

RECEIVED

8:51 am, Apr 29, 2010

Alameda County Environmental Health **Aaron Costa**Project Manager
Marketing Business Unit

Chevron Environmental Management Company 6111 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 543-2961 Fax (925) 543-2324 acosta@chevron.com

Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Chevron Service Station No. 9-4800

1700 Castro Street Oakland, CA

I have reviewed the attached report dated April 28, 2010.

The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Conestoga-Rovers & Associates, upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct to the best of my knowledge.

Sincerely,

Aaron Costa Project Manager

Attachment: Report

5900 Hollis Street, Suite A Emeryville, California 94608

Telephone: (510) 420-0700 Fax: (510) 420-9170

http://www.craworld.com

April 28, 2010 Reference No. 060061

Mr. Mark Detterman Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Third Quarter 2009 Groundwater Monitoring and Sampling Report

Chevron Service Station 9-4800

1700 Castro Street Oakland, California

Fuel Leak Case No. RO0000342

Dear Mr. Mark Detterman:

Conestoga-Rovers & Associates is submitting this *Third Quarter 2009 Groundwater Monitoring* and *Sampling Report* for the site referenced above (Figure 1) on behalf of Chevron Environmental Management Company (Chevron).

On August 25, 2009, groundwater monitoring and sampling was performed by Blaine Tech Services of San Jose, California (Blaine Tech). Groundwater potentiometric and concentration data for this event are presented on Figure 2. Cumulative groundwater monitoring and sampling data are presented in Tables 1 and 2. Blaine Tech's August 26, 2009 *Third Quarter 2009 Monitoring* report is included as Attachment A. The Lancaster Laboratories groundwater analytical report is included as Attachment B.

Equal Employment Opportunity Employer

April 28, 2010 Reference No. 060061

Please contact Brandon Wilken at (510) 420-3355 if you have any questions or require additional information.

Sincerely,

CONESTOGA-ROVERS & ASSOCIATES

Brandon S. Wilken, P.G. #7564

No. 7564

No. 7564

IH/doh/3

Ian Hull

Encl.

Figure 1 Vicinity Map

Can Auch

Figure 2 Groundwater Elevation and Hydrocarbon Concentration Map

Table 1 Groundwater Monitoring Data and Analytical ResultsTable 2 Groundwater Analytical Data - Oxygenate Compounds

Attachment A Blaine Tech's August 26, 2009 *Third Quarter* 2009 *Monitoring* report Attachment B Lancaster Laboratories' September 10, 2009 analytical report

cc: Mr. Aaron Costa, Chevron

FIGURES

Chevron Service Station 9-4800

Vicinity Map

TABLES

WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	E	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)
MW-1										
06/04/97	30.75	4.39	25.82	71 ¹	890	100	110	29	150	<10
09/16/97	30.75	4.85	25.90	75 ¹	1,600	210	210	60	250	<10
12/17/97	30.75	4.88	25.87	65 ¹	940	120	100	41	160	<25
03/18/98	30.75	5.90	24.85	77 ¹	530	91	39	22	65	6.8
06/28/98	30.75	5.92	24.83	140^{1}	1,100	220	140	37	120	14
09/07/98	30.75	5.56	25.19	280^{1}	1,700	530	86	84	240	49
12/09/98	30.75	5.10	25.65	240^{1}	1,700	240	130	100	270	32
03/11/99	30.75	5.30	25.45	98 ¹	353	53.9	28.6	20.5	56.1	14.1
06/17/99	30.75	5.39	25.36	217^{1}	810	270	150	95	340	15
09/29/99	30.75	5.13	25.62	153 ¹	659	76	49.7	35.1	118	12.6
12/14/99	30.75	5.07	25.68	$188^{1,2}$	2,760	287	199	139	502	<12.5
$03/09/00^3$	30.75	5.54	25.21	166 ¹	1,590	238	94.9	72.2	247	22.3
06/10/00	30.75	5.73	25.02		1,460	242	47.8	83.8	151	97.3
09/30/00	30.75	5.30	25.45	240^{7}	650^{6}	130	49	69	190	21
12/22/00	30.75	5.05	25.70	200^{9}	640^{6}	110	33	58	160	68
03/01/01	30.75	5.25	25.50	2117	$1,500^6$	210	67.9	109	320	87.3
05/04/01	30.75	5.41	25.34	130^{7}	991	127	32.6	73.0	137	95.4
09/05/01	30.75	5.16	25.59	SAMPLED SEM	I-ANNUALLY					
12/21/01	30.75	5.17	25.58	210	2,000	220	16	110	400	34
03/15/02	30.75	5.60	25.15							
06/15/02	30.75	5.49	25.26	140	350	54	0.61	12	40	130
09/06/02	30.75	5.26	25.49	SAMPLED SEM	I-ANNUALLY					
12/06/02	30.75	5.12	25.63	2,900	900	71	2.1	39	150	34
03/03/03	30.75	5.46	25.29	SAMPLED SEM	I-ANNUALLY					
06/17/03 ¹⁴	30.75	5.64	25.11	180	290	34	0.6	23	90	92
09/16/03	30.75	5.37	25.38	SAMPLED SEM	I-ANNUALLY					
12/31/03 ¹⁴	30.75	5.20	25.55	150	1,500	97	6	70	230	86
03/26/04	30.75	5.74	25.01	SAMPLED SEM	I-ANNUALLY					
08/17/04 ¹⁴	30.75	4.59	26.16	860	500	44	5	12	54	76
11/16/04 ¹⁴	34.01	7.85	26.16	<26	570	33	< 0.5	14	53	48
02/18/05	34.01	8.25	25.76	SAMPLED SEM	I-ANNUALLY					
05/06/05 ¹⁴	34.01	8.62	25.39	110	170	13	< 0.5	4	18	220
08/05/05	34.01	8.31	25.70	SAMPLED SEM	I-ANNUALLY					
11/07/05 ¹⁴	34.01	7.99	26.02	260^{20}	180	7	< 0.5	3	24	260
02/06/06	34.01	8.33	25.68	SAMPLED SEM	I-ANNUALLY					
05/08/06 ¹⁴	34.01	9.03	24.98	730	270	23	< 0.7	1	18	590

WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	Т	E	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(μg/L)
MW-1 (cont)										
08/08/06	34.01	8.49	25.52	SAMPLED SEM	I-ANNUALLY					
11/08/06 ¹⁴	34.01	8.11	25.90	380	< 50	0.6	< 0.5	< 0.5	2	140
02/06/07	34.01	8.03	25.98	SAMPLED SEM	I-ANNUALLY					
05/01/07 ¹⁴	34.01	8.23	25.78	750	58	0.8	< 0.5	< 0.5	1	280
07/31/07	34.01	8.01	26.00	SAMPLED SEM	I-ANNUALLY					
11/08/07 ¹⁴	34.01	7.85	26.16	330	< 50	< 0.5	< 0.5	< 0.5	0.9	270
02/04/08	34.01	8.04	25.97	SAMPLED SEM	I-ANNUALLY					
05/01/08 ¹⁴	34.01	8.06	25.95	86	< 50	< 0.5	< 0.5	< 0.5	< 0.5	470
08/01/08	34.01	7.97	26.04	SAMPLED SEM	I-ANNUALLY					
11/13/08 ¹⁴	34.01	7.88	26.13	< 50	170	1	< 0.5	< 0.5	2	190
02/23/09	34.01	8.07	25.94	SAMPLED SEM						
$05/20/09^{14}$	34.01	8.38	25.63	88 J	< 50	0.6 J	< 0.5	< 0.5	2	190
08/25/09	34.01	8.21	25.80	SAMPLED SEM	4I-ANNUALLY					
MW-2				1						
06/04/97	30.00	5.13	24.87	$4,000^{1}$	13,000	790	30	420	1,700	4000
09/16/97	30.00	5.06	24.94	$2,200^{1}$	4,000	360	9.7	210	460	1500
12/17/97	30.00	5.18	24.82	$2,100^{1}$	4,100	380	<10	200	460	2100
03/18/98	30.00	6.43	23.57	$3,700^{1}$	8,400	1,800	< 50	350	630	13,000
06/28/984	30.00	6.21	23.79	4,4001	9,300	740	340	710	2,300	3800
09/07/98	30.00	5.78	24.22	$3,100^{1}$	9,900	1,000	150	640	1,800	$4500/4100^{5}$
12/09/98	30.00	5.31	24.69	1,9001	8,500	860	74	610	960	2600/26005
03/11/99	30.00	5.79	24.21	$2,700^{1}$	12,500	1,520	42.2	645	2,250	3400/5050 ⁵
06/17/99	30.00	5.69	24.31	$7,150^{1}$	27,000	2,200	260	1500	5,900	4700
09/29/99	30.00	5.45	24.55	$3,030^{1}$	6910	582	11.1	491	1,170	1970
12/14/99	30.00	5.39	24.61	615 ^{1,2}	4230	282	12.3	284	690	631
$03/09/00^3$	30.00	6.08	23.92	$3,300^{1}$	15,300	1,110	39.4	1,040	3,030	2,470
06/10/00	30.00	6.13	23.87		7,360	560	40.7	627	1,280	1,260
09/30/00	30.00	5.67	24.33	1,800 ⁷	$3,600^6$	280	<10	420	430	290
12/22/00	30.00	5.39	24.61	8709	$1,500^6$	100	<1.3	160	59	380
03/01/01	30.00	5.79	24.21	$1,320^{7}$	$2,340^6$	171	< 5.00	238	157	864
05/04/01	30.00	5.83	24.17	$3,100^{7}$	11,900	199	33.9	1,420	290	3,890
09/05/01	30.00	5.45	24.55	2,200	3,300	170	1.7	310	110	1,100
12/21/01	30.00	5.60	24.40	980	1,100	58	0.72	120	14	450
03/15/02	30.00	6.05	23.95	2,200	5,000	250	9.1	470	430	1,800
06/15/02	30.00	5.84	24.16	3,700	5,200	240	5.2	540	210	2,200

WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	E	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-2 (cont)										
09/06/02	30.00	5.59	24.41	2,200	2,100	84	1.4	250	30	1,000
12/06/02	30.00	5.44	24.56	730	780	21	< 0.50	58	3.4	480
03/03/03	30.00	5.79	24.21	3,500	4,800	220	1.9	650	46	4,400
06/17/03 ¹⁴	30.00	6.07	23.93	4,100	4,700	140	4	370	84	2,700
09/16/03 ¹⁴	30.00	5.69	24.31	$1,800^{15}$	1,300	38	<1	110	3	1,300
12/31/03 ¹⁴	30.00	5.64	24.36	330	990	11	< 0.5	23	3	440
03/26/04	30.00	6.25	23.75	SAMPLED SEM	I-ANNUALLY					
08/17/04 ¹⁴	30.00	5.53	24.47	400	300	9	< 0.5	18	1	340
11/16/04 ¹⁴	32.59	8.14	24.45	4,300	10,000	91	7	830	1,300	1,100
02/18/05	32.59	8.67	23.92	SAMPLED SEM	I-ANNUALLY					
05/06/05 ¹⁴	32.59	9.06	23.53	1,300	4,900	62	4	290	320	400
08/05/05	32.59	8.61	23.98	SAMPLED SEM	I-ANNUALLY					
11/07/05 ¹⁴	32.59	8.27	24.32	300^{20}	800	2	< 0.5	< 0.5	< 0.5	66
02/06/06	32.59	8.76	23.83	SAMPLED SEM						
05/08/06 ¹⁴	32.59	9.49	23.10	2.100	6,100	32	4	430	460	360
08/08/06	32.59	8.79	23.80	SAMPLED SEM	*					
11/08/06 ¹⁴	32.59	8.32	24.27	770	120	12	< 0.5	0.7	8	840
02/06/07	32.59	8.30	24.29	SAMPLED SEM	I-ANNUALLY					
05/01/07 ¹⁴	32.59	8.54	24.05	160	850	< 0.5	< 0.5	16	36	100
07/31/07	32.59	8.28	24.31	SAMPLED SEM						
11/08/07 ¹⁴	32.59	8.12	24.47	800	180	< 0.5	< 0.5	< 0.5	< 0.5	37
02/04/08	32.59	8.38	24.21	SAMPLED SEM						
05/01/08 ¹⁴	32.59	8.34	24.25	500	430	< 0.5	< 0.5	< 0.5	5	120
08/01/08	32.59	8.26	24.33	SAMPLED SEM						
11/13/08 ¹⁴	32.59	8.17	24.42	2.600	2.500	3	1	190	83	240
02/23/09	32.59	8.38	24.21	SAMPLED SEM	,					
05/20/09 ¹⁴	32.59	8.94	23.65	2,800 J	4,000	4	1	42	55	160
08/25/09	32.59	8.59	24.00	SAMPLED SEM	*					
MW-3										
06/04/97	31.32	5.27	26.05	< 50	190	26	20	1.5	16	8.2
09/16/97	31.32	5.17	26.15	< 50	270	58	53	6.1	30	21
12/17/97	31.32	5.22	26.10	< 50	290	50	54	8.1	37	21
03/18/98	31.32	6.42	24.90	< 50	390	140	33	4.6	30	94
06/28/98	31.32	6.39	24.93	< 50	290	90	11	1.6	13	150
09/07/98	31.32	5.97	25.35	< 50	170	46	20	4.3	19	120

