TRANSMITTAL

March 14, 2003 G-R #386456

TO:

Mr. Robert Foss

Cambria Environmental Technology, Inc.

2680 Bishop Drive, Suite 290

San Ramon, CA 94583

CC: Ms. Karen Streich

Chevron Products Company

P.O. Box 6004

San Ramon, California 94583

FROM:

Deanna L. Harding

Project Coordinator Gettler-Ryan Inc.

6747 Sierra Court, Suite J Dublin, California 94568

Chevron Service Station RE:

#9-0338

5500 Telegraph Avenue Oakland, California

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
1	March 10, 2003	Groundwater Monitoring and Sampling Report First Quarter - Event of February 4, 2003

COMMENTS:

This report is being sent for your review. Please provide any comments/changes and propose any groundwater monitoring modifications for the next event prior to March 28, 2003, at which time the final report will be distributed to the following:

Mr. Larry Seto. Alameda County Health Care Services, Dept. of Environmental Health, 1153 Harbor Bay Parkway, cc: Suite 250, Alameda, CA 94502-6577

Enclosures

trans/9-0338-ks

March 10, 2003 G-R Job #386456

Ms. Karen Streich Chevron Products Company P.O. Box 6004 San Ramon, CA 94583

RE:

First Quarter Event of February 4, 2003

Groundwater Monitoring & Sampling Report

Chevron Service Station #9-0338

5500 Telegraph Avenue Oakland, California

Dear Ms. Streich:

This report documents the most recent groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R) at the referenced site. All field work was conducted in accordance with G-R Standard Operating Procedure - Groundwater Sampling (attached).

Static groundwater levels were measured and the wells were checked for the presence of separate-phase hydrocarbons. Static water level data, groundwater elevations, and separate-phase hydrocarbon thickness (if any) are presented in the attached Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells and submitted to a state certified laboratory for analyses. The field data sheets for this event are attached. Analytical results are presented in the table(s) listed below. The chain of custody document and laboratory analytical report are also attached.

EXD. 01/04

Please call if you have any questions or comments regarding this report. Thank you.

Sincerely,

Deanna L. Harding Project Coordinator

Robert C. Mallory

Registered Geologist, No. 7285

Figure 1:

Potentiometric Map

Table 1:

Groundwater Monitoring Data and Analytical Results

Table 2:

Groundwater Analytical Results - Oxygenate Compounds

Table 3:

Groundwater Analytical Results

Attachments:

Standard Operating Procedure - Groundwater Sampling

Field Data Sheets

Chain of Custody Document and Laboratory Analytical Reports

EXPLANATION

- Groundwater monitoring well
- Destroyed groundwater monitoring well
- Groundwater elevation in feet 99.99 referenced to Mean Sea Level
- Groundwater elevation contour, dashed where inferred.

Approximate groundwater flow direction at a gradient of 0.02 Ft./Ft.

REVISED DATE

TELEGRAPH AVENUE

Source: Figure modified from drawing provided by RRM engineering contracting firm.

6747 Sierra Ct., Suite J

(925) 551-7555

POTENTIOMETRIC MAP

Chevron Service Station #9-0338 5500 Telegraph Avenue Oakland, California

55TH STREET

DATE

PROJECT NUMBER 386456

REVIEWED BY

February 4, 2003

FILE NAME: P:\ENVIRO\CHEVRON\9-0338\Q03-9-0338.DWG | Layout Tab: Pot1

Table 1
Groundwater Monitoring Data and Analytical Results
Chevron Service Station #9-0338

hevron Service Station #9-0: 5500 Telegraph Avenue Oakland, California

WELL ID/	TOC	GWE	DTW	TPH-G	В	T	E	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
C-1A						3.5	560	1,900	35
05/27/99	123.27	115.93	7.34	9,100	40	25		754	66
09/02/99	123.27	115.72	7.55	9,700	24	18.4	626	270	<100/66.6 ²
10/27/99	123.27	115.84	7.43	4,740	<10	<10	276	333	<50
02/11/00	123.27	115.27	8.00	5,100	17.5	<10	182		<500
05/10/00	123.27	116.65	6.62	11,000	110	170	480	980	<250
07/27/00	0 123.27 115.14 8.13 6,200 6,500			<50	<50	540	150		
11/21/00	123.27	115.60	7.67		19	<10	450	360	<50
02/05/01	123.27	115.91	7.36	5,270	1.43	1.04	326	269	15.0
05/07/01	123.27	115.90	7.37	3,0001	37	27	520	490	63
08/06/01	123.27	115.15	8.12	3,300 ¹	3.1	3.8	160	100	47
11/12/01	123.27	116.42	6.85	5,100	1.9	<2.0	230	230	3.1
02/11/02	123.27	114.99	8.28	820	1.3	< 0.50	21	7.7	5.7/4 ³
05/13/02	123.27	114.30	8.97	1,800	<1.0	<0.50	26	8.6	7.5
08/09/02	123.27	114.33	8.94	2,100	1.7	<5.0	29	<20	<2.5
11/07/02	123.27	114.37	8.90	2,600	<2.0	1.0	13	54	7.9
02/04/03	123.27	115.47	7.80	640	<2.0	<2.0	4.4	6.3	7.8
02/04/03	125.57								
C-2A				.50	<0.5	<0.5	<0.5	<0.5	44
05/27/99	125.89	119.53	6.36	<50		<0.5	<0.5	<0.5	<2.5
09/02/99	125.89	117.04	8.85	<50	<0.5	<0.5	<0.5	<0.5	8.75/7.77 ²
10/27/99	125.89	116.65	9.24	<50	<0.5	<0.5	<0.5	<0.5	17.8
02/11/00	125.89	117.64	8.25	<50	<0.5		<0.50	<0.50	3.2
05/10/00	125.89	117.46	8.43	<50	<0.50	<0.50	<0.50	<0.50	20
07/27/00	125.89	116.34	9.55	<50	<0.50	<0.50		<0.50	< 50
11/21/00	125.89	116.39	9.50	<50	<0.50	<0.50	<0.50	<0.500	3.36
02/05/01	125.89	116.50	9.39	<50.0	<0.500	<0.500	<0.500		
05/07/01	125.89	116.29	9.60	<50	<0.50	<0.50	<0.50	<0.50	<2.5
08/06/01	125.89	115.72	10.17	<50	<0.50	0.59	<0.50	1.4	12
11/12/01	125.89	115.28	10.61	<50	<0.50	<0.50	<0.50	<1.5	3.4
02/11/02	125.89	117.31	8.58	<50	<0.50	<0.50	<0.50	<1.5	<2.5/<2 ³
05/13/02	125.89	115.76	10.13	1,100	17	83	21	99	29

