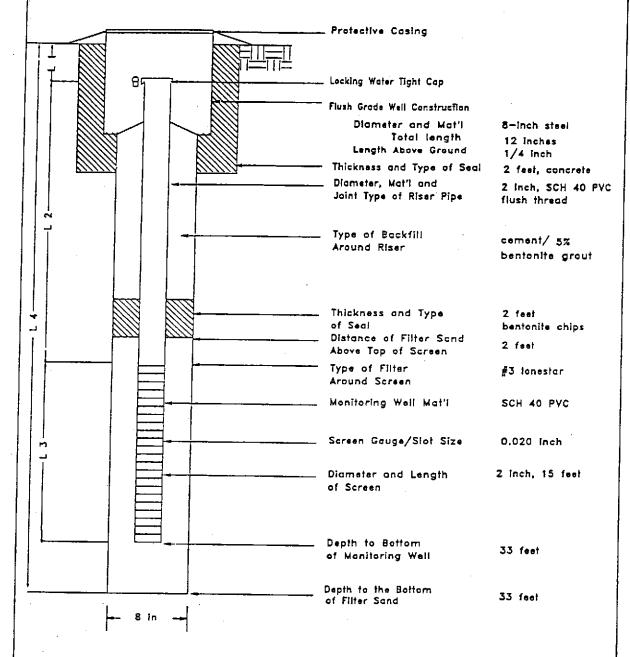
22315 Redwood Rd Castro Valley, CA MONITORING WELL NO .: MW-7

ELEVATION: 156.09 ft

*Measuring Point Top of casing

ACTON . MICKELSON . VAN DAM, INC. __

Completion Date and Time


05-13-93 10:55

MONITORING WELL — CONSTRUCTION DETAILS

PROJECT: Former Beacon #574 22315 Redwood Rd Castro Valley, CA

MONITORING WELL NO .: MW-8

ELEVATION: 158.04 ft

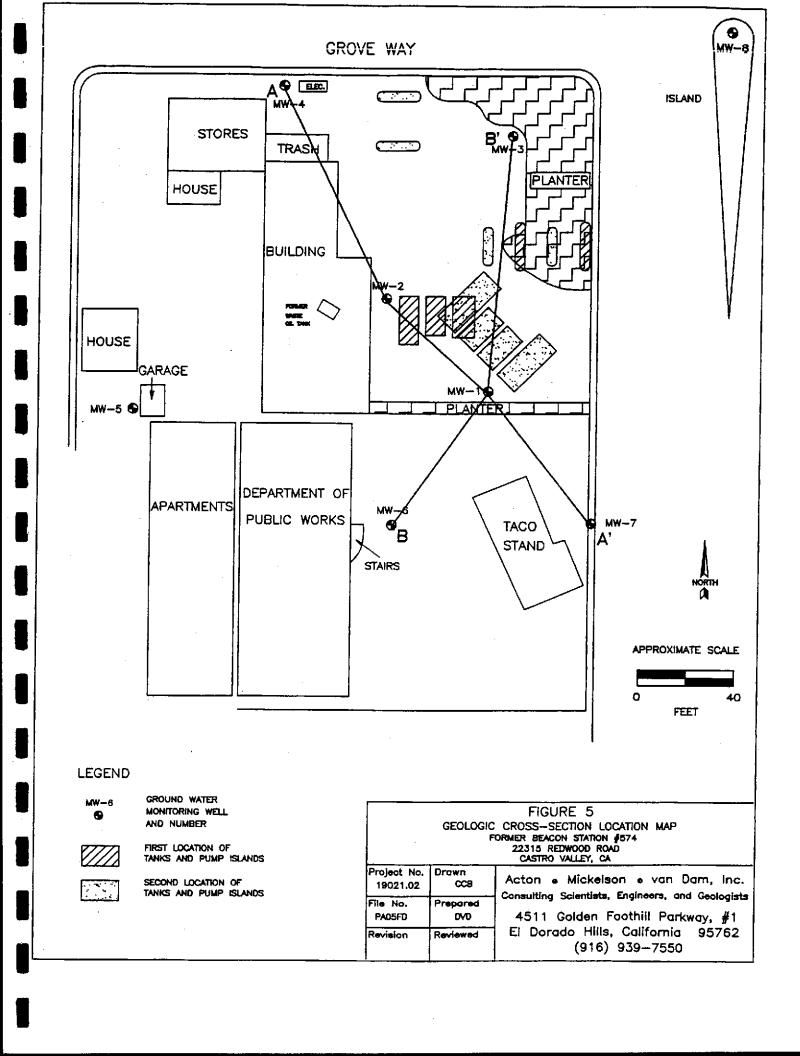
L1 = 0.25 ft L2 = 17.75 ft L3 = 15 ft

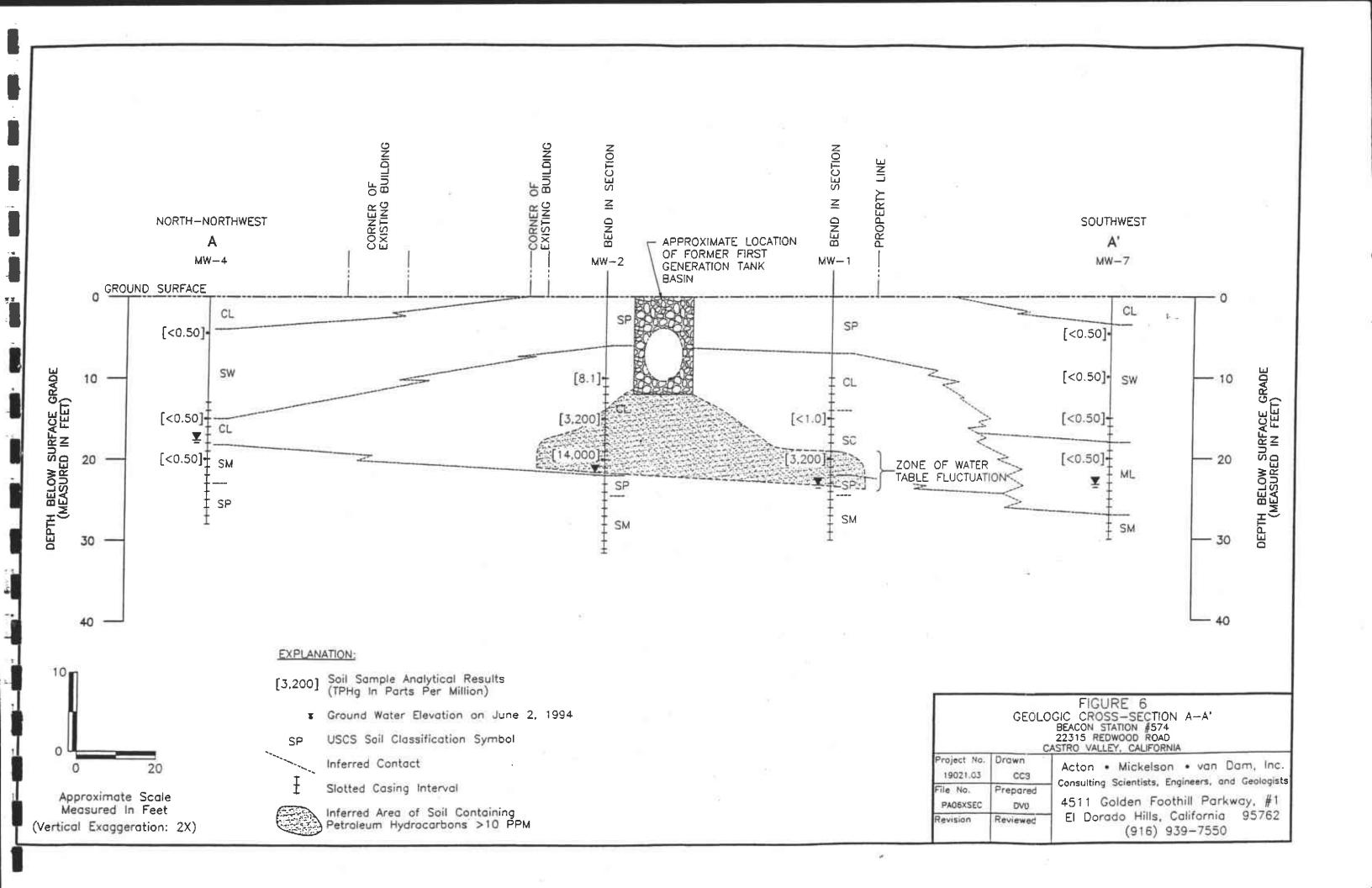
L4 = 33 ft

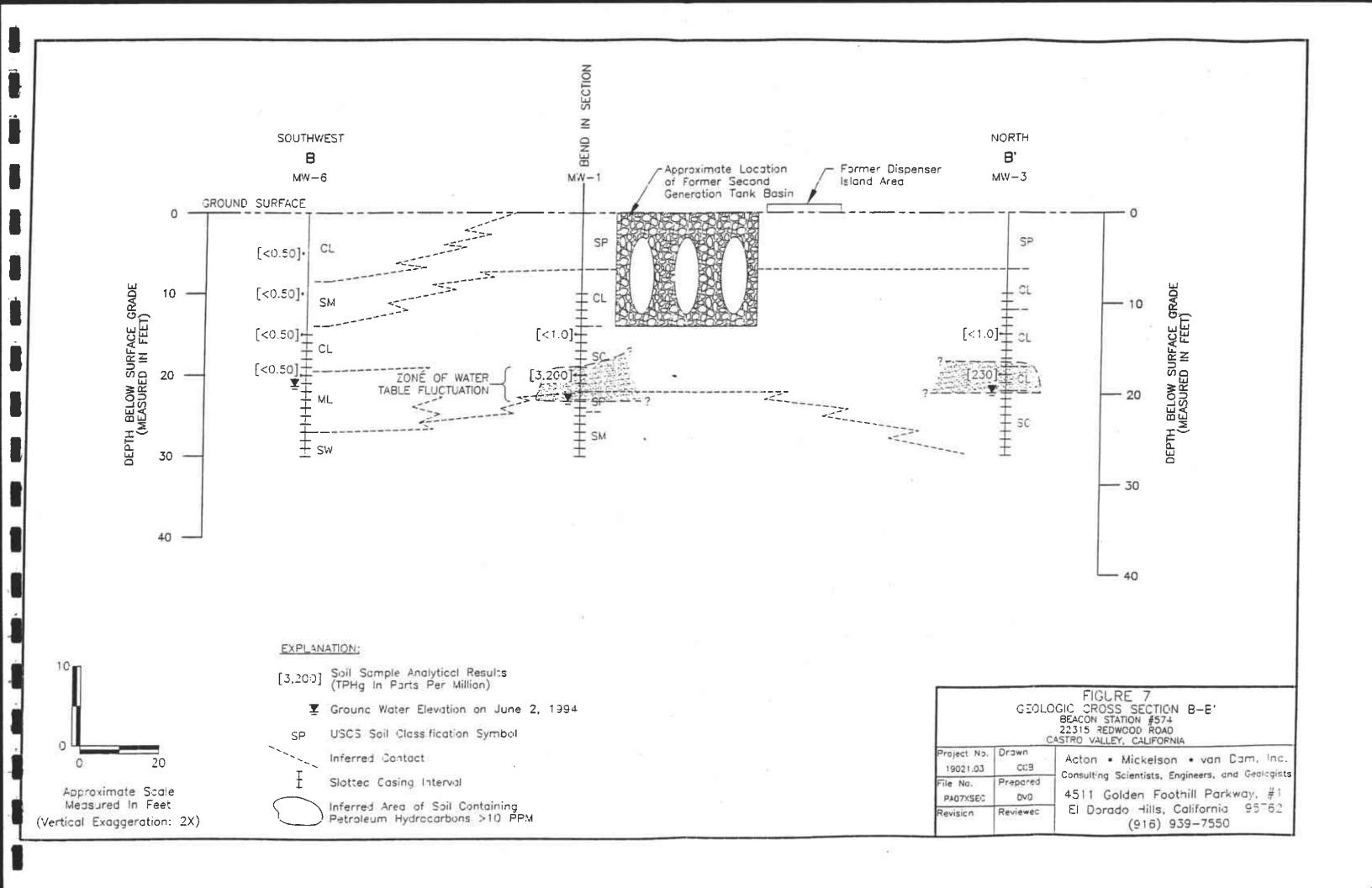
Completion Date and Time

05-13-93 5:00

MONITORING WELL WATER LEVEL MEASUREMENTS


DATE	TIME	WATER LEVEL*
05-18-93	8:16	21.55 ft


*Measuring Point Top of casing


ACTON . MICKELSON . VAN DAM, INC. ___

File #19021014

APPENDIX D GEOLOGIC CROSS-SECTIONS

APPENDIX E ASTM LOOK-UP TABLES FOR SOIL AND GROUND WATER

Table 4
Tier 1 Risk-Based Screening Level (RBSL)
Look-up Table - Groundwater

Exposure Pathway	Receptor Scenario	Target Level	Benzene	Ethylbenzene	Toluene	Xylene (Mixed)	Naphthalene	Benzo(a)pyrene
Groundwater	Residential	Carcinogenic Risk = 1 x 10 ⁻⁶	1.10		_			> S
· -		Chronic HQ = 1		> S	> S	> S	> S	
	Commercial	Carcinogenic Risk = 1 x 10 ⁻⁵	1.84					> S
		Chronic HQ = 1		> S	> S	> \$	> S	
Groundwater Ingestion		MCLs	5.00 x 10 ⁻³	7.00 x 10 ⁻¹	1.00	1.00 x 10 ¹	NA	2.00 x 10 ⁻⁴
	Residential	Carcinogenic Risk = 1 x 10 ⁸	2.94 x 10 ⁻³					1.17 x 10 ⁻⁵
		Chronic HQ = 1		3.65	7.30	7.30 x 10 ¹	1.46 x 10 ⁻¹	
Groundwater - Vapor ntrusion from	Commercial/ Industrial	Carcinogenic Risk - 1 x 10 ⁻⁶	9.87 x 10 ⁻²					3.92 x 10 ⁻⁴
	moustriai	Chronic HQ = 1		1.02 x 10 ¹	2.04 x 10 ¹	> \$	4.09 x 10 ⁻¹	
	Residential	Carcinogenic Risk = 1 x 10 ⁻⁶	2.38 x 10 ⁻²					·> S
Groundwater to		Chronic HQ = 1		7.75 x 10 ¹	3.28 x 10 ¹	> S	4.74	
Buildings (mg/L)	Commercial/	Carcinogenic Risk = 1 x 10 ⁻⁵	7.39 x 10 ⁻¹				-	> S
	Industrial	Chronic HQ = 1	\ \frac{1}{2}	> S	8.50 x 101	> S	1.23 x 10 ¹	

> S = Selected risk level is not exceeded for all possible dissolved levels (< = pure component solubility)

Table 5
Tier 1 Risk-Based Screening Level (RBSL)
Look-up Table - Soil

Exposure Pathway	Receptor Scenario	Target Level	Benzene	Ethylbenzene	Toluene	Xylene (Mixed)	Naphthalene	Benzo(a)pyrene
Soil Volatilization to	Residential	Carcinogenic Risk = 1 x 10 ⁻⁶	2.72 x 10 ⁻¹					RES
Outdoor Air (mg/kg)		Chronic HQ = 1		RES	RES	RES	RES	
	Commercial/	Carcinogenic Risk = 1 x 10 ⁻⁵	4.57				 	RES
	Industrial	Chronic HQ = 1		RES	RES	RES	RES	
Soil - Vapor Intrusion	Residential	Carcinogenic Risk = 1 x 10 ⁻⁸	5.37 x 10 ⁻³					RES
from Soil to Buildings (mg/kg)		Chronic HQ = 1		4.27 x 10 ²	2.06 x 10 ¹	RES	4.07 x 10 ¹	
	Commercial/	Carcinogenic Risk = 1 x 10 ⁻⁵	1.09 x 10 ⁻¹					RES
	industriai	Chronic HQ = 1		1.10 x 10 ³	5.45 x 10 ¹	RES	1.07 x 10 ²	
Surficial Soil (0 to 3 feet) Ingestion/Dermal/	Industrial Residential	Carcinogenic Risk = 1 x 10 ⁻⁸	5.82					1.30 x 10 ⁻¹
Inhalation (mg/kg)		Chronic HQ ≃ 1		7.83 x 10 ³	1.33 x 10 ⁴	1.45 x 10 ⁵	9.77 x 10 ²	
	Residential Commercial/ Industrial	Carcinogenic Risk ≈ 1 x 10 ⁻⁵	1.00 x 10 ²					3.04 x 10 ⁻¹
Soil - Leachate to Protect Groundwater Ingestion Target Level	industriai	Chronic HQ = 1		1.15 x 10 ⁴	1.87 x 10 ⁴	2.08 x 10 ⁵	1.90 x 10 ³	
		MCLs	2.93 x 10 ⁻²	1.10 x 10 ²	1.77	3.05 x 10 ²	NA	9.42
	Residential	Carcinogenic Risk = 1 x 10 ⁸	1.72 x 10 ⁻²					5.90 x 10 ⁻¹
(mg/kg)		Chronic HQ = 1		5.75 x 10 ²	1.29 x 10 ²	RES	2.29 x 10 ¹	
	Commercial	Carcinogenic Risk - 1 x 10 ⁻⁵	5.78 x 10 ⁻¹					1.85
	Industrial	Chronic HQ ≈ 1		1.61 x 10 ³	3.61 x 10 ²	RES	6.42 x 10 ¹	

RES = Selected risk level is not exceeded for pure compound present at any concentration

APPENDIX F

PHYSICAL, CHEMICAL, CONCENTRATION, AND TOXICITY INFORMATION FOR BETX COMPOUNDS

RBCA CHEMICAL DATABASE

Physical Property Data

			Molecu	ılar			ision icients		log (Ko log(K	•	Henry's l	Law Consta	nt	Vapor Pressur	e	Solubility	,			
			Weig	ht	in air		in wate	∍r	(@ 20 - :	25 C)	(@ 2	20 - 25 C)		(@ 20 - 25	C)	(@ 20 - 25	C)			
CAS			(g/mo	le)	(cm2/s)	(cm2/s)	log(l/l	(g)	(<u>atm-m3</u>)			(mm Hg)	(mg/L)		acid	base	
Number	Constituent	type	MW	ref	Dair	ref	Dwat	ref		ref	mol	(unitless)	гef		ref		ref	pKa	pKb	
71-43-2	Benzene	A	78.1	5	9.30E-02	Α	1.10E-05	A	1.58	Α	5.29E-03	2.20E-01	Α	9.52E+01	4	1.75E+03	Α			
100-41-4	Ethylbenzene	Α	106.2	5	7.60E-02	Α	8.50E-06	Α	1.98	Α	7.69E-03	3.20E-01	Α	1.00E+01	4	1.52E+02	5			
1634-04-4	Methyl t-Butyl Ether	0	88.146	5	7.92E-02	6	9.41E-05	7	1.08	Α	5.77E-04	2.40E-02		2.49E+02		4.80E+04	Α			
	Toluene	Α	92.4	5	8.50E-02	Α	9.40E-06	Α	2.13	Α	6.25E-03	2.60E-01	Α	3.00E+01	4	5.15E+02	29			
1330 20 7	Xylene (mixed isomers)	Α	106.2	5	7.20E-02	Α	8.50E-06	Α	2.38	Α	6.97E-03	2.90E-01	Α	7.00E+00	4	1.98E+02	5			

Site Name: Former Beacon #574

Site Location: 22315 Redwood Road, Completed By: Dale A. van Dam

Date Completed: 11/3/1998

Software version: 1.0.1

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

RBCA CHEMIC	:Al D	ATAR	ASE
-------------	-------	------	------------

Toxicity Data

Date Completed: 11/3/1998

		eferen Dose g/kg/d				Slope Factors ng/kg/c	3		EPA Weight	ls
CAS	Oral		Inhalation		Oral		Inhalation		of	Constituent
Number Constituent	RfD_oral	ref	RfD_inhal	ref	SF_oral	ref	SF_inhal	ref	Evidence	Carcinogenic?
71-43-2 Benzene	-		1.70E-03	R	2.90E-02	Α	2.90E-02	Α	Α	TRUE
100-41-4 Ethylbenzene	1.00E-01	Α	2.86E-01	Α	-		-		D	FALSE
1634-04-4 Methyl t-Butyl Ether	5.00E-03	R	8.57E-01	R	-		-			FALSE
108-88-3 Toluene	2.00E-01	A,R	1.14E-01	A,R	-		-		D	FALSE
1330-20-7 Xylene (mixed isomers)	2.00E+00	A.R	2.00E+00	Α	-		_		D	FALSE