No. No.	WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	E	X	MTBE
120998 31,32	DATE	(ft.)	(msl)	(ft.)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)
131199 31,32 5.85 25,47 <50 653 136 69.5 13.7 63.8 144	MW-3 (cont)										
100 100 100 100 110 24 88 210	12/09/98	31.32	5.41	25.91	55 ¹	660	120	93	22	72	150
9/9/9/9999999999999999999999999999999	03/11/99	31.32	5.85	25.47	< 50	653	136	69.5	13.7	63.8	144
221499	06/17/99	31.32	5.90	25.42	103 ¹	530	190	110	24	88	210
13/09/003 31.32 6.14 25.18 74.61 1170 304 103 25.2 114 539	09/29/99	31.32	5.61	25.71	232 ¹	433	97.8	61.4	16.9	56.6	156
1000 31.32	12/14/99	31.32	5.55	25.77	$<50^{2}$	8650	1040	795	212	800	995
19/30/00 31.32 5.79 25.53 100 ⁶ 220 ⁶ 42 33 12 38 67	03/09/00 ³	31.32	6.14	25.18	74.6 ¹	1170	304	103	25.2	114	539
2/22/00 31.32 5.52 25.80 110° 370° 96 48 18 58 180 30/301/01 31.32 5.75 25.57 144° 91° 218 89.0 36.0 110 310 31/301/01 31.32 5.96 25.36 <50 1,260 146 79.6 38.2 101 1,070 30/301/01 31.32 5.61 25.71 SAMPLED SEMI-ANNUALLY 2/21/01 31.32 5.67 25.65 180 850 160 111 32 84 300 33/15/02 31.32 6.15 25.17 33/15/02 31.32 6.15 25.17 <50 550 110 3.0 23 58 590 39/06/02 31.32 5.74 25.58 SAMPLED SEMI-ANNUALLY	06/10/00	31.32	6.29	25.03		359	63.8	27.8	10.5	35.4	393
1301/01 31.32 5.75 25.57	09/30/00	31.32	5.79	25.53	100^{8}	220^{6}	42	33	12	38	67
	12/22/00	31.32	5.52	25.80	110^{9}	370^{6}	96	48	18	58	180
09/05/01 31.32 5.61 25.71 SAMPLED SEMI-ANNUALLY	03/01/01	31.32	5.75	25.57	144 ⁷	912^{6}	218	89.0	36.0	110	310
22/21/01 31.32 5.67 25.65 180 850 160 11 32 84 300 33/15/02 31.32 6.15 25.17	05/04/01	31.32	5.96	25.36	< 50	1,260	146	79.6	38.2	101	1,070
13/15/02 31.32 6.15 25.17	09/05/01	31.32	5.61	25.71	SAMPLED SEMI	-ANNUALLY					
06/15/02 31.32 6.01 25.31 <50	12/21/01	31.32	5.67	25.65	180	850	160	11	32	84	300
09/06/02 31.32 5.74 25.58 SAMPLED SEMI-ANNUALLY	03/15/02	31.32	6.15	25.17							
206002 31.32 5.56 25.76 160 350 60 1.3 11 32 530	06/15/02	31.32	6.01	25.31	< 50	550	110	3.0	23	58	590
13/03/03 31.32 5.92 25.40 SAMPLED SEMI-ANNUALLY	09/06/02	31.32	5.74	25.58	SAMPLED SEMI	-ANNUALLY					
10/17/03 ¹⁴ 31.32 6.19 25.13 130 560 90 2 19 57 590 10/16/03 31.32 5.85 25.47 SAMPLED SEMI-ANNUALLY 1.0/10/16/03 31.32 5.85 25.47 SAMPLED SEMI-ANNUALLY 1.0/10/16/03 31.32 5.67 25.65 120 840 140 24 25 87 670 13/26/04 31.32 6.33 24.99 SAMPLED SEMI-ANNUALLY 1.0/16/16/14 31.32 5.46 25.86 110 630 84 18 11 35 410 11/16/04 ¹⁴ 34.16 8.26 25.90 92 740 100 4 21 45 460 11/16/04 ¹⁴ 34.16 8.26 25.90 92 740 100 4 21 45 460 12/18/05 34.16 8.79 25.37 SAMPLED SEMI-ANNUALLY 1.0/16/05/05 34.16 8.81 25.35 SAMPLED SEMI-ANNUALLY 1.1/16/07/05 34.16 8.81 25.35 SAMPLED SEMI-ANNUALLY 1.1/16/05/06 34.16 8.88 25.28 SAMPLED SEMI-ANNUALLY 1.1/16/06/06 34.16 8.88 25.28 SAMPLED SEMI-ANNUALLY 1.0/16/08/06 34.16 8.88 25.28 SAMPLED SEMI-ANNUALLY 1.0/16/06/06 34.16 8.88 25.28 SAMPLED SEMI-ANNUALLY 1.0/16/06/06 34.16 8.87 25.59 210 50 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	12/06/02	31.32	5.56	25.76	160	350	60	1.3	11	32	530
99/16/03 31.32 5.85 25.47 SAMPLED SEMI-ANNUALLY	03/03/03	31.32	5.92	25.40	SAMPLED SEMI	-ANNUALLY					
22/31/03 ¹⁴ 31.32 5.67 25.65 120 840 140 24 25 87 670 03/26/04 31.32 6.33 24.99 SAMPLED SEMI-ANNUALLY	06/17/03 ¹⁴	31.32	6.19	25.13	130	560	90	2	19	57	590
3/26/04 31.32 6.33 24.99 SAMPLED SEMI-ANNUALLY	09/16/03	31.32	5.85	25.47	SAMPLED SEMI	-ANNUALLY					
08/17/04 ¹⁴ 31.32 5.46 25.86 110 630 84 18 11 35 410 01/16/04 ¹⁴ 34.16 8.26 25.90 92 740 100 4 21 45 460 02/18/05 34.16 8.79 25.37 SAMPLED SEMI-ANNUALLY	12/31/03 ¹⁴	31.32	5.67	25.65	120	840	140	24	25	87	670
11/16/04 ¹⁴ 34.16 8.26 25.90 92 740 100 4 21 45 460 12/18/05 34.16 8.79 25.37 SAMPLED SEMI-ANNUALLY	03/26/04	31.32	6.33	24.99	SAMPLED SEMI	-ANNUALLY					
02/18/05 34.16 8.79 25.37 SAMPLED SEMI-ANNUALLY	08/17/04 ¹⁴	31.32	5.46	25.86	110	630	84	18	11	35	410
05/06/05 ¹⁴ 34.16 9.18 24.98 83 290 43 <1 6 11 740 08/05/05 34.16 8.81 25.35 SAMPLED SEMI-ANNUALLY	11/16/04 ¹⁴	34.16	8.26	25.90	92	740	100	4	21	45	460
08/05/05 34.16 8.81 25.35 SAMPLED SEMI-ANNUALLY	02/18/05	34.16	8.79	25.37	SAMPLED SEMI	-ANNUALLY					
1/07/05 ¹⁴ 34.16 8.47 25.69 66 220 29 0.7 3 26 440 02/06/06 34.16 8.88 25.28 SAMPLED SEMI-ANNUALLY	05/06/05 ¹⁴	34.16	9.18	24.98	83	290	43	<1	6	11	740
02/06/06 34.16 8.88 25.28 SAMPLED SEMI-ANNUALLY	08/05/05	34.16	8.81	25.35	SAMPLED SEMI	-ANNUALLY					
05/08/06 ¹⁴ 34.16 9.67 24.49 310 560 70 <1 3 24 3,300 08/08/06 34.16 9.00 25.16 SAMPLED SEMI-ANNUALLY 11/08/06 ¹⁴ 34.16 8.57 25.59 210 510 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	11/07/05 ¹⁴	34.16	8.47	25.69	66	220	29	0.7	3	26	440
08/08/06 34.16 9.00 25.16 SAMPLED SEMI-ANNUALLY	02/06/06	34.16	8.88	25.28	SAMPLED SEMI	-ANNUALLY					
08/08/06 34.16 9.00 25.16 SAMPLED SEMI-ANNUALLY	$05/08/06^{14}$	34.16			310	560	70	<1	3	24	3,300
02/06/07 34.16 8.48 25.68 SAMPLED SEMI-ANNUALLY 05/01/07 ¹⁴ 34.16 8.70 25.46 84 260 36 <0.5 0.8 18 1,200 07/31/07 34.16 8.46 25.70 SAMPLED SEMI-ANNUALLY	08/08/06	34.16	9.00	25.16	SAMPLED SEMI	-ANNUALLY					
05/01/07 ¹⁴ 34.16 8.70 25.46 84 260 36 <0.5 0.8 18 1,200 07/31/07 34.16 8.46 25.70 SAMPLED SEMI-ANNUALLY	11/08/06 ¹⁴	34.16	8.57	25.59	210	510	< 0.5	< 0.5	< 0.5	< 0.5	73
07/31/07 34.16 8.46 25.70 SAMPLED SEMI-ANNUALLY	02/06/07	34.16	8.48	25.68	SAMPLED SEMI	-ANNUALLY					
07/31/07 34.16 8.46 25.70 SAMPLED SEMI-ANNUALLY	05/01/07 ¹⁴	34.16	8.70	25.46	84	260	36	< 0.5	0.8	18	1,200
	07/31/07		8.46	25.70	SAMPLED SEMI	-ANNUALLY					
	11/08/07 ¹⁴	34.16	8.29	25.87			32	0.9	3	29	440

WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	E	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)
MW-3 (cont)										
02/04/08	34.16	8.48	25.68	SAMPLED SEM	I-ANNUALLY					
05/01/08 ¹⁴	34.16	8.50	25.66	82	240	30	< 0.5	< 0.5	20	690
08/01/08	34.16	8.40	25.76	SAMPLED SEM	I-ANNUALLY					
11/13/08 ¹⁴	34.16	8.36	25.80	< 50	720	22	< 0.5	< 0.5	7	790
02/23/09	34.16	8.44	25.72	SAMPLED SEM	I-ANNUALLY					
05/20/09 ¹⁴	34.16	8.86	25.30	210	460	42	< 0.5	1	20	450
08/25/09	34.16	8.60	25.56	SAMPLED SEM	II-ANNUALLY					
MW-4										
04/08/99	30.13				130	3.1	< 0.5	< 0.5	7.7	4,700
06/17/99	30.13	5.19	24.94	$3,780^{1}$	590	58	< 5.0	< 5.0	160	6,200
09/29/99	30.13	4.96	25.17	$1,130^{1}$	692	10.7	<2.5	5.51	236	7,840
12/14/99	30.13	4.91	25.22	571 ^{1,2}	625	<10	3.83	<10	94.6	4,470
$03/09/00^3$	30.13	5.45	24.68	600^{1}	402	3.76	1.18	< 0.5	71.4	3,140
06/10/00	30.13	5.53	24.60		<1,000	13.2	<10.0	<10.0	97.8	3,080
09/30/00	30.13	5.09	25.04	$1,400^{7}$	280^{6}	21	0.67	6.3	60	3,300
12/22/00	30.13	4.90	25.23	740^{9}	240^{6}	2.2	< 0.50	1.3	25	2,200
03/01/01	30.13	5.15	24.98	661 ⁷	193	2.31	< 0.500	1.34	12.1	1,220
05/04/01	30.13	5.25	24.88	$1,100^{7}$	722	12.0	< 5.00	17.1	89.4	2,390
09/05/01	30.13	4.96	25.17	2,500	1,400	23	2.2	19	260	2,300
12/21/01	30.13	5.06	25.07	1,100	310	2.9	< 0.50	2.6	32	860
03/15/02	30.13	5.44	24.69	3,100	520	5.0	< 0.50	15	6.8	2,700
06/15/02	30.13	5.29	24.84	2,400	950	16	3.6	41	100	$2,200/2,400^{12}$
09/06/02	30.13	5.07	25.06	2,600	640	9.6	0.52	9.8	28	1,700
12/06/02	30.13	4.93	25.20	1,400	280	3.6	< 0.50	1.7	<1.5	730
03/03/03	30.13	5.28	24.85	1,500	280	2.7	< 0.50	7.3	2.3	910
06/17/03 ¹⁴	30.13	5.44	24.69	2,000	660	8	1	38	16	1,100
09/16/03 ¹⁴	30.13	5.15	24.98	$2,100^{16}$	480	6	<1	11	3	710
12/31/03 ¹⁴	30.13	5.07	25.06	1,400	220	3	< 0.5	2	< 0.5	390
03/26/04	30.13	5.60	24.53	SAMPLED SEM	I-ANNUALLY					
08/17/04 ¹⁴	30.13	4.68	25.45	2,100	470	12	1	28	4	370
11/16/04 ¹⁴	33.07	7.63	25.44	960	270	7	< 0.5	7	6	270
02/18/05	33.07	8.07	25.00	SAMPLED SEM						
05/06/05 ¹⁴	33.07	8.38	24.69	350	86	0.7	< 0.5	< 0.5	< 0.5	110
08/05/05	33.07	8.05	25.02	SAMPLED SEM						
11/07/05 ¹⁴	33.07	7.74	25.33	150	54	0.6	< 0.5	< 0.5	< 0.5	59