Table 1
Groundwater Monitoring Data and Analytical Results
Chevron Service Station #9-0338

evron Service Station #9-03 5500 Telegraph Avenue Oakland, California

ELL ID/ TOC				Valle					
TOC	GWE	DTW	TPH-G	В				MTBE (ppb)	
(fi.)	(msl)	(fi.)	(ррв)	(ppb)	(ppb)	(<u>0)(0)</u>	(pps)	(77.0)	
125 90	116.76	9.13	<50	< 0.50	<0.50	<0.50	<1.5	<2.5	
				<0.50	< 0.50	<0.50		7.5	
	116.87	9.02	<50	<0.50	<0.50	<0.50	<1.5	<2.5	
					-0.5	-0.6	~0.5	44	
125.40	115.34							3.1	
125.40	114.89							<5.0/<2.0 ²	
125.40	115.03							2.79	
125.40	114.48							<2.5	
125.40	116.28	9.12						<2.5	
125.40	113.50	11.90						<2.5 <2.5	
125.40	113.76	11.64						<2.50	
125.40	115.21	10.19							
125.40	114.45	10.95	<50					<2.5	
125.40	113.75	11.65	<50					3.2	
125.40	113.69	11.71	<50					<2.5	
	114.45	10.95	<50					72/62 ³	
	113.64	11.76	<50					21	
	114.50	10.90	<50	< 0.50				4.9	
	113.72	11.68	<50	< 0.50				<2.5	
125.40	114.44	10.96	<50	<0.50	<0.50	<0.50	<1.5	81	
								2	
124 15	117.54	6.61	2,800	350	73	32	280	$2,200/2,500^2$	
			570	9.0	<2.5	<2.5	<2.5	890	
				4.22	<0.5	3.28	<0.5	845/1,080 ²	
				0.56	<0.5	1.45	<0.5	565	
			140 ¹	3.6	1.2	0.53	2.0	380	
	and the second s				1.2	0.93	2.8	460	
						< 0.50	< 0.50	350	
124.15 124.15	117.74	6.41	111	<1.00	<1.00	<1.00	<1.00	- 197	
	125.89 125.89 125.89 125.40 126.40 12	(ft.) (msl) 125.89 116.76 125.89 114.37 125.89 116.87 125.40 115.34 125.40 114.89 125.40 115.03 125.40 114.48 125.40 113.50 125.40 113.76 125.40 115.21 125.40 113.75 125.40 113.69 125.40 113.69 125.40 113.64 125.40 113.64 125.40 113.72 125.40 113.72 125.40 114.50 125.40 113.72 125.40 114.44 124.15 116.27 124.15 116.90 124.15 117.41 124.15 118.36 124.15 116.92 124.15 117.47	(ft.) (msl) (ft.) 125.89 116.76 9.13 125.89 114.37 11.52 125.89 116.87 9.02 125.40 115.34 10.06 125.40 114.89 10.51 125.40 115.03 10.37 125.40 114.48 10.92 125.40 116.28 9.12 125.40 113.50 11.90 125.40 113.76 11.64 125.40 113.76 11.64 125.40 113.75 11.65 125.40 113.69 11.71 125.40 113.69 11.71 125.40 113.69 11.71 125.40 113.64 11.76 125.40 113.72 11.68 125.40 113.72 11.68 125.40 113.72 11.68 125.40 113.72 11.68 125.40 113.72 11.68 125.40 113.72 11.68 125.40 113.72 11.68 125.40 113.72 11.68 125.40 113.72 11.68 125.40 113.72 11.68 124.15 116.90	(ft.) (mst) (ft.) (opb) 125.89 116.76 9.13 <50	(ft.) (msl) (ft.) (ppb) (ppb) 125.89 116.76 9.13 <50	100	125.89	100 116.76	

Table 1
Groundwater Monitoring Data and Analytical Results

Chevron Service Station #9-0338 5500 Telegraph Avenue Oakland, California

	700	GWE	DTW	TPH-G	В	T	E	X	МТВЕ
WELL ID/ DATE	TOC (fi.)	(msl)	(fi.)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
DAJE	(hr)	(0.35)		<u></u>					
C-5 (cont)				4001	2.1	1.0	<0.50	0.80	210
05/07/01	124.15	· 117.91	6.24	1001	2.1	1.2	0.54	1.5	360
08/06/01	124.15	116.74	7.41	94 ¹	0.84	<0.50	< 0.50	<1.5	280
11/12/01	124.15	116.82	7.33	58	<0.50		<0.50	<1.5	150/140 ³
02/11/02	124.15	117.90	6.25	<50	<0.50	<0.50	2.6	5.5	180
05/13/02	124.15	116.13	8.02	79	7.7	1.2		<1.5	220
08/09/02	124.15	113.13	11.02	<50	<0.50	<0.50	<0.50		300
11/07/02	124.15	114.51	9.64	<50	< 0.50	<0.50	<0.50	<1.5	490
02/04/03	124.15	117.07	7.08	2,300	210	4.4	250	53	450
				•					•
TRIP BLANK			•-	<50	<0.5	< 0.5	<0.5	<0.5	<2.5
05/27/99				<50	<0.5	< 0.5	< 0.5	< 0.5	<2.5
09/02/99				<50	<0.5	<0.5	< 0.5	< 0.5	< 5.0
10/27/99				<50	<0.5	<0.5	<0.5	< 0.5	<2.5
02/11/00				<50	<0.50	< 0.50	<0.50	< 0.50	<2.5
05/10/00				<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
07/27/00			`	<50	<0.50	<0.50	<0.50	< 0.50	<2.5
11/21/00				<50.0	<0.500	< 0.500	< 0.500	< 0.500	<2.50
02/05/01				<50.0 <50	<0.50	<0.50	<0.50	< 0.50	<2.5
05/07/01					<0.50	<0.50	<0.50	< 0.50	<2.5
08/06/01				<50	~0.50	~0.50			
QA				.50	~0.50	< 0.50	<0.50	<1.5	<2.5
11/12/01				<50	<0.50	<0.50	<0.50	<1.5	<2.5
02/11/02	- -			<50	<0.50		<0.50	<1.5	<2.5
05/13/02	 ,			<50	<0.50	<0.50	<0.50	<1.5	<2.5
08/09/02				<50	<0.50	<0.50		<1.5	<2.5
11/07/02				<50	<0.50	<0.50	<0.50		<2.5
02/04/03		-		<50	<0.50	<0.50	<0.50	<1.5	~2.3

Table 1

Groundwater Monitoring Data and Analytical Results

Chevron Service Station #9-0338 5500 Telegraph Avenue Oakland, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to May 10, 2000, were compiled from reports prepared by Blaine Tech Services, Inc.

