GHD

RECEIVED

By Alameda County Environmental Health 11:17 am, Nov 09, 201:

Transmittal

Date:	November 9, 2015	Refer	ence No.: 24	1501	
То:	Jerry Wickham Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577				7
Subject:	Former Shell Service Station, 461 8 th Street,	Oakland, Ca	alifornia		
No. of Copies	Description/Title			Drawing No./ Document Ref.	Issue
1	Subsurface Investigation and Third Quarter 20 Groundwater Monitoring Report)15			
Issued for:		uested ed to you	☐ Construct☐ For re-sul		uotation
Sent by:	☐ Overnight courier ☐ Same day courier ☐ Other: GeoTracker and Alameda Coun		under separate	cover ⊠ Mail ei	nclosed
If you hav	ve any questions regarding the contents of this naefer at (510) 420-3319 or the Shell program r				nager
Copy to:	Andrea Wing, Shell Oil Products US				
	Leroy Griffin, Fire Prevention Bureau				
	Signature Land Advisors, Inc. (property owners)	<u></u>			
Com	pleted by: Peter Schaefer [Please Print]	Signed:	John S	dali	

Filing: Correspondence File

Shell Oil Products US

Mr. Jerry Wickham Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 Soil and Groundwater Focus Delivery Group 20945 S. Wilmington Avenue Carson, CA 90810 Tel (714) 731 1050 Fax (714) 731 1038 Email Andrea.Wing@shell.com Internet http://www.shell.com

Re: 461 8th Street, Oakland, California

PlaNet Site ID USF04642 PlaNet Project ID 27481 ACEH Case No. RO0000343

Dear Mr. Wickham:

I am informed and believe that, based on a reasonably diligent inquiry undertaken by GHD on behalf of Equilon Enterprises LLC dba Shell Oil Products US, the information and/or recommendations contained in the attached document is true, and on that ground I declare under penalty of perjury in accordance with Water Code section 13267 that this statement is true and correct.

As always, please feel free to contact me directly at (714) 731-1050 with any questions or concerns.

Sincerely, Shell Oil Products US

Andrea A. Wing

Principal Program Manager

Subsurface Investigation and Third Quarter 2015 Groundwater Monitoring Report

Former Shell Service Station 461 8th Street Oakland, California

PlaNet Site ID USF04642

PlaNet Project ID 27481

Agency No. RO0000343

Shell Oil Products US

5900 Hollis Street Emeryville California 94608 USA 241501 | 15.04 | Report No 42 | November 9, 2015

Table of Contents

1.	Introd	luction		1
2.	Subsi	urface Inve	estigation and Groundwater Monitoring	1
	2.1	Well Insta	allation and Well and Vapor Probe Destructions	1
		2.1.1 2.1.2 2.1.3 2.1.4 2.1.5	Permits	
	2.2	Well Insta	allation	2
		2.2.1 2.2.2 2.2.3	Number of Borings Boring Depth Groundwater Depth	2
	2.3	Well and	Soil Vapor Probe Destructions	2
	2.4	Waste Dis	sposal	2
	2.5	Well Deve	elopment and Groundwater Sampling	2
3.	Findir	ngs		3
	3.1	Soil		3
	3.2	Groundwa	ater	3
4.	Conc	lusions and	d Recommendations	3

Figure Index

Figure 1 Vicinity Map

Figure 2 Soil Chemical Concentration Map

Figure 3 Groundwater Contour and Chemical Concentration Map

Table Index

Table 1 Historical Soil Analytical Data

Table 2 Groundwater Data

Table 3 Separate-Phase Hydrocarbon Removal Data

Appendices

Appendix A Permits

Appendix B Boring Log

Appendix C Waste Disposal Manifest

Appendix D TestAmerica Laboratories, Inc. – Analytical Reports

Appendix E Blaine Tech Services – Field Notes

1. Introduction

GHD Services Inc. (GHD) prepared this report on behalf of Equilon Enterprises LLC dba Shell Oil Products US (Shell) to document the recent well installation and well destructions at the referenced Site. One off-Site well was installed and the on-Site wells and soil vapor probes were properly destroyed following the procedures detailed in GHD's August 31, 2015 *Subsurface Investigation Work Plan*, which was approved in Alameda County Environmental Health's September 1, 2015 letter to facilitate Site redevelopment. Proposed on-Site wells S-24 and S-25 will be installed at a later date concurrent with Site redevelopment.

The Site is currently a paved parking lot located at the southwestern corner of the intersection of 8th Street and Broadway in a primarily commercial area of Oakland, California (Figure 1). The former station layout included an underground storage tank complex and dispenser islands (Figure 2).

Redevelopment plans approved by the City of Oakland call for construction of a five-story building with a garage and commercial spaces on the ground floor and residential units on the upper floors. The approved building will be completed at or near current grade, with the exception of two bays of parking structures (car stackers) to be located in the western-central and southwestern portions of the Site (Figure 2), which will be installed to approximately 14 feet below grade (fbg).

A summary of previous work performed at the Site and additional background information is contained in GHD's August 31, 2015 work plan and is not repeated herein.

2. Subsurface Investigation and Groundwater Monitoring

2.1 Well Installation and Well and Vapor Probe Destructions

2.1.1 Permits

GHD obtained drilling permits from the Alameda County Public Works Agency (ACPWA) and encroachment, excavation, obstruction, and traffic control permits from the City of Oakland (Appendix A).

2.1.2 Field Dates

Well installation - September 14 and 15, 2015; well and soil vapor probe destructions - September 8, 9, and 10, 2015.

2.1.3 Drilling Company

Cascade Drilling, LP.

2.1.4 Personnel Present

California Professional Geologist Peter Schaefer directed the well installation. Geologists Nathan Diem and Belew Yifru directed the well and soil vapor probe destructions under the supervision of Peter Schaefer.

2.1.5 Drilling and Well and Vapor Probe Destruction Methods

Direct push (well boring soil sampling), hollow-stem auger (well installation), pressure grouting (well destruction), and air-knife (soil vapor probe destruction).

2.2 Well Installation

2.2.1 Number of Borings

One soil boring was drilled and converted to a groundwater monitoring well (S-26).

The boring and well specifications and soil types encountered are described on the boring log, presented as Appendix B. The well location is shown on Figure 2.

2.2.2 Boring Depth

35 feet below grade (fbg).

2.2.3 Groundwater Depth

Groundwater was first encountered at 26 fbg.

2.3 Well and Soil Vapor Probe Destructions

To prepare for proposed Site redevelopment, GHD properly destroyed 19 monitoring wells (S-8, S-9, S-10, S-12, S-13, S-14R, S-17 through S-20, S-21A, S-21B, S-22A, S-22B, S-23, IP-1, IP-2, IP-3, and OW-1) and 9 soil vapor probes (VP-2, VP-3, and VP-5 through VP-11).

The wells were pressure grouted and soil vapor probes VP-2, VP-3, and VP-5 through VP-11 were drilled out to their original depths. Soil vapor probes VP-4 and VP-12 are in the area of the proposed car stackers and will be completely removed during Site redevelopment excavation. Well boxes were left in place, as they will be removed during Site redevelopment.

2.4 Waste Disposal

Soil generated during field activities was temporarily stored on Site in 55-gallon drums, sampled, and profiled for disposal. On October 9, 2015, the soil was transported to American Integrated Services, Inc.'s Keller Canyon Landfill in Pittsburg, California for disposal. The waste disposal manifests are provided in Appendix C.

2.5 Well Development and Groundwater Sampling

Blaine Tech Services, Inc. (Blaine) developed well S-26 on September 20, 2015. On September 29, 2015 Blaine gauged and sampled the new well and existing wells S-5 and S-6 according to the modified monitoring program for this site. The laboratory analytical report is

presented in Appendix D. Blaine's field notes, presenting the well development data, are included in Appendix E.

3. Findings

3.1 Soil

The soil chemical analytical data from the borings are summarized in Table 1 and the total petroleum hydrocarbons as gasoline (TPHg) and benzene analytical results are presented on Figure 2. The laboratory analytical reports are presented in Appendix D.

Soil samples collected from boring S-26 contained up to 3.7 milligrams per kilogram (mg/kg) TPHg, 0.041 mg/kg benzene, 0.027 mg/kg toluene, 0.024 mg/kg ethylbenzene, and 0.13 mg/kg total xylenes. TPHg, benzene, ethylbenzene, toluene, and total xylenes concentrations were below San Francisco Bay Regional Water Quality Control Board environmental screening levels¹ for commercial land use where groundwater is not a source of drinking water.

3.2 Groundwater

No separate-phase hydrocarbons (SPHs) were measured or recovered from wells S-5 or S-6 during the September 29, 2015 monitoring event. Since no SPHs have been measured in Site wells since September 2014, quarterly SPH removal has been suspended. SPH removal data since November 2013 are presented in Table 3 and are summarized below.

SPH REMOV	AL SUMMARY
This Period (pounds)	Cumulative Removal (pounds)
0.00	25.38

A groundwater contour and chemical concentration map is presented on Figure 3 and groundwater data are presented in Table 2.

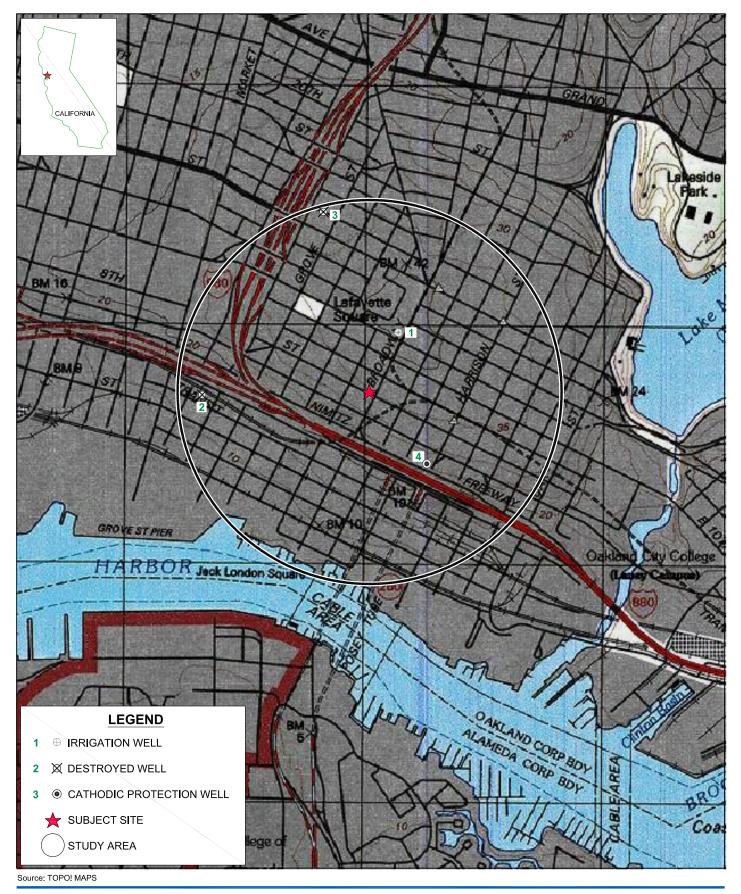
4. Conclusions and Recommendations

Well S-26 was installed during this investigation and will be gauged and sampled during fourth quarter 2015 along with the existing wells according to the established monitoring program for the Site. The Site is monitored quarterly and monitoring reports will be submitted following each event.

As stated above, proposed on-Site wells S-24 and S-25 will be installed concurrent with Site redevelopment.

User's Guide: Derivation and Application of Environmental Screening Levels, RWQCB, Interim Final - 2013

All of Which is Respectfully Submitted,

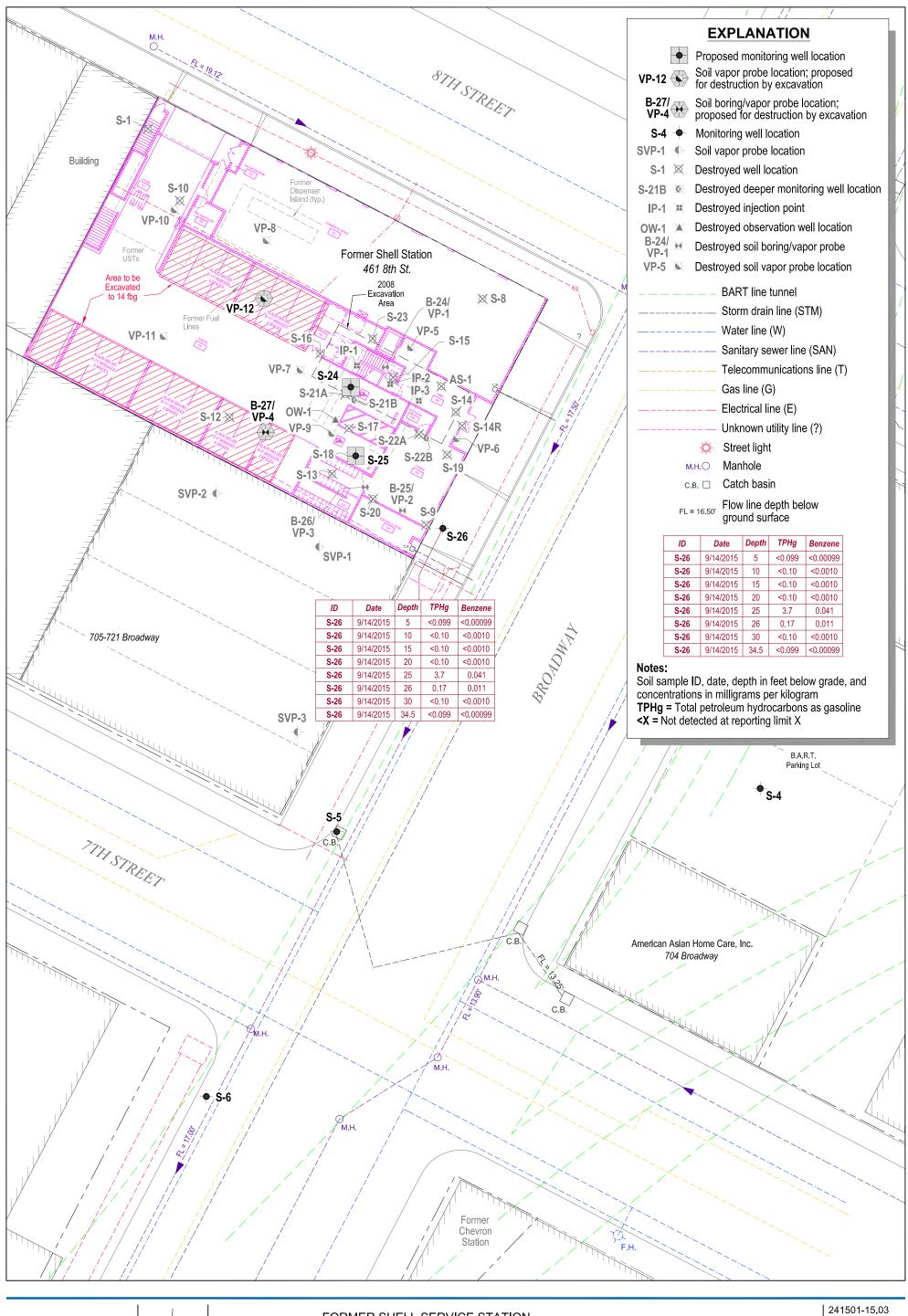

GHD Services Inc.


Peter Schaefer, CEG, CHG

Diane M. Lundquist, P.E.

GHD | Report for Shell Oil Products US - Well Installation and Destruction Report, 461 8th Street, Oakland, CA | 241501 (42) | 4

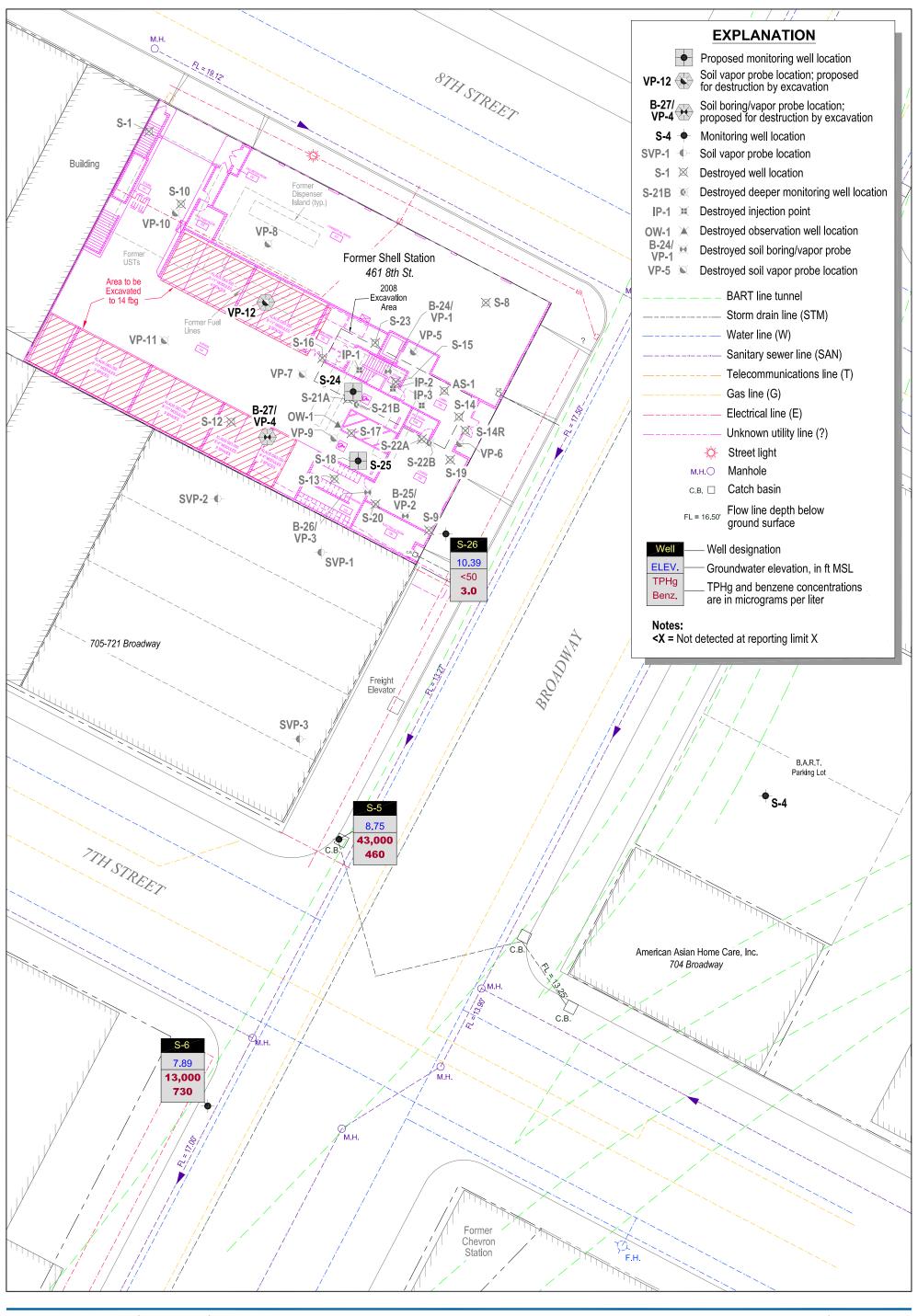
PETER L SCHAEFER NO. 5612



FORMER SHELL SERVICE STATION 461 8TH STREET OAKLAND, CALIFORNIA 241501-15.03 Oct 12, 2015

VICINITY MAP

FIGURE 1



FORMER SHELL SERVICE STATION
461 8TH STREET
OAKLAND, CALIFORNIA
SOIL CHEMICAL
CONCENTRATION MAP

241501-15.03 Oct 28, 2015

FORMER SHELL SERVICE STATION
461 8TH STREET
OAKLAND, CALIFORNIA

GROUNDWATER ELEVATION AND
CHEMICAL CONCENTRATION MAP - SEPTEMBER 29, 2015

Table 1Page 1 of 14

Historical Soil Analytical Data Former Shell Service Station 461 8th Street, Oakland, California

Sample ID	Date	Depth (fbg)	TPHd (mg/kg)	TPHg (mg/kg)	B (mg/kg)	T (mg/kg)	E (mg/kg)	X (mg/kg)	MTBE (mg/kg)	TBA (mg/kg)	DIPE (mg/kg)	ETBE (mg/kg)	TAME (mg/kg)	1,2-DCA (mg/kg)	EDB (mg/kg)
B1-5.0	07/06/1994	5	28 a	<1	<0.0025	<0.0025	<0.0025								
B1-10.0	07/06/1994	10	<2	<1		<0.0025									
B2-5.0	07/06/1994	5	<2	<1	<0.0025		<0.0025								
B2-15.0	07/06/1994	15	<2	<1	<0.0025	<0.0025	<0.0025	<0.0025							
B2-20.0	07/06/1994	20	<2	<1	<0.0025	0.0028	<0.0025	0.003							
B3-10.0	07/06/1994	10	50 a	<1	<0.0025	<0.0025	<0.0025	<0.0025							
B3-15.0	07/06/1994	15	4.1	<1	< 0.0025	< 0.0025		0.025							
DO 10.0	07700/1004	10	7.1	~1	10.0020	10.0020	10.0020	0.020							
B4-5.0	07/06/1994	5	<2	<1	<0.0025	<0.0025	<0.0025	<0.0025							
B4-10.0	07/06/1994	10	13 b	15	<0.0025	0.037	0.027	0.21							
B5-5.0	07/07/1994	5	<2	<1	<0.0025		<0.0025								
B5-9.75	07/07/1994	9.75	<2	<1	<0.0025	<0.0025	<0.0025	<0.0025							
B6-5.0	07/07/1994	5	<2	<1	<0.0025	-0 0025	<0.0025	-0.0025							
B6-18.5	07/07/1994	18.5	<2	<1	<0.0025	<0.0025	<0.0025	<0.0025							
B7-5.0	07/07/1994	5	31 a	<1	<0.0025	<0.0025	<0.0025	<0.0025							
B7-10.0	07/07/1994	10	410 b	14	0.24	0.89	0.31	2.0							
B8-5.0	07/07/1994	5	<2	<1	<0.0025	< 0.0025	<0.0025	<0.0025							
B8-9.0	07/07/1994	9	<4	<1	<0.0025	<0.0025	<0.0025	<0.0025							
B9-5.0	07/07/1994	5	<1	<1	<0.0025	<0.0025	<0.0025	<0.0025							
B9-14.5	07/07/1994	14.5	<2	<1	<0.0025	<0.0025	<0.0025	<0.0025							

Table 1Page 2 of 14

Historical Soil Analytical Data Former Shell Service Station 461 8th Street, Oakland, California

Sample ID	Date	Depth (fbg)	TPHd (mg/kg)	TPHg (mg/kg)	B (mg/kg)	T (mg/kg)	E (mg/kg)	X (mg/kg)	MTBE (mg/kg)	TBA (mg/kg)	DIPE (mg/kg)	ETBE (mg/kg)	TAME (mg/kg)	1,2-DCA (mg/kg)	EDB (mg/kg)
S-8-6.5	12/07/1994	6.5		<1	<0.0025		<0.0025			(3 3/		(3 3/			
S-8-11.5	12/07/1994	0.5 11.5		<1	<0.0025		<0.0025								
S-8-21.5	12/07/1994	21.5		<1	0.014	<0.0025	<0.0025	<0.0025							
S-9-6.5	12/07/1994	6.5		<1	<0.0025	<0.0025	<0.0025	<0.0025							
S-9-11.5	12/07/1994	11.5		<1	<0.0025	< 0.0025	<0.0025	<0.0025							
S-9-21.5	12/07/1994	21.5		<1	<0.0025	<0.0025	<0.0025	<0.0025							
S-10-6.5	12/07/1994	6.5		<1	<0.0025	< 0.0025	<0.0025	<0.0025							
S-10-11.5	12/07/1994	11.5		760	0.0032	0.028	6.4	6.9							
S-10-16.5	12/07/1994	16.5		<1	< 0.0025	< 0.0025	< 0.0025	< 0.0025							
S-10-21.5	12/07/1994	21.5		<1	< 0.0025	<0.0025	<0.0025	< 0.0025							
HA-1-10.0	10/14/2003	10.0		< 1.0 d	<0.0050	< 0.0050	< 0.0050	<0.0050	<0.0050						
HA-1-16.5	10/14/2003	16.5		< 1.0 d	< 0.0050	<0.0050	< 0.0050	<0.0050	<0.0050						
TR-1-0.5	05/20/2005	0.5		<0.98											
TR-1-5.0	05/20/2005	5		<1.1											
TR-1-8.0	05/20/2005	8		<1.1											
TR-2-0.5	05/20/2005	0.5		<1.0											
TR-2-5.0	05/20/2005	5		<0.97											
TR-2-8.0	05/20/2005	8		<1.1											
TR-3-0.5	05/20/2005	0.5		<0.93											
TR-3-5.0	05/20/2005	5		<1.0											
TR-4-0.5	05/20/2005	0.5		<1.0											

Table 1Page 3 of 14

Historical Soil Analytical Data Former Shell Service Station 461 8th Street, Oakland, California

Sample ID	Date	Depth (fbg)	TPHd (mg/kg)	TPHg (mg/kg)	B (mg/kg)	T (mg/kg)	E (mg/kg)	X (mg/kg)	MTBE (mg/kg)	TBA (mg/kg)	DIPE (mg/kg)	ETBE (mg/kg)	TAME (mg/kg)	1,2-DCA (mg/kg)	EDB (mg/kg)
TR-4-5.0	05/20/2005	5		<1.0											
B-10-5	12/13/2006	5		<1.0	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050
B-10-10	12/13/2006	10		<1.0	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050
B-10-15	12/13/2006	15		<1.0	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	< 0.050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050
B-10-20	12/13/2006	20		<1.0	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050
B-10-25	12/13/2006	25		7,800	49	290	160	800	<0.50	<5.0	<2.0	<2.0	<2.0	< 0.50	<0.50
B-11-5	12/13/2006	5		<1.0	< 0.0050	< 0.0050	<0.0050	<0.010	<0.0050	<0.050	<0.010	< 0.0050	< 0.0050	< 0.0050	<0.0050
B-11-10	12/13/2006	10		<1.0	< 0.0050	< 0.0050	<0.0050	<0.010	<0.0050	<0.050	<0.010	< 0.0050	< 0.0050	< 0.0050	<0.0050
B-11-15	12/13/2006	15		<1.0	< 0.0050	< 0.0050	< 0.0050	<0.010	<0.0050	< 0.050	<0.010	< 0.0050	< 0.0050	<0.0050	<0.0050
B-11-20	12/13/2006	20		<1.0	< 0.0050	<0.0050	<0.0050	<0.010	< 0.0050	< 0.050	<0.010	< 0.0050	< 0.0050	< 0.0050	<0.0050
B-11-25	12/13/2006	25		3,500	30	200	97	510	< 0.50	< 5.0	<2.0	<2.0	<2.0	< 0.50	< 0.50
B-12-5	12/11/2006	5		<1.0	0.028	0.018	<0.0050	<0.010	<0.0050	< 0.050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050
B-12-10	12/11/2006	10		2,300	0.54	7.5	< 0.50	180	< 0.50	<5.0	<2.0	<2.0	<2.0	< 0.50	< 0.50
B-12-15	12/11/2006	15		1,700	2.9	35	22	190	< 0.50	<5.0	<2.0	<2.0	<2.0	< 0.50	< 0.50
B-12-20	12/11/2006	20		5,900	30	250	100	570	< 0.50	<5.0	<2.0	<2.0	<2.0	< 0.50	< 0.50
B-12-25	12/11/2006	25		750	0.70	8.3	13	73	<0.12	<1.2	< 0.50	< 0.50	< 0.50	<0.12	<0.12
B-13-5	12/11/2006	5		<1.0	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	< 0.050	<0.010	<0.0050	<0.0050	<0.0050	< 0.0050
B-13-10	12/11/2006	10		<1.0	0.022	<0.0050	<0.0050	<0.010	<0.0050	< 0.050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050
B-13-15	12/11/2006	15		<1.0	0.028	<0.0050	<0.0050	<0.010	<0.0050	0.053	<0.010	<0.0050	<0.0050	<0.0050	<0.0050
B-13-20	12/11/2006	20		4.5	0.12	0.18	0.070	0.54	<0.0050	0.083	<0.010	<0.0050	<0.0050	<0.0050	<0.0050
B-13-25	12/11/2006	25		1,400	1.2	19	17	97	<0.12	<1.2	<0.50	<0.50	<0.50	<0.12	<0.12
B-14-5	12/11/2006	5		<1.0	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050
B-14-10	12/11/2006	10		<2.0	<0.010	<0.010	<0.010	<0.020	<0.010	<0.10	< 0.020	<0.010	<0.010	<0.010	<0.010

Historical Soil Analytical Data Former Shell Service Station 461 8th Street, Oakland, California

Sample ID	Date	Depth	TPHd	TPHg	В	T	Ε	X	MTBE	TBA	DIPE	ETBE		1,2-DCA	EDB
		(fbg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
B-14-15	12/11/2006	15		<1.0	0.039	<0.0050	<0.0050	<0.010	<0.0050	0.050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050
B-14-20	12/11/2006	20		<2.0	0.019	<0.010	<0.010	< 0.020	<0.010	<0.10	<0.020	<0.010	<0.010	<0.010	<0.010
B-14-25	12/11/2006	25		<2.0	0.017	<0.010	0.016	0.023	<0.010	<0.10	< 0.020	<0.010	<0.010	<0.010	<0.010
B-15-5	12/12/2006	5		<1.0	< 0.0050	< 0.0050	<0.0050	<0.010	< 0.0050	<0.050	<0.010	< 0.0050	< 0.0050	<0.0050	< 0.0050
B-15-10	12/12/2006	10		<1.0	< 0.0050	<0.0050	<0.0050	<0.010	< 0.0050	<0.050	<0.010	< 0.0050	< 0.0050	<0.0050	< 0.0050
B-15-15	12/12/2006	15		<1.0	< 0.0050	<0.0050	<0.0050	<0.010	< 0.0050	<0.050	<0.010	< 0.0050	< 0.0050	<0.0050	< 0.0050
B-15-20	12/12/2006	20		<1.0	< 0.0050	< 0.0050	<0.0050	<0.010	< 0.0050	< 0.050	<0.010	< 0.0050	< 0.0050	< 0.0050	<0.0050
B-15-25	12/12/2006	25		<1.0	< 0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050	<0.010	< 0.0050	< 0.0050	<0.0050	< 0.0050
B-16-5	12/12/2006	5		<1.0	< 0.0050	<0.0050	<0.0050	<0.010	< 0.0050	<0.050	<0.010	< 0.0050	< 0.0050	<0.0050	< 0.0050
B-16-10	12/12/2006	10		<1.0	< 0.0050	< 0.0050	<0.0050	<0.010	< 0.0050	< 0.050	<0.010	< 0.0050	< 0.0050	< 0.0050	<0.0050
B-16-15	12/12/2006	15		<1.0	< 0.0050	< 0.0050	<0.0050	<0.010	< 0.0050	< 0.050	<0.010	< 0.0050	< 0.0050	< 0.0050	<0.0050
B-16-20	12/12/2006	20		1.6	0.054	0.11	0.043	0.26	< 0.0050	< 0.050	<0.010	< 0.0050	< 0.0050	< 0.0050	< 0.0050
B-16-25	12/12/2006	25		2.5	0.19	0.17	0.12	0.54	< 0.0050	<0.050	<0.010	< 0.0050	< 0.0050	< 0.0050	< 0.0050
B-17-5	12/12/2006	5		<1.0	< 0.0050	< 0.0050	<0.0050	<0.010	< 0.0050	< 0.050	<0.010	< 0.0050	< 0.0050	< 0.0050	<0.0050
B-17-10	12/12/2006	10		<1.0	< 0.0050	< 0.0050	<0.0050	<0.010	< 0.0050	< 0.050	<0.010	< 0.0050	< 0.0050	< 0.0050	<0.0050
B-17-15	12/12/2006	15		<1.0	< 0.0050	< 0.0050	<0.0050	<0.010	< 0.0050	< 0.050	<0.010	< 0.0050	< 0.0050	< 0.0050	<0.0050
B-17-20	12/12/2006	20		<1.0	< 0.0050	< 0.0050	<0.0050	<0.010	< 0.0050	< 0.050	<0.010	< 0.0050	< 0.0050	< 0.0050	<0.0050
B-17-25	12/12/2006	25		<1.0	< 0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050	<0.010	< 0.0050	< 0.0050	<0.0050	< 0.0050
B-18-5	12/12/2006	5		<1.0	< 0.0050	< 0.0050	<0.0050	<0.010	< 0.0050	<0.050	<0.010	< 0.0050	< 0.0050	<0.0050	< 0.0050
B-18-10	12/12/2006	10		<1.0	< 0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050	<0.010	< 0.0050	< 0.0050	<0.0050	< 0.0050
B-18-15	12/12/2006	15		<1.0	< 0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050	<0.010	<0.0050	< 0.0050	<0.0050	< 0.0050
B-18-20	12/12/2006	20		<1.0	< 0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050	<0.010	<0.0050	< 0.0050	<0.0050	< 0.0050
B-18-25	12/12/2006	25		<1.0	< 0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050	<0.010	<0.0050	< 0.0050	<0.0050	< 0.0050

Table 1Page 5 of 14

Historical Soil Analytical Data Former Shell Service Station 461 8th Street, Oakland, California

Sample ID	Date	Depth (fbg)	TPHd (mg/kg)	TPHg (mg/kg)	B (mg/kg)	T (mg/kg)	E (mg/kg)	X (mg/kg)	MTBE (mg/kg)	TBA (mg/kg)	DIPE (mg/kg)	ETBE (mg/kg)	TAME (mg/kg)	1,2-DCA (mg/kg)	EDB (mg/kg)
B-19-5	12/12/2006	5		<1.0	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050
B-19-10	12/12/2006	10		<1.0	<0.0050	<0.0050		<0.010	<0.0050	<0.050	<0.010			<0.0050	<0.0050
B-19-15	12/12/2006	15		<1.0	0.028	<0.0050	<0.0050	<0.010	<0.0050	< 0.050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050
B-19-20	12/12/2006	20		<1.0	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	< 0.050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050
B-19-25	12/12/2006	25		<1.0	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	< 0.050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050
B-20-5	12/11/2006	5		<1.0	< 0.0050	< 0.0050	<0.0050	<0.010	< 0.0050	< 0.050	<0.010	< 0.0050	< 0.0050	< 0.0050	<0.0050
B-20-10	12/11/2006	10		<1.0	< 0.0050	< 0.0050	<0.0050	<0.010	< 0.0050	< 0.050	<0.010	< 0.0050	< 0.0050	< 0.0050	<0.0050
B-20-15	12/11/2006	15		<1.0	< 0.0050	< 0.0050	<0.0050	<0.010	< 0.0050	< 0.050	<0.010	< 0.0050	< 0.0050	< 0.0050	<0.0050
B-20-20	12/11/2006	20		<1.0	< 0.0050	< 0.0050	<0.0050	<0.010	< 0.0050	< 0.050	<0.010	< 0.0050	< 0.0050	< 0.0050	<0.0050
B-20-25	12/11/2006	25		<1.0	<0.0050	< 0.0050	<0.0050	<0.010	<0.0050	<0.050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050
B-21-5	12/11/2006	5		<1.0	< 0.0050	< 0.0050	<0.0050	<0.010	< 0.0050	<0.050	<0.010	< 0.0050	< 0.0050	<0.0050	< 0.0050
B-21-10	12/11/2006	10		<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050	<0.010	< 0.0050	< 0.0050	<0.0050	<0.0050
B-21-15	12/11/2006	15		<1.0	< 0.0050	< 0.0050	<0.0050	<0.010	< 0.0050	< 0.050	<0.010	< 0.0050	< 0.0050	< 0.0050	<0.0050
B-21-20	12/11/2006	20		<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050	<0.010	< 0.0050	< 0.0050	<0.0050	<0.0050
B-21-24	12/11/2006	24		<1.0	< 0.0050	< 0.0050	<0.0050	<0.010	< 0.0050	< 0.050	<0.010	< 0.0050	< 0.0050	< 0.0050	<0.0050
B-21-28	12/11/2006	28		<1.0	<0.0050	0.0087	0.011	0.060	<0.0050	<0.050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050
B-22-5	12/13/2006	5		<1.0	< 0.0050	< 0.0050	< 0.0050	<0.010	<0.0050	< 0.050	<0.010	< 0.0050	< 0.0050	< 0.0050	<0.0050
B-22-10	12/13/2006	10		<1.0	< 0.0050	<0.0050	<0.0050	<0.010	<0.0050	< 0.050	<0.010	< 0.0050	< 0.0050	< 0.0050	<0.0050
B-22-15	12/13/2006	15		<1.0	< 0.0050	< 0.0050	<0.0050	<0.010	< 0.0050	< 0.050	<0.010	< 0.0050	< 0.0050	<0.0050	<0.0050
B-22-20	12/13/2006	20		1,800	0.81	10	26	180	< 0.50	<5.0	<2.0	<2.0	<2.0	< 0.50	< 0.50
B-22-25	12/13/2006	25		3,000	14	140	85	470	< 0.50	<5.0	<2.0	<2.0	<2.0	< 0.50	< 0.50
B-23-5	12/12/2006	5		<1.0	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050
B-23-10	12/12/2006	10		<1.0	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050
B-23-15	12/12/2006	15		<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050	<0.010	< 0.0050	< 0.0050	< 0.0050	<0.0050

Table 1Page 6 of 14

Historical Soil Analytical Data Former Shell Service Station 461 8th Street, Oakland, California

Sample ID	Date	Depth (fbg)	TPHd (mg/kg)	TPHg (mg/kg)	B (mg/kg)	T (mg/kg)	E (mg/kg)	X (mg/kg)	MTBE (mg/kg)	TBA (mg/kg)	DIPE (mg/kg)	ETBE (mg/kg)	TAME (mg/kg)	1,2-DCA (mg/kg)	EDB (mg/kg)
B-23-20	12/12/2006	20		1.7	<0.0050	0.0053	0.010	0.075	<0.0050	< 0.050	<0.010	<0.0050	<0.0050	< 0.0050	<0.0050
B-23-25	12/12/2006	25		4,900	7.0	78	60	450	<0.25	<2.5	<1.0	<1.0	<1.0	<0.25	<0.25
B-24-5	11/30/2007	5		<0.50	<0.0050	<0.0050	<0.0050	<0.0100							
B-24-11.5	11/30/2007	11.5		0.51	0.043	0.021	0.0094	0.116							
B-24-15	11/30/2007	15		< 0.50	0.020	0.0064	<0.0050	0.0140							
B-24-20	11/30/2007	20		1.3	0.036	0.049	0.016	0.102							
B-24-25	11/30/2007	25		12	<0.0050	0.039	0.040	0.308							
B-24-30	11/30/2007	30		3,000	2.2	23	26	140							
B-24-32	11/30/2007	32		220	<0.12	0.73	1.3	6.14							
B-25-5	12/03/2007	5		0.76 e	<0.0050	0.31	0.011	0.070							
B-25-10	12/03/2007	10		< 0.50	< 0.0050	< 0.0050	<0.0050	<0.0100							
B-26-5	11/30/2007	5		< 0.50	< 0.0050	< 0.0050	<0.0050	<0.0100							
B-26-10	11/30/2007	10		< 0.50	<0.0050	<0.0050	<0.0050	<0.0100							
B-26-15	11/30/2007	15		< 0.50	<0.0050	<0.0050	<0.0050	<0.0100							
B-27-5	12/03/2007	5		< 0.50	<0.0050	0.015	<0.0050	<0.0100							
B-27-10	12/03/2007	10		< 0.50	<0.0050	<0.0050	<0.0050	<0.0100							
S-12-5.5	12/13/2007	5.5		< 0.50	<0.0050	<0.0050	<0.0050	<0.0100							
S-12-9.5	12/13/2007	9.5		< 0.50	<0.0050	<0.0050	<0.0050	<0.0100							
S-12-14.5	12/13/2007	14.5		< 0.50	<0.0050	<0.0050	<0.0050	<0.0100							
S-12-19.5	12/13/2007	19.5		< 0.50	<0.0050	<0.0050	<0.0050	<0.0100							
S-12-24.5	12/13/2007	24.5		< 0.50	<0.0050	<0.0050	<0.0050	<0.0100							
S-12-29.5	12/13/2007	29.5		<0.50	<0.0050	<0.0050	<0.0050	<0.0100							
S-12-34.5	12/13/2007	34.5		<0.50	<0.0050	<0.0050	<0.0050	<0.0100							

Table 1Page 7 of 14

Historical Soil Analytical Data Former Shell Service Station 461 8th Street, Oakland, California