NW-4 (com)	WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	E	X	MTBE
020606 33.07 8.13 24.94 SAMPLED SEMI-ANNUALLY	DATE	(ft.)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
0508066 ¹⁴ 33.07 8.80 24.27 200 66 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <	MW-4 (cont)										
08/08/06 33.07 7.91 25.16 SAMPLED SEMI-ANNUALLY	02/06/06	33.07	8.13	24.94	SAMPLED SEM	I-ANNUALLY					
11/08/06 ¹⁴ 33.07 7.84 25.23 400 55 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	05/08/06 ¹⁴	33.07	8.80	24.27	200	66	0.5	< 0.5	< 0.5	< 0.5	92
020607 33.07 7.79 25.28 SAMPLED SEMI-ANNUALLY	08/08/06	33.07	7.91	25.16	SAMPLED SEM	I-ANNUALLY					
05011.071 33.07 7.99 25.08 150 67 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.7	11/08/06 ¹⁴	33.07	7.84	25.23	400	55	< 0.5	< 0.5	< 0.5	< 0.5	40
07/31/07 33.07 7.80 25.27 SAMPLED SEMI-ANNUALLY	02/06/07	33.07	7.79	25.28	SAMPLED SEM	I-ANNUALLY					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	05/01/07 ¹⁴	33.07	7.99	25.08	150	67	< 0.5	< 0.5	< 0.5	< 0.5	76
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07/31/07	33.07	7.80	25.27	SAMPLED SEM	I-ANNUALLY					
05/01/08 ¹⁴ 33.07 7.86 25.21 110 <50 <0.5 <0.5 <0.5 <0.5 <0.5 66 08/01/08 33.07 7.79 25.28 SAMPLED SEMI-ANNUALLY	11/08/07 ¹⁴	33.07	7.65	25.42	850	< 50	< 0.5	< 0.5	< 0.5	< 0.5	44
08/01/08 33.07 7.79 25.28 SAMPLED SEMI-ANNUALLY	02/04/08	33.07	7.84	25.23	SAMPLED SEM	I-ANNUALLY					
11/13/08 ¹⁴ 33.07 7.64 25.43 330 64 <0.5 <0.5 <0.5 <0.5 1 22	05/01/08 ¹⁴	33.07	7.86	25.21	110	< 50	< 0.5	< 0.5	< 0.5	< 0.5	67
02/23/09	08/01/08	33.07	7.79	25.28	SAMPLED SEM	I-ANNUALLY					
05/20/09 ¹⁴ 33.07 8.34 24.73 560 130 <0.5 <0.5 <0.5 <0.5 <0.5 19 08/25/09 33.07 8.10 24.97 SAMPLED SEMI-ANNUALLY	11/13/08 ¹⁴	33.07	7.64	25.43	330	64	< 0.5	< 0.5	< 0.5	1	220
MW-7 05/04/01 ¹¹ 31.90 4.03 27.87 <50 <50.0 <0.500 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <5	02/23/09	33.07	8.01	25.06	SAMPLED SEM	I-ANNUALLY					
MW-7 05/04/01 ¹¹ 31.90 4.03 27.87 <50 <50.0 <0.500 <5.00 <5.00 <5.00 <5.00 567/4 09/05/01 31.90 3.86 28.04 <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <1.5 1,400/1 03/15/02 31.90 4.18 27.72 <50 <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <1.5 320/3 06/15/02 31.90 4.06 27.84 <50 <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <1.5 320/3 06/15/02 31.90 3.93 27.97 <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <1.5 850/5 09/06/02 31.90 3.93 27.97 <50 59 <0.50 <0.50 <0.50 <0.50 <0.50 <1.5 1,9 12/06/02 31.90 3.87 28.03 <50 68 <0.50 <0.50 <0.50 <0.50 <1.5 1,9 12/06/02 31.90 3.87 28.03 <50 68 <0.50 <0.50 <0.50 <0.50 <1.5 1,9 12/06/02 31.90 3.93 27.97 <50 59 <0.50 <0.50 <0.50 <0.50 <0.50 <1.5 1,9 12/06/02 31.90 3.87 28.03 <50 68 <0.50 <0.50 <0.50 <0.50 <0.50 <1.5 1,9 12/06/02 31.90 3.87 28.03 <50 68 <0.50 <0.50 <0.50 <0.50 <0.50 <1.5 1,3 06/17/03 ¹⁴ 31.90 4.14 27.76 <50 79 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	$05/20/09^{14}$	33.07	8.34	24.73	560	130	< 0.5	< 0.5	< 0.5	< 0.5	190
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	08/25/09	33.07	8.10	24.97	SAMPLED SEM	II-ANNUALLY					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											567/470 ¹²
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											$1,400/1,300^{12}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12/21/01										620/670 ¹²
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03/15/02					< 50					320/350 ¹²
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			4.06		< 50		< 0.50		< 0.50		850/960 ¹²
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09/06/02										1,900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12/06/02	31.90	3.87								2,200
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03/03/03					< 50					1,300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											2,500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		31.90	4.07	27.83	< 50 ¹⁷		<5			<5	4,400
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		31.90	4.04	27.86	< 50	76	<2	<2	<2	<2	3,000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		31.90	4.25		< 50	61	<1		<1		2,000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		31.90	4.02	27.88	2,200	130	<5	<5	<5	<5	8,000
$05/06/05^{14}$ 34.35 6.92 27.43 60 160 <5 <5 <5 <5 <5 8,4 $08/05/05^{14}$ 34.35 6.70 27.65 81^{18} 500 <5 <5 <5 <5 <5 20,0 $11/07/05^{14}$ 34.35 6.56 27.79 68 300 <10 <10 <10 <10 24,6		34.35	6.48	27.87	< 50	200	<3	<3	<3	<3	7,300
$08/05/05^{14}$ 34.35 6.70 27.65 81^{18} 500 <5 <5 <5 <5 20,00	02/18/05 ¹⁴	34.35	6.75	27.60	64	86	<10	<10	<10	<10	5,700
$11/07/05^{14}$ 34.35 6.56 27.79 68 300 <10 <10 <10 <10		34.35	6.92	27.43		160	<5	<5	<5	<5	8,400
	08/05/05 ¹⁴	34.35	6.70	27.65	81 ¹⁸	500	<5	<5	<5	<5	$20,000^{19}$
$02/06/06^{14}$ 34.35 6.81 27.54 72^{21} 300 <0.5 <0.5 <0.5 <0.5 <0.5	$11/07/05^{14}$	34.35	6.56	27.79		300	<10	<10	<10	<10	24,000
	02/06/06 ¹⁴	34.35	6.81	27.54	72^{21}	300	< 0.5	< 0.5	< 0.5	< 0.5	14,000

WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	E	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-7 (cont)										
05/08/06 ¹⁴	34.35	7.20	27.15	94	80	<2	<2	3	7	6,500
08/08/06 ¹⁴	34.35	6.82	27.53	150	520	<10	<10	<10	<10	17,000
11/08/06 ¹⁴	34.35	6.60	27.75	440	900	<5	<5	<5	<5	41,000
02/06/07 ¹⁴	34.35	6.59	27.76	200	590	<5	<5	<5	<5	31,000
05/01/07 ¹⁴	34.35	6.70	27.65	190	380	<3	<3	<3	<3	14,000
07/31/07 ¹⁴	34.35	6.60	27.75	270	570	<3	<3	<3	<3	15,000
11/08/07 ¹⁴	34.35	6.52	27.83	150	520	<5	<5	<5	<5	25,000
02/04/08 ¹⁴	34.35	6.66	27.69	87	540	<1	<1	<1	<1	17,000
05/01/08 ¹⁴	34.35	6.63	27.72	< 50	230	<5	<5	<5	<5	10,000
08/01/08 ¹⁴	34.35	6.51	27.84	< 50	330	<3	<3	<3	<3	12,000
11/13/08 ¹⁴	34.35	6.34	28.01	64	390	<10	<10	<10	<10	16,000
02/23/0914	34.35	6.70	27.65	100	270	<3	<3	<3	<3	11,000
05/20/09 ¹⁴	34.35	6.80	27.55	48 J	210	<1	<1	<1	<1	6,300
08/25/09 ^{14, 22}	34.35	6.65	27.70	81	160	<3	<3	<3	<3	5,700
MW-5										
04/08/99	30.93			< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
06/17/99	30.93	4.93	26.00	53.8 ¹	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
09/29/99	30.93	4.73	26.20	<50	<50	<0.5	< 0.5	< 0.5	<0.5	<2.5
12/14/99	30.93	4.61	26.32	< 50 ²	<50	< 0.5	< 0.5	<0.5	<0.5	0.598
$03/09/00^3$	30.93	5.00	25.93	<50	<50	<0.5	<0.5	< 0.5	< 0.5	<2.5
06/10/00	30.93	5.21	25.72		<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50
09/30/00	30.93	4.79	26.14	130^{8}	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
12/22/00	30.93	4.60	26.33	250^{8}	<50	< 0.50	< 0.50	< 0.50	< 0.50	9.1
03/01/01	30.93	4.77	26.16	77.4 ⁷	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	< 2.50
05/04/01	30.93	4.89	26.04	NOT SAMPLED						
09/05/01	30.93	4.72	26.21	SAMPLED SEMI						
12/21/01	30.93	4.73	26.20	110	< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
03/15/02	30.93	5.06	25.87							
06/15/02	30.93	4.95	25.98	< 50	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
09/06/02	30.93	4.75	26.18	SAMPLED SEMI	-ANNUALLY					
12/06/02	30.93	4.61	26.32	<50	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
03/03/03	30.93	4.94	25.99	SAMPLED SEMI						
06/17/03 ¹⁴	30.93	5.06	25.87	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/16/03	30.93	4.84	26.09	SAMPLED SEMI						

WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	E	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)
MW-5 (cont)										
03/26/04	30.93	5.19	25.74	SAMPLED SEMI	-ANNUALLY					
08/17/04	30.93	TO BE DEST	ROYED							
DESTROYED -	- 2005									
MW-6										
04/08/99	30.58				< 50	< 0.5	< 0.5	< 0.5	< 0.5	4.5
06/17/99	30.58	5.99	24.59	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 2.5
09/29/99	30.58	5.81	24.77	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	4.46
12/14/99	30.58	5.74	24.84	< 50 ²	<50	< 0.5	< 0.5	< 0.5	<0.5	4.13
$03/09/00^3$	30.58	6.49	24.09	<50	<50	< 0.5	< 0.5	< 0.5	<0.5	2.82
06/10/00	30.58	6.58	24.00		<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50
09/30/00	30.58	6.00	24.58	110^{8}	<50	< 0.50	< 0.50	< 0.50	< 0.50	7.3
12/22/00	30.58	5.75	24.83	100^{8}	<50	< 0.50	< 0.50	< 0.50	< 0.50	4.5
03/01/01	30.58	6.07	24.51	1417	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	7.52
05/04/01	30.58	6.26	24.32	< 50	<50.0	< 0.500	< 5.00	< 5.00	< 5.00	2.74
09/05/01	30.58	5.99	24.59	SAMPLED SEMI						
12/21/01	30.58	5.93	24.65	200	<50	< 0.50	< 0.50	< 0.50	<1.5	8.5
03/15/02	30.58	6.44	24.14							
06/15/02	30.58	6.25	24.33	< 50	< 50	< 0.50	< 0.50	< 0.50	<1.5	4.3
09/06/02	30.58	5.98	24.60	SAMPLED SEMI						
12/06/02	30.58	5.79	24.79	64	<50	< 0.50	< 0.50	< 0.50	<1.5	5.0
03/03/03	30.58	6.14	24.44	SAMPLED SEMI						
06/17/03 ¹⁴	30.58	6.47	24.11	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	13
09/16/03	30.58	6.06	24.52	SAMPLED SEMI						
12/31/03 ¹⁴	30.58	6.00	24.58	<50	<50	< 0.5	< 0.5	< 0.5	0.5	14
03/26/04	30.58	6.69	23.89	SAMPLED SEMI						
08/17/04	30.58	TO BE DEST								
DESTROYED -		10 22 2201.	122							
TRIP BLANK										
06/04/97					<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
09/16/97					<50	<0.5	<0.5	< 0.5	<0.5	<2.5
12/17/97					<50	<0.5	<0.5	< 0.5	<0.5	<2.5
03/18/98		<u></u>			<50	<0.5	<0.5	< 0.5	<0.5	<2.5
06/28/98					<50	<0.5	<0.5	< 0.5	<0.5	<2.5
09/07/98					<50	<0.5	<0.5	< 0.5	<0.5	<2.5
07/01/70					<50	\0.5	<0.5	\0. 5	\0.5	\2. 3

WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	E	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
TRIP BLANK	(cont)									
12/09/98					< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
03/11/99					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
06/17/99					< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
12/14/99					< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
$03/09/00^3$					< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
06/10/00					< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	< 2.50
09/30/00					< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
12/22/00 ¹⁰					< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
03/01/01					< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	< 2.50
05/04/01					< 50.0	< 0.500	< 5.00	< 5.00	< 5.00	< 0.500
09/05/01					< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
QA										
12/21/01					< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
03/15/02					< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
06/15/02					< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
09/06/02					< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
12/06/02					< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
03/03/03 ¹³										
06/17/03 ¹⁴					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/16/03 ¹⁴					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
12/31/03 ¹⁴					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
03/26/04 ¹⁴					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
08/17/04 ¹⁴					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
11/16/04 ¹⁴					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$02/18/05^{14}$					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
05/06/05 ¹⁴					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
08/05/05 ¹⁴					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
11/07/05 ¹⁴					< 50	0.6^{19}	< 0.5	< 0.5	< 0.5	< 0.5
02/06/06 ¹⁴					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
05/08/06 ¹⁴					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
08/08/06 ¹⁴					<50	< 0.5	< 0.5	< 0.5	<0.5	< 0.5
11/08/06 ¹⁴					<50	< 0.5	< 0.5	< 0.5	<0.5	<0.5
02/06/07 ¹⁴					<50	<0.5	< 0.5	<0.5	<0.5	< 0.5
05/01/07 ¹⁴					<50	< 0.5	<0.5	<0.5	<0.5	< 0.5
07/31/07 ¹⁴					<50	< 0.5	<0.5	<0.5	<0.5	< 0.5
11/08/07 ¹⁴					<50	< 0.5	<0.5	<0.5	<0.5	< 0.5

WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	E	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
QA (cont)										
$02/04/08^{14}$					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$05/01/08^{14}$					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$08/01/08^{14}$					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
11/13/08 ¹⁴					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$02/23/09^{14}$					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$05/20/09^{14}$					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$08/25/09^{14}$					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

TABLE 1

															110									113				101												111			
																																ug				(u							