TOC = Top of Casing

TPH-G = Total Petroleum Hydrocarbons as Gasoline

MTBE = Methyl tertiary butyl ether

(ft.) = Feet

B = Benzene

(ppb) = Parts per billion

GWE = Groundwater Elevation

T = Toluene

-- = Not Measured/Not Analyzed

(msl) = Mean sea level

E = Ethylbenzene

QA = Quality Assurance/Trip Blank

DTW = Depth to Water

X = Xylenes

- Laboratory report indicates gasoline C6-C12.
- ² Confirmation run.
- MTBE by EPA Method 8260.
- ⁴ Total Petroleum Hydrocarbons as Diesel (TPH-D) was less than the reporting limit.

Table 2

Groundwater Analytical Results - Oxygenate Compounds

Chevron Service Station #9-0338 5500 Telegraph Avenue Oakland, California

WELL 1D	DATE	ТВА <i>(ppb)</i>	MTBE (ppb)	DIPE (ppb)	ETBE (ppb)	TAME (ppb)
C-1A	02/11/02	<100	4	<2	<2	<2
C-2A	02/11/02	<100	<2	<2	<2	<2
C-4	02/11/02	<100	62	<2	<2	<2
C-5	02/11/02	<100	140	<2	<2	<2

EXPLANATIONS:

TBA = Tertiary butyl alcohol

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

(ppb) = Parts per billion

ANALYTICAL METHOD:

EPA Method 8260 for Oxygenate Compounds

Table 3

Groundwater Analytical Results

Chevron Service Station #9-0338 5500 Telegraph Avenue Oakland, California

WELL ID	DATE	Cadmium (ppb)	Chromium (ppb)	Lead (ppb)	Nickel (ppb)	Zinc (ppb)	TOG (ppb)	HVOCs <i>(ppb)</i>
C-4	02/11/02	<10.0	80.5	16.7	126	143	<320	<0.20-<0.50

EXPLANATIONS:

TOG = Total Oil and Grease

HVOCs = Halogenated Volatile Oraganic Compounds

(ppb) = Parts per billion

Note: All HVOCs were not detected (ND) unless otherwise noted.

STANDARD OPERATING PROCEDURE - GROUNDWATER SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging. Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Chevron Products Company, the purge water and decontamination water generated during sampling activities is transported by IWM to McKittrick Waste Management located in McKittrick. California.

WELL MONITORING/SAMPLING FIELD DATA SHEET

lient/Facility #:	ChevronTexac	o #9-0338	Job Number:	386456	·
ite Address:	5500 Telegraph		Event Date:	2.4.03	(inclusi
ity:	Oakland, CA		Sampler:	FT	
	C 14	Date Monitored:	2 · 4. 03	Well Condition:	o'k
Vell ID	2 in.	Date Monitores.			
Well Diameter		Volum		1"= 0.04 2"= 0.17 5"= 1.02 6"= 1.50	3"= 0.38 12"= 5.80
Total Depth	19.45 ft.	Factor	(VF) 4"= 0.66	5"= 1.02 6"= 1.50	12 - 3.00
Depth to Water	7.80 ft.	F .17 = 1.91	x3 (case volume) =	Estimated Purge Volume:	5.94 gal.
	11.65_x	· _ • • • • • • • • • • • • • • • • • •		Time Started:	(2400 hrs)
Purge Equipment:	/	Sampling Equipm	ent:	Time Balled:	(2400 hrs)
Disposable Bailer	√	Disposable Bailer		Depth to Product:	
Stainless Steel Bailer	г	Pressure Bailer		Depth to Water:	
Stack Pump		Discrete Bailer		Hydrocarbon Thicknet Visual Confirmation/I	
Suction Pump		Other:		- Visual Collistitation	
Grundfos				Skimmer / Absorban	
Other:					Skimmer: gal
				Amt Removed from Product Transferred	
				T TOOCCT TTENSION OF	· · · · · · · · · · · · · · · · · · ·
Sample Time/Da Purging Flow Ra Did well de-water	ate: gpm.	Sediment Descript If yes, Time:			<u> </u>
		O - de alle de	Temperature	D.O.	ORP
Time	Volume	oH Conductivity			(mV)
Time (2400 hr.)	Volume (gal.)	pH (umhos/cm)	^	(mg/L)	(mV)
	(gal.)	7.8L (u mhos/cm)	(d/f)		(mV)
(2400 hr.)	(gal.) 	pH (umhos/cm)			(mV)
(2400 hr.)	(gal.) - 2.0 - 4.0	7.8L (u mhos/cm)	(d/f)		(mV)
(2400 hr.) 2:52 2:56	(gal.) - 2.0 - 4.0	7.82 (u mhos/cm) 7.82 492	(d/f)		(mV)
(2400 hr.) 2:52 2:56	(gal.) - 2.0 - 4.0	7.81. 497 7.82 492 7.69 502	(d/f)	(mg/L)	
(2400 hr.) 2:52 2:56	(gal.) - 2.0 - 4.0	7.81. 497 7.82 492 7.69 502	O/F) Le 8 17.5 17.5 INFORMATION TYPE LABORATO	(mg/L)	ALYSES
(2400 hr.) 2:52 2:56 3:00	(gal.) - 2.0 - 4.0 - (.0	(u mhos/cm) 1.8L	0/F)	(mg/L)	ALYSES
(2400 hr.) 2:52 2:56 3:00	(gal.) - 2.0 - 4.0 - (.0	(u mhos/cm) 1.91	O/F) Le 8 17.5 17.5 INFORMATION TYPE LABORATO	(mg/L)	ALYSES
(2400 hr.) 2:52 2:56 3:00	(gal.) - 2.0 - 4.0 - (.0	(u mhos/cm) 1.91	O/F) Le 8 17.5 17.5 INFORMATION TYPE LABORATO	(mg/L)	ALYSES
(2400 hr.) 2:52 2:56 3:00	(gal.) - 2.0 - 4.0 - (.0	(u mhos/cm) 1.91	O/F) Le 8 17.5 17.5 INFORMATION TYPE LABORATO	(mg/L)	ALYSES
(2400 hr.) 2:52 2:56 3:00	(gal.) - 2.0 - 4.0 - (.0	(u mhos/cm) 1.91	O/F) Le 8 17.5 17.5 INFORMATION TYPE LABORATO	(mg/L)	ALYSES
(2400 hr.) 2:52 2:56 3:00	(gal.) 4.0 4.0 6.0 (#) CONTAINER 3 x voa vial	(u mhos/cm) 1.91	O/F) Le 8 17.5 17.5 INFORMATION TYPE LABORATO	(mg/L)	ALYSES
(2400 hr.) 2:52 2:56 3:00 SAMPLE ID C-\P	(gal.) 4.0 4.0 6.0 (#) CONTAINER 3 x voa vial	(u mhos/cm) 1.91	O/F) Le 8 17.5 17.5 INFORMATION TYPE LABORATO	(mg/L)	ALYSES

GETTLER-RYAN INC.