Sample ID	Date	Depth (fbg)	TPHd (mg/kg)	TPHg (mg/kg)	B (mg/kg)	T (mg/kg)	E (mg/kg)	X (mg/kg)	MTBE (mg/kg)	TBA (mg/kg)	DIPE (mg/kg)	ETBE (mg/kg)	TAME (mg/kg)	1,2-DCA (mg/kg)	EDB (mg/kg)
S-13-5.5	12/12/2007	5.5		<0.50	<0.0050	-0.0050	<0.0050	-0.0100							
S-13-5.5 S-13-10	12/12/2007			<0.50	<0.0050	<0.0050									
S-13-10 S-13-15	12/12/2007	10		<0.50 <0.50	<0.0050	<0.0050									
S-13-15 S-13-20.5	12/12/2007	15		<0.50 340	<0.0050	0.48	1.1	8.7							
		20.5													
S-13-25	12/12/2007	25		62	0.017	0.053	0.030	0.146							
S-13-31	12/12/2007	31		<0.50	<0.0050	<0.0050	<0.0050	<0.0100							
S-13-35	12/12/2007	35		1.2	<0.0050	0.0069	<0.0050	0.0077							
0.445	40/40/0007	_		0.50	0.0050	0.0050	0.0050	0.0400							
S-14-5	12/12/2007	5		<0.50	<0.0050	<0.0050									
S-14-10	12/12/2007	10		<0.50	<0.0050	<0.0050									
S-14-15.5	12/12/2007	15.5		<0.50	0.014		<0.0050								
S-14-20	12/12/2007	20		3,100	6.7	42	66	308							
S-14-25.5	12/12/2007	25.5		2.9	0.0050	0.0074	0.037	0.091							
S-14-30	12/12/2007	30		< 0.50	< 0.0050	< 0.0050	<0.0050	<0.0100							
S-14-35	12/12/2007	35		< 0.50	< 0.0050	< 0.0050	<0.0050	<0.0100							
S-15-4.5*	12/11/2007	4.5		6.5	<0.0050	0.0058	<0.0050	0.044							
S-15-9.5	12/11/2007	9.5		5,000	93	350	100	660							
S-15-14.5	12/11/2007	14.5		1,900	34	290	72	460							
S-15-19.5	12/11/2007	19.5		220	4.0	19	5.8	33.8							
S-15-24.5	12/11/2007	24.5		66	0.020	0.054	0.027	0.163							
S-15-29.5	12/11/2007	29.5		1.6	< 0.0050	0.0062	< 0.0050	<0.0100							
S-15-34.5	12/11/2007	34.5		1.6	<0.0050	0.0062	< 0.0050	0.0078							
S-16-4.5*	12/11/2007	4.5		< 0.50	<0.0050	<0.0050	< 0.0050	<0.0100							
S-16-9.5	12/11/2007	9.5		< 0.50	0.048	0.013	<0.0050	0.0171							
S-16-14.5	12/11/2007	14.5		1.6	0.31	0.25	0.039	0.233							

Table 1 Page 8 of 14

Historical Soil Analytical Data Former Shell Service Station 461 8th Street, Oakland, California

Sample ID	Date	Depth (fbg)	TPHd (mg/kg)	TPHg (mg/kg)	B (mg/kg)	T (mg/kg)	E (mg/kg)	X (mg/kg)	MTBE (mg/kg)	TBA (mg/kg)	DIPE (mg/kg)	ETBE (mg/kg)	TAME (mg/kg)	1,2-DCA (mg/kg)	EDB (mg/kg)
S-16-19.5	12/11/2007	19.5		230	0.042	0.21	0.18	1.28							
S-16-24.5	12/11/2007	24.5		0.59	< 0.0050	0.017	0.014	0.083							
S-16-29.5	12/11/2007	29.5		< 0.50	<0.0050	<0.0050	<0.0050	<0.0100							
S-16-34.5	12/11/2007	34.5		<0.50	<0.0050	<0.0050	<0.0050								
0-10-04.5	12/11/2007	34.3		<0.50	<0.0000	<0.0050	<0.0000	<0.0100							
AS-1-5.5	12/13/2007	5.5		<0.50	<0.0050	<0.0050	<0.0050	<0.0100							
AS-1-9.5	12/13/2007	9.5		1,800	<0.0050	0.59	0.88	29							
AS-1-14.5	12/13/2007	14.5		150	<0.12	0.27	0.29	1.93							
AS-1-19.5	12/13/2007	19.5		3,400	38	210	110	610							
AS-1-25.5	12/13/2007	25.5		91	0.26	0.99	1.1	5.1							
AS-1-30	12/13/2007	30		< 0.50	<0.0050	<0.0050	<0.0050	<0.0100							
AS-1-34.5	12/13/2007	34.5		7.6	0.099	0.16	0.058	0.220							
S-17-6	05/30/2008	6		<0.50	<0.0050	<0.0050	<0.0050	<0.010							
S-17-11	05/30/2008	11		< 0.50	< 0.0050	< 0.0050	<0.0050	<0.010							
S-17-16	05/30/2008	16		< 0.50	<0.0050	<0.0050	<0.0050	<0.010							
S-17-21	05/30/2008	21		0.63	<0.0050	0.008	0.0086	0.043							
S-17-26	05/30/2008	26		3,000	3.7	40	40	193							
S-17-31	05/30/2008	31		< 0.50	<0.0050	<0.0050	<0.0050	<0.010							
S-17-34.5	05/30/2008	34.5		210	0.83	6.3	3.1	17.5							
S-18-6	05/30/2008	6		< 0.50	< 0.0050	< 0.0050	<0.0050	<0.010							
S-18-11	05/30/2008	11		< 0.50	< 0.0050	< 0.0050	< 0.0050	<0.010							
S-18-15.5	05/30/2008	15.5		< 0.50	<0.0050	< 0.0050	< 0.0050	<0.010							
S-18-21	05/30/2008	21		5,200	5.3	96	120	630							
S-18-26	05/30/2008	26		1.3	0.021	0.080	0.026	0.158							
S-18-31	05/30/2008	31		< 0.50	<0.0050	0.0055	0.0234	<0.010							
S-18-34.5	05/30/2008	34.5		<0.50	<0.0050	<0.0050	<0.0050	<0.010							

Table 1Page 9 of 14

Historical Soil Analytical Data Former Shell Service Station 461 8th Street, Oakland, California

Sample ID	Date	Depth (fbg)	TPHd (mg/kg)	TPHg (mg/kg)	B (mg/kg)	T (mg/kg)	E (mg/kg)	X (mg/kg)	MTBE (mg/kg)	TBA (mg/kg)	DIPE (mg/kg)	ETBE (mg/kg)	TAME (mg/kg)	1,2-DCA (mg/kg)	EDB (mg/kg)
OW-1-6.5	05/30/2008	6.5		<0.50	<0.0050	<0.0050	<0.0050	<0.010							
OW-1-11	05/30/2008	11		< 0.50	< 0.0050	< 0.0050		<0.010							
OW-1-16	05/30/2008	16		< 0.50	< 0.0050			< 0.010							
OW-1-19.5		19.5		< 0.50	< 0.0050		< 0.0050	<0.010							
011 1 1010	00/00/2000	10.0		10.00	10.0000	10.0000	10.0000	10.0.0							
EB-1	06/11/2008	23		190	<0.12	<0.12	<0.12	1.17							
EB-2	06/11/2008	23		2,500	5.0	48	41	220							
EB-3	06/11/2008	23		13	0.42	2.5	0.33	2.26							
EB-4	06/11/2008	23		2,900	11	170	69	430							
EB-5	06/11/2008	23		2,100	7.4	98	47	298							
EB-6	06/11/2008	23		3,300	4.7	62	56	339							
EB-7	06/11/2008	23		100	0.90	2.6	1.2	7.7							
EB-8	06/11/2008	23		3,300	22	230	63	470							
EB-9	06/11/2008	23		3,900	16	230	85	540							
EB-10	06/11/2008	23		3,600	6.3	120	74	470							
B-28-5.5	09/26/2008	5.5		< 0.50	< 0.0050	< 0.0050	<0.0050	<0.010							
B-28-10.5	09/26/2008	10.5		< 0.50	< 0.0050	< 0.0050	<0.0050	<0.010							
B-28-15.5	09/26/2008	15.5		< 0.50	0.0059	< 0.0050	<0.0050	<0.010							
B-28-20.5	09/26/2008	20.5		< 0.50	0.0051	0.0054	<0.0050	0.013							
B-28-25.5	09/26/2008	25.5		1,500	<2.5	7.0	17	72							
B-28-30.5	09/26/2008	30.5		62	< 0.50	< 0.50	< 0.50	2.6							
B-28-35.5	09/26/2008	35.5		<50	< 0.50	0.51	< 0.50	1.4							
B-28-40.5	09/26/2008	40.5		< 0.50	< 0.0050	0.013	0.0074	0.044							
B-28-45.5	09/26/2008	45.5		<0.50	< 0.0050	< 0.0050	<0.0050	<0.010							
P 20 5 5	00/26/2009	5.5		-0.50	-0.00E0	-0.00E0	-0.00E0	-0.010							
B-29-5.5	09/26/2008	5.5		<0.50	<0.0050	<0.0050	<0.0050	<0.010							

Table 1Page 10 of 14

Historical Soil Analytical Data Former Shell Service Station 461 8th Street, Oakland, California

Sample ID	Date	Depth (fbg)	TPHd (mg/kg)	TPHg (mg/kg)	B (mg/kg)	T (mg/kg)	E (mg/kg)	X (mg/kg)	MTBE (mg/kg)	TBA (mg/kg)	DIPE (mg/kg)	ETBE (mg/kg)	TAME (mg/kg)	1,2-DCA (mg/kg)	EDB (mg/kg)
B-29-10.5	09/26/2008	10.5		< 0.50	<0.0050	<0.0050	<0.0050	<0.010							
B-29-15.5	09/26/2008	15.5		< 0.50	<0.0050	<0.0050	<0.0050	<0.010							
B-29-20.5	09/26/2008	20.5		< 0.50	<0.0050	0.0055	<0.0050	0.020							
B-29-25.5	09/26/2008	25.5		5,800	14	260	82	600							
B-29-30.5	09/26/2008	30.5		0.69	0.0063	0.033	0.0087	0.058							
B-29-35.5	09/26/2008	35.5		< 0.50	<0.0050	0.0089	<0.0050	0.030							
B-29-40.5	09/26/2008	40.5		< 0.50	<0.0050	0.031	0.011	0.073							
B-29-45.5	09/26/2008	45.5		< 0.50	<0.0050	0.0064	<0.0050	0.020							
S-14R-5.5	09/23/2008	5.5		< 0.50	<0.0050	< 0.0050	<0.0050	<0.010							
S-14R-10.5	09/23/2008	10.5		< 0.50	< 0.0050	< 0.0050	<0.0050	<0.010							
S-14R-15.5	09/23/2008	15.5		< 0.50	< 0.0050	< 0.0050	<0.0050	<0.010							
S-14R-20.5	09/23/2008	20.5		99	< 0.50	<0.50	0.66	2.8							
S-14R-25.5	09/23/2008	25.5		< 0.50	<0.0050	< 0.0050	<0.0050	0.023							
S-14R-30.5	09/23/2008	30.5		< 0.50	< 0.0050	< 0.0050	<0.0050	<0.010							
S-14R-34.5	09/23/2008	34.5		56	< 0.50	0.73	0.60	3.2							
S-19-5.5	09/22/2008	5.5		< 0.50	< 0.0050	< 0.0050	< 0.0050	<0.010							
S-19-10.5	09/22/2008	10.5		< 0.50	< 0.0050	< 0.0050	< 0.0050	<0.010							
S-19-15.5	09/22/2008	15.5		< 0.50	< 0.0050	< 0.0050	< 0.0050	<0.010							
S-19-20.5	09/22/2008	20.5		< 0.50	0.019	< 0.0050	<0.0050	0.0064							
S-19-25.5	09/22/2008	25.5		< 0.50	0.0086	0.028	0.014	0.073							
S-19-30.5	09/22/2008	30.5		< 0.50	< 0.0050	< 0.0050	<0.0050	<0.010							
S-19-35.5	09/22/2008	35.5		< 0.50	< 0.0050	< 0.0050	<0.0050	0.0054							
S-19-40.5	09/22/2008	40.5		< 0.50	< 0.0050	< 0.0050	<0.0050	<0.010							
S-19-45.5	09/22/2008	45.5		< 0.50	<0.0050	< 0.0050	<0.0050	<0.010							
S-20-5.5	09/22/2008	5.5		<0.50	<0.0050	<0.0050	<0.0050	<0.010							

Table 1Page 11 of 14

Historical Soil Analytical Data Former Shell Service Station 461 8th Street, Oakland, California

Sample ID	Date	Depth	TPHd	TPHg	В	T	E	X	MTBE	ТВА	DIPE	ETBE	TAME	1,2-DCA	EDB
		(fbg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
S-20-10.5	09/22/2008	10.5		< 0.50	<0.0050	<0.0050	<0.0050	<0.010							
S-20-15.5	09/22/2008	15.5		< 0.50	<0.0050	<0.0050	<0.0050	<0.010							
S-20-20.5	09/22/2008	20.5		28 f	0.0088	0.018	0.15	0.66 f							
S-20-25.5	09/22/2008	25.5		0.58	0.012	0.023	0.015	0.073							
S-20-30.5	09/22/2008	30.5		58	< 0.50	< 0.50	< 0.50	1.4							
S-20-35.5	09/22/2008	35.5		< 0.50	< 0.0050	< 0.0050	< 0.0050	<0.010							
S-20-40.5	09/22/2008	40.5		< 0.50	< 0.0050	< 0.0050	< 0.0050	<0.010							
S-20-45.5	09/22/2008	45.5		< 0.50	<0.0050	0.0067	<0.0050	0.012							
S-21A-5.5	09/25/2008	5.5		< 0.50	<0.0050	< 0.0050	<0.0050	<0.010							
S-21A-10.5	09/25/2008	10.5		< 0.50	< 0.0050	< 0.0050	< 0.0050	<0.010							
S-21A-15.5	09/25/2008	15.5		< 0.50	< 0.0050	< 0.0050	<0.0050	0.041							
S-21A-20.5	09/25/2008	20.5		3,000	12	140	61	360							
S-21A-26.5	09/25/2008	26.5		3,500	4.8	29	38	170							
S-21B-5.5	09/23/2008	5.5		< 0.50	< 0.0050	< 0.0050	< 0.0050	<0.010							
S-21B-15.5	09/23/2008	15.5		1.9	0.028	0.11	0.030	0.38							
S-21B-20.5	09/23/2008	20.5		2,300	<5.0	88	52	360							
S-21B-25.5	09/23/2008	25.5		7,100	37	250	130	760							
S-21B-30.5	09/23/2008	30.5		0.51	< 0.0050	< 0.0050	< 0.0050	0.028							
S-21B-35.5	09/23/2008	35.5		< 0.50	< 0.0050	< 0.0050	< 0.0050	<0.010							
S-21B-40.5	09/23/2008	40.5		< 0.50	< 0.0050	0.012	< 0.0050	0.028							
S-21B-45.5	09/23/2008	45.5		< 0.50	< 0.0050	0.013	0.0063	0.039							
S-22A-5.5	09/25/2008	5.5		< 0.50	< 0.0050	<0.0050	<0.0050	<0.010							
S-22A-10.5	09/25/2008	10.5		< 0.50	<0.0050	<0.0050	<0.0050	<0.010							
S-22A-15.5	09/25/2008	15.5		3.5	< 0.0050	<0.0050	<0.0050	0.013							
S-22A-20.5	09/25/2008	20.5		< 0.50	<0.0050	<0.0050	<0.0050	<0.010							

Table 1Page 12 of 14

Historical Soil Analytical Data Former Shell Service Station 461 8th Street, Oakland, California

Sample ID	Date	Depth (fbg)	TPHd (mg/kg)	TPHg (mg/kg)	B (mg/kg)	T (mg/kg)	E (mg/kg)	X (mg/kg)	MTBE (mg/kg)	TBA (mg/kg)	DIPE (mg/kg)	ETBE (mg/kg)	TAME (mg/kg)	1,2-DCA (mg/kg)	EDB (mg/kg)
S-22A-26.5	09/25/2008	26.5		3,900	11	70	55	310							
S-22B-5.5	09/22/2008	5.5		< 0.50	< 0.0050	< 0.0050	< 0.0050	<0.010							
S-22B-10.5	09/22/2008	10.5		< 0.50	< 0.0050	< 0.0050	< 0.0050	<0.010							
S-22B-15.5	09/22/2008	15.5		1.9	< 0.0050	< 0.0050	< 0.0050	<0.010							
S-22B-20.5	09/22/2008	20.5		< 0.50	< 0.0050	< 0.0050	< 0.0050	<0.010							
S-22B-25.5	09/22/2008	25.5		1,200	2.6	13	17	81							
S-22B-30.5	09/22/2008	30.5		< 0.50	< 0.0050	< 0.0050	< 0.0050	0.0063							
S-22B-35.5	09/22/2008	35.5		56	< 0.50	0.83	0.69	3.7							
S-22B-40.5	09/22/2008	40.5		14 f	0.012	< 0.0050	<0.0050	0.29 f							
S-22B-45.5	09/22/2008	45.5		< 0.50	< 0.0050	< 0.0050	<0.0050	0.0079							
S-23-5.5	09/24/2008	5.5		< 0.50	< 0.0050	< 0.0050	<0.0050	<0.010							
S-23-10.5	09/24/2008	10.5		1.3	< 0.0050	< 0.0050	<0.0050	<0.010							
S-23-15.5	09/24/2008	15.5		< 0.50	0.0078	<0.0050	<0.0050	0.0082							
S-23-20.5	09/24/2008	20.5		3,700	17	170	86	480							
S-23-25.5	09/24/2008	25.5		1,600	1.5	15	16	87							
S-23-30.5	09/24/2008	30.5		< 0.50	< 0.0050	<0.0050	<0.0050	0.0072							
S-23-34.5	09/24/2008	34.5		68	< 0.0050	<0.0050	<0.0050	0.014							
S-26-5	09/14/2015	5		<0.099	<0.00099	<0.00099	<0.00099	<0.0020							
S-26-10	09/14/2015	10		<0.10	<0.0010	<0.0010	<0.0010	<0.0020							
S-26-15	09/14/2015	15		<0.10	<0.0010	<0.0010	<0.0010	<0.0020							
S-26-20	09/14/2015	20		<0.10	<0.0010	<0.0010	<0.0010	<0.0020							
S-26-25	09/14/2015	25		3.7	0.041	0.027	0.024	0.13							
S-26-26	09/14/2015	26		0.17	0.011	0.0061	0.0055	0.026							
S-26-30	09/14/2015	30		<0.10	<0.0010	<0.0010	<0.0010	<0.0020							
S-6-34.5	09/14/2015	34.5		< 0.099	<0.00099	<0.00099	<0.00099	<0.0020							

Table 1 Page 13 of 14

Historical Soil Analytical Data Former Shell Service Station 461 8th Street, Oakland, California

Sample ID	Date	Depth	TPHd	TPHg	В	T	E	X	MTBE	TBA	DIPE	ETBE	TAME	1,2-DCA	EDB
		(fbg)	(mg/kg)												
Shallow So	il (≤10 fbg) ESL ^g :	110	500	1.2	9.3	4.7	11	8.4	110	NA	NA	NA	0.91	0.51
Deep Soil (>	-10 fbg) E	SL ^g :	110	1,000	1.2	9.3	4.7	11	8.4	110	NA	NA	NA	0.91	0.51

Notes:

fbg = Feet below grade

mg/kg = Milligrams per kilogram

TPHd = Total petroleum hydrocarbons as diesel analyzed by EPA Method 8015

TPHg = Total petroleum hydrocarbons as gasoline analyzed by EPA Method 8260B; before 12/11/06, analyzed by EPA Method 8015 unless otherwise noted.

BTEX = Benzene, toluene, ethylbenzene, and total xylenes analyzed by EPA Method 8260B; before 10/14/2003, analyzed by EPA Method 8020

MTBE = Methyl tertiary-butyl ether analyzed by EPA Method 8260B

TBA = Tertiary-butyl alcohol analyzed by EPA Method 8260B

DIPE = Di-isopropyl ether analyzed by EPA Method 8260B

ETBE = Ethyl tertiary-butyl ether analyzed by EPA Method 8260B

TAME = Tertiary-amyl methyl ether analyzed by EPA Method 8260B

1,2-DCA = 1,2-Dichloroethane analyzed by EPA Method 8260B

EDB = 1,2-Dibromoethane analyzed by EPA Method 8260B

<x = Not detected at reporting limit x</p>

--- = Not analyzed

ESL = Environmental screening level

* = Sample may have contained backfilled soil fgrom air-knife clearance activities.

NA = No applicable ESL

Results in **bold** equal or exceed applicable ESL

Shading indicates that soil sample location was subsequently excavated; results are not representative of residual soil.

- a = Positive result appears to be a heavier hydrocarbon than diesel
- b = Positive result appears to be a lighter hydrocarbon than diesel
- c = Analyzed by EPA Method 7421

Table 1 Page 14 of 14

Historical Soil Analytical Data Former Shell Service Station 461 8th Street, Oakland, California

Sample ID Depth **TPHd TPHg** В Т Ε Χ **MTBE TBA** DIPE **ETBE** TAME 1.2-DCA **EDB** Date (fbg) (mg/kg) (mg/kg)

- d = Analyzed by EPA Method 8260B
- e = The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation of the unknown hydrocarbon(s) in the sample was based on the specified standard.
- f = Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
- g = San Francisco Bay Regional Water Quality Control Board (RWQCB) commercial/industrial ESL for soil where groundwater is not a source of drinking water (Tables B and D of *User's Guide: Derivation and Application of Environmental Screening Levels*, RWQCB, Interim Final 2013).

Table 2 Page 1 of 27

Groundwater Data Former Shell Service Station 461 8th Street, Oakland, California

Wall ID	Data	TDU	ъ.	-	-	v	MTBE	MTBE	TDA	DIDE	ETDE	T 4 14 F	EDO	EDD	T00	Depth to	SPH	GW	DO	ODD
Well ID	Date	TPHg	В (***/1.)	T	E	Χ (****/1*)	8020	8260	TBA	DIPE	ETBE	TAME	EDC	EDB	TOC		Thickness		DO	ORP
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft)	(ft MSL)	(mg/L)	(mV)
S-4	10/26/1988	130	3.8	13	4.0	30									93.51					
S-4	02/14/1989	<50	0.50	<1.0	<1.0	3.0									93.51	12.82		80.69		
S-4	05/01/1989	Well dry													93.51	16.48		77.03		
S-4	07/27/1989	Well dry													93.51	15.84		77.67		
S-4	10/05/1989	Well dry													93.51	15.98		77.53		
S-4	01/09/1990	Well dry													93.51	15.86		77.65		
S-4	04/30/1990	<50	< 0.50	< 0.50	< 0.50	<1.0									93.51	14.48		79.03		
S-4	07/31/1990	Well dry													93.51					
S-4	10/30/1990	Well dry													93.51					
S-4	05/06/1991	Well dry													93.51	15.23		78.28		
S-4	06/27/1991	<50	< 0.50	< 0.50	< 0.50	< 0.50									93.51	13.54		79.97		
S-4	09/24/1991	Well dry													93.51	15.85		77.66		
S-4	11/07/1991	Well dry													93.51	15.60		77.91		
S-4	02/13/1992	<50	< 0.50	< 0.50	< 0.50	3.0									93.51	14.27		79.24		
S-4	05/11/1992	Well dry													93.51					
S-4	12/03/1992	Well inacce	essible												93.51					
S-4	05/13/1993	Well inacce	essible												93.51	14.81		78.70		
S-4	07/22/1993	Well inacce	essible												93.51	14.42		79.09		
S-4	10/20/1993	Well inacce	essible												93.51					
S-4	01/25/1994	Well inacce	essible												93.51	14.60		78.91		
S-4	04/25/1994	Well inacce	essible												93.51	14.39		79.12		
S-4	07/21/1994	<50	< 0.50	< 0.50	< 0.50	< 0.50									93.51	22.29		71.22		
S-4	10/24/1994	<500	< 0.50	< 0.50	< 0.50	< 0.50									93.51	22.72		70.79		
S-4	12/22/1994	<50	< 0.50	< 0.50	< 0.50	< 0.50									25.77	22.25		3.52		
S-4	04/20/1995	<50	< 0.50	< 0.50	< 0.50	< 0.50									25.77	21.16		4.61		
S-4	10/04/1995	<50	1.2	0.70	< 0.50	< 0.50									25.77	22.25		3.52		
S-4	01/03/1996	<50	0.60	< 0.50	< 0.50	1.7									25.77	23.28		2.49		
S-4	04/11/1996	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5								25.77	21.58		4.19		
S-4	07/11/1996	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5								25.77	21.60		4.17		
S-4	10/02/1996	<50	< 0.50	< 0.50	< 0.50	< 0.50	2.6								25.77	22.46		3.31		
S-4	01/22/1997	<50	0.73	< 0.50	< 0.50	0.63	<2.5								25.77	20.06		5.71		
S-4	07/21/1997	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5								25.77	22.10		3.67		
S-4	01/22/1998	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5								25.77	20.50		5.27		
S-4	07/08/1998	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5								25.77	20.86		4.91		
S-4	10/26/1998														25.77	21.41		4.36		
S-4	01/28/1999	<50	< 0.50	<0.50	< 0.50	< 0.50	<2.5								25.77	22.34		3.43		
S-4	04/23/1999														25.77	21.43		4.34		

Table 2 Page 2 of 27

Groundwater Data Former Shell Service Station 461 8th Street, Oakland, California

Well ID	Date	TPHg	В	т	E	x	MTBE 8020	MTBE 8260	ТВА	DIPE	ETBE	TAME	EDC	EDB	тос	Depth to Water	SPH Thickness	GW Elevation	DO	ORP
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft)	(ft MSL)	(mg/L)	(mV)
S-4	07/29/1999	<50.0	<0.500	<0.500	<0.500	<0.500	<5.00								25.77	21.45		4.32		
S-4	11/01/1999														25.77	22.08		3.69		
S-4	01/07/2000	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5								25.77	22.29		3.48		
S-4	04/11/2000														25.77	21.11		4.66		
S-4	07/19/2000	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50								25.77	21.19		4.58		
S-4	10/12/2000														25.77	22.22		3.55		
S-4	01/09/2001	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50								25.77	22.17		3.60		
S-4	04/06/2001														25.77	21.50		4.27		
S-4	07/25/2001	<50	2.0	0.52	< 0.50	1.0		< 5.0							25.77	21.50		4.27		
S-4	11/01/2001														25.77	21.95		3.82		
S-4	01/17/2002	<50 d	<0.50 d	<0.50 d	<0.50 d	<0.50 d		<5.0 d							25.77	21.13		4.64		
S-4	05/08/2002														25.77	21.35		4.42		
S-4	07/18/2002	<50	< 0.50	< 0.50	< 0.50	< 0.50		<5.0							34.41	21.19		13.22		
S-4	10/15/2002														34.41	21.42		12.99		
S-4	01/02/2003	<50	< 0.50	< 0.50	< 0.50	< 0.50		< 5.0							34.41	20.75		13.66		
S-4	04/15/2003														34.41	21.08		13.33		
S-4	07/14/2003														34.41	19.93		14.48		
S-4	10/20/2003														34.41	19.56		14.85		
S-4	01/22/2004	<50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50							34.41	19.12		15.29		
S-4	04/19/2004														34.41	19.15		15.26		
S-4	07/13/2004														34.41	20.48		13.93		
S-4	10/28/2004														34.41	21.00		13.41		
S-4	01/17/2005	<50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50							34.41	20.17		14.24		
S-4	04/14/2005														34.41	19.82		14.59		
S-4	07/28/2005														34.41	20.71		13.70		
S-4	10/05/2005														34.41	20.85		13.56		
S-4	02/09/2006	<50.0	< 0.500	< 0.500	< 0.500	<0.500		< 0.500							34.41	19.47		14.94		
S-4	05/15/2006														34.41	19.52		14.89		
S-4	08/23/2006														34.41	20.75		13.66		
S-4	11/15/2006														34.41	20.03		14.38		
S-4	01/30/2007	<50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50							34.41	21.30		13.11		
S-4	05/29/2007														34.41	21.15		13.26		
S-4	08/15/2007														34.41	21.38		13.03		
S-4	11/28/2007														34.41	21.55		12.86		
S-4	02/08/2008	64 f	< 0.50	<1.0	<1.0	<1.0		<1.0					< 0.50	<1.0	34.41	22.75		11.66		
S-4	05/08/2008														34.41	22.18		12.23		
S-4	08/14/2008														34.41	21.77		12.64		

Table 2 Page 3 of 27

Groundwater Data Former Shell Service Station 461 8th Street, Oakland, California

Well ID	Date	TPHg	В	т	E	x	MTBE 8020	MTBE 8260	ТВА	DIPE	ETBE	TAME	EDC	EDB	TOC	Depth to Water	SPH Thickness	GW Elevation	DO	ORP
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft)	(ft MSL)	(mg/L)	(mV)
S-4	11/11/2008														34.41	20.68		13.73		
S-4	01/05/2009	250	1.8	<1.0	<1.0	<1.0		<1.0					<0.50	<1.0	34.41	20.92		13.49		
S-4	04/09/2009														34.41	21.10		13.31		
S-4	07/23/2009														34.41	21.76		12.65		
S-4	10/01/2009														34.41	22.10		12.31		
S-4	01/28/2010	<50	< 0.50	<1.0	<1.0	<1.0									34.41	21.75		12.66		
S-4	05/20/2010														34.41	21.44		12.97		
S-4	08/31/2010														34.41	21.72		12.69		
S-4	12/29/2010														34.41	20.91		13.50		
S-4	02/01/2011	<50	< 0.50	< 0.50	< 0.50	1.1									34.41	21.19		13.22	1.84	157
S-4	04/25/2011														34.41	17.32		17.09		
S-4	07/28/2011														34.41	20.92		13.49		
S-4	10/28/2011														34.41	21.35		13.06		
S-4	05/07/2012	240	86	22	9.5	25									34.41	20.65		13.76	2.52	119
S-4	05/02/2013	55	< 0.50	< 0.50	< 0.50	<1.0									34.41	21.45		12.96		
S-4	04/21/2014	380	88	58	14	42									34.41	21.70		12.71		
S-4	07/17/2015	6,300	23	1.0	<1.0	15									34.41	18.49		15.92		
S-5	04/16/1987	130,000	15,000	16,000	а	14,000									99.36					
S-5	10/26/1988	110,000	20,000	25,000	2,300	10,000									99.36					
S-5	02/14/1989	94,000	16,000	21,000	1,800	10,000									99.36	19.87		79.49		
S-5	05/01/1989	120,000	29,000	35,000	3,100	15,000									99.36	21.23		78.13		
S-5	07/27/1989	110,000	20,000	29,000	2,400	14,000									99.36	20.41		78.95		
S-5	10/05/1989														99.36	20.43	0.01	78.94		
S-5	01/09/1990														99.36	21.16	0.01	78.21		
S-5	04/30/1990	100,000	13,000	22,000	2,100	11,000									99.36	20.96		78.40		
S-5	07/31/1990	53,000	8,300	14,000	1,200	7,400									99.36	20.88		78.48		
S-5	10/30/1990														99.36	21.96	0.03	77.42		
S-5	05/06/1991														99.36	23.00	0.13	76.46		
S-5	06/27/1991														99.36	20.53	0.03	78.85		
S-5	09/24/1991														99.36	21.40	0.06	78.01		
S-5	11/07/1991														99.36	21.33	0.25	78.23		
S-5	02/13/1992														99.36	22.52	0.31	77.09		
S-5	05/11/1992														99.36	22.46	0.58	77.36		
S-5	12/03/1992	Well inacc	essible												99.36					
S-5	05/13/1993														99.36	22.22	0.27	77.36		
S-5	07/22/1993														99.36	21.68	0.25	77.88		

Table 2 Page 4 of 27

Groundwater Data Former Shell Service Station 461 8th Street, Oakland, California

Wall ID	Doto	TDUa	ь	т	_	v	MTBE 8020	MTBE 8260	ТВА	DIPE	ETBE	TAME	EDC	EDB	тос	Depth to	SPH	GW	DO	ORP
Well ID	Date	TPHg (µg/L)	B (µg/L)	ι (μg/L)	E (µg/L)	Χ (μg/L)	8020 (μg/L)	0200 (μg/L)	ι bA (μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	Water (ft TOC)	Thickness (ft)	(ft MSL)	(mg/L)	(mV)
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	` ,	` ,		. ,	(ilig/L)	(1114)
S-5	10/20/1993														99.36	20.51	0.23	79.03		
S-5	01/25/1994														99.36	21.93	0.18	77.57		
S-5	04/25/1994														99.36	21.97	0.35	77.67		
S-5	05/26/1994														99.36	20.84	0.35	78.80		
S-5	06/10/1994														99.36	21.01	0.32	78.61		
S-5	07/21/1994														99.36	22.18	0.47	77.56		
S-5	08/25/1994														99.36	22.01	0.44	77.70		
S-5	09/22/1994														99.36	22.00	0.15	77.48		
S-5	10/24/1994														99.36	22.28	0.56	77.53		
S-5	12/22/1994														22.94	22.88	0.99	0.85		
S-5	04/20/1995														22.94	21.66	0.33	1.54		
S-5	10/04/1995														22.94	22.18		0.76		
S-5	01/03/1996														22.94	22.80	0.83	0.80		
S-5	04/11/1996														22.94	21.15	0.67	2.33		
S-5	07/11/1996														22.94	22.62	0.90	1.04		
S-5	10/02/1996														22.94	23.07	0.64	0.38		
S-5	01/22/1997														22.94	20.83	0.16	2.24		
S-5	07/21/1997														22.94	21.16	0.05	1.82		
S-5	01/22/1998														22.94	20.04	0.04	2.93		
S-5	07/08/1998	220	14	40	5.8	34	3.3								22.94	18.61		4.33		
S-5	10/26/1998														22.94	17.31		5.63		
S-5	01/28/1999	51,000	13,000	1,200	1,200	2,400	2,400								22.94	20.11		2.83		
S-5	04/23/1999	65,600	2,540	7,300	1,790	9,840	<1,000								22.94	19.21		3.73		
S-5	07/29/1999	61,400	3,320	6,980	1,520	7,700	<1,000								22.94	14.77		8.17		
S-5	11/01/1999	48,200	2,700	5,740	1,290	7,850	<500	<40.0							22.94	15.56		7.38		
S-5	01/07/2000	39,000	3,900	8,500	790	8,300	1,500								22.94	15.82		7.12		
S-5	04/11/2000	29,300	1,680	5,060	1,130	6,220	<250								22.94	18.19		4.75		
S-5	07/19/2000	6,420	2,110	207	252	681	355	253 b							22.94	19.01		3.93		
S-5	10/12/2000	41,500	2,940	4,940	1,520	7,770	<250	<66.7							22.94	19.62		3.32		
S-5	01/09/2001	142,000	7,030	9,550	2,340	12,600	779								22.94	19.94		3.00		
S-5	04/06/2001	Well inacc	essible												22.94					
S-5	04/13/2001	59,800	4,810	10,800	1,950	10,100	842	<10.0							22.94	14.72		8.22		
S-5	07/25/2001	71,000	2,900	6,800	1,700	9,100		<250							22.94	14.91		8.03		
S-5	08/13/2001		_,												22.94	19.43		3.51		
S-5	11/01/2001	Unable to I	locate												22.94					
S-5	01/17/2002	58,000 d	460 d	3,300 d	1,900 d	8,400 d		<200 d							С	14.27				
S-5	05/08/2002	60,000 d	d	2,700 d	1,800 d	8,800 d		<100 d							22.94	18.40		4.54		
		,	-	-,	,	٠,٠٠٠ ٠														

Table 2 Page 5 of 27

Groundwater Data Former Shell Service Station 461 8th Street, Oakland, California

Wall ID	Data	TDUa	В	_	_	v	MTBE 8020	MTBE	TDA	DIPE	CTDE	TAME	EDC	EDB	TOC	Depth to	SPH	GW	DO	OPP
Well ID	Date	TPHg	B (ug/L)	T (a/l.)	E (ug/L)	X (ug/L)		8260	TBA		ETBE	TAME			TOC (ft MSL)	Water (ft TOC)	Thickness	(ft MSL)		ORP
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(IL WISE)	(11 100)	(ft)	(IL WISE)	(mg/L)	(mV)
S-5	07/18/2002	53,000	240	1,200	1,500	6,400		<100							27.36	14.25		13.11		
S-5	10/15/2002	Well inacce	essible												27.36					
S-5	10/17/2002	42,000	420	1,100	1,200	5,500		<10							27.36	14.90		12.46		
S-5	01/02/2003	26,000	680	1,500	780	3,800		<5.0							27.36	14.72		12.64		
S-5	04/15/2003	3,600	29	38	65	370		<5.0							е	14.45				
S-5	07/14/2003	21,000	210	460	650	2,900		<10							е	14.10				
S-5	10/20/2003	37,000	390	590	870	3,500		<13							е	14.63				
S-5	01/22/2004	29,000	200	210	710	2,400		<13							е	14.08				
S-5	04/19/2004	25,000	490	460	750	2,400		19							е	13.43				
S-5	07/13/2004	28,000	300	280	690	2,400		<13							е	14.88				
S-5	08/14/2008	31,000	1,700	1,600	1,400	3,350		<10					<5.0	<10	е	16.65				
S-5	11/11/2008	37,000 i	2,500 i	1,300 i	2,000 i	3,490 i		<50 i					<25 i	<50 i	е	16.81				
S-5	11/11/2008	40,000 j	2,300 j	1,400 j	1,900 j	3,630 j		<50 j					<25 j	<50 j	е	16.81				
S-5	01/05/2009	57,000	2,300	1,400	1,500	2,900		<10					<5.0	<10	е	16.71				
S-5	04/09/2009	52,000	2,100	3,500	1,900	5,400		<20					<10	<20	е	16.31			0.3	163
S-5	07/23/2009	37,000	1,800	1,900	1,400	3,800									е	16.62			1.48	-84
S-5	10/01/2009	36,000	1,800	1,900	1,400	3,700									27.24	16.35		10.89	0.86	-52
S-5	01/28/2010	35,000	1,200	1,900	1,500	3,600									27.24	16.35		10.89		
S-5	05/20/2010	36,000	1,600	2,500	1,700	4,500									27.24	16.50		10.74	1.22	227
S-5	08/31/2010	32,000	1,300	1,100	1,600	3,400									27.24	16.95		10.29	0.58	-102
S-5	12/29/2010	26,000	970	1,500	1,500	3,200									27.24	16.25		10.99	1.18	233
S-5	02/01/2011	27,000	1,100	1,500	1,400	3,100									27.24	15.38		11.86	1.65	-83
S-5	04/25/2011	70,000	380	440	720	1,200									27.24	13.98		13.26	0.95	-109
S-5	07/28/2011	21,000	340	430	570	1,000									27.24	13.80		13.44	0.71	-95
S-5	10/28/2011	23,000	430	480	570	1,300									27.24	14.28		12.96	6.05	190
S-5	05/07/2012	16,000	150	200	350	760									27.24	13.82		13.42	3.61	120
S-5	08/31/2012	12,000	330	300	330	850									27.24	14.68		12.56	1.38	253
S-5	12/11/2012	14,000	420	700	550	1,500									27.24	16.00		11.24	1.07/1.29	162/63
S-5	01/24/2013	29,000	910	1,700	1,200	2,700									27.24	16.46		10.78		
S-5	05/02/2013	35,000	650	1,500	1,400	4,500									27.24	18.59		8.65		
S-5	08/09/2013	350,000	820	9,800	6,900	34,000									27.24	19.12		8.12		
S-5	11/07/2013														27.24	k	k	k		
S-5	01/31/2014														27.24	19.87	0.91	8.10		
S-5	03/14/2014														27.24	19.98	1.15	8.18		
S-5	04/21/2014														27.24	19.80	1.14	8.35		
S-5	07/31/2014														27.24	18.58	0.29	8.89		
S-5	09/22/2014														27.24	18.55	0.15	8.81		
- 0	30, <u>LL</u> , <u>L</u> 0 17															10.00	0.10	5.01		

Table 2 Page 6 of 27

Groundwater Data Former Shell Service Station 461 8th Street, Oakland, California

Well ID	Data	TDUa	В	_	_	v	MTBE 8020	MTBE 8260	TDA	DIPE	CTDC	TAME	EDC	EDB	TOC	Depth to	SPH	GW	DO	ORP
Well ID	Date	TPHg (µg/L)	B (µg/L)	T (ug/L)	E (µg/L)	X (ug/L)	8020 (μg/L)		TBA (µg/L)	(µg/L)	ETBE (µg/L)	TAME (µg/L)	(µg/L)	(µg/L)	TOC (ft MSL)	Water (ft TOC)	Thickness (ft)	(ft MSL)	DO (mg/L)	(mV)
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)			(11)	•	(IIIg/L)	(1117)
S-5	10/03/2014														27.24	18.45		8.79		
S-5	10/10/2014														27.24	10.48		16.76		
S-5	10/17/2014														27.24	18.44		8.80		
S-5	10/24/2014														27.24	18.54		8.70		
S-5	11/21/2014	34,000	350	830	1,400	14,000									27.24	18.58		8.66		
S-5	12/23/2014														27.24	25.19		2.05		
S-5	01/22/2015	56,000 m	690	740	2,600	9,400									27.24	18.24		9.00		
S-5	07/17/2015	32,000	540	240	1,300	3,700									27.24	18.67		8.57		
S-5	09/29/2015	43,000	460	260	1,300	2,900									27.24	18.49		8.75		
S-6	04/16/1987	81,000	16,000	9,000	а	6,400									100.58					
S-6	10/26/1988	110,000	29,000	18,000	2,500	8,200									100.58					
S-6	02/14/1989	54,000	18,000	4,500	1,400	4,000									100.58	20.87		79.71		
S-6	05/01/1989	93,000	43,000	9,900	3,000	8,000									100.58	20.49		80.09		
S-6	07/27/1989	52,000	20,000	3,200	1,700	5,500									100.58	21.01		79.57		
S-6	10/05/1989	55,000	20,000	2,900	1,600	5,500									100.58	21.24		79.34		
S-6	01/09/1990	76,000	35,000	9,100	2,300	8,600									100.58	22.62	Sheen	77.96		
S-6	04/30/1990	39,000	13,000	2,300	900	2,800									100.58	22.10		78.48		
S-6	07/31/1990	48,000	20,000	4,600	1,500	4,900									100.58	22.00		78.58		
S-6	10/30/1990	27,000	7,400	900	600	1,400									100.58	22.14		78.44		
S-6	05/06/1991	35,000	3,900	2,700	2,300	3,500									100.58	22.40		78.18		
S-6	06/27/1991	51,000	19,000	5,600	1,700	6,300									100.58	21.21		79.37		
S-6	09/24/1991	42,000	14,000	4,300	1,200	4,000									100.58	22.26		78.32		
S-6	11/07/1991	39,000	11,000	2,000	800	2,300									100.58	22.35		78.23		
S-6	02/13/1992	64,000	21,000	6,200	1,600	5,100									100.58	22.28		78.30		
S-6	05/11/1992	57,000	22,000	7,600	2,200	7,700									100.58	22.10		78.48		
S-6	12/03/1992	110,000	26,000	9,400	2,100	8,700									100.58	22.14		78.44		
S-6	05/13/1993	58,000	21,000	6,800	2,500	9,800									100.58	22.16		78.42		
S-6	07/22/1993	70,000	31,000	14,000	3,000	13,000									100.58	21.64		78.94		
S-6	10/20/1993	48,000	28,000	9,800	3,200	12,000									100.58	21.62		78.96		
S-6	01/25/1994	70,000	23,000	7,500	2,500	8,000									100.58	21.80		78.78		
S-6	04/25/1994	61,000	16,000	4,000	1,800	5,100									100.58	21.68		78.90		
S-6	07/21/1994	44,000	8,200	3,600	1,400	3,900									100.58	21.78		78.80		
S-6 (D)	07/21/1994	32,000	7,800	3,400	1,300	3,700									100.58					
S-6	10/24/1994	2,936	1,184	440.6	163.4	648.4									100.58	22.06		78.52		
S-6 (D)	10/24/1994	2,968	770.8	325.3	144.1	622									22.08					
S-6	12/22/1994	32,000	7,000	2,900	790	2,400									22.08	21.91		0.17		