Site Location: 22315 Redwood Roa Completed By: Dale A. van Dam

Software version: 1.0.1

Site Name: Former Beacon #574

[©] Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Э	-7	Э.	Α .	-	1-1.	ы			ГΑ		м	-3-	-
	В	7	- 4		1 – 1	41	ICA	 -	17.	(-)	-1	-1-	•

Miscellaneous Chemical Data

				Permiss	ible	Re	lative	Dete	ction	Limits		Ha	lf Life	
			Maximum	Expos	ure	Abs	orption	Groundw	/ater	Soi	1	(First-Or	der Decay)	
CAS		Con	taminant Level	Limit PEI	_/TLV	Fa	ctors	(mg/L	.)	(mg/k	g)	(d	lays)	
Number	Constituent	MCL (mg/L)	reference	(mg/m3)	ref	Oral	Dermal		ref		ref	Saturated	Unsaturated	re
71-43-2	Benzene	5.00E-03	52 FR 25690	3.20E+00	OSHA	1	0.5	0.002	С	0.005	S	720	720	Н
100-41-4	Ethylbenzene	7.00E-01	56 FR 3526 (30 Jan 91)	4.34E+02	ACGIH	1	0.5	0.002	С	0.005	S	228	228	Н
1634-04-4	Methyl t-Butyl Ether			1.44E+02	ACGIH	1	0.5					360	180	Н
108-88-3	Toluene	1.00E+00	56 FR 3526 (30 Jan 91)	1.47E+02	ACGIH	1	0.5	0.002	C	0.005	S	28	28	Н
1330-20-7	Xylene (mixed isomers)	1.00E+01	56 FR 3526 (30 Jan 91)	4.34E+02	ACGIH	1	0.5	0.005	С	0.005	s	360	360	Н

Software version: 1.0.1

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

APPENDIX G TIER 1 EVALUATION INPUTS SUMMARY AND RESULTS TABLES

RBCA TIER 1/TIER 2 EVALUATION

Output Table 1

Site Name: Former Beacon #574 Job Identification: U065.02 Software: GSI RBCA Spreadsheet Site Location: 22315 Redwood Road, CastroDate Completed: 11/3/98 Version: 1.0.1 Completed By: Dale A. van Dam NOTE: values which differ from Tier 1 default values are shown in bold italics and underlined. Commercial/Industrial Exposure Surface Parameters Definition (Units) Constrctn Definition (Units) Adult (1-6yrs) (1-16 yrs) Chronic Constrctn Residential Parameter 1.0E+06 Contaminated soil area (cm^2) 8,9E+06 ATc Averaging time for carcinogens (yr) 70 Α 30 6 16 25 W Length of affect, soil parallel to wind (cm) 2.4E+03 1.0E+03 Averaging time for non-carcinogens (yr) ATn 70 15 BW 35 70 W.gw Length of affect, soil paratlel to groundwater (cm 3.7E+03 Body Weight (kg) ED Exposure Duration (yr) 30 6 16 25 **Uair** Ambient air velocity in mixing zone (cm/s) 2.3E+02 Averaging time for vapor flux (yr) 30 25 delta Air mixing zone height (cm) 2.0E+02 EF Exposure Frequency (days/yr) 350 250 180 Lss Thickness of affected surface soils (cm) 1.5E+02 EF.Derm Exposure Frequency for dermal exposure 350 250 Рe Particulate areal emission rate (g/cm^2/s) 6.9E-14 **IRgw** Ingestion Rate of Water (L/day) 2 1 Ingestion Rate of Soil (mg/day) 100 200 50 100 IRs lRadj 9.4E+01 Value Adjusted soil ing. rate (mg-yr/kg-d) 1.1E+02 Groundwater Definition (Units) 20 Groundwater mixing zone depth (cm) 2.0E+02 IRa.in Inhalation rate indoor (m^3/day) 15 delta.gw Groundwater infiltration rate (cm/yr) 7.6E+01 Ra.out inhalation rate outdoor (m^3/day) 20 20 10 2.0E+03 5.8E+03 5.8E+03 Groundwater Darcy velocity (cm/yr) 8.0E+02 SA Skin surface area (dermal) (cm^2) 5.8E+03 Ugw 2.1E+03 1.7E+03 Ugw.tr Groundwater seepage velocity (cm/yr) 4.0E+03 SAadi Adjusted dermal area (cm²-yr/kg) Soil to Skin adherence factor Κs Saturated hydraulic conductivity(cm/s) 2.5E-03 1 Groundwater gradient (cm/cm) 1.0E-02 AAFs Age adjustment on soil ingestion FALSE FALSE grad AAFd Age adjustment on skin surface area **FALSE FALSE** Sw Width of groundwater source zone (cm) tox Use EPA tox data for air (or PEL based)? TRUE Şd Depth of groundwater source zone (cm) awMCL? Use MCL as exposure limit in groundwater? FALSE phi.eff Effective porosity in water-bearing unit 2.0E-01 foc.sat Fraction organic carbon in water-bearing unit 1.0E-03 BIO? Is bioattenuation considered? FALSE BC Biodegradation Capacity (mg/L) Matrix of Exposed Persons to Residential Commercial/Industrial Chronic Constrctn Definition (Units) Value Complete Exposure Pathways Soil Outdoor Air Pathways: hc Capillary zone thickness (cm) 9.4E+00 TRUE Volatiles and Particulates from Surface Soils FALSE FALSE hv Vadose zone thickness (cm) 5,9E+02 SS.v 1.7 Volatilization from Subsurface Soils FALSE FALSE rho Soil density (a/cm^3). S.v FALSE FALSE foc Fraction of organic carbon in vadose zone 0.001 GW.v Volatilization from Groundwater Soil porosity in vadose zone Indoor Air Pathways: phi 0.2 TRUE 6.0E+02 S.b Vapors from Subsurface Soils **FALSE** Lgw Depth to groundwater (cm) 1.5E+02 GW.b Vapors from Groundwater FALSE TRUE Ls Depth to top of affected subsurface soil (cm) Soil Pathways: Lsubs Thickness of affected subsurface soits (cm) 4.5E+02 SS.d Direct Ingestion and Dermal Contact FALSE **FALSE** TRUE pΗ Soil/groundwater pH 6 Groundwater Pathways: capillary vadose foundation GW.i Groundwater Ingestion FALSE FALSE phi.w Volumetric water content 0.18 0.07 0.12 Volumetric air content 0.02 0.13 0.26 S.I Leaching to Groundwater from all Soils FALSE FALSE phi.a Definition (Units) Building Residential Commercial Lb Building volume/area ratio (cm) 2.0E+02 3.0E+02 1.4E-04 2.3E-04 Matrix of Receptor Distance Residential Commercial/Industrial ER Building air exchange rate (s^-1) Distance Distance On-Site Foundation crack thickness (cm) 1.5E+01 and Location On- or Off-Site On-Site Lcrk TRUE TRUE Foundation crack fraction 0.01 GW Groundwater receptor (cm) eta Inhalation receptor (cm) TRUE TRUE Parameters Definition (Units) Residential Commercial Matrix of Groundwater Individual Cumulative Target Risks 1.0E-06 Longitudinal dispersivity (cm) TRab Target Risk (class A&B carcinogens) ax 1.DE-05 Transverse dispersivity (cm) TRc Target Risk (class C carcinogens) ay Vertical dispersivity (cm) THO Target Hazard Quotient 1.0E+00 az

Vapor

Transverse dispersion coefficient (cm)

Vertical dispersion coefficient (cm)

dcy

dcz

Calculation Option (1, 2, or 3)

RBCA Tier

Opt Tier

RBCA CHEMICAL DATABASE

Physical Property Data

Date Completed: 10/26/1998

			Moleci Weig			oeff	ısion icients in watı	ar	log (Kod log(Ko (@ 20 - 2	d)	•	Law Constant 20 - 25 C)	Vapor Pressur (@ 20 - 20	re	Solubility (@ 20 - 25			
CAS			(g/mo		(cm2/s		(cm2/s		log(l/k	,	(atm-m3)	20 - 20 0,	(mm Hg	,	(@ 20 - 25 (mg/L)	o, acid	base)
Number (Constituent	type	MW	ref	Dair	ref	Dwat	ref	- ,	ref	mol	(unitless) ref		ref		ref pKa	pKb	
71-43-2 E	Benzene	Α	78.1	5	9.30E-02	Α	1.10E-05	Α	1.58	Α	5.29E-03	2.20E-01 A	9.52E+01	4	1.75E+03	Α		
100-41-4 E	Ethylbenzene	Α	106.2	5	7.60E-02	Α	8.50E-06	Α	1.98	Α	7.69E-03	3.20E-01 A	1.00E+01	4	1.52E+02	5		
108-88-3	Toluene	Α	92.4	5	8.50E-02	Α	9.40E-06	Α	2.13	Α	6.25E-03	2.60E-01 A	3.00E+01	4	5.15E+02	29		
1330-20-7	(ylene (mixed isomers)	Α	106.2	5	7.20E-02	Α	8.50E-06	Α	2.38	Α	6.97E-03	2.90E-01 A	7.00E+00	4	1.98E+02	5		

Site Location: 22315 Redwood Road, Completed By: Dale A. van Dam

Software version: 1.0.1

Site Name: Former Beacon #574

[©] Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

-		$\sim \kappa$				ATA	ВΑ	G =
1	Ю.	UA	E -	1 – 1 / /	IICA	- 10-	1 - 72	(-)

Toxicity Data

Date Completed: 10/26/1998

			eferend Dose g/kg/d				Slope Factors ng/kg/d	\$		EPA Weight	Is
CAS Number	Constituent	Oral RfD_oral		nhalation RfD inhal	ref	Oral SF oral	ref	Inhalation SF inhal	ref	of Evidence	Constituent Carcinogenic?
	Benzene	-	101 1	1.70E-03	R	2.90E-02	A	2.90E-02	A	A	TRUE
100-41-4	Ethylbenzene	1.00 E- 01	Α	2.86E-01	Α	-		-		D	FALSE
108-88-3	Toluene	2.00E-01	A,R	1.14E-01	A,R	-		-		D	FALSE
	Xylene (mixed isomers)	2.00E+00	A.R	2.00E+00	A	_				D	FALSE

Site Location: 22315 Redwood Roa Completed By: Dale A. van Dam

Software version: 1.0.1

Site Name: Former Beacon #574

[©] Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

15	
(6)	
Δ.	
СН	
I	
V.	
G_{I_2}	
۱	
D	
Δ	
IΑ	
13	
Δ	
S	

Miscellaneous Chemical Data

			Maximum	Permiss Expos			lative orption	Groundy		Limits Soi	ı		lf Life der Decay)	
CAS			Contaminant Level		_/TLV		ctors	(mg/L		(mg/k		•	lays)	
lumber Co	onstituent	MCL (mg/L)	reference	(mg/m3)	ref	Oral	Dermal		ref		ref	Saturated	Unsaturated	F
71-43-2 Be	enzene	5.00E-03	52 FR 25690	3.20E+00	OSHA	1	0.5	0.002	С	0.005	S	720	720	
100-41-4 Eth	thylbenzene	7.00E-01	56 FR 3526 (30 Jan 91)	4.34E+02	ACGIH	1	0.5	0.002	С	0.005	S	228	228	
108-88-3 To	oluene	1.00E+00	56 FR 3526 (30 Jan 91)	1.47E+02	ACGIH	1	0.5	0.002	С	0.005	s	28	28	
1330-20-7 Xy	ylene (mixed isomers)	1.00E+01	56 FR 3526 (30 Jan 91)	4.34E+02	ACGIH	1	0.5	0.005	С	0.005	S	360	360	

Software version: 1.0.1

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

REPRESENTATIVE COC CONCENTRATIONS IN SOURCE MEDIA

(Complete the following table)

		Representative COC Concentration								
CONSTITUENT	in Ground	in Groundwater		in Surface Soil		e Soil				
	value (mg/L)	note	value (mg/kg	note	value (mg/kg	note				
Benzene	1.1E-2	mean	2.5E-3	UCL	8.6E+0	UCL				
Ethylbenzene	5.8E-3	mean	2.5E-3	UCL	4.3E-1	UCL				
Methyl t-Butyl Ether	5.9E-2	mean								
Toluene	5.8E-3	mean	2.5E-3	UCL	1.2E+0	UCL				
Xylene (mixed isomers)	1.1E-2	mean	2.5E-3	UCL	2.0E+0	UCL				

Site Name: Former Beacon #574 Completed By: Dale A. van Dam Site Location: 22315 Redwood Road, Castro Valley, CA Date Completed: 11/3/1998

[©] Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Input Screen 6.3

CONSTITUENT MOLE FRACTIONS

(Complete the following table)

	Mole Fraction of
CONSTITUENT	Constituent in
	Source Material
Benzene	
Ethylbenzene	
Methyl t-Butyl Ether	
Toluene	
Xylene (mixed isomers)	

Site Name: Former Beacon #574 Completed By: Dale A. van Dam Site Location: 22315 Redwood Road, C Date Completed: 11/3/1998

[©] Groundwater Services, Inc. (GSI), 1995-97. All Rights Reserved.

Input Screen 9.4

GROUNDWATER DAF VALUES

(Enter DAF values in the grey area of the following table)

Dilution Attenuation Factor

Dilation / thoroadler / dotor					
	(DAF) in Groundwater				
CONSTITUENT	Residential	Comm./Ind.			
	Receptor	Receptor			
Benzene	1.0E+0	1.0E+0			
Ethylbenzene	1.0E+0	1.0E+0			
Methyl t-Butyl Ether	1.0E+0	1.0E+0			
Toluene	1.0E+0	1.0E+0			
Xylene (mixed isomers)	1.0E+0	1.0E+0			

Site Name: Former Beacon #574 Completed By: Dale A. van Dam Site Location: 22315 Redwood Road, Castro Valley, C Date Completed: 11/3/1998

[©] Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Input Screen 9.1

Half-Life of

CONSTITUENT HALF-LIFE VALUES

(Complete the following table)

CONSTITUENT	Constituent			
	(day)			
Benzene	720			
Ethylbenzene	228			
Methyl t-Butyl Ether				
Toluene	28			
Xylene (mixed isomers)	360			

Site Name: Former Beacon #574 Completed By: Dale A. van Dam Site Location: 22315 Redwood Road, Ca Date Completed: 11/3/1998

[©] Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

EXPOSURE LIMITS IN GROUNDWATER AND AIR

Site Name: Former Beacon #574 Completed By: Dale A. van Dam Site Location: 22315 Redwood Road, Castro Valley, CA Date Completed: 11/3/1998

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Site Name: Former Beacon #574

Tier 1 Worksheet 8.1

Site Location: 22315 Redwood Road, Castro Vall. Completed By: Dale A. van Dam. Date Completed: 11/3/1998	1 OF 9

OUTDOOR AIR EXPOSURE PATH	WAYS 21		CHECKED IF PATHWAY IS ACTIVE)		
SURFACE SOILS: VAPOR AND	Exposure Concentration				
DUST INHALATION	1) <u>Source Medium</u>	2) <u>NAF Value (m^3/kg)</u> Receptor	3) Exposure Medium Outdoor Air: POE Conc. (mg/m²3) (1) / (2)	4) Exposure Multiplier (IRxEFxED)/(BWxAT) (m^3/kg-day)	5) <u>Average Daily Intake Rate</u> (mg/kg-day) (3) X (4)
Constituents of Concern	Surface Soil Conc. (mg/kg)				
Benzene	2.5E-3				
Ethylbenzene	2.5E-3				
Methyl t-Butyl Ether	0.0E+0				
Toluene	2.5E-3				
Xylene (mixed isomers)	2.5E-3				

AF = Adherance factor (mg/cm^2)	Exposure frequencey (days/yr) Exposure time (hrs/day) POE = Point of exposure SA = Skin exposure area (cm^2/day) Inhalation rate (m^3/day)
---------------------------------	--

Software: GSI RBCA Spreadsheet

Serial: G-349-KIX-808

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Tier 1 Worksheet 8.1

Site Name: Former Beacon #57	<u>'4 Si</u>	te Location: 22315 Redwood R	toad, Castro Vali Completed By: D	ale A. van Dam Date Completed	: 11/3/1998 2 OF 9
		TIER 1 EXPOSURE CONCE	NTRATION AND INTAKE CALCU	LATION	
OUTDOOR AIR EXPOSURE PATHW	iays - i e	A COMPANY OF THE PARTY OF THE P	(CHECKED IF PATHWAY IS ACTIVE)	gal de la la la la contra	eta 134 Mars 2016, in 1915 - Artes
SUBSURFACE SOILS: VAPOR	Exposure Concentration				
INHALATION	1) Source Medium	NAF Value (m^3/kg)	3) Exposure Medium	4) Exposure Multiplier	5) Average Daily Intake Rate
		Receptor	Outdoor Air: POE Conc. (mg/m*3) (1) / (2)	(iRxEFxED)/(BWxAT) (m^3/kg-day)	(mg/kg-day) (3) X (4)
			i l		
	Subsurface Soil Conc.				
Constituents of Concern	(mg/kg)				
Benzene	8.6E+0				
Ethylbenzene	4.3E-1				
Methyl t-Butyl Ether	0.0E+0				
Toluene	1.2E+0				
Xylene (mixed isomers)	2.0E+0				

NOTE:	ABS = Dermal absorption factor (dim) AF = Adherance factor (mg/cm^2) AT = Averaging time (days)	BW = Body weight (kg) CF = Units conversion factor ED = Exposure duration (yrs)	EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day) IR = Inhalation rate (m^3/day)	POE = Point of exposure SA = Skin exposue area (cm^2/day)

Software: GSI RBCA Spreadsheet

Serial: G-349-KIX-808

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

		RBCA SITE ASSESSMEN	Ţ	Tier 1 Worksheet 8.1		
Site Name: Former Beacon #574		Site Location: 22315 Redwo	od Road, Castr Completed By:	Dale A. van Dam	Date Completed: 11/3/1998	3 OF 9
		TIER 1 EXPOS	URE CONCENTRATION AND	INTAKE CALCULATION		
OUTDOOR AIR EXPOSURE PATHWA	YS REPORTED BY	and an anti-	FICHECKED IF PATHWAY IS AGT	VE) XIII	and second and the second second	and the second second
GROUNDWATER: VAPOR	Exposure Concentration					TOTAL PATHWAY INTAKE (mg/kg-day)
INHALATION	1) Source Medium	2) NAF Value (m^3/L)	3) Exposure Medium	4) Exposure Multiplier	5) Average Daily Intake Rate	(Sum intake values from surface,
		Receptor	Outdoor Air: POE Conc. (mg/m*3) (1) / (2)	(IRxEFxED)/(BWxAT) (m^3/kg-day)	(mg/kg-day) (3) X (4)	subsurface & groundwater routes.)
	Groundwater Conc.					
Constituents of Concern	(mg/L)				J	
Benzene	1.1E-2					
Ethylbenzene	5.8E-3					
Methyl t-Butyl Ether	5.9E-2					
Toluene	5.8E-3					
Xylene (mixed isomers)	1.1E-2					

	• • •	3 3 1 3	EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day)	POE = Point of exposure SA = Skin exposure area (cm^2/day)
AT = Ave	raging time (days)	ED = Exposure duration (yrs)	IR = Inhalation rate (m^3/day)	