WELL MONITORING/SAMPLING **FIELD DATA SHEET**

lient/Facility#:	ChevronTexac	o #9-033		Job Number:	380430		_
Site Address:	5500 Telegrapi	- Avenu	e	Event Date:	2.4.03		_(inclusi
-	Oakland, CA	:		Sampler:	FT		_
Vell ID	c- 2n		Monitored:	2.4.03	Well Condition:	اللا	
Vell Diameter _ Total Depth _ Depth to Water	2 in. 20.25 ft. 9.0) ft.		Volume Factor (VF	3/4"= 0.02 4"= 0.66	1"= 0.04 2"= 0.17 5"= 1.02 6"= 1.50	3"= 0.38 12"= 5.80	
- Purge Equipment:			= 1.90 npling Equipment:		Stimated Purge Volume: Time Started: Time Bailed:	(;	2400 hrs) 2400 hrs)
Disposable Bailer Stainless Steel Bailer Stack Pump		Pre: Disc	oosable Bailer ssure Bailer crete Bailer		Depth to Product: Depth to Water: Hydrocarbon Thickne Visual Confirmation/I	ess:	ft ft
Suction Pump Grundfos Other:		Oth	er:		Skimmer / Absorban Amt Removed from Amt Removed from Product Transferred	t Sock (circle one Skimmer:	gal
Start Time (purge) Sample Time/Dat		Weat <u>.५.03</u>	her Conditions: Water Color:	CLEV	SUPPA Odor:	No	-
Purging Flow Rat Did well de-water			ent Description: ne:				
Time (2400 hr.)	Volume (gal.)	рН 7.90	Conductivity (umhos/cm)	Temperature ØF)	D.O. (mg/L)	ORP (mV)	
1:18	4.0 6.0	1.73	584 593	16.7			
			BORATORY INF	OPMATION			- <u>-</u>
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE		Y AN	ALYSES	
c- 2A	3 x voa vial	YES	HCL	LANCASTER	TPH-G(8015)/BTE	(+MTBE(8021)	
COMMENTS							
COMMENTS:							
Add/Replac	ced Lock:			Add/Replaced	Plug:	Size:	