Table 2 Page 7 of 27

Groundwater Data Former Shell Service Station 461 8th Street, Oakland, California

Well ID	Date	TPHg	В	т	E	X	MTBE 8020	MTBE 8260	ТВА	DIPE	ETBE	TAME	EDC	EDB	тос	Depth to Water	SPH Thickness	GW Flevation	DO	ORP
Well ID	Dute	(μg/L)	(µg/L)	(μg/L)	_ (μg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft)	(ft MSL)	(mg/L)	(mV)
S-6 (D)	12/22/1994	32,000	8,000	3,800	1,100	3,400									22.08					
S-6	04/20/1995	56,000	15,000	3,800	1,900	4,900									22.08	21.38		0.70		
S-6 (D)	04/20/1995	49,000	13,000	3,500	1,800	4,700									22.08					
S-6	10/04/1995	49,000	8,400	4,700	1,800	4,800									22.08	21.80		0.28		
S-6 (D)	10/04/1995	41,000	8,400	4,100	1,400	4,400									22.08					
S-6	01/03/1996	52,000	9,100	7,100	1,800	5,800									22.08	21.70		0.38		
S-6	04/11/1996	59,000	11,000	7,100	2,100	6,400	<500								22.08	21.62		0.46		
S-6 (D)	04/11/1996	59,000	11,000	6,800	1,900	6,400	<500								22.08					
S-6	07/11/1996	72,000	18,000	6,600	2,500	8,400	<1,000								22.08	21.65		0.43		
S-6	10/02/1996	57,000	11,000	6,500	1,500	5,100	<500								22.08	21.80		0.28		
S-6	01/22/1997	67,000	15,000	5,000	1,800	5,400	<1,000								22.08	19.95		2.13		
S-6 (D)	01/22/1997	63,000	15,000	4,800	1,800	5,200	<1,000								22.08					
S-6	07/21/1997	61,000	15,000	2,100	1,100	3,500	1,900								22.08	20.61		1.47		
S-6	01/22/1998	46,000	14,000	3,200	1,300	3,400	<500								22.08	19.82		2.26		
S-6	07/08/1998	74,000	26,000	7,500	2,200	6,200	<1,000								22.08	18.20		3.88		
S-6	10/26/1998														22.08	18.81		3.27		
S-6	01/28/1999	120,000	9,000	14,000	2,700	14,000	3,700								22.08	19.73		2.35		
S-6	04/23/1999	58,500	15,900	1,360	1,640	3,030	<2500								22.08	17.58		4.50		
S-6	07/29/1999	36,200	10,300	760	930	1,360	<1,000								22.08	21.35		0.73		
S-6	11/01/1999	36,000	11,700	767	865	1,670	<1,250	<40.0							22.08	19.23		2.85		
S-6	01/07/2000	36,000	7,600	4,600	840	3,600	<1,000								22.08	19.53		2.55		
S-6	04/11/2000	14,600	7,540	205	306	609	621								22.08	18.16		3.92		
S-6	07/19/2000	2,590	629	63.9	99.6	267	124	72.7 b							22.08	18.40		3.68		
S-6	10/12/2000	32,900	14,200	966	1,060	1,790	<500	<100							22.08	19.52		2.56		
S-6	01/09/2001	27,600	11,200	675	666	1,580	1,430	<10.0 b							22.08	19.69		2.39		
S-6	02/05/2001														22.08	19.20		2.88		
S-6	04/06/2001	16,900	7,800	343	172	966	809	<20.0							22.08	18.25		3.83		
S-6	07/25/2001	29,000	9,800	1,700	1,000	1,800		<250							22.08	18.27		3.81		
S-6	11/01/2001	41,000	15,000	2,400	1,100	2,500		<500							22.08	19.30		2.78		
S-6	01/17/2002	38,000 d	11,000 d	1,700 d	990 d	2,200 d		<500 d							22.08	18.51		3.57		
S-6	05/08/2002	72,000	21,000	4,400	2,200	5,300		<1,000							22.08	18.30		3.78		
S-6	07/18/2002	71,000	17,000	4,300	1,700	4,800		<1,000							30.56	18.19		12.37		
S-6	10/15/2002	55,000	16,000	4,600	1,500	4,600		<100							30.56	18.77		11.79		
S-6	01/02/2003	75,000	21,000	5,000	2,400	6,400		<50							30.56	18.60		11.96		
S-6	04/15/2003	64,000	29,000	6,400	2,700	5,600		<1,000							30.56	18.27		12.29		
S-6	07/14/2003	47,000	19,000	4,300	1,500	4,300		<100							30.56	18.05		12.51		
S-6	10/20/2003	63,000	21,000	5,800	1,900	5,200		<130							30.56	18.55	Sheen	12.01		

Table 2 Page 8 of 27

Groundwater Data Former Shell Service Station 461 8th Street, Oakland, California

							MTBE	MTBE								Depth to	SPH	GW		
Well ID	Date	TPHg	В	Т	E	X	8020	8260	TBA	DIPE	ETBE	TAME	EDC	EDB	TOC		Thickness		DO	ORP
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft)	(ft MSL)	(mg/L)	(mV)
S-6	01/22/2004	41,000	21,000	4,300	1,800	4,000		<130							30.56	18.18	Sheen	12.38		
S-6	04/19/2004	58,000	23,000	4,200	2,200	3,900		<130							30.56	17.32		13.24		
S-6	05/03/2004														30.56	17.30		13.26		
S-6	06/17/2004														30.56	17.70		12.86		
S-6	07/13/2004														30.56	17.85		12.71		
S-6	10/28/2004	45,000	21,000	3,600	1,700	3,300		<130							30.56	18.45		12.11		
S-6	01/17/2005	61,000	21,000	3,500	1,600	3,200		<130							30.56	17.52		13.04		
S-6	04/14/2005	36,000	12,000	6,200	850	4,800		<50							30.56	22.49		8.07		
S-6	07/28/2005	54,000	16,000	9,100	1,800	5,900		<130							30.56	19.38		11.18		
S-6	10/05/2005	59,000	14,000	7,500	1,400	5,000		<50							30.56	18.32		12.24		
S-6	02/09/2006	41,100	7,060	3,900	673	2,380		< 0.500							30.56	17.11		13.45		
S-6	05/15/2006	188,000	24,800	20,700	2,540	12,400		<25.0							30.56	19.80		10.76		
S-6	08/23/2006	133,000	24,900	16,100	2,280	10,500		< 0.500							30.56	20.45		10.11		
S-6	11/15/2006	66,000	19,000	8,400	1,900	7,400		<400							30.56	20.41		10.15		
S-6	01/30/2007	88,000	18,000	9,600	1,900	7,200		<100							30.56	20.47		10.09		
S-6	05/29/2007	56,000 f	17,000	6,700	1,700	5,400		<20							30.56	20.40		10.16		
S-6	08/15/2007	57,000 f,g	15,000	6,800	1,600	6,100		<100							30.56	20.49		10.07		
S-6	11/28/2007	42,000 f	13,000	5,000	1,300	5,000		<100							30.56	20.65		9.91		
S-6	02/08/2008	35,000 f	12,000	5,000	1,200	4,050		<100					<50	<100	30.56	20.31		10.25		
S-6	05/08/2008	45,000 f	15,000	6,100	1,400	5,000		<100					<50	<100	30.56	20.63		9.93		
S-6	08/14/2008	37,000	11,000	5,200	1,200	4,600		<100					<50	<100	30.56	20.65		9.91		
S-6	11/11/2008	37,000 i	15,000 i	6,200 i	1,200 i	3,390 i		<10 i					<5.0 i	<10 i	30.56	20.79		9.77		
S-6	11/11/2008	14,000 j	5,200 j	680 j	400 j	1,060 j		<50 j					<25 j	<50 j	30.56	20.79		9.77		
S-6	01/05/2009	53,000	9,400	3,600	890	3,100		<100					<50	<100	30.56	21.66		8.90		
S-6	04/09/2009	Unable to	sample												30.56					
S-6	04/21/2009	13,000	3,700	1,100	270	750		<100					<50	<100	30.56	20.20		10.36		
S-6	07/23/2009	15,000	4,400	1,100	360	1,000									30.56	20.66		9.90	1.13	-73
S-6	10/01/2009	21,000	5,100	1,300	420	1,200									30.56	20.86		9.70	0.58	16
S-6	01/28/2010	8,700	2,600	250	200	400									30.56	20.36		10.20		
S-6	05/20/2010	4,400	1,600	82	85	150									30.56	20.68		9.88	1.08	64
S-6	08/31/2010	19,000	4,700	1,300	560	1,600									30.56	20.78		9.78	1.55	-88
S-6	12/29/2010	15,000	3,900	1,500	520	1,800									30.56	19.92		10.64	2.35	123
S-6	02/01/2011	16,000	4,000	1,700	600	1,800									30.56	19.05		11.51	0.61	-143
S-6	04/25/2011	23,000	7,800	3,500	960	3,000									30.56	17.73		12.83	0.76	-112
S-6	07/28/2011	17,000	5,500	1,500	600	1,600									30.56	17.62		12.94	0.77	-26
S-6	10/28/2011	42,000	11,000	4,500	1,600	5,900									30.56	18.12		12.44	4.64	-9
S-6	05/07/2012	38,000	14,000	4,800	1,300	4,400									30.56	17.50		13.06	2.32	116

Table 2 Page 9 of 27

Groundwater Data Former Shell Service Station 461 8th Street, Oakland, California

Well ID	Date	TPHg (µg/L)	B (µg/L)	T (μg/L)	E (µg/L)	Χ (μg/L)	MTBE 8020 (μg/L)	MTBE 8260 (μg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	EDC (µg/L)	EDB (µg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	SPH Thickness (ft)	GW Elevation (ft MSL)	DO (mg/L)	ORP (mV)
S-6	08/31/2012	96,000	6,700	2,500	1,900	6,200									30.56	18.42		12.14	0.62	146
S-6	12/11/2012	31,000	8,300	3,700	1,000	3,700									30.56	20.00		10.56	0.92/0.65	102/-16
S-6	01/24/2013	29,000	9,100	2,500	950	2,600									30.56	20.43		10.13		
S-6	05/02/2013	10,000	1,800	1,100	430	1,100									30.56	22.98		7.58		
S-6	08/09/2013	45,000	3,800	8,000	1,800	6,500									30.56	23.21		7.35		
S-6	11/07/2013	33,000	3,600	3,800	1,000	3,700									30.56	25.24		5.32		
S-6	01/31/2014	16,000	1,200	2,700	710	2,500									30.56	23.30		7.26		
S-6	04/21/2014	15,000	1,100	3,100	650	2,300									30.56	22.98		7.58		
S-6	07/31/2014	40,000 I	4,200	7,300	1,300	5,400									30.56	22.49		8.07		
S-6	11/21/2014	48,000	3,600	8,900	1,700	7,000									30.56	22.49		8.07		
S-6	01/22/2015	40,000 n	7,100	4,600	1,500	5,100									30.56	22.27		8.29		
S-6	07/17/2015	<50 b	<0.50 b	<0.50 b	<0.50 b	<1.0 b									30.56	22.70		7.86		
S-6	09/29/2015	13,000	730	1,700	550	2,000									30.56	22.67		7.89		
S-8	12/22/1994	600	120	32	5.2	34									27.21	24.87		2.34		
S-8	04/20/1995	460	180	23	5.2	21									27.21	23.90		3.31		
S-8	10/04/1995	830	210	38	11	42									27.21	24.48		2.73		
S-8	01/03/1996	350	61	12	2.5	12									27.21	24.62		2.59		
S-8 (D)	01/03/1996	340	54	12	2.4	12									27.21					
S-8	04/11/1996	570	140	37	12	47	<6.2								27.21	24.32		2.89		
S-8	07/11/1996	980	98	32	9.1	160	<12								27.21	24.10		3.11		
S-8	10/02/1996	280	62	13	3.3	25	15								27.21	25.38		1.83		
S-8 (D)	10/02/1996	490	110	24	7.0	45	22	<2.0							27.21					
S-8	01/22/1997	400	90	13	4.9	25	12								27.21	23.91		3.30		
S-8	07/21/1997	2,900	380	110	26	260	85								27.21	23.62		3.59		
S-8 (D)	07/21/1997	3,200	420	120	32	300	130								27.21					
S-8	01/22/1998	3,800	790	140	42	330	160								27.21	23.52		3.69		
S-8 (D)	01/22/1998	3,500	780	120	33	300	160								27.21					
S-8	07/08/1998	3,600	1,800	<25	<25	<25	<125								27.21	21.52		5.69		
S-8 (D)	07/08/1998	4,000	1,800	<25	<25	31	<125								27.21					
S-8	10/26/1998														27.21	22.01		5.20		
S-8	01/28/1999	2,000	630	6.2	24	51	43								27.21	23.03		4.18		
S-8	04/23/1999	1,050	408	<5.00	<5.00	6.65	<50.0								27.21	22.15		5.06		
S-8	07/29/1999	955	344	<2.50	6.90	16.2	<25.0								27.21	21.95		5.26		
S-8	11/01/1999	1,800	550	6.45	15.0	40.4	<50.0								27.21	22.55		4.66		
S-8	01/07/2000	1,300	600	11	29	48	<13								27.21	22.87		4.34		
S-8	04/11/2000	342	101	4.42	4.24	14.7	21.4								27.21	21.86		5.35		

Table 2 Page 10 of 27

Groundwater Data Former Shell Service Station 461 8th Street, Oakland, California

Well ID	Date	TPHg	В	т	E	x	MTBE 8020	MTBE 8260	ТВА	DIPE	ETBE	TAME	EDC	EDB	TOC	Depth to Water	SPH Thickness	GW Elevation	DO	ORP
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft)	(ft MSL)	(mg/L)	(mV)
S-8	07/19/2000	579	228	6.37	6.45	25	<12.5								27.21	21.93		5.28		
S-8	10/12/2000	947	340	8.64	3.26	38.3	<12.5	<2.00							27.21	22.92		4.29		
S-8	01/09/2001	1,090	394	<10.0	<10.0	33.3	57.6								27.21	23.19		4.02		
S-8	04/06/2001	671	182	12.5	16.4	47.1	42.5								27.21	22.46		4.75		
S-8	07/25/2001	500	70	6.7	11	23		<5.0							27.21	22.50		4.71		
S-8	11/01/2001	1,900	250	28	39	180		<5.0							27.21	22.44		4.77		
S-8	01/17/2002	830 d	140 d	11 d	12 d	89 d		<5.0 d							27.21	21.82		5.39		
S-8	05/08/2002	210 d	34 d	1.7 d	4.1 d	15 d		<5.0 d							27.21	21.35		5.86		
S-8	07/18/2002	650	68	2.8	9.7	42		<5.0							35.85	21.53		14.32		
S-8	10/15/2002	1,000	160	4.2	7.7	74		< 0.50							35.85	21.97		13.88		
S-8	01/02/2003	440	55	1.8	2.9	31		< 0.50							35.85	21.95		13.90		
S-8	04/15/2003														35.85	21.73		14.12		
S-8	07/14/2003	60	6.8	< 0.50	0.98	4.9		< 0.50							35.85	21.40		14.45		
S-8	10/20/2003														35.85	21.94		13.91		
S-8	01/22/2004	210	19	0.52	3.6	17		< 0.50							35.85	21.40		14.45		
S-8	04/19/2004														35.85	20.83		15.02		
S-8	07/13/2004	420	77	0.82	14	31		< 0.50							35.85	21.05		14.80		
S-8	10/28/2004														35.85	21.77		14.08		
S-8	01/17/2005	490	85	0.89	13	28		< 0.50							35.85	20.92		14.93		
S-8	04/14/2005														35.85	21.57		14.28		
S-8	07/28/2005	64	12	< 0.50	1.5	1.6		< 0.50							35.85	21.62		14.23		
S-8	10/05/2005														35.85	21.11		14.74		
S-8	02/09/2006	<50.0	2.79	< 0.500	< 0.500	< 0.500		< 0.500							35.85	20.18		15.67		
S-8	05/15/2006														35.85	20.53		15.32		
S-8	08/23/2006	<50.0	< 0.500	< 0.500	< 0.500	< 0.500		< 0.500							35.85	21.49		14.36		
S-8	11/15/2006														35.85	22.05		13.80		
S-8	01/30/2007	<50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50							35.85	22.41		13.44		
S-8	05/29/2007														35.85	22.65		13.20		
S-8	08/15/2007	65 f,g	7.4	<1.0	<1.0	<1.0		<1.0							35.85	22.88		12.97		
S-8	11/28/2007														35.85	23.20		12.65		
S-8	02/08/2008	350 f	22	<1.0	4.8	2.6		1.2					< 0.50	<1.0	35.85	22.72		13.13		
S-8	05/08/2008														35.85	22.91		12.94		
S-8	08/14/2008	420	28	<1.0	6.3	1.4		<1.0					<0.50	<1.0	35.85	23.12		12.73		
S-8	11/11/2008	330 i	37 i	<1.0 i	5.1 i	<1.0 i		<1.0 i					<0.50 i	<1.0 i	35.85	23.37		12.48	1.6	28
S-8	11/11/2008	480 j	29 j	<1.0 j	5.4 j	<1.0 j									35.85	23.37		12.48	2.2	103
S-8	12/18/2008	340	38	<1.0	5.4	<1.0									35.83	23.31		12.52		
S-8	01/05/2009	170	15	<1.0	1.2	<1.0									35.83	23.28		12.55		

Table 2 Page 11 of 27

Groundwater Data Former Shell Service Station 461 8th Street, Oakland, California

Well ID	Date	TPHg	В	т	E	x	MTBE 8020	MTBE 8260	ТВА	DIPE	ETBE	TAME	EDC	EDB	тос	Depth to Water	SPH Thickness	GW Elevation	DO	ORP
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft)	(ft MSL)	(mg/L)	(mV)
S-8	01/15/2009	260	45	<1.0	3.2	<1.0									35.83	23.05		12.78		
S-8	02/12/2009	88	7.2	<1.0	<1.0	<1.0									35.83	23.34		12.49		
S-8	03/12/2009	12,000	1,700	2,100	200	2,400									35.83	22.90		12.93		
S-8	04/09/2009	170	< 0.50	<1.0	<1.0	<1.0									35.83	23.10		12.73		594
S-8	07/23/2009	140	0.55	<1.0	<1.0	<1.0									35.83	23.02		12.81	2.38	-54
S-8	10/01/2009	140	0.68	<1.0	<1.0	<1.0									35.83	23.31		12.52	4.34	359
S-8	01/28/2010	<50	< 0.50	<1.0	<1.0	<1.0									35.83	22.80		13.03		
S-8	05/20/2010	<50	< 0.50	<1.0	<1.0	<1.0									35.83	23.55		12.28	0.64	42
S-8	08/31/2010	<50	< 0.50	<1.0	<1.0	<1.0									35.83	23.48		12.35	0.54	-72
S-8	12/29/2010	79	0.83	<1.0	<1.0	<1.0									35.83	23.18		12.65	0.74	133
S-8	02/01/2011	<50	< 0.50	< 0.50	< 0.50	<1.0									35.83	22.57		13.26	1.68	104
S-8	04/25/2011	<50	1.1	< 0.50	< 0.50	<1.0									35.83	21.26		14.57	1.78	12
S-8	07/28/2011	50	2.4	< 0.50	< 0.50	<1.0									35.83	20.94		14.89	0.89	186
S-8	10/28/2011	<50	0.61	< 0.50	< 0.50	<1.0									35.83	21.09		14.74	2.78	349
S-8	05/07/2012	<50	4.3	1.4	0.59	1.0									35.83	21.23		14.60	2.42	209
S-8	05/02/2013	53	< 0.50	< 0.50	< 0.50	<1.0									35.83	24.65		11.18		
S-8	04/21/2014	<50	< 0.50	< 0.50	< 0.50	<1.0									35.83	25.28		10.55		
S-8	Well destroyed	i																		
S-9	12/22/1994	2,600	400	150	42	310									26.06	24.37		1.69		
S-9	04/20/1995	1,900	400	130	51	200									26.06	23.49		2.57		
S-9	10/04/1995	3,200	590	260	68	280									26.06	24.01		2.05		
S-9	01/03/1996	Well inacc	essible												26.06					
S-9	04/11/1996	2,100	440	1,500	42	210	<25								26.06	23.61		2.45		
S-9	07/11/1996	5,200	940	450	120	520	<50								26.06	23.78		2.28		
S-9 (D)	07/11/1996	4,800	890	430	110	500	<50								26.06					
S-9	10/02/1996	3,000	680	220	56	270	<62								26.06	24.31		1.75		
S-9	01/22/1997	1,500	230	71	36	130	<12								26.06	23.08		2.98		
S-9	07/21/1997	3,400	590	57	19	210	96								26.06	22.83		3.23		
S-9	01/22/1998	2,600	300	46	<10	270	62								26.06	21.96		4.10		
S-9	07/08/1998	820	150	6.2	7.5	57	<10								26.06	20.85		5.21		
S-9	10/26/1998														26.06	21.39		4.67		
S-9	01/28/1999	<50	1.0	< 0.50	< 0.50	< 0.50	<2.5								26.06	22.32		3.74		
S-9	04/23/1999														26.06	21.41		4.65		
S-9	07/29/1999	117	7.77	0.817	0.683	5.05	<5.00								26.06	21.25		4.81		
S-9	11/01/1999														26.06	21.92		4.14		
S-9	01/07/2000	<50	1.2	< 0.50	< 0.50	<0.50	<2.5								26.06	22.11		3.95		

Table 2 Page 12 of 27

Groundwater Data Former Shell Service Station 461 8th Street, Oakland, California

Well ID	Date	TPHg	В	т	E	х	MTBE 8020	MTBE 8260	ТВА	DIPE	ETBE	TAME	EDC	EDB	TOC	Depth to Water	SPH Thickness	GW Elevation	DO	ORP
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft)	(ft MSL)	(mg/L)	(mV)
S-9	04/11/2000														26.06	21.14		4.92		
S-9	07/19/2000	Well inacce	essible												26.06					
S-9	10/12/2000														26.06	22.24		3.82		
S-9	01/09/2001	<50.0	1.45	< 0.500	< 0.500	< 0.500	<2.50								26.06	22.52		3.54		
S-9	04/06/2001														26.06	23.61		2.45		
S-9	07/25/2001	Well inacce	essible												26.06					
S-9	08/13/2001	Well inacce	essible												26.06					
S-9	11/01/2001														26.06	21.78		4.28		
S-9	01/17/2002	<50 d	<0.50 d	<0.50 d	<0.50 d	<0.50 d		<5.0 d							26.06	21.15		4.91		
S-9	05/08/2002														26.06	20.56		5.50		
S-9	07/18/2002	<50	< 0.50	< 0.50	< 0.50	< 0.50		<5.0							34.70	20.88		13.82		
S-9	10/15/2002														34.70	21.41		13.29		
S-9	01/02/2003	<50	< 0.50	< 0.50	< 0.50	< 0.50		<5.0							34.70	21.35		13.35		
S-9	04/15/2003														34.70	21.14		13.56		
S-9	07/14/2003	<50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50							34.70	20.80		13.90		
S-9	10/20/2003														34.70	21.33		13.37		
S-9	01/22/2004	<50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50							34.70	20.77		13.93		
S-9	04/19/2004														34.70	20.06		14.64		
S-9	07/13/2004	<50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50							34.70	20.44		14.26		
S-9	10/28/2004														34.70	21.02		13.68		
S-9	01/17/2005	<50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50							34.70	20.18		14.52		
S-9	04/14/2005														34.70	21.85		12.85		
S-9	07/28/2005	360	190	1.8	1.1	3.9		< 0.50	<5.0	<2.0	<2.0	<2.0			34.70	21.22		13.48		
S-9	10/05/2005														34.70	20.63		14.07		
S-9	02/09/2006	<50.0	0.94	<0.500	<0.500	<0.500		<0.500							34.70	19.23		15.47		
S-9	05/15/2006														34.70	20.28		14.42		
S-9	08/23/2006	7,000	1,740	55.6	193	278		<0.500	<10.0	<0.500	<0.500	<0.500			34.70	21.31		13.39		
S-9	11/15/2006														34.70	21.79		12.91		
S-9	01/30/2007	12,000	2,200	250	480	980		<0.50							34.70	22.08		12.62		
S-9	05/29/2007														34.70	22.22		12.48		
S-9	08/15/2007	9,800 f,g	2,400	100	410	602		<10	<100	<20	<20	<20			34.70	22.43		12.27		
S-9	11/28/2007														34.70	22.75		11.95		
S-9	02/08/2008	69 f	2.2	<1.0	<1.0	<1.0		<1.0					<0.50	<1.0	34.70	22.31		12.39		
S-9	05/08/2008														34.70	22.49		12.21		
S-9	08/14/2008	<50	<0.50	<1.0	<1.0	<1.0		<1.0					<0.50	<1.0	34.70	22.70		12.00		
S-9	11/11/2008	<50 i	2.4 i	<1.0 i	<1.0 i	<1.0 i		<1.0 i					<0.50 i	<1.0 i	34.70	22.90		11.80	1.1	92
S-9	11/11/2008	550 j	74 j	12 j	22 j	55.3 j									34.70	22.90		11.80	3.6	98

Table 2 Page 13 of 27

Groundwater Data Former Shell Service Station 461 8th Street, Oakland, California

Well ID	Date	TPHg	В	т	E	x	MTBE 8020	MTBE 8260	ТВА	DIPE	ETBE	TAME	EDC	EDB	TOC	Depth to Water	SPH Thickness	GW Elevation	DO	ORP
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft)	(ft MSL)	(mg/L)	(mV)
S-9	12/18/2008	1,500	280	43	71	182									34.34	22.81		11.53		
S-9	01/05/2009	1,000	230	24	45	64									34.34	22.75		11.59		
S-9	01/15/2009	2,100	560	75	100	245									34.34	22.37		11.97		
S-9	02/12/2009	500	120	19	26	50									34.34	22.61		11.73		
S-9	03/12/2009	810	200	30	50	110									34.34	22.22		12.12		
S-9	04/09/2009	2,300	450	60	110	260									34.34	22.12		12.22	0.65	79
S-9	05/18/2009	1,500	200	35	61	180									34.34	22.09		12.25	2.71	173
S-9	07/23/2009	1,700	430	49	110	190									34.34	22.48		11.86	0.21	346
S-9	10/01/2009	1,200	180	12	58	93									34.34	22.84		11.50	1.37	146
S-9	11/09/2009	1,400	260	21	67	81									34.34	22.63		11.71	0.42	
S-9	12/01/2009	1,100	110	11	26	59									34.34	22.44		11.90	1.09	133
S-9	01/28/2010	860	130	9.3	38	79									34.34	22.35		11.99	1.95	
S-9	05/20/2010	1,900	340	27	100	210									34.34	22.40		11.94	0.17	138
S-9	06/22/2010	1,400	240	30	65	130									34.34	22.64		11.70	2.16	577
S-9	08/31/2010	760	130	13	54	110		<1.0	<10	<2.0	<2.0	<2.0			34.34	22.92		11.42	1.53	415
S-9	12/29/2010	290	55	3.3	18	41									34.34	22.62		11.72	1.64	163
S-9	02/01/2011	640	99	7.8	38	72									34.34	21.88		12.46	1.34	0
S-9	04/25/2011	590	120	9.1	29	77									34.34	20.34		14.00	0.62	98
S-9	07/28/2011	1,700	280	47	88	230		<1.0	<10	<1.0	<1.0	<1.0			34.34	20.10		14.24	2.17	73
S-9	10/28/2011	1,900	370	32	110	260									34.34	20.54		13.80	2.18	122
S-9	05/07/2012	970	200	14	46	100		<2.5	<50	<2.5	<2.5	<2.5			34.34	20.49		13.85	0.91	78
S-9	12/11/2012	610	160	22	32	95									34.34	22.28		12.06	1.28/1.53	93/76
S-9	05/02/2013	1,400	230	53	65	160		<2.5	<50	<2.5	<2.5	<2.5			34.34	24.36		9.98		
S-9	11/07/2013	1,200	150	15	32	84									34.34	24.92		9.42		
S-9	04/21/2014	1,100	120	25	33	83		<1.3	<25	<1.3	<1.3	<1.3			34.34	24.90		9.44		
S-9	11/21/2014	1,600	250	15	64	89									34.34	24.55		9.79		
S-9	Well destroyed																			
S-10	12/22/1994	420	27	8.0	18	45									28.04	25.84		2.20		
S-10	04/20/1995	820	49	3.7	97	52									28.04	24.92		3.12		
S-10	10/04/1995	240	6.5	1.1	16	12									28.04	25.47		2.57		
S-10	01/03/1996	1,100	27	4.9	110	70									28.04	25.60		2.44		
S-10	04/11/1996	530	19	1.6	82	52	<5.0								28.04	25.27		2.77		
S-10	07/11/1996	570	16	3.2	53	53	<2.5								28.04	25.46		2.58		
S-10	10/02/1996	270	8.2	0.77	24	23	3.3								28.04	25.81		2.23		
S-10	01/22/1997	160	4.8	0.73	16	11	<2.5								28.04	24.74		3.30		
S-10	07/21/1997	530	5.7	0.70	29	69	<2.5								28.04	24.50		3.54		

Table 2 Page 14 of 27

Groundwater Data Former Shell Service Station 461 8th Street, Oakland, California

Well ID	Date	TPHg	В	т	E	x	MTBE 8020	MTBE 8260	ТВА	DIPE	ETBE	TAME	EDC	EDB	TOC	Depth to Water	SPH Thickness	GW	DO	ORP
Well ID	Date	(µg/L)	(µg/L)	ι (μg/L)	∟ (μg/L)	Λ (μg/L)	(μg/L)	0200 (μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft)	(ft MSL)	(mg/L)	(mV)
S-10	01/22/1998	1,500	15	<5.0	88	130	<25								28.04	24.44		3.60		
S-10	07/08/1998	530	4.8	1.1	47	51	<2.5								28.04	22.36		5.68		
S-10			4.0		41 															
	10/26/1998														28.04	22.81		5.23		
S-10	01/28/1999	630	4.6	0.98	<0.50	59	<2.5								28.04	23.82		4.22		
S-10	04/23/1999														28.04	22.96		5.08		
S-10	07/29/1999	728	3.4	<1.00	41.8	38.0	<10.0								28.04	22.63		5.41		
S-10	11/01/1999														28.04	23.02		5.02		
S-10	01/07/2000	870	8.5	1.3	110	110	<2.5								28.04	23.33		4.71		
S-10	04/11/2000														28.04	22.64		5.40		
S-10	07/19/2000	612	3.75	<0.500	41.6	43.6	<2.50								28.04	23.04		5.00		
S-10	10/12/2000														28.04	23.92		4.12		
S-10	01/09/2001	647	7.62	1.01	66.2	42.4	<2.50								28.04	24.13		3.91		
S-10	04/06/2001														28.04	25.37		2.67		
S-10	07/25/2001	340	1.5	< 0.50	42	19		<5.0							28.04	25.35		2.69		
S-10	11/01/2001														28.04	23.22		4.82		
S-10	01/17/2002	1,100 d	3.5 d	<0.50 d	55 d	46 d		<5.0 d							28.04	22.72		5.32		
S-10	05/08/2002														28.04	22.35		5.69		
S-10	07/18/2002	750	1.8	< 0.50	42	26		<5.0							36.35	22.05		14.30		
S-10	10/15/2002														36.35	22.51		13.84		
S-10	01/02/2003	440	1.8	< 0.50	14	24		<5.0							36.35	22.50		13.85		
S-10	04/15/2003														36.35	22.32		14.03		
S-10	07/14/2003	210	0.86	< 0.50	13	12		< 0.50							36.35	21.99		14.36		
S-10	10/20/2003														36.35	22.53		13.82		
S-10	01/22/2004	280	0.88	< 0.50	10	11		< 0.50							36.35	22.02		14.33		
S-10	04/19/2004														36.35	21.43		14.92		
S-10	07/13/2004	770	1.5	< 0.50	70	42		< 0.50							36.35	21.68		14.67		
S-10	10/28/2004														36.35	22.37		13.98		
S-10	01/17/2005	1,100	1.5	< 0.50	73	51		< 0.50							36.35	21.45		14.90		
S-10	04/14/2005														36.35	22.18		14.17		
S-10	07/28/2005	260	< 0.50	< 0.50	19	9.7		< 0.50	<5.0	<2.0	<2.0	<2.0			36.35	22.25		14.10		
S-10	10/05/2005														36.35	21.70		14.65		
S-10	02/09/2006	630	<0.500	<0.500	13.8	13.8		<0.500							36.35	20.37		15.98		
S-10	05/15/2006														36.35	21.31		15.98		
	08/23/2006									<0.500						22.12				
S-10		<50.0	<0.500	<0.500	14.5	3.4		<0.500	<10.0	<0.500	<0.500	<0.500			36.35			14.23		
S-10	11/15/2006	100			7.0										36.35	22.68		13.67		
S-10	01/30/2007	120	<0.50	<0.50	7.0	3.3		<0.50							36.35	23.09		13.26		
S-10	05/29/2007														36.35	23.20		13.15		

Table 2 Page 15 of 27

Groundwater Data Former Shell Service Station 461 8th Street, Oakland, California

Well ID	Date	TPHg	В	т	E	x	MTBE 8020	MTBE 8260	ТВА	DIPE	ETBE	TAME	EDC	EDB	тос	Depth to Water	SPH Thickness	GW Elevation	DO	ORP
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft)	(ft MSL)	(mg/L)	(mV)
S-10	08/15/2007	64 f,g	0.15 h	<1.0	1.4	0.72 h		<1.0	<10	<2.0	<2.0	<2.0			36.35	23.48		12.87		
S-10	11/28/2007														36.35	23.82		12.53		
S-10	02/08/2008	61 f	< 0.50	<1.0	<1.0	<1.0		<1.0					< 0.50	<1.0	36.35	23.31		13.04		
S-10	05/08/2008														36.35	23.55		12.80		
S-10	08/14/2008	58	< 0.50	<1.0	2.7	<1.0		<1.0					< 0.50	<1.0	36.35	23.75		12.60		
S-10	11/11/2008														36.35	23.08		13.27		
S-10	12/18/2008	<50	< 0.50	<1.0	<1.0	<1.0									36.35	24.00		12.35		
S-10	01/05/2009	<50	< 0.50	<1.0	<1.0	<1.0									36.35	23.87		12.48		
S-10	01/15/2009	<50	< 0.50	<1.0	1.1	<1.0									36.35	23.66		12.69		
S-10	02/12/2009	56	< 0.50	<1.0	3.4	<1.0									36.35	23.96		12.39		
S-10	03/12/2009	53	< 0.50	<1.0	4.9	<1.0									36.35	23.44		12.91		
S-10	04/09/2009														36.35	23.26		13.09		
S-10	07/23/2009	66	< 0.50	<1.0	5.7	<1.0									36.35	23.56		12.79	0.06	112
S-10	10/01/2009	76	< 0.50	<1.0	4.6	<1.0									36.35	23.80		12.55	1.26	206
S-10	01/28/2010	100	< 0.50	<1.0	3.6	<1.0									36.35	23.30		13.05		
S-10	05/20/2010	52	< 0.50	<1.0	1.9	<1.0									36.35	24.04		12.31	0.68	59
S-10	08/31/2010	<50	0.69	<1.0	1.4	<1.0		<1.0	<10	<2.0	<2.0	<2.0			36.35	24.24		12.11	0.51	-3
S-10	12/29/2010	95	< 0.50	<1.0	3.4	1.4									36.35	23.89		12.46	0.43	87
S-10	02/01/2011	69	< 0.50	< 0.50	2.2	<1.0									36.35	23.25		13.10	2.08	117
S-10	04/25/2011	55	0.51	< 0.50	2.9	<1.0									36.35	21.87		14.48	1.32	21
S-10	07/28/2011	<50	< 0.50	<1.0	0.92	<1.0		<1.0	<10	<1.0	<1.0	<1.0			36.35	21.39		14.96	0.32	227
S-10	10/28/2011	52	< 0.50	< 0.50	2.7	<1.0									36.35	21.68		14.67	2.68	327
S-10	05/07/2012	50	0.84	< 0.50	1.5	<1.0		< 0.50	<10	< 0.50	< 0.50	< 0.50			36.35	22.00		14.35	2.51	220
S-10	05/02/2013	100	< 0.50	< 0.50	0.77	<1.0		< 0.50	<10	< 0.50	< 0.50	< 0.50			36.35	25.53		10.82		
S-10	04/21/2014	180	< 0.50	< 0.50	0.71	<1.0		< 0.50	<10	< 0.50	< 0.50	< 0.50			36.35	26.20		10.15		
S-10	Well destroyed																			
S-12	12/17/2007														36.44	24.58		11.86		
S-12	02/08/2008	55 f	<0.50	<1.0	<1.0	<1.0		<1.0					<0.50	<1.0	36.44	24.32		12.12		
S-12 S-12	05/08/2008	<50 f	<0.50	<1.0	<1.0	<1.0		<1.0					<0.50	<1.0	36.44	24.52		11.93		
S-12 S-12	08/14/2008	<50 i	1.0	<1.0	<1.0	<1.0		<1.0					<0.50	<1.0	36.44	24.63		11.81		
S-12 S-12	11/11/2008	<50 i	0.95 i	<1.0 <1.0 i	<1.0 <1.0 i	<1.0 i		<1.0 <1.0 i					<0.50 i	<1.0 i	36.44	24.85 24.85		11.59	0.2	37
S-12 S-12	11/11/2008														36.44	24.85		11.59	0.2	
S-12 S-12	12/18/2008	65 j <50	8.1 j 8.3	2.2 j	4.8 j	1.5 j										24.81		11.63		45
S-12 S-12	01/05/2009	<50 95	8.3 16	<1.0 <1.0	1.8 3.2	<1.0 <1.0									36.44 36.44	24.81		11.63		
S-12 S-12	01/15/2009	140 -50	36 5.0	<1.0	12 1.6	<1.0									36.44	24.54		11.90		
5-12	02/12/2009	<50	5.0	<1.0	1.6	<1.0									36.44	24.81		11.63		

Table 2 Page 16 of 27

Groundwater Data Former Shell Service Station 461 8th Street, Oakland, California

