Ulitramar

Litramar Inc. P.O. Box 466 525 W. Third Street Hanford, CA 93232-0466 (209) 582-0241

Telecopy: 209-584-6113 Credit & Wholesale 209-583-3330 Administrative 209-583-3302 Information Services 209-583-3358 Accounting

ENVIRONMENTAL PROJECT QUARTERLY STATUS REPORT

DATE REPORT SUBMITTED: June 15, 1993

QUARTER ENDING: March 31, 1993

FORMER SERVICE STATION NO.: 574

ADDRESS: 22315 Redwood Road, Castro Valley, CA

COUNTY: Alameda

ULTRAMAR CONTACT: Kenneth R. Earnest

TEL. NO: 209-583-5571

BACKGROUND:

On May 5, 1987, five underground storage tanks (two gasoline, two diesel and one waste oil) were excavated and removed from Soil samples were collected from beneath the tanks the site. constituents. hydrocarbon analyzed for preliminary analytical data related to the collected soil samples, it was determined that elevated levels of gasoline and diesel were present in the soil beneath the former fuel Soil was overexcavated from beneath the former fuel tanks. Soil samples were collected after the over-excavation tanks. and confirmed that the addition excavation was successful.

During March 1991, three ground-water monitoring wells were Laboratory analysis of soil samples on-site. installed the borings for the installation of the obtained from monitoring wells indicated that the soil near the soil/water interface exhibited gasoline range hydrocarbons.

Quarterly monitoring was initiated during the fourth quarter 1991.

SUMMARY OF THIS QUARTER'S ACTIVITIES:

Performed first quarter monitoring on February 2, 1993.

RESULT OF QUARTERLY MONITORING:

Results indicate that since the previous sampling event benzene concentrations in NW-1 and NW-2 have increased. Benzene and TPH-g concentrations in MW-3 have decreased.

PROPOSED ACTIVITY OR WORK FOR NEXT QUARTER:

<u>ACTIVITY</u>

ESTIMATED COMPLETION DATE

Second quarter monitoring

May 1993

Install five ground-water monitoring wells

April 1993

Ultramar

Ultramar Inc. P.O. Box 466 625 W. Third Street Hanford, CA 93232-0466 (209) 582-0241 Telecopy: 209-584-6113 Credit & Wholesale 209-583-3330 Administrative 209-583-3302 Information Services 209-583-3358 Accounting

June 15, 1993

Mr. Scott O. Seery, CHMM
Senior Hazardous Materials Specialist
Alameda County Health Care Services
80 Swan Way, Room 200
Oakland, CA 94621

SUBJECT: FORMER BEACON STATION NO. 574, 22315 REDWOOD ROAD, CASTRO VALLEY,

CALIFORNIA

Dear Mr. Seery:

Enclosed is a copy of the First Quarter 1993 Groundwater Monitoring Report for the above-referenced Ultramar facility prepared by Aegis Environmental, Inc. Also included with the report is a copy of the Quarterly Status report describing the work performed this quarter and the work anticipated to be conducted in the next quarter.

Please do not hesitate to call if you have any questions about this project at (209) 583-5571.

Sincerely,

ULTRAMAR INC.

Kenneth R. Earnest

Environmental Specialist I

Marketing Environmental Department

Enclosure:

First Quarter 1993 Groundwater Monitoring Report

Quarterly Status Report

cc w/encl:

Mr. Rich Hiett, San Francisco Bay Region, RWQCB

AEGIS ENVIRONMENTAL, INC.

1050 Melody Lane, Suite 160, Roseville, CA 95678

916 • 782-2110 / 916 • 969-2110 / FAX 916 • 786-7830

April 9, 1993

Mr. Kenneth Earnest Environmental Specialist Ultramar Inc. 525 West Third Street Hanford, California 93232-0466

Subject:

First Quarter 1993 Groundwater Monitoring Report

Beacon Station #574

22315 Redwood Road, Castro Valley, California

Dear Mr. Earnest:

Aegis Environmental, Inc. (Aegis), is pleased to provide Ultramar Inc. this report documenting the results of quarterly groundwater monitoring conducted on February 2, 1993, at the subject site (Figure 1). The monitoring included measurements of depths to groundwater in and total depths of three wells (MW-1 through MW-3) located on site (Figure 2). Groundwater samples were collected from all three wells.

GROUNDWATER ELEVATIONS

Aegis personnel collected measurements of the depths to groundwater in all three wells prior to purging and sampling on February 2, 1993. Current groundwater level data, and prior 1992 data only, are summarized in Table 1. Previous groundwater level data are included in Attachment 3. All measurements of depths to groundwater were made to the nearest 0.01 foot from the referenced wellhead (top-of-casing) elevations and conducted according to the Aegis standard operating procedures (SOP) included in Attachment 1. On the basis of the February 2, 1993, measurements, groundwater is estimated to flow to the southwest (Figure 2) at an average gradient of approximately 0.04 ft/ft. In general, groundwater levels have increased approximately 2 feet compared to the November 1992 event.

