BP OIL e ) BP Qil Company

Environmental Resaurces Management
Building 13, Suite N
265 5W 413t Street
ooann 3 ! TEE] . g 14‘ Rentan, Washington 98055-4931
(206) 251-0667

August 29, 1995

Alameda County Health Care Services Agency
Attention Mr. Scott Seery

1131 Harbor Bay Parkway, Room 250
Alameda, CA 94502-6577

RE: BP Oil Site No. 11105
3515 Castro Valley Boulevard
Castro Valley, CA

Dear Mr. Seery:

Enclosed please find a report titled Groundwater Monitoring and Sampling Report, dated
June 30, 1995. Let me know if you have questions regarding this report.

As you are aware, the fieldwork for supplemental investigation was implemented during late
July. Alisto Engineering Group is in the process of writing the report, and I will forward a
copy to you upon receipt. I expect that this will occur sometime within the next eight weeks.
If this reporting schedule presents any concerns, let me know.

Also enclosed is the MW-5 baildown test data, graph, calculations along with relevant text
copied from a textbook titled Groundwater by R. A. Freeze and J. A Cherry (1979). I have
also enclosed some additional copies of semi-logarithm paper in the event that you have not
yet had the chance to reduce the data and calculate the hydraulic conductivity of the material
screened by MW-5. Based on the data we collected, we calculated a hydraulic conduct1v1ty of
0.0000263 cm/sec. This measurement falls in the middle of the range of silt or loess’, the
upper range of a glacial till, or the lower range of a silty sand. The silt ra.nge seems most
consistent with the material described for the screened interval on the MW-5° Boring Log

and Well Completion Summary (also enclosed).

As you will recall, we performed the baildown test to assist in determining whether
groundwater at this site is confined or unconfined. Iam reluctant to address this question at
length here, because we can more likely address this efficiently and productively by discussing
the matter in person. Before we do, however, I ask that you further consider how
groundwater is released from storage under confined and unconfined conditions’.

1 Wind-blown blanket deposits of silt common in the Midwest and Great Plains regions of North America.
Perhaps this should go without saying, but loess should not be expected to be present in significant quantitics
in the San Francisco Bay Area.

2 Clay Silt, Sandy Silt, Clay Silt with increasing sand content

3 Water stored in unconfined aquifers is produced by gravity drainage; water stored in confined aquifers is
supplied by the compression of the skeletal material in the aquifer matrix and the expansion of the water. So




Please give me a call if you have any questions or comments regarding this information. I can
be reached at (206) 251-0689.

Sincerely,

iz —
Scott Hooton
Environmental Resources Management

attachments

ce: site file
B. Nagle - AEG (Baildown data only)
CRWQCB-SFBR, Attention Mr. E. So, 2101 Webster Street, Ste.500, Oakland, CA
94612 (w/ all attachments)

it follows that the storage coefficient for a confined aquifer is much lower than would occur in an unconfined
aquifer.
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339 Groundwater Resource Evsluation | Ch. 8
consolidation, ¢, which is defined as

K 8.30
“ =t (8.30)

X
o
At each loading level in a consolidation test, the sample undergoes a transient
drainage process (fast for sands, slow for clays) that controls the rate of consolida-
tion of the sample, If the rate of decline in sample thickness is recorded for each
loading increment, such measurements can be used in the manner described by
Lambe (1951) to determine the coefficient of consolidation, ¢,, and the hydraulic
conductivity, X, of the soil.
In Section 8.12, we will further examine the mechanism of one-dimensional
consolidation in connection with the analysis of land subsidence.

Unsaturated Characteristic Curves

The characteristic curves, K(w) and 8(y), that relate the moisture content, &, and
the hydraulic conductivity, X, to the pressure head, W, in unsaturated soils were
described in Section 2.6. Figure 2.13 provided a visual example of the hysteretic
relationships that are commonly observed. The methods used for the laboratory
determination of these curves have been developed exclusively by soil scientists.
It is not within the scope of this text to outline the wide variety of sophisticated

laboratory instrumentation that is availabie. Rather, the reader is directed to the
soil science literature, in particular to the review articles by L. A. Richards (1965),
Klute (1965b), Klute (1965¢c), and Boawer and Jackson (1974).

8.5 Moeasurement of Parameters:
Piezometer Tests

It is possible to determine in situ hydraulic conductivity values by means of tests
carried out in a single piezometer. We will look at two such tests, one suitable for
point piezometers that are open only over a short interval at their base, and one
suitable for screened or slotted piezometers that are open over the entire thickness
of a confined aquifer. Both tests are initiated by causing an instantaneous change
in the water level in a piezometer through a sudden introduction or removal of a
known volume of water. The recovery of the water level with time is then observed.
When water is removed, the tests are often called dail tests; when it is added, they
are known as siug tests. It is also possible to create the same effect by suddenly
introducing or removing a solid cylinder of known volume.