Software: GSI RBCA Spreadsheet Version: 1.0.1 Serial: G-349-KIX-808

@ Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

		RBCA SITE ASSESSMENT				Tier 1 Worksheet 8.2			
Site Name: Former Beacon #	‡574 Sir	te Location: 22315 Redwoo	d Road, Castro Va	alley, CA Completed By: I	Dale A. van Dam	Date Completed:	. 11/3/1998	1 OF 4	
			TIER 1 PATH	WAY RISK CALCULATION			.—		
OUTDOOR AIR EXPOSURE PAT	HWAYS			GHECKEDIF PA	HWAYS ARE ACTIVE)			0.004 mile	
		C	ARCINOGENIC RISK	:		TOXIC EFFECTS			
	(1) EPA	(2) Total Carcinogenic Intake Rate (mg/kg/day)	(3) Inhalation Slope Factor	(4) Individual COC Risk (2) x (3)	(5) Total Toxicant Intake Rate (mg/kg/day)	(6) Inhalation Reference Dose	(7) Individual Hazard Quotien		
Constituents of Concern	Carcinogenic Classification		(mg/kg-day) ^A -1			(mg/kg-day)			
Benzene	Α		2.9E-2			1.7E-3			
Ethylbenzene	D	""				2.9E-1			
Methyl t-Butyl Ether						8.6E-1			
Toluene	D					1.1E-1			
Xylene (mixed isomers)	D					2.0E+0			
		Total Pathway Carcino	genic Risk =	0.0E+0 0.0E+0	Total Pathway	Hazard Index =	0.0E+0	0.0E+0	
				<u></u>					

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Software: GSI RBCA Spreadsheet Version: 1.0.1 Serial: G-349-KIX-808

Tier 1 Worksheet 8.1

Site Name: Former Beacon #574 Site Location: 22315 Redwood Road, Castro Vall Completed By: Dale A. van Dam Date Completed: 11/3/1998

4 OF 9

TIE	R1 EX	(POSURE CONCENTRATION AND INTAKE CALCULATIO)N

SUBSURFACE SOILS:	Exposure Concentration				
VAPOR INTRUSION TO BUILDINGS	1) Source Medium	2) NAF Value (m^3/kg)	3) Exposure Medium	4) Exposure Multiplier	5) Average Daily Intake Rate
		Receptor	Indoor Air: POE Conc. (mg/m^3) (1) / (2)	(IRxEFxED)/(8WxAT) (m^3/kg-day)	(mg/kg-day) (3) X (4)
Constituents of Concern	Subsurface Soil Conc.	On-Site Commercial	On-Site Commercial	On-Site Commercial	On-Site Commercia
***************************************	(mg/kg) 8.6E+0	7.2E+1	1.2E-1	7.0E-2	8.4E-3
Benzene			··· · · · · · · · · · · · · · · · · ·		
Ethylbenzene	4.3E-1	7.2E+1	6.0E-3	2.0E-1	1.2E-3
Methyl t-Butyl Ether	0.0E+0	7.2E+1	0.0E+0	2.0E-1	0.0E+0
Toluene	1.2E+0	7.2E+1	1.6E-2	2.0 E -1	3.2E-3
Xylene (mixed isomers)	2.0E+0	7.2E+1	2.7E-2	2.0E-1	5.3E-3

1.0.1 1.0.1	NOTE:	, = ,		, , ,,	POE = Point of exposure SA = Skin exposure area (cm^2/day
---	-------	-------	--	--------	--

Software: GSI RBCA Spreadsheet

Serial: G-349-KIX-808

@ Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Tier 1 Worksheet 8.1

Site Name: Former Beacon #574	Site Location: 22315 Redwood Road, Cas	tr Completed By: Dale A. van Dam

Date Completed: 11/3/1998

5 OF 9

INDOOR AIR EXPOSURE PATHWA	vys ,	Announce of the second	(CHECKED IF PATHWAY IS ACTIV	/E) /:		a de la comp	No.
GROUNDWATER:	Exposure Concentration					TOTAL PATHWAY	INTAKE (mg/kg-da)
VAFOR INTRUSION TO BUILDINGS	1) Source Medium	2) NAF Value (m^3/L)	3) Exposure Medium	4) Exposure Multiplier	5) <u>Average Daily Intake Rate</u>	(Sum intake valu	es from subsurface
	1	Receptor	Indoor Air: POE Conc. (mg/m^3) (1) / (2)	(IRxEFxED)/(BWxAT) (m^3/kg-day)	(mg/kg-day) (3) X (4)	& grounds	rater routes.)
	Groundwater Conc.						j
Constituents of Concern	(mg/L)	On-Site Commercial	On-Site Commercial	On-Site Commercial	On-Site Commercial		On-Site Commerc
Benzene	1.1E-2	4.6E+2	2.4E-5	7.0E-2	1.7E-6		8.4E-3
Ethylbenzene	5.8E-3	4.3E+2	1.3E-5	2,0E-1	2.6E-6		1.2E-3
Methyl t-Butyl Ether	5.9E-2	1.5E+3	3,8€-5	2.0E-1	7.5E-6		7.5E-6
Toluene	5.8E-3	4.5E+2	1.3E-5	2.0E-1	2.5E-6		3.2E-3
Xylene (mixed isomers)	1.1E-2	4.8E+2	2.2E-5	2.0E-1	4.3E-6		5.3E-3

NOTE:	ABS = Dermal absorption factor (dim) AF = Adherence factor (mg/cm^2) AT = Averaging time (days)	BW = Body weight (kg) CF = Units conversion factor ED = Exposure duration (yrs)	EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day) IR = Inhalation rate (m^3/day)	POE = Point of exposure SA = Skin exposure area (cm^2/day)

Software: GSI RBCA Spreadsheet

Serial: G-349-KIX-808

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

RBCA SITE ASSESSMENT Tier 1 Worksheet 8.2 Completed By: Dale A. van Dam 2 OF 4 Site Name: Former Beacon #574 Site Location: 22315 Redwood Road, Castro Valley, CA Date Completed: 11/3/1998 TIER 1 PATHWAY RISK CALCULATION ☐ (CHECKED IF PATHWAYS ARE ACTIVE) INDOOR AIR EXPOSURE PATHWAYS CARCINOGENIC RISK TOXIC EFFECTS (4) Individual COC (6) Inhalation (7) Individual COC (2) Total Carcinogenic (3) Inhalation (5) Total Toxicant Risk (2) x (3) Reference Dose Hazard Quotient (5) / (6) (1) EPA Intake Rate (mg/kg/day) Slope Factor Intake Rate (mg/kg/day) On-Site On-Site On-Site On-Site Carcinogenic Classification Commercial Commercial Commercial (mg/kg-day) Commercial Constituents of Concern (mg/kg-day)^-1 8.4E-3 2.9E-2 2.4E-4 2.4E-2 1.7E-3 1.4E+1 Benzene Α 2.9E-1 4.1E-3 1.2E-3 Ethylbenzene D Methyl t-Butyl Ether 7.5E-6 8,6E-1 8.7E-6 D 3.2E-3 1.1E-1 2.8E-2 Toluene 5.3E-3 2.0E+0 2.7E-3 Xylene (mixed isomers) D Total Pathway Carcinogenic Risk = 0.0E+0 Total Pathway Hazard Index = 0.0E+0 1.4E+1 2.4E-4

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Software: GSI RBCA Spreadsheet

Version: 1.0.1

Serial: G-349-KIX-808

Tier 1 Worksheet 8.1

Serial: G-349-KIX-808

Site Name: Former Beacon #574 Site Location: 22315 Redwood Road, Castro Valley, CA. Completed By: Dale A. va. Date Completed: 11/3/1998 6 OF 9

	TIER 1 EXPO	SURE CONCENTRATION	N AND INTAKE CALCULAT	TION		
SOIL EXPOSURE PATHWAYS	or description (CHECKED IF PATHWAY IS AS	STIVE)	HUBERT ESTATE		
SURFACE SOILS OR SEDIMENTS:	Exposure Concentration					
DERMAL CONTACT 1) Source Medium 2) Exposure Mulliplier (SAXAFXABSXCFXEFXED)/(BVVXAT) (kg/kg-day) (mg/kg-day) (1) x (2)						
Constituents of Concern	Surface Soil Conc. (mg/kg)	On-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercial	
Benzene	2.5E-3					
Ethylbenzene	2.5E-3					
Methyl t-Butyl Ether	0.0E+0			_		
Toluene	2,5E-3					
Xylene (mixed isomers)	2.5E-3					

ſ	NOTE:	ABS = Dermal absorption factor (dim)	BW = Body weight (kg)	EF = Exposure frequencey (days/yr	POE = Point of exposure
-		AF = Adherance factor (mg/cm^2)	CF = Units conversion factor	ET = Exposure time (hrs/day)	SA = Skin exposure area (cm^2/day)
- 1		AT = Averaging time (days)	ED = Exposure duration (yrs)	IR = Intake rate (mg/day)	
- 1					

Software: GSI RBCA Spreadsheet

Version: 1.0.1

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Tier 1 Worksheet 8.1

Site Name: Former Beacon #574	Site Location: 22315 Redv	vood Road, Castr	Completed By: [Dale A. van Dam	Date Completed	: 11/3/1998	7 OF
	TIER 1 EXPOSI	JRE CONCENTE	TAI DAA AOITA	AKE CALCULA	TION		
SOIL EXPOSURE PATHWAYS	a lagradient D	(CHECKED IF PAT	THWAY IS ACTIVE)		er, quality designation		umer into
SURFACE SOILS OR SEDIMENTS:	Exposure Concentration					TOTAL PATHWAY	INTAKE (mg/kg-day)
INGESTION	Source Medium Exposure Multiplier Average Daily Intak		ily Intake Rate	(Sum intaks	values from		
	ł	(IRxCFxEFxED)/(E	IVVxAT) (kg/kg-day)	(mg/kg-da	y) (1) x (2)	dermal & ing	estion routes.)
Constituents of Concern	Surface Soil Conc. (mg/kg)	On-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercial
Benzene	2.5E-3						
Ethylbenzene	2.5E-3						
Methyl t-Butyl Ether	0.0E+0						
Toluene	2.5E-3						
Yylene (mixed isomers)	2.5F-3						

	NOTE:	ABS = Dermal absorption factor (dim)	BW = Body weight (kg)	EF = Exposure frequencey (days/yr)	POE = Point of exposure
		AF = Adherance factor (mg/cm*2)	CF = Units conversion factor	ET = Exposure time (hrs/day)	SA = Skin exposure area (cm*2/day)
1		AT = Averaging time (days)	ED = Exposure duration (yrs)	IR = Intake rate (mg/day)	
1					

Software: GSI RBCA Spreadsheet

Serial: G-349-KIX-808

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

RBCA SITE ASSESSMENT Tier 1 Worksheet 8.2 Date Completed: 11/3/1998 3 OF 4 Site Name: Former Beacon #574 Site Location: 22315 Redwood Road, Castro Valley, CA Completed By: Dale A. van Dam TIER 1 PATHWAY RISK CALCULATION CARCINOGENIC RISK TOXIC EFFECTS (7) Individual COC (4) Individual COC (5) Total Toxicant (6) Oral (2) Total Carcinogenic (3) Oral Intake Rate (mg/kg/day) Reference Dose Hazard Quotient (5) / (6) (1) EPA Intake Rate (mg/kg/day) Slope Factor Risk (2) x (3) On-Site On-Site On-Site On-Site On-Site On-Site On-Site On-Site Carcinogenic Classification Residential Commercial Residential Commercial Residential Commercial (mg/kg-day) Residential Commercial Constituents of Concern (mg/kg-day)*-1 2.9E-2 Α Benzene 1.0E-1 Ethylbenzene D Methyl t-Butyl Ether 5.0E-3 D 2.0E-1 Toluene 2.0E+0 Xylene (mixed isomers) D 0.0E+0 0.0E+0 Total Pathway Carcinogenic Risk = 0.0E+0 Total Pathway Hazard Index = 0.0E+0

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Software: GSI RBCA Spreadsheet

Version: 1.0.1

Serial: G-349-KIX-808

RBCA			1-11-
	 	~~	- 1

Tier 1 Worksheet 8.1

	·	TIER 1 EXPOSURE CONC	ENTRATION AND INTAKE CALCUI	LATION		
GROUNDWATER EXPOSURE PATH	WAYS	t pie in 1	I (CHECKED IF PATHWAY IS ACTIVE)	Selfagge / Egges W. W. Comment	ences (Legical) Websites (1997)	
SOIL: LEACHING TO GROUNDWATER/	Exposure Concentration					
GROUNDWATER INGESTION	1) Source Medium	2) NAF Value (L/kg)	3) Exposure Medium	Exposure Multiplier	5) <u>Average Daily Intake Rate</u> (mg/kg-day) (3) x (4)	
		Receptor	Groundwater: POE Conc. (mg/L) (1)/(2)	(IRxEFxED)/(BWxAT) (L/kg-day)		
	Soil Concentration					
Constituents of Concern	(mg/kg)					
Benzene	8.6E+0]	
Ethylbenzene	4.3E-1					
Methyl t-Butyl Ether	0.0E+0					
Toluene	1.2E+0					
Xylene (mixed isomers)	2.0E+0					

1	NOTE:	ABS = Dermal absorption factor (dim)	BW = Body Weight (kg)	EF = Exposure frequencey (days/yr)	POE = Point of exposure
		AF = Adherance factor (mg/cm*2)	CF = Units conversion factor	ET = Exposure time (hrs/day)	SA = Skin exposure area (cm^2/day)
		AT = Averaging time (days)	ED = Exposure duration (yrs)	IR = Intake rate (L/day)	

Software: GSI RBCA Spreadsheet

Serial: G-349-KIX-808

@ Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

	Tier 1 Worksheet 8.1										
Site Name: Former Beacon #574 Site Location: 22315 Redwood Road, Castro Valley, CA Completed By: Dale A. van Dam Date Completed: 11/3/1998										9 OF 9	
TIER 1 EXPOSURE CONCENTRATION AND INTAKE CALCULATION											
GROUNDWATER EXPOSURE PATHWA	ROUNDWATER EXPOSURE PATHWAYS AND SEASON OF THE SEASON OF T										
GROUNDWATER: INGESTION	Exposure Concentration								MAX. PATHWAY IN	ITAKE (mg/kg-day)	
	1) Source Medium	2) NAF Value (dim)	3) <u>Expo</u>	sure Medium	4) Exposure Multiplier ((RxEFxED)/(BWxAT) (U/kg-day)		5) <u>Average Da</u>	aily Intake Rate	(Maximum intake e	of active pathways	
		Receptor	Groundwater: P	OE Conc. (mg/L) (1)/(2)			(mg/kg-day) (3) x (4)		soil leaching & gro	oundwater routes.)	
	Groundwater Conc.						٠.				
Constituents of Concern	(mg/L)									1	
Benzene	1.1E-2										
Ethylbenzene	5.8E-3										
Methyl t-Butyl Ether	5.9E-2										
Toluene	5.8E-3										
Xylene (mixed isomers)	1.1E-2										

BW = Body weight (kg)

CF = Units conversion factor

ET = Exposure time (hrs/day) IR = Intake rate (L/day) ED = Exposure duration (yrs) Software: GSI RBCA Spreadsheet

EF = Exposure frequencey (days/yr)

Serial: G-349-KIX-808

POE = Point of exposure

SA = Skin exposure area (cm^2/day)

@ Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

NOTE: ABS = Dermal absorption factor (dim)

AT = Averaging time (days)

AF = Adherance factor (mg/cm^2)

			Tier 1 Worksheet 8.2					
Site Name: Former Beacon #	£574 S	Site Location: 22315 Redwoo	od Road, Castro Va	alley, CA Completed By:	Dale A. van Dam	Date Completed:	11/3/1998 4 0	
			TIER 1 PATH	WAY RISK CALCULATION				
GROUNDWATER EXPOSURE PA	THWAYS	Jan Britania de la Companya del Companya del Companya de la Compan		(CHECKED IF PA	THWAYS ARE ACTIVE)	and the state of	and the same of th	
		C	ARCINOGENIC RISH	<		TOXIC EFFECTS		
		(2) Total Carcinogenic	(3) Oral	(4) Individual COC	(5) Total Toxicant	(6) Oral	(7) Individual COC Hazard Quotient (5) / (6)	
Constituents of Concern	(1) EPA Carcinogenic Classification	Intake Rate (mg/kg/day)	Slope Factor (mg/kg-day)^-1	Risk (2) x (3)	Intake Rate (mg/kg/day)	Reference Dose (mg/kg-day)		
Benzene	A		2.9E-2		1			
Ethylbenzene	D					1.0E-1		
Methyl t-Butyl Ether						5.0E-3		
Toluene	D	Ĭ .				2.0E-1		
Xylene (mixed isomers)	D					2.0E+0		
		Total Pathway Carcino	genic Risk =	0.0E+0 0.0E+0	Total Pathway	Hazard Index =	0.0E+0 0.0E+0	
						_		
<u></u>					A.W. A.			

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Software: GSI RBCA Spreadsheet Version: 1.0.1 Serial: G-349-KIX-808

Tier 1 Worksheet 8.3

Site Name: Former Beacon #574

Completed By: Dale A. van Dam

Site Location: 22315 Redwood Road, Castro Valley, CA

Date Completed: 11/3/1998

1 of 1

TIER 1 BASELINE RISK SUMMARY TABLE BASELINE CARCINOGENIC RISK BASELINE TOXIC EFFECTS											
-		BASELINE	CARCINOG	NIC RISK							
					Risk Limit(s)					Toxicity	
									Limit(s)		
		Individual COC Risk		Cumulative COC Risk			Quotient	Hazar	Exceeded?		
EXPOSURE	Maximum	Target	Total	Target		Maximum	Applicable	Total	Applicable		
PATHWAY	Value	Risk	Value	Risk		Value	Limit	Value	Limit		
OUTDOOR AIR E	YROSURE FAT	HWAYS) industra	Fig. 3.	i de Salada de Asi	l e e e e e e e e e e e e e e e e e e e	T			1	
Complete:	NC	1.0E-6	NC	N/A	=	NC	1.0E+0	NC	N/A		
INDOOR AIR EX	POSUREIPATHV	VAYS #	tradit in		hidigade de des		的網構能等等	Bije opika naj		efter i i i i i i i i i	
Complete:	2.4E-4	1.0E-6	2.4E-4	N/A	•	1.4E+1	1.0E+0	1.4E+1	N/A	•	
SOIL EXPOSURE	PATHWAYS	harry and	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					*	are sent on the	11111	
Complete:	NC	1.0E-6	NC	N/A	-	NC	1.0E+0	NC	N/A		
GROUNDWATER	EXPOSURE PA	THWAYS					33 (1) W			1 d	
Complete:	NC	1.0E-6	NC	N/A	-	NC	1.0E+0	NC	N/A		
CRITICAL EXPO	SURE PATHWA	Y (Select Maxi	mum Values F	rom Complete	Pathways)			fyriae - Francisco	T		
	2.4E-4	1.0E-6	2.4E-4	N/A	-	1.4E+1	1.0E+0	1.4E+1	N/A		
466	ari ar	Marian Indi	I - PERMIT	Tagareir in 19	1.1	estable .	Assembly 100 a		ir eksekin		

Software: GSI RBCA Spreadsheet

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Version: 1.0.1

Serial: G-349-KIX-808

		RBCA SITE A	SSESSMENT						Tier 1 Worksheet 6.1					
Site Name: Fo	rmer Beacon #574	Completed By: Dale A. van Dam												
Site Location:	22315 Redwood Road, Castro Valley, C	Date Comple	ted: 11/3/1998	3				1 OF 1						
		Target Risk (Class A & B) 1.0E-6				☐ MCL exposure limit?			Calculation Option: 1					
S	SURFACE SOIL RBSL VAL	Target	Risk (Class C)	1.0E-5		☐ PEL exposure limit?								
	(< 5 FT BGS)		Target H	lazard Quotient	1.0E+0									
				RBSL Results For Complete Exposure Pathways ("x" if Complete)										
CONCTITUEN	TO OF CONCERN	Soil Leaching to Groundwater			Ingestion, Inhalation		x	Construction Worker	Applicable RBSL	RBSL Exceeded	Required CRF			
CONSTITUEN	ONSTITUENTS OF CONCERN		Residential:	Commercial:	Regulatory(MCL):	Residential:		Commercial:		Commercial:	11000	•	. Required 614	
CAS No.	Name	(mg/kg)	(on-site)	(on-site)	(on-site)	(0	on-site)	(on-site)		(on-site)	(mg/kg)	" = " If yes	Only if "yes" left	
71-43-2	Benzene	2.5E-3	NA	NA	NA		NA	NA	7.1E+1		7.1E+1		<1	
100-41-4	Ethylbenzene	2.5E-3	NA	NA	NA	NA		NA	ŀ	>Res	>Res		<1	
1634-04-4	NA	NA	NA	NA		NA		2.4E+2	2.4E+2		<1			
108-88-3 Toluene 2.5E-3		NA	NA	NA	NA		NA	>Res		>Res		<1		
1330-20-7 Xylene (mixed isomers) 2.5E-3		NA	NA	NA	NA		NA		>Res	>Res		<1		
			>Res	indicates risk	-based target con	centr	ation grea	ater than constit	uent	residual satura	tion value	·		