92-779B.RPT

GROUNDWATER SAMPLING AND ANALYSES

Aegis personnel collected groundwater samples from the three wells on February 2, 1993. The samples were collected according to the Aegis SOP included in Attachment 1, and submitted under chain-of-custody to WEST Labs, a state-certified analytical laboratory. All samples were analyzed for concentrations of: a) total petroleum hydrocarbons, as gasoline, by modified EPA Method 8015; and b) benzene, toluene, ethylbenzene, and total xylenes by EPA Method 602. Current analytical results, and prior 1992 analytical results only, are summarized in Table 2. Figure 3 is a distribution map of benzene in groundwater based on the data summarized in Table 2. The analytical laboratory reports and chain-of-custody form are included as Attachment 2. Previous analytical results are included in Attachment 4. Benzene concentrations decreased in well MW-3, but increased in MW-1 and MW-2 compared to the November 1992 event.

Aegis recommends a copy of this quarterly monitoring report be forwarded to the following parties:

Mr. Scott Seery
Senior Hazardous Materials Specialist
Alameda County Health Agency
Division of Hazardous Materials
Department of Environmental Health
80 Swan Way, Room 350
Oakland, California 94621

Mr. Rich Hiett San Francisco Bay Regional Water Quality Control Board 2101 Webster Street, Suite 500 Oakland, California 94612 This report has been prepared for the sole use of Ultramar Inc. Any reliance on this report by third parties shall be at such parties' own risk. The work described herein was performed under the direct supervision of the professional geologist, registered with the State of California, whose signature appears below. If you have any questions or comments, please do not hesitate to call us at (916) 782-2110.

Sincerely,

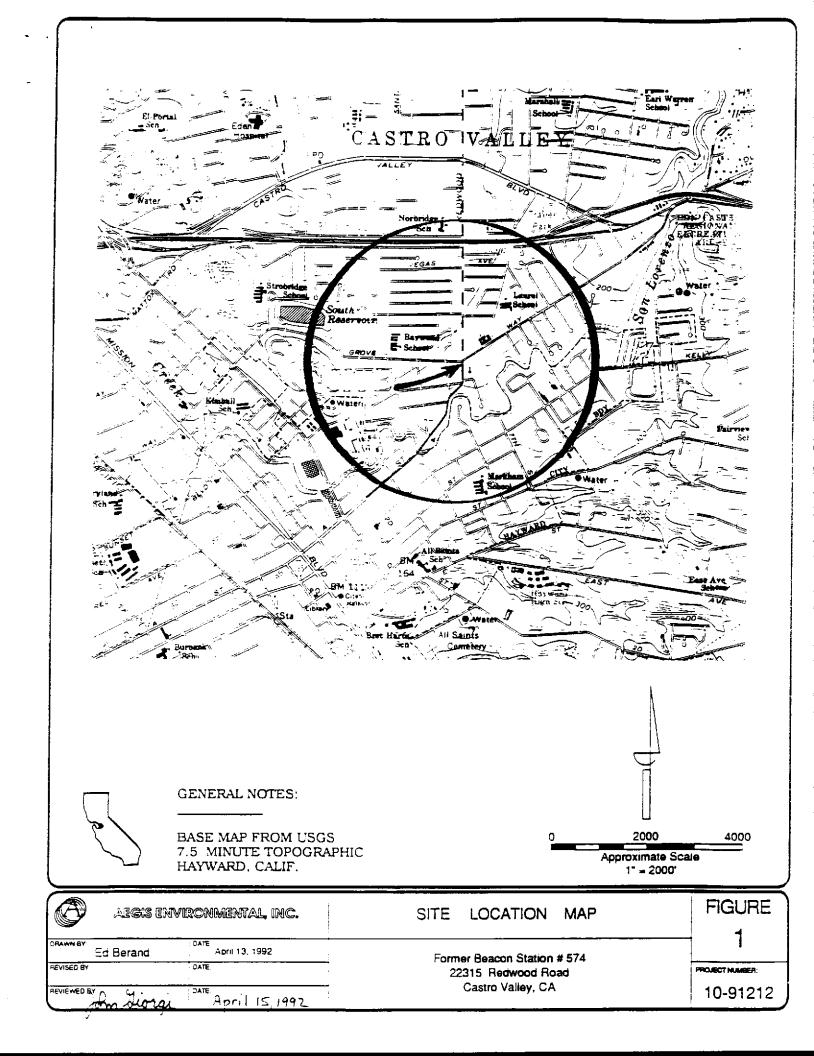
AEGIS ENVIRONMENTAL, INC.