The method of interpreting the water level versus time data that arise from bail
tests or slug tests depends on which of the two test configurations is feit to be most
representative. The method of Hvorslev (1951) is for a point piezometer, while
that of Cooper et al. (1967) is for a confined aquifer. We will now deseribe each in
turn.
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The simplest interpretation of piezometer-recovery data is that of Hvorsley
(1951). His initial analysis assumed a homogenecus, isotropic, infinite medium in
which both soil and water are incompressible. With reference to the bail test of #
Figure 8.20(a), Hvorslev reasoned that the rate of inflow, g, at the piezometer tip
at any time ¢ is proportional to the hydraulic conductivity, X, of the soil and to
the unrecovered head difference, H — k, so that

ﬂﬁ=ﬂﬁ%=£ﬁﬂ—m (3.31)

Ll Nl AR e b Mo e e

where F is a factor that depends on the shape and dimensions of the piezometer
intake. If g = g¢ at ¢ = 0, it is clear that g(r) will decrease asymptotically toward
Zero as time goes on.
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Figure 8.20 Hvorslev piszomster tast. (a) Geometry; {b) method of analysis.
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Hvorslev defined the basic time lag, T,, as

n=%§ (8.3
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When this parameter is substituted in Eq. (8.31), the solution to the resulting
ordinary differential equation, with the iitial condition, h = Hyatt =0, is

H=h _ - 3.3 &
H=—H, °© (
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A plot of field Tecovery data, H — h versus 1, should therefore show an exponential
decline in Tecovery rate with time. If. as shown on Figure 8.20(b), the recovery is
normalized o i — Hy and plotted on a logarithmic scale, a straight-line plot
resulis, Note that for 3 — hH— H,=0.37, In(H — hH— Hy) = —1, and from
Eq. (8.33), 7, = t. The basic time lag, Ty can be defined by this relation; orifa
more physical definition s desired, it can be seen, by multiplying both topand bot-
tom of Eq. (8.32) by H — H,, that T, is the time that would be required for the
complete equalization of the head difference if the original rate of inflow were
maintained, That is, Ty = V/g,, where ¥ is the volumie of water removed or added.

To interpret a set of field recovery data, the data are plotted in the form of
Figure 8.20(b). The value of T, is measured graphically, and X is determined from
Eq. (8.32). Fora piezometer intake of length L and radius g [Figure 8.20(a)), with
L{R > 8, Hvorslev (1951) has evaluated the shape factor, F. The resulting expres-
sion for X is

_In(L/R)
K= It (8.34)

of shape factors that treat such cases as 3 piezometer open only at its basal cross
section and a piezometer that just encounters a permeable formation underlying
an impermeable one. Cedergren (1967) also lists these formulas,

In the field or agricultural hydrology, several in sity techniques, similar in
principle to the Hvorsley method but differing in detail, have been developed for
the measurement of saturated hydraulic conductivity. Boersma (1965) and Bouwer
and Jackson (1974) review those methods that involve auger holes and piezometers,

For bail tests of slug tests run in piezometers that are open over the entire
thickness of a confined aquiler, Cooper et al. (1967) and Papadopoulos et al. (1973)
have evolved 3 lest-interpretation procedure. Their analysis is subject to the same
assumptions as the Theis solution for pumpage from a confined aquifer, Contrary
to the Hvorslev method of analysis, it includes consideration of both formation
and water compressibilities. It utilizes curve-matching procedure 1o determine
the aguifer coefficients T and S. The hydraulic conductivity K can then be deter-
mined on the basis of the relation, ¥ — T/b. Like the Theis solution, the method
is based on the solution 1o a boundary-value problem that involves the transient
equation of groundwater flow, Eq. (2.77). The mathemalics will not be described
here,

For the bail-test gcometry shown in Figure 8.21(a), the method involves the
preparation of a plot of recovery data in the form A — hH — H, versus 1. The
plot is prepared on semilogarithmic paper with the reverse format to that of
the Hvorslev test: the &7 — hWH — H, scale is linear, while the r scale is logarithmic.
The field curve is then superimposed on the t¥pe curves shown jn Figure 8.21(h).
With the axes coincident, the data plot js translated horizontally into a position
where the data best fit one of the type curves, A matchpoint is chosen (or rather, a
vertical axjs is matched) and values of ¢ and W are read off the horizontal scales
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Figure 8.21 Piezomster tast in a confined aquifer. (a) Geometry; (b) type
curves {after Papadopoulos et al., 1973).

at the matched axis of the ficld plot and the type plot, respectively. For ease of

calculation it is common to choose a matched axis at W = 1.0. The transmissivity

T is then given by

- Wr2
t

T

(8.35)

where the parameters are expressed in any consistent set of units.

In principle, the storativity, S, can be determined from the a value of the
matched curve and the expression shown on Figure 8.21(b). In practice, since the
slopes of the various z lines are very similar, the determination of § by this method
is unreliable.

The main limitation on siug tests and bail tests is that they are heavily depes-
dent on a high-quality piezometer intake. If the wellpoint or screen is corroded
or clogged, measured values may be highly inaccurate. On the other hand, if 2
piczometer is developed by surging or backwashing prior to testing, the measured
values may reflect the increased conductivities in the artificially induced gravel
pack around the intake.

It is also possible to determine hydraulic conductivity in a piezometer &
single well by the introduction of a tracer into the well bore. The tracer concentr®
tion decreases with time under the influence of the natural hydraulic gradient that
exists in the vicinity of the well. This approach is known as the borefole dilution
method, and it is described more fully in Section 9.4
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