Software: GSI RBCA Spreadsheet

Serial: G-349-KIX-808

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

		RBCA SITE	ASSESSM	ENT							fier 1 Worksho	et 6.2	
Site Name: Fo	ormer Beacon #574		Completed B	y: Dale A. van	Dam								
Site Location:	22315 Redwood Road, Castro Valle	y, CA	Date Comple	te <u>d: 11/3/1998</u>	3								1 OF 1
SU	IBSURFACE SOIL RBSL (> 5 FT BGS)	VALUES	Target	k (Class A & B) Risk (Class C) lazard Quotient	1.0E-5		•	sure limit? sure limit?	7	Ca	alculation Option:	1	
-				RBSL	Results For Comp	lete E	xposure P	athways ("x" if C	Camplete)				
CONSTITUE	NTS OF CONCERN	Representative Concentration	Soi	I Leaching to	Groundwater	x		latilization to door Air	1	olatilization to	Applicable RBSL	RBSL Exceeded ?	Required CRF
CAS No.	Name	(mg/kg)	Residential: (on-site)	Commercial: (on-site)	Regulatory(MCL): (on-site)		sidential: on-site)	Commercial: (on-site)	Residential: (on-site)	Commercial. (on-site)	(mg/kg)	"■" If yes	Only if "yes" left
	2 Benzene	8.6E+0	NA	NA	NA		NA	3.5E-2	NA	NA	3.5E-2	III	2.4E+02
100-41-4	1 Ethylbenzene	4.3E-1	NA	NA	NA		NA	>Res	NA	NA	>Res		<1
1634-04-4	1 Methyl t-Butyl Ether	0.0E+0	NA	NA	NA		NA	3.1E+2	NA	NA	3.1E+2		<1
	3 Toluene	1.2E+0	NA	NA	NA		NA	4.2E+1	NA	NA	4.2E+1		<1
1330-20-	7 Xylene (mixed isomers)	2.0E+0	NA	NA	NA	<u>l</u>	NA	>Res	NA	NA	>Res		<1
			>Res	indicates risk	-based target con	centra	ition great	ler than constitu	ent residual sa	ituration value			

Software: GSI RBCA Spreadsheet

Serial: G-349-KIX-808

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

		RBCA	SITE ASS	ESSMENT							Tier 1 Wo	rksheet 6.3	
=	rmer Beacon #574 22315 Redwood Road, Castro Valle	y, CA	,	y: Dale A. van				•					1 OF 1
· ·	ROUNDWATER RBSL V		Targel	k (Class A & B) t Risk (Class C) lazard Quotient	1.0E-5	☐ MCL				Cal	culation Option	1	
				RBS	L Results For Con	plete Expo	osure Pat	thways ("x" if C	omplete)				
CONSTITUEN	ITS OF CONCERN	Representative Concentration		Groundwater	Ingestion	Grou	indwater to Indo	Volatilization oor Air		er Volatilization utdoor Air	Applicable RBSL	RBSL Exceeded ?	Required CRF
CAS No.	Name	(mg/L)	Residential: (on-site)	Commercial: (on-site)	Regulatory(MCL): (on-site)	Residen (on-site		Commercial: (on-site)	Residential (on-site)	Commercial: (on-site)	(mg/L	"■" If yes	Only if "yes" left
71-43-2	Benzene	1.1E-2	NA	NA	NA	NA		2.2E-1	NA	NA	2.2E-1		<1
100-41-4	Ethylbenzene	5.8E-3	NA	NA	NA	NA		>Sol	NA	NA	>Sol		<1
	Methyl t-Butyl Ether	5.9E-2	NA	NA	NA	NA		6.7E+3	NA	NA	6.7E+3		<1
	Toluene	5.8E-3	NA	NA	NA	NA		2.6E+2	NA	NA	2.6E+2		<1
1330-20-7	Xylene (mixed isomers)	1.1E-2	NA	NA	NA	NA		>Sol	NA	NA	>Sol		<1
	au-re-			>Sol	indicates risk-ba:	ed target	concentr	ration greater th	an constituent :	solubility			

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Software: GSI RBCA Spreadsheet

Serial: G-349-KIX-808

APPENDIX H

EQUATIONS AND ASSUMPTIONS USED TO DESCRIBE TRANSPORT AND ATTENUATION OF CONSTITUENTS OF CONCERN

- Baseline Risk Results: For each complete exposure pathway, baseline intake rates and risk levels associated with current site conditions are tabulated for both individual and cumulative constituent exposure. To identify critical exposure pathways, a graphical plot is provided comparing cumulative risks for air, water, and soil exposure pathways.
- Media Cleanup Values: Site-Specific Target Levels (SSTLs) for each complete exposure pathway are provided both for individual constituent and cumulative constituent risk limits (if applicable). The software automatically identifies the critical SSTL value for each constituent and calculates the constituent reduction factor (CRF) required to meet the cleanup goal.

EXIT TO EXCEL WORKBOOK

If desired, the user can bypass the software interface and directly access the Excel workbook structure. This feature allows the user to inspect the detailed calculation steps conducted in the various worksheets or review the modeling equations. This option is recommended only for users experienced with direct operation of Excel. Further discussion of the worksheet environment is provided in Section A.4 of this Appendix.

A-6

Fate and Transport Modeling Methods

The RBCA Spreadsheet System contains a series of fate and transport models for predicting COC concentrations at the point of exposure (POE) for indirect exposure pathways, such as air and groundwater. Under Tier 2, relatively simple analytical models are to be employed for this calculation, representing a minor incremental effort relative to Tier 1. The spreadsheet modeling system is consistent with Appendix X.2 of ASTM E-1739, although selected algorithms and default parameters have been updated to reflect advances in evaluation methods.

The idealized schematic shown on Figure A.2 illustrates the steps included in the RBCA software for predicting transport of contaminants from the source zone to the POE for air and groundwater exposure pathways. (Please note that POE attenuation factors and surface water exposure pathways are not included in the software at this time. See Volume 1, Figure 10.) Each element in Figure A.2 represents a step-specific attenuation factor, corresponding to either a cross-media transfer factor (CM) or a lateral transport factor (LT). The effective NAF value for each COC on each pathway is then calculated as the arithmetic product of the various attenuation factors occurring along the flow path from source to receptor. These steady-state NAF values are then used for calculation of baseline risks and back-calculation of Site-Specific Target Levels (SSTLs), as discussed in Section A.2 above. Please note that fate and transport modeling is not required for direct exposure pathways, such as soil ingestion or dermal contact, where the source and exposure concentrations are equal (i.e., NAF = 1). Analytical models used for conservative estimation of each transport factor are described below.

CROSS-MEDIA TRANSFER FACTORS

Exposure pathways involving transport of COCs from one medium to another (e.g., soil-to-air, soilto-groundwater) require estimation of the corresponding cross-media transfer factor. Various analytical expressions are available for estimating soil-to-air volatilization factors as a function of site soil characteristics and the physical/chemical properties of volatile organic COCs. Leaching factors for organic and inorganic constituent releases from soil to groundwater can similarly be estimated as a function of COC characteristics, soil conditions, and annual rainfall infiltration. Cross-media transfer equations incorporated in the RBCA Spreadsheet System are presented in Figure A.3 beginning on Page A-11. Detailed discussion of each of these cross-media factors is provided below.

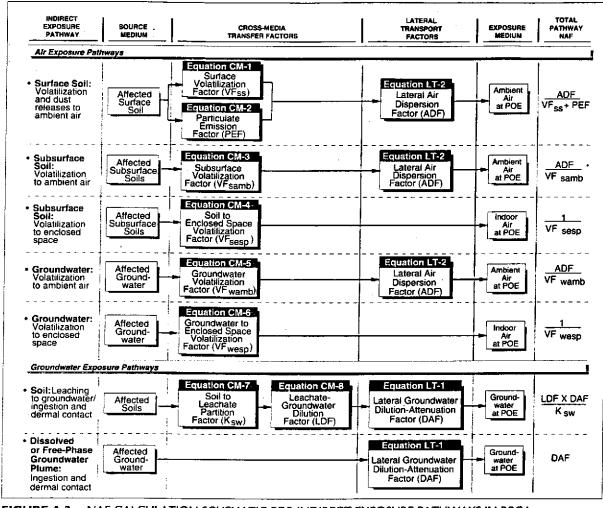


FIGURE A.2. NAF CALCULATION SCHEMATIC FOR INDIRECT EXPOSURE PATHWAYS IN RBCA SPREADSHEET SYSTEM

VF_{ss}: Surface Soil Volatilization Factor (Equation CM-1)

The surface volatilization factor is the steady-state ratio of the concentration of an organic constituent in the ambient air breathing zone to the source concentration in the surface soil. The surface volatilization factor incorporates two cross-media transfer elements: i) organic vapor flux from the surface soil mass to ground surface and ii) mixing of soil vapors in the ambient air breathing zone directly over the affected surface soil. For each site, the applicable VFss value corresponds to the lesser result of two calculation methods (termed CM-1a and CM-1b on Figure A.3, page A-11). Equation CM-1a typically controls for low-volatility organics, as it assumes there is an infinite source of organics in the surface soils and uses a volatilization rate based primarily on chemical properties. Equation CM-1b, which typically controls for volatile organics, is based on a mass balance approach. In this equation, a finite amount of organics is assumed to be present in the surface soil (based on the representative COC concentration), volatilizing at a constant rate over the duration of the exposure period (e.g., 25-30 years). Both expressions account for the dilution of organics in ambient air above the source zone due to mixing with ambient air moving across the site. A simple box model is used for this dilution calculation, based on the following adjustable default assumptions: 2-meter mixing zone height and 225 cm/sec (5 mph) lateral wind speed. The length of the mixing zone is set equal to the lateral dimension of the exposed affected surface soil area parallel to the assumed wind direction.

Tier2

Δ.7

Key assumptions used in this model and their effect on the SSTL calculation are as follows:

KEY ASSUMPTIONS:	VF _{ss}	EFFECT ON CLEANUP STANDARD
Uniform COC Couniformly distributed period.	oncentrations: Constituent levels d in soil and constant over exposure	
 No COC Decay: mechanism in soil or 	No biodegradation or other loss vapor phase.	\bigcirc
 Finite Source Ter constant volatilizatio 	m: Source term mass adjusted for nover exposure period.	

PEF: Soil Particulate Emission Factor (Equation CM-2)

The Particulate Emission Factor (PEF) is the steady-state ratio of the concentration of organics in particulates in the ambient air breathing zone to the source concentration of organics in the surface soil. The factor incorporates two cross-media transfer elements: i) the release rate of soil particulates (dust) from ground surface and ii) mixing of these particulates in the ambient air breathing zone directly over the affected surface soil. The particulate release rate is commonly matched to a conservative default value of 6.9 x 10⁻¹⁴ g/cm²-sec (approximately 0.2 lbs/acre-year), unless a more appropriate site-specific estimate is available. (If the site is paved, the particulate release rate and resultant PEF value for the covered soil area will be zero.) Particulates are assumed to be diluted by lateral air flow directly over the source zone. For this purpose, a simple box model is employed, based on the following adjustable default assumptions: 2-meter mixing zone height and 225 cm/sec (5 mph) lateral wind speed. The length of the mixing zone is matched to the lateral dimension of the exposed affected surface soil area parallel to the assumed wind direction.

Key assumptions incorporated in this model and their effect on the SSTL calculation are as follows:

K	EY ASSUMPTIONS: PEF	EFFECT ON CLEANUP STANDAR		
•	Uniform COC Concentrations: Constituent levels uniformly distributed in soil and constant over exposure period.			
•	No COC Decay: No biodegradation or other loss mechanism in soil or vapor phase.			
•	Default Emission Rate : Conservative particulate emission rate.	· ↔ ❖		

VF_{samb}: Subsurface Soil Volatilization Factor (Equation CM-3)

The subsurface soil volatilization factor is comparable to the surface volatilization equation, except that the algorithm has been adjusted to account for vapor flux from greater soil depths. The volatilization factor accounts for two cross-media transfer elements: i) organic vapor flux from the subsurface affected soil mass to ground surface and ii) mixing of soil vapors in the ambient air breathing zone directly over the affected soil zone. As with the surface soil volatilization factor, VFss, the applicable subsurface soil volatilization factor, VFsamb, corresponds to the lesser result of two calculation methods (termed CM-3a and CM-3b on Figure A.3, page A-12). Equation CM-3a, which corresponds to the expression given in Appendix X.2 of ASTM E-1739, assumes a constant source mass in the subsurface and can severely overpredict the soil vapor flux rate. To correct for this problem, Equation CM-3b, which accounts for a mass balance of the volatilized source mass over the exposure period (similar to Equation CM-1b) has been incorporated in the RBCA Spreadsheet. With either equation (CM-3a or CM 3-b), dilution of soil vapors in the ambient air breathing zone is estimated using the same box model described for Equation CM-1.

Key assumptions incorporated in this model and their effect on the SSTL calculation are as follows:

KEY ASSUMPTIONS: VF samb	EFFECT ON CLEANUP STANDARD
 Uniform COC Concentrations: Constituent levels uniformly distributed in soil and constant over exposu period. 	re
No COC Decay: No biodegradation or other loss mechanism in soil or vapor phase.	₹-
Finite Source Term: Source term mass adjusted for constant volatilization over exposure period.	

VF_{sesp}: Subsurface Soil-to-Enclosed-Space Volatilization Factor (Equation CM-4)

This factor is the steady-state ratio of the source concentration of an organic constituent in indoor air due to the concentration in underlying subsurface soils. Again, two expressions are evaluated: i) Equation CM-4a, which assumes an infinite source mass and is of the same form as Equation CM-3a with a term added to represent diffusion through cracks in the foundation of the building, and ii) Equation CM-4b which accounts for a finite source mass volatilizing at a constant rate over the exposure period. The applicable VF sesp value corresponds to the lesser of these two expressions. The soil-to-enclosed-space volatilization factor incorporates two cross-media transfer elements: i) organic vapor flux from the underlying soil mass through the building floor and ii) mixing of soil vapors with indoor air. Tier 1 default assumptions in the software include: i) a 1% open crack space in the foundation allowing vapors to diffuse into the building and ii) a building air exchange rate of one exchange every 20 days. When used with these default values, the expression yields very conservative results and can represent the controlling pathway for SSTL calculations for many sites. In such case, users are advised to conduct direct air or soil vapor measurements prior to proceeding with remedial measures for this pathway.

Key assumptions used in this model and their effect on the SSTL calculation are as follows:

KEY ASSUMPTIONS: VF sesp	EFFECT ON CLEANUP STANDARD
 Uniform COC Concentrations: Constituent levels uniformly distributed in soil and constant over exposure period. 	
 No COC Decay: No biodegradation or other loss mechanism in soil or vapor phase. 	₹
• Finite Source Term: Source term mass adjusted for constant volatilization over exposure period.	
 Default Building Parameters: Conservative default values for foundation crack area and air exchange rate. 	₹-

YF_{wamb}: Groundwater Volatilization Factor (Equation CM-5)

The groundwater volatilization factor is the steady-state ratio of the concentration of an organic constituent in ambient air to the source concentration in underlying affected groundwater. Vapor flux rates from groundwater to soil vapor and thence from soil vapor to ground surface are generally lower than those associated with direct volatilization from affected soils. Consequently, this groundwater-to-ambient-air volatilization factor is typically not significant in comparison to soil volatilization factors (i.e., Equations CM-1 or CM-3). This factor accounts for i) steady-state partitioning of dissolved organic constituents from groundwater to the soil vapor phase, ii) soil vapor flux rates to ground surface, and iii) mixing of soil vapors in the ambient air breathing zone directly over the plume. Dilution of organic vapors in the breathing zone is estimated using a box model, as described for Equation CM-1 above.

Tier2

Key assumptions incorporated in this model and their effect on the SSTL calculation are as follows:

KEY ASSUMPTIONS: VF warmb	EFFECT ON CLEANUP STANDARD
 Vapor Equilibrium: Soil vapor concentrations re- immediate equilibrium with groundwater source. 	ach 🗸
 No COC Decay: No biodegradation or other los mechanism in groundwater or vapor phase. 	s ↔
 Infinite Source: COC mass in source term constrover time. 	ant 🗸

VF_{wesp}: Groundwater to Enclosed Space Volatilization Factor (Equation CM-6)

This factor is the steady-state ratio of the concentration of an organic constituent in indoor air to the source concentration in the underlying affected groundwater. The algorithm is equivalent to Equation CM-5, modified to address vapor diffusion through a building floor and enclosed space accumulation. Tier I default values are the same as those specified for Equation CM-4 and, as noted previously, can provide a relatively conservative (upper-range) estimate of indoor vapor concentrations. If this pathway produces the controlling (minimum) RBSL or SSTL value for a given site, the user is advised to conduct direct air or soil vapor measurements to evaluate the actual need for remedial measures.

Key assumptions used in this model and their effect on the SSTL calculation are as follows:

KEY ASSUMPTIONS: VF wesp	EFFECT ON CLEANUP STANDARD
Vapor Equilibrium: Soil vapor concentrations reach immediate equilibrium with groundwater source.	₹.
 No COC Decay: No biodegradation or other loss mechanism in groundwater or vapor phase. 	<₽
 Infinite Source: COC mass in source term constant over time. 	Ţ
 Default Building Factors: Conservative default values for foundation crack area and air exchange rate. 	♣

K_{sw}: Soil Leachate Partition Factor (Equation CM-7)

The soil leachate partition factor is the steady-state ratio between the concentration of an organic constituent in soil pore water and the source concentration on the affected soil mass. This factor is used to represent the release of soil constituents to leachate percolating through the affected soil zone.

Key assumptions used in this equation and their effect on the SSTL calculation are as follows:

KEY ASSUMPTIONS: K sw	EFFECT ON CLEANUP STANDARD
Leachate Equilibrium: Leachate concentrations reach immediate equilibrium with affected soil source.	\Diamond
 No COC Decay: No biodegradation or other loss mechanism in soil or leachate. 	₹ .
• Infinite Source: COC mass in soil constant over time.	·

LDF: Leachate-Groundwater Dilution Factor (Equation CM-8)

The LDF factor accounts for dilution of organics as leachate from the overlying affected soil zone mixes with groundwater in the underlying water-bearing unit. As indicated on Figure A.2, the leachate dilution factor (LDF) divided by the soil-leachate partition factor (K_{sw}) represents the steady-state ratio between the concentration of an organic constituent in the groundwater zone and the source concentration on the overlying affected soil. To estimate the leachate dilution factor, a simple box model is used to estimate mass dilution within a mixing zone in the water-bearing unit directly beneath the affected soil mass (see Equation CM-8, Figure A.3 on page A-13). The leachate volume entering the water-bearing unit is represented by the deep infiltration term, I, which typically falls in the range of 0.5% - 5% of annual site precipitation. For the Tier 1 RBSL calculation, a conservative default infiltration value of 30 cm/year is used, consistent with the example provided in ASTM E-1739, Appendix X.2. For many sites, this default value (equivalent to an annual rainfall rate of over 200 in/year) may significantly overestimate actual leachate rates.