Tom E. Landwehr

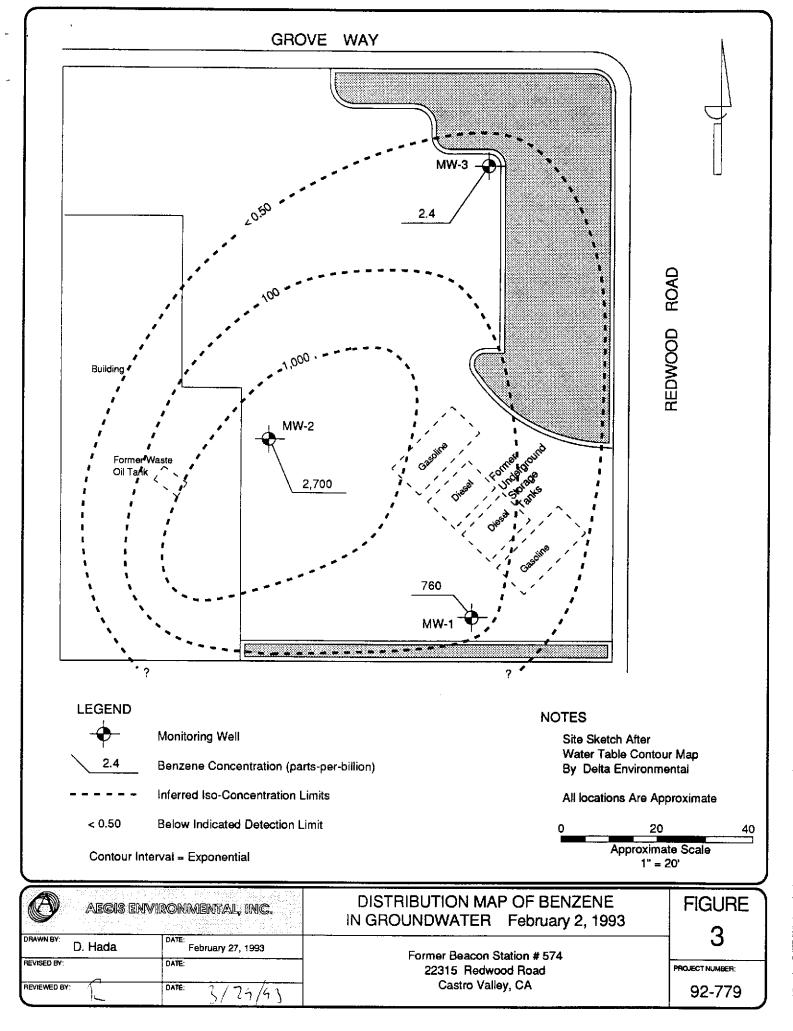
Senior Geologist

Douglás I. Sheeks Senior Geologist

CRG No. 5211


Date


TEL/DIS/law


Attachments

FIGURES:	FIGURE 1 SITE LOCATION MAP
	FIGURE 2 POTENTIOMETRIC SURFACE MAP (FEBRUARY 2, 1993)
	FIGURE 3 DISTRIBUTION MAP OF BENZENE IN GROUNDWATER (FEBRUARY 2, 1993)
TABLES:	TABLE 1 WATER LEVEL DATA
	TABLE 2 ANALYTICAL RESULTS: GROUNDWATER
ATTACHMENTS:	ATTACHMENT 1 STANDARD OPERATING PROCEDURES
	ATTACHMENT 2 LABORATORY REPORTS AND CHAIN-OF-CUSTODY FORM
	ATTACHMENT 3 HISTORICAL WATER LEVEL DATA
	ATTACHMENT 4 HISTORICAL ANALYTICAL DATA
	ATTACHMENT 5 FIELD DATA SHEETS

· ·

TABLE 1

WATER LEVEL DATA

BEACON STATION #574 22315 REDWOOD ROAD, CASTRO VALLEY, CALIFORNIA (Measurements in feet)

Monitoring Well	Date	Reference Elevation (top of casing) ¹	Depth to Groundwater ¹	Groundwater Elevation ²	Well Depth	Comments
MW-1	03/27/92	156.55	22.43	134.12		
	06/04/92		23.40	133.15		
	09/23/92		24.07	132.48		
	11/12/92		24.16	132.39	29.33	
	02/02/93		21.87	134.68	29.80	
MW-2	03/27/92	155.17	20.82	134.35		
	06/04/92		21.81	133.36		
	09/23/92		22.45	132.72		
	11/12/92		22.60	132.57	29.71	
	02/02/93		20.28	134.89	29.73	
MW-3	03/27/92	157.13	21.46	135.67	-	
	06/04/92		22.34	134.79		
	09/23/92		22.84	134.29		
	11/12/92		23.04	134.09	29.55	
	02/02/93		21.03	136.10	29.45	

NOTES: 1 = Measurement and reference elevation taken from notch/mark on top north side of well

= Elevation referenced to mean sea level.