WELL MONITORING/SAMPLING FIELD DATA SHEET

lient/Facility #:	ChevronTexaco	o #9-0338	ζ,	Job Number: 📑	386456	<u></u>	
ite Address:	5500 Telegraph	Avenue		Event Date:	2.4.03	(inclus
ity:	Oakland, CA			Sampler:	FT		
Vell ID	C- 4.	Date	Monitored:	2.4.03	Well Condition	اعاه_:	
Vell Diameter	2 in.		Volume	3/4"= 0.02	1"= 0.04 2"= 0.17	3"= 0,38	
otal Depth	19.49 ft.		Factor (VF)	= -	5"= 1.02 6"= 1.50		
epth to Water	10.91 ft. 9.53 xV	₌ 12	= 1.45	x3 (case volume) = E	stimated Purge Volum	e: <u>4.35</u> gal.	,
	^^				Time Started:	(24	00 hrs
urge Equipment:	1		oling Equipment:		Time Bailed:		100 hrs fl
isposable Bailer		-	sable Baller		Depth to Product:		
Stainless Steel Baile			sure Bailer ete Bailer		Hydrocarbon Thicks	ness:	ft
Stack Pump Suction Pump			ele ballei r:		Visual Confirmation		
Suction Fump Srundfos		0010			Skimmer / Absorba	nt Sock (circle one)	
Other:	 					Skimmer:	ga
						Well:	ga
					Product Transferre	d 10	
		Weath	er Conditions:	S	7442		
Stort Time (nura	a)						
Start Time (purg	·				Odo	r: NO	
Sample Time/D	ate: 1:56 /2	4.03	Water Color:	OLEAN		r: NO	
Sample Time/D Purging Flow R	ate: 1:56 / 2 · gpm.	Sedime	Water Color: nt Description:	OLEAN		r: <u>NO</u>	
Sample Time/D	ate: 1:56 / 2 · gpm.	Sedime	Water Color:	OLEAN		r: <u>NO</u>	•
Sample Time/D Purging Flow R Did well de-wat	ate: 1:56 / 2 · ate: / gpm. er? No	Sedime If yes, Time	Water Color: nt Description:	OLEAN	gal.	ORP	•
Sample Time/D Purging Flow R	ate: 1:56 / 2 · gpm.	Sedime	Water Color: nt Description: a:	OLFAX Volume:	gal.		•
Sample Time/D Purging Flow R Did well de-wat Time	ate: 1:56 / 2 · ate: / gpm. er? No	Sedime If yes, Time	Water Color: nt Description: e: Conductivity	Volume:	gal.	ORP	• •
Sample Time/D Purging Flow R Did well de-wat Time (2400 hr.)	ate: 1:56 /2 gpm. er? Volume (gal.)	Sedime If yes, Time	Water Color: nt Description: e: Conductivity (umhos/cm)	Volume:	gal.	ORP	
Sample Time/D Purging Flow R Did well de-wat Time (2400 hr.)	ate: 1:56 / 2 · ate: / gpm. er? // Volume (gal.)	Sedime If yes, Time pH 7.55	Water Color: nt Description: e: Conductivity (umhos/cm)	Volume:	gal.	ORP	- -
Sample Time/D Purging Flow R Did well de-wat Time (2400 hr.)	ate: 1:56 / 2 ate: / gpm. er? / Volume (gal.) 1.5	Sedime If yes, Time pH	Water Color: nt Description: e: Conductivity (umhos/cm) 534 536	Volume:	gal.	ORP	• •
Sample Time/D Purging Flow R Did well de-wat Time (2400 hr.)	ate: 1:56 / 2 ate: / gpm. er? / Volume (gal.) 1.5	Sedime If yes, Time pH 7.55	Water Color: nt Description: e: Conductivity (umhos/cm) 534 536	Volume:	gal.	ORP	- - -
Sample Time/D Purging Flow R Did well de-wat Time (2400 hr.)	ate: 1:56 / 2 ate: / gpm. er? / Volume (gal.) 1.5	9-03 Sedime If yes, Time PH 7-55 7-52	Water Color: nt Description: e: Conductivity (u mhos/cm) 534 536	Volume: Temperature OF) 17.3 17.6	gal.	ORP	- - -
Sample Time/D Purging Flow R Did well de-wat Time (2400 hr.) 1:45	ate: 1:56 / 2 ate: / gpm. er? / Volume (gal.) 1.5 3.0 4.0	9-03 Sedime If yes, Time PH 7-55 7-52 7-95	Water Color: nt Description: e: Conductivity (umhos/cm) 534 536	Volume: Temperature OF) 17.3 17.6 17.8	gal. D.O. (mg/L)	ORP (mV)	-
Sample Time/D Purging Flow R Did well de-wat Time (2400 hr.) 1:45 1:51	ate: 1:56 / 2 ate: / gpm. er? / Volume (gal.) 1.5	9-03 Sedime If yes, Time PH 7-55 7-52	Water Color: nt Description: e: Conductivity (u mhos/cm) 534 534 534	Volume: Temperature OF) 17.3 17.6 17.8	gal. D.O. (mg/L)	ORP (mV)	-
Sample Time/D Purging Flow R Did well de-wat Time (2400 hr.) 1:45 1:51	ate: 1:56 / 2 ate: / gpm. er? / Volume (gal.) 1.5 3.0 4.0	Sedime If yes, Time pH 7.55 7.52 7.45 LAE REFRIG.	Water Color: nt Description: e: Conductivity (u mhos/cm) 534 536 534 BORATORY INF	Volume: Temperature OF) 17.3 17.6 17.8 FORMATION LABORATOF	gal. D.O. (mg/L)	ORP (mV)	-
Sample Time/D Purging Flow R Did well de-wat Time (2400 hr.) 1:45 1:51	ate: 1:56 / 2 ate: / gpm. er? / Volume (gal.) 1.5 3.0 4.0	Sedime If yes, Time pH 7.55 7.52 7.45 LAE REFRIG.	Water Color: nt Description: e: Conductivity (u mhos/cm) 534 536 534 BORATORY INF	Volume: Temperature OF) 17.3 17.6 17.8 FORMATION LABORATOF	gal. D.O. (mg/L)	ORP (mV)	
Sample Time/D Purging Flow R Did well de-wat Time (2400 hr.) 1:45 1:51	ate: 1:56 / 2 ate: / gpm. er? / Volume (gal.) 1.5 3.0 4.0	Sedime If yes, Time pH 7.55 7.52 7.45 LAE REFRIG.	Water Color: nt Description: e: Conductivity (u mhos/cm) 534 536 534 BORATORY INF	Volume: Temperature OF) 17.3 17.6 17.8 FORMATION LABORATOF	gal. D.O. (mg/L)	ORP (mV)	
Sample Time/D Purging Flow R Did well de-wat Time (2400 hr.) 1:45 1:51	ate: 1:56 / 2 ate: / gpm. er? / Volume (gal.) 1.5 3.0 4.0	Sedime If yes, Time pH 7.55 7.52 7.45 LAE REFRIG.	Water Color: nt Description: e: Conductivity (u mhos/cm) 534 536 534 BORATORY INF	Volume: Temperature OF) 17.3 17.6 17.8 FORMATION LABORATOF	gal. D.O. (mg/L)	ORP (mV)	
Sample Time/D Purging Flow R Did well de-wat Time (2400 hr.) 1:45 1:51	ate: 1:56 / 2 ate: / gpm. er? / Volume (gal.) 1.5 3.0 4.0	Sedime If yes, Time pH 7.55 7.52 7.45 LAE REFRIG.	Water Color: nt Description: e: Conductivity (u mhos/cm) 534 536 534 BORATORY INF	Volume: Temperature OF) 17.3 17.6 17.8 FORMATION LABORATOF	gal. D.O. (mg/L)	ORP (mV)	
Sample Time/D Purging Flow R Did well de-wat Time (2400 hr.) 1:45 1:51	ate: 1:56 / 2 ate: / gpm. er? / Volume (gal.) 1.5 3.0 4.0	Sedime If yes, Time pH 7.55 7.52 7.45 LAE REFRIG.	Water Color: nt Description: e: Conductivity (u mhos/cm) 534 536 534 BORATORY INF	Volume: Temperature OF) 17.3 17.6 17.8 FORMATION LABORATOF	gal. D.O. (mg/L)	ORP (mV)	
Sample Time/D Purging Flow R Did well de-wat Time (2400 hr.) 1:45 1:51 SAMPLE ID C-4	ate: 1:56 / 2 ate: / gpm. er? / Volume (gal.) 1.5 3.0 4.0	Sedime If yes, Time pH 7.55 7.52 7.45 LAE REFRIG.	Water Color: nt Description: e: Conductivity (u mhos/cm) 534 536 534 BORATORY INF	Volume: Temperature OF) 17.3 17.6 17.8 FORMATION LABORATOF	gal. D.O. (mg/L)	ORP (mV)	

GETTLER-RYAN INC.