Key assumptions used in this equation and their effect on the SSTL calculation are as follows:

KEY ASSUMPTIONS: LDF	EFFECT ON CLEANUP STANDARD		
 Rainfall Infiltration: Deep percolation through affected soil assumed to reach water-bearing unit regardless of soil thickness or permeability. 	♦		
 No COC Decay: No biodegradation or other loss in mechanism groundwater zone. 	♦		
 Default Dilution Parameters: Conservative default value for infiltration rate. 	❖		

Tier 2

A-11

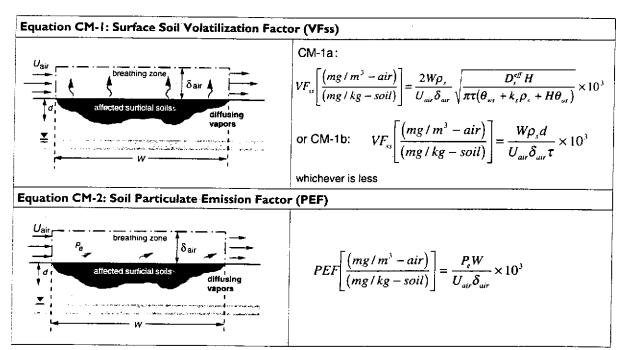
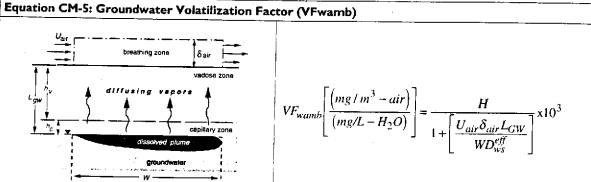



FIGURE A.3 CROSS-MEDIA PARTITIONING EQUATIONS IN THE RBCA SPREADSHEET SYSTEM

Continued

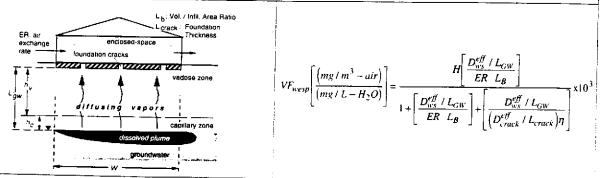
APPENDIX A: RBCA SPREADSHEET SYSTEM AND MODELING GUIDELINES Continued Equation CM-3: Subsurface Soil Volatilization Factor (VFsamb) $VF_{samb}\left[\frac{\left(mg/m^3 - air\right)}{\left(mg/kg - soil\right)}\right] = \frac{H\rho_s}{\left[\theta_{ws} + k_s\rho_s + H\theta_{as}\right]\left[1 + \frac{U_{air}\delta_{air}L_s}{D_c^{eff}W}\right]} \times 10^3$ breathing zone $VF_{samb} \left| \frac{\left(mg / m^3 - air \right)}{\left(mg / kg - soil \right)} \right| = \frac{W\rho_s d_s}{U_{air} \delta_{air} \tau} \times 10^3$ whichever is less Equation CM-4: Subsurface Soil to Enclosed Space Volatilization Factor (VFsesp) CM-4a: Lb: Vol. / Infil. Area Ratio crack: Foundation Thickness $VF_{sesp}\left[\frac{\left(mg/m^3 - air\right)}{\left(mg/kg - soil\right)}\right] = \frac{\frac{H\rho_s}{\left[\theta_{ws} + k_s\rho_s + H\theta_{as}\right]} \left[\frac{D_s^{eff}/L_s}{ER L_B}\right]}{1 + \left[\frac{D_s^{eff}/L_s}{ER L_B}\right] + \left[\frac{D_s^{eff}/L_s}{\left(D_{erach}^{eff}/L_{srack}\right)\eta}\right]} \times 10^3$ exchange foundation cracks $VF_{sesp} \left| \frac{\left(mg/m^3 - air \right)}{\left(mg/kg - soil \right)} \right| = \frac{\rho_s d_s}{L_B E R \tau} \times 10^3$

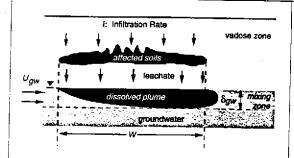
Tier2 A-12

or CM-4b:

whichever is less

Equation CM-6: Groundwater to Enclosed Space Volatilization Factor (VFwesp)




FIGURE A.3 CROSS-MEDIA PARTITIONING EQUATIONS IN THE RBCA SPREADSHEET SYSTEM

Continued

Continued

Equation CM-7: Soil Leachate Partition Factor(Ksw)

Equation CM-8: Leachate-Groundwater Dilution Factor (LDF)

$$K_{sw} \left[\frac{\left(mg / L - H_2 O \right)}{\left(mg / kg - soil \right)} \right] = \frac{\rho_s}{\theta_{ws} + k_s \rho_s + H \theta_{as}}$$

$$LDF[dimensionless] = 1 + \frac{V_{gw}\delta_{gw}}{IW}$$

Definitions for Cross-Media Transfer Equations

 $D_{
m c}^{
m eff}$ Effective diffusivity in vadose zone soils:

$$D_s^{eff} \left[\frac{cm^2}{s} \right] = D^{air} \frac{\theta_{as}^{3.33}}{\theta_T^2} + \left[\frac{D^{wat}}{H} \right] \left[\frac{\theta_{ws}^{3.33}}{\theta_T^2} \right]$$

 $D_{
m org}^{\it eff}$ Effective diffusivity above the water table:

$$D_{ws}^{eff} \left[\frac{cm^2}{s} \right] = \left(h_{cap} + h_v \right) \left[\frac{h_{cap}}{D_{cap}^{eff}} + \frac{h_v}{D_s^{eff}} \right]^{-1}$$

d Lower depth of surficial soil zone (cm)

ďς Thickness of affected subsurface soils

Dair Diffusion coefficient in air (cm²/s) **D**wat

Diffusion coefficient in water (cm²/s) ER Enclosed-space air exchange rate (L/s)

Fraction of organic carbon in soil (g-C/g-soil) f_{∞}

Н

Henry's law constant (cm³-H₂O)/(cm³-air)

 h_{cap} Thickness of capillary fringe (cm)

h. Thickness of vadose zone (cm)

Infiltration rate of water through soil (cm/year)

k_{oc} Carbon-water sorption coefficient (g-H₂O/g-C)

k_s Soil-water sorption coefficient (g-H2O/g-soil)

Enclosed space volume/infiltration area ratio (cm) LB

L_{crack} Enclosed space foundation or wall thickness (cm)

LGW Depth to groundwater = $h_{cap} + h_{v}$ (cm)

L, Depth to subsurface soil sources (cm)

 P_e Particulate emission rate (g/cm²-s)

Uair Wind speed above ground surface in ambient mixing zone (cm/s)

Groundwater Darcy velocity (cm/s)

 D_{crack}^{eff} Effective diffusivity through foundation cracks:

$$D_{crack}^{eff} \left[\frac{cm^2}{s} \right] = D^{air} \frac{\theta_{acrack}^{3.33}}{\theta_T^2} + \left[\frac{D^{wat}}{H} \right] \left[\frac{\theta_{wcrack}^{3.33}}{\theta_T^2} \right]$$

 D_{can}^{eff} Effective diffusivity in the capillary zone:

$$D_{cap}^{eff} \left[\frac{cm^2}{s} \right] = D^{air} \frac{\theta_{acap}^{3.33}}{\theta_T^2} + \left[\frac{D^{wat}}{H} \right] \left[\frac{\theta_{wcap}^{3.33}}{\theta_T^2} \right]$$

W Width of source area parallel to wind, or groundwater flow direction (cm)

 δ_{air} Ambient air mixing zone height (cm)

Groundwater mixing zone thickness (cm)

Areal fraction of cracks in foundations/walls (cm 2-cracks/cm2-total area)

Volumetric air content in capillary fringe soils θ_{acap}

(cm ²-air/cm³-soil)

Volumetric air content in foundation/wall cracks θ_{acrack} (cm³-air/cm³ total volume)

Volumetric air content in vadose zone soils

 (cm^3-air/cm^3-soil)

Total soil porosity (cm³-pore-space/cm³-soil) θ_{Υ}

Volumetric water content in capillary fringe soils θ_{wcap} (cm 3-H2O/cm3-soil)

θwcrack Volumetric water content in foundation/wall cracks (cm 3 H2O)/cm3 total volume)

Volumetric water content in vadose zone soils (cm³-H₂O/cm³-soil)

 ρ_s Soil bulk density (g-soil/cm³-soil)

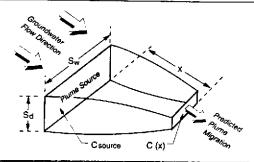
Averaging time for vapor flux (s)

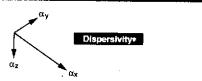
FIGURE A.3 CROSS-MEDIA PARTITIONING EQUATIONS IN THE RBCA SPREADSHEET SYSTEM

LATERAL TRANSPORT FACTORS

During lateral transport within air or groundwater, COC concentrations in the flow stream will be diminished due to mixing and attenuation effects (see Figure A.2). Site-specific attenuation factors Tier2

LATERAL TRANSPORT FACTORS


During lateral transport within air or groundwater, COC concentrations in the flow stream will be diminished due to mixing and attenuation effects (see Figure A.2). Site-specific attenuation factors characterizing COC mass dilution or loss during lateral transport can be estimated using the air dispersion and groundwater transport models provided in the RBCA Spreadsheet System. Equations for the steady-state analytical transport models incorporated in the RBCA spreadsheet are shown on Figure A.4. The user must provide information regarding COC properties and transport parameters (flow velocities, dispersion coefficients, retardation factors, decay factors, etc.), as required for the selected contaminant transport model. Calculation procedures for lateral air dispersion and groundwater dilution-attenuation factors are described below.


• DAF: Lateral Groundwater Dilution Attenuation Factor (Equation LT-1)

To account for attenuation of affected groundwater concentrations between the source and POE, the Domenico analytical solute transport model has been incorporated into the RBCA software. This model uses a partially or completely penetrating vertical plane source, perpendicular to groundwater flow, to simulate the release of organics from the mixing zone to the moving groundwater (see Figure A.4). Within the groundwater flow regime, the model accounts for the effects of advection, dispersion, sorption, and biodegradation. Given a representative source zone concentration for each COC, the model can predict steady-state plume concentrations at any point (x, y, z) in the downgradient flow system. In the RBCA Spreadsheet System, the model is set to predict centerline plume concentrations at any downgradient distance x, based on 1-D advective flow and 3-D dispersion. The receptor well is assumed to be located on the plume centerline, directly downgradient of the source zone at a location specified by the user. Source concentrations and critical flow parameters must be provided by the user. Guidelines for selection of key input parameters are outlined below.

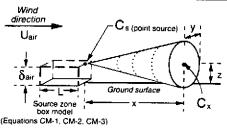
- i) Groundwater Source Term. The Domenico model represents the groundwater source term as a vertical plane source, perpendicular to groundwater flow, releasing dissolved constituents into groundwater passing through the plane. In the RBCA Spreadsheet System, the source plane dimensions are matched to the source width and thickness specified by the user. The user should provide source dimensions equivalent to the measured thickness and transverse width of the groundwater plume at the source point (area of maximum plume concentration). The source is assumed to be infinite and constant, with source zone concentrations set equal to the representative COC concentrations supplied by the user. Representative source concentrations must be provided for each COC. As indicated on Table 6 in Volume 1, Section 3.0, of this manual, these values should correspond to the maximum COC concentrations measured at the plume "hot spot" unless sufficient data are available to facilitate use of other statistical estimates. If non-aqueous phase liquids (NAPLs) are present, maximum COC solubility limits in groundwater can be corrected for mixture effects by using Raoult's Law (see References 18 and 24, Section 5.0, Volume 1). For this purpose, the user must provide data regarding the mole fractions of principal NAPL constituents.
- ii) Flow and Mixing Parameters. The degree of contaminant mixing predicted by the model will be a function of the dispersion coefficients, hydraulic conductivity, hydraulic flow gradient, and effective soil porosity specified by the user. Hydraulic conductivity and flow gradient should be matched directly to site measurements. In many cases, the effective soil porosity of the waterbearing unit can be reasonably estimated based on soil type using published references. Typical default values are provided in the software.

Equation LT- 1: Lateral Groundwater Dilution Attenuation Factor

LT-1a: Solute Transport with First-Order Decay:

$$\frac{C(x)_{i}}{Csi} = \exp\left(\frac{x}{2\alpha_{x}}\left[1 - \sqrt{1 + \frac{4\lambda_{i}\alpha_{x}R_{i}}{v}}\right]\right) erf\left(\frac{S_{w}}{4\sqrt{\alpha_{y}x}}\right) erf\left(\frac{S_{d}}{4\sqrt{\alpha_{z}x}}\right)$$

where: $v = \frac{K \cdot i}{\theta}$


LT-1b: Solute Transport with Biodegradation by Electron-Acceptor Superposition Method:


$$C(x)_i = \left[\left(C_{si} + BC_i \right) erf \left(\frac{S_w}{4\sqrt{\alpha_y x}} \right) erf \left(\frac{S_d}{4\sqrt{\alpha_z x}} \right) \right] - BC_i$$

where: $BC_i = BC_T \times \frac{C_{si}}{\sum C_{si}}$ and $BC_T = \sum \frac{C(ea)_n}{UF_n}$

A-15

Equation LT-2: Lateral Air Dispersion Factor

$$\left| \frac{C(x)_i}{C_{si}} = \frac{Q}{2\pi U_{air}\sigma_y\sigma_z} \times \exp\left(-\frac{y^2}{2\sigma_y^2}\right) \left(\exp\left(-\frac{(z-\delta_{air})^2}{2\sigma_z^2}\right) + \exp\left(-\frac{(z+\delta_{air})^2}{2\sigma_z^2}\right) \right)$$

where: $Q = \frac{U_{air}(\delta_{air})(A)}{L}$

Definitions for Lateral Transport Equations

- $C(x); \qquad \text{Concentration of constituent } i \text{ at distance } x \\ \qquad \text{downstream of source } (mg/L) \text{ or } (mg/m^3)$
- C_{si} Concentration of constituent i in Source Zone (mg/L) or (mg/m^3)
- BC_i Biodegradation capacity available for constituent i
- BC_T Total biodegradation capacity of all electron acceptors in groundwater
- $C(ea)_n$ Concentration of electron acceptor n in groundwater
- UF_n Utilization factor for electron acceptor *n* (i.e., mass ratio of electron acceptor to hydrocarbon consumed in biodegradation reaction)
- x Distance downgradient of source (cm)
- α_c Longitudinal groundwater dispersivity (cm)
- α_c Transverse groundwater dispersivity (cm)
- α₂ Vertical groundwater dispersivity (cm)
- θ_e Effective Soil Porosity

- λ_i First-Order Degradation Rate (day $^{-1}$) for constituent i
- υ Groundwater Seepage Velocity (cm/day)
- K Hydraulic Conductivity (cm/day)
- R_i Constituent retardation factor
- i Hydraulic Gradient (cm/cm)
- S_w Source Width (cm)
- S_d Source Depth (cm)
- δ_{air} Ambient air mixing zone height (cm)
- Q Air volumetric flow rate through mixing zone (cm³/s)
- Uair Wind Speed (cm/sec)
- σ_y Transverse air dispersion coefficient (cm)
- σ_Z Vertical air dispersion coefficient (cm)
- y Lateral Distance From source zone (cm)
- z Height of Breathing Zone (assumed equal to δ_{air}) (cm)
- A Cross Sectional Area of Air Emissions Source (cm²)
- Length of Air Emissions source (cm) parallel to wind direction

FIGURE A.4 LATERAL TRANSPORT EQUATIONS IN THE RBCA SPREADSHEET SYSTEM

Selection of dispersion coefficients can prove problematic, given the impracticability of direct site measurements. Conservative practice calls for setting the longitudinal dispersivity, α_X (units of length), equal to 0.1 times the advective plume length from source to receptor; the transverse dispersivity, α_Y equal to 0.33 times α_X ; and the vertical dispersivity, α_Z , equal to 0.05 times α_X (see References 17 and 28, Section 5.0, Volume 1). This fixed relationship is incorporated in the RBCA spreadsheet, allowing the user to calculate dispersion coefficients based on the distance from the source to the receptor.

- iii) Retardation Factors. The rate of plume migration can be reduced due to constituent sorption to the solid matrix of the water-bearing unit. The user is referred to standard hydrogeologic texts regarding calculation of retardation factors for both inorganic and organic plume constituents (see Reference 18 and 24, Section 5.0, Volume 1). The RBCA software calculates a retardation factor for each COC using information on the organic-carbon partition coefficient (K_{OC}) of the constituent and the fraction organic carbon (foc) of the soil matrix. Sorption can significantly affect the NAF calculation if first-order decay conditions are assumed to apply. However, the retardation factor will not affect model results under constant source, steady-state conditions in the absence of first-order decay.
- iv) First-Order Decay Parameters. Under steady-state conditions, hydrolysis and biodegradation represent the principal mechanisms of organic contaminant mass reduction during groundwater plume transport within the subsurface. Many groundwater transport models account for these attenuation phenomena by means of a first-order decay function within the advection-dispersion equation. In the RBCA Spreadsheet System, the user may elect to use a version of the Domenico solute transport model incorporating first-order decay (see Equation LT-1a on Figure A.4 and Screen 9 of software). Considerable care must be exercised in the selection of a first-order decay coefficient for each COC, however, in order to avoid significantly over-predicting or underpredicting actual decay rates. Optional methods for selection of appropriate decay coefficients are as follows:

Literature Values: Various published references are available regarding decay half-life values for hydrolysis and biodegradation (see References 36 and 37, Section 5.0, Volume 1). The chemical /toxicological database incorporated in the RBCA Spreadsheet System includes minimum published decay rate coefficients (representing maximum decay half-lives) for each chemical, and the user may select to load these or other input values on Screens 9 and 9.1 of the software. Use of these first-order decay coefficients will generally provide a conservative result (i.e., predict worst-case exposure concentrations and more stringent cleanup standards).

Calibrate to Existing Plume Data with RBCA Software: If the plume is in a steady-state or diminishing condition, the Domenico model can be used to determine first-order decay coefficients that best match the observed site concentrations. The user may adopt a trial-and-error procedure with the RBCA Spreadsheet using the Alternate POC Action Level worksheet (see Screen 11 of software) to derive a best-fit decay coefficient value for each COC. For this purpose, with all other input parameters fixed, the decay-rate value for each COC should be individually adjusted until the ratio of i) the calculated action level concentration to ii) the actual COC measurement at each alternate point of compliance (APOC) location is relatively uniform among all APOCs (i.e., same ratio at each APOC). SSTL values calculated for these plume-matched decay values can then be used in the Tier 2 evaluation. Please note that, for expanding plumes, this steady-state calibration method may over-estimate actual decay-rate coefficients and contribute to an under-estimation of predicted POE concentration levels and baseline risks. Further guidelines for model calibration to existing data are provided in Reference 28, Section 5.0, Volume 1.

Calibrate to Existing Plume Data with Alternate Model: If desired, a more complex groundwater model may be used to characterize decay-rate coefficients under either steady-state, diminishing, or expanding plume conditions, and the resultant decay-rate values used

A-16

TIER 2 Guidance Manual for Risk-Based Corrective Action

indicates an expanding plume condition (or is insufficient to confirm a steady-state or diminishing condition), a transient flow model accounting for the time since the release occurred can be employed to more accurately estimate first-order decay terms, based on a best-fit match to site data. These estimated decay-rate coefficients can then be entered in the steady-state RBCA Spreadsheet model (Equation LT-1a) to predict chronic exposure and risk levels at the POE.

At low constituent concentrations and in low flowrate groundwater systems, groundwater transport models are particularly sensitive to first-order decay parameters. Consequently, care should be taken in selection of these values to ensure reliable modeling results. Because many biodegradation processes within the subsurface groundwater system are rate-limited based on the availability of electron acceptors (e.g., dissolved oxygen), first-order decay rate factors should not be transferred from the laboratory to the field, or from one field site to another, without consideration of key site conditions (e.g., background electron acceptor concentration in groundwater, COC source concentration, groundwater seepage velocity, etc.). In addition, for some organics (primarily chlorinated solvents), the user must consider the breakdown products (or progeny) of the hydrolysis or biodegradation process and select a decay rate coefficient that is representative of the full decay chain (i.e., from COC to non-hazardous progeny).