Well Depth = Measurement from top of casing to bottom of well.

TABLE 2

ANALYTICAL RESULTS: GROUNDWATER

BEACON STATION #574 22315 REDWOOD ROAD, CASTRO VALLEY, CALIFORNIA (All results in parts-per-billion)

Monitoring Well	Date Collected	1	Total Petroleum Hydrocarbons			Aromatic Vol	atile Organic	S
		Gasoline	Diesel	Motor Oil	Benzene	Toluene	Ethyl- benzene	Total Xylenes
MW-1	03/27/92	5,600	<50	<50	760	900	230	1,100
	06/04/92	2,600	<800		270	57	230	440
	09/23/92	3,400			480	430	110	550
	11/12/92	2,700			5.8	<5.0	140	340
	02/02/93	8,500	bry 400	 -	760	770	250	1,200
MW-2	03/27/92	18,000	<50	<50	2,400	2,300	870	3,300
	06/04/92	14,000	<5,000		1,900	1,700	580	2,300
	09/23/92	22,000			2,100	1,500	760	2,900
	11/12/92	29,000			2,400	860	540	3,500
	02/02/93	24,000			2,700	1,900	590	2,600
MW-3	03/27/92	160	<50	<50	9.2	4.8	10	23
	06/04/92	120	<50		7.5	2.7	0.5	15
	09/23/92	220		<u></u>	8.3	4.3	6.2	19
	11/12/92	230			12	5.5	7.7	19
	02/02/93	86			2.4	0.71	2.7	6.2

NOTES: < = Below indicated detection limit.

--- = Not analyzed.

ATTACHMENT 1 STANDARD OPERATING PROCEDURES

AEGIS ENVIRONMENTAL, INC. STANDARD OPERATING PROCEDURES RE: SAMPLE IDENTIFICATION AND CHAIN-OF-CUSTODY PROCEDURES SOP-4

Sample identification and chain-of-custody procedures ensure sample integrity, and document sample possession from the time of collection to its ultimate disposal. Each sample container submitted for analysis is labeled to identify the job number, date, time of sample collection, a sample number unique to the sample, any in-field measurements made, sampling methodology, name(s) of on-site personnel and any other pertinent field observations also recorded on the field excavation or boring log.

Chain-of-custody forms are used to record possession of the sample from time of collection to its arrival at the laboratory. During shipment, the person with custody of the samples will relinquish them to the next person by signing the chain-of-custody form(s) and noting the date and time. The sample-control officer at the laboratory will verify sample integrity, correct preservation, confirm collection in the proper container(s), and ensure adequate volume for analysis.

If these conditions are met, the samples will be assigned unique laboratory log numbers for identification throughout analysis and reporting. The log numbers will be recorded on the chain-of-custody forms and in the legally-required log book maintained in the laboratory. The sample description, date received, client's name, and any other relevant information will also be recorded.

AEGIS ENVIRONMENTAL, INC. STANDARD OPERATING PROCEDURES RE: LABORATORY ANALYTICAL QUALITY ASSURANCE AND CONTROL SOP-5

In addition to routine instrument calibration, replicates, spikes, blanks, spiked blanks, and certified reference materials are routinely analyzed at method-specific frequencies to monitor precision and bias. Additional components of the laboratory Quality Assurance/Quality Control program include:

- 1. Participation in state and federal laboratory accreditation/certification programs;
- 2. Participation in both U.S. EPA Performance Evaluation studies (WS and WP studies) and inter-laboratory performance evaluation programs;
- 3. Standard operating procedures describing routine and periodic instrument maintenance;
- 4. "Out-of-Control"/Corrective Action documentation procedures; and,
- 5. Multi-level review of raw data and client reports.

AEGIS ENVIRONMENTAL, INC. STANDARD OPERATING PROCEDURE

RE: GROUNDWATER PURGING AND SAMPLING

SOP-7

Prior to water sampling, each well is purged by evacuating a minimum of three wetted well-casing volumes of groundwater. When required, purging will continue until either the discharge water temperature, conductivity, or pH stabilize, a maximum of ten well-bore volumes of groundwater have been recovered, or the well is bailed dry. When practical, the groundwater sample should be collected when the water level in the well recovers to at least 80 percent of its static level.

The sampling equipment consists of either a "Teflon" bailer, PVC bailer, or stainless steel bladder pump with a "Teflon" bladder. If the sampling system is dedicated to the well, then the bailer is usually "Teflon," but the bladder pump is PVC with a polypropylene bladder. In general and depending on the intended laboratory analysis, 40-milliliter glass, volatile organic analysis (VOA) vials, with "Teflon" septa, are used as sample containers.