WELL MONITORING/SAMPLING **FIELD DATA SHEET**

Client/Facility #:	ChevronTexac	0 #9-033	8	Job Number: 3	386456	
Site Address:	5500 Telegrap	h Avenue	•	Event Date:	2.4.03	(inclusiv
City:	Oakland, CA			Sampler:	FT	
	c- 5	D-4-	Manitanada	<u> </u>	Well Condition:	k ¹
Vell ID		Date	Monitored:	2.4.03	Well Condition.	<u> </u>
Vell Diameter			Volume	3/4"= 0.02		0.38
Total Depth	20.24 ft.		Factor (VF) 4"= 0.66	5"= 1.02 6"= 1.50 12"=	5.80
Depth to Water	7.08 ft.	љ <u>\</u> 7_	= 2.23	x3 (case volume) = Es	stimated Purge Volume:	gal.
		,			Time Started:	(2400 hrs)
Purge Equipment:			pling Equipment		Time Bailed: Depth to Product:	(2400 hrs) ft
Disposable Bailer		•	osable Bailer sure Bailer		Depth to Water:	
Stainless Steel Bailer			rete Bailer		Hydrocarbon Thickness:	ft
Stack Pump Suction Pump			er:		Visual Confirmation/Descrip	tion:
Grundfos					Skimmer / Absorbant Sock	(circle one)
Other:					Arnt Removed from Skimme	er: gal
					Amt Removed from Well:	
					Product Transferred to:	
Start Time (purge			ner Conditions:		TAN Odor: M	
•	ite: <u>2:30 / 2</u>		Water Color:			<u></u>
Purging Flow Ra			ent Description		'S. SILTY	·
Did well de-wate	r? No	If yes, Tim	e:	Volume:	gal.	
Time	Volume		Conductivity	Temperature	D.O.	ORP
(2400 hr.)	(gal.)	pН	(u mhos/cm)	() (F)	(mg/L)	(mV)
2:16	2.5	ገ.40	8.02	16.3		
2:21	5.0	7.36	806	16.7		
2:25	7.0	7.28	812	17.3		
		LAI	BORATORY INF	ORMATION		
					ANALYSE	S
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY		
SAMPLE ID C- 5	(#) CONTAINER 3 x voa vial	REFRIG. YES	PRESERV. TYPE HCL	LANCASTER	TPH-G(8015)/BTEX+MTBI	
c- 5						

Chevron California Region Analysis Request/Chain of Custoay

412	Lancaster Laboratories Where quality is a science.
717	Where quality is a science.

AIN Lancaster Laboratories	020	-17			Acct	.#: 10	<u> </u>)4	_ Sai	Fo mple	or La #:_3	ncasi	ter L	abore	atorie	9 9	e on	ly SCR#:			
Lancaster Laboratories Where quality is a science.	01.03	503 -	•01	/						Aı	naly	ses l	Req	ueste	be		_	7 7/4	8404	'6 (_ද	
		0000100	247				╁╌			Р	rese	rvati	ion	Code	s				rvative Cod		
Facility #:	, OAKLAND Consultant: CA Court, Dub (Deanna Fax #: _92	o, CA MBRIA lin, Ca 94 a@grinc.c	568 com)		ater Colabe	Oil ☐ Air ☐ Total Number of Containers	□ 802184	10	TPH 8015 MOD DRO Silica Gel Cleanup			Lead 7420 ☐ 7421 ☐						Must mee possible for 8021 MTBE Confirm in Confirm a	T = Thio B = NaC O = Other porting needed to lowest detector 8260 comporting to the confirmation of the confirmation of the confirmation oxy s on high coxy s on all his systems.	OH er d stion list ounds 3260	mits
Sample Identification	Collected	Collected	ම් පි		Š	ᅙᅜ	- 	\ P	₽	83	_!_	3			+	+	1	Comment	s / Remarks		
C-1A C-2A C-4 C-5	2.4.03	1506 1326 1356 1430	X X X			33333	X	XXXX				Time		Rece	hone	burn			Date	Ţ	Time,
Turnaround Time Requested (TAT) (please of STD. TAT 72 hour 48 hour 4 day 5 day	ur	Relinq	uished by	<u>-1.</u>	ور >	No	me	<u> </u>) [Date	03		2	Rece	ived	by:	<u>)</u>	land	Date	95 /	Time / <u>335</u> Time
Data Package Options (please circle if required QC Summary Type I — Full Type VI (Raw Data) ☐ Coelt Deliverable not ne WIP (RWQCB)		Relinq UPS	uished by uished by Ferature U	y Com edEx	mercia	I Carrie Othe	r: r	Air	pe	1./5/	103	163		Ab, Rece	bevie	7 ZA		Rink() Ct?) Yes	2/5/2 Date 2	3 S 14	Time) 93(

ANALYTICAL RESULTS

Prepared for:

ChevronTexaco 6001 Bollinger Canyon Rd L4310

> San Ramon CA 94583 925-842-8582

TER 2.5 2003

Prepared by: FRANKY AN INC.

Lancaster Laboratories MERAL CONTRACTORS
2425 New Holland Pike
Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 840466. Samples arrived at the laboratory on Thursday, February 06, 2003. The PO# for this group is 99011184 and the release number is STREICH.

Client Description			Lancaster Labs Number
QA-T-030204	NA	Water	3990395
C-1A-W-030204	Grab	Water	3990396
C-2A-W-030204	Grab	Water	3990397
C-4-W-030204	Grab	Water	3990398
C-5-W-030204	Grab	Water	3990399

1 COPY TO

Cambria C/O Gettler- Ryan

Attn: Deanna L. Harding

Questions? Contact your Client Services Representative Teresa L Cunningham at (717) 656-2300.

Respectfully Submitted,

Victoria M. Martell Chemist

Victorial Martitt

CASE NARRATIVE

Prepared For:

Karen Streich ChevronTexaco 6001 Bollinger Canyon Road L4310 San Ramon, CA 94583-0904

Prepared By:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 840466. Samples arrived at the laboratory on Thursday, February 06, 2003.

METHODOLOGY

The specific methodologies used in obtaining the enclosed analytical results are indicated on the laboratory chronicles.

COMMENTS

The relative percent difference for TPH-GRO between the MS/MSD associated with samples C-4 and C-5 from Facility 90338 was outside QC criteria. This compound met RPD criteria in the LCS/LCSD analyses.

Lancaster Laboratories Sample No. WW 3990395

Collected:02/04/2003 00:00

Account Number: 10904

San Ramon CA 94583

Submitted: 02/06/2003 09:15

ChevronTexaco 6001 Bollinger Canyon Rd L4310 Reported: 02/24/2003 at 10:01

Discard: 03/27/2003

QA-T-030204 NA Water

GRD

5500 Telegraph Ave T0600100347 QA

TELQA

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01729	TPH-GRO - Waters					
01730	TPH-GRO - Waters The reported concentration of TP gasoline constituents eluting pr start time. A site-specific MSD sample was r was performed to demonstrate pre	rior to the C6	(n-hexane) TPH-GF for the project. A	RO range A LCS/LCSD	ug/l	1
02159	BTEX, MTBE					
02161	Benzene	71-43-2	N.D.	0.50	ug/l	1
02164	Toluene	108-88-3	N.D.	0.50	ug/l	1
02166	Ethylbenzene	100-41-4	N.D.	0.50	ug/l	1
02171	Total Xylenes	1330-20-7	N.D.	1.5	ug/l	1
02172	Methyl tert-Butyl Ether	1634-04-4	N.D.	2.5	ug/l	1
	A site-specific MSD sample was was performed to demonstrate pr					

State of California Lab Certification No. 2116

		Laboratory	Chro	nicle		
CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01729	TPH-GRO - Waters	N. CA LUFT Gasoline	1	02/07/2003 10:07	Linda C Pape	1
		Method		//	rists a news	
02159	BTEX MTBE	SW-846 8021B	1	02/07/2003 10:07	Linda C Pape	1

1 02/07/2003 10:07 Linda C Pape

01146 GC VOA Water Prep

SW-846 5030B

n.a.