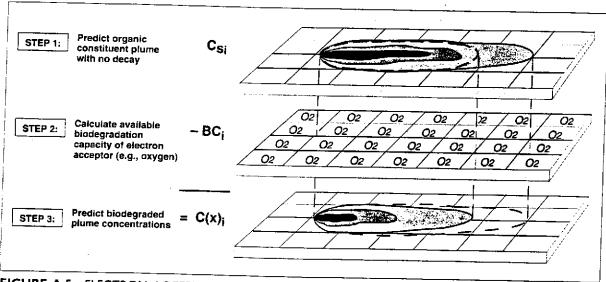


FIGURE A.5. ELECTRON ACCEPTOR SUPERPOSITION METHOD FOR SIMULATION OF GROUNDWATER CONTAMINANT BIODEGRADATION

v) Electron-Limited Biodegradation Rates. As an alternative to a first-order decay function, the user may select a groundwater contaminant transport model incorporating a direct simulation of in-situ biodegradation processes. To account for stoichiometric constraints, such models commonly employ particle transport of both organic and electron acceptors with an instantaneous reaction assumption. Given proper characterization of background concentrations of key electron acceptors, source zone COC concentrations, and groundwater flow parameters, these models can generally be relied upon to provide a conservative estimate of biodegradation effects on organic plume concentrations at the POE, without the difficulty associated with selection of a site-specific, first-order decay rate.

For this purpose, the RBCA Spreadsheet System includes a version of the Domenico solute transport model incorporating an electron acceptor superposition algorithm (see Equation LT-1b on Figure A.4 and Screen 9 of the software). Based on the biodegradation capacity of electron acceptors present in the groundwater system, this algorithm will correct the non-decayed

Tier2

groundwater plume concentrations predicted by the Domenico model for the effects of organic constituent biodegradation. This calculation procedure is illustrated on Figure A.5 and discussed in further detail below.

Based on the stoichiometric equation for the biodegradation reaction, a *utilization factor*, representing the ratio of electron acceptor mass to hydrocarbon mass consumed during biodegradation, can be defined for each electron acceptor. Utilization factors for the principal electron acceptors present in shallow groundwater systems, as reported in the research literature (see Reference 29b, Volume 1, Section 5.0), are summarized on Table A.1.

TABLE A.I UTILIZATION FACTORS FOR SELECTED ELECTRON ACCEPTORS

ELECTRON ACCEPTOR	UTILIZATION FACTOR (gm/gm)
Oxygen	3.14
Nitrate	4.9
Ferrous Iron (for Ferric Iron)	21.8
Sulfate	4.6
Methane (for Carbon Dioxide)	0.78

Note: "Electron Acceptor" refers to actual electron acceptor or surrogate by-products. Utilization Factor represents the mass ratio of electron acceptor to hydrocarbon quantity consumed (gm/gm) in biodegradation reaction within groundwater.

Given these values, the potential contaminant mass removal or biodegradation capacity (BCn) of a given electron acceptor n can then be estimated as the concentration of that electron acceptor $(C(ea)_n)$ in the groundwater divided by its utilization factor (UF_n). The total biodegradation capacity of the groundwater mass mixing with the contaminant plume is the sum of the individual capacities for each of the principal electron acceptors (i.e., $BC_T = \sum BC_n$ for n =oxygen, nitrate, iron, sulfate, etc.). Note that, in this process, electron acceptors are defined as three easily measured electron acceptors (dissolved oxygen, nitrate, and sulfate) and surrogate byproducts for two other difficult-to-quantify electron acceptors (ferrous iron instead of ferric iron and methane instead of carbon dioxide). The concentrations of the actual electron acceptors are measured in background wells, while the concentration of the by-products are measured in the source zone. For this calculation, using the background concentration of each electron acceptor (oxygen, nitrate, sulfate) from outside the plume will provide an upperbound estimate of BC $_{
m T}$. For a lowerbound estimate, the calculation may be based upon the difference in the electron acceptor concentrations (oxygen, nitrate, sulfate) measured inside and outside the plume area (i.e., $C(ea)_n$ -outside minus $C(ea)_n$ -inside), thereby accounting for non-utilization of a portion of the electron acceptor mass.

The total biodegradation capacity of the groundwater mass must be distributed among the various organic constituents present in the dissolved contaminant plume. Compared to the rate of plume transport, biodegradation reactions occur relatively instantaneously upon mixing of a readily degradable organic plume (e.g., monoaromatic hydrocarbons) with the background electron acceptor mass. Given the relatively uniform rate of biodecay of the organic compounds typically present in petroleum hydrocarbon products, the portion of the total biodegradation capacity available for removal of each constituent i (BC_i) can be estimated based on the mass percentage of each constituent in the plume (i.e., BC_i = BC_T · Cs_i/ Σ Cs_i, where Cs_i = source concentration of constituent i). This assumption will prove reasonable for mixtures of all-readily degradable compounds, due to the relatively uniform biokinetic rates within these groups. However, within mixed degradable and non-degradable constituent plumes (e.g., benzene with dichloroethane), the readily degradable compounds will actually consume a disproportionate share of the biodegradation capacity.

If the user elects to use the electron acceptor superposition option, the RBCA Spreadsheet System will i) estimate the total biodegradation capacity (BCT) of the groundwater mass based on the electron acceptor concentrations provided by the user (see Screen 9.1), ii) allocate an available biodegradation capacity (BC₁) to each of the various dissolved organic constituents based on the concentration data provided by the user (see Screen 7), and iii) correct the steady-state plume concentrations predicted by the Domenico solute transport model for the effects of biodegradation using Equation LT-1b (see Figure A.4). Further information regarding the electron acceptor biodegradation algorithm is provided in References 19 and 29 (see Section 5.0, Volume 1).

Key assumptions used in the groundwater solute transport model and their effect on the SSTL calculation are as follows:

KEY ASSUMPTIONS: LATERAL GROUNDWATER DAF	EFFECT ON CLEANUP STANDARD		
Infinite Source: Groundwater source term constant over time with no depletion.	₽		
Dispersion Coefficient: Fixed proportions assumed among longitudinal, transverse, and vertical dispersion coefficients.			
Receptor Location: Downgradient receptor well assumed to be on plume centerline.	- ♦		
Biodegradation Rate: High or low first-order of decay rate may be specified by user per site data.	variable		

Tier 2

A-19

ADF: Lateral Air Dispersion Factor (Equation LT-2)

The RBCA software includes a 3-dimensional gaussian dispersion model to account for transport of air-borne contaminants from the source area to a downwind POE (see Equation LT-2 on Figure A.4). The model incorporates two conservative assumptions: i) a source zone height equivalent to the breathing zone and ii) a receptor located directly downwind of the source at all times. As indicated on Figure A.2, an effective pathway NAF value is calculated as the steady-state ratio between the ambient organic vapor or particulate concentration at the downwind POE and the source concentration in the on-site affected soil zone. The model requires input data for the affected soil zone dimensions and concentrations, wind speed, and horizontal and vertical air dispersion coefficients to compute the resulting COC concentrations in ambient air at the POE. Guidelines for estimating key input parameters are provided below:

Air Source Term: In the RBCA Spreadsheet, the source term for the air dispersion model is matched to the ambient air vapor concentrations determined in accordance with the soil-to-air cross-media transfer equations CM-1, CM-2, and CM-3 shown on Figure A.3. Specifically, the source concentration for off-site vapor transport is equivalent to the vapor concentration exiting the box model for the surface soil and subsurface soil volatilization algorithms (see Figure A.3). The model assumes the source zone to be a point source (located in the center of the affected soil area) with the same mass flux as the entire affected soil zone. The off-site receptor is assumed to be located directly downwind of the source point for the full duration of the exposure period. To define the source term, the user must provide the same soil information as required for the volatilization factors (i.e., affected soil zone concentrations, dimensions, etc.).

Please note that for receptors located directly over or adjacent to the affected soil zone (i.e., inside the "mixing zone" for Equations CM-1, CM-2, or CM-3), the gaussian dispersion model is not needed and can be shut off by entering a value of zero for the distance from the source to the offsite receptor on Screen 3.2 of the RBCA Spreadsheet.

- ii) Wind Speed: Wind speed should be matched to the average annual wind speed through the mixing zone. The model assumes the wind direction to be in a straight line from the source to the specified POE at all times for the full duration of the exposure period. In the RBCA software, a default wind speed value of 225 cm/sec (~ 5 mph) is assumed unless the user enters a site-specific value.
- iii) Air Dispersion Coefficients: Estimating dispersion coefficients requires knowledge of the atmospheric stability class and the distance between the source and POE. Stability is an indicator of atmospheric turbulence and, at any one time, depends upon i) static stability (the change of temperature with height), ii) thermal turbulence (caused by ground heating), and iii) mechanical turbulence (a function of wind speed and roughness). The Pasquill-Gifford system for stability classification is summarized on Figure A.6. Corresponding horizontal and vertical dispersion coefficients for each class are provided on Figure A.7. Stability Class A, which represents extremely unstable air with a high potential for mixing, occurs under low wind conditions and high levels of incoming solar radiation. At the other extreme, Stability Classes E and F represent stable atmospheric conditions, with a lower potential for mixing, and occur with higher wind speeds and greater cloud cover (see Reference 21 in Volume 1, Section 5.0).

The stability class for a given site can vary with rapidly changing weather conditions. Long-term weather patterns can be characterized on the basis of STAR summaries, comprised of joint frequency distributions of stability class, wind direction, and wind speed, which are available from the National Climatic Data Center in Asheville, North Carolina. Comprehensive atmospheric dispersion models, such as the Industrial Source Complex Long-Term (ISCLT) model, can directly incorporate STAR data to predict constituent dispersion in any direction from the source area. However, due to the complexity and expense of this modeling effort, use of models such as the ISCLT would normally correspond to a Tier 3 evaluation under the RBCA process.

To facilitate a Tier 2 evaluation of downwind receptor impacts, the RBCA Spreadsheet employs a simple gaussian dispersion model to predict maximum exposure concentrations at the POE under steady-state conditions, incorporating the conservative receptor assumptions noted above. A reasonable estimate of downwind COC concentrations can be obtained by assuming a wind turbulence consistent with Stability Class C for the full exposure period. For most locations, Stability Class C (slightly unstable) is representative of average annual conditions over time and can be used to estimate typical dispersion coefficients. For convenience, the RBCA Spreadsheet will directly calculate dispersion coefficients corresponding to Stability Class C for use in the air transport model, based on data provided by the user (see Screen 8.3.1 of software). Note that, even when these average dispersion coefficients are employed, the exposure concentrations predicted by the RBCA Spreadsheet model are likely to be conservative, given that the POE is assumed to be located directly downwind of the source zone at all times during the exposure period.

Key assumptions incorporated in this model and their affect on the SSTL calculation are as follows:

KEY ASSUMPTIONS: LATERAL AIR DISPERSION FACTOR	EFFECT ON CLEANUP STANDARD
Source Term: Vapor source concentration based on steady- state, soil-to-air cross-media equations.	❖
Default Stability Class: Default dispersion coefficients matched to Class C stability classification (slightly unstable).	
 Receptor Location: Receptor assumed to be located directly downwind of source zone at all times during exposure period. 	\Diamond

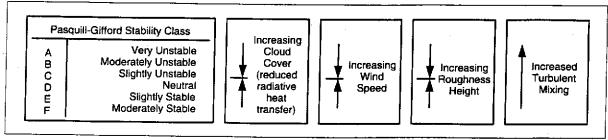


FIGURE A.6. STABILITY CLASSIFICATION FOR AIR TRANSPORT MODELING

SOURCE: DEVAULL ET AL, 1994

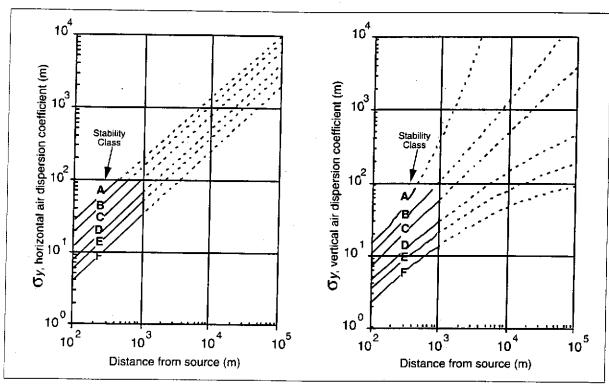


FIGURE A.7. DISPERSION COEFFICIENTS FOR AIR STABILITY CLASSIFICATIONS

SOURCE: EPA, 1988

A.4 RBCA Spreadsheet System User's Guide

GENERAL DESCRIPTION

The RBCA Spreadsheet System consists of a group of Microsoft® Excel worksheets integrated by an Excel macro interface. The worksheets and the macro are contained in a Microsoft Excel 5.0 workbook titled ASTMRBCA.XLS. The software is designed to perform risk-based corrective action calculations for selected exposure pathways. Via the point-and-click interface, the user supplies critical information regarding source conditions, exposure pathways, transport mechanisms, and potential receptors. Based on this information, the Spreadsheet System calculates baseline risks and applicable soil and groundwater cleanup standards for each constituent of concern.

As a spreadsheet system, the program does not generate traditional input or output files. Rather all input parameters and calculation results are contained within integrated worksheets which can be saved, viewed on the screen, or selectively printed. Background information on parameter selection

APPENDIX I TIER 2 EVALUATION INPUTS SUMMARY AND RESULTS TABLES

RBCA TIER 1/TIER 2 EVALUATION

Output Table 1

Software: GSI RBCA Spreadsheet Site Name: Former Beacon #574 Job Identification: U065.02 Site Location: 22315 Redwood Road, Castro Mate Completed: 11/3/98 Version: 1.0.1 Completed By: Dale A. van Dam NOTE: values which differ from Tier 1 default values are shown in bold italics and underlined. Commercial/Industrial Surface Residential Exposure Parameters Definition (Units) Residential Constrctn Adult (1-6yrs) (1-16 yrs) Chronic Constrctn Parameter Definition (Units) 1.0E+06 70 Contaminated soil area (cm^2) 8.9E+06 ATc Averaging time for carcinogens (yr) 1.0E+03 w Length of affect, soil parallel to wind (cm) 2.4E+03 ATn Averaging time for non-carcinogens (vr) 30 16 25 Length of affect, soil parallel to groundwater (cm. 3.7E+03 BW Body Weight (kg) 70 15 35 70 W.gw 16 25 Ambient air velocity in mixing zone (cm/s) 2.3E+02 ΕĐ Exposure Duration (yr) 30 6 Uair 30 25 delta Air mixing zone height (cm) 2.0E+02 Averaging time for vapor flux (yr) 350 250 180 Lss Thickness of affected surface soils (cm) 1.5E+02 EF Exposure Frequency (days/yr) 350 250 Рe Particulate areal emission rate (g/cm^2/s) 6.9E-14 Exposure Frequency for dermal exposure EF.Dem 2 Ingestion Rate of Water (L/day) **IRgw** 100 Ingestion Rate of Soil (mg/day) 100 200 50 IRs **Groundwater Definition (Units)** Value 1.1E+02 9.4E+01 **IRadi** Adjusted soil ing. rate (mg-yr/kg-d) Groundwater mixing zone depth (cm) 2.0E+02 Inhalation rate indoor (m*3/day) 15 20 delta.gw IRa.in Groundwater infiltration rate (cm/yr) 7.6E+01 20 20 10 IRa.out Inhalation rate outdoor (m^3/day) 8.0E+02 2.0E+03 5.8E+03 5.8E+03 Ugw Groundwater Darcy velocity (cm/yr) Skin surface area (dermal) (cm*2) 5.8E+03 SA 4.0E+03 Groundwater seepage velocity (cm/yr) ISAadj Adjusted dermal area (cm^2-vr/kg) 2.1E+03 1.7E+03 Ugw.tr Saturated hydraulic conductivity(cm/s) 2.5E-03 Soil to Skin adherence factor Κs grad FALSE FALSE Groundwater gradient (cm/cm) 1.0E-02 **AAFs** Age adjustment on soil ingestion FALSE FALSE Sw Width of groundwater source zone (cm) 1.7E+03 AAFd Age adjustment on skin surface area TRUE Sd Depth of groundwater source zone (cm) 6.0E+02 Use EPA tox data for air (or PEL based)? tox FALSE phi.eff Effective porosity in water-bearing unit 2.DE-01 Use MCL as exposure limit in groundwater? gwMCL? 1.0E-03 foc.sat Fraction organic carbon in water-bearing unit Is bioattenuation considered? TRUE BIO? BC Biodegradation Capacity (mg/L) Commercial/Industrial Matrix of Exposed Persons to Residential Constrctn Definition (Units) Value Chronic Soil Complete Exposure Pathways Capillary zone thickness (cm) 9.4E+00 hc Outdoor Air Pathways: **FALSE** TRUE Vadose zone thickness (cm) 5.9E+02 SS.v Volatiles and Particulates from Surface Soils TRUE hν Soil density (g/cm*3) TRŲE **FALSE** 1.7 S.v Volatilization from Subsurface Soils rho 0.001 Volatilization from Groundwater FALSE **FALSE** foc Fraction of organic carbon in vadose zone GW.v phi Soil porosity in vadose zone 0.2 Indoor Air Pathways: Vapors from Subsurface Soils FALSE TRUE Lgw Depth to groundwater (cm) 6.0E+02 S.b Depth to top of affected subsurface soil (cm) 1.5E+02 GW.b Vapors from Groundwater FALSE TRUE L5 Thickness of affected subsurface soils (cm) 4.5E+02 Soil Pathways: Lsubs FALSE TRUE Soil/groundwater pH Direct Ingestion and Dermal Contact рΗ SS.d FALSE 6 foundation capillary vadose Groundwater Pathways: TRUE phi.w Volumetric water content 0.18 0.07 0.12 **FALSE** GW.i Groundwater Ingestion 0.02 0.26 FALSE TRUE phi.a Volumetric air content 0.13 Leaching to Groundwater from all Soils S.I Building Definition (Units) Residential Commercial Building volume/area ratio (cm) 2.0E+02 3.0E+02 Lb 2.3E-04 ER Building air exchange rate (s^-1) 1.4E-04 Matrix of Receptor Distance Residential Commercial/Industrial 1.5E+01 and Location On- or Off-Site Distance On-Site Distance Qn-Site Lcrk Foundation crack thickness (cm) 0.01 Groundwater receptor (cm) FALSE 1.2E+04 FALSE eta Foundation crack fraction GW 1.2E+04 FALSE 9.1E+03 **FALSE** Inhalation receptor (cm) 9.1E+03 Transport Parameters Definition (Units) Residential Commercial Matrix of Target Risks Individual Cumulative Groundwater 1.2E+03 Target Risk (class A&B carcinogens) 1.0E-06 ах Longitudinal dispersivity (cm) TRab 4.0E+02 Transverse dispersivity (cm) Target Risk (class C carcinogens) 1.0E-05 ay TRc 6.1E+01 Vertical dispersivity (cm) 1.0E+00 27 THQ Target Hazard Quotient Vapor Opt Calculation Option (1, 2, or 3) 2

dcy

RBCA Tier

Tier

2

Transverse dispersion coefficient (cm)

Vertical dispersion coefficient (cm)

9.7E+02

6.4E+02

RBCA CHEMICAL DATABASE

Physical Property Data

Date Completed: 11/3/1998

			Molecu		C	oeff	ision icients		log (Kod log(K	d)	•	_aw Constant	Vapor Pressur		Solubility				
CAS			Weigi (g/mol		in air (cm2/s		in wate (cm2/s		(@ 20 - 2 log(l/k	•	(@ 2 (<u>atm-m3</u>)	20 - 25 C)	(@ 20 - 25 (mm Hg		(@ 20 - 25 (mg/L)	,	acid	base	
Number	Constituent	type	MW	ref	Dalr	ref	Dwat	ref		ref	mol	(unitless) ref		ref		ref	pKa	pKb	
71-43-2	Benzene	A	78.1	5	9.30E-02	Α	1.10E-05	Α	1.58	Α	5.29E-03	2.20E-01 A	9.52E+01	4	1.75E+03	Α			
100-41-4	Ethylbenzene	Α	106.2	5	7.60E-02	Α	8.50E-06	Α	1.98	Α	7.69E-03	3.20E-01 A	1.00E+01	4	1.52E+02	5			
1634-04-4	Methyl t-Butyl Ether	0	88.146	5	7.92E-02	6	9.41E-05	7	1.08	Α	5.77E-04	2.40E-02	2.49E+02		4.80E+04	Α			
108-88-3	Toluene	Α	92.4	5	8.50E-02	Α	9.40E-06	Α	2.13	Α	6.25E-03	2.60E-01 A	3.00E+01	4	5.15E+02	29			
1330-20-7	Xylene (mixed isomers)	Α	106.2	5	7.20E-02	Α	8.50E-06	Α	2.38	Α	6.97E-03	2.90E-01 A	7.00E+00	4	1.98E+02	5			