Well ID	Date	TPHg	В	т	E	x	MTBE 8020	MTBE 8260	ТВА	DIPE	ETBE	TAME	EDC	EDB	TOC	Depth to Water	SPH Thickness	GW Elevation	DO	ORP
Well ID	Date	(µg/L)	μg/L)	(μg/L)	μg/L)	Λ (μg/L)	(μg/L)	0200 (μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft)	(ft MSL)	(mg/L)	(mV)
S-12	03/12/2009	<50	4.8	<1.0	1.5	<1.0									36.44	24.41		12.03		
S-12	04/09/2009	59	6.0	<1.0	1.6	<1.0									36.44	24.23		12.21	0.50	-3
S-12	07/23/2009	130	29	<1.0	13	<1.0									36.44	24.50		11.94	0.07	142
S-12	10/01/2009	130	25	<1.0	15	<1.0									36.44	24.76		11.68	0.74	135
S-12	01/28/2010	110	14	<1.0	19	<1.0									36.44	24.28		12.16		
S-12	05/20/2010	75	8.5	<1.0	7.0	<1.0									36.44	24.71		11.73	0.14	740
S-12	08/31/2010	<50	0.56	<1.0	<1.0	<1.0									36.44	25.08		11.36	1.18	180
S-12	12/29/2010	<50	0.98	<1.0	<1.0	<1.0									36.44	24.60		11.84	1.27	121
S-12	02/01/2011	<50	1.8	<0.50	2.8	<1.0									36.44	23.94		12.50	2.06	-2
S-12	04/25/2011	<50	0.82	<0.50	1.7	<1.0									36.44	22.53		13.91	0.28	196
S-12	07/28/2011	<50	0.96	<0.50	2.8	<1.0									36.44	22.05		14.39	3.01	163
S-12	10/28/2011	99	15	<0.50	14	<1.0									36.44	22.50		13.94	3.67	91
S-12	05/07/2012	180	25	<0.50	19	1.0									36.44	22.50		13.94	0.88	66
S-12	05/02/2013	190	1.2	0.64	0.71	3.8									36.44	26.48		9.96		
S-12	04/21/2014	1,100	5.0	3.3	9.5	38									36.44	27.08		9.36		
S-12	Well destroyed	•																		
S-13	12/17/2007														35.16	23.33		11.83		
S-13	02/08/2008	14,000 f	1,900	1,300	280	3,000		<10					<5.0	<10	35.16	23.01		12.15		
S-13	05/08/2008	18,000 f	2,800	3,400	550	3,500		<10					<5.0	<10	35.16	23.31		11.85		
S-13	08/14/2008	16,000	2,400	3,100	580	3,100		<20					<10	<20	35.16	23.31		11.85		
S-13	11/11/2008	16,000 i	2,400 i	2,800 i	270 i	2,500 i		<50 i					<25 i	<50 i	35.16	23.60		11.56	8.0	-48
S-13	11/11/2008	4,400 j	560 j	630 j	88 j	530 j									35.16	23.60		11.56	1.2	-60
S-13	12/18/2008	3,900	530	560	76	510									35.05	23.61		11.44		
S-13	01/05/2009	8,200	700	670	67	1,000									35.05	23.54		11.51		
S-13	01/15/2009	5,400	610	610	48	950									35.05	23.10		11.95		
S-13	02/12/2009	6,300	800	1,000	110	870									35.05	22.36		12.69		
S-13	03/12/2009	14,000	1,700	2,300	190	2,400									35.05	23.20		11.85		
S-13	04/09/2009	35,000	510	7,800	1,000	4,300									35.05	23.02		12.03	25.9	433
S-13	05/18/2009	35,000	820	7,000	1,100	6,600									35.05	23.07		11.98	5.21	83
S-13	07/23/2009	18,000	1,800	3,000	480	2,500									35.05	23.51		11.54	1.23	148
S-13	10/01/2009	2,000	330	87	33	5.2									35.05	23.61		11.44	1.23	413
S-13	11/09/2009	15,000	1,100	1,500	300	1,800									35.05	23.41		11.64	0.71	
S-13	12/01/2009	1,600	210	190	34	36									35.05	23.15		11.90	16.3	231
S-13	01/28/2010	5,900	370	930	100	680									35.05	22.94		12.11	2.18	
S-13	05/20/2010	400	35	120	9.5	52									35.05	23.36		11.69	0.31	211
S-13	06/22/2010	16,000	570	3,000	260	2,000									35.05	23.20		11.85	1.10	412

Table 2 Page 17 of 27

Groundwater Data Former Shell Service Station 461 8th Street, Oakland, California

Well ID	Date	TPHg	В	Т	E	х	MTBE 8020	MTBE 8260	ТВА	DIPE	ETBE	TAME	EDC	EDB	TOC	Depth to Water	SPH Thickness	GW Elevation	DO	ORP
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft)	(ft MSL)	(mg/L)	(mV)
S-13	08/31/2010	3,000	140	490	83	540									35.05	24.00		11.05	0.90	400
S-13	12/29/2010	8,700	600	1,700	260	1,700									35.05	23.48		11.57	0.69	231
S-13	02/01/2011	2,100	170	390	75	410									35.05	22.71		12.34	1.10	248
S-13	04/25/2011	6,000	600	1,800	270	1,300									35.05	21.15		13.90	0.19	69
S-13	07/28/2011	3,700	320	430	160	790									35.05	20.64		14.41	2.65	44
S-13	10/28/2011	8,100	600	830	380	1,700									35.05	21.47		13.58	3.67	1
S-13	05/07/2012	5,100	540	670	320	1,100									35.05	21.35		13.70	0.60	-176
S-13	12/11/2012	5,900	420	580	260	950									35.05	22.91		12.14	1.07/0.80	-70/-63
S-13	05/02/2013	1,300	130	95	49	85									35.05	25.24		9.81		
S-13	11/07/2013														35.05	k	k	k		
S-13	03/14/2014														35.05	26.22	0.25	9.03		
S-13	04/21/2014														35.05	26.09	0.39	9.27		
S-13	07/31/2014														35.05	25.25		9.80		
S-13	09/22/2014														35.05	25.31		9.74		
S-13	10/03/2014														35.05	25.35		9.70		
S-13	10/10/2014														35.05	25.33		9.72		
S-13	10/17/2014														35.05	25.31		9.74		
S-13	10/24/2014	Well inacc	essible												35.05					
S-13	11/21/2014	7,000	330	270	120	590									35.05	25.35		9.70		
S-13	11/21/2014	7,000	330	270	120	590									35.05	18.33		16.72		
S-13	01/22/2015														35.05	25.01		10.04		
S-13	Well destroyed																			
S-14	12/17/2007														34.94	22.68		12.26		
S-14	02/08/2008	5,300 f	380	300	34	970		<10					< 5.0	<10	34.94	22.82		12.12		
S-14	05/08/2008	4,300 f	750	270	30	520		<10					< 5.0	<10	34.94	22.41		12.53		
S-14	Well destroyed																			
S-14R	11/07/2008														35.19	22.91		12.28		
S-14R	11/11/2008	8,500 i	680 i	270 i	<25 i	1,110 i									35.19	23.13		12.06	0.60	115
S-14R	11/11/2008	4,300 j	270 j	190 j	43 j	470 j									35.19	23.13		12.06	1.5	116
S-14R	12/18/2008	7,800	530	640	79	1,010									34.95	22.80		12.15		
S-14R	01/05/2009	2,100	89	86	19	140									34.95	22.80		12.15		
S-14R	01/15/2009	4,800	430	540	83	730									34.95	22.57		12.38		
S-14R	02/12/2009	1,000	40	29	7.3	55									34.95	22.89		12.06		
S-14R	03/12/2009	350	22	18	3.3	29									34.95	22.39		12.56		
S-14R	04/09/2009	2,300	230	240	47	250									34.95	22.35		12.60	0.30	430

Table 2 Page 18 of 27

Groundwater Data Former Shell Service Station 461 8th Street, Oakland, California

Well ID	Date	TPHg	В	Т	E	х	MTBE 8020	MTBE 8260	ТВА	DIPE	ETBE	TAME	EDC	EDB	TOC	Depth to Water	SPH Thickness	GW Elevation	DO	ORP
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft)	(ft MSL)	(mg/L)	(mV)
S-14R	05/18/2009	750	51	48	17	67									34.95	22.20		12.75	5.63	93
S-14R	07/23/2009	600	81	57	19	47									34.95	22.56		12.39	0.05	246
S-14R	10/01/2009	230	12	10	5.3	23									34.95	22.90		12.05	2.22	201
S-14R	11/09/2009	330	47	21	11	39									34.95	22.68		12.27	0.75	
S-14R	12/01/2009	420	38	27	12	39									34.95	22.62		12.33	0.45	110
S-14R	01/28/2010	270	45	27	11	32									34.95	22.38		12.57	3.75	
S-14R	05/20/2010	330	17	10	2.7	13									34.95	22.72		12.23	0.96	102
S-14R	08/31/2010	130	5.8	3.5	1.4	6.1									34.95	23.12		11.83	1.55	-13
S-14R	12/29/2010	480	56	30	13	52									34.95	22.75		12.20	0.48	375
S-14R	02/01/2011	570	56	32	20	59									34.95	22.10		12.85	0.58	143
S-14R	04/25/2011	860	100	59	41	97									34.95	20.80		14.15	0.81	-37
S-14R	07/28/2011	970	100	80	51	110									34.95	20.36		14.59	0.56	151
S-14R	10/28/2011	420	47	38	25	67									34.95	20.68		14.27	3.97	321
S-14R	05/07/2012	630	68	62	40	120									34.95	20.77		14.18	2.47	238
S-14R	05/02/2013	3,200	200	130	95	200									34.95	24.49		10.46		
S-14R	04/21/2014	3,700	190	160	99	290									34.95	24.99		9.96		
S-14R	Well destroyed																			
S-15	12/17/2007														35.34	23.00		12.34		
S-15	02/08/2008	55,000 f	6,700	13,000	1,100	9,800		<10					<5.0	<10	35.34	22.71		12.63		
S-15	05/08/2008	53,000 f	6,300	13,000	1,500	7,500		<200					<100	<200	35.34	22.91		12.43		
S-15	Well destroyed																			
S-16	12/17/2007														36.08	23.88		12.20		
S-16	02/08/2008	6,000 f	670	730	88	1,290		<5.0					<2.5	<5.0	36.08	23.52		12.56		
S-16	05/08/2008	3,200 f	670	320	18	580		<10					<5.0	<10	36.08	23.69		12.39		
S-16	Well destroyed																			
0.47	00/40/0000														25.40	00.00		40.40		
S-17	06/19/2008	24.000	1 200	1 200	460	2.050		 -E O						 -E O	35.49	23.30		12.19		
S-17	06/25/2008	21,000	1,300	1,300	160	2,850		<5.0					<2.5	<5.0	35.49	23.33		12.16		
S-17	08/14/2008	14,000	1,700	1,700	310	2,250		<10					<5.0	<10	35.49	23.50		11.99		
S-17	11/11/2008	7,200 i	1,600 i	820 i	140 i	760 i		<5.0 i					<2.5 i	<5.0 i	35.49	23.70		11.79		
S-17	11/11/2008	32,000 j	2,500 j	3,100 j	820 j	4,000 j		<25 j					<12 j	<25 j	35.49	23.70		11.79		
S-17	01/05/2009	15,000	790	700	150	1,200		<10					<5.0	<10	35.50	23.66		11.84		
S-17	01/15/2009	2,300	220	170	19	300									35.50	23.37		12.13		
S-17	02/12/2009	4,700	750	200	37	23									35.50	23.66		11.84		
S-17	03/12/2009	3,300	640	370	81	290									35.50	23.24		12.26		

Table 2 Page 19 of 27

Groundwater Data Former Shell Service Station 461 8th Street, Oakland, California

Well ID	Date	TPHg (µg/L)	B (µg/L)	T (µg/L)	E (µg/L)	Χ (μg/L)	MTBE 8020 (μg/L)	MTBE 8260 (μg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	EDC (µg/L)	EDB (µg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	SPH Thickness (ft)	GW Elevation (ft MSL)	DO (mg/L)	ORP (mV)
S-17	04/09/2009	1,300	200	110	37	100									35.50	23.20		12.30	0.69	429
S-17	05/18/2009	630	97	44	17	25									35.50	23.21		12.29	5.93	442
S-17	07/23/2009	3,900	480	410	160	480									35.50	23.70		11.80	0.15	34
S-17	10/01/2009	1,300	32	24	3.1	72									35.50	23.64		11.86	1.30	204
S-17	11/09/2009	5,300	260	330	56	500									35.50	23.52		11.98	0.18	
S-17	12/01/2009	3,300	190	210	52	240									35.50	23.41		12.09	0.95	450
S-17	01/28/2010	3,500	260	250	85	310									35.50	23.21		12.29	1.93	
S-17	05/20/2010	370	18	<1.0	<1.0	<1.0									35.50	23.65		11.85	1.31	544
S-17	08/31/2010	1,900	120	110	52	260									35.50	23.92		11.58	1.32	370
S-17	12/29/2010	2,600	200	150	91	280									35.50	23.60		11.90	1.37	131
S-17	02/01/2011	950	100	72	47	130									35.50	22.91		12.59	1.40	136
S-17	04/25/2011	2,000	150	71	77	210									35.50	21.44		14.06	0.23	82
S-17	07/28/2011	3,400	270	98	170	370									35.50	21.06		14.44	1.45	70
S-17	10/28/2011	270	58	5.3	23	28									35.50	21.51		13.99	1.19	221
S-17	05/07/2012	980	110	3.6	66	100									35.50	21.50		14.00	0.62	84
S-17	05/02/2013	570	62	20	19	49									35.50	25.49		10.01		
S-17	04/21/2014	2,500	140	120	98	310									35.50	25.91		9.59		
S-17	Well destroyed																			
S-18	06/19/2008														35.04	22.94		12.10		
S-18	06/25/2008	58,000	2,200	5,600	880	10,200		<10					< 5.0	<10	35.04	22.92		12.12		
S-18	08/14/2008	25,000	2,500	4,500	860	5,800		<50					<25	<50	35.04	23.08		11.96		
S-18	11/11/2008	24,000 i	2,400 i	3,300 i	820 i	3,800 i		<25 i					<12 i	<25 i	35.04	23.30		11.74		
S-18	11/11/2008	43,000 j	3,900 j	5,500 j	1,300 j	6,500 j		<50 j					<25 j	<50 j	35.04	23.30		11.74		
S-18	01/05/2009	20,000	830	1,000	290	1,400		<50					<25	<50	35.03	23.16		11.87		
S-18	01/15/2009	8,200	690	790	150	1,230									35.03	22.97		12.06		
S-18	02/12/2009	13,000	1,200	1,400	330	940									35.03	23.29		11.74		
S-18	03/12/2009	52,000	5,300	9,000	1,600	10,000									35.03	22.85		12.18		
S-18	04/09/2009	Insufficie	nt water												35.03	22.79		12.24		
S-18	05/18/2009	6,700	320	1,100	200	1,000									35.03	22.81		12.22	6.51	377
S-18	07/23/2009	8,900	500	890	290	1,600									35.03	22.91		12.12	0.20	
S-18	10/01/2009	1,800	49	5.5	5.3	<5.0									35.03	23.65		11.38	6.25	557
S-18	11/09/2009	1,100	79	8.9	5.3	1.1									35.03	23.19		11.84	0.26	
S-18	12/01/2009	570	50	7.5	2.7	1.2									35.03	23.12		11.91	4.07	460
S-18	01/28/2010	1,200	170	91	18	68									35.03	22.86		12.17	1.90	
S-18	05/20/2010	3,900	500	690	79	240									35.03	23.12		11.91	1.77	169
S-18	06/22/2010	13,000	1,700	2,800	200	1,000									35.03	23.10		11.93	0.58	499

Table 2 Page 20 of 27

Groundwater Data Former Shell Service Station 461 8th Street, Oakland, California

W-II ID	Data	TDII.		-	_	v	MTBE	MTBE	TDA	DIDE	ETDE	TAME	EDO	EDD	T00	Depth to	SPH	GW	DO	ODD
Well ID	Date	TPHg	B	T	E	X	8020	8260	TBA	DIPE	ETBE	TAME	EDC	EDB	TOC		Thickness			ORP
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft)	(ft MSL)	(mg/L)	(mV)
S-18	08/31/2010	6,600	970	1,100	230	1,000									35.03	23.55		11.48	1.23	258
S-18	12/29/2010	8,500	1,000	750	410	1,800									35.03	23.23		11.80	0.79	70
S-18	02/01/2011	2,100	210	190	87	180									35.03	22.52		12.51	1.13	220
S-18	04/25/2011	13,000	2,100	2,000	470	2,300									35.03	21.00		14.03	0.52	85
S-18	07/28/2011	8,200	1,200	1,000	290	1,200									35.03	20.56		14.47	1.57	27
S-18	10/28/2011	9,000	1,200	480	430	1,900									35.03	21.11		13.92	1.45	147
S-18	05/07/2012	4,700	710	310	310	870									35.03	21.20		13.83	0.55	-68
S-18	05/02/2013	5,000	720	280	220	480									35.03	24.95		10.08		
S-18	04/21/2014	1,400	240	190	70	230									35.03	25.61		9.42		
S-18	Well destroyed																			
S-19	11/07/2008														34.78	22.73		12.05		
S-19	11/11/2008	7,100 i	500 i	600 i	25 i	1,010 i									34.78	22.87		11.91	1.0	62
S-19	11/11/2008	2,300 j	110 j	160 j	43 j	280 j									34.78	22.87		11.91	1.3	71
S-19	12/18/2008	2,900	190	300	41	420									34.57	22.60		11.97		
S-19	01/05/2009	3,400	230	250	50	380									34.57	22.56		12.01		
S-19	01/15/2009	3,100	340	540	70	440									34.57	22.31		12.26		
S-19	02/12/2009	1,300	130	180	37	190									34.57	22.58		11.99		
S-19	03/12/2009	880	110	150	30	160									34.57	22.44		12.13		
S-19	04/09/2009	1,300	140	190	32	190									34.57	22.02		12.55	0.57	106
S-19	05/18/2009	780	69	87	17	100									34.57	22.04		12.53	6.47	75
S-19	07/23/2009	400	77	59	15	38									34.57	22.40		12.17	0.06	31
S-19	10/01/2009	1,500	160	170	33	120									34.57	22.66		11.91	0.52	301
S-19	11/09/2009	1,600	140	160	41	160									34.57	22.44		12.13	0.26	
S-19	12/01/2009	1,600	150	180	45	170									34.57	22.62		11.95	0.79	161
S-19	01/28/2010	2,600	230	280	71	300									34.57	22.29		12.28	1.71	
S-19	05/20/2010	850	110	55	11	4.6									34.57	22.49		12.08	1.77	118
S-19	08/31/2010	580	79	92	22	50									34.57	22.86		11.71	1.02	297
S-19	12/29/2010	920	120	120	54	150									34.57	22.48		12.09	1.12	150
S-19	02/01/2011	1,800	210	270	100	320									34.57	21.78		12.79	1.08	21
S-19	04/25/2011	2,100	290	360	140	470									34.57	20.42		14.15	0.25	115
S-19	07/28/2011	2,400	240	380	140	450									34.57	20.16		14.41	1.17	80
S-19	10/28/2011	3,600	210	420	190	750									34.57	20.41		14.16	1.73	160
S-19	05/07/2012	3,400	220	480	210	880									34.57	20.51		14.06	2.54	244
S-19	12/11/2012	1,700	110	240	100	440									34.57	22.05		12.52	0.89/2.21	81/52
S-19	05/02/2013	1,500	88	89	55	160									34.57	24.15		10.42		
S-19	11/07/2013	170,000	1,200	7,300	3,800	22,000									34.57	k	k	k		
		,	.,,	.,3	-,	,														

Table 2 Page 21 of 27

Groundwater Data Former Shell Service Station 461 8th Street, Oakland, California

Well ID	Date	TPHg (µg/L)	B (µg/L)	T (µg/L)	E (µg/L)	Χ (μg/L)	MTBE 8020 (μg/L)	MTBE 8260 (μg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	EDC (µg/L)	EDB (µg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	SPH Thickness (ft)	GW Elevation (ft MSL)	DO (mg/L)	ORP (mV)
S-19	04/21/2014	32,000	580	1,400	940	4,300									34.57	24.95		9.62		
S-19	07/31/2014														34.57	24.22	0.20	10.51		
S-19	11/21/2014	25,000	420	880	550	2,500									34.57	24.40		10.17		
S-19	Well destroyed																			
S-20	11/07/2008														34.50	22.80		11.70		
S-20	11/11/2008	13,000 i	1,300 i	1,600 i	80 i	1,920 i									34.50	22.90		11.60	0.8	-39
S-20	11/11/2008	16,000 j	1,100 j	1,800 j	220 j	1,930 j									34.50	22.90		11.60	2.6	-64
S-20	01/05/2009	17,000	1,500	1,700	320	1,900									34.50	22.78		11.72		
S-20	02/12/2009	11,000	1,300	1,400	230	1,600									34.50	22.80		11.70	2.6	-64
S-20	03/12/2009	19,000	2,700	3,200	390	3,100									34.50	22.40		12.10		
S-20	04/09/2009	8,200	80	480	220	490									34.50	22.90		11.60	13.80	578
S-20	05/18/2009	21,000	970	1,500	630	4,800									34.50	22.42		12.08	4.58	197
S-20	07/23/2009	41,000	4,900	2,900	990	7,300									34.50	22.73		11.77	0.27	419
S-20	10/01/2009	1,800	140	39	33	39									34.50	23.00		11.50	0.85	533
S-20	11/09/2009	21,000	1,600	740	300	2,500									34.50	22.72		11.78	1.67	
S-20	12/01/2009	12,000	1,100	450	160	1,200									34.50	22.61		11.89	1.38	347
S-20	01/28/2010	20,000	2,000	1,600	260	2,000									34.50	22.51		11.99	4.40	
S-20	05/20/2010	4,300	1,100	110	26	61									34.50	22.90		11.60	8.96	555
S-20	06/22/2010	7,100	1,300	550	120	550									34.50	23.19		11.31	11.64	637
S-20	08/31/2010	9,600	1,800	1,400	230	580									34.50	23.13		11.37	0.94	529
S-20	12/29/2010	19,000	2,000	3,100	860	3,200									34.50	22.72		11.78	0.92	193
S-20	02/01/2011	26,000	3,900	7,100	1,300	5,800									34.50	22.04		12.46	1.03	390
S-20	04/25/2011	41,000	6,600	11,000	2,000	9,800									34.50	20.60		13.90	0.43	156
S-20	07/28/2011	34,000	4,200	5,300	1,400	6,300									34.50	20.30		14.20	1.25	-15
S-20	10/28/2011	17,000	1,500	1,900	1,000	3,400									34.50	20.78		13.72	1.28	431
S-20	05/07/2012	9,900	760	1,200	790	2,000									34.50	20.54		13.96	1.92	-106
S-20	12/11/2012	9,700	630	1,000	720	1,500									34.50	22.29		12.21	0.82/1.67	-11/-43
S-20	05/02/2013	4,500	380	220	240	300									34.50	24.50		10.00		
S-20	11/07/2013	4,000	420	290	60	330									34.50	25.24		9.26		
S-20	04/21/2014	3,800	480	350	50	350									34.50	25.15		9.35		
S-20	11/21/2014	4,800	560	340	98	430									34.50	24.54		9.96		
S-20	Well destroyed																			
S-21A	11/07/2008														35.81	23.73		12.08		
S-21A	11/11/2008	96,000 i	6,100 i	11,000 i	1,700 i	10,500 i									35.81	23.86		11.95	1.6	-42
S-21A	11/11/2008	87,000 j	6,300 j	13,000 j	1,700 j	10,300 j									35.81	23.86		11.95	1.8	-51

Table 2 Page 22 of 27

Groundwater Data Former Shell Service Station 461 8th Street, Oakland, California

Well ID	Date	TPHg (μg/L)	B (µg/L)	T (µg/L)	E (µg/L)	Χ (μg/L)	MTBE 8020 (μg/L)	MTBE 8260 (μg/L)	TBA (µg/L)	DIPE (μg/L)	ETBE (µg/L)	TAME (μg/L)	EDC (µg/L)	EDB (µg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	SPH Thickness (ft)	GW Elevation (ft MSL)	DO (mg/L)	ORP (mV)
S-21A	12/18/2008	17,000	3,700	1,200	170	47									35.80	23.91		11.89		
S-21A	01/05/2009	28,000	3,100	2,900	450	1,100									35.80	23.78		12.02		
S-21A	01/05/2009	9,700	2,100	2,900	450	<25									35.80	23.53		12.02		
S-21A	02/12/2009	19,000	3,100	2,500	330	500									35.80	23.83		11.97		
S-21A	03/12/2009	31,000	2,600	3,800	810	3,700									35.80	23.35		12.45		
S-21A	04/09/2009	7,800	700	750	130	<25									35.80	24.00		11.80	0.91	304
S-21A	05/18/2009	15,000	1,800	2,200	390	1,900									35.80	23.46		12.34	2.37	529
S-21A	07/23/2009	51,000	4,800	7,100	1,100	7,000									35.80	23.85		11.95	0.14	-3
S-21A	10/01/2009	18,000	2,300	2,200	310	2,400									35.80	24.06		11.74	7.92	575
S-21A	11/09/2009	41,000	3,500	5,800	600	4,800									35.80	23.73		12.07	0.34	
S-21A	12/01/2009	43,000	3,100	6,700	640	4,900									35.80	23.60		12.20	2.55	350
S-21A	01/28/2010	65,000	3,900	9,900	970	6,600									35.80	23.54		12.26	1.43	
S-21A	05/20/2010	6,000	670	760	110	150									35.80	23.92		11.88	1.37	541
S-21A	06/22/2010	16,000	690	2,000	370	2,300									35.80	23.87		11.93	2.33	439
S-21A	08/31/2010	5,000	230	420	190	990									35.80	24.13		11.67	0.73	392
S-21A	12/29/2010	5,100	500	430	230	810									35.80	23.84		11.96	0.95	464
S-21A	02/01/2011	9,200	840	750	370	1,300									35.80	23.18		12.62	0.84	110
S-21A	04/25/2011	22,000	3,800	4,000	960	4,800									35.80	21.71		14.09	0.36	336
S-21A	07/28/2011	27,000	3,400	3,600	1,000	4,300									35.80	21.48		14.32	1.02	223
S-21A	10/28/2011	20,000	2,400	3,000	840	3,600									35.80	21.65		14.15	2.06	213
S-21A	05/07/2012	12,000	2,200	1,900	510	2,100									35.80	21.90		13.90	1.01	107
S-21A	12/11/2012	13,000	3,300	2,200	610	1,300									35.80	22.60		13.20	1.35/1.49	82/80
S-21A	05/02/2013	6,800	1,000	470	270	480									35.80	25.48		10.32		
S-21A	11/07/2013	32,000	4,100	3,000	940	2,900									35.80	26.28		9.52		
S-21A	04/21/2014	Insufficient													35.80	26.29		9.51		
S-21A	11/21/2014	37,000	6,000	3,900	1,100	3,500									35.80	25.81		9.99		
S-21A	Well destroyed	d			·															
S-21B	11/07/2008														35.79	23.68		12.11		
S-21B	11/11/2008	3,200 i	49 i	300 i	93 i	510 i									35.79	23.80		11.99	0.4	-108
S-21B	11/11/2008	7,500 j	67 j	470 j	150 j	960 j									35.79	23.80		11.99	5.6	-135
S-21B	12/18/2008	5,300	36	310	120	770									35.76	23.72		12.04		
S-21B	01/05/2009	5,400	35	200	93	600									35.76	23.70		12.06		
S-21B	01/15/2009	3,300	30	150	78	470									35.76	23.43		12.33		
S-21B	02/12/2009	2,800	12	100	69	450									35.76	23.81		11.95		
S-21B	03/12/2009	2,300	9.4	72	50	320									35.76	23.32		12.44		
S-21B	04/09/2009	890	14	55	19	140									35.76	23.20		12.56	0.56	453

Table 2 Page 23 of 27

Groundwater Data Former Shell Service Station 461 8th Street, Oakland, California

Well ID	Date	TPHg	В	т	E	x	MTBE 8020	MTBE 8260	ТВА	DIPE	ETBE	TAME	EDC	EDB	тос	Depth to Water	SPH Thickness	GW Elevation	DO	ORP
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft)	(ft MSL)	(mg/L)	(mV)
S-21B	05/18/2009	390	6.8	14	12	27									35.76	23.24		12.52	1.62	458
S-21B	06/17/2009														35.76	23.40		12.36		
S-21B	07/23/2009	920	5.0	17	28	120									35.76	23.52		12.24	0.26	37
S-21B	10/01/2009	820	2.6	10	17	89									35.76	23.95		11.81	0.96	353
S-21B	01/28/2010	810	11	6.2	10	51									35.76	23.30		12.46		
S-21B	05/20/2010	120	1.4	2.6	2.0	2.7									35.76	23.46		12.30	1.63	206
S-21B	08/31/2010	500	0.81	3.4	6.9	32									35.76	24.04		11.72	0.72	45
S-21B	12/29/2010	310	< 0.50	1.9	4.5	21									35.76	23.59		12.17	0.40	191
S-21B	02/01/2011	270	< 0.50	2.0	4.0	16									35.76	23.08		12.68	0.51	10
S-21B	04/25/2011	250	< 0.50	1.9	4.6	16									35.76	21.86		13.90	1.43	72
S-21B	07/28/2011	270	< 0.50	0.84	3.0	11									35.76	21.32		14.44	2.86	127
S-21B	10/28/2011	220	< 0.50	0.53	2.3	9.2									35.76	21.52		14.24	0.96	153
S-21B	05/07/2012	170	< 0.50	0.62	1.5	7.6									35.76	22.04		13.72	0.75	100
S-21B	05/02/2013	<50	< 0.50	< 0.50	< 0.50	<1.0									35.76	25.59		10.17		
S-21B	04/21/2014	52	1.7	2.4	0.80	4.7									35.76	26.14		9.62		
S-21B	Well destroyed																			
S-22A	11/07/2008														35.08	22.91		12.17		
S-22A	11/11/2008	84,000 i	8,500 i	11,000 i	2,200 i	13,900 i									35.08	23.15		11.93	1.0	117
S-22A	11/11/2008	85,000 j	7,600 j	10,000 j	2,500 j	12,400 j									35.08	23.15		11.93	1.6	100
S-22A	12/18/2008	42,000	6,300	6,600	1,200	4,400									35.06	23.03		12.03		
S-22A	01/05/2009	56,000	4,500	5,300	1,200	6,400									35.06	23.03		12.03		
S-22A	01/15/2009	25,000	5,900	4,400	740	1,570									35.06	22.84		12.22		
S-22A	02/12/2009	43,000	6,700	6,600	1,200	5,000									35.06	23.15		11.91		
S-22A	03/12/2009	35,000	4,600	4,600	980	4,600									35.06	22.65		12.41		
S-22A	04/09/2009	22,000	120	1,900	680	3,400									35.06	22.88		12.18	8.41	556
S-22A	05/18/2009	25,000	4,700	1,300	590	3,700									35.06	22.83		12.23	2.46	539
S-22A	07/23/2009	40,000	5,100	4,800	700	4,900									35.06	23.01		12.05	0.18	167
S-22A	10/01/2009	12,000	1,400	600	88	500									35.06	23.06		12.00	4.08	523
S-22A	11/09/2009	18,000	2,700	2,000	190	1,300									35.06	23.14		11.92	1.74	
S-22A	12/01/2009	24,000	2,300	2,300	270	2,000									35.06	23.10		11.96	1.06	393
S-22A	01/28/2010	44,000	3,600	5,000	620	4,300									35.06	22.92		12.14	1.40	
S-22A	05/20/2010	3,100	38	<10	<10	<10									35.06	23.22		11.84	0.48	423
S-22A	06/22/2010	2,400	110	15	4.3	6.6									35.06	23.51		11.55	6.10	542
S-22A	08/31/2010	5,000	690	600	78	350									35.06	23.52		11.54	1.03	553
S-22A	12/29/2010	13,000	1,300	1,800	490	2,100									35.06	23.17		11.89	0.70	476
S-22A	02/01/2011	13,000	1,800	3,100	640	2,800									35.06	22.45		12.61	0.89	453

Table 2 Page 24 of 27

Groundwater Data Former Shell Service Station 461 8th Street, Oakland, California

Well ID	Date	TPHg	В	T (#1)	E (#)	X	MTBE 8020	MTBE 8260	ТВА	DIPE	ETBE	TAME	EDC	EDB	TOC	Depth to Water	SPH Thickness		DO	ORP
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft)	(ft MSL)	(mg/L)	(mV)
S-22A	04/25/2011	23,000	2,600	5,500	1,200	6,200									35.06	21.37		13.69	0.40	506
S-22A	07/28/2011	Well inacc	essible												35.06					
S-22A	10/28/2011	31,000	1,800	4,700	1,600	8,100									35.06	20.98		14.08	1.33	342
S-22A	05/07/2012	40,000	2,000	7,200	2,000	12,000									35.06	20.96		14.10	2.50	230
S-22A	12/11/2012	54,000	1,800	8,900	2,400	14,000									35.06	23.42		11.64	0.99/1.96	-14/-21
S-22A	05/02/2013	53,000	1,800	6,800	2,200	11,000									35.06	24.71		10.35		
S-22A	11/07/2013	Well inacc	essible												35.06					
S-22A	04/21/2014	Well inacc	essible												35.06					
S-22A	11/21/2014	Well inacc	essible												35.06					
S-22A	Well destroyed	d																		
S-22B	11/07/2008														35.15	23.06		12.09		
S-22B	11/11/2008	<50 i	<0.50 i	<1.0 i	<1.0 i	1.2 i									35.15	23.20		11.95	0.9	92
S-22B	11/11/2008	360 j	3.3 j	12 j	5.8 j	38 j									35.15	23.20		11.95	1.6	90
S-22B	12/18/2008	150	2.9	6.1	2.9	17.5									35.24	23.26		11.98		
S-22B	01/05/2009	110	1.9	5.0	2.6	11									35.24	28.12		7.12		
S-22B	01/15/2009	59	1.3	1.9	1.6	<1.0									35.24	22.90		12.34		
S-22B	02/12/2009	290	11	6.8	7.9	19									35.24	23.02		12.22		
S-22B	03/12/2009	390	4.4	4.6	3.8	12									35.24	22.86		12.38		
S-22B	04/09/2009	280	5.3	2.5	4.0	6.8									35.24	22.62		12.62	2.24	164
S-22B	05/18/2009	170	3.7	2.9	2.4	8.6									35.24	22.62		12.62	1.42	-171
S-22B	07/23/2009	160	8.9	5.7	3.8	12									35.24	22.65		12.59	0.15	28
S-22B	10/01/2009	300	2.4	1.0	1.2	<1.0									35.24	23.18		12.06	2.62	173
S-22B	01/28/2010	<50	< 0.50	<1.0	<1.0	<1.0									35.24	22.73		12.51		
S-22B	05/20/2010	230	< 0.50	<1.0	<1.0	<1.0									35.24	22.88		12.36	6.14	584
S-22B	08/31/2010	<50	0.57	<1.0	<1.0	<1.0									35.24	23.51		11.73	0.92	377
S-22B	12/29/2010	<50	< 0.50	<1.0	<1.0	<1.0									35.24	23.04		12.20	1.07	391
S-22B	02/01/2011	<50	0.55	< 0.50	< 0.50	<1.0									35.24	22.70		12.54	1.07	-3
S-22B	04/25/2011	<50	< 0.50	0.62	< 0.50	1.1									35.24	21.38		13.86	1.37	416
S-22B	07/28/2011	Well inacc	essible												35.24					
S-22B	10/28/2011	<50	< 0.50	<1.0	<1.0	<1.0									35.24	20.62		14.62	4.83	-12
S-22B	05/07/2012	<50	1.4	< 0.50	< 0.50	<1.0									35.24	21.08		14.16	2.84	127
S-22B	05/02/2013	<50	< 0.50	< 0.50	< 0.50	<1.0									35.24	24.68		10.56		
S-22B	04/21/2014	Well inacc	essible												35.24					
S-22B	Well destroyed	d																		
S-23	11/07/2008														35.77	23.28		12.49		

Table 2 Page 25 of 27

Groundwater Data Former Shell Service Station 461 8th Street, Oakland, California

Well ID	Date	TPHg	B (119/11)	T	E	X (ug/L)	MTBE 8020	MTBE 8260	TBA	DIPE	ETBE	TAME	EDC	EDB	TOC (ft MSL)	Depth to Water (ft TOC)	SPH Thickness	GW Elevation (ft MSL)	DO (mg/L)	ORP
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	` ,	` ,	(ft)	` ,	(mg/L)	(mV)
S-23	11/11/2008	8,800 i	640 i	610 i	82 i	1,260 i									35.77	23.58		12.19		
S-23	11/11/2008	6,400 j	520 j	640 j	34 j	760 j									35.77	23.58		12.19		
S-23	01/05/2009	830	63	98	14	58									35.75	23.51		12.24		
S-23	02/12/2009	3,400	160	320	55	430									35.75	23.62		12.13		
S-23	03/12/2009	4,600	210	460	71	610									35.75	23.03		12.72		
S-23	04/09/2009	2,700	180	95	33	<5.0									35.75	22.98		12.77	1.24	567
S-23	05/18/2009	3,000	350	440	79	300									35.75	23.18		12.57	19.77	503
S-23	07/23/2009	2,900	180	400	67	340									35.75	23.48		12.27	0.21	133
S-23	10/01/2009	790	40	24	5.4	<1.0									35.75	23.82		11.93	8.64	428
S-23	11/09/2009	3,200	84	330	90	400									35.75	23.51		12.24	0.28	
S-23	12/01/2009	1,800	47	180	50	190									35.75	23.31		12.44	2.49	472
S-23	01/28/2010	3,000	100	450	110	650									35.75	23.25		12.50	1.74	
S-23	05/20/2010	900	8.2	<5.0	<5.0	<5.0									35.75	23.80		11.95	3.76	607
S-23	06/22/2010	640	11	22	9.0	11									35.75	24.40		11.35	12.96	572
S-23	08/31/2010	710	14	45	34	110									35.75	23.95		11.80	1.25	322
S-23	12/29/2010	1,300	45	82	56	240									35.75	23.61		12.14	1.39	313
S-23	02/01/2011	1,300	51	110	72	270									35.75	22.92		12.83	1.30	107
S-23	04/25/2011	1,300	53	110	81	400									35.75	21.62		14.13	0.96	321
S-23	07/28/2011	1,400	43	79	74	320									35.75	21.28		14.47	0.92	209
S-23	10/28/2011	1,600	43	83	92	370									35.75	21.50		14.25	1.82	161
S-23	05/07/2012	870	50	40	66	220									35.75	21.59		14.16	2.20	254
S-23	05/02/2013	540	24	15	5.6	25									35.75	25.04		10.71		
S-23	04/21/2014	1,700	110	47	8.4	95									35.75	25.67		10.08		
S-26	09/20/2015														34.39	23.94		10.45		
S-26	09/29/2015	<50	3.0	1.4	1.7	5.0									34.39	24.00		10.39		
AS-1	12/17/2007														35.33	22.91		12.42		
AS-1	02/08/2008	130 f	1.1	3.4	<1.0	5.4		<1.0					< 0.50	<1.0	35.33	22.62		12.71		
AS-1	05/08/2008	<50 f	< 0.50	<1.0	<1.0	<1.0		<1.0					< 0.50	<1.0	35.33	27.78		7.55		
AS-1	Well destroyed	t																		
OW-1	04/09/2009	Well dry																		
OW-1	05/18/2009	Well dry																		
OW-1	Well destroyed	t																		

Notes:

Table 2 Page 26 of 27

Groundwater Data Former Shell Service Station 461 8th Street, Oakland, California

							MTBE	MTBE								Depth to	SPH	GW		
Well ID	Date	TPHg	В	T	E	X	8020	8260	TBA	DIPE	ETBE	TAME	EDC	EDB	TOC	Water	Thickness	Elevation	DO	ORP
		(µg/L)	(ft MSL)	(ft TOC)	(ft)	(ft MSL)	(mg/L)	(mV)												

TPHg = Total petroleum hydrocarbons as gasoline analyzed by EPA Method 8260B; prior to July 25, 2001, analyzed by EPA Method 8015 unless otherwise noted.

BTEX = Benzene, toluene, ethylbenzene, and total xylenes analyzed by EPA Method 8260B; prior to July 25, 2001, analyzed by EPA Method 8020.

MTBE = Methyl tertiary-butyl ether analyzed by method noted

TBA = Tertiary-butyl alcohol analyzed by EPA Method 8260B

DIPE = Di-isopropyl ether analyzed by EPA Method 8260B

ETBE = Ethyl tertiary-butyl ether analyzed by EPA Method 8260B

TAME = Tertiary-amyl methyl ether analyzed by EPA Method 8260B

EDC = 1,2-Dichloroethane analyzed by EPA Method 8260B.

EDB = 1,2-Dibromoethane analyzed by EPA Method 8260B.

TOC = Top of casing elevation, in feet relative to mean sea level

SPH = Separate-phase hydrocarbon

GW = Groundwater

DO = Dissolved oxygen (pre-purge/post purge reading)

ORP = Oxygen redox potential (pre-purge/post purge reading)

μg/L = Micrograms per liter

ft = Feet

MSL = Mean sea level

mg/L = Milligrams per liter

mV = Millivolts

<x = Not detected at reporting limit x

--- = Not analyzed or available

(D) = Duplicate sample

- a = Included in xylenes analysis
- b = Analyzed outside of EPA recommended holding time
- c = Depth to water measured from TOC; elevation unknown.
- d = Grab sampled
- e = Casing broken; TOC unknown.
- f = Analyzed by EPA Method 8015B (M)
- g = The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standard.
- h = Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
- i = Pre-purge sample
- j = Post-purge sample
- k = SPH present; well purged prior to gauging with interface probe
- I = Concentration reported is partially due to the presence of discrete peak of toluene.
- m = Concentration reported is partially due to the presence of discrete peak of m,p-xylenes.
- n = Concentration reported is partially due to the presence of discrete peaks of benzene, toluene, m,p-xylenes.

Table 2 Page 27 of 27

Groundwater Data Former Shell Service Station 461 8th Street, Oakland, California

							MTBE	MTBE								Depth to	SPH	GW		
Well ID	Date	TPHg	В	Т	E	X	8020	8260	TBA	DIPE	ETBE	TAME	EDC	EDB	TOC	Water	Thickness	Elevation	DO	ORP
		(µg/L)	(ft MSL)	(ft TOC)	(ft)	(ft MSL)	(mg/L)	(mV)												

When SPHs are present, groundwater elevation is adjusted using the relation: Corrected groundwater elevation = TOC - Depth to Water + (0.8 x Hydrocarbon Thickness).