Lancaster Laboratories Sample No. WW 3990396

Collected:02/04/2003 15:06

by FT

Account Number: 10904

Submitted: 02/06/2003 09:15

ChevronTexaco

Reported: 02/24/2003 at 10:01

6001 Bollinger Canyon Rd L4310

Discard: 03/27/2003

C-1A-W-030204

Grab W

Water

San Ramon CA 94583

Facility# 90338

Job# 386456

GRD

5500 Telegraph Ave

T0600100347 C-1A

TEL1A

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Units	Dilution Factor
01729	TPH-GRO - Waters					
01730	TPH-GRO - Waters The reported concentration of T gasoline constituents eluting p start time. A site-specific MSD sample was was performed to demonstrate pr	rior to the C6	(n-hexane) TFH-0 for the project.	A LCS/LCSD	ug/1	1
02159	BTEX, MTBE					
02161	Benzene	71-43-2	N.D.	2.0	ug/l	1
02164	Toluene	108-88-3	N.D.	2.0	ug/l	1
02166	Ethylbenzene	100-41-4	4.4	0.50	ug/l	1
02171	Total Xylenes	1330-20-7	6.3	1.5	ug/l	1
02171	Methyl tert-Butyl Ether	1634-04-4	7.8	2.5	ug/l	1
	A site-specific MSD sample was was performed to demonstrate pr	not submitted ecision and ac	for the project. curacy at a batc	A LCS/LCSD h level.		

Due to the presence of interferents near their retention time, normal reporting limits were not attained for benzene and toluene. The presence or concentration of these compounds cannot be determined below the reporting limits due to the presence of these interferents.

State of California Lab Certification No. 2116

	Laboratory Chronicle					
CAT No. 01729	Analysis Name TPH-GRO - Waters	Method N. CA LUFT Gasoline	Trial# 1	Date and Time 02/07/2003 17:11	Analyst Linda C Pape	Factor 1
02159	BTEX, MTBE	Method SW-846 8021B	1	02/07/2003 17:11	Linda C Pape	1

Analysis Report

Page 2 of 2

Lancaster Laboratories Sample No. WW 3990396

Collected:02/04/2003 15:06

by FT

Account Number: 10904

Submitted: 02/06/2003 09:15

Reported: 02/24/2003 at 10:01

ChevronTexaco 6001 Bollinger Canyon Rd L4310

Discard: 03/27/2003

C-1A-W-030204

Grab

Water

GRD

San Ramon CA 94583

Facility# 90338 Job# 386456 5500 Telegraph Ave

T0600100347 C-1A

TEL1A

01146 GC VOA Water Prep

SW-846 5030B

02/07/2003 17:11 Linda C Pape

n.a.

Lancaster Laboratories Sample No. WW 3990397

Collected: 02/04/2003 13:26

Account Number: 10904

Submitted: 02/06/2003 09:15

Reported: 02/24/2003 at 10:01

ChevronTexaco

6001 Bollinger Canyon Rd L4310

Discard: 03/27/2003

C-2A-W-030204

Grab

Water

San Ramon CA 94583

Facility# 90338 Job# 386456

GRD

5500 Telegraph Ave

T0600100347 C-2A

TEL2A

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01729	TPH-GRO - Waters					
01730	TPH-GRO - Waters The reported concentration of Tigasoline constituents eluting part time. A site-specific MSD sample was a was performed to demonstrate pro-	rior to the C6	(n-hexane) TPH-G for the project.	RO range A LCS/LCSD	ug/l	1
02159	BTEX, MTBE					
02161	Benzene	71-43-2	N.D.	0.50	ug/l	1
02164	Toluene	108-88-3	N.D.	0.50	ug/l	1
02166	Ethylbenzene	100-41-4	N.D.	0.50	ug/1	1
02171	Total Xylenes	1330-20-7	N.D.	1.5	ug/l	1
02172	Methyl tert-Butyl Ether	1634-04-4	N.D.	2.5	ug/1	1
	A site-specific MSD sample was was performed to demonstrate pr					

State of California Lab Certification No. 2116

		Laboratory	· Chro	nicle		
CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01729	TPH-GRO - Waters	N. CA LUFT Gasoline	1	02/07/2003 17:44	Linda C Pape	1
		Method				_
02159	BTEX, MTBE	SW-846 8021B	1	02/07/2003 17:44	Linda C Pape	1
01146	GC VOA Water Prep	SW-846 5030B	1	02/07/2003 17:44	Linda C Pape	n.a.

GC VOA Water Prep

3990398 Lancaster Laboratories Sample No. WW

Collected: 02/04/2003 13:56

by FT

Account Number: 10904

Submitted: 02/06/2003 09:15

Reported: 02/24/2003 at 10:01

6001 Bollinger Canyon Rd L4310

Discard: 03/27/2003

C-4-W-030204

Grab

Water

San Ramon CA 94583

ChevronTexaco

Facility# 90338 Job# 386456

GRD

5500 Telegraph Ave

T0600100347 C-4

TELC4

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Units	Dilution Factor
01729	TPH-GRO - Waters					
01730	TPH-GRO - Waters The reported concentration of TI gasoline constituents eluting prostart time. The relative percent difference associated with this sample was criteria in the LCS/LCSD analyse	for TPH-GRO be outside QC cr	n-hexane) TPH-G etween the MS/MSE	RO range	ug/1	
02159	BTEX, MTBE					
02161	Benzene	71-43-2	N.D.	0.50	ug/l	1
02164	Toluene	108-88-3	N.D.	0.50	ug/l	1
02166	Ethylbenzene	100-41-4	N.D.	0.50	ug/l	1
02171	Total Xylenes	1330-20-7	N.D.	1.5	ug/l	1
02172	Methyl tert-Butyl Ether	1634-04-4	81.	2.5	ug/l	1

State of California Lab Certification No. 2116

		Laboratory	Chro			512-41-a
CAT No. 01729	Analysis Name TPH-GRO - Waters	Method N. CA LUFT Gasoline	Trial#	Analysis Date and Time 02/07/2003 18:42	Analyst K. Robert Caulfeild-	Dilution Factor 1
01/29	TPH-GRO - Waters	Method	•	02,07,2000 20100	James	
02159	BTEX, MTBE	SW-846 8021B	1	02/07/2003 18:42	K. Robert Caulfeild- James	1
01146	GC VOA Water Prep	SW-846 5030B	1	02/07/2003 18:42	K. Robert Caulfeild- James	n.a.