The groundwater sample is decanted into each VOA vial in such a manner that there is no meniscus at the top of the vial. A cap is quickly secured to the top of the vial. The vial is then inverted and gently tapped to see if air bubbles are present. If none are present, the vial is labeled and refrigerated for delivery, under strict chain-of-custody, to the analytical laboratory. Label information should include a unique sample identification number, job identification number, date, time, type of analysis requested, and the sampler's name.

For quality control purposes, a duplicate water sample is collected from each well. This sample is put on hold at the laboratory. When required, a trip blank is prepared at the laboratory and placed in the transport cooler. It is labeled similar to the well samples, remains in the cooler during transport, and is analyzed by the laboratory along with the groundwater samples. In addition, a field blank may be prepared in the field when sampling equipment is not dedicated. The field blank is prepared after a pump or bailer has been either steam cleaned or properly washed, prior to use in the next well, and is analyzed along with the other samples. The field blank analysis demonstrates the effectiveness of the in-field cleaning procedures to prevent cross-contamination.

To minimize the potential for cross-contamination between wells, all well development and water sampling equipment not dedicated to a well is either steam cleaned or properly washed between use. As a second precautionary measure, wells are sampled in order of least to highest concentrations as established by available previous analytical data.

In the event the water samples cannot be submitted to the analytical laboratory on the same day they are collected (e.g., due to weekends or holidays), the samples are temporarily stored until the first opportunity for submittal either on ice in a cooler, such as when in the field, or in a refrigerator at Aegis' office.

AEGIS ENVIRONMENTAL, INC. STANDARD OPERATING PROCEDURE RE: MEASURING LIQUID LEVELS USING WATER LEVEL OR INTERFACE PROBE SOP-12

Field equipment used for liquid-level gauging typically includes the measuring probe (water-level or interface) and product bailer(s). The field kit also includes cleaning supplies (buckets, TSP, spray bottles, and deionized water) to be used in cleaning the equipment between wells.

Prior to measurement, the probe tip is lowered into the well until it touches bottom. Using the previously established top-of-casing or top-of-box (i.e., wellhead vault) point, the probe cord (or halyard) is marked and a measuring tape (graduated in hundredths of a foot) is used to determine the distance between the probe end and the marking on the cord. This measurement is then recorded on the liquid-level data sheet as the "Measured Total Depth" of the well.

When necessary in using the interface probe to measure liquid levels, the probe is first electrically grounded to either the metal stove pipe or another metal object nearby. When no ground is available, reproducible measurements can be obtained by clipping the ground lead to the handle of the interface probe case.

The probe tip is then lowered into the well and submerged in the groundwater. An oscillating (beeping) tone indicates the probe is in water. The probe is slowly raised until either the oscillating tone ceases or becomes a steady tone. In either case, this is the depth-to-water (DTW) indicator and the DTW measurement is made accordingly. The steady tone indicates floating hydrocarbons. In this case, the probe is slowly raised until the steady tone ceases. This is the depth-to-product (DTP) indicator and the DTP measurement is made accordingly.

The process of lowering and raising the probe must be repeated several times to ensure accurate measurements. The DTW and DTP measurements are recorded on the liquid-level data sheet. When floating product is indicated by the probe's response, a product bailer is lowered partially through the product-water interface to confirm the product on the water surface, and as further indication of product thickness, particularly in cases where the product layer is quite thin. This measurement is recorded on the data sheet as "product thickness."

In order to avoid cross-contamination of wells during the liquid-level measurement process, wells are measured in the order of "clean" to "dirty" (where such information is available). In addition, all measurement equipment is cleaned with TSP or similar solution and thoroughly rinsed with deionized water before use, between measurements in respective wells, and at the completion of the day's use.

ATTACHMENT 2 LABORATORY REPORTS AND

CHAIN-OF-CUSTODY FORM

RECEIVED

FEB 1 7 1993

February 11, 1993 Sample Log 5803

Ans'd.CF/SR

Sheila Richgels Aegis Environmental Consultants, Inc. 1050 Melody Lane, Suite 160 Roseville, CA 95678

Subject: Analytical Results for 3 Water Samples

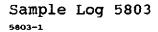
Identified as: Project # 92-779 (Beacon 574)

Received: 02/04/93

Dear Ms. Richgels:

Analysis of the sample(s) referenced above has been completed. This report is written to confirm results communicated on February 11, 1993 and describes procedures used to analyze the samples.

Sample(s) were received in 40-milliliter glass vials sealed with TFE lined septae and plastic screw-caps. Each sample was transported and received under documented chain of custody and stored at 4 degrees C until analysis was performed.