Beginning July 18, 2002, well elevations measured from TOC

Site wells surveyed March 5, 2002 by Virgil Chavez Land Surveying

Site wells surveyed December 18, 2007 by Virgil Chavez Land Surveying

Wells S-14R and S-19 through S-23 surveyed on November 11, 2008 by Virgil Chavez Land Surveying

Well S-5 surveyed on November 11, 2008 by Virgil Chavez Land Surveying

Well S-5 surveyed on October 8, 2009 by Virgil Chavez Land Surveying

Table 3 Page 1 of 2

Cumulative

Separate-Phase Hydrocarbon Removal Data Former Shell Service Station 461 8th Street, Oakland, California

Well ID	Date	SPH measured with Interface Probe (feet)	SPH calculated volume (ml)	SPH removed by bailer/ skimmer (ml)	SPH removed by bailer/ skimmer (pounds)	Cumulative SPH removed by bailer/ skimmer (pounds)	SPH- absorbent sock initial weight (pounds)	SPH- absorbent sock final weight (pounds)	SPH removed by SPH- absorbent sock (pounds)	SPH removed by SPH- absorbent socks (pounds)
S-5	11/07/2013	0.08	197	0	0.00	0.00				0.00
S-5	01/31/2014	0.91	2239	0	0.00	0.00				0.00
S-5	03/14/2014	1.15	2829	0	0.00	0.00				0.00
S-5	04/21/2014	1.14	2805	7571	12.43	12.43	0.72	2.08	1.36	1.36
S-5	07/31/2014	0.29	713	713	1.17	13.60	0.72	1.94	1.22	2.58
S-5	09/22/2014	0.15	369	369	0.61	14.21	0.31	0.68	0.37	2.95
S-5	10/03/2014	0.00	0	0	0.00	14.21	0.38	2.00	1.62	4.57
S-5	10/10/2014	0.00	0	0	0.00	14.21	0.36	0.60	0.24	4.81
S-5	10/17/2014	0.00	0	0	0.00	14.21	0.40	0.58	0.18	4.99
S-5	10/24/2014	0.00	0	0	0.00	14.21	0.42	0.50	0.08	5.07
S-5	11/21/2014	0.00	0	0	0.00	14.21	0.38	0.55	0.17	5.24
S-5	12/23/2014	0.00	0	0	0.00	14.21	0.38	1.08	0.70	5.94
S-5	01/22/2015	0.00	0	0	0.00	14.21			0.00	5.94
S-5	07/17/2015	0.00	0	0	0.00	14.21			0.00	5.94
S-13	11/07/2013	0.00	0	0	0.00	0.00				0.00
S-13	01/31/2014			0	0.00	0.00				0.00
S-13	03/14/2014	0.25	615	0	0.00	0.00				0.00
S-13	04/21/2014	0.39	959	960	1.58	1.58	0.72	1.78	1.06	1.06
S-13	07/31/2014	0.00	0	0	0.00	1.58	0.72	1.52	0.80	1.86
S-13	09/22/2014	0.00	0	0	0.00	1.58	0.29	0.36	0.07	1.93
S-13	10/03/2014	0.00	0	0	0.00	1.58	0.38	0.48	0.10	2.03
S-13	10/10/2014	0.00	0	0	0.00	1.58	0.40	0.45	0.05	2.08
S-13	10/17/2014	0.00	0	0	0.00	1.58	0.42	0.48	0.06	2.14
S-13	10/24/2014	Well inaccessible)	0	0.00	1.58			0.00	2.14
S-13	11/21/2014	0.00	0	0	0.00	1.58	0.42	0.50	0.08	2.22

Table 3 Page 2 of 2

Separate-Phase Hydrocarbon Removal Data Former Shell Service Station 461 8th Street, Oakland, California

Well ID	Date	SPH measured with Interface Probe (feet)	SPH calculated volume (ml)	SPH removed by bailer/ skimmer (ml)	SPH removed by bailer/ skimmer (pounds)	Cumulative SPH removed by bailer/ skimmer (pounds)	SPH- absorbent sock initial weight (pounds)	SPH- absorbent sock final weight (pounds)	SPH removed by SPH- absorbent sock (pounds)	Cumulative SPH removed by SPH- absorbent socks (pounds)
S-13	12/23/2014	0.00	0	0	0.00	1.58	0.38	0.52	0.14	2.36
S-13	01/22/2015	0.00	0	0	0.00	1.58			0.00	2.36
S-19	11/07/2013	0.01	25	0	0.00	0.00				0.00
S-19	01/31/2014			0	0.00	0.00				0.00
S-19	03/14/2014			0	0.00	0.00				0.00
S-19	04/21/2014	0.00	0	0	0.00	0.00				0.00
S-19	07/31/2014	0.02	49	49	0.08	0.08				0.00
S-19	09/22/2014			0	0.00	0.08				0.00
S-19	10/03/2014			0	0.00	0.08				0.00
S-19	10/10/2014			0	0.00	0.08				0.00
S-19	10/17/2014			0	0.00	0.08				0.00
S-19	10/24/2014			0	0.00	0.08				0.00
S-19	11/21/2014	0.00	0	0	0.00	0.08	0.31	1.52	1.21	1.21
S-19	12/23/2014			0	0.00	0.08				0.00

SPH removed by bailer/skimmer this event:	0.00	SPH removed by ORCs this event:	0.00
Cumulative SPH removed by bailer/skimmer:	15.87	Cumulative SPH removed by ORCs:	9.51

Total SPH removed this event (pounds): 0.00

Total SPH removed (pounds): 25.38

Notes:

SPH = Separate-phase hydrocarbon ORC = PIG SPH-absorbent sock

ml = Milliliters

Appendix A Permits

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 07/29/2015 By jamesy Permit Numbers: W2015-0660 to W2015-0679 Permits Valid from 09/08/2015 to 09/25/2015

Application Id: 1434997891386 City of Project Site:Oakland

Site Location: 461 8th Street
Project Start Date: 09/08/2015
Completion Date:09/25/2015

Assigned Inspector: Contact Steve Miller at (510) 670-5517 or stevem@acpwa.org

Applicant: GHD - Scott Lewis Phone: 707-758-1660

10969 Trade Center Drive, Suite 107, Rancho Cordova, CA 95670

Property Owner: Signature Land Advisor, Inc. Phone: --

2201 Broadway #609, Okland, CA 94612

Client: Equlion Enterprises LLC dba Shell Products US Phone: --

20945 South Wilmington Avenue, Carson, CA 90810

Contact: Scott Lewis **Phone:** 707-933-2369 **Cell:** 707-249-0697

Total Due: \$7808.00

Receipt Number: WR2015-0373 Total Amount Paid: \$7808.00
Payer Name: Conestoga-Rovers or Paid By: CHECK PAID IN FULL

Assoicates or GHD after 7/1/15

Works Requesting Permits:

Well Destruction-Monitoring - 19 Wells

Driller: Cascade Drilling L.P. - Lic #: 938110 - Method: other Work Total: \$7543.00

Specifications

Permit #	Issued Date	Expire Date	Owner Well	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth	State Well #	Orig. Permit #	DWR #
W2015- 0660	07/29/2015	12/07/2015	IP-1	8.00 in.	2.00 in.	8.00 ft	20.00 ft	1S/4W35L	W2008- 0395	e0087038
W2015- 0661	07/29/2015	12/07/2015	IP-2	8.00 in.	2.00 in.	8.00 ft	20.00 ft	1S/4W35L	W2008- 0396	e0087039
W2015- 0662	07/29/2015	12/07/2015	IP-3	8.00 in.	2.00 in.	8.00 ft	20.00 ft	1S/4W35L	W2008- 0397	e0087040
W2015- 0663	07/29/2015	12/07/2015	OW-1	8.00 in.	2.00 in.	11.00 ft	23.00 ft	1S/4W35L	W2008- 0295	e060373
W2015- 0664	07/29/2015	12/07/2015	S-10	10.00 in.	4.00 in.	19.00 ft	36.00 ft	1S/4W35L	No Records	No Records
W2015- 0665	07/29/2015	12/07/2015	S-12	10.00 in.	4.00 in.	18.00 ft	35.00 ft	1S/4W35L	No Records	No Records
W2015- 0666	07/29/2015	12/07/2015	S-13	10.00 in.	4.00 in.	16.00 ft	33.00 ft	1S/4W35L	No Records	No Records
W2015- 0667	07/29/2015	12/07/2015	S-14R	10.00 in.	4.00 in.	18.00 ft	35.00 ft	1S/4W35L	W2008- 0598	e066216
W2015- 0668	07/29/2015	12/07/2015	S-17	8.00 in.	2.00 in.	17.00 ft	34.00 ft	1S/4W35L	W2008- 0296	e060373
W2015- 0669	07/29/2015	12/07/2015	S-18	8.00 in.	2.00 in.	16.00 ft	33.00 ft	1S/4W35L	W2008- 0297	e060373
W2015- 0670	07/29/2015	12/07/2015	S-19	10.00 in.	4.00 in.	18.00 ft	35.00 ft	1S/4W35L	W2008- 0599	e067756
W2015- 0671	07/29/2015	12/07/2015	S-20	10.00 in.	4.00 in.	18.00 ft	35.00 ft	1S/4W35L	W2008- 0600	e067757
W2015- 0672	07/29/2015	12/07/2015	S-21A	10.00 in.	4.00 in.	10.00 ft	27.00 ft	1S/4W35L	W2008- 0601	e067741

W2015- 0673	07/29/2015	12/07/2015	S-21B	10.00 in.	4.00 in.	23.00 ft	40.00 ft	1S/4W35L	W2008- 0602	e067742
W2015- 0674	07/29/2015	12/07/2015	S-22A	10.00 in.	4.00 in.	10.00 ft	27.00 ft	1S/4W35L	W2008- 0603	e069049
W2015- 0675	07/29/2015	12/07/2015	S-22B	40.00 in.	4.00 in.	23.00 ft	40.00 ft	1S/4W35L	W2008- 0604	e069050
W2015- 0676	07/29/2015	12/07/2015	S-23	10.00 in.	4.00 in.	18.00 ft	35.00 ft	1S/4W35L	W2008- 0605	e069051
W2015- 0677	07/29/2015	12/07/2015	S-8	10.00 in.	4.00 in.	13.00 ft	30.00 ft	1S/4W35L	No Records	No Records
W2015- 0678	07/29/2015	12/07/2015	S-9	10.00 in.	4.00 in.	13.00 ft	30.00 ft	1S/4W35L	No Records	No Records

Specific Work Permit Conditions

- 1. Drilling Permit(s) can be voided/ cancelled only in writing. It is the applicant's responsibility to notify Alameda County Public Works Agency, Water Resources Section in writing for an extension or to cancel the drilling permit application. No drilling permit application(s) shall be extended beyond ninety (90) days from the original start date. Applicants may not cancel a drilling permit application after the completion date of the permit issued has passed.
- 2. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 3. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Include permit number and site map.
- 4. Applicant shall submit the copies of the approved encroachment permit to this office within 10 days.
- 5. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost and liability in connection with or resulting from the exercise of this Permit including, but not limited to, property damage, personal injury and wrongful death.
- 6. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 7. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.
- 8. Remove the Christy box or similar structure. Destroy well(s) by overdrilling the upper 5ft. below ground surface (bgs) and then tremie grouting with neat cement. Allow the sealing material to spill over the top of the casing to fill any annular space between casing and soil. After the seal has set, backfill the remaining hole by approved encroachment permit concrete material and asphalt material by Caltrans Spec or County/City Codes.

9. Remove the Christy box or similar structure.

Destroy well by grouting neat cement with a tremie pipe or pressure grouting (25 psi for 5min.) to the bottom of the well and by filling with neat cement to three (3-5) feet below surface grade. Allow the sealing material to spill over the top of the casing to fill any annular space between casing and soil.

After the seal has set, backfill the remaining hole with concrete or compacted material to match existing conditions.

- 10. Remove the Christy box or similar structure. Pressure Grout with Cement (Less than 30 ft in depth). After the seal has set, backfill the remaining hole with concrete or compacted material to match existing.
- 11. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 12. Remove well by excavation. After the seal has set, backfill the remaining hole with concrete or compacted material to match existing.
- 13. Electronic Reporting Regulations (Chapter 30, Division 3 of Title 23 & Division 3 of Title 27, CCR) require electronic submission of any report or data required by a regulatory agency from a cleanup site. Submission dates are set by a Regional Water Board or by a regulatory agency. Once a report/data is successfully uploaded, as required, you have met the reporting requirement (i.e. the compliance measure for electronic submittals is the actual upload itself). The upload date should be on or prior to the regulatory due date.
- 14. Remove the Christy box or similar structure. Tremie Grout with Cement (More than 30 ft in depth). After the seal has set, backfill the remaining hole with concrete or compacted material to match existing.

Work Total: \$265.00

Well Destruction-Vapor monitoring well - 11 Wells

Driller: Cascade Drilling L.P. - Lic #: 938110 - Method: other

Specifications

W2015-	Issued Date 07/29/2015	Expire Date 12/07/2015	Owner Well Id VP-10	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth	State Well #	•	DWR #
	07/29/2015	12/07/2015	V/D 10						Permit #	
0679			VF-10	3.50 in.	0.25 in.	9.00 ft	10.00 ft		W2011- 0578	e0140919
W2015- 0679	07/29/2015	12/07/2015	VP-11	3.50 in.	0.25 in.	9.00 ft	10.00 ft	1S4W35L	W2011- 0578	e0140917
W2015- 0679	07/29/2015	12/07/2015	VP-12	3.50 in.	0.25 in.	9.00 ft	10.00 ft		W2011- 0578	e0140920
W2015- 0679	07/29/2015	12/07/2015	VP-2	3.50 in.	0.25 in.	4.00 ft	5.00 ft	1S4W35L	W2007- 1236	e065279
W2015- 0679	07/29/2015	12/07/2015	VP-3	3.50 in.	0.25 in.	4.00 ft	5.00 ft	1S4W35L	W2007- 1236	e065280
W2015- 0679	07/29/2015	12/07/2015	VP-4	3.50 in.	0.25 in.	4.00 ft	5.00 ft	1S4W35L	W2007- 1236	e065281
W2015- 0679	07/29/2015	12/07/2015	VP-5	3.50 in.	0.25 in.	9.00 ft	10.00 ft		W2011- 0578	e0140906
W2015- 0679	07/29/2015	12/07/2015	VP-6	3.50 in.	0.25 in.	9.00 ft	10.00 ft	1S4W35L	W2011- 0578	e0140914
W2015- 0679	07/29/2015	12/07/2015	VP-7	3.50 in.	0.25 in.	9.00 ft	10.00 ft		W2011- 0578	e0140915
W2015-	07/29/2015	12/07/2015	VP-8	3.50 in.	0.25 in.	9.00 ft	10.00 ft	1S4W35L	W2011-	e0140918

0679 0578

0679 0578

Specific Work Permit Conditions

- 1. Drilling Permit(s) can be voided/ cancelled only in writing. It is the applicant's responsibility to notify Alameda County Public Works Agency, Water Resources Section in writing for an extension or to cancel the drilling permit application. No drilling permit application(s) shall be extended beyond ninety (90) days from the original start date. Applicants may not cancel a drilling permit application after the completion date of the permit issued has passed.
- 2. Compliance with the above well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate state reporting-requirements related to well destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days, including permit number and site map.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.
- 5. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 6. No changes in construction procedures or well type shall change, as described on this permit application. This permit may be voided if it contains incorrect information.
- 7. Applicant shall submit the copies of the approved encroachment permit to this office within 10 days.
- 8. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 9. Remove the Christy box or similar structure. Overdrill or clean out to original depth. After the seal has set, backfill the remaining hole with concrete or compacted material to match existing.
- 10. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 11. Vapor monitoring wells constructed with tubing shall be decomissioned by complete removal of tubing, grout seal, and fill material of sand or bentonite. Fill material may be removed by hand auger if material can be removed completely.

Vapor monitoring wells constructed with pvc pipe less than 2" shall be overdrilled to total depth.

Vapor monitoring wells constructed with 2" pvc pipe or larger may be grouted by tremie pipe (any depth) or pressure
grouted (less than 30', 25 psi for 5 min).

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 08/13/2015 By jamesy Permit Numbers: W2015-0767 to W2015-0769

Permits Valid from 09/07/2015 to 09/30/2015

Application Id: 1438278519776 City of Project Site:Oakland

Site Location: 461 8th Street, Oakland CA

Installing 3 monitoring wells-2 in the parking lot and 1 in the sidewalk in the City's Right of way

Project Start Date: 09/07/2015 Completion Date:09/30/2015

Assigned Inspector: Contact Steve Miller at (510) 670-5517 or stevem@acpwa.org

Applicant: GHD Services, Inc. - Peter Schaefer **Phone:** 510-420-3319

5900 Hollis Street, Suite A, Emeryville, CA 94608

Property Owner: Signature Land Advisors, Inc. 2201 Broadway, Suite 604, Oakland, CA 94612

Client: Equilon Enterprises dba Shell Oil Products US Phone: --

(Perry Pineda)

20945 S Wilmington Ave, Carson, CA 90815

Contact: Cristina Alcon Phone: 916-889-8915

Cell: --

 Total Due:
 \$1191.00

 Receipt Number: WR2015-0401
 Total Amount Paid:
 \$1191.00

Payer Name : GHD Services, Inc. Paid By: CHECK PAID IN FULL

Works Requesting Permits:

Well Construction-Monitoring-Monitoring - 3 Wells

Driller: Cascade Drilling L.P. - Lic #: 938110 - Method: hstem Work Total: \$1191.00

Specifications

Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2015- 0767	08/13/2015	12/06/2015	S-24	8.00 in.	2.00 in.	16.00 ft	35.00 ft
W2015- 0768	08/13/2015	12/06/2015	S-25	8.00 in.	2.00 in.	16.00 ft	35.00 ft
W2015- 0769	08/13/2015	12/06/2015	S-26	8.00 in.	2.00 in.	16.00 ft	35.00 ft

Specific Work Permit Conditions

- 1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 2. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.
- 3. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities

or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

- 4. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Include permit number and site map.
- 5. Applicant shall submit the copies of the approved encroachment permit to this office within 10 days.
- 6. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 7. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.
- 8. Minimum surface seal thickness is two inches of cement grout placed by tremie.
- 9. Minimum seal (Neat Cement seal) depth for monitoring wells is 5 feet below ground surface(BGS) or the maximum depth practicable or 20 feet.
- 10. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 11. Electronic Reporting Regulations (Chapter 30, Division 3 of Title 23 & Division 3 of Title 27, CCR) require electronic submission of any report or data required by a regulatory agency from a cleanup site. Submission dates are set by a Regional Water Board or by a regulatory agency. Once a report/data is successfully uploaded, as required, you have met the reporting requirement (i.e. the compliance measure for electronic submittals is the actual upload itself). The upload date should be on or prior to the regulatory due date.

250 FRANK H. OGAWA PLAZA, SUITE 4314 • OAKLAND, CALIFORNIA 94612-2032

Oakland Public Works Department

(510) 238-3171

Bureau of Engineering & Construction - Right of Way Management

FAX (510) 238-6412

TDD (510) 238-3254

Aug 28, 2015

Eighth Street Investors, LLC 2335 Broadway, Suite 200 Oakland, California 94612,

RE: 459 8th Street, ENMI15157, indenture agreement

Dear property owner:

The indenture agreement to allow installation of one (1) one new monitoring well, S-26, on Broadway adjacent to 459 8th Street is enclosed. Before the agreement becomes effective, the person(s) having the legal authority to do so, must sign and properly notarize this original document with a legible notary acknowledgement slip, and then return the document to this office to the attention of Chris Bacina for recordation with the County of Alameda.

There are \$601.29 fees due for overtime needed to expedite the application. See invoice on reverse. Please arrange to pay these fees as soon as possible.

This indenture agreement is administrative only. Additional permit(s) required to do the work described. Also, additional permitting and fees of these individual lots may be required in the future. If you have any questions, please call Chris Bacina at 510-238-3759.

Sincerely,

Gus Amirzehni, P.E.

Division Manager

Public Works Department,

Bureau of Engineering & Construction

Enclosure

Permit ID #: ENMI15157 Invoice #: 2128708

Invoice Date: 08/25/2015 07:48:15

Period Fee Item

FINAL Overtime Plan Check Fee **FINAL** Records Management Fee FINAL

Technology Enhancement Fee

Qty Fee 2 \$524.00 0 \$49.78 \$27.51 0

Total Fee: \$601.29

250 FRAN	NK H. OGAW	A PLAZA •	2ND FLOOR	OAKLAI	ND, CA 94612	
Planning and Buildi www.oaklandnet.c						PH: 510-238-3891 FAX: 510-238-2263 TDD: 510-238-3254
Permit No:	X1502039	OPW - Excava	ation			Filed Date: 9/8/2015
Job Site:	459 8TH ST				Schedule Inspection by o	alling: \$20-228-2444
Parcel No:	001 02010150	00		For SL: X: and CO	GS permits see SPECI	AL NOTE below
District:			L			***************************************
Project Description	If working wit Inspector pric Permit valid 9 Separate Obs Set up PWA P Re: Proposal 1 sq.ft. and app	thin 25' feet of a monul or to starting excavation 0 days. truction permit require RE-CON prior to start w for a new five story bui	is on Broadway adjacent ment you must comply in: minimum \$5,800.00 f and to reserve/block park work: 510-238-3651. Iding contianing 50 dwe re feet of ground floor o	with State Law 8771, ine for non-complian ing lane. Illing units, 83 bedroo	ce.	The second secon
	<u>Name</u>	Applicant	<u>Address</u>		<u>Phone</u>	License #
wner:	EIGHTH STREET INVE	ESTORS,	2335 BROADWAY OA	KLAND, CA	510-251-9270	. +1 <u>A</u> .5
Contractor- Employee:		Х				
General Inform Excavation Type Date Street Last Worker's Compe	e: Private Party : Resurfaced: ensation Company Name: ensation Policy #: art Date:	Spe	on/NA cial Paving Detail Required		Tree Removal I Holiday Restriction (Nov 1 on Area (7AM-9AM) And (4PI	- Jan 1):
TOTAL FEES TO Application Fee Technology Enhal	BE PAID AT FILING: \$		- Private Party Type	\$309.00 Rec	ords Management Fee	\$36.01
Plans Checked By		Date		Permit Issued By	Ø.	Date 9.8

SPECIAL NOTE

- For SL; X; and CGS permits Call PWA INSPECTION prior to start: 510-238-3651 or visit 4th FLOOR.
 - SL and X permits valid 90 days; CGS permits valid 30 days

Permit No: X1502039

Parcel No: 001 020101500 Job Site: 459 8TH ST

LICENSED CONTRACTOR'S DECLARATION

I hereby affirm under penalty of perjury that I am licensed under provisions of Chapter 9 (commencing with Section 7000) of Division 3 of the Business and Professions Code, and my license is in full force and effect.

CONSTRUCTION LENDING AGENCY DECLARATION I hereby affirm under penalty of perjury that there is a

construction lending agency for the performance of the work for which this permit is issued (Section 8172, Civil Code).
Lender's Name
Branch Designation
Lender's Address
WORKERS' COMPENSATION DECLARATION
WARNING: FAILURE TO SECURE WORKERS' COMPENSATION COVERAGE IS UNLAWFUL, AND SHALL SUBJECT AN EMPLOYER TO CRIMINAL PENALTIES AND CIVIL FINES UP TO ONE HUNDRED THOUSAND DOLLARS (\$100,000), IN ADDITION TO THE COST OF COMPENSATION, DAMAGES AS PROVIDED FOR IN SECTION 3706 OF THE LABOR CODE, INTEREST, AND ATTORNEY'S FEES.
I hereby affirm under penalty of perjury one of the following declarations:
☐ I have and will maintain a certificate of consent to self-insure for workers' compensation, issued by the Director of Industrial Relations as provided for by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued.
☐ I have and will maintain workers' compensation insurance, as required by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued.
I certify that, in the performance of the work for which this permit is issued, I shall not employ any person in any manner so as to become subject to the workers' compensation laws of California, and agree that, if I should become subject to the

RRP ACKNOWLEDGMENT

workers' compensation provisions of Section 3700 of the

Code, I shall forthwith comply with those provisions.

EPA's Lead Renovation, Repair and Painting Rule requires that firms performing renovation, repair, and disturb lead-based paint in homes, projects that facilities and pre-schools built before 1978 have their certified by EPA or use certified renovators who are trained by EPA-approved training providers and follow lead-safe work practices. As the contractor preparing to do work on a Pre-1978

building, I have read the explanation of the RRP Rule and will ensure that any paint disturbing work will be done by or supervised by an RRP certified individual(s). Failure to follow this rule may result in enforcement action by the EPA. For additional information on complying with lead safety requirements, contact the Alameda County Healthy Homes Department at (510) 567-8280 or 1-800-253-2372 or visit http://www.achhd.org.

HAZARDOUS MATERIALS DECLARATION

- I hereby affirm that the intended occupancy \(\square\) WILL \(\square\) WILL NOT use, handle or store any hazardous, or acutely hazardous, materials. (Checking "WILL" acknowledges that Sections 25505, 25533, and 25534 of the Health and Safety Code, as well as filing instructions were made available to you).
- I HEREBY CERTIFY THE FOLLOWING: That I have read this document; that the above information is correct; and that I have truthfully affirmed all applicable declarations contained in this document. I agree to comply with all city and county ordinances and state laws relating to building construction, and hereby authorize representatives of this city to enter upon the above-mentioned property for inspection purposes.
- I hereby agree to save, defend, indemnify and keep harmless the City of Oakland and its officials, officers, employees, representatives, agents, and volunteers from all actions, claims, demands, litigation, or proceedings, including those for attorneys' fees, against the City in consequence of the granting of this permit or from the use or occupancy of the public right-of-way, public easement, or any sidewalk, street or sub-sidewalk or otherwise by virtue thereof, and will in all things strictly comply with the conditions under which this permit is granted I further certify that I am the owner of the property involved in this permit or that I am fully authorized by the owner to access the property and perform the work authorized by this permit.

Name	
Signature	
☐ Contractor, or ☐ Contractor's Agent	Date

No activities related to the approved work, including NOTICE: storage/use of materials, is allowed within the public right-of-way without an encroachment permit. Dust control measures shall be used throughout all phases of construction.

250 FRANK H. OGAWA PLAZA - 2ND FLOOR - OAKLAND, CA 94612

Planning and Building Department www.oaklandnet.com

PH: 510-238-3891

FAX: 510-238-2263

TDD: 510-238-3254

Permit No:

OB1500901

Obstruction

Filed Date: 9/8/2015

Job Site:

459 8TH ST

Schedule Inspection by calling: 510-238-3444

Parcel No:

001 020101500

District:

Project Description:

Block 25' section of sidewalk per TSD-15-0155 to install one new monitoring well S-26 on

Broadway adjacent to 459 8th Street. Date to be determined.

If working within 25' feet of a monument you must comply with State Law 8771, contact the

Inspector prior to starting excavation: minimum \$5,800.00 fine for non-compliance.

Set up PWA PRE-CON prior to start work: 510-238-3651.

Re: Proposal for a new five story building contianing 50 dwelling units, 83 bedrooms 38,250

sq.ft. and approximately 5,000 square feet of ground floor commercial.

Related Permits:

X1502039

	<u>Name</u>	<u>Applicant</u>	Address	<u>Phone</u>	License #
Owner:	EIGHTH STREET INVESTORS		2335 BROADWAY OAKLAND, CA	510-251-9270	
Contractor:	CASCADE DRILLING L P		P O BOX 1184 WOODINVILLE, WA	(425) 485-8908	938110
Owner-Agent:	PETER SCHAEFER	X	5900 HOLLIS ST EMERYVILLE, CA	510 420-3319	

PERMIT DETAILS: Building/Public Use/Activity/Obstructions

Work Information

Start Date: 09/14/2015

Obstruction Permit Type:

Short Term (Max 14 Days)

End Date: 09/14/2015

Number of Meters (Metered Area):

Length Of Obstruction (Unmetered Area): 25

TOTAL FEES TO BE PAID AT FILING: \$99.84

Application Fee

\$70.00

Records Management Fee

\$8.27 **Short Term Permits** \$17.00

Technology Enhancement Fee

\$4.57

Permit Issued By

Plans Checked By Date

Finalized By

Date

JOB SITE

For SL; X; and CGS permits see **SPECIAL NOTE** below

APPLICATION FOR TRAFFIC CONTROL PLAN

ity of Oakland

Public Works Agency **Transportation Services Division**

Transportation Services Fee: \$123/hour (Check or Money Order Only)

	Check the box that apply:
<u>~</u>	New Application (Utility, Excavation)
	Renewal Application
	New Development w/ Mgmt Plan
	City of Oakland Project

Please Read the Following Statements Below:

- 1. Processing time for a Traffic Control Application is a minimum of 10 business days.
- 2. Traffic Control review is scheduled only on Tuesdays and Thursdays from 8:30am thru 11:30am by appointment only.
- 3. A scheduled appointment by phone or email with a TSD staff member is necessary to discuss any and all traffic control application and plans.
- **4.** Please **call ahead** to confirm that the traffic control application is ready for pickup @ 510-238-3467.
- 5. Businesses and residences adjacent to the work area must be provided 72 hour advance notice.
- 6. A completed traffic control application may be faxed to (510) 238-7415.
- 7. Incomplete traffic control applications will not be processed and returned to applicant immediately.
- 8. The initial approval for a traffic control plan is 1 month, the renewal submittal may be approved up to 3 months.
- 9. The traffic control provision dates cannot be changed or extended if work has already commenced.
- 10. After receiving TSD approval of the traffic control application, contractor shall proceed to the Permit Center to "Obstruction

obtain an obstru	uction permit.		· ·		•		gangi dan sirk	nicht einen
Contact Person:	Peter Schaefer				Phone:	(510) 420-331	997341	<u> </u>
Name of Company:	GHD Services Inc.			À.	Fax:	(510) 420-917	10 116 - 1116 - 1110	Carly Fee
Address of Company:	5900 Hollis Street, Suite A,	Emeryville,	CA 94608				e e e e e e e e e e e e e e e e e e e	·
Describe type of work	to be perfo <u>rmed:</u>	Installing of	one groundwater r	monitoring well in th	ne sidewalk. Ins	stallation will take	a single day.	
Work is associated v	vith Equilon Enterprises LLC	dba Shell Oil	Products US's en	vironmental investi	gation of the fo	ormer Shell servic	e station located at 46°	1 8th St., Oakland
							<u> </u>	
Location of work:	Boadway		Between*	7th Street	Ar	nd* 8th Stree	a regard of the equ	Killy Cold Letter
Work date (s):	9/8/15 to 9/14/15	✓ Mon-Fri	Sat-Sun	Work Hours:	9:00 AM	to	4:00 PM	. (7

Please Follow these Steps in Order to Complete a Traffic Control Plan:

- A. Drawing Area: The full width of all streets adjacent to the site MUST be included in the drawing. Include the entire block in which your work is located for every street that is adjacent to your site.
- B. Include Street Names, Direction of Traffic on the Street, and North Arrow
- C. Show Existing Number of Lanes in all Directions (with any pavement arrows)
- D. Check the Box(s) that Apply: All checked items MUST be shown on the drawing

. 0110010	are box(o) that Appry.	7 th officered ficting into	O I DC 3110WIT	on the drawing
✓	Lane Closure		Use of Median	☐ Sidewalk Closure

- Street Closures (must provide detour plan) Use Parking Lane (must provide pedestrian walk way)
- E. Show All Dimensions of street widths (curb to curb), lane widths, sidewalk widths, and work area dimension. (Note: Traffic Control Application / Plans missing the above information will not be accepted or processed.)
- F. Show the Name and Locations of all advanced warning devices, flaggers, delineators, warning and construction signs to be used.

RENEWAL PROCESS: Resubmit a completed Traffic Control Application with the old approved plan (with the necessary modifications / changes to the plans).

FOR HELP in preparing a traffic control plan, see Temporary Traffic Control Pocket Reference Guide 2007, Work Area Traffic Control Handbook 2006, or the California Manual on Uniform Traffic Control (MUTCD) 2003, Chapter 6. http://www.dot.ca.gov/hq/traffops/signtech/mutcdsupp/ca_mutcd.htm

or City website: http://www.oaklandpw.com/Page548.aspx

Art of the Barber

^{*} Name the streets that are the boundaries of your work area.

SPECIAL PROVISION 7-10.1 TRAFFIC REQUIREMENTS

Proj	ect Name:	
Proj	ect Number: TSD-15-0175	_
Rev	iewed By: JWatson /////// e: 8/24/2015	
Date	e: 8/24/2015_	
Perr	mit good from 9/8/ 2 0 / 15	
to	9/14//2015	

ADD NEW SUBSECTION TO READ: SP 7-10.1.4 Vehicular Traffic

Attention is directed to Section 7-10. Public Convenience and Safety, of the City of Oakland Standard Specification for Public Works Construction, 2006 Edition (Include this paragraph for p-jobs, excavation permits or obstruction permits).

The Contractor shall conduct its work in such a manner as to provide public convenience and safety and according to the provisions in this subsection. The provisions shall not be modified or altered without written approval from the Engineer.

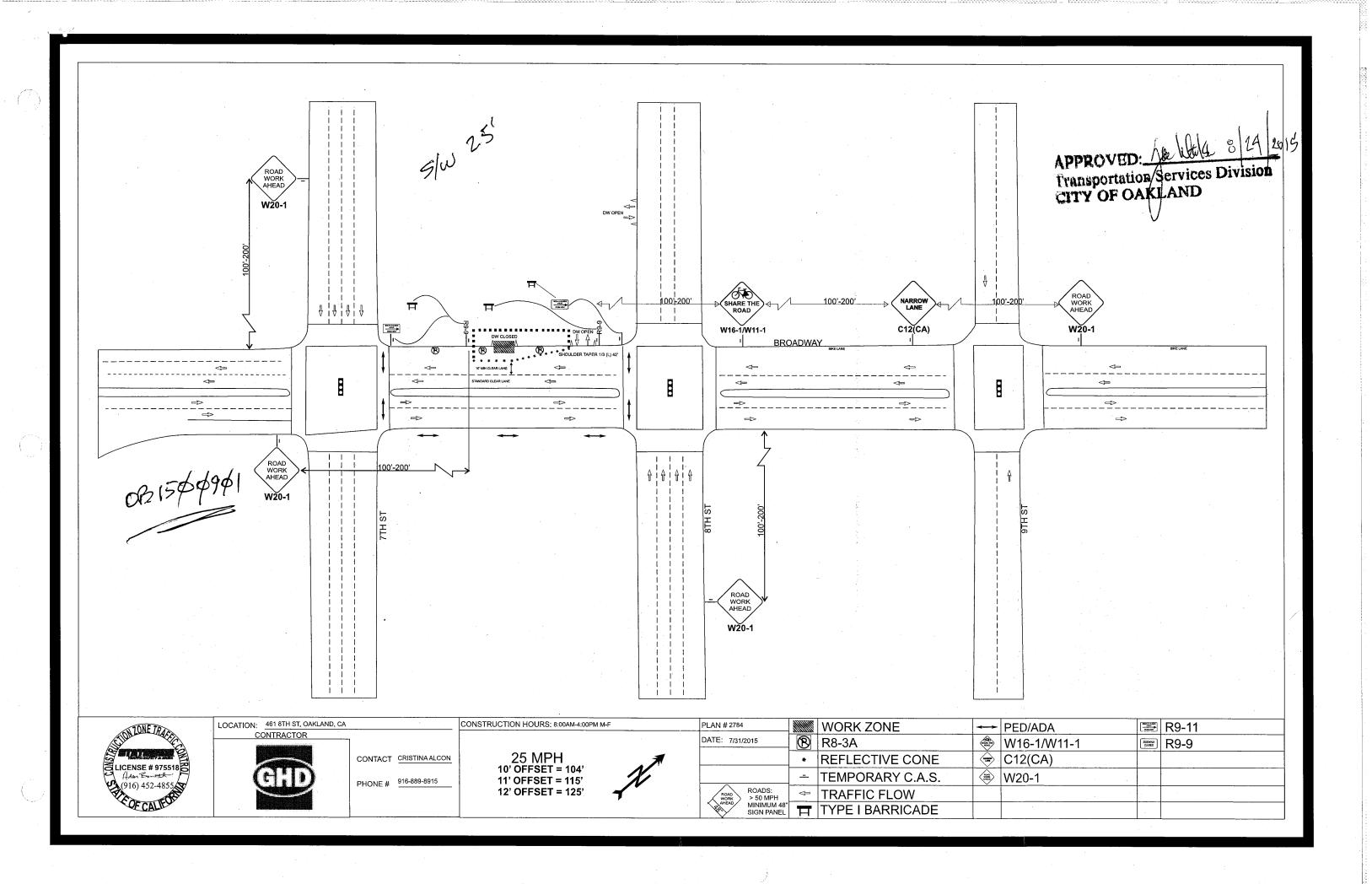
Standard traffic control devices shall be placed at the construction zone according to the latest edition of the <u>Work Area Traffic Control Handbook</u> or <u>Manual on Uniform Traffic Control Devices (MUTCD)</u>, <u>Chapter 6</u> – "Traffic Controls for Construction and Maintenance Work Zone," or as directed by the Engineer.

All trenches and excavations in any public street or roadway shall be back filled and opened to traffic, or covered with suitable steel plates securely placed and opened to traffic at all times except during actual construction operations unless otherwise permitted by the Engineer.

Each section of work shall be completed or temporarily paved and open to traffic in not more than 5 days after commencing work unless otherwise permitted in writing by the Engineer.

Where construction encroaches into the sidewalk area, a minimum of 5 ½ feet of unobstructed sidewalk shall be maintained at all times for pedestrian use. Pedestrian barricades, shelter, and detour signs per Caltrans standards may be required.

The contractor shall conduct its operation in such a manner as to leave the following traffic lanes unobstructed and in a condition satisfactory for vehicular travel during the Obstruction Period. At all times traffic lanes will be restricted and ened to travel. Emergency access shall be provided at all times.


Street Name Limits	Obstruction Period	North Bound	South Bound	East Bound	West Bound
Broadway between 7 th Street and 8 th Street	Mon. – Fri. 9am – 4pm	N/A	1-12' lane open minimum	N/A	Sidewalk Closure

Design a construction traffic control plan and submit (2) copies to the Engineer for approval

The Contractor Shall Also include all check item:

١.	Design a construction traine control plan and submit (2) copies to the Engineer for approval prior to starting any
	work.
2.	Replace all signs, pavement markings, and traffic detector loops damaged or removed due to construction within
	3 days of completion of work or the final pavement lift.
3.	Provide advance notice to Oakland Police at (510) 777-3333 (24-hrs) and Oakland Fire at (510) 238-3331 (2-rhs)
	when a single lane of traffic or less is provided on any street.
4.	Provide 72-hour advance notice to AC Transit at (510) 891-4909 when affecting a bus stop.
5.	For Caltrans roadways, ramps, or maintained facilities, the Contractor shall obtain appropriate permits and notify
	the Traffic Management Center 24 hours in advance of any work.
6.	☐ Flagger control is required. Certified Flagger is required.
	Pedestrian walkway by K-rail, Canopy or Plywood is required. (See detour plan)
	Pedestrian traffic shall be maintained and guided through the project at all times.
	Provide advance notice to Business and Residence within 72-hours.
	Allow all traffic movement at intersection.
	-

ng specified herein shall prohibit emergency work and/or repair necessary to ensure public health and safety.

Appendix B Boring Log

Boring/Well Log Legend

KEY TO SYMBOLS/ABBREVIATIONS

Static groundwater

Soils logged by hand-auger or air-knife cuttings

Soils logged by drill cuttings or distured sample

Undisturbed soil sample interval

Soil sample retained for submittal to analytical laboratory

O No recovery within interval

Hydropunch screen interval

PID = Photo-ionization detector or organic vapor meter reading in parts per million (ppm)

fbg = Feet below grade

Blow Counts = Number of blows required to drive a
California-modified split-spoon sampler
using a 140-pound hammer falling freely
30 inches, recorded per 6-inch interval of

a total 18-inch sample interval

(10YR 4/4) = Soil color according to Munsell Soil Color Charts

MSL = Mean sea level

Soils logged according to the USCS.