EXPLANA'	ΓΙΟΝS:		
Groundwate	r monitoring data and laboratory analytical re	esults prior to June 10, 2000, were compiled from reports prepared b	y Blaine Tech Services, Inc.
TOC = Top	of Casing	TPH-G = Total Petroleum Hydrocarbons as Gasoline	E = Ethylbenzene
(ft.) = Feet	<u> </u>	TPH = Total Petroleum Hydrocarbons	X = Xylenes
	undwater Elevation	DRO = Diesel Range Organics	MTBE = Methyl Tertiary Butyl Ether
(msl) = Mea	n sea level	GRO = Gasoline Range Organics	= Not Measured/Not Analyzed
DTW = Dep		B = Benzene	$(\mu g/L) = Micrograms per liter$
-	tal Petroleum Hydrocarbons as Diesel	T = Toluene	QA = Quality Assurance/Trip Blank
1 2 3 4 5	The following wells: MW-1, MW-2, MW-surveyed on April 11, 2001, by Virgil Cha	3, MW-4, and MW-7, were resurveyed by Morrow Surveying on Se vez Land Surveying. The benchmark for the survey was the top of c Street. (Benchmark Elevation = 29.65 feet above msl). tified hydrocarbon. mended holding time.	eptember 13, 2004. TOC elevation was
6	Laboratory report indicates gasoline C6-C	12	
7	Laboratory report indicates gasonine co-c		
8	Laboratory report indicates unidentified by		
9	Laboratory report indicates unidentified by		
10		is analyzed outside of the EPA recommended holding time.	
11	Well development performed.	•	
12	MTBE by EPA Method 8260.		
13	Due to laboratory error the trip blank samp	ole was not analyzed.	
14	BTEX and MTBE by EPA Method 8260.		
15		lata for the method blank is outside QC limits. Results from the re-e sults are reported from the original extract. The TPH-D result from t	
16	Laboratory report indicates the surrogate of	lata for the method blank is outside QC limits. Results from the re-e	extraction are within the limits. The hold time
17	Laboratory report indicates the surrogate of had expired prior to re-extraction so all res	sults are reported from the original extract. The TPH-D result from t lata for the method blank is outside QC limits. Results from the re-e sults are reported from the original extract. Similar results were obta	extraction are within the limits. The hold time ained in both extracts.
18		ample pattern is not typical of #2 fuel/diesel. It elutes in the DRO ra	inge later than #2 fuel.
19	Analytical result confirmed.		
20		ample pattern includes #2 fuel/diesel and an additional pattern which	
21		ample pattern is not typical of #2 fuel/diesel. The result is due to inc	
22	The DRO method blank had a detection of	33 ug/L. The DRO result for sample MW-7 should be considered ex	stimated due to method blank contamination.
J	Estimated value		
U	Compound was not detected		

TABLE 2 GROUNDWATER ANALYTICAL RESULTS - OXYGENATE COMPOUNDS CHEVRON SERVICE STATION 9-4800 1700 CASTRO STREET, OAKLAND, CALIFORNIA

WELL ID/ DATE	ETHANOL $(\mu g/L)$	TBA (µg/L)	$\begin{array}{c} \mathbf{MTBE} \\ (\mu g/L) \end{array}$	DIPE (µg/L)	ETBE $(\mu g/L)$	TAME (μg/L)
MW-1			T-000 F0-000			
06/17/03			92			
12/31/03	<50		86			
08/17/04	<50		76			
11/16/04	<50		48			
05/06/05	<50		220			
11/07/05	<50		260			
05/08/06	<50		590			
11/08/06	<50		140			
05/01/07	<50		280			
11/08/07	<50		270			
05/01/08	<50		470			
11/13/08	<50		190			
05/20/09	<50		190			
08/25/09	SAMPLED SEMI-ANNUALLY	Y				
MW-2						
06/17/03			2,700			
09/16/03	<130		1,300			
12/31/03	<50		440			
08/17/04	<50		340			
11/16/04	<100		1,100			
05/06/05	<50		400			
11/07/05	<50		66			
05/08/06	<50		360			
11/08/06	<50		840			
05/01/07	<50		100			
11/08/07	<50		37			
05/01/08	<50		120			
11/13/08	<50		240			
05/20/09	<50		160			
08/25/09	SAMPLED SEMI-ANNUALLY	Y				
MW-3						
06/17/03			590			
12/31/03	66		670			
08/17/04	<50		410			
11/16/04	<50		460	<u></u>		
060061 (3)			.50			

TABLE 2 GROUNDWATER ANALYTICAL RESULTS - OXYGENATE COMPOUNDS CHEVRON SERVICE STATION 9-4800 1700 CASTRO STREET, OAKLAND, CALIFORNIA

WELL ID/	ETHANOL	TBA	MTBE	DIPE	ETBE	TAME
DATE	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)
MW-3 (cont)						
05/06/05	<100		740			
11/07/05	< 50		440			
05/08/06	<100		3,300			
11/08/06	< 50		73			
05/01/07	< 50		1,200			
11/08/07	< 50		440			
05/01/08	< 50		690			
11/13/08	< 50		790			
05/20/09	< 50		450			
08/25/09	SAMPLED SEMI-ANNU	ALLY				
MW-4						
04/08/99	<25,000	< 5000	5400	<100	<100	<100
06/15/02		840	2,400	<2	<2	110
06/17/03		520	1,100	< 0.5	< 0.5	110
09/16/03	<100		710			
12/31/03	< 50		390			
08/17/04	< 50	66	370	< 0.5	< 0.5	50
11/16/04	< 50		270			
05/06/05	< 50	21	110	< 0.5	< 0.5	8
11/07/05	< 50		59			
05/08/06	< 50		92			
11/08/06	< 50		40			
05/01/07	< 50	10	76	< 0.5	< 0.5	6
11/08/07	< 50		44			
05/01/08	< 50	12	67	< 0.5	< 0.5	4
11/13/08	< 50		220			
05/20/09	< 50	58	190	< 0.5	< 0.5	6
08/25/09	SAMPLED SEMI-ANNU	ALLY				
MW-7						
05/04/01	< 500	57	470	< 2.0	<2.0	11
09/05/01	< 500	<100	1,300	<2	<2	32
12/21/01	< 500	<100	670	<2	<2	15
03/15/02	< 500	<100	350	<2	<2	8
06/15/02		<100	960	<2	<2	18
06/17/03		37	2,500	< 0.5	< 0.5	53
0.000(4./0)						

CRA 060061 (3)

TABLE 2 GROUNDWATER ANALYTICAL RESULTS - OXYGENATE COMPOUNDS CHEVRON SERVICE STATION 9-4800 1700 CASTRO STREET, OAKLAND, CALIFORNIA

DATE	(μg/L)	(μg/L)	$(\mu g/L)$	$(\mu g/L)$	(μg/L)	(μg/L)
MW-7 (cont)	NC Ø/	VI-0/	NFO -/	M=92	V. O/	V-3:-/
09/16/03	< 500		4,400			
12/31/03	<200		3,000			
08/17/04	<500	<50	8,000	<5	<5	140
11/16/04	<250	~50 	7,300			
02/18/05	<1,000		5,700			
05/06/05	<500	<50	8,400	<5	<5	140
08/05/05	<500		$20,000^{1}$			
11/07/05	<1,000		24,000		 	
02/06/06	<50		14,000		 	
05/08/06	<200		6,500			
08/08/06	<1,000		17,000			
	<1,000 <500					
11/08/06	<500 <500		41,000			
02/06/07			31,000			
05/01/07	<250	<10	14,000	<3	<3	260
07/31/07	<250		15,000			
11/08/07	<500		25,000			
02/04/08	<100		17,000			170
05/01/08	<500	<20	10,000	<5	<5	170
08/01/08	<250		12,000			
11/13/08	<1,000		16,000			
02/23/09	<250		11,000			
05/20/09	<100	31	6,300	<1	<1	120
08/25/09	<250		5,700			
MW-5						
04/08/99	< 500	<100	<2.0	<2.0	<2.0	< 2.0
06/17/03			< 0.5			
09/16/03	SAMPLED SEMI-ANNUAL	LLY				
12/31/03	<50		< 0.5			
08/17/04	TO BE DESTROYED					
DESTROYED - 2005						
MW-6						
04/08/99	< 500	<100	5.6	<2.0	<2.0	<2.0
06/17/03			13			
09/16/03	SAMPLED SEMI-ANNUA					
12/31/03	<50		14			
060061 (3)	\ 30		14			