Sample(s) were analyzed using the following method(s):

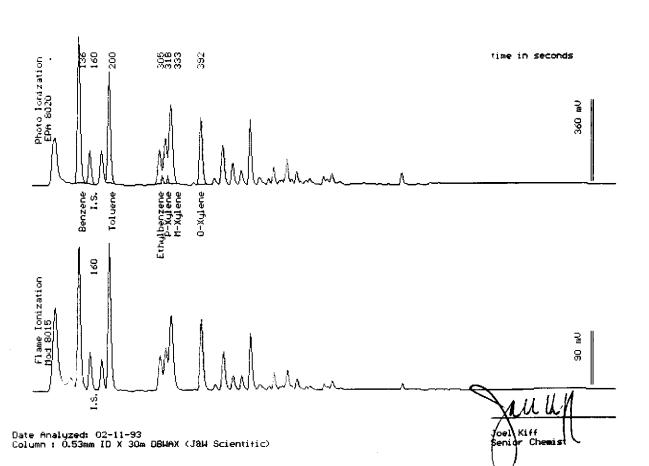
"BTEX" (EPA Method 602/Purge-and-Trap)
"TPH as Gasoline" (Modified EPA Method 8015/Purge-and-Trap)

Please refer to the following table(s) for summarized analytical results and contact us at 916-757-4650 if you have questions regarding procedures or results. The chain-of-custody document is enclosed.

Approved by:

Senior Chemist

Sample: MW-1

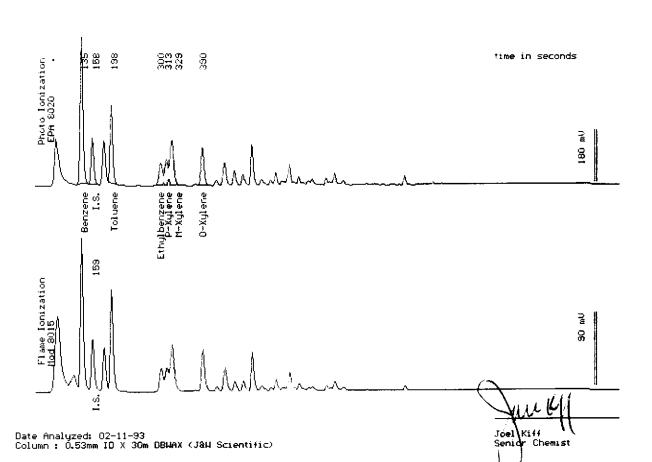

From : Project # 92-779 (Beacon 574)

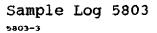
Sampled: 02/02/93

Dilution: 1:10 QC Batch: 4082i

Matrix : Water

Parameter	(MDL) ug/L	Measured Value wg/L
Benzene Toluene Ethylbenzene Total Xylenes	(5.0) (5.0) (5.0) (5.0)	760 770 250 1200
TPH as Gasoline	(500)	8500


Sample: MW-2

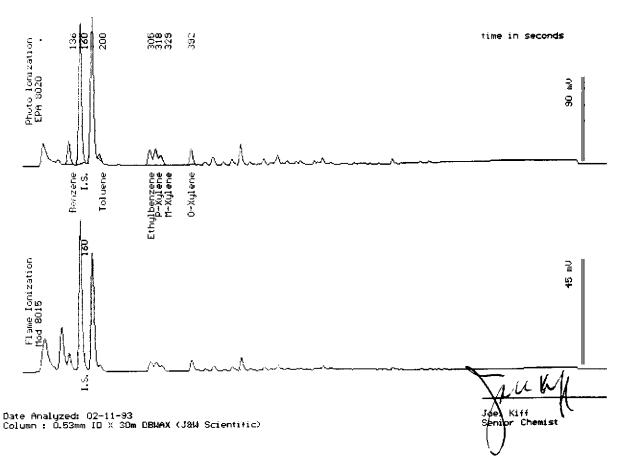

From : Project # 92-779 (Beacon 574) Sampled : 02/02/93

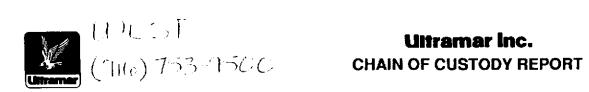
Dilution: 1:50 QC Batch: 4082i

Matrix : Water

Parameter	(MDL) ug/L	Measured Value ug/L
Benzene	(25)	2700
Toluene	(25)	1900
Ethylbenzene	(25)	590
Total Xylenes	(25)	2600
TPH as Gasoline	(2500)	24000

Sample: MW-3


From : Project # 92-779 (Beacon 574)


Sampled: 02/02/93

Dilution: 1:1 QC Batch: 4082i

Matrix : Water

Parameter	(MDL) ug/L	Measured Value чg/L
Benzene Toluene Ethylbenzene Total Xylenes	(.50) (.50) (.50) (.50)	2.4 .71 2.7 6.2
TPH as Gasoline	(50)	86