<u>UNIFIED SOILS CLASSIFICATION SYSTEM (USCS) SUMMARY</u>

	Major Divisions		Graphic	Group Symbol	Typical Description
		Clean Gravels		GW	Well-graded gravels, gravel-sand mixtures, little or no fines
	Gravel and	(<5% fines)		GP	Poorly-graded gravels, gravel-sand mixtures, little or no fines
	Gravelly Soils	Gravels with Fines		GM	Silty gravels, gravel-sand-silt mixtures
Coarse-Grained Soils		(>12% fines)		GC	Clayey gravels, gravel-sand-clay mixtures
(>50% Sands and/or Gravels)		Clean Sands		sw	Well-graded sands, gravelly sands, little or no fines
	(<5% fines)			SP	Poorly-graded sands, gravelly sand, little or no fines
	Sandy Soils Sands w (>12%			SM	Silty sands, sand-silt mixtures
				sc	Clayey sands, sand-clay mixtures
				ML	Inorganic silts, very fine sands, silty or clayey fine sands, clayey silts with slight plasticity
	Silts and	d Clays		CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays
Fine-Grained Soils				OL	Organic silts and organic silty clays of low plasticity
(>50% Silts and/or Clays)				МН	Inorganic silts, micaceous or diatomaceous fine sand or silty soils
	Silts and	d Clays		СН	Inorganic clays of high plasticity
				ОН	Organic clays of medium to high plasticity, organic silts
Hi	ghly Organic Soils		71 71 71 71 7 71 71 71 71 71 71	PT	Peat, humus, swamp soils with high organic contents

I:\SFO-S1\SHARED\GRAPHICS\SPECIALTY FIGURES\BORING LOG LEGEND (GHD).AI

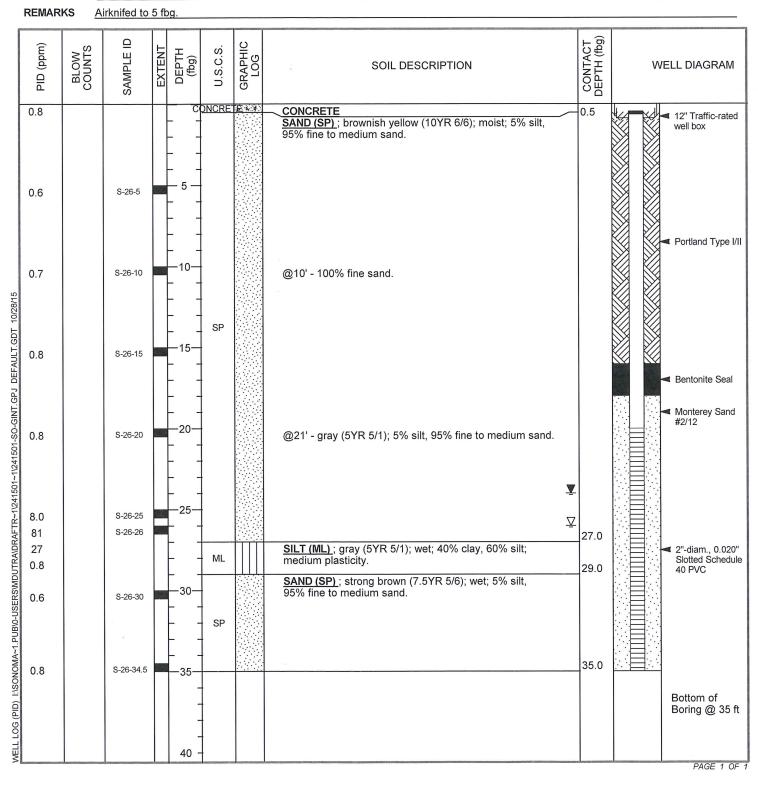
BORING/WELL LOG

GHD Services Inc. 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

CLIENT NAME Shell Oil Products US JOB/SITE NAME Former Shell Service Station 461 8th Street, Oakland, CA LOCATION PROJECT NUMBER 241501 Cascade Drilling, L.P., C-57 #938110 **DRILLER** Geoprobe / Hollow-stem auger TOP OF CASING ELEVATION 34.39 ft above msl DRILLING METHOD BORING DIAMETER P. Schaefer, PG 5612 LOGGED BY **REVIEWED BY** P. Schaefer, PG 5612

BORING/WELL NAME S-26 **DRILLING STARTED** 14-Sep-15 DRILLING COMPLETED ___15-Sep-15

WELL DEVELOPMENT DATE (YIELD) 20-Sep-15 (22.1 gallons)


34.78 ft above msl **GROUND SURFACE ELEVATION**

SCREENED INTERVAL 20 to 35 fbg

26.0 ft (14-Sep-15) DEPTH TO WATER (First Encountered)

DEPTH TO WATER (Static)

24.00 ft (29-Sep-15)

Appendix C Waste Disposal Manifest

	NON-HAZARDOUS	Generator ID Number	an desputation	2. Page 1 of	3. Emergency Response		4. Waste Tr	-	nber 7004554	- 14.
	WASTE MANIFEST Generator's Name and Mai	NOT REC	SUIKED	3	Generator's Site Address	4	an mailing addre		/UU%>34	
		ects US C/O Waste Cor e Drive, Indianapolis, IN 317-291-7041		al, OR			461 8th S kland, CA	treet		
	ransporter 1 Company Na			, 2'			U.S. EPA ID I		10001483	38
7. T	ransporter 2 Company Na	ame			ĝ I		U.S. EPA ID I	Number		
		and Site Address ernent - Altamont Landi at Pass Rd, Livermore, 925-455-7301 (Po	CA 94551				U.S. EPA ID I		REQUIR	ED
1 440	9. Waste Shipping Nar	me and Description	1 2	8	10. Conta	ners Type	11. Total Quantity	12. Unit Wt./Vol.		
	Non-Haza	rdous Waste Solid (Soi	1)	~	043	DM	15/4	Р		
	2.		9							
	3.		4	-						
	4.									
	GENERATOR'S/OFFERO marked and labeled/placa	OR'S CERTIFICATION: I hereby declar arded, and are in all respects in proper	re that the contents of this	consignment a	re fully and accurately des able international and nati	oject #:	5167570 75006-8	A L2 CR		ed, packa
1	nerator's/Offeror's Printed/	/Typed Name		Sig	nature	C (Mary,		Month	Day
Tra	International Shipments insporter Signature (for ex		. L	Export from I	J.S. Port of en	•				
-	nsporter 1 Printed/Typed	nent of Receipt of Materials Name	RTINGS	Sig	nature	Mar	1		Month	Day
Tra	nsporter 2 Printed/Typed	Name		Sig	nature		A CONTRACTOR OF THE PARTY OF TH		Month	Day
I	Discrepancy a. Discrepancy Indication S	Space Quantity	Туре		Residue		Partial Rej	ection		Full Reje
17t	o. Alternate Facility (or Ge	nerator)			Manifest Reference N	lumber:	U.S. EPA ID	Number		
Fac 170	cility's Phone: c. Signature of Alternate F	acility (or Generator)		i i		,			Month I	Day
170										

Appendix D TestAmerica Laboratories, Inc. Analytical Reports

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Irvine 17461 Derian Ave Suite 100

Irvine, CA 92614-5817 Tel: (949)261-1022

TestAmerica Job ID: 440-121266-1

Client Project/Site: 461 8th St., Oakland, CA

For:

GHD Services Inc. 5900 Hollis Street Suite A Emeryville, California 94608

Attn: Peter Schaefer

Authorized for release by: 9/29/2015 3:34:38 PM

Heather Clark, Project Manager I (949)261-1022

heather.clark@testamericainc.com

----- Links -----

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	
Client Sample Results	5
Method Summary	9
Lab Chronicle	10
QC Sample Results	12
QC Association Summary	16
Definitions/Glossary	
Certification Summary	18
Chain of Custody	19
Receipt Checklists	20

3

4

6

0

9

10

12

Sample Summary

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

TestAmerica Job ID: 440-121266-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
440-121266-1	S-26-5	Solid	09/14/15 11:00	09/15/15 13:00
440-121266-2	S-26-10	Solid	09/14/15 11:30	09/15/15 13:00
440-121266-3	S-26-15	Solid	09/14/15 11:50	09/15/15 13:00
440-121266-4	S-26-20	Solid	09/14/15 12:10	09/15/15 13:00
440-121266-5	S-26-25	Solid	09/14/15 12:20	09/15/15 13:00
440-121266-6	S-26-26	Solid	09/14/15 12:20	09/15/15 13:00
440-121266-7	S-26-30	Solid	09/14/15 12:25	09/15/15 13:00
440-121266-8	S-26-34.5	Solid	09/14/15 12:30	09/15/15 13:00

3

Л

6

9

10

11

Case Narrative

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

TestAmerica Job ID: 440-121266-1

Job ID: 440-121266-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-121266-1

Comments

No additional comments.

Receipt

The samples were received on 9/15/2015 1:00 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.5° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

e

Q

9

4.0

11

12

TestAmerica Job ID: 440-121266-1

Client Sample ID: S-26-5

Lab Sample ID: 440-121266-1

Date Collected: 09/14/15 11:00
Date Received: 09/15/15 13:00

Matrix: Solid

Date Neceived. 09/13/13 13.00

Method: 8260B/CA_LUFTMS - Analyte Volatile Fuel Hydrocarbons (C4-C12)		ganic Com Qualifier	npounds by 0 RL 0.099	MDL	Unit mg/Kg	<u>D</u> -	Prepared	Analyzed 09/18/15 14:12	Dil Fac
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	103		60 - 120			-		09/18/15 14:12	1
4-Bromofluorobenzene (Surr)	106		79 - 120					09/18/15 14:12	1
Toluene-d8 (Surr)	117		79 - 123					09/18/15 14:12	1

Method: 8260B - Volatile Organic Compounds (GC/MS) Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Benzene ND 0.00099 mg/Kg 09/18/15 14:12 Ethylbenzene ND 0.00099 mg/Kg 09/18/15 14:12 Toluene ND mg/Kg 09/18/15 14:12 0.00099 Xylenes, Total ND 0.0020 mg/Kg 09/18/15 14:12 %Recovery Qualifier Surrogate Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 106 79 - 120 09/18/15 14:12 Dibromofluoromethane (Surr) 103 60 - 120 09/18/15 14:12 Toluene-d8 (Surr) 117 79 - 123 09/18/15 14:12

Client Sample ID: S-26-10 Lab Sample ID: 440-121266-2

Matrix: Solid

Date Collected: 09/14/15 11:30 Date Received: 09/15/15 13:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Volatile Fuel Hydrocarbons (C4-C12)	ND		0.10		mg/Kg			09/18/15 14:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	98		60 - 120					09/18/15 14:42	1
4-Bromofluorobenzene (Surr)	99		79 - 120					09/18/15 14:42	1
Toluene-d8 (Surr)	117		79 - 123					09/18/15 14:42	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0010		mg/Kg			09/18/15 14:42	1
Ethylbenzene	ND		0.0010		mg/Kg			09/18/15 14:42	1
Toluene	ND		0.0010		mg/Kg			09/18/15 14:42	1
Xylenes, Total	ND		0.0020		mg/Kg			09/18/15 14:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		79 - 120			•		09/18/15 14:42	1
Dibromofluoromethane (Surr)	98		60 - 120					09/18/15 14:42	1
Toluene-d8 (Surr)	117		79 - 123					09/18/15 14:42	1

Client Sample ID: S-26-15

Date Collected: 09/14/15 11:50

Lab Sample ID: 440-121266-3

Matrix: Solid

Date Received: 09/15/15 13:00

Method: 8260B/CA_LUFTMS -	Volatile Organic Con	npounds by	GC/MS					
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Volatile Fuel Hydrocarbons (C4-C12)	ND	0.10		mg/Kg			09/18/15 15:11	1

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

Lab Sample ID: 440-121266-3

Matrix: Solid

Client Sample ID: S-26-15 Date Collected: 09/14/15 11:50 Date Received: 09/15/15 13:00

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
Dibromofluoromethane (Surr)	98	60 - 120	09/18/15 15:1	1 1
4-Bromofluorobenzene (Surr)	101	79 - 120	09/18/15 15:1	1 1
Toluene-d8 (Surr)	118	79 - 123	09/18/15 15:1	1 1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Welliou. 02000 - Volalile O	rganic Compound	ius (GC/IVIS)					
Analyte	Result Qu	ualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND	0.0010	mg/Kg			09/18/15 15:11	1
Ethylbenzene	ND	0.0010	mg/Kg			09/18/15 15:11	1
Toluene	ND	0.0010	mg/Kg			09/18/15 15:11	1
Xylenes, Total	ND	0.0020	mg/Kg			09/18/15 15:11	1
Surrogate	%Recovery Qu	ualifier Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101	79 - 120				09/18/15 15:11	1
Dibromofluoromethane (Surr)	98	60 - 120				09/18/15 15:11	1
Toluene-d8 (Surr)	118	79 - 123				09/18/15 15:11	1

Client Sample ID: S-26-20 Lab Sample ID: 440-121266-4

Date Collected: 09/14/15 12:10 Date Received: 09/15/15 13:00

Matrix: Solid

Mathod: 8260B/CA | LIFTMS - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Volatile Fuel Hydrocarbons (C4-C12)	ND		0.10		mg/Kg			09/18/15 15:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	99		60 - 120					09/18/15 15:41	1
4-Bromofluorobenzene (Surr)	102		79 - 120					09/18/15 15:41	1
Toluene-d8 (Surr)	114		79 - 123					09/18/15 15:41	1

rganic Compou	mas (GC/I	vio)						
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		0.0010		mg/Kg			09/18/15 15:41	1
ND		0.0010		mg/Kg			09/18/15 15:41	1
ND		0.0010		mg/Kg			09/18/15 15:41	1
ND		0.0020		mg/Kg			09/18/15 15:41	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
102		79 - 120					09/18/15 15:41	1
99		60 - 120					09/18/15 15:41	1
114		79 - 123					09/18/15 15:41	1
	Result ND ND ND ND ND ND 102 99	Result Qualifier ND ND ND ND ND **Recovery Qualifier 102 99	ND 0.0010 ND 0.0010 ND 0.0010 ND 0.0020 **Recovery Qualifier Limits 102 79 - 120 99 60 - 120	Result Qualifier RL MDL ND 0.0010 0.0010 ND 0.0010 0.0020 ND 0.0020 0.0020 %Recovery Qualifier Limits 102 79 - 120 99 60 - 120	Result Qualifier RL MDL Unit ND 0.0010 mg/Kg ND 0.0010 mg/Kg ND 0.0020 mg/Kg ND 0.0020 mg/Kg %Recovery Qualifier Limits 102 79 - 120 99 60 - 120	Result Qualifier RL MDL Unit D ND 0.0010 mg/Kg mg/Kg ND 0.0010 mg/Kg ND 0.0020 mg/Kg %Recovery Qualifier Limits 102 79 - 120 99 60 - 120	Result ND Qualifier RL MDL Unit D Prepared ND 0.0010 mg/Kg mg/Kg mg/Kg ND 0.0010 mg/Kg mg/Kg ND 0.0020 mg/Kg **Recovery 102 Qualifier Limits Prepared 102 79 - 120 Prepared 99 60 - 120 Prepared	Result Qualifier RL MDL Unit D Prepared Analyzed ND 0.0010 mg/Kg 09/18/15 15:41 ND 0.0010 mg/Kg 09/18/15 15:41 ND 0.0020 mg/Kg 09/18/15 15:41 %Recovery Qualifier Limits Prepared Analyzed 102 79 - 120 09/18/15 15:41 99 60 - 120 09/18/15 15:41

Lab Sample ID: 440-121266-5 Client Sample ID: S-26-25

Date Collected: 09/14/15 12:20 Date Received: 09/15/15 13:00

Method: 8260B/CA_LUFTM Analyte		ganic Com Qualifier	npounds by G	C/MS MDL	Unit	D	Prepared	Analyzed	
Volatile Fuel Hydrocarbons (C4-C12)	3.7		0.099		mg/Kg			09/18/15 16:11	1
Surrogate Dibromofluoromethane (Surr)	%Recovery	Qualifier	Limits 60 - 120			-	Prepared	Analyzed 09/18/15 16:11	Dil Fac

TestAmerica Irvine

Matrix: Solid

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

Client Sample ID: S-26-25

Lab Sample ID: 440-121266-5

Date Collected: 09/14/15 12:20 **Matrix: Solid** Date Received: 09/15/15 13:00

Method: 8260B/CA_LUFTMS - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery Qualific	er Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99	79 - 120		09/18/15 16:11	1
Toluene-d8 (Surr)	115	79 - 123		09/18/15 16:11	1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Mictiloa. Ozoob - Vola	ine organie compo	unas (55/1	110)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Benzene	0.041		0.0010		mg/Kg			09/19/15 16:25	1	
Ethylbenzene	0.027		0.0010		mg/Kg			09/19/15 16:25	1	
Toluene	0.024		0.0010		mg/Kg			09/19/15 16:25	1	
Xylenes, Total	0.13		0.0020		mg/Kg			09/19/15 16:25	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		79 - 120	-		09/19/15 16:25	1
Dibromofluoromethane (Surr)	118		60 - 120			09/19/15 16:25	1
Toluene-d8 (Surr)	111		79 - 123			09/19/15 16:25	1

Lab Sample ID: 440-121266-6 Client Sample ID: S-26-26 **Matrix: Solid**

Date Collected: 09/14/15 12:20

Date Received: 09/15/15 13:00

Method: 8260B/CA_LUFTMS - Volatile Organic Compounds by GC/MS

Analyte	Result Qualifier	KL	MDL Unit	ט	Prepared	Anaiyzed	DII Fac	
Volatile Fuel Hydrocarbons (C4-C12)	0.17	0.099	mg/Kg			09/18/15 16:40	1	
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac	

Surrogate	%Recovery Qualific	er Limits	Prepared Analyzed	Dil Fac
Dibromofluoromethane (Surr)	100	60 - 120	09/18/15 16:4	ō <u> </u>
4-Bromofluorobenzene (Surr)	104	79 - 120	09/18/15 16:4	0 1
Toluene-d8 (Surr)	118	79 - 123	09/18/15 16:4	0 1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Analyte	Result Qualifier	, RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Benzene	0.011	0.00099	mg/Kg		09/18/15 16:40	1
Ethylbenzene	0.0061	0.00099	mg/Kg		09/18/15 16:40	1
Toluene	0.0055	0.00099	mg/Kg		09/18/15 16:40	1
Xylenes, Total	0.026	0.0020	mg/Kg		09/18/15 16:40	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyze	d Dil Fac
4-Bromofluorobenzene (Surr)	104		79 - 120	09/18/15 1	:40 1
Dibromofluoromethane (Surr)	100		60 - 120	09/18/15 1	:40 1
Toluene-d8 (Surr)	118		79 - 123	09/18/15 1	:40 1

Client Sample ID: S-26-30 Lab Sample ID: 440-121266-7 **Matrix: Solid**

Date Collected: 09/14/15 12:25 Date Received: 09/15/15 13:00

_	
Method: 8260B/CA	LUFTMS - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Volatile Fuel Hydrocarbons (C4-C12)	ND		0.10		mg/Kg			09/18/15 10:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

TestAmerica Job ID: 440-121266-1

Client Sample ID: S-26-30

Date Collected: 09/14/15 12:25 Date Received: 09/15/15 13:00 Lab Sample ID: 440-121266-7

09/18/15 10:16

Matrix: Solid

Matrix: Solid

Method: 8260B/CA_LUFTMS - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		79 - 120		09/18/15 10:16	1
Toluene-d8 (Surr)	118		79 - 123		09/18/15 10:16	1

Method: 8260B - Volatile Organic Compounds (GC/MS)

wethod. 6200b - Volatile Organic Compounds (Go/WS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0010		mg/Kg			09/18/15 10:16	1
Ethylbenzene	ND		0.0010		mg/Kg			09/18/15 10:16	1
Toluene	ND		0.0010		mg/Kg			09/18/15 10:16	1
Xylenes, Total	ND		0.0020		mg/Kg			09/18/15 10:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		79 - 120					09/18/15 10:16	1
Dibromofluoromethane (Surr)	99		60 - 120					09/18/15 10:16	1

Client Sample ID: S-26-34.5 Lab Sample ID: 440-121266-8

79 - 123

Date Collected: 09/14/15 12:30

Date Received: 09/15/15 13:00

Toluene-d8 (Surr)

Method: 8260B/CA_LUFTMS - Volatile Organic Compounds by GC/MS

118

Analyte Volatile Fuel Hydrocarbons (C4-C12)	Result ND	Qualifier	RL	MDL	Unit mg/Kg	D	Prepared	Analyzed 09/18/15 17:10	Dil Fac
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	100		60 - 120			-		09/18/15 17:10	1
4-Bromofluorobenzene (Surr)	106		79 - 120					09/18/15 17:10	1
Toluene-d8 (Surr)	117		79 - 123					09/18/15 17:10	1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Mictilioa. Ozoob - Vola	une Organic Compound	as (Contro)						
Analyte	Result Qua	alifier RL	MDL U	nit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND	0.00099	m	ıg/Kg			09/18/15 17:10	1
Ethylbenzene	ND	0.00099	m	ıg/Kg			09/18/15 17:10	1
Toluene	ND	0.00099	m	ıg/Kg			09/18/15 17:10	1
Xylenes, Total	ND	0.0020	m	ıg/Kg			09/18/15 17:10	1
Surrogate	%Recovery Qua	nalifier Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared Analys	zed Dil Fac	
4-Bromofluorobenzene (Surr)	106		79 - 120	09/18/15	17:10 1	
Dibromofluoromethane (Surr)	100		60 - 120	09/18/15	17:10 1	
Toluene-d8 (Surr)	117		79 - 123	09/18/15	17:10 1	

Method Summary

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

TestAmerica Job ID: 440-121266-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL IRV
8260B/CA_LUFTN	Volatile Organic Compounds by GC/MS	SW846	TAL IRV
6			

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

9/29/2015

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

Client Sample ID: S-26-5 Lab Sample ID: 440-121266-1 Date Collected: 09/14/15 11:00

Matrix: Solid

Date Received: 09/15/15 13:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5.03 g	10 mL	280932	09/18/15 14:12	AL	TAL IRV
Total/NA	Analysis	8260B/CA_LUFTN S		1	5.03 g	10 mL	280933	09/18/15 14:12	HR	TAL IRV

Client Sample ID: S-26-10 Lab Sample ID: 440-121266-2

Date Collected: 09/14/15 11:30 **Matrix: Solid**

Date Received: 09/15/15 13:00

Prep Type Total/NA	Batch Type Analysis	Batch Method 8260B	Run	Factor 1	Initial Amount 5.01 g	Final Amount 10 mL	Batch Number 280932	Prepared or Analyzed 09/18/15 14:42	Analyst	Lab TAL IRV
Total/NA	Analysis	8260B/CA_LUFTN S		1	5.01 g	10 mL	280933	09/18/15 14:42	HR	TAL IRV

Lab Sample ID: 440-121266-3 Client Sample ID: S-26-15 Matrix: Solid

Date Collected: 09/14/15 11:50

Date Received: 09/15/15 13:00

Prep Type Total/NA	Batch Type Analysis	Batch Method 8260B	Run	Factor 1	Initial Amount 5.01 g	Final Amount 10 mL	Batch Number 280932	Prepared or Analyzed 09/18/15 15:11	Analyst AL	Lab TAL IRV
Total/NA	Analysis	8260B/CA_LUFTN		1	5.01 g	10 mL	280933	09/18/15 15:11	HR	TAL IRV

Client Sample ID: S-26-20 Lab Sample ID: 440-121266-4 **Matrix: Solid**

Date Collected: 09/14/15 12:10

Date Received: 09/15/15 13:00

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 g	10 mL	280932	09/18/15 15:41	AL	TAL IRV
Total/NA	Analysis	8260B/CA_LUFTN S		1	5 g	10 mL	280933	09/18/15 15:41	HR	TAL IRV

Client Sample ID: S-26-25 Lab Sample ID: 440-121266-5

Date Collected: 09/14/15 12:20 Date Received: 09/15/15 13:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5.01 g	10 mL	281176	09/19/15 16:25	AA	TAL IRV
Total/NA	Analysis	8260B/CA_LUFTN		1	5.03 g	10 mL	280933	09/18/15 16:11	HR	TAL IRV

TestAmerica Irvine

Matrix: Solid

Lab Chronicle

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

Client Sample ID: S-26-26

Date Collected: 09/14/15 12:20

Date Received: 09/15/15 13:00

TestAmerica Job ID: 440-121266-1

Lab Sample ID: 440-121266-6

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5.04 g	10 mL	280932	09/18/15 16:40	AL	TAL IRV
Total/NA	Analysis	8260B/CA_LUFTN S		1	5.04 g	10 mL	280933	09/18/15 16:40	HR	TAL IRV

Client Sample ID: S-26-30 Lab Sample ID: 440-121266-7

Date Collected: 09/14/15 12:25 **Matrix: Solid**

Date Received: 09/15/15 13:00

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5.02 g	10 mL	280932	09/18/15 10:16	AL	TAL IRV
Total/NA	Analysis	8260B/CA_LUFTN S		1	5.02 g	10 mL	280933	09/18/15 10:16	HR	TAL IRV

Lab Sample ID: 440-121266-8 Client Sample ID: S-26-34.5

Date Collected: 09/14/15 12:30 **Matrix: Solid**

Date Received: 09/15/15 13:00

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B	-	1	5.04 g	10 mL	280932	09/18/15 17:10	AL	TAL IRV
Total/NA	Analysis	8260B/CA_LUFTN		1	5.04 g	10 mL	280933	09/18/15 17:10	HR	TAL IRV

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

Lab Sample ID: MB 440-280932/4

Method: 8260B - Volatile Organic Compounds (GC/MS)

MD MD

101

100

120

Client Sample ID: Method Blank

09/18/15 08:26

09/18/15 08:26

09/18/15 08:26

Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 280932

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0010		mg/Kg			09/18/15 08:26	1
Ethylbenzene	ND		0.0010		mg/Kg			09/18/15 08:26	1
Toluene	ND		0.0010		mg/Kg			09/18/15 08:26	1
Xylenes, Total	ND		0.0020		mg/Kg			09/18/15 08:26	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

79 - 120

60 - 120

79 - 123

Lab Sample ID: LCS 440-280932/5 **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA**

Analysis Batch: 280932

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Spike LCS LCS %Rec. Analyte Added Result Qualifier Limits Unit D %Rec Benzene 0.0500 0.0508 102 65 - 120 mg/Kg 0.0500 Ethylbenzene 0.0484 mg/Kg 97 70 - 125 0.0500 0.0510 mg/Kg 102 70 - 125 m,p-Xylene o-Xylene 0.0500 0.0504 mg/Kg 101 70 - 125 Toluene 0.0500 0.0494 mg/Kg 99 70 - 125

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 98 79 - 120 Dibromofluoromethane (Surr) 100 60 - 120 Toluene-d8 (Surr) 113 79 - 123

Lab Sample ID: 440-121266-7 MS Client Sample ID: S-26-30 **Matrix: Solid Prep Type: Total/NA**

Analysis Batch: 280932

Analysis Daten. 200332									0/ =	
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	ND		0.0499	0.0513		mg/Kg		103	65 - 130	
Ethylbenzene	ND		0.0499	0.0491		mg/Kg		98	70 - 135	
m,p-Xylene	ND		0.0499	0.0520		mg/Kg		104	70 - 130	
o-Xylene	ND		0.0499	0.0498		mg/Kg		100	65 - 130	
Toluene	ND		0.0499	0.0505		mg/Kg		101	70 - 130	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	98		79 - 120
Dibromofluoromethane (Surr)	100		60 - 120
Toluene-d8 (Surr)	114		79 - 123

TestAmerica Job ID: 440-121266-1

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-121266-7 MSD

Matrix: Solid

Analysis Batch: 280932

Client Sample ID: S-26-30 Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	ND		0.0500	0.0492		mg/Kg		98	65 - 130	4	20
Ethylbenzene	ND		0.0500	0.0470		mg/Kg		94	70 - 135	4	25
m,p-Xylene	ND		0.0500	0.0495		mg/Kg		99	70 - 130	5	25
o-Xylene	ND		0.0500	0.0482		mg/Kg		96	65 - 130	3	25
Toluene	ND		0.0500	0.0487		mg/Kg		97	70 - 130	4	20

MSD MSD

Surrogate	%Recovery Qualifier	r Limits
4-Bromofluorobenzene (Surr)	98	79 - 120
Dibromofluoromethane (Surr)	99	60 - 120
Toluene-d8 (Surr)	111	79 - 123

Lab Sample ID: MB 440-281176/4

Matrix: Solid

Analysis Batch: 281176

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0010		mg/Kg			09/19/15 10:54	1
Ethylbenzene	ND		0.0010		mg/Kg			09/19/15 10:54	1
Toluene	ND		0.0010		mg/Kg			09/19/15 10:54	1
Xylenes, Total	ND		0.0020		mg/Kg			09/19/15 10:54	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		79 - 120		09/19/15 10:54	1
Dibromofluoromethane (Surr)	112		60 - 120		09/19/15 10:54	1
Toluene-d8 (Surr)	114		79 - 123		09/19/15 10:54	1

Lab Sample ID: LCS 440-281176/5

Matrix: Solid

Analysis Batch: 281176

Client Sample	ID: Lab Control Sample
	Prep Type: Total/NA

Spike	LCS L	_CS				%Rec.	
Added	Result (Qualifier	Unit	D	%Rec	Limits	
0.0500	0.0520		mg/Kg	_	104	65 - 120	
0.0500	0.0528		mg/Kg		106	70 - 125	
0.0500	0.0552		mg/Kg		110	70 - 125	
0.0500	0.0539		mg/Kg		108	70 - 125	
0.0500	0.0525		mg/Kg		105	70 - 125	
	Added 0.0500 0.0500 0.0500 0.0500	Added Result 0.0500 0.0520 0.0500 0.0528 0.0500 0.0552 0.0500 0.0539	Added Result Qualifier 0.0500 0.0520 0.0500 0.0528 0.0500 0.0552 0.0500 0.0539	Added Result 0.0500 Qualifier 0.0500 Unit mg/Kg 0.0500 0.0520 mg/Kg 0.0500 0.0528 mg/Kg 0.0500 0.0552 mg/Kg 0.0500 0.0539 mg/Kg	Added Result Qualifier Unit D 0.0500 0.0520 mg/Kg 0.0500 0.0528 mg/Kg 0.0500 0.0552 mg/Kg 0.0500 0.0539 mg/Kg	Added Result Qualifier Unit D %Rec 0.0500 0.0520 mg/Kg 104 0.0500 0.0528 mg/Kg 106 0.0500 0.0552 mg/Kg 110 0.0500 0.0539 mg/Kg 108	Added Result Qualifier Unit D %Rec Limits 0.0500 0.0520 mg/Kg 104 65 - 120 0.0500 0.0528 mg/Kg 106 70 - 125 0.0500 0.0552 mg/Kg 110 70 - 125 0.0500 0.0539 mg/Kg 108 70 - 125

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	105		79 - 120
Dibromofluoromethane (Surr)	114		60 - 120
Toluene-d8 (Surr)	111		79 - 123

MS MS

mg/Kg

0.0490

0.0508

0.0532

0.0519

0.0496

Spike

Added

0.0493

0.0493

0.0493

0.0493

0.0493

79 - 123

TestAmerica Job ID: 440-121266-1

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Sample Sample

Result ND

ND

ND

ND

ND

110

Qualifier

Lab Sample ID: 440-121495-B-5 MS

Matrix: Solid

Analyte

Benzene

Ethylbenzene

m,p-Xylene o-Xylene

Toluene

Surrogate

Analysis Batch: 281176

Client Sample ID: Matrix Spike Prep Type: Total/NA

70 - 130

%Rec. Result Qualifier Unit %Rec Limits 65 - 130 mg/Kg 99 mg/Kg 103 70 - 135mg/Kg 108 70 - 130 105 mg/Kg 65 - 130

101

MS MS %Recovery Qualifier Limits 103 79 - 120 60 - 120 115

Lab Sample ID: 440-121495-B-5 MSD

Matrix: Solid

Toluene-d8 (Surr)

Analysis Batch: 281176

4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr)

> **Client Sample ID: Matrix Spike Duplicate** Prep Type: Total/NA

MSD MSD **RPD** Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Benzene ND 0.0489 0.0487 mg/Kg 99 65 - 130 20 Ethylbenzene ND 0.0509 70 - 135 25 0.0489 mg/Kg 104 0 ND 0.0489 108 70 - 130 25 m,p-Xylene 0.0528 mg/Kg ND 25 o-Xylene 0.0489 0.0517 mg/Kg 106 65 - 130 0 Toluene ND 0.0489 0.0490 mg/Kg 100 70 - 13020

MSD MSD Surrogate Qualifier Limits %Recovery 4-Bromofluorobenzene (Surr) 107 79 - 120 Dibromofluoromethane (Surr) 114 60 - 120 79 - 123 Toluene-d8 (Surr) 110

Method: 8260B/CA LUFTMS - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 440-280933/4 **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 280933

MB MB Result Qualifier RL **MDL** Unit D Dil Fac Prepared Analyzed Volatile Fuel Hydrocarbons (C4-C12) $\overline{\sf ND}$ 0.10 mg/Kg 09/18/15 08:26

MB MB Dil Fac Qualifier Limits Surrogate %Recovery Prepared Analyzed 100 Dibromofluoromethane (Surr) 60 - 120 09/18/15 08:26 4-Bromofluorobenzene (Surr) 101 79 - 120 09/18/15 08:26 120 79 - 123 09/18/15 08:26 Toluene-d8 (Surr)

TestAmerica Job ID: 440-121266-1

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

Method: 8260B/CA_LUFTMS - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 440-280933/6 **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 280933

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 1.00 0.831 mg/Kg 83 60 - 135 Volatile Fuel Hydrocarbons

(C4-C12)

LCS LCS Surrogate %Recovery Qualifier Limits Dibromofluoromethane (Surr) 100 60 - 120 4-Bromofluorobenzene (Surr) 102 79 - 120 Toluene-d8 (Surr) 116 79 - 123

Client Sample ID: S-26-30 Lab Sample ID: 440-121266-7 MS **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 280933

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit Limits D %Rec 55 - 140 Volatile Fuel Hydrocarbons ND 3.44 3.94 mg/Kg 115 (C4-C12)

MS MS Surrogate %Recovery Qualifier Limits Dibromofluoromethane (Surr) 60 - 120 100 4-Bromofluorobenzene (Surr) 98 79 - 120 Toluene-d8 (Surr) 79 - 123 114

Lab Sample ID: 440-121266-7 MSD Client Sample ID: S-26-30 Prep Type: Total/NA

Matrix: Solid

(C4-C12)

Analysis Batch: 280933

Sample Sample Spike MSD MSD %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit Volatile Fuel Hydrocarbons ND 3.45 3.84 mg/Kg 111 55 - 140

MSD MSD %Recovery Qualifier Surrogate Limits Dibromofluoromethane (Surr) 99 60 - 120 4-Bromofluorobenzene (Surr) 98 79 - 120 Toluene-d8 (Surr) 111 79 - 123

QC Association Summary

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

TestAmerica Job ID: 440-121266-1

GC/MS VOA

Analysis Batch: 280932

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-121266-1	S-26-5	Total/NA	Solid	8260B	
440-121266-2	S-26-10	Total/NA	Solid	8260B	
440-121266-3	S-26-15	Total/NA	Solid	8260B	
440-121266-4	S-26-20	Total/NA	Solid	8260B	
440-121266-6	S-26-26	Total/NA	Solid	8260B	
440-121266-7	S-26-30	Total/NA	Solid	8260B	
440-121266-7 MS	S-26-30	Total/NA	Solid	8260B	
440-121266-7 MSD	S-26-30	Total/NA	Solid	8260B	
440-121266-8	S-26-34.5	Total/NA	Solid	8260B	
LCS 440-280932/5	Lab Control Sample	Total/NA	Solid	8260B	
MB 440-280932/4	Method Blank	Total/NA	Solid	8260B	

Analysis Batch: 280933

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
440-121266-1	S-26-5	Total/NA	Solid	8260B/CA_LUFT MS
440-121266-2	S-26-10	Total/NA	Solid	8260B/CA_LUFT MS
440-121266-3	S-26-15	Total/NA	Solid	8260B/CA_LUFT MS
440-121266-4	S-26-20	Total/NA	Solid	8260B/CA_LUFT MS
440-121266-5	S-26-25	Total/NA	Solid	8260B/CA_LUFT MS
440-121266-6	S-26-26	Total/NA	Solid	8260B/CA_LUFT MS
440-121266-7	S-26-30	Total/NA	Solid	8260B/CA_LUFT MS
440-121266-7 MS	S-26-30	Total/NA	Solid	8260B/CA_LUFT MS
440-121266-7 MSD	S-26-30	Total/NA	Solid	8260B/CA_LUFT MS
440-121266-8	S-26-34.5	Total/NA	Solid	8260B/CA_LUFT MS
LCS 440-280933/6	Lab Control Sample	Total/NA	Solid	8260B/CA_LUFT MS
MB 440-280933/4	Method Blank	Total/NA	Solid	8260B/CA_LUFT MS

Analysis Batch: 281176

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-121266-5	S-26-25	Total/NA	Solid	8260B	
440-121495-B-5 MS	Matrix Spike	Total/NA	Solid	8260B	
440-121495-B-5 MSD	Matrix Spike Duplicate	Total/NA	Solid	8260B	
LCS 440-281176/5	Lab Control Sample	Total/NA	Solid	8260B	
MB 440-281176/4	Method Blank	Total/NA	Solid	8260B	

TestAmerica Irvine

Page 16 of 20

Definitions/Glossary

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 440-121266-1

Glossary

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

Certification Summary

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

TestAmerica Job ID: 440-121266-1

Laboratory: TestAmerica Irvine

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	CA01531	06-30-16
Arizona	State Program	9	AZ0671	10-13-15
California	LA Cty Sanitation Districts	9	10256	01-31-16 *
California	State Program	9	2706	06-30-16
Guam	State Program	9	Cert. No. 12.002r	01-23-16
Hawaii	State Program	9	N/A	01-29-16
Nevada	State Program	9	CA015312007A	07-31-16 *
New Mexico	State Program	6	N/A	01-29-16
Northern Mariana Islands	State Program	9	MP0002	01-29-16
Oregon	NELAP	10	4005	01-29-16
USDA	Federal		P330-09-00080	07-08-18

^{*} Certification renewal pending - certification considered valid.

	LAB (LOCATION))		s	hell	0	il F	Pro	du	cts	s C	ha	ıin (Of	Cu	sto	ody	y R	ec	oro	k							
	SCIENCE ()			Ple	ase Chec	к Ар	propr	riate	Box:			Pri	int B	ill To	o Cai	ntac	t Na	me:							PlaN	et P	rojec	t ID			□сн	ECK IF NO I	NCIDENT # /	APPLIES
☐ SPL)	□ ENV	. SERVICES		AVITON	RETAIL		□s	HELL F	RETAIL	Pet	er Sc	haefe	er - 24	1501-	15.04	1-***					USF	04642	:						D/	TE: 9/14/	2015	
. —	T AMERICA ()	□ мот	TIVA SD&CM	[Jo	CONSUL	TANT			UBES							PO	#							Pla	Net	Site	ID				05		
□отн		í	SHE	LL PIPELINE		OTHER .							T	T						T		T	2748	81							PA	.GE:	of	
	COMPANY:					CR/						1			treet an	-						-	State			1	BAL ID NO			_				
ADDRES	S:	0.4609				1010					-	461 EDF D	ELIVER/	ABLE TO	(Name, C	ompany.	Office L	ocation):			PHONE	NO.:	CA			E-MAII	00101 .:	263				CONS	ULTANT PROJE	ECT NO.:
	CONTACT (Hardcopy or PDF Report to):											Anr	ni Kre	ml, C	RA, E	mery	ville					420-3	343			shel	l.em.e	df@c	crawor			 	01-15.04-*	****
TELEPHO			eter Sc	haefer E-MAIL:								Bel	w-Yifi	ra (كور ا	re	-5	CH.	44	sev	ب									LAB	B USE (ONLY		
TURN	AROUND TIME (CALENDAR DAYS):	420-9170			pete	er.scha	efer@		<u>SULTS I</u>	NEEDE	D	╁																						
<u> </u>		3 DAYS		2 DAYS	24 HO					WEEK		┡	Т	_	T: 1	. 1	. 1			1	I	RE	QUE	STED	ANA	LYS	IS							
☐ LA	- RWQCB REPORT FORMAT UST AC	SENCY:	Alameda	County Livi	SHELL		SACT RA	TE APPI	IFS			┤╮	ξ			·			DIPE,		_											TEMPER	ATURE ON	N RECEIPT
SPE	ECIAL INSTRUCTIONS OR NOTES :				STATE					IES		260B	(8015M)					(809)	TBA,		(8260B)												•	
Сор	oy of final report to Shell.Lab.Billing@cra	world.com	1		☐ EDD N							ple (8	table				(B08)	+ TBA (8260B)	TBE, 3B	<u>@</u>	ا	i			-									
İ					☑ RECEI	IPT VER	IFICATIO	on req	UESTE	D		urgea	xtrac	_		<u>.</u>	E (826	# #	Ys (M) 8260	(8260		(B08)		(g)	15M)									
			SAM	IPLING			PRE	ESERVA	TIVE			Į,	30, E	1015N		3260B	MTB	MTB	5 OX ETBE	C ist	ig ij	1 (826	(B092	(826	8) 10					.			•	
C ONLY	Field Sample Identification	on	DATE	TIME	MATRIX	HCL	HNO3 I	H2SO4	NONE	ÖTHER	NO. OF CONT.	TPH -GRO, Purgeable (8260B)	TPH -DRO, Extractable	TPHg (8015M)		BTEX (5260B)	BTEX + MTBE (8260B)	BTEX + MTBE	BTEX + 5 OXYs (MTBE, TAME, ETBE) 8260B	Full VOC list (8260B)	Single Compound:	1,2-DCA (8260B)	EDB (8260B)	Ethanol (8260B)	Methanol (8015M)								iner PID Ro aboratory	
ф	S-26- 5	9/1	4/15	1100	Soil				x		1	х				X																		
Q	S-26- (O		1	1130	Soil				х		1	х				х																		
Ö	S-26- 16			1120	Soil				х		1	x				х																		
	S-26- 26			1210	Soil				х		1	x				х												П						
	S-26- 25			1220	Soil				х		1	x				х								,							Willer		HI III III	
	S-26- 26			1220	Soil				х		1	х				х									1	IIII		MW		MI)	WW.			
	S-26- 30			1225	Soil				х		1	х				х									1			MW			MW			
	3-26-345		J	1230	501				×		T ,	x				X									1			WWW.	Cha		IIIIIIII F Cus	tody	THIR BULLIAN	
	3.000,000				3010	+					, v		-							1		-			Ť	44	0-121	266	Cila	III O.	-			
			,			+-					-	┢	 		\vdash	-						-	-	-	+	Γ					\vdash			
Relinquis	shed b <u>v.</u> (Signature)				Received by: (S	Signature)					l									<u> </u>				Date			Ш	Ш	\dashv	Time:			
	Pota Solal	_			Rec	-6	031	ho	7	70	5	60	U R	2 K	- 1	6	N	D T	102					·			s/1					1121	5	
Relinquis	sheld by: (Signature)	<u></u>			Received by: (S	Signature																			Date 9	: - []	- سيم	てく			Time:	12	() - Z	>
Relinquis	she by: (Signature)	د خد مدد و در			Received by: (S	Signature	1)		/		115		_								Ш	70			Date	; ; ;		<u> </u>	<u>ー</u>	_	Time:	/	300	>
29/2	7 01			12	1 1				1	#								<u></u>	1.	, 1	7.	L	<u>_</u> -	<u>-</u>	1			<u>_</u>				05/2/06 Re	vision	
9/29 /2015	I Dull 1/1	5/1	5/1	517	V	\ \	U.	M.	C	人	(2)	O\	\mathcal{M}	1	O		1	4	/10	e	Q			ι,	1									
		/.	-				رى	,)	3		-/-	3 .	2)	P -			ν	-														
							_	/	_		ί	-	Ŧ	-E	ŹĘ	2:	(S) (3 7	2=	76	2	26	7	<u> </u>							
			eronara manana		error conses		*******	tererez.	annana a	ere ere ere	Treatment.	arana a	enero?		THE STATE	orași e e e e e e e e e e e e e e e e e e e	mari	70	N	erre.	क्ता संस्था	orar	्यक्त	ribition or	mm3	ंग्राम	ontro:	form	C.A.m	, 11111	54 top	and a secondarie	n.T.Carren	

Login Sample Receipt Checklist

Client: GHD Services Inc.