Lancaster Laboratories Sample No. WW 3990399

Collected:02/04/2003 14:30

Account Number: 10904

Submitted: 02/06/2003 09:15

Reported: 02/24/2003 at 10:01

Discard: 03/27/2003

Water

ChevronTexaco

San Ramon CA 94583

6001 Bollinger Canyon Rd L4310

C-5-W-030204

Grab

GRD

5500 Telegraph Ave

T0600100347 C-5

TELC5

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Units	Dilution Factor
01729	TPH-GRO - Waters					
01730	TPH-GRO - Waters The relative percent difference associated with this sample was criteria in the LCS/LCSD analyse	outside QC cr	-	50.	ug/l	1
02159	BTEX, MTBE					
02161	Benzene	71-43-2	210.	0.50	ug/l	ı
02164	Toluene	108-88-3	4.4	0.50	ug/l	1
02166	Ethylbenzene	100-41-4	250.	0.50	ug/l	1 .
02171	Total Xylenes	1330-20-7	53.	1.5	ug/l	1
02172	Methyl tert-Butyl Ether	1634-04-4	490.	2.5	ug/l	1

State of California Lab Certification No. 2116

Labora	torv	Chror	icle
Laucita	11.C) [V	Value CM	LLLLE

		Danoracory	CILL C.	***		
CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01729	TPH-GRO ~ Waters	N. CA LUFT Gasoline Method	1	02/07/2003 19:15	K. Robert Caulfeild- James	1
02159	BTEX, MTBE	SW-846 8021B	1	02/07/2003 19:15	K. Robert Caulfeild- James	1
01146	GC VOA Water Prep	SW-846 5030B	1	02/07/2003 19:15	K. Robert Caulfeild- James	n.a.

Quality Control Summary

Client Name: ChevronTexaco

Group Number: 840466

Reported: 02/24/03 at 10:01 AM

Laboratory Compliance Quality Control

Analysis Name	Blank Result	Blank MDL	Report Units	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: 03037A51A	Sample n	umber(s):	3990395				^	30
TPH-GRO - Waters	N.D.	50.	ug/l	100	109	70-130	9	
Benzene	N.D.	. 5	ug/l	95	97	80-118	2	. 30
Toluene	N.D.	. 5	ug/l	94	95	82-119	1	30
Ethylbenzene	N.D.	.5	ug/1	92	93	81-119	1	30
Total Xylenes	N.D.	1.5	ug/1	95	95	82-120	0	30
Methyl tert-Butyl Ether	N.D.	2.5	ug/l	91	90	79-127	1	30
Batch number: 03037A51B	Sample n	umber(s):	3990396-3	990397			_	
TPH-GRO - Waters	N.D.	50.	ug/l	100	109	70-130	9	30
Benzene	N.D.	.5	ug/l	95	97	80-118	2	30
Toluene	N.D.	.5	ug/l	94	95	82-119	1	30
Ethylbenzene	N.D.	. 5	ug/l	92	93	81-119	1	30
Total Xylenes	N.D.	1.5	ug/1	95	95	82-120	0	30
Methyl tert-Butyl Ether	N.D.	2.5	ug/1	91	90	79-127	1	30
Batch number: 03038A53A	Sample :	number(s):	3990398-3	990399			_	
TPH-GRO - Waters	N.D.	50.	ug/l	92	95	70-130	2	30
Benzene	N.D.	.5	ug/l	104	94	80-118	10	30
Toluene	N.D.	.5	ug/l	111	101	82-119	9	30
Ethylbenzene	N.D.	.5	ug/l	103	95	81-119	9	30
Total Xylenes	N.D.	1.5	ug/1	104	96	82-120	9	30
Methyl tert-Butyl Ether	N.D.	2.5	ug/l	94	91	79-127	3	30

Sample Matrix Quality Control

Dup RPD
Max
F

66-136

Batch number: 03037A51B	Sample n	umber(s): 3990396-3	3990397
TPH-GRO - Waters	88	70-130	
	^^	62.126	

 TPH-GRO - Waters
 88
 70-130

 Benzene
 92
 67-136

 Toluene
 89
 78-129

*- Outside of specification

Methyl tert-Butyl Ether

(1) The result for one or both determinations was less than five times the LOQ.

(2) The background result was more than four times the spike added.

Page 2 of 3

Quality Control Summary

Client Name: ChevronTexaco

Group Number: 840466

Reported: 02/24/03 at 10:01 AM

Sample Matrix Quality Control

	rs	MSD	ms/msd		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name Ethylbenzene Total Xylenes Methyl tert-Butyl Ether	%REC 86 87 84	%REC	Limits 75-133 86-132 66-136	RPD	<u>MAX</u>	Conc	Conc	RPD	Max
Batch number: 03038A53A	Sample	number	(s): 399039	8-39903	99				
TPH-GRO - Waters	76	112	70-130	39*	30				
Benzene	107	110	67-136	3	20				
Toluene	113	112	78-129	1	30				
Ethylbenzene	105	103	75-133	2	30				
Total Xylenes	105	102	86-132	2	30				
Methyl tert-Butyl Ether	100	105	66-136	4	30				

Surrogate Quality Control

Analysis Name: BTEX, MTBE Batch number: 03037A51A

	Trifluorotoluene-F	Trifluorotoluene-P
3990395	96	90
Blank	97	90
LCS	97	91
LCSD	99	92
MS	97	92
Limits:	57-146	66-136

Analysis Name: BTEX, MTBE Batch number: 03037A51B

	Trifluorotoluene-F	Trifluorotoluene-P
3990396	109	92
3990397	95	92
Blank	95	92
LCS	97	91
LCSD	99	92
MS	97	92
Limits:	57-146	66-136

Analysis Name: BTEX, MTBE Batch number: 03038A53A

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.

Analysis Report

Alameda County

APR 0 4 2003

mary

mary

Group Number: 840468th

Page 3 of 3

Quality Control Summary

66-136

Client Name: ChevronTexaco Reported: 02/24/03 at 10:01 AM

57-146

Limits:

Surrogate Quality Control

	Trifluorotoluene-F	Trifluorotoluene-P
3990398	95	98
3990399	11 1	105
Blank	100	95
LCS	98	101
LCSD	95	96
MS	97	104
MSD	96	107

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The background result was more than four times the spike added.