BEACON

Beacon Station No.		er (Print l	-					ALVOCO		7	Date	Form No.	I
574	Mi	K & J er (Signa	JESI	<u>\</u> \\\\			AN	ALYSES	+	04	7 %	<u> </u>	
Project No.	Sample	er/(Signa	ture)	7									
72-77	4) iko	7	مسمع	u	آ	,		lers	<u> </u>			
Project Location 22 315 Reputers B	l Affiliati	on Aegis E		,	/	EX H (nasoline)	(Se)		Containers		DI	- -	
CASTRO VALLEY	,	regis i	-1141101	menta			(diesel)		S o		Please us detection		gional
Sample No /Identification	Da	ite	Tin	ne	Lab No.	BTEX TPH /	핕		2		REMA	RKS	
mw - 1	22	90	2::2	5		$ X\rangle$			á	4_			
mw - 2			7:5	G		X							
mw-3	1	/	,a.,a	,		X			1	1			
				;								.,.	
										†			
Relinquished by: (Signature/Affiliation)		Date	Time	Receiv	ed by: (Signatu	re/Aff	iliatio	on)	II			Date	Time
miky language		1/443	كتد:1	2	misD	027	1	-				1/2	1:55
Relinguished by: (Signature/Affiliation)		Date	Time	Receiv	ed by: (Signatu	re/Aff	iliatio	on)				Date	Time
Luisporla		14/13	4.05										
Relinquished by: (Signature/Affiliation)		Date	Time	Receiv	ed by: (Signatu	re/Aff	iliatio	on)				Date	Time
												2/4/63	1605
Report To: Sheila Richgels ((عالاً	78:2-2	110	Bill to:	ULTRAMAI 525 West T							,	
Aegis Environmental	FAX	786	የ ዮ' ॐ		Hanford, C		000						
1050 Melody Lane, Ste 160 Roseville, CA 95678					Attention:			KENNU	= 1	H	EARN	16 ST	
WHITE: Return to Client with Report	YELLO	DW: Lab	oratory C	! Copy	PINK: Origin	nator	Cop	у				32-80	003 1/90

ATTACHMENT 3 HISTORICAL WATER LEVEL DATA

TABLE 1
WATER LEVEL DATA - FORMER BEACON STATION

FORMER BEACON STATION #574 22315 REDWOOD ROAD, CASTRO VALLEY, CALIFORNIA (Measurements in feet)

Monitoring Well	Date	Reference Elevation (top of casing) ¹	Depth to Groundwater ¹	Groundwater Elevation ²
MW-1	03/26/91 04/01/91 11/22/91 03/27/92 06/04/92 09/23/92	156.55	22.43 22.37 24.09 22.43 23.40 24.07	134.12 134.18 132.46 134.12 133.15 132.48
MW-2	03/26/91 04/01/91 11/22/91 03/27/92 06/04/92 09/23/92	155.17	20.91 20.82 22.54 20.82 21.81 22.45	134.26 134.35 132.63 134.35 133.36 132.72
MW-3	03/26/91 04/01/91 11/22/91 03/27/92 06/04/92 09/23/92	157.13	21.62 21.55 23.98 21.46 22.34 22.84	135.51 135.58 133.15 135.67 134.79 134.29

NOTES:

Measurement and reference elevation taken from notch/mark on top north side of well casing.

= Elevation referenced to mean sea level and obtained from previous consultant.

ATTACHMENT 4 HISTORICAL ANALYTICAL DATA

TABLE 2 ANALYTICAL RESULTS: GROUNDWATER

FORMER BEACON STATION #574 22315 REDWOOD ROAD, CASTRO VALLEY, CALIFORNIA (All results in parts-per-billion)

Sample ID	Date Collected	d Total Petroleum Hydrocarbons			Aromatic Volatile Organics				
		Gasoline	Diesel	Motor Oil	Benzene	Toluene	Ethyl- benzene	Total Xylenes	
MW-1	04/01/91 11/22/91 03/27/92 06/04/92 09/23/92	4,100 5,300 5,600 2,600 3,400	<100 <50 <50 <800 	 <50 <50 	340 4.9 760 270 480	570 1,600 900 57 430	76 370 230 230 110	460 2,300 1,100 440 550	
MW-2	04/01/91 11/22/91 03/27/92 06/04/92 09/23/92	10,000 11,000 18,000 14,000 22,000	<100 <50 <50 <5,000	<50 <50 	650 51 2,400 1,900 2,100	640 1,900 2,300 1,700 1,500	150 770 870 580 760	960 3,200 3,300 2,300 2,900	
MW-3	04/01/91 11/22/91 03/27/92 06/04/92 09/23/92	3,100 470 160 120 220	<100 <50 <50 <50	<50 <50 	41 10 9.2 7.5 8.3	91 6.3 4.8 2.7 4.3	37 11 10 0.5 6.2	420 36 23 15 19	

NOTES: Below the indicated detection limits labeled in the analytical laboratory results report. =

AEGIS ENVIRONMENTAL, INC. GROUNDWATER/LIQUID LEVEL DATA (measurements in feet)