Site Location: 22315 Redwood Road, Completed By: Dale A. van Dam

Software version: 1.0.1

Site Name: Former Beacon #574

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

R	-7	CΑ	CH	34	ICA	ПБ	Απ	A	JAS	6

Toxicity Data

Date Completed: 11/3/1998

			eferen Dose g/kg/c			-	Slope Factors ng/kg/e	5		EPA Weight	ls
CAS		Oral		Inhalation		Oral		Inhalation		of	Constituent
Number	Constituent	RfD_oral	ref	RfD_inhal	ref	SF_oral	ref	SF_inhal	ref	Evidence	Carcinogenic?
71-43-2	Benzene	-		1.70E-03	R	2.90E-02	Α	2.90E-02	Α	Α	TRUE
100-41-4	Ethylbenzene	1.00E-01	Α	2.86E-01	Α	-		-		D	FALSE
1634-04-4	Methyl t-Butyl Ether	5.00E-03	R	8.57E-01	R	-		-			FALSE
108-88-3	Toluene	2.00E-01	A.R	1.14E-01	A,R	-		-		D	FALSE
1330-20-7	Xylene (mixed isomers)	2.00E+00	A,R	2.00E+00	Α	-		-		D	FALSE

Site Location: 22315 Redwood Roa Completed By: Dale A. van Dam

Software version: 1.0.1

Site Name: Former Beacon #574

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

RBCA CHEMICAL DATABASE

Miscellaneous Chemical Data

				Permiss	sible	Re	lative	Dete	ction	Limits		Ha	If Life	
			Maximum	Expos	ure	Abs	orption	Groundw	ater	Soi	l	(First-Or	der Decay)	
CAS		Con	taminant Level	Limit PEl	_/TLV	Fa	ctors	(mg/L	.)	(mg/l	g)	(d	ays)	
Number	Constituent	MCL (mg/L)	reference	(mg/m3)	ref	Oral	Dermal		ref		ref	Saturated	Unsaturated	re
71-43-2	Benzene	5.00E-03	52 FR 25690	3.20E+00	OSHA	1	0.5	0.002	С	0.005	S	720	720	Ī
100-41-4	Ethylbenzene	7.00E-01	56 FR 3526 (30 Jan 91)	4.34E+02	ACGIH	1	0.5	0.002	С	0.005	5	228	228	- 1
1634-04-4	Methyl t-Butyl Ether			1.44E+02	ACGIH	1	0.5					360	180	- 1
108-88-3	Toluene	1.00E+00	56 FR 3526 (30 Jan 91)	1.47E+02	ACGIH	1	0.5	0.002	С	0.005	5	28	28	- (
1330-20-7	Xylene (mixed isomers)	1.00E+01	56 FR 3526 (30 Jan 91)	4.34E+02	ACGIH	1	0.5	0.005	С	0.005	S	360	360	+

Software version: 1.0.1

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

REPRESENTATIVE COC CONCENTRATIONS IN SOURCE MEDIA

(Complete the following table)

		Repre	esentative COC	Conce	ntration	
CONSTITUENT	in Ground	water	in Surface	Soil	in Subsurface So	
	value (mg/L)	note	value (mg/kg	note	value (mg/kg	note
Benzene	1.1E-2	mean	2.5E-3	UCL	8.6E+0	UCL
Ethylbenzene	5.8E-3	mean	2.5E-3	UCL	4.3E-1	UCL
Methyl t-Butyl Ether	5.9E-2	mean				
Toluene	5.8E-3	mean	2.5E-3	UCL	1.2E+0	UÇL
Xylene (mixed isomers)	1.1E-2	mean	2.5E-3	UCL	2.0E+0	UÇL

Site Name: Former Beacon #574 Completed By: Dale A. van Dam Site Location: 22315 Redwood Road, Castro Valley, CA Date Completed: 11/3/1998

[©] Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Input Screen 6.3

CONSTITUENT MOLE FRACTIONS

(Complete the following table)

CONSTITUENT	Mole Fraction of Constituent in
	Source Material
Benzene	
Ethylbenzene	
Methyl t-Butyl Ether	
Toluene	
Xylene (mixed isomers)	

Site Name: Former Beacon #574 Completed By: Dale A. van Dam Site Location: 22315 Redwood Road, C Date Completed: 11/3/1998

[©] Groundwater Services, Inc. (GSI), 1995-97. All Rights Reserved.

Input Screen 9.4

GROUNDWATER DAF VALUES

(Enter DAF values in the grey area of the following table)
Dilution Attenuation Factor
(DAF) in Groundwater

	(DAF) in Gi	roundwater
CONSTITUENT	Residential	Comm./Ind.
	Receptor	Receptor
Benzene	1.0E+0	2.5E+1
Ethylbenzene	1.0E+0	1.1E+3
Methyl t-Butyl Ether	1.0E+0	5.7E+1
Toluene	1.0E+0	8.5E+12
Xylene (mixed isomers)	1.0E+0	1.4E+3

Site Name: Former Beacon #574 Completed By: Dale A. van Dam Site Location: 22315 Redwood Road, Castro Valley, C Date Completed: 11/3/1998

[©] Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Input Screen 9.1

CONSTITUENT HALF-LIFE VALUES

(Complete the following table)

CONSTITUENT	Half-Life of Constituent (day)
Benzene	720
Ethylbenzene	228
Methyl t-Butyl Ether	360
Toluene	28
Xvlene (mixed isomers)	360

Site Name: Former Beacon #574 Completed By: Dale A. van Dam Site Location: 22315 Redwood Road, Ca Date Completed: 11/3/1998

[©] Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

EXPOSURE LIMITS IN GROUNDWATER AND AIR

Site Name: Former Beacon #574 Completed By: Dale A. van Dam Site Location: 22315 Redwood Road, Castro Valley, CA Date Completed: 11/3/1998

[©] Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Tier 2 Worksheet 8.1

Site Name: Former Beacon #574	Site Location: 22315 Redwood Road, Castro Vall. Completed By: Dale A. van Dam. Date Completed: 11/3/1998
	TIED 2. EVENCEIDE CONCENTRATION AND INTAKE CALCUI ATION

1 OF 9

	MAYS I LA HAR BEEN TO THE TAIL	A CONTRACTOR OF THE CONTRACTOR	(GHECKED IF PATHWAY IS ACTIVE)	AND THE RESIDENCE OF THE PARTY	TOWN CO. THE CO. ST. C	
SURFACE SOILS: VAPOR AND	Exposure Concentration					
DUST INHALATION	1) Source Medium	2) NAF Value (m^3/kg)	3) Exposure Medium	4) Exposure Multiplier	Average Daily Intake Rate	
		Receptor	Outdoor Air: POE Conc. (mg/m^3) (1) / (2)	(IRxEFxED)/(BWxAT) (m^3/kg-day)	(mg/kg-day) (3) X (4)	
	Surface Soil Conc.					
Constituents of Concern	(mg/kg)	Off-Site Residential	Off-Site Residential	Off-Site Residential	Off-Site Resident	
Benzene	2.5E-3	2.0E+5	1.3E-8	1.2E-1	1.5E-9	
Ethylbenzene	2.5E-3	2.0E+5	1.3E-8	2.7E-1	3.5E-9	
Methyl t-Butyl Ether	0.0E+0	2.0E+5	0.0E+0	2.7E-1	0.0E+0	
Toluene	2,5E-3	2.0E+5	1.3E-8	2.7E-1	3.5E-9	
Xylene (mixed isomers)	2.5E-3	2.0E+5	1.3E-8	2.7E-1	3.5E-9	

AF = Adherance factor (mg/cm^2)	F = Exposure frequencey (days/yr) T = Exposure time (hrs/day) R = Inhalation rate (m^3/day)
---------------------------------	---

Software: GSI RBCA Spreadsheet

Serial: G-349-KIX-808

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Tier 2 Worksheet 8.1

Site Name: Former Beacon #574	Site Location: 22315 Redwood Road, Castro Vall Completed By: Dale A. van Dam Date Completed: 11/3/1998
	TYPE A EXPONENTE CONCENTRATION AND INTAKE ON OUR ATION

2 OF 9

TIER 2	EXPOSURE CONCENTRATION AND INTAKE CALCULATION

SUBSURFACE SOILS: VAPOR	Exposure Concentration								
INHALATION	1) <u>Source Medium</u>	2) NAF Value (m^3/kg) Receptor	3) <u>Exposure Medium</u> Ouldoor Air: POE Conc. (mg/m²3) (1) / (2)	4) <u>Exposure Multiplier</u> ((RxEFxED)/(BWxAT) (m^3/kg-day)	5) Average Daily Intake Rate (mg/kg-day) (3) X (4)				
Constituents of Concern	Subsurface Soil Conc. (mg/kg)	Off-Site Residential	Off-Site Residential	Off-Site Residential	Off-Site Residenti				
Велгеле	8.6E+0	6.7E+4	1.3E-4	1.2E-1	1.5E-5				
Ethylbenzene	4.3E-1	5.7E+4	6.4E-6	2.7€-1	1.8E-6				
Methyl t-Butyl Ether	0.0E+0	6.7E+4	0.0E+0	2.7€-1	0.0E+0				
Toluene	1.2E+0	6.7E+4	1.7E-5	2.7E-1	4.8E-6				
Xylene (mixed isomers)	2.0E+0	6.7E+4	2.9E-5	2.7E-1	8.0E-6				

NOTE:	ABS = Dermal absorption factor (dim) AF = Adherance factor (mg/cm^2) AT = Averaging time (days)	BW = Body weight (kg) CF = Units conversion factor ED = Exposure duration (yrs)	EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day) tR = Inhalation rate (m^3/day)	POE = Point of exposure SA = Skin exposue area (cm^2/day)

Software: GSI RBCA Spreadsheet

Serial: G-349-KIX-808

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

		RBCA SITE ASSESSMEN	Т		Tier 2 W	orksheet 8.1		
Site Name: Former Beacon #574		Site Location: 22315 Redwo	od Road, Castr Completed By:	Dale A. van Dam	Date Completed: 11/3/1998	3 OF 9		
	TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION							
OUTDOOR AIR EXPOSURE PATHWAY	Sterior .		CHECKED IF PATHWAY IS ACT	VE)	* ************************************	A PARAMETER OF STATE		
GROUNDWATER: VAPOR	Exposure Concentration					TOTAL PATHWAY INTAKE (mg/kg-day)		
INHALATION	1) Source Medium	2) NAF Value (m^3/L)	3) Exposure Medium	4) Exposure Multiplier	5) Average Daily Intake Rate	(Sum intake values from surface,		
		Receptor	Outdoor Air: POE Conc. (mg/m^3) (1) / (2)	(IRxEFxED)/(BWxAT) (m^3/kg-day)	(mg/kg-day) (3) X (4)	subsurface & groundwater routes.)		
	į							
	Groundwater Conc.					1		
Constituents of Concern	(mg/L)					Off-Site Residential		
Benzene	1.1E-2					1.5E-5		
Ethylbenzene	5.8E-3					1.8E-6		
Methyl t-Butyl Ether	5.9E-2					0.0E+0		
Toluene	5.8E-3					4.8E-6		
Xylene (mixed isomers)	1.1E-2					8.0E-6		

- 1	NOTE:	ABS = Dermal absorption factor (dim)	BW = 8ody weight (kg)	EF = Exposure frequencey (days/yr)	POE = Point of exposure
1		AF = Adherance factor (mg/cm^2)	CF = Units conversion factor	ET = Exposure time (hrs/day)	SA = Skin exposure area (cm^2/day)
- 1		AT = Averaging time (days)	ED = Exposure duration (yrs)	IR = Inhalation rate (m^3/day)	

Software: GSI RBCA Spreadsheet

Serial: G-349-KIX-808

@ Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

		RBCA SITE ASSESSI	MENT			Tier 2 Work	sheet 8.2
Site Name: Former Beacon #	574 S	ite Location: 22315 Redwood	Road, Castro V	alley, CA Completed By: [Dale A. van Dam	Date Completed	11/3/1998 1
			TIER 2 PATH	WAY RISK CALCULATION			
OUTDOOR AIR EXPOSURE PATH	(WAYS			III (CHÉCKED IF PAT	HWAYS ARE ACTIVE)		14 (49)
			RCINOGENIC RISI	Κ		TOXIC EFFECTS	
	(1) EPA	(2) Total Carcinogenic Intake Rate (mg/kg/day)	(3) Inhalation Slope Factor	(4) Individual COC Risk (2) x (3)	(5) Total Toxicant Intake Rate (mg/kg/day)	(6) Inhalation Reference Dose	(7) Individual COC Hazard Quotient (5) / (6)
Constituents of Concern	Carcinogenic Classification	Off-Site Residential	(mg/kg-day)^-1	Off-Site Residential	Off-Site Residential	(mg/kg-day)	Off-Site Resident
Benzene	I A	1.5E-5	2.9E-2	4.4E-7	3.5E-5	1.7E-3	2.1E-2
Ethylbenzene	D				1.8E-6	2.9E-1	6.2E-6
Methyl t-Butyl Ether					0.0E+0	8.6E-1	0.0E+
Toluene	D			ì	4.8E-6	1.1E-1	4.2E-
Xylene (mixed isomers)	0				8.0E-6	2.0E+0	4.0E-6
	•	Total Pathway Carcinog	enic Risk =	0.0E+0 4.4E-7	Total Pathway i	lazard Index =	0.0E+0 2.1E-

Software: GSI RBCA Spreadsheet

Serial: G-349-KIX-808

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Version: 1 0 1

Tier 2 Worksheet 8.1

Site Name: Former Beacon #574 Site Location: 22315 Redwood Road, Castro Vall Completed By: Dale A. van Dam Date Completed: 11/3/1998

4 OF 9

SUBSURFACE SOILS:	Exposure Concentration								
VAPOR INTRUSION TO BUILDINGS	1) Source Medium	2) <u>NAF Value (m^3/kg)</u> Receptor			5) <u>Average Daily Inteke Rate</u> (mg/kg-day) (3) X (4)				
Constituents of Concern	Subsurface Soil Conc. (mg/kg)	On-Site Commercial	On-Site Commercial	On-Site Commercial	On-Site Commercia				
Benzene	8.6E+0	7.2E+1	1.2E-1	7.0E-2	8.4E-3				
Ethylbenzene	4.3E-1	7.2E+1	6.0E-3	2.0E-1	1.2E-3				
Methyl t-Butyl Ether	0.0E+0	7.2E+1	0.0€+0	2.0E-1	0.0E+0				
Toluene	1.2E+0	7.2E+1	1.6E-2	2.0E-1	3.2E-3				
Xylene (mixed isomers)	2.0E+0	7.2E+1	2.7E-2	2.0E-1	5.3E-3				

NOTE	: ABS = Dermal absorption factor (dim)	BW = Body weight (kg)	EF = Exposure frequencey (days/yr)	POE = Point of exposure
	AF = Adherance factor (mg/cm^2)	CF = Units conversion factor	ET = Exposure time (hrs/day)	SA = Skiri exposure area (cm^2/day)
	AT = Averaging time (days)	ED = Exposure duration (yrs)	fR = Inhalation rate (m^3/day)	

Software: GSI RBCA Spreadsheet

Serial: G-349-KIX-808

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

4.8E+2

Tier 2 Worksheet 8.1

Site Name: Former Beacon #574

Xylene (mixed isomers)

Site Location: 22315 Redwood Road, Castr. Completed By: Dale A. van Dam.

Date Completed: 11/3/1998

4.3E-6

5 OF 9

TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION INDOOR AIR EXPOSURE PATHWAYS 1. ■ (GHECKED IF PATHWAY IS ACTIVE)							
INDOOR AIR EXPOSURE PATHWA			(CHECKED IF PATHWAY IS ACT)	VE) LESS ASSESSION DE LA COMPANION DE LA COMPA		TOTAL PATHWAY INTAKE (mg/kg-da	
GROUNDWATER: VAPOR INTRUSION TO BUILDINGS	1) Source Medium	2) NAF Value (m^3/L)	3) Exposure Medium	4) Exposure Multiplier	5) Average Daily Intake Rate	(Sum Intake values from subsurface	
	·, 		Indoor Air: POE Conc. (mg/m^3) (1) / (2)	(IRxEFxED)/(BWxAT) (m^3/kg-day)	(mg/kg-day) (3) X (4)	& groundwater routes.)	
	Groundwater Conc.						
Constituents of Concern	(mg/L)	On-Site Commercial	On-Site Commercial	On-Site Commercial	On-Site Commercial	On-Site Comme	
Benzene	1.1E-2	4.6E+2	2.4E-5	7.0E-2	1.7E-6	8.4E-3	
Ethylbenzene	5.8E-3	4.3E+2	1,3E-5	2.0E-1	2.6E-6	1.2E-3	
Methyl t-Butyl Ether	5.9E-2	1.5E+3	3.8E-5	2.0E-1	7.5E-6	7.5E-6	
Toluene	5.8E-3	4.5E+2	1,3E-5	2.0E-1	2.5E-6	3.2E-3	
	4.45.0	4.05 (0.	0.00.0	0.004	4.00.0	6.25.2	

2.2E-5

NOTE:	ABS = Dermal absorption factor (dim)	BW = Body weight (kg) CF = Units conversion factor	EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day)	POE = Point of exposure SA = Skin exposure area (cm^2/day)
	AF = Adherance factor (mg/cm^2) AY = Averaging time (days)	ED = Exposure duration (yrs)	IR = Inhalation rate (m^3/day)	SA - Skiii exposure area (ciii 22day)

Software: GSI RBCA Spreadsheet

Serial: G-349-KIX-808

5.3E-3

@ Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

1.1E-2

Version, 1.0.1

2.0E-1

RBCA SITE ASSESSMENT Tier 2 Worksheet 8.2 Site Name: Former Beacon #574 Site Location: 22315 Redwood Road, Castro Valley, CA Completed By: Dale A. van Dam Date Completed: 11/3/1998 2 OF 4 TIER 2 PATHWAY RISK CALCULATION INDOOR AIR EXPOSURE PATHWAYS CARCINOGENIC RISK TOXIC EFFECTS (2) Total Carcinogenic (3) Inhalation (4) Individual COC (5) Total Toxicant (6) Inhalation (7) Individual COC (1) EPA Intake Rate (mg/kg/day) Slope Factor Risk (2) x (3) Intake Rate (mg/kg/day) Reference Dose Hazard Quotient (5) / (6) On-Site On-Site On-Site On-Site Carcinogenic Commercial Commercial Constituents of Concern Classification Commercial (mg/kg-day)^-1 Commercial (mg/kg-day) 8.4E-3 2.9E-2 2.4E-4 2.4E-2 1.7E-3 1.4E+1 Benzene Α 2.9E-1 Ethylbenzene D 1.2E-3 4.1E-3 7.5E-6 8.6E-1 8.7E-6 Methyl t-Butyl Ether D 3.2E-3 1.1E-1 2.8E-2 Toluene Xylene (mixed isomers) D 5.3E-3 2.0E+0 2.7E-3 Total Pathway Carcinogenic Risk = 0.0E+0 2.4E-4 Total Pathway Hazard Index = 0.0E+0 1.4E+1

@ Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Software: GSI RBCA Spreadsheet

Version: 1.0.1

Serial: G-349-KIX-808

RBCA SITE ASSESSMENT

Tier 2 Worksheet 8.1

Site Name: Former Beacon #574 Site Location: 22315 Redwood Road, Castro Valley, CA. Completed By: Dale A. va. Date Completed: 11/3/1998 6 OF 9