Job Number: 440-121266-1

Login Number: 121266 List Source: TestAmerica Irvine

List Number: 1

Creator: Avila, Stephanie 1

Grouton. Aviia, Gtophanio 1		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

4

6

7

9

10

12

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Irvine 17461 Derian Ave Suite 100

Irvine, CA 92614-5817 Tel: (949)261-1022

TestAmerica Job ID: 440-121300-1

Client Project/Site: 461 8th St., Oakland, CA

Revision: 1

For:

GHD Services Inc. 5900 Hollis Street Suite A Emeryville, California 94608

Attn: Peter Schaefer

Heather Clark

Authorized for release by: 9/28/2015 5:26:04 PM

Heather Clark, Project Manager I (949)261-1022

heather.clark@testamericainc.com

----- LINKS -----

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Client Sample Results	5
Method Summary	7
Lab Chronicle	8
QC Sample Results	9
QC Association Summary	16
Definitions/Glossary	18
Certification Summary	19
Chain of Custody	20
Receint Checklists	23

3

4

R

9

10

12

Sample Summary

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

TestAmerica Job ID: 440-121300-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
440-121300-4	GHD-A (COMPOSITE)	Solid	09/14/15 11:30	09/15/15 13:00

3

J

4

5

0

9

10

19

Case Narrative

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

TestAmerica Job ID: 440-121300-1

Job ID: 440-121300-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-121300-1

Comments

Revised report to add contingent analyses.

Receipt

The samples were received on 9/15/2015 1:00 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.5° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method(s) 3546: The following sample was diluted due to the nature of the sample matrix: GHD-A (COMPOSITE) (440-121300-4). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

2

3

4

-

e

7

10

1 1

12

TestAmerica Job ID: 440-121300-1

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

Client Sample ID: GHD-A (COMPOSITE) Lab Sample ID: 440-121300-4

Date Collected: 09/14/15 11:30 **Matrix: Solid**

Date Received: 09/15/15 13:00

Chromium

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Volatile Fuel Hydrocarbons (C4-C12)	ND		0.099		mg/Kg			09/18/15 17:40	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane (Surr)	99		60 - 120					09/18/15 17:40	
4-Bromofluorobenzene (Surr)	101		79 - 120					09/18/15 17:40	
Toluene-d8 (Surr)	114		79 - 123					09/18/15 17:40	
Method: 8260B - Volatile Orga	nic Compo	unds (GC/I	VIS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		0.00099		mg/Kg			09/18/15 17:40	
Ethylbenzene	ND		0.00099		mg/Kg			09/18/15 17:40	
Toluene	ND		0.00099		mg/Kg			09/18/15 17:40	
Xylenes, Total	ND		0.0020		mg/Kg			09/18/15 17:40	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	101		79 - 120					09/18/15 17:40	
Dibromofluoromethane (Surr)	99		60 - 120					09/18/15 17:40	
Toluene-d8 (Surr)	114		79 - 123					09/18/15 17:40	
Method: 8015B - Diesel Range	Organics ((DRO) (GC))						
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
DRO (C10-C28)	ND		9.9		mg/Kg		09/18/15 17:08	09/19/15 13:07	
ORO (C29-C40)	ND		9.9		mg/Kg		09/18/15 17:08	09/19/15 13:07	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
n-Octacosane	63		40 - 140				09/18/15 17:08	09/19/15 13:07	
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Antimony	ND		10		mg/Kg		09/18/15 06:44	09/18/15 15:23	
Arsenic	ND		3.0		mg/Kg		09/18/15 06:44	09/18/15 15:23	
Barium	48		1.5		mg/Kg		09/18/15 06:44	09/18/15 15:23	
Beryllium	ND		0.50		mg/Kg		09/18/15 06:44	09/18/15 15:23	
Cadmium	ND		0.50		mg/Kg		09/18/15 06:44	09/18/15 15:23	
Chromium	52		1.0		mg/Kg		09/18/15 06:44	09/18/15 15:23	
Cobalt	6.4		1.0		mg/Kg		09/18/15 06:44	09/18/15 15:23	
Copper	6.0		2.0		mg/Kg		09/18/15 06:44	09/18/15 15:23	
Lead	ND		2.0		mg/Kg			09/18/15 15:23	
	ND		2.0		mg/Kg			09/18/15 15:23	
Molybdenum			2.0		mg/Kg			09/18/15 15:23	
	43				mg/Kg		09/18/15 06:44		
Nickel	43 ND		3.0						
<mark>Nickel</mark> Selenium	ND		3.0						
<mark>Nickel</mark> Selenium Thallium	ND ND		10		mg/Kg		09/18/15 06:44	09/18/15 15:23	
Nickel Selenium Fhallium √anadium	ND ND 32		10 1.0		mg/Kg mg/Kg		09/18/15 06:44 09/18/15 06:44	09/18/15 15:23 09/18/15 15:23	
Nickel Selenium Thallium Vanadium Zinc	ND ND 32 23		10 1.0 5.0		mg/Kg mg/Kg mg/Kg		09/18/15 06:44 09/18/15 06:44 09/18/15 06:44	09/18/15 15:23 09/18/15 15:23 09/18/15 15:23	
Molybdenum Nickel Selenium Thallium Vanadium Zinc Silver	ND ND 32		10 1.0		mg/Kg mg/Kg		09/18/15 06:44 09/18/15 06:44 09/18/15 06:44	09/18/15 15:23 09/18/15 15:23	

TestAmerica Irvine

09/28/15 09:52

0.10

ND

mg/L

Client Sample Results

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

TestAmerica Job ID: 440-121300-1

Lab Sample ID: 440-121300-4 **Client Sample ID: GHD-A (COMPOSITE)**

Date Collected: 09/14/15 11:30 Date Received: 09/15/15 13:00

Matrix: Solid

Method: 7471A - Mercury (CVAA)

Analyte RL Result Qualifier MDL Unit D Prepared Analyzed Dil Fac Mercury ND 0.020 09/18/15 07:42 09/18/15 22:08 mg/Kg

Method Summary

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

TestAmerica Job ID: 440-121300-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL IRV
8260B/CA_LUFTM S	Volatile Organic Compounds by GC/MS	SW846	TAL IRV
8015B	Diesel Range Organics (DRO) (GC)	SW846	TAL IRV
6010B	Metals (ICP)	SW846	TAL IRV
7471A	Mercury (CVAA)	SW846	TAL IRV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

9/28/2015

2

3

4

6

10

Lab Chronicle

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

TestAmerica Job ID: 440-121300-1

Lab Sample ID: 440-121300-4

Matrix: Solid

Client Sample ID: GHD-A (COMPOSITE)

Date Collected: 09/14/15 11:30 Date Received: 09/15/15 13:00

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5.04 g	10 mL	280932	09/18/15 17:40	AL	TAL IRV
Total/NA	Analysis	8260B/CA_LUFTN S		1	5.04 g	10 mL	280933	09/18/15 17:40	HR	TAL IRV
Total/NA	Prep	3546			7.55 g	1 mL	281118	09/18/15 17:08	BAW	TAL IRV
Total/NA	Analysis	8015B		1	7.55 g	1 mL	281192	09/19/15 13:07	QCT	TAL IRV
STLC Citrate	Leach	CA WET Citrate			50.05 g	500 mL	282061	09/23/15 17:36	СН	TAL IRV
STLC Citrate	Analysis	6010B		20			282916	09/28/15 09:52	VS	TAL IRV
Total/NA	Prep	3050B			2.01 g	50 mL	280931	09/18/15 06:44	DT	TAL IRV
Total/NA	Analysis	6010B		5	2.01 g	50 mL	281104	09/18/15 15:23	TK	TAL IRV
Total/NA	Prep	7471A			0.50 g	50 mL	280945	09/18/15 07:42		TAL IRV
Total/NA	Analysis	7471A		1	0.50 g	50 mL	281147	09/18/15 22:08	DB	TAL IRV

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

TestAmerica Job ID: 440-121300-1

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

Method: 8260B - Volatile Organic Compounds (GC/MS)

MB MB

Lab Sample ID: MB 440-280932/4

Matrix: Solid

Analysis Batch: 280932

Client Sample ID: Method Blank Prep Type: Total/NA

D Prepared Analyzed Dil Fac

Analyte Result Qualifier RL **MDL** Unit ND 0.0010 09/18/15 08:26 Benzene mg/Kg Ethylbenzene ND 0.0010 09/18/15 08:26 mg/Kg ND Toluene 0.0010 mg/Kg 09/18/15 08:26 Xylenes, Total ND 0.0020 mg/Kg 09/18/15 08:26 MB MB

Surrogate Qualifier Limits Prepared Dil Fac %Recovery Analyzed 4-Bromofluorobenzene (Surr) 79 - 120 09/18/15 08:26 101 Dibromofluoromethane (Surr) 100 60 - 120 09/18/15 08:26 Toluene-d8 (Surr) 120 79 - 123 09/18/15 08:26

Lab Sample ID: LCS 440-280932/5

Matrix: Solid

Analysis Batch: 280932

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec. Added Result Qualifier Analyte Unit D %Rec Limits 0.0500 65 - 120 Benzene 0.0508 mg/Kg 102 Ethylbenzene 0.0500 0.0484 mg/Kg 97 70 - 125 0.0500 0.0510 102 70 - 125 m,p-Xylene mg/Kg o-Xylene 0.0500 0.0504 mg/Kg 101 70 - 125 Toluene 0.0500 0.0494 mg/Kg 99 70 - 125

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 98 79 - 120 Dibromofluoromethane (Surr) 100 60 - 120 Toluene-d8 (Surr) 113 79 - 123

Analysis Batch: 280932

Lab Sample ID: 440-121266-A-7 MS Client Sample ID: Matrix Spike **Matrix: Solid** Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	ND		0.0499	0.0513		mg/Kg		103	65 - 130	
Ethylbenzene	ND		0.0499	0.0491		mg/Kg		98	70 - 135	
m,p-Xylene	ND		0.0499	0.0520		mg/Kg		104	70 - 130	
o-Xylene	ND		0.0499	0.0498		mg/Kg		100	65 - 130	
Toluene	ND		0.0499	0.0505		mg/Kg		101	70 - 130	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	98		79 - 120
Dibromofluoromethane (Surr)	100		60 - 120
Toluene-d8 (Surr)	114		79 - 123

TestAmerica Irvine

Page 9 of 23

TestAmerica Job ID: 440-121300-1

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-121266-A-7 MSD

Matrix: Solid

Analysis Batch: 280932

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	ND		0.0500	0.0492		mg/Kg		98	65 - 130	4	20
Ethylbenzene	ND		0.0500	0.0470		mg/Kg		94	70 - 135	4	25
m,p-Xylene	ND		0.0500	0.0495		mg/Kg		99	70 - 130	5	25
o-Xylene	ND		0.0500	0.0482		mg/Kg		96	65 - 130	3	25
Toluene	ND		0.0500	0.0487		mg/Kg		97	70 - 130	4	20
Benzene Ethylbenzene m,p-Xylene o-Xylene	ND ND ND	Qualifier	0.0500 0.0500 0.0500 0.0500	0.0492 0.0470 0.0495 0.0482	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg	<u>U</u>	98 94 99 96	65 - 130 70 - 135 70 - 130 65 - 130	4 4 5 3	2

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	98		79 - 120
Dibromofluoromethane (Surr)	99		60 - 120
Toluene-d8 (Surr)	111		79 - 123

Method: 8260B/CA_LUFTMS - Volatile Organic Compounds by GC/MS

MD MD

Lab Sample ID: MB 440-280933/4 Client Sample ID: Method Blank **Prep Type: Total/NA**

Matrix: Solid

Analysis Batch: 280933

MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Volatile Fuel Hydrocarbons (C4-C12) 0.10 mg/Kg ND 09/18/15 08:26

IVID	IVID				
%Recovery	Qualifier	Limits	Prepared Ana	lyzed	Dil Fac
100		60 - 120	09/18/	15 08:26	1
101		79 - 120	09/18/	15 08:26	1
120		79 - 123	09/18/	15 08:26	1
	%Recovery 100 101	101	%Recovery Qualifier Limits 100 60 - 120 101 79 - 120	%Recovery Qualifier Limits Prepared Ana 100 60 - 120 09/18/1 101 79 - 120 09/18/1	%Recovery Qualifier Limits Prepared Analyzed 100 60 - 120 09/18/15 08:26 101 79 - 120 09/18/15 08:26

Lab Sample ID: LCS 440-280933/6

Matrix: Solid

Analysis Batch: 280933

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Volatile Fuel Hydrocarbons	 1.00	0.831		mg/Kg	_	83	60 - 135	

(C4-C12)

	LCS LCS				
Surrogate	%Recovery Qu	ıalifier	Limits		
Dibromofluoromethane (Surr)	100		60 - 120		
4-Bromofluorobenzene (Surr)	102		79 - 120		
Toluene-d8 (Surr)	116		79 - 123		

Lab Sample ID: 440-121266-A-7 MS

Matrix: Solid

Analysis Batch: 280933

Analysis Datch. 200955	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Volatile Fuel Hydrocarbons	ND		3.44	3.94		mg/Kg		115	55 - 140	
(C4-C12)										

TestAmerica Irvine

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

Method: 8260B/CA_LUFTMS - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 440-121266-A-7 MS

Matrix: Solid

Surrogate

Analysis Batch: 280933

Client Sample ID: Matrix Spike Prep Type: Total/NA

MS MS %Recovery Qualifier Limits Dibromofluoromethane (Surr) 100 60 - 120 4-Bromofluorobenzene (Surr) 98 79 - 120

114

Lab Sample ID: 440-121266-A-7 MSD

Matrix: Solid

Toluene-d8 (Surr)

Analysis Batch: 280933

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Added Result Qualifier Limits RPD Limit **Analyte** Unit D %Rec 3.45 55 - 140 ND 3.84 mg/Kg 111 3 Volatile Fuel Hydrocarbons

79 - 123

(C4-C12)

MSD MSD Surrogate %Recovery Qualifier Limits Dibromofluoromethane (Surr) 99 60 - 120 4-Bromofluorobenzene (Surr) 98 79 - 120 Toluene-d8 (Surr) 111 79 - 123

Method: 8015B - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 440-281118/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 281191 Prep Batch: 281118 MB MB **MDL** Unit Analyte Result Qualifier RL D Prepared Analyzed Dil Fac DRO (C10-C28) ND 5.0 mg/Kg 09/18/15 17:08 09/19/15 10:46 ORO (C29-C40) ND 5.0 09/18/15 17:08 09/19/15 10:46 mg/Kg

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac n-Octacosane 103 40 - 140 09/18/15 17:08 09/19/15 10:46

LCS LCS

Lab Sample ID: LCS 440-281118/2-A

Matrix: Solid

Analysis Batch: 281191

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 281118 %Rec.

Spike **Analyte** Added Result Qualifier Unit %Rec Limits DRO (C10-C28) 66.7 55.8 mg/Kg 84 45 - 115

LCS LCS

Surrogate %Recovery Qualifier Limits n-Octacosane 94 40 - 140

Lab Sample ID: 440-121498-A-2-A MS

Matrix: Solid

Analysis Batch: 281191

Client Sample ID: Matrix Spike Prep Type: Total/NA Prep Batch: 281118 %Rec.

MS MS Sample Sample Spike **Analyte** Result Qualifier Added Result Qualifier Unit D %Rec Limits DRO (C10-C28) ND 64.9 51.6 mg/Kg 80 40 - 120

TestAmerica Job ID: 440-121300-1

Client Sample ID: Matrix Spike

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

Method: 8015B - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 440-121498-A-2-A MS

Matrix: Solid

Analysis Batch: 281191

MS MS

Sample Sample

%Recovery Qualifier Surrogate Limits 40 - 140 n-Octacosane 88

Lab Sample ID: 440-121498-A-2-B MSD

Matrix: Solid

Analysis Batch: 281191

Result Qualifier Analyte DRO (C10-C28) ND

MSD MSD Surrogate %Recovery Qualifier 91 n-Octacosane

40 - 140

Client Sample ID: Matrix Spike Duplicate

D %Rec

82

Prep Type: Total/NA **Prep Batch: 281118**

Prep Type: Total/NA Prep Batch: 281118

%Rec. RPD

Limits RPD Limit 40 - 120 9 30

Unit

mg/Kg

Limits

MSD MSD

56.5

Result Qualifier

Spike

Added

68.7

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 440-280931/1-A ^5

Matrix: Solid

Analysis Batch: 281104

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 280931

-	MB	MB						-	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		9.9		mg/Kg		09/18/15 06:44	09/18/15 14:47	5
Arsenic	ND		3.0		mg/Kg		09/18/15 06:44	09/18/15 14:47	5
Barium	ND		1.5		mg/Kg		09/18/15 06:44	09/18/15 14:47	5
Beryllium	ND		0.50		mg/Kg		09/18/15 06:44	09/18/15 14:47	5
Cadmium	ND		0.50		mg/Kg		09/18/15 06:44	09/18/15 14:47	5
Cobalt	ND		0.99		mg/Kg		09/18/15 06:44	09/18/15 14:47	5
Copper	ND		2.0		mg/Kg		09/18/15 06:44	09/18/15 14:47	5
Lead	ND		2.0		mg/Kg		09/18/15 06:44	09/18/15 14:47	5
Molybdenum	ND		2.0		mg/Kg		09/18/15 06:44	09/18/15 14:47	5
Nickel	ND		2.0		mg/Kg		09/18/15 06:44	09/18/15 14:47	5
Selenium	ND		3.0		mg/Kg		09/18/15 06:44	09/18/15 14:47	5
Thallium	ND		9.9		mg/Kg		09/18/15 06:44	09/18/15 14:47	5
Vanadium	ND		0.99		mg/Kg		09/18/15 06:44	09/18/15 14:47	5
Zinc	ND		5.0		mg/Kg		09/18/15 06:44	09/18/15 14:47	5
Silver	ND		1.5		mg/Kg		09/18/15 06:44	09/18/15 14:47	5
Chromium	ND		0.99		mg/Kg		09/18/15 06:44	09/18/15 14:47	5

Matrix: Solid

Lab Sample ID: LCS 440-280931/2-A ^5 **Client Sample ID: Lab Control Sample Prep Type: Total/NA Analysis Batch: 281104** Prep Batch: 280931 Snika ICS ICS % Pac

	Spike	LUS	LUS				70ReC.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	49.8	49.9		mg/Kg		100	80 - 120	-
Arsenic	49.8	47.1		mg/Kg		95	80 - 120	
Barium	49.8	49.5		mg/Kg		100	80 - 120	
Beryllium	49.8	48.7		mg/Kg		98	80 - 120	
Cadmium	49.8	47.5		mg/Kg		96	80 - 120	
Cobalt	49.8	49.7		mg/Kg		100	80 - 120	
Copper	49.8	49.7		mg/Kg		100	80 - 120	

TestAmerica Irvine

Page 12 of 23

9/28/2015

TestAmerica Job ID: 440-121300-1

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LCS 440-280931/2-A ^5 **Matrix: Solid**

Analysis Batch: 281104

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 280931

•	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Lead	49.8	49.2		mg/Kg		99	80 - 120
Molybdenum	49.8	51.8		mg/Kg		104	80 - 120
Nickel	49.8	52.1		mg/Kg		105	80 - 120
Selenium	49.8	44.9		mg/Kg		90	80 - 120
Thallium	49.8	48.9		mg/Kg		98	80 - 120
Vanadium	49.8	49.5		mg/Kg		99	80 - 120
Zinc	49.8	45.7		mg/Kg		92	80 - 120
Silver	24.9	24.4		mg/Kg		98	80 - 120
Chromium	49.8	52.9		mg/Kg		106	80 - 120

Lab Sample ID: 440-121349-A-1-D MS ^5

Matrix: Solid

Analysis Batch: 281104

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 280931

MS MS Spike %Rec. Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits F1 Antimony ND 49.3 26.3 F1 mg/Kg 53 75 - 125 Arsenic 6.6 49.3 49.5 mg/Kg 87 75 - 125 Barium 82 F1 49.3 137 mg/Kg 112 75 - 125 Beryllium 0.58 49.3 46.8 mg/Kg 94 75 - 125 Cadmium ND 49.3 43.9 mg/Kg 89 75 - 125 Cobalt 7.6 49.3 96 75 - 125 54.7 mg/Kg 20 49.3 75 - 125 Copper 71.0 mg/Kg 104 49.3 106 Lead 15 67.7 mg/Kg 75 - 125 Molybdenum ND 49.3 47.5 mg/Kg 94 75 - 125 Nickel 12 49.3 60.2 98 75 - 125 mg/Kg Selenium ND 49.3 42.8 mg/Kg 87 75 - 125 Thallium ND 90 49.3 44.4 mg/Kg 75 - 125 Vanadium 35 49.3 85.7 mg/Kg 104 75 - 125 75 - 125 Zinc 45 49.3 89.4 mg/Kg 90 Silver ND 24.6 22.8 mg/Kg 93 75 - 125 Chromium 20 49.3 70.2 mg/Kg 103 75 - 125

Lab Sample ID: 440-121349-A-1-E MSD ^5

Matrix: Solid

Analysis Batch: 281104

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA **Prep Batch: 280931**

/ maryolo Batom 201104					MOD MOD				Op De	iop Batoiii 200	
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	ND	F1	50.0	28.8	F1	mg/Kg		58	75 - 125	9	20
Arsenic	6.6		50.0	54.5		mg/Kg		96	75 - 125	10	20
Barium	82	F1	50.0	153	F1	mg/Kg		143	75 - 125	11	20
Beryllium	0.58		50.0	52.1		mg/Kg		103	75 - 125	11	20
Cadmium	ND		50.0	47.9		mg/Kg		96	75 - 125	9	20
Cobalt	7.6		50.0	60.2		mg/Kg		105	75 - 125	10	20
Copper	20		50.0	73.8		mg/Kg		108	75 - 125	4	20
Lead	15	F1	50.0	79.6	F1	mg/Kg		128	75 - 125	16	20
Molybdenum	ND		50.0	51.7		mg/Kg		101	75 - 125	8	20
Nickel	12		50.0	66.5		mg/Kg		109	75 - 125	10	20
Selenium	ND		50.0	47.4		mg/Kg		95	75 - 125	10	20
Thallium	ND		50.0	49.3		mg/Kg		99	75 ₋ 125	11	20

TestAmerica Irvine

Page 13 of 23

9/28/2015

TestAmerica Job ID: 440-121300-1

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: GHD-A (COMPOSITE)

Prep Type: STLC Citrate

Prep Type: STLC Citrate

Prep Type: STLC Citrate

Prep Type: Total/NA

Client Sample ID: Matrix Spike Duplicate

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: 440-121349-A-1-E MSD ^5

Matrix: Solid

Analysis Batch: 281104									Prep Ba	atcn: 28	30931
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Vanadium	35		50.0	94.8		mg/Kg		120	75 - 125	10	20
Zinc	45		50.0	97.4		mg/Kg		105	75 - 125	9	20
Silver	ND		25.0	25.0		mg/Kg		100	75 - 125	9	20
Chromium	20		50.0	78.7		mg/Kg		118	75 - 125	11	20

Lab Sample ID: MB 440-282061/1-A ^20

Matrix: Solid

Analysis Batch: 282916

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Chromium 0.10 09/28/15 09:46 $\overline{\mathsf{ND}}$ mg/L

Lab Sample ID: LCS 440-282061/2-A ^20

Matrix: Solid

Analysis Batch: 282916

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits 20.0 Chromium 19.0 mg/L 95 80 - 120

Lab Sample ID: 440-121300-4 MS

Matrix: Solid

Analysis Batch: 282916

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chromium	ND		20.0	19 1		ma/l	_	95	75 _ 125	

Lab Sample ID: 440-121300-4 MSD

Matrix: Solid

Analysis Batch: 282916

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chromium	ND		20.0	19.2		mg/L		96	75 - 125	1	20	

Method: 7471A - Mercury (CVAA)

Lab Sample ID: MB 440-280945/1-A

Matrix: Solid

Analysis Batch: 281147

Prep Type: Total/NA Prep Batch: 280945 MB MB

Analyte Result Qualifier RL MDL Unit Prepared Dil Fac Analyzed Mercury $\overline{\mathsf{ND}}$ 0.020 mg/Kg 09/18/15 07:42 09/18/15 21:13

Lab Sample ID: LCS 440-280945/2-A

Matrix: Solid

Prep Type: Total/NA **Analysis Batch: 281147** Prep Batch: 280945 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Mercury 0.800 0.820 mg/Kg 103 80 - 120

TestAmerica Irvine

Client Sample ID: GHD-A (COMPOSITE) **Prep Type: STLC Citrate**

Client Sample ID: Lab Control Sample

QC Sample Results

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

TestAmerica Job ID: 440-121300-1

Method: 7471A - Mercury (CVAA) (Continued)

Lab Sample ID: 440-121403-A-15-B MS

Matrix: Solid

Analysis Batch: 281147

Client Sample ID: Matrix Spike
Prep Type: Total/NA
Prep Batch: 280945

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 0.816 70 - 130 Mercury ND 0.684 mg/Kg 82

Lab Sample ID: 440-121403-A-15-C MSD

Matrix: Solid

Prep Type: Total/NA

Prep Retain 200045

Analysis Batch: 281147 Prep Batch: 280945 Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec 0.784 85 70 - 130 20 Mercury ND 0.680 mg/Kg

3

4

5

7

8

9

10

46

Project/Site: 461 8th St., Oakland, CA

Client: GHD Services Inc. TestAmerica Job ID: 440-121300-1

GC/MS VOA

Analysis Batch: 280932

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-121266-A-7 MS	Matrix Spike	Total/NA	Solid	8260B	
440-121266-A-7 MSD	Matrix Spike Duplicate	Total/NA	Solid	8260B	
440-121300-4	GHD-A (COMPOSITE)	Total/NA	Solid	8260B	
LCS 440-280932/5	Lab Control Sample	Total/NA	Solid	8260B	
MB 440-280932/4	Method Blank	Total/NA	Solid	8260B	

Analysis Batch: 280933

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
440-121266-A-7 MS	Matrix Spike	Total/NA	Solid	8260B/CA_LUFT
440-121266-A-7 MSD	Matrix Spike Duplicate	Total/NA	Solid	MS 8260B/CA_LUFT MS
440-121300-4	GHD-A (COMPOSITE)	Total/NA	Solid	8260B/CA_LUFT MS
LCS 440-280933/6	Lab Control Sample	Total/NA	Solid	8260B/CA_LUFT MS
MB 440-280933/4	Method Blank	Total/NA	Solid	8260B/CA_LUFT MS

GC Semi VOA

Prep Batch: 281118

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-121300-4	GHD-A (COMPOSITE)	Total/NA	Solid	3546	_
440-121498-A-2-A MS	Matrix Spike	Total/NA	Solid	3546	
440-121498-A-2-B MSD	Matrix Spike Duplicate	Total/NA	Solid	3546	
LCS 440-281118/2-A	Lab Control Sample	Total/NA	Solid	3546	
MB 440-281118/1-A	Method Blank	Total/NA	Solid	3546	

Analysis Batch: 281191

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-121498-A-2-A MS	Matrix Spike	Total/NA	Solid	8015B	281118
440-121498-A-2-B MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B	281118
LCS 440-281118/2-A	Lab Control Sample	Total/NA	Solid	8015B	281118
MB 440-281118/1-A	Method Blank	Total/NA	Solid	8015B	281118

Analysis Batch: 281192

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-121300-4	GHD-A (COMPOSITE)	Total/NA	Solid	8015B	281118

Metals

Prep Batch: 280931

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-121300-4	GHD-A (COMPOSITE)	Total/NA	Solid	3050B	<u> </u>
440-121349-A-1-D MS ^5	Matrix Spike	Total/NA	Solid	3050B	
440-121349-A-1-E MSD ^5	Matrix Spike Duplicate	Total/NA	Solid	3050B	
LCS 440-280931/2-A ^5	Lab Control Sample	Total/NA	Solid	3050B	
MB 440-280931/1-A ^5	Method Blank	Total/NA	Solid	3050B	

QC Association Summary

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

TestAmerica Job ID: 440-121300-1

Metals (Continued)

Prep Batch: 280945

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-121300-4	GHD-A (COMPOSITE)	Total/NA	Solid	7471A	
440-121403-A-15-B MS	Matrix Spike	Total/NA	Solid	7471A	
440-121403-A-15-C MSD	Matrix Spike Duplicate	Total/NA	Solid	7471A	
LCS 440-280945/2-A	Lab Control Sample	Total/NA	Solid	7471A	
MB 440-280945/1-A	Method Blank	Total/NA	Solid	7471A	

Analysis Batch: 281104

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-121300-4	GHD-A (COMPOSITE)	Total/NA	Solid	6010B	280931
440-121349-A-1-D MS ^5	Matrix Spike	Total/NA	Solid	6010B	280931
440-121349-A-1-E MSD ^5	Matrix Spike Duplicate	Total/NA	Solid	6010B	280931
LCS 440-280931/2-A ^5	Lab Control Sample	Total/NA	Solid	6010B	280931
MB 440-280931/1-A ^5	Method Blank	Total/NA	Solid	6010B	280931

Analysis Batch: 281147

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-121300-4	GHD-A (COMPOSITE)	Total/NA	Solid	7471A	280945
440-121403-A-15-B MS	Matrix Spike	Total/NA	Solid	7471A	280945
440-121403-A-15-C MSD	Matrix Spike Duplicate	Total/NA	Solid	7471A	280945
LCS 440-280945/2-A	Lab Control Sample	Total/NA	Solid	7471A	280945
MB 440-280945/1-A	Method Blank	Total/NA	Solid	7471A	280945

Leach Batch: 282061

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-121300-4	GHD-A (COMPOSITE)	STLC Citrate	Solid	CA WET Citrate	
440-121300-4 MS	GHD-A (COMPOSITE)	STLC Citrate	Solid	CA WET Citrate	
440-121300-4 MSD	GHD-A (COMPOSITE)	STLC Citrate	Solid	CA WET Citrate	
LCS 440-282061/2-A ^20	Lab Control Sample	STLC Citrate	Solid	CA WET Citrate	
MB 440-282061/1-A ^20	Method Blank	STLC Citrate	Solid	CA WET Citrate	

Analysis Batch: 282916

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-121300-4	GHD-A (COMPOSITE)	STLC Citrate	Solid	6010B	282061
440-121300-4 MS	GHD-A (COMPOSITE)	STLC Citrate	Solid	6010B	282061
440-121300-4 MSD	GHD-A (COMPOSITE)	STLC Citrate	Solid	6010B	282061
LCS 440-282061/2-A ^20	Lab Control Sample	STLC Citrate	Solid	6010B	282061
MB 440-282061/1-A ^20	Method Blank	STLC Citrate	Solid	6010B	282061

TestAmerica Irvine

2

5

O

8

9

11

12

Definitions/Glossary

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

TestAmerica Job ID: 440-121300-1

Qualifiers

Metals

Qualifier **Qualifier Description**

MS and/or MSD Recovery is outside acceptance limits.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
MI	Minimum Loyal (Diavin)

MLMinimum Level (Dioxin)

NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC **Quality Control** RER Relative error ratio

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TestAmerica Irvine

Certification Summary

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

TestAmerica Job ID: 440-121300-1

Laboratory: TestAmerica Irvine

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	CA01531	06-30-16
Arizona	State Program	9	AZ0671	10-13-15
California	LA Cty Sanitation Districts	9	10256	01-31-16 *
California	State Program	9	2706	06-30-16
Guam	State Program	9	Cert. No. 12.002r	01-23-16
Hawaii	State Program	9	N/A	01-29-16
Nevada	State Program	9	CA015312007A	07-31-16 *
New Mexico	State Program	6	N/A	01-29-16
Northern Mariana Islands	State Program	9	MP0002	01-29-16
Oregon	NELAP	10	4005	01-29-16
USDA	Federal		P330-09-00080	07-08-18

3

4

7

10

11

12

^{*} Certification renewal pending - certification considered valid.

TestAmerica Irvine

	LAB (LOCATION)								a		SI	hell	0	il F) ro	odi	ıcı	ts (:h:	ain	O f	F C	lle _t	tod	lv F	₹64	יחנ	·H					
☐ CAL	SCIENCE (Ple	ase Che	ck:An	prop	riate	Вох								ct:Na							_	aNE			t ID	#:::	::::::1	Псн	ECK IF NO INCIDENT # APPLIES
☐ SPL)		ENV. S	SERVICES		MOTIV	*****			SHELL RE		1					1-15.0						U	S	F	0	4			2		ATE: 9/14/2015
□ XEI)		MOTIV	VA SD&CM	[Z	CONSUL	TANT			LUBES				iiaeie			PO								PlaN			1-1-1	1-1-1-1	-		112. 9/14/2010
ОП	ST AMERICA ()	怙	SHELL	PIPELINE		OTHER							T	T	T	T	T				T	.:.:.:.:		<u>:::::::</u>	T	· · · · ·	·····	17	<u> </u>	Ť	PA	GE: of
	COMPANY:						LOG	ODE:					SITE	ADDR	RESS: S	Street a	and City	у				ł		2 State	7	4	GLOE	AL ID N	0.:		<u> </u>		
	Services Inc.						CRA	W							Street									CA		-	T060		263				
ADDRES 5900 H	s: Iollis Street, Suite A, En	neryville, CA 94608										-	EDF DI	ELIVERA	ABLE TO) (Name,	Compan	ny, Office	ocation)	:	ľ	HONE N	10.:				E-MAIL						CONSULTANT PROJECT NO.:
	CONTACT (Hardcopy or PDF Report to):	:													ml, G		Eme	ryville				510-4	20-33	43			shell	.em.e	edf@	ghd.c		ÚSE C	241501-15.04-***
TELEPH		FAX:			E-MAIL:								1																		LAB	COEC	JNL:
TURN	510-420-3319 AROUND TIME (CALENDAR D	510-420-9170)			pe	er.sch	efer@			NEEDED		Bele	w Yi	ifru				-								-						
		☑5 DAYS ☐3 DAYS			2 DAYS	☐ 24 F	IOURS		ЦК		WEEKE												R	EQU	ESTE	D A	IALY	SIS					
	- RWQCB REPORT FORMAT	☑ UST AGENCY:																					,				<u>6</u>				(pai		TEMPERATURE ON RECEIPT C°
	CIAL INSTRUCTIONS O		for A	guatic	Bioassa		LL CONT				ט ז,ככ		(B0)	(8015M)		_											(6010)				disposal (See Attached)		
	nination (5 day TAT or be			7			NOT NE	EDED UFICAT	IONRE	QUESTE	ED.		- Purgeable (8260B)	8		(8260B)									_	5	- Total				See A		
	kimberly.kwok@ghd.com composite sample IDs a												aple	TPH - Extractable	<u>س</u>	8) 8	6		_	<u>6</u>	<u>س</u>	30B)	_	(G)	Methanol (8015M)	TPH - MO (8015M)	- si	<u>(၃</u>	_	_	sal (
Call	composite sample 123 a	nd held point hames. Of		SAMPL				PR	RESERV	ATIVE			l g	xtrac	BTEX (8260B)	5 Oxygenates	MTBE (8260B)	TBA (8260B)	DIPE (8260B)	TAME (8260B)	ETBE (8260B)	1,2 DCA (8260B)	EDB (8260B)	Ethanol (8260B)	(8 0	0	CAM17 Metals	SVOCs (8270C)	VOCs (8260)	PCBs (8082)	dispo		
U AB	Field Sample	Identification	DA	TE	TIME	MATRIX						NO. OF CONT.	Ŧ.	1 4	X S	×yge	"	۸ (82	(8) E	E)	₩ Ж (8	20	B (82	anol	than	Σ	M17	ဗ္ဂ	S) (S	Bs (8	Test for		Container PID Readings
DUSE ⊒DNLY		· · · · · · · · · · · · · · · · · · ·	<u> </u>				HCL	HNO3	H2SO4	NONE	OTHER		ΤH	Ē	BT	50	₹	TB,	늄	₹	Ш	1,2	Ē	퇇	<u>M</u> e	Ē	₹	SV	9	짇	1		or Laboratory Notes
ပ္	GHD-1A	9/	14/		1130	SO						1	Х	X	X											X	X				X		Please call
2	GHO-18	5/	4/	15	1130	50						t	X	X	X	\ ;										*	×				بد		composite sample
AUSE OPVLY OP 20 Of 23	C1HD-1C	91	144	01	130	SÓ						ſ	x	4	×			·								×	x				X	`	GHD-A
	GHO-10	703															1																
		(2)																															Per Contingency Sheet,
													 	1		H W	IIIII											i					for Solids & Liquids;
										11111			H				Ш										,						run STLC and / or TCLP
													W							-													as needed.
										 440	 -1213	00 Ch	ain (of Ci	usto	dy				-								-					Solids ONLY;
				-						-	ı . T		ı .	Г	Γ	ſ	I	Ţ															run Fish Toxicity
Relinqu	Shed by: (Signature)					Received by:	(Signature	e) .	L	<u> </u>	i		<u> </u>	<u></u>	ш_	<u></u>		_L	l	! <u> </u>						Date	1		1.			Time:	
K	Au Sel	- S				RLC		لاک	2	1	۵	50	C	U	212	_	L	80	Δτ	36	2						9/	,					11:15
Relinqui	shed by: (Signature)					Received by:	(Signature	5-								٠										Date	7-1			/:	_	Time:	10:07
						- B	(0)	_	~	-	,															/	•	<u>ر</u>		, <u>,</u>		T:	12:07
Kelinqui	shed by: (signature)			ngan - 1		Received by:	Signature	" (L	, ,	1		1									1.				Date	9			_,		- /	(202)
9/2	Ci								1		\Rightarrow	w	12								_2	1	<u> </u>	<u> </u>	_		1.	<u>/</u>	١	7	7		OSIDIOS Davidios
9/28/2015	1. bush	1 9/15/1	5		151	5	"	100	Ω	Λt	d	٦/	R	30	(1)	()	C	入		C	1/1	(^	11	_		4							05/2/06 Revision
ğ (Y(')"			,	, . , ,		V		$ \mathcal{K} $	' '		ノヘ	ب	س	~\	_	` -	•			1)'	Ą	/ '(ک		ι	1						
ΟΊ		•						(C'	0)	0	· /	13	3.		1/	8		75					•										
								\	/				27	\	. 0			12	B	2	70		\supset	2/	10	2							
	_											-\ ⊀ •••••••••	<i>ن</i> ک	<u>ر</u>			ٔ د	\mathcal{O}_{i}	C7(Ź			لايار)	.00.	di tutorore	m. ==		A morn	.C7.	The second second
		and the state of t																	a,		J			٠, رو									The state of the s

- e-cererancei

Analytical trigger for Waste Determinations is provided below. Only triggers for select states are supplied; triggers will be updated with additional states as they are generated.