Beacon - 22315 Redwood, Castro VIIy - 574

Date: 2-2-93

Recorded by:

MIKE NESNEY

Project No.: ___

92-779

Well No.	Time	Measured Total Depth	Depth to Gr. Water	Depth to Product	Product Thickness	Comments (TOC/TOB) (product skimmer in well)
MW-1	2:04	29.80	21.87	NA	Np	
MW-2	2:08	29.73	20.28	Í	1 1	
MW-3	2:04	29.45	21.03	4	V	
		<u> </u>				
		<u> </u>				
	<u> </u>					

Notes:

ATTACHMENT 5 FIELD DATA SHEETS

4			
ē	1 - TO 1	AEGIS ENVIRONM	
ø			(20.052 A. 1
٩			
۲.		(1) (0) (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	

SAMPLING INFORMATION SHEET

Clien Sitı	nt: <u>B</u> &AC se: <u>22315</u> 1	Reduced of	574 7 d .	 We!	Project No: 92-779 Well Designation:				
		_ 2" PVC bail _ 4" PVC bail ailer or other:	2" Disposable bailer 2" PVC bailer 4" PVC bailer er or other:		Submersible pump Dedicated bailer				
	Well Diameter Vol. Multiplier Depth of well epth to water:	r: 2" r: 0.163		4" <u>⊠</u> 0.653	6" 1.47 ulated purge: Actual purge:				
Start purge:	Time \$:15 2:15 2:18	Temp.	E.C. 1:32 ms 7 gal 1:36 ms	рН	Turbidity	Volume 7	2.2.93		
QC sampl	iles collected		appearance:	Grævish (s	}.cs:/	Lock:	3753		
Remarks:	Hand f	Bailed 2 g	iol Rama.	ung Wate	(W Disp	BA.10/			
ignature	mik	ه کی	mey_		Review	Van			

A A A A A A A A A A A A A A A A A A A	
WWW. The W. Salawar for wear all the countries and a constraint of the constraint of	
	Application and the
MANA A	III All (Property)
	III/FNL
	W D 234
	The same of the same

SAMPLING INFORMATION SHEET

Client: BEACON #574 Site: 22315 Redwood Rd.				 We	Project No: <u>92-779</u> Well Designation: <u>MU2</u>				
Purging Ed	Sampled wi	ith disposal bacharged to 80	2" Disposa 2" PVC bai 4" PVC bai	iler iler :		_Submersib _Dedicated			
	Well Diameter Vol. Multiplier Depth of well epth to water	r: 2" r: 0.163	· · · · · · · · · · · · · · · · · · ·	4" <u>✓</u> 0.653	6" 1.47 ulated purge: Actual purge:		gai/ft. 		
Start purge	: <u>2:20</u>	_ Sa	mpling time:	2:36	Sa	mpling Date	: 2.2.93		
	Time	Temp.	E.C.	pН	Turbidity	Volume	7 .		
	2:23	59.3	1.57ms	5.27	N/P	8	7		
	2:24	Diy 10			1	10	1		
	2:27	59.60	1.55m	5.25	↓ ————————————————————————————————————	12	1		
QC samp	ples collected		appearance:	Cloudy		Lock:	3753		
Remarks:	Hand B	niled 2 gal	Roma:wing	water c	N/ D:> BA	s. lc/			
gnature	Mik	e Doc	mey		Review _	Nm			

▼ 1. 19 ± 1 ± 1 ± 1 ± 1 ± 1	4800000 48 AB	with 60 of.	
	S ENVIRO	MUNICULE	AR 10.0 A
CATO CALL	a izira a mazi	THE DESIGNATION OF THE PROPERTY OF THE PROPERT	
ABOM AND	32,099 AAR 598,60 0990		Section 1

SAMPLING INFORMATION SHEET

Client: <u>BEACON</u> #574 Site: <u>22315</u> Reduced Rd.				 We	Project No: <u>92-779</u> Well Designation:				
Purging Equipment: K Sampled with disposal ba		4" PVC bailer		Submersible pump Dedicated bailer					
	Well re	charged to 8	0% recovery				_		
	Veil Diameter ol. Multiplier Depth of well opth to water	: 2"_ : 0.163 : <u>2</u> 9.45	3" 0.367	4" <u>≪</u> 0.653 Calc	ulated purge	8"	gai/ft.		
Start purge:	<u>2:05</u>	Sa	mpling time:			mpling Date	·		
	2108	64.5	13503	off Scale K		4 diame	1		
	2:08	D14 7				7			
	2:10	64.9	1.3205	/ 1 FI	\vee	9	1		
į									
QC sampl	es collected		appearance:	Som: alea	/	Lock:	3753		
Remarks:	Hared Ball	ed Remoinsi	y water u	U/ Disp B	1.10				
gnature	m: b	~ \	mey		Review				