Site Name: Former Beacon #5	74 Site Location 22315 Redwood TIER 2 EXPO	•	N AND INTAKE CALCULA		8 809	
SOIL EXPOSURE PATHWAYS		CHECKED IF PATHWAY IS A	stive)		ii wati	
SURFACE SOILS OR SEDIMENTS: DERMAL CONTACT	Exposure Concentration 1) Source Medium	,	e Multiplier D)/(BWxAT) (kg/kg-day)	3) <u>Average Daily Intake Rate</u> (mg/kg-day) (1) x (2)		
0	Surface Sail Come Implicat	On-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercial	
Constituents of Concern Benzene	Surface Soil Conc. (mg/kg) 2.5E-3	On-Site Residential	OH-GIR CONRIDERIA	On-Site Nesideritial	CH-Site Continuorcial	
Ethylbenzene	2.5E-3					
Methyl t-Butyl Ether	0.0E+0					
Toluene	2.5E-3					
Xylene (mixed isomers)	2.5E-3					

NOTE:	ABS = Dermal absorption factor (dim)	BW = Body weight (kg)	EF = Exposure frequencey (days/yr	POE = Point of exposure
	AF = Adherance factor (mg/cm²2)	CF = Units conversion factor	ET = Exposure time (hrs/day)	SA = Skin exposure area (cm^2/day)
	AT = Averaging time (days)	ED = Exposure duration (yrs)	IR = Intake rate (mg/day)	

Software: GSI RBCA Spreadsheet

Serial: G-349-KIX-808

@ Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

=	ы	ΔS	113	ΔS	ŞΕ	9.9	ij	- 1	

Tier 2 Worksheet 8.1

Site Name: Former Beacon #574	Site Location: 22315 Redw				<u> </u>	11/3/1998	7 OF 9
SOIL EXPOSURE PATHWAYS	andickowa ii 💶	(CHECKED IF PAT	HWAY IS ACTIVE)		1		
SURFACE SOILS OR SEDIMENTS:	Exposure Concentration					TOTAL PATHWAY	NTAKE (mg/kg-day)
INGESTION	1) Source Medium	2) Exposur	re Multiplier	3) <u>Average Daily Intake Rate</u>		(Sum intake values from	
	1	(IRxCFxEFxED)/(B	WxAT) (kg/kg-day)	(mg/kg-day) (1) x (2)		dermal & ingestion routes.)	
Constituents of Concern	Surface Soil Conc. (mg/kg)	On-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercial
Benzene	2.5E-3						
Ethylbenzene	2.5E-3						
Methyl t-Butyl Ether	0.0E+0						
Toluene	2.5E-3						
Xylene (mixed isomers)	2.5E-3		L				

NOTE:	ABS = Dermat absorption factor (dim)	BW = Body weight (kg)	EF = Exposure frequencey (days/yr)	POE = Point of exposure
	AF = Adherance factor (mg/cm ²)	CF = Units conversion factor	ET = Exposure time (hrs/day)	SA = Skin exposure area (cm^2/day)
	AT = Averaging time (days)	ED = Exposure duration (yrs)	!R = Intake rate (mg/day)	1

Software: GSI RBCA Spreadsheet

Serial: G-349-KIX-808

© Groundwater Services, Inc. (GSI), 1995-1997, All Rights Reserved.

Site Name: Former Beacon #5		Site Location: 2					Dale A. van Dai		Date Completed:		3 C
				TIER 2 PAT	HWAY RISK	CALCULATION	١				
OIL EXPOSURE PATHWAYS					П	(CHECKED IF PA	THWAYS ARE AC	TIVE)	¥1.1	-2.77	
			CA	RCINOGENIC R	sk				TOXIC EFFECTS		
	(1) EPA		arcinogenic (mg/kg/day)	(3) Oral Slope Factor		(4) Individual COC (5) Total Toxicant Risk (2) x (3) Intake Rate (mg/kg/day)			(6) Oral Reference Dose	(7) Individual COC Hazard Quotient (5) / (6)	
Constituents of Concern	Carcinogenic Classification	On-Site Residential	On-Site Commercial	(mg/kg-day)^-1	On-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercial	(mg/kg-day)	On-Site Residential	On-Site Commercia
Benzene	A			2.9E-2							
thylbenzene	D					ļ			1.0E-1		
lethyl t-Butyt Ether				İ					5.0E-3		
oluene	D								2.0E-1		
(ylene (mixed isomers)	D			1			l		2,0E+0		L
		Total Bath	way Carcinog	anic Bisk =	0.0E+0	0.0E+0	1 <i>r</i> .	otal Pathway H	azard Index =	0.0E+0	0.0E+0

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Software: GSI RBCA Spreadsheet Version: 1.0.1 Serial: G-349-KIX-808

RBCA SITE ASSESSMENT

Tier 2 Worksheet 8.1

Site Name: Former Beacon #574 Site Location: 22315 Redwood Road, Castro Valley, Completed By. Dale A. van Dam Date Completed: 11/3/1998

8	OF	q
 	97	<u> </u>

GROUNDWATER EXPOSURE PATH	NAYSE	. (a) (a) (a) (a) (a) (a) (a) (a) (b) (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	(CHECKED IF PATHWAY IS ACTIVE)		tali kalifakan basa-	
SOIL: LEACHING TO GROUNDWATER/	Exposure Concentration					
GROUNDWATER INGESTION	Source Medium NAF Value (L/kg)		Exposure Medium	4) Exposure Multiplier	5) Average Daily Intake Rate	
	-	Receptor	Groundwater: POE Conc. (mg/L) (1)/(2)	(IRxEFxED)/(BWxAT) (L/kg-day)	(mg/kg-day) (3) x (4)	
Constituents of Concern	Soil Concentration (mg/kg)	Off-Site Commercial	Off-Site Commercial	Off-Site Commercial	Off-Site Commerc	
Benzene	8.6E+0	1.7E+4	5.1E-4	3.5E-3	1.8E-6	
Ethylbenzene	4.3E-1	4.1E+3	1.0E-4	9.8E-3	1.0E-6	
Methyl t-Butyl Ether	0.0E+0	8.2E+2	0.0E+0	9.8E-3	0.0E+0	
Toluene	1.2E+0	5.1E+3	2.3E-4	9.8E-3	2.2E-6	
Xylene (mixed isomers)	2.0E+0	5.2E+4	3.8E-5	9.8E-3	3.7E-7	

NOTE:	ABS = Dermal absorption factor (dim)	BW = Body Weight (kg)	EF = Exposure frequencey (days/yr)	POE = Point of exposure
	AF = Adherance factor (mg/cm^2)	CF = Units conversion factor	ET = Exposure time (hrs/day)	SA = Skin exposure area (cm^2/day)
	AT = Averaging time (days)	ED = Exposure duration (yrs)	IR = Intake rate (L/day)	

Software: GSI RBCA Spreadsheet

Serial: G-349-KIX-808

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

RBCA SITE ASSESSMENT Tier 2 Worksheet 8.1 Site Name: Former Beacon #574 Site Location: 22315 Redwood Road, Castro Valley, CA Completed By: Dale A. van Dam Date Completed: 11/3/1998 9 OF 9 TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION GROUNDWATER EXPOSURE PATHWAYS ■ ICHECKED IF PATHWAY IS ACTIVE) GROUNDWATER: INGESTION Exposure Concentration MAX. PATHWAY INTAKE (mg/kg-day) 4) Exposure Multiplier 1) Source Medium 2) NAF Value (dim) 3) Exposure Medium 5) Average Daily Intake Rate (Maximum Intake of active pathways soil leaching & groundwater routes.) Groundwater: POE Conc. (mg/L) (1)/(2) (IRxEFxED)/(BWxAT) (L/kg-day) Receptor (mg/kg-day) (3) x (4) Groundwater Conc. Constituents of Concern (mg/L) Off-Site Commercial Off-Site Commercial Off-Site Commercial Off-Site Commercia: Off-Site Commercial 1.1E+5 9.7E-8 3.5E-3 3.4E-10 1.8E-6 1.1E-2 Benzene 5.8E-3 1.6E+4 3.6E-7 9.8E-3 3.5E-9 1.0E-6 Ethylbenzene Methyl t-Butyl Ether 5.9E-2 9.4E+3 6.2E-6 9.8E-3 6.1E-8 6.1E-8 5.8E-3 1.7E+4 3.5E-7 9.8E-3 3.4E-9 2.2E-6 Toluene 3.7E-7 Xylene (mixed isomers) 1.1E-2 1.1E+5 9.9E-8 9.8E-3 9.7E-10

NOTE:	ABS = Dermel absorption factor (dim)	BW = Body weight (kg)	EF = Exposure frequencey (days/yr)	POE = Point of exposure
	AF = Adherance factor (mg/cm^2)	CF = Units conversion factor	ET = Exposure time (hrs/day)	SA = Skin exposure area (cm^2/day)
	AT = Averaging time (days)	ED = Exposure duration (yrs)	IR = Intake rate (L/day)	

Software: GSI RBCA Spreadsheet

Serial: G-349-KIX-808

@ Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

			TIER 2 PATH	WAY RISK CALCULATION				
GROUNDWATER EXPOSURE PA	ATHWAYS		and desire	(CHECKED # PAT	HWAYS ARE ACTIVE)	24V	4. P. C. S. S. S. S. S. S. S. S. S. S. S. S. S.	
		CA	RCINOGENIC RISK	(TOXIC EFFECTS		
(2		(2) Total Carcinogenic	(3) Oral	(4) Individual COC	(5) Total Toxicant	(6) Oral	(7) Individual COC	
	(1) EPA	Intake Rate (mg/kg/day) Slope Factor		Risk (2) x (3)	Intake Rate (mg/kg/day)	Reference Dose	Hazard Quotient (5) / (6)	
Constituents of Concern	Carcinogenic Classification	Off-Site Commercial	(mg/kg-day)^-1	Off-Site Commercial	Off-Site Commercial	(mg/kg-day)	Off-Site Commercia	
Benzene	А	1.8E-6	2.9E-2	5.2E-8		1 1 1		
thylbenzene	D				1.0E-6	1.0E-1	1.0E-5	
Methyl t-Butyl Ether					6.1E-8	5.0E-3	1.2E-5	
oluene	D				2.2E-6	2.0E-1	1.1E-5	
(ylene (mixed isomers)	D				3.7E-7	2.0E+0	1.9E-7	
								
		Total Pathway Carcinog	enic Risk =	0.0E+0 5.2E-8	Total Pathway H	lazard Index =	0.0E+0 3.4E-5	

Software: GSI RBCA Spreadsheet

Serial: G-349-KIX-808

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

RBCA SITE ASSESSMENT

Tier 2 Worksheet 8.3

Site Name: Former Beacon #574

Completed By: Dale A. van Dam

Site Location: 22315 Redwood Road, Castro Valley, CA

Date Completed: 11/3/1998

1 of 1

<u>.</u>			TIER 2	BASELIN	IE RISK SUI	MMARY TA				
<u> </u>		BASELINE	CARCINOGE	NIC RISK			BASEL	INE TOXIC EF	FFECTS	, -
	Individual COC Risk		Cumulative COC Risk		Risk Limit(s) Exceeded?	Hazard Quotient		Hazaro	d Index	Toxicity Limit(s) Exceeded
EXPOSURE PATHWAY	Maximum Value	Target Risk	Total Value	Target Risk		Maximum Value	Applicable Limit	Total Value	Applicable Limit	
UTDOOR AIR E	XPOSURE PAT	HWAYS							I	
Complete:	4.4E-7	1.0E-6	4.4E-7	N/A		2.1E-2	1.0E+0	2.1E-2	N/A	
NDOOR AIR EX	POSURE PATHY	VAIYS)		14	100				1329131	
Complete:	2.4E-4	1.0E-6	2.4E-4	N/A		1.4E+1	1.0E+0	1.4E+1	N/A	
OIL EXPOSURI	EPATHWAYS									
Complete:	NC	1.0E-6	NC	N/A		NC	1.0E+0	NC	N/A	
ROUNDWATE	REXPOSURE PA	THWAYS				1			1912	
Complete:	5.2E-8	1.0E-6	5.2E-8	N/A		1.2 E -5	1.0E+0	3.4E-5	N/A	
RITICALIEXPO	SURE PATHWA	(Select Max	mum Values F	om Complete	Pathways)			2.48		
•	2.4E-4	1.0E-6	2.4E-4	N/A	-	1.4E+1	1.0E+0	1.4E+1	N/A	-
	-144 c	endini jedno	1 - E 1	1 - 1-		A.U	0.00			0, 419,

Software: GSI RBCA Spreadsheet

Version: 1.0.1

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Serial: G-349-KIX-808

		RBCA SITE A	SSESSMEN	VΤ							Tier 2 Work	sheet 9.1	
Site Name: For	mer Beacon #574		Completed B	y: Dale A. var	n Dam			·		•			
Site Location: 3	22315 Redwood Road, Castro Valley	Date Completed: 11/3/1998										1 OF 1	
			Target Ris	k (Class A & B)	1.0E-6		MCL exp	osure limit?		Ca	iculation Option:	2	
SURFACE SOIL SSTL VALUES			Target Risk (Class C) 1.0E-5			☐ PEL exposure limit?			Groundwater DAF Option: Empirical				
	(< 5 FT BGS)		Target H	lazard Quotient	1.0E+0								
				SSTL Result	ts For Complete Ex	posu	re Pathwa	ays ("x" if Comp	lete)				
CONSTITUEN	TS OF CONCERN	Representative Concentration	X Soi		Groundwater	x	Inhalati	on of Volatiles Particulates	x	Construction Worker	Applicable SSTL	SSTL Exceeded	Required CRF
CAS No.	Name	(mg/kg)	Residential: (on-site)	Commercial: 400 feet	Regulatory(MCL): 400 feet	Re	sidential: 00 feet	Commercial: (on-site)		commercial: (on-site)	(mg/kg)	"■" if yes	Only if "yes" left
71-43-2	Benzene	2.5E-3	NA	1.7E+2	NA	5.	8E+1	NA		7.1E+1	5.8E+1		<1
100-41-4	Ethylbenzene	2.5E-3	NA	>Res	NA	7	Res	NA		>Res	>Res		<1
1634-04-4	Methyl t-Butyl Ether	0.0E+0	NA	4.2E+2	NA	7	Res	NA		2.4E+2	2.4E+2		<1
	Toluene	2.5E-3	NA	>Res	NA	,	Res	NA		>Res	>Res		<1
	Xylene (mixed isomers)	2.5E-3	NA	>Res	NA	;	Res	NA		>Res	>Res		<1
			>Res	indicates risk	<-based target con	centr	ation gre	ater than constit	tuent	residual satura	ition value		

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Software: GSI RBCA Spreadsheet Version: 1.0.1 Serial: G-349-KIX-808

		RBCA SITE	ASSESSM	ENT							Tie	r 2 Workshe	et 9.2	
=	 ormer Beacon #574 22315 Redwood Road, Castro Valle	v CA	•	y: Dale A. van led: 11/3/1998										1 OF 1
	BSURFACE SOIL SSTL (> 5 FT BGS)		Target Risi Target	(Class A & B) Risk (Class C) azard Quotient	1.0E-6 1.0E-5		•	ure limit? ure limit?		Grø		ulation Option: r DAF Option:		
		Representative Concentration			Results For Comp		Soil Vola	atilization to	<u> </u>	oil Volatilization	to	Applicable SSTL	SSTL Exceeded	Required CRF
CAS No.	ITS OF CONCERN	(mg/kg)	X Soi Residential: (on-site)	Leaching to 0 Commercial: 400 feet	Regulatory(MCL): 400 feet	Resid	ential: site)	oor Air Commercial: (on-site)	Reside 300 f	ntial. Commer	•	(mg/kg)	"■" If yes	Only if "yes" left
71-43-2	P. Benzene	8.6E+0	NA	1.7E+2	NA	N	IA	3.5E-2	2.0E	+1 NA		3.5E-2		2.4E+02
100-41-4	Ethylbenzene	4.3E-1	NA	>Res	NA	N	IA	>Res	>Re	s NA		· >Res		<1
1634-04-4	Methyl t-Butyl Ether	0.0E+0	NA	4.2E+2	NA	N	IA	3.1E+2	>R€	es NA		3.1E+2		<1
108-88-3	Toluene	1.2E+0	NA	>Res	NA	N	IA	4.2E+1	>Re	es NA		4.2E+1		<1
1330-20-7	Xylene (mixed isomers)	2.0E+0	NA	>Res	NA	N	IA	>Res	>R€	es NA		>Res		<1

>Res indicates risk-based target concentration greater than constituent residual saturation value

Software: GSI RBCA Spreadsheet

Serial: G-349-K1X-808

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

		RBCA	SITE ASS	ESSMENT						Tier 2 Wo	rksheet 9.3		
Site Name: Fo	rmer Beacon #574		Completed B	y: Dale A. van	Dam								
Site Location:	22315 Redwood Road, Castro Valle	y, CA	Date Comple	ted: 11/3/1998	3							1 OF 1	
	•		Target Risi	k (Class A & B)	1.0E-6	☐ MCL expo	sure limit?		Ca	culation Option:	2		
GROUNDWATER SSTL VALUES			Target Risk (Class C) 1.0E-5			☐ PEL exposure limit?			Groundwater DAF Option: Empirical				
			Target ⊢	lazard Quotient	1.0E+0							_	
				SST	L Results For Com	plete Exposure	Pathways ("x" if C	omplete)					
Representative Concentration CONSTITUENTS OF CONCERN		X Groundwater Ingestion			I I .	ater Volatilization Indoor Air	Groundwater Volatilization to Outdoor Air		Applicable SSTL	SSTL Exceeded ?	Required CRF		
CAS No.	Name	(mg/L)	Residential: (on-site)	Commercial: 400 feet	Regulatory(MCL): 400 feet	Residential: (on-site)	Commercial: (on-site)	Residential (on-site)	Commercial: (on-site)	(mg/L	"■" If yes	Only if "yes" left	
71-43-2	Benzene	1.1E-2	NA	1.1E+3	NA	NA	2.2E-1	NA	NA	2.2E-1		<1	
100-41-4	Ethylbenzene	5.8E-3	NA	>Sol	NA	NA	>Sol	NA	NA	>Sol		<1	
1634-04-4	Methyl t-Butyl Ether	5.9E-2	NA	4.8E+3	NA	NA	6.7E+3	NA	NA	4.8E+3		<1	
108-88-3	Toluene	5.8E-3	NA	>Sol	NA	NA	2.6E+2	NA	NA	2.6E+2		<1	
1330-20-7	Xylene (mixed isomers)	1.1E-2	NA	>Sol	NA	NA	>Sol	NA	NA	>Sol		<1	

>Sol indicates risk-based target concentration greater than constituent solubility

Software: GSI RBCA Spreadsheet

Serial: G-349-KIX-808

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

APPENDIX J

SUMMARY CALCULATION SHEET LIMIT OF TOXICITY ASSOCIATED WITH MTBE

RBCA ALTERNATE POINT OF COMPLIANCE

Groundwater Pathway

		Source Zone Groundwater	SSTLs at A Enter Dista	POE Exposure Limit Off-Site Receptor		
CAS No.	Constituent	SSTL (mg/L)	20 (ft)	40 (ft)	60 (ft)	71 (ft)
71-43-2	Benzene	3.9E-3	3.6E-3	3.4E-3	3.1E-3	2.9E-3
100-41-4	Ethylbenzene	9.7E+0	7.2E+0	5.5E+0	4.2E+0	3.7E+0
1634-04-4	Methyl t-Butyl Ether	2.8E-1	2.5E - 1	2.2E-1	2.0E-1	1.8E-1
108-88-3	Toluene	>Sol	2.3E+2	4.9E+1	1.4E+1	7.3E+0
1330-20-7	Xylene (mixed isomers)	>Sol	1.5E+2	1.1E+2	8.5E+1	7.3E+1

Serial: G-349-KIX-808

Software: GSI RBCA Spreadsheet

Version: 1.0.1

Groundwater Services, Inc. (GSI), 1995-97. All Rights Reserved.