California Analytical Triggers:

Hazardous Thresholds	zardous Th	resho	lds
----------------------	------------	-------	-----

		Hazardou	s Threshold	ds	
Organic Constituents	Trigger				
	Level	TCLP	STLC	TTLC	Comments
	TTLC	(mg/L)	(mg/L)	(mg/kg)	Comments
	(mg/L)				
TPHg	5,000		_20)	11 L 1 1	Trigger requires fish bioassay
TPHd	5,000				Trigger requires fish bioassay
TPHmo	5,000	1 1 11	Till	111 - -1	Trigger requires fish bioassay
1 Maril Angeling na na saya na 19 day an Sairtsan na saya na ag maganaga sana ay an an ana an asaya na sana	EREADINIA SIANA AMBRILLI		NEW 1982	50%	aria tornarra de la proposició en el como de la tradició de la companió de la companió de la companió de la co Como de la companió
(fish bioassay)				fish kill	
Aldrin.	0.14		0.14	1.4	
Benzene	10	0.5			AND THE RESIDENCE AND THE PROPERTY OF THE PROP
Carbon Tetrachloride	10	0.5	<u>_1</u>		
· · · · · · · · · · · · · · · · · · ·	0.25	ULUN 1941-0-2 1 C. U.	·	STENE MENTER PRETER TAXABLE IN	≥0.25 trigger requires STLC
Chlordane	0.60	0.03	0.25	2.5	≥0.60 trigger requires TCLP
Chlorobenzene	2,000	100	i <u></u>		1
Chloroform	120	6.0			THE BRIS FEER PROTECTION IN THE SECRET OF THE SECRET
Cresols	4,000	200	<u>-</u> .	-	
2,4-	*MATERIAL CONTROL OF THE PROPERTY OF THE PARTY OF THE PAR	TO SHARE STORE AND A STORE OF THE STORE OF T	THE CONTRACTOR OF THE CONTRACT		
Dichlorophenoxyacetic	10	10	10	100	Trigger requires STLC and TCLP
Acid					
DDT, DDE, DDD	0.10		0.1	1.0	
1,4 Dichlorobenzene	150	7.5		8.0	
1,2 Dichloroethane	10	0.5	4	- -	
1,1 Dichloroethylene	14	0.7			
2,4 Dinitrotoluene	2.6	0.13			
Dieldrin	0.8		0.8		
Dioxin	0.001	1 <u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>	0.001	0.01	
Endrin	0.02	0.02	0.02	0.20	Trigger requires STLC and TCLP
Heptachlor	0.16	0.008	0.47	4.7	≥0.16 trigger requires TCLP
neptaciioi	0.47	0.008	0.47	11 7. /	≥0.47 trigger requires STLC
Hexachlorobenzene	2.6	0.13		AN AN EMPHORENCE MEMORY OF THE PROPERTY OF THE ANALYSIS OF	
Hexachlorobutadiene	10	0.5		—j "j	
Hexachloroethane	60	3.0	ON THE STATE OF TH	TAN IN STREET STREET IN THE STREET ST	
Kepone	2.1		2.1	21	
Lindane	0.4	0.4	0.4	4.0	Trigger requires STLC and TCLP
Methoxychlor	10	10	10	100	Trigger requires STLC and TCLP
Methyl Ethyl Ketone	4,000	200			
Mirex	2.1	+	2.1	21	
Nitrobenzene	40	2.0	TERROOT ORGANISM AND	 	
Pentachlorophenol	1.7	100	1.7	17	Trigger requires STLC only
Polychlorinated	5.0		5.0	50	
Biphenyls			45 000000000000000000000000000000000000		
Pyridine	100	0.5	31 3 <u>5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 </u>	-	
Tetrachloroethylene	14	0.7			

Toxaphene	0.50	0.5	0.5	5	Trigger requires STLC and TCLP
Trichloroethylene	10 204	0.5	204	2,040	≥10 trigger requires TCLP ≥204 trigger requires STLC
2,4,5 TP (Silvex)	1.0	1.0	1.0	10	Trigger requires STLC and TCLP
2,4,5 Trichlorophenol 2,4,6 Trichlorophenol	8,000 40	400 2.0			
Vinyl Chloride	4.0	0.2	(]		是是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一
		Hazar	dous Thres	sholds	
Inorganic Constituents	Trigger Level	TCLP	STLC	TTLC	
	TTLC	(mg/L)	(mg/L)	(mg/kg)	Comments
	(mg/L)		4-	500	
Antimony	150 50	7-	15	500	≥50 trigger requires STLC
Arsenic	100	5.0	5.0	500	≥100 trigger requires TCLP
Barium	1,000 2,000	100	100	10,000	≥1000 trigger requires STLC
Beryllium	7.5		0.75	75	≥2000 trigger requires TCLP
, Cadmium	10	1.0	1.0	100	≥10 trigger requires STLC
	20 50			i kajar	≥20 trigger requires TCLP ≥50 trigger requires STLC
Chromium	100	5.0	5.0	500	≥100 trigger requires TCLP
Cobalt	800	6 (2.)	80	8,000	
Copper	250 13	 10 1 1 1	25	2,500	 ≥13 trigger requires organic lead
Lead	50	5.0	5.0	1,000	≥50 trigger requires STLC
(0)	100			10	≥100 trigger requires TCLP
(Organic Lead)	 2.0		 111	13	 ≥2 trigger requires STLC
Mercury	4.0	0.2	0.2	20	≥4 trigger requires TCLP
Molybdenum	3,500	<u></u>	350	3,500	
Nickel	200 10	, , , , , , , , , , , , , , , , , , ,	20	2,000	≥10 trigger requires STLC
Selenium	20	1.0	1.0	100	≥20 trigger requires TCLP
Silver	50 100	5.0	5.0	500	≥50 trigger requires STLC ≥100 trigger requires TCLP
Thallium	70		7.0	700	
Vanadium Zinc	240 2,500	!* i 	24 250	2,400 5,000	

Washington Analytical Triggers:

Washington updates a Designation Tool that is available at: http://www.ecy.wa.gov/programs/hwtr/manage_waste/des_intro.html

Client: GHD Services Inc.

List Source: TestAmerica Irvine

Job Number: 440-121300-1

Login Number: 121300 List Number: 1

Creator: Escalante, Maria I

oroator: Essalanto, maria i		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Irvine 17461 Derian Ave Suite 100

Irvine, CA 92614-5817 Tel: (949)261-1022

TestAmerica Job ID: 440-123148-1

Client Project/Site: 461 8th St., Oakland, CA

For:

GHD Services Inc. 5900 Hollis Street Suite A Emeryville, California 94608

Attn: Peter Schaefer

Leather Clark

Authorized for release by: 10/15/2015 11:24:38 AM

Heather Clark, Project Manager I (949)261-1022

heather.clark@testamericainc.com

----- LINKS -----

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Client Sample Results	5
Method Summary	7
Lab Chronicle	8
QC Sample Results	9
QC Association Summary	12
Definitions/Glossary	13
Certification Summary	14
Chain of Custody	15
Receipt Chacklists	16

4

5

7

9

10

12

Sample Summary

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

TestAmerica Job ID: 440-123148-1

Lab Sample ID	Client Sample ID	Matrix	Collected Received
440-123148-1	S-5	Ground Water	09/29/15 12:48 10/02/15 09:50
440-123148-2	S-6	Ground Water	09/29/15 14:10 10/02/15 09:50
440-123148-3	S-26	Ground Water	09/29/15 13:30 10/02/15 09:50

3

4

5

6

8

9

11

12

Case Narrative

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

TestAmerica Job ID: 440-123148-1

Job ID: 440-123148-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-123148-1

Comments

No additional comments.

Receipt

The samples were received on 10/2/2015 9:50 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 2.7° C and 3.6° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

5

6

7

8

9

10

10

25

10/07/15 01:52

Client: GHD Services Inc.

Toluene-d8 (Surr)

Project/Site: 461 8th St., Oakland, CA

Client Sample ID: S-5

Date Collected: 09/29/15 12:48

Lab Sample ID: 440-123148-1

Matrix: Ground Water

Date Collected: 09/29/15 12:48 Date Received: 10/02/15 09:50

Method: 8260B/CA_LUFTMS Analyte Volatile Fuel Hydrocarbons (C4-C12)		ganic Com Qualifier	pounds by C RL 1300	GC/MS MDL	Unit ug/L	<u>D</u> .	Prepared	Analyzed 10/07/15 01:52	Dil Fac
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	115		76 - 132					10/07/15 01:52	25
4-Bromofluorobenzene (Surr)	101		80 - 120					10/07/15 01:52	25

80 - 128

113

Method: 8260B - Volatile O	rganic Compoι	ınds (GC/I	MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	460		13		ug/L			10/07/15 01:52	25
Ethylbenzene	1300		13		ug/L			10/07/15 01:52	25
Toluene	260		13		ug/L			10/07/15 01:52	25
Xylenes, Total	2900		25		ug/L			10/07/15 01:52	25
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		80 - 120			•		10/07/15 01:52	25
Dibromofluoromethane (Surr)	115		76 - 132					10/07/15 01:52	25
Toluene-d8 (Surr)	113		80 - 128					10/07/15 01:52	25

Client Sample ID: S-6

Date Collected: 09/29/15 14:10

Lab Sample ID: 440-123148-2

Matrix: Ground Water

Date Received: 10/02/15 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Volatile Fuel Hydrocarbons (C4-C12)	13000		2500		ug/L			10/07/15 02:21	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	114		76 - 132					10/07/15 02:21	50
			00 400					10/07/15 02:21	50
4-Bromofluorobenzene (Surr)	108		80 - 120					10/07/15 02.21	50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	730		25		ug/L			10/07/15 02:21	50
Ethylbenzene	550		25		ug/L			10/07/15 02:21	50
Toluene	1700		25		ug/L			10/07/15 02:21	50
Xylenes, Total	2000		50		ug/L			10/07/15 02:21	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		80 - 120					10/07/15 02:21	50
Dibromofluoromethane (Surr)	114		76 - 132					10/07/15 02:21	50
Toluene-d8 (Surr)	117		80 - 128					10/07/15 02:21	50

TestAmerica Irvine

Client Sample Results

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

TestAmerica Job ID: 440-123148-1

Client Sample ID: S-26 Lab Sample ID: 440-123148-3

Date Collected: 09/29/15 13:30 **Matrix: Ground Water**

Date Received: 10/02/15 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Volatile Fuel Hydrocarbons (C4-C12)	ND		50		ug/L			10/07/15 02:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	121		76 - 132			-		10/07/15 02:51	1
4-Bromofluorobenzene (Surr)	105		80 - 120					10/07/15 02:51	1
Toluene-d8 (Surr)	115		80 - 128					10/07/15 02:51	1
	Result	unds (GC/ Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: 8260B - Volatile Orga		•	•	MDL	Unit	D	Prepared	Analyzed	Dil Fac
		•	•	MDL	Unit ug/L	<u>D</u> .	Prepared	Analyzed 10/07/15 02:51	Dil Fac
Analyte	Result	•	RL	MDL		<u>D</u> .	Prepared		Dil Fac
Analyte Benzene Ethylbenzene	Result 3.0	•	RL 0.50	MDL	ug/L	<u>D</u> .	Prepared	10/07/15 02:51	Dil Fac 1 1 1
Analyte Benzene Ethylbenzene Toluene	3.0 1.7	•	0.50 0.50	MDL	ug/L ug/L	<u>D</u> .	Prepared	10/07/15 02:51 10/07/15 02:51	Dil Fac 1 1 1 1
Analyte Benzene Ethylbenzene Toluene Xylenes, Total	Result 3.0 1.7 1.4	Qualifier	0.50 0.50 0.50	MDL	ug/L ug/L ug/L	<u>D</u>	Prepared Prepared	10/07/15 02:51 10/07/15 02:51 10/07/15 02:51	Dil Fac 1 1 1 1 Dil Fac
Analyte Benzene Ethylbenzene Toluene Xylenes, Total Surrogate	Result 3.0 1.7 1.4 5.0	Qualifier	0.50 0.50 0.50 0.50	MDL	ug/L ug/L ug/L	<u>D</u> .		10/07/15 02:51 10/07/15 02:51 10/07/15 02:51 10/07/15 02:51	1 1 1 1
Analyte Benzene	Result 3.0 1.7 1.4 5.0 %Recovery	Qualifier	0.50 0.50 0.50 1.0	MDL	ug/L ug/L ug/L	<u>D</u> .		10/07/15 02:51 10/07/15 02:51 10/07/15 02:51 10/07/15 02:51 10/07/15 02:51 Analyzed	1 1 1 1

Method Summary

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

TestAmerica Job ID: 440-123148-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL IRV
8260B/CA_LUFTM	Volatile Organic Compounds by GC/MS	SW846	TAL IRV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

3

7

8

9

11

12

1,

Lab Chronicle

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

TestAmerica Job ID: 440-123148-1

Lab Sample ID: 440-123148-1

Matrix: Ground Water

Client Sample ID: S-5
Date Collected: 09/29/15 12:48

Date Received: 10/02/15 09:50

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		25	10 mL	10 mL	285007	10/07/15 01:52	WK	TAL IRV
Total/NA	Analysis	8260B/CA_LUFTN S		25	10 mL	10 mL	285008	10/07/15 01:52	WK	TAL IRV

Client Sample ID: S-6 Lab Sample ID: 440-123148-2

Date Collected: 09/29/15 14:10 Matrix: Ground Water

Date Received: 10/02/15 09:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		50	10 mL	10 mL	285007	10/07/15 02:21	WK	TAL IRV
Total/NA	Analysis	8260B/CA_LUFTN S		50	10 mL	10 mL	285008	10/07/15 02:21	WK	TAL IRV

Client Sample ID: S-26 Lab Sample ID: 440-123148-3

Date Collected: 09/29/15 13:30 Matrix: Ground Water

Date Received: 10/02/15 09:50

Prep Ty	·	oe	Batch Method 8260B	Run	Dil Factor	Initial Amount 10 mL	Final Amount 10 mL	Batch Number 285007	Prepared or Analyzed 10/07/15 02:51	Analyst WK	Lab TAL IRV
Total/N		,	8260B/CA_LUFTN		1	10 mL	10 mL	285008	10/07/15 02:51	WK	TAL IRV

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

6

7

8

10

14

1.

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 440-285007/4

Matrix: Water

Analysis Batch: 285007

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.50		ug/L			10/06/15 19:53	1
Ethylbenzene	ND		0.50		ug/L			10/06/15 19:53	1
Toluene	ND		0.50		ug/L			10/06/15 19:53	1
Xylenes, Total	ND		1.0		ug/L			10/06/15 19:53	1

	МВ	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepare	d Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		80 - 120		10/06/15 19:53	1
Dibromofluoromethane (Surr)	109		76 - 132		10/06/15 19:53	1
Toluene-d8 (Surr)	116		80 - 128		10/06/15 19:53	1

Lab Sample ID: LCS 440-285007/5

Matrix: Water

Analysis Batch: 285007

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	25.0	23.2		ug/L		93	68 - 130	
Ethylbenzene	25.0	24.1		ug/L		97	70 - 130	
m,p-Xylene	25.0	24.4		ug/L		98	70 - 130	
o-Xylene	25.0	24.5		ug/L		98	70 - 130	
Toluene	25.0	23.8		ug/L		95	70 - 130	

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 103 80 - 120 Dibromofluoromethane (Surr) 76 - 132 114 Toluene-d8 (Surr) 114 80 - 128

Lab Sample ID: 440-123195-B-10 MS

Matri

Analy

Sample ID: 440-123195-B-10 MS	Client Sample ID: Matrix Spike
rix: Water	Prep Type: Total/NA
lysis Batch: 285007	

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	37		25.0	57.6		ug/L		82	66 - 130	
Ethylbenzene	1.1		25.0	25.6		ug/L		98	70 - 130	
m,p-Xylene	ND		25.0	25.9		ug/L		101	70 - 133	
o-Xylene	ND		25.0	24.8		ug/L		99	70 - 133	
Toluene	0.76		25.0	24.6		ug/L		96	70 - 130	
TOIGGITG	0.70		20.0	24.0		ug, L		30	70-100	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	105		80 - 120
Dibromofluoromethane (Surr)	113		76 - 132
Toluene-d8 (Surr)	114		80 - 128

TestAmerica Irvine

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-123195-B-10 MSD

Matrix: Water

Analysis Batch: 285007

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	37		25.0	56.9		ug/L		79	66 - 130	1	20
Ethylbenzene	1.1		25.0	25.8		ug/L		99	70 - 130	1	20
m,p-Xylene	ND		25.0	26.7		ug/L		105	70 - 133	3	25
o-Xylene	ND		25.0	24.6		ug/L		98	70 - 133	1	20
Toluene	0.76		25.0	24.7		ug/L		96	70 - 130	0	20

MSD MSD Surrogate %Recovery Qualifier Limits 104 80 - 120 4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) 112 76 - 132 Toluene-d8 (Surr) 114 80 - 128

Method: 8260B/CA LUFTMS - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 440-285008/4 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 285008

MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Volatile Fuel Hydrocarbons (C4-C12) ND 50 ug/L 10/06/15 19:53

	IVIB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	109		76 - 132		10/06/15 19:53	1
4-Bromofluorobenzene (Surr)	106		80 - 120		10/06/15 19:53	1
Toluene-d8 (Surr)	116		80 - 128		10/06/15 19:53	1

Lab Sample ID: LCS 440-285008/6

Matrix: Water

Analysis Batch: 285008

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Volatile Fuel Hydrocarbons 500 449 ug/L 55 - 130 (C4-C12)

LCS LCS Surrogate %Recovery Qualifier Limits Dibromofluoromethane (Surr) 114 76 - 132 80 - 120 4-Bromofluorobenzene (Surr) 106 Toluene-d8 (Surr) 115 80 - 128

Lab Sample ID: 440-123195-B-10 MS **Client Sample ID: Matrix Spike**

Matrix: Water

Analysis Batch: 285008

Analysis Batch. 200000	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Volatile Fuel Hydrocarbons (C4-C12)	550		1730	2390		ug/L		107	50 - 145	

TestAmerica Irvine

Prep Type: Total/NA

QC Sample Results

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

TestAmerica Job ID: 440-123148-1

Method: 8260B/CA_LUFTMS - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 440-123195-B-10 MS

Lab Sample ID: 440-123195-B-10 MSD

Matrix: Water

Analysis Batch: 285008

Client Sample ID: Matrix Spike Prep Type: Total/NA

MS MS

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	113		76 - 132
4-Bromofluorobenzene (Surr)	105		80 - 120
Toluene-d8 (Surr)	114		80 - 128

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 285008

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Volatile Fuel Hydrocarbons	550		1730	2420		ug/L		108	50 - 145	1	20
(C4-C12)											

 Surrogate
 %Recovery
 Qualifier
 Limits

 Dibromofluoromethane (Surr)
 112
 76 - 132

 4-Bromofluorobenzene (Surr)
 104
 80 - 120

 Toluene-d8 (Surr)
 114
 80 - 128

al/NA

9

10

11

1:

QC Association Summary

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

TestAmerica Job ID: 440-123148-1

GC/MS VOA

Analysis Batch: 285007

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-123148-1	S-5	Total/NA	Ground Water	8260B	_
440-123148-2	S-6	Total/NA	Ground Water	8260B	
440-123148-3	S-26	Total/NA	Ground Water	8260B	
440-123195-B-10 MS	Matrix Spike	Total/NA	Water	8260B	
440-123195-B-10 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B	
LCS 440-285007/5	Lab Control Sample	Total/NA	Water	8260B	
MB 440-285007/4	Method Blank	Total/NA	Water	8260B	

Analysis Batch: 285008

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-123148-1	S-5	Total/NA	Ground Water	8260B/CA_LUFT	
440-123148-2	S-6	Total/NA	Ground Water	8260B/CA_LUFT MS	
440-123148-3	S-26	Total/NA	Ground Water	8260B/CA_LUFT MS	
440-123195-B-10 MS	Matrix Spike	Total/NA	Water	8260B/CA_LUFT MS	
440-123195-B-10 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B/CA_LUFT MS	
LCS 440-285008/6	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT MS	
MB 440-285008/4	Method Blank	Total/NA	Water	8260B/CA_LUFT MS	

Definitions/Glossary

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 440-123148-1

Glossary

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

4

5

0

0

9

10

11

12

11:

Certification Summary

Client: GHD Services Inc.

Project/Site: 461 8th St., Oakland, CA

TestAmerica Job ID: 440-123148-1

Laboratory: TestAmerica Irvine

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	CA01531	06-30-16
Arizona	State Program	9	AZ0671	10-13-15
California	LA Cty Sanitation Districts	9	10256	01-31-16 *
California	State Program	9	2706	06-30-16
Guam	State Program	9	Cert. No. 12.002r	01-23-16
Hawaii	State Program	9	N/A	01-29-16
Kansas	NELAP Secondary AB	7	E-10420	07-31-16
Nevada	State Program	9	CA015312007A	07-31-16 *
New Mexico	State Program	6	N/A	01-29-16
Northern Mariana Islands	State Program	9	MP0002	01-29-16
Oregon	NELAP	10	4005	01-29-16
USDA	Federal		P330-09-00080	07-08-18

4

5

Q

10

11

12

^{*} Certification renewal pending - certification considered valid.

ALSCIENCE	(AB (LOCATIO))			Please				Box:		II Oil			To Co				Сu:	ວເປ				(ENV	SERV	ICES)	☐:HECK IF	NO INCIDE	NT # APPLIES	
ENCO (' \			□ENV. SER		1		IOTIVA F			☐:HELL.				2	41501	Peter 9	Schaef	er			9	7 0	9 3	3	9 9	DATE:	1/2	29/18	
EST AMER	ICA	(IRVINE)		□ MOTIVA S	SD&CM			ONSULT	ANT		□.UBES						PO #							SAP#			PAGE.	. 1	1	
THER (_				☐SHELL PIF	ELINE			□ртн	ER														1	2 9	4	5 3	PAGE.		- oi	-
ING COMPAN								BTSS							SS: Street a						1	State		GLOBAL ID						
ne Tech								БІЗЗ					EDF DE	LIVERABI	St., (Jaki e, Compan	v. Office Lo	cation):		PHONE	NO.:		E-MAIL:	T06001	01263				CONSULTANT PROJEC	CT NO.:
		/enue,-San Jose dcopy or PDF Report to):	e, CA										Anni	Kren	ni, CRA	, Eme	ryville,	CA		510-	420-33	335	Shell Shell	DF@C	RAWor	ld.com anageme	nt@CRAv	world.co	41501 -9 5-12.03	l
t Gebbie	•		FAX:		T F-MAII:										E(S) (Print):	4	. 1										USE ONL			
	5-44	55 x 103	(310) 637-5	802	E-MAIL		<u>bgebb</u>	oie@bl	ainetec	h.com				7ء	وه	N	lat	hw												
RNAR OUT	ND TI (14 D.	ME (CALENDAR DA AY) ☐ DAYS	(YS):	☐ DAYS		124 HOURS			RESU	JLTS NEED	ed on week	ŒND							5		R	EQUE	STED A	NALYS	sis					
	_	ORT FORMAT	☐UST AGENCY:	·									$\dagger \top$	T		T		į	9	T	П	T	Т	\Box	T				URE ON RECEI	
Please u o://cralab DataMai paded the eliver the er. oy final i	ploa pedd nage e ED e fina	upload.craworld ment@CRAwor DD by including " al PDF report to	R NOTES: IIS 4-file EDD" to the com/equis/default. ald.com email folder. EDD Uploaded to C the Shell-US-LabD Billing@craworld.com, and pschold.com, and pscholds	aspx) and/or: 2) Please RA website" ataManagen	send it to the indicate that in the body nent@CRAw	you have of the ema orld.com	ail used email		TATE REI DD NOT I	MBURSEME NEEDED	TE APPLIES ENT RATE AF ON REQUEST		Purgeable (8260B)	ble (8015M)	(BI	A (8260B)	BE, TBA, DIPE, TAME,		(97909)											
	_	hell.Lab.Billing@		iderer (gerk)								rface water emp Blank)	urgeabl	Extractable	BE (8260B)	BE + TBA	. + 5 OXYs (MTBE, 1) 8260B	VOCs Full list (8260B)	Single Compound:	2	(B08)	015B)								
	_		SAMPLE ID		T	Ţ	×		PR	ESERVATIV	E	J		S S	8260 MTE	+ MTBE	F 5 O		COM A (82	260B	1 (826	8) 0								- 1
9 5	P	ROJECT NUMBER	DATE (MMDDYY)	SAMPLER INITIALS	WELL ID	TIME	MATRIX					NO. OF CONT.	IPH-GRO,	PH-DRO,	BIEX (8260B) BTEX + MTBE	BTEX +	BTEX + ETBE)	SOC	Single Compoun 1,2 DCA (8260B)	EDB (8260B)	Ethanol (8260B)	Methanol (8015B)							ner PID Reading boratory Notes	
Y .	1	50929-Mi		MT	5-5	1248	Gw	HCL	HNO3 H	2SO4 NO	NE OTHER	3	7	<u> </u>		100	ωш	> 7	0 -	Ü	ŭ	Σ	++	+-	++	+			,	
WG	\neg	2164-WJ5		MT	5-6	1410	ow	1	_	_	-	3	1/			1	$\dagger \dagger$	<u> </u>	+			\dashv	+-	\vdash	++					
1	_		092915	MT	5-26	1750	6W	1		-	+-	3	1/	+		+-			+	+	\vdash	_	+-	\dashv	++	+				
+	(0	1 -1 -7-12] E	- 10117	3	,,,,,,	11/20			_	_	+	+-	$\dagger \dagger$	1	+	+	$\dagger \dagger$	\dashv	+	†	+	\dashv	+	+	+	+-	-			
-	+			-		 		++	\dashv	-	-	+	╁	\dashv	+	+-	+-+	\dashv	+-	+-	++	+	+-	+	++	-				
-	+	-		-	-	 		\vdash	_+		+	+	+	+	+	1	++	\dashv	+	-	\vdash	+		+	++	-	-			7
-	+				-	 		\vdash	-		-	+	- 110	1 1111 111	 	 H ###	I	_			\vdash	+	++	+	++	-				— 4
-	+				-	 	 	\vdash	_			+											+	-	+	-				\longrightarrow
	-					<u> </u>	ļ	\sqcup	_	-		4											1	\perp	11	_				
													1111								Ш									ļ
		,								-			440	-123	3148 (hain	of Cu	ıstod	/	-=: (8)	141).	-			\top					
iquished by:	(Signal	ldfe)	///		<u></u>		Received b	y: (Signati	ure)													-	Date:	1	<u> </u>		Time:			
			//		3	-	/	//					-17.	٠.,.	TORMON	~ <			_				19	12	1/1	5		55	5	
duished by:	Signal	ure)			_		Redeived	II (Signatu	(er									\geq					Date:	Щ,	4		Time:		<u> </u>	
	9	' سیک	3	>					\geq						-									tol	llis	-	1	3000		•
quished by	Signal						Received by	y (Signatu	ure)		.1.		11	1	\sim								Date:				Time:		~	
		2									10	724	_ V	\bigvee	u V	0									11	7		מקא	<u>ي</u>	
		2	Joan	Zul	معد	10-1	1-15 600				70	70 m	<u> </u>	TZ	ul I	10,	12	11		9 ::	50	,				<u>s</u>		<u> </u>	<u> </u>	

Login Sample Receipt Checklist

Client: GHD Services Inc.

Job Number: 440-123148-1

Login Number: 123148 List Source: TestAmerica Irvine

List Number: 1

Creator: Escalante, Maria I

Groutor. Localarito, maria i		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

5

6

8

4.0

11

12

Appendix E Blaine Tech Services - Field Notes

WELL GAUGING DATA

Project #	150920	<u>) '당()</u> Date	9	120	115	Client	Sh	U	
Site	461 842	5	Oakla	لمر					

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	of Immiscible		Depth to well bottom (ft.)	Survey Point: TOB or TOC	Notes
5-26	MSC	2	770777			2394	34.45	704	***************************************
					The second secon				
	The state of the s								

WELL DEVELOPMENT DATA SHEET

				,		the same of the part of the same from	
Project #	#: 509	120-BU)(Client:	Shell	
Develop	er: 多い				Date Dev	eloped: १	120 (5
Well I.D	· 5-26	>			Well Diar	neter: (circ	le one) 2 3 4 6
Total Wo	ell Depth:				Depth to	Water:	
Before	34.45	After '	34,50		Before 2	394 Af	ter 26.88
Reason r	ot develop	ed:			If Free Pro	oduct, thick	ness:
Addition	al Notation	ns:					
{12 x where 12 = in	ameter (in.) 1416	'):	Well dia. 2" 3" 4" 2" 10" 22 22 23 4" 24 25 26 27 28 28 28 28 28 28 28 28 28	0.3 0.6 1.4	6 67 65 67 8		
	7 gallows Volume	X	Spe	/ C	Volumes	- Property	170 gailous gallons
Purging De		Type of In	☐ Bailer ☐ Suction stalled Pun	ıp			Electric Submersible Positive Air Displacement
	(Other equi	pment used		" Surge	block	
TIME	TEMP (F)	рН	Cond (mS or	-	TURBIDITY (NTUs)	VOLUME REMOVED:	. NOTATIONS:
K (PR	- Swall	, Well	Lor	15	mount	量が	

			Cond.	TURBIDITY	VOLUME	
TIME	TEMP (F)	pH	(mS of (µS)	(NTUs)	REMOVED:	. NOTATIONS:
M50 3	* Swal	d Well	for 15	minut	は関心	
1015	78.1	8,56	1391	71000	3.4	Silty
1018	772	8,49	1380	71000	5.1	7
150]	779	8,43	1231	71000	6.56 ·	Surged purp-hard bottom
1024	76.4	0.24	1046	71000	8,5	
1027	74.3	718	796	71000	10.2	less silty
1030	74,2	7.91	781	981	11,9	dearing
1033	74.(7.89	786	772	13.6	<u> </u>
1036	73.9	7,89	744	913	15.3	
1039	73.9	7.65	691	30 F	17.0	
1042	73.8	7.61	636	244	18.7	
1045	73.8	7.58	621	201	Z0 H	
1048	73.8	7,57	604	140	22.1	
Did Well Dew	ater? $V_{\mathcal{O}}$	If yes, note above	e	Gallons Actually	Evacuated:	77.1

INCIDENT #

Page _ f of

DATE: Oakund CITY & STATE Observations Upon Arrival Well Labeled / Well ID Note Repairs Made Well Cap Photos of Repair Date Well Pad / Manway Cover, Type, Condition & Size Detailed Explanation of Maintenance Recommended Painted (Gripper) Well Well Lock Condition Surface and PM Properly* and Performed Condition Condition Condition Initials 5-26 Standpipe **Flush** (G/ p Y. (G) ଝ N R G. G R) NL N Y 10 taa Sizo (inch Standpipe Flush G Υ N G R G P NL. G P Υ N Size (inch) Standpipe Flush G P Υ Ν G R G R NL G P Υ N Size (inch) Standpipe Flush G P Y N G R G R NL G Y N Size (inch) Standpipe Flush G p Υ N G R G R NL. G ₽ Y N Size (inch) Standpipe Flush G P Υ Ν G R G R NL G P Y Ν Size (inch) Standpipe Flush G Υ N G R G R NL G γ N Size (inch) Standpipe Flush G Υ Ν G R G R NL G Ð γ N Size (inch) Standpipe Flush G р Υ Ν G R G F NL. G P Y N Size (inch) Standpipe Flush G P Υ N G R G R NL. G Ρ Y N Size (inch) Standpipe Flush Ģ P Ν G R G R NL. G ₽ Y Ν TOTAL # CAPS REPLACED = = TOTAL # OF LOCKS REPLACED Condition of Soil Boring Patches or G Abandoned Monitoring Wells NIA If POOR, Borings/Well IDs or Location Description Υ Remediation Compound Type Condition of Area Inside Condition of Enclosure **Emergency Contact Info** (Check boxes that apply) Compound Security Cleaning / Repairs Recommended and Conducted Photos of Enclosure Repair Date and Visible NA Condition PM Initials Building Building w/ Fence Comp. G P N/A G р N/A G ρ N/A Υ Ν NA Fenced Compound Y N Trailer Number of Does the Label Reveal the Labeled Correctly and Confirm Drums Date Drums Photos of Drums On-site Drums Located to Min Source of the Contents **Drum Condition** Writing Legible Related to Detailed Explanation of Any Issues Resolved Removed from **Business Interference** Drum Environmental Site Condition and PM Initials. Υ Ν N/A Υ N N/A G

Р

N/A

Y

Ν

Υ

Ν

N/A

All environmental wells and the remediation compound were in good condition, locked, and secured upon my departure (unless otherwise noted above).

Y

Bran Wests Blane Tenh Serves
Print or type Name of Field Personnel & Consultant Company

G = Good (Acceptable)

R = Replaced

P = Poor (needs attention) NL = No Lock Required

Note: All repairs other than locks and grippers require Shell PM approval prior to repair.

^{* =} Groundwater monitoring well covers must be painted and labeled in accordance with applicable regulations. Version 2.4, March 2008

WELL GAUGING DATA

Project #_	150924-1	Mor	Date	9/29/		Clien	1 _ (R)	
Site 4	(1 4)	S	Oakl	~,-d	CA	and the property of the second		

Notes

SHELL WELL MONITORING DATA SHEET

						•
BTS #: 5	70929-	W25	aire"	Site: 9709	73399	
Sampler:	_			Date: 9/2		
Well I.D.:	Granding.	***************************************		Well Diameter		68
Total Well	Depth (TI	D): 24	7,64	Depth to Wate	er (DTW): / 8	14
Depth to Fi	ree Produc	t:		Thickness of F	Free Product (f	eet):
Referenced	to:	ų(VC)	Grade	D.O. Meter (if	req'd):	YSI HACH
DTW with	80% Rech	arge [(I	leight of Water	Column x 0.20) + DTW]: (9.47
Purge Method:	Bailer Disposable E Positive Air I Electric Sübr	Bailer Displacem		Waterra Peristaltic tion Pump	Sampling Method	d: Bailer Disposable Bailer Extraction Port Dedicated Tubing
U, 4 (1) I Case Volume	Gals.) XSpeci	う fied Volun	= U, U	Gals. Well Diamete 1" 2" 3"	er Multiplier Well 0.04 4" 0.16 6" 0.37 Oth	Diameter Multiplier 0.65 1.47 cr radius ² * 0.163
Time	Temp (°F)	pН	Cond. (mS or (fis)	Turbidity (NTUs)	Gals. Removed	Observations
12-36	68.9	6.51	787	593	Ly	0<0-
Stopmagnaston presented etilitiens	* We	enterente de la constante de l	e natered	@ 6.	5 82	
(246	64.1	6.64	696	408	**Topianesispecialenesing-	
Did well dev	vater?	Yes	No	Gallons actually	y evacuated: 🎸	5.5
Sampling Da	ate: 9/29/	115	Sampling Time	: 1248	Depth to Wate	r: 19,55
ample I.D.:]			Other
analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: Sec (10C
B I.D. (if a	pplicable):	*	@ Time]	Duplicate I.D. (
nalyzed for	т: трн-б	BTEX		Oxygenates (5)	Other:	*1
).O. (if req'o	i): Pro	e-purge:		mg/L Po	ost-purge:	mg/L
R.P. (if red	٦'d): Pro	e-purge:		mV Po	st-purge:	mV

SHELL WELL MONITORING DATA SHEET

		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		<i>-</i>	A APPERAR		-
BTS #:	50929	-M3 Z		Site:	970	9 3 3 9 9	
Sampler:			•	Date:	9/24		
Well I.D.:					Diamete	· /3	6 8
Total Well	Depth (TI	D): ² 54	185	Depth	to Wate	er (DTW): Z	2.67
Depth to F	ree Produc	:t:		·		Free Product (1	
Referenced	l to:	(PVC)	Grade	D.O. 1	Meter (if	req'd):	YSI HACH
DTW with	80% Rech	arge [(F	leight of Water		·····		25.10
Purge Method:	Bailer Disposable F Positive Air Electric Subi	Bailer Displaceme		Waterr Peristaltiction Pum	a c -	Sampling Metho	Disposable Bailer Disposable Bailer Extraction Port Dedicated Tubing er:
7.9 (7	7-3-7		Well Diamete	0.04 4"	0.65
Case Volume	Gals.) X Speci	fied Volum	nes Calculated Vo	_ Gals. lume	2" 3"		1.47 her radius ^{2 4} 0.163
······································			· Cond.	Tur	bidity		
Time	Temp (°F)	<u> </u>	(mS or µS)	(1/1	TUs)	Gals. Removed	Observations Observations
1400	66.3	6.90		5	Francisco Company (C.S.)	5	odor
1402	68.2	6,81	400	Į0°	j.	[6	
1404	67.9	6,46	401	170	· ·	24	rice of the state
	,	,					
C		, approximation and the second	,				,
)id well dev	vater?	Yes (Ñg	Gallon	s actuall	y evacuated:	24
ampling Da	ite: 9/29	15	Sampling Time		10	Depth to Wate	er: 24.70
ample I.D.:	5-6			Labora	tory:	Test America	Other
analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	utes (5)	Other: See	COC
B I.D. (if a _l	pplicable)	•	@ Time	Duplica	ate I.D. (if applicable):	
nalyzed for	TPH-G	ВТЕХ	мтве трн-D (Oxygena	ites (5)	Other:	
O. (if req'o	d): Pro	e-purge:		mg/L	Po	ost-purge:	mg/L
R.P. (if red	q'd): Pro	e-purge:		mV	Po	ost-purge:	mV

SHELL WELL MONITORING DATA SHEET

				,		•						
BTS#:	50909	- MJ	2	Site: 970	093399							
Sampler:	11/3			Date: 9/2	9/15							
Well I.D.:	5-26			Well Diamete	er: ② 3 4	6 8						
Total Well	Depth (TI)): 3 ^L	1.50	Depth to Wat	Depth to Water (DTW): 24.00							
Depth to F	ree Produc	t:		Thickness of	Thickness of Free Product (feet):							
Referenced	l to:	РУС	Grade	D.O. Meter (i	D.O. Meter (if req'd): YSI HACH							
DTW with	80% Rech	arge [(F	Ieight of Water	Column x 0.20	0)+DTW]: Z	6,10						
Purge Method:	Bailer Disposable P Positive Air l Electric Subn	Displaceme	ent Extrac Other	Waterra Peristaltic tion Pump	Sampling Method	Disposable Bailer Extraction Port Dedicated Tubing						
1///		ą	gottom, grant o	Well Diame	0.04 4*	Diameter Multiplier 0.65						
\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Gals.) X	与 fied Volum	$\frac{1}{1000} = \frac{5.04}{\text{Calculated Vol}}$	Gals. 2"	0.16 6" 0.37 Oth	1.47 er radius² * 0.163						
1 Oddo I Oldino	T Speci	IICG VOIGH	Cond.	1								
Time	Temp (°F)	pН	(mS or (LS)	Turbidity (NTUs)	Gals, Removed	Observations						
1315	68.5	7.86	437	7 1000	1.75	hi di						
710	65. l	7,44	442	7/000	3,50							
V725	64.3	6,46	443	71000	5.25							
	7											
		,				·						
Did well dev	water?	Yes (Ng '	Gallons actual	y evacuated:	5.25						
Sampling Da	ate: 9/24	115	Sampling Time	: [530	Depth to Wate	r: 24.53						
Sample I.D.:	5-6			Laboratory:	Test America	Other						
Inalyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: Sec	CoO						
EB I.D. (if a	pplicable):		@ Time	Duplicate I.D.	(if applicable):							
unalyzed for	r: TPH-G	ВТЕХ	мтве трн-D (Oxygenates (5)	Other:							
0.0. (if req'o	d): Pro	e-purge:	wy dawin a Maria Maria di Salama (a sa a sa a sa a sa a sa a sa a sa	mg/L P	ost-purge:	mg/L						
O.R.P. (if red	q'd): Pro	e-purge:		mV P	ost-purge:	mV						

Str St. Oakland CA

DATE:

CITY & STATE

		Observations Upon Arrival																
Well ID	Manway Cover, Type, Condition & Size					Pair	ell Labeled / Well Cap Painted (Gripper) Properly* Condition			Well Lock Condition			Well Pad / Surface Condition		Note Repairs Made Detailed Explanation of Maintenance Recommended and Performed		os of ell Jition	Repair Date and PM Initials
5-5	Standplpe	Flush	G	Р	Size (inch)	Ø	N	Ô	R	6	R	NL	0	Р	(in Storm drain)	Υ	N	
5-6	Standpipe	FUSD	<u> </u>	Р	Size (inch)	(S)	N	6	R	6	R	NL	Ø	P		Υ	N	
5-26	Standpipe	Fush	<u>(Ĝ)</u>	P	Size (inch)	(V)	N	(6)	R	(6)	R	NL	(6)	P		Υ	N	
	Standpipe	Flush	G	Р	Size (inch)	Y	N	G	R	G	R	NL	G	Р		γ	N	
	Standpipe	Flush	G	P	Size (inch)	Y	N	G	R	G	R	NL	G	Р		Υ	N	
	Standpipe	Flush	G	Р	Size (inch)	Υ	N	G	R	G	R	NL	G	P		Υ	N	
	Standpipe	Flush	G	P	Size (inch)	Y	N	G	R	G	R	NL	G	P		γ	N	
	Standpipe	Flush	G	Р	Size (inch)	Υ	N	G	R	G	R	NL	G	Р		Υ	N	-
	Standpipe	Flush	G	Р	Size (Inch)	Y	N	G	R	G	R	NL	G	р		Υ	. N	
****	Standpipe	Flush	G	Р	Size (inch)	Υ	N	G	R	G	R	NL	G	Р		Υ	И	· · · · · · · · · · · · · · · · · · ·
	Standpipe	Flush	G	P	Size (inch)	Υ	N	G	R	G	R	NL	G	P		Υ	N	
			w		TOTA	L#CAP	S REPLA	ACED =				= TOTA	L#OFL	OCKS R	EPLACED	l		
Condition of S Abandor	Sail Boring P ned Monitori		G	Р	N/A	If P	OOR, Bor	ings/Well	gs/Well IDs or Location Description:							Y	N	
Remediation Compound Type (Check boxes that apply) NA Condition of Enclosure		145000000000000000000	ondition of Area Inside Com			pound Security		Emerg	Emergency Contact Info Visible		Cleaning / Repairs Recommended and Conducted	Phot Cond		Repair Date and PM initials				
Building W/ Fer Fenced Com Traile	nce Comp. npound	*	G	P	N/A	G	6	N/A	G	P	(NÃ)	Y	N	(N/A)		Y	N	
Number of Does the Label Reveal the Labeled Correct Source of the Contents Writing Legil										ms Located to Min siness interference		Detailed Explanation of Any Issues Resolved	Phot Dri Cond	mı	Date Drums Romoved from Site and PM initials			
	Y	N	N/A	Y	N	N/A	G	Р	N/A	Y	N	Υ	N	N/A		Υ	N	

G = Good (Acceptable) R = Replaced

All environmental wells and the remediation compound were in good condition, locked, and secured upon my departure (unless otherwise noted above).

P = Poor (needs attention) NL = No Lock Required

Note: All repairs other than locks and grippers require Shell PM approval prior to repair.

^{* =} Groundwater monitoring well covers must be painted and labeled in accordance with applicable regulations. Version 2.4, March 2008