TABLE 2

GROUNDWATER ANALYTICAL RESULTS - OXYGENATE COMPOUNDS CHEVRON SERVICE STATION 9-4800 1700 CASTRO STREET, OAKLAND, CALIFORNIA

WELL ID/ DATE	ETHANOL (µg/L)	TBA (μg/L)	MTBE (μg/L)	DIPE (µg/L)	ETBE (μg/L)	TAME (µg/L)
MW-6 (cont)						
08/17/04	TO BE DESTROYED					
DESTROYED - 20	005					

EXPLANATIONS:

Groundwater laboratory analytical results prior to May 4, 2001, were compiled from reports prepared by Blaine Tech Services, Inc.

TBA = t-Butyl alcohol

MTBE = Methyl Tertiary Butyl Ether

DIPE = di-Isopropyl ether

ETBE = Ethyl t-butyl ether

TAME = t-Amyl methyl ether

 $(\mu g/L)$ = Micrograms per liter

-- = Not Analyzed

1

Laboratory report confirmed analytical result.

ATTACHMENT A
BLAINE TECH'S AUGUST 26, 2009 THIRD QUARTER 2009 MONITORING REPORT

August 26, 2009

Chevron Environmental Management Company Aaron Costa 6111 Bollinger Canyon Rd. San Ramon, CA 94583

> Third Quarter 2009 Monitoring at Chevron Service Station 94800 1700 Casrto St. Oakland, CA

Monitoring performed on August 25, 2009

Blaine Tech Services, Inc. Groundwater Monitoring Event 090825-JO1

This submission covers the routine monitoring of groundwater wells conducted on August 25, 2009 at this location. 5 monitoring wells were measured for depth to groundwater (DTW). 1 monitoring well was pled. All sampling activities were performed in accordance with local, state and federal guidelines.

Water levels measurements were collected using an electronic slope indicator or an electronic interface probe. The sampled well was purged of three case volumes, depending on well recovery, or until water temperature, pH and conductivity stabilized. Purging was accomplished using electric submersible pumps, positive air-displacement pumps or stainless steel, Teflon or disposable bailers. Subsequent sample collection and sample handling was performed in accordance with EPA protocols using disposable bailers. All reused equipment was decontaminated in an integrated stainless steel sink with de-ionized water supplied Hotsy pressure washer and Liquinox or equivalent.

Samples were delivered under chain-of-custody to Lancaster Laboratories of Lancaster, Pennsylvania, for analysis. Monitoring well purgewater and equipment rinsate water was collected and transported under bill-of-lading to IWM facilities of San Jose, California.

Third Quarter Groundwater Monitoring at Chevron 94800, 1700 Casrto St., Oakland, CA

Enclosed documentation from this event includes copies of the Well Gauging Sheet, Well Monitoring Data Sheets, and Chain-of-Custody.

Blaine Tech Services, Inc.'s activities at this site consisted of objective data and sample collection only. No interpretation of analytical results, defining of hydrogeologic conditions or formulation of recommendations was performed.

Please call if you have any questions.

Sincerely,

Pott Cin

Pete Cornish Blaine Tech Services, Inc. Project Manager

attachments: SOP

Well Gauging Sheet

Individual Well Monitoring Data Sheets

Chain of Custody

Wellhead Inspection Form

Bill of Lading Calibration Log

cc: CRA

Attn: Charlotte Evans 5900 Hollis St. Suite A Emeryville, CA 94608

BLAINE TECH SERVICES, INC. METHODS AND PROCEDURES FOR THE ROUTINE MONITORING OF GROUNDWATER WELLS AT CHEVRON SITES

Blaine Tech Services, Inc. performs environmental sampling and documentation as an independent third party. We specialize in groundwater monitoring assignments and intentionally limit the scope of our services to those centered on the generation of objective information.

To avoid conflicts of interest, Blaine Tech Services, Inc. personnel do not evaluate or interpret the information we collect. As a state licensed contractor (C-57 well drilling –water – 746684) performing strictly technical services, we do not make any professional recommendations and perform no consulting of any kind.

SAMPLING PROCEDURES OVERVIEW

SAFETY

All groundwater monitoring assignments performed for Chevron comply with Chevron's safety guidelines, 29 CFR 1910.120 and SB-198 Injury and Illness Prevention Program (IIPP). All Field Technicians receive the full 40-hour 29CFR 1910.120 OSHA SARA HAZWOPER course, medical clearance and on-the-job training prior to commencing any work on any Chevron site.

INSPECTION AND GAUGING

Wells are inspected prior to evacuation and sampling. The condition of the wellhead is checked and noted according to a wellhead inspection checklist.

Standard measurements include the depth to water (DTW) and the total well depth (TD) obtained with industry standard electronic water level indicators that are graduated in increments of hundredths of a foot.

The water in each well is inspected for the presence of immiscibles. When free product is suspected, its presence is confirmed using an electronic interface probe (e.g. GeoTech). No samples are collected from a well containing over two-hundredths of a foot (0.02') of product.

EVACUATION

Depth to water measurements are collected by our personnel prior to purging and minimum purge volumes are calculated anew for each well based on the height of the water column and the diameter of the well. Expected purge volumes are never less than three case volumes and are set at no less than four case volumes in some jurisdictions.

Well purging devices are selected on the basis of the well diameter and the total volume to be

evacuated. In most cases the well will be purged using an electric submersible pump (i.e. Grundfos) suspended near (but not touching) the bottom of the well.

PARAMETER STABILIZATION

Well purging completion standards include minimum purge volumes, but additionally require stabilization of specific groundwater parameters prior to sample collection. Typical groundwater parameters used to measure stability are electrical conductivity, pH, and temperature. Instrument readings are obtained at regular intervals during the evacuation process (no less than once per case volume).

Stabilization standards for routine quarterly monitoring of fuel sites include the following: Temperature is considered to have stabilized when successive readings do not fluctuate more than +/- 1 degree Celsius. Electrical conductivity is considered stable when successive readings are within 10%. pH is considered to be stable when successive readings remain constant or vary no more than 0.2 of a pH unit.

DEWATERED WELLS

Normal evacuation removes no less than three case volumes of water from the well. However, less water may be removed in cases where the well dewaters and does not immediately recharge.

MEASURING RECHARGE

Upon completion of well purging, a depth to water measurement is collected and notated to ensure that the well has recharged to within 80% of its static, pre-purge level prior to sampling.

Wells that do not immediately show 80% recharge or dewatered wells will be allowed approximately 2 hours to recharge prior to sampling or will be sampled at site departure. All wells requiring off-site traffic control in the public right-of-way, the 80% recharge rule may be disregarded in the interests of Health and Safety. The sample may be collected as soon as there is sufficient water. The water level at time of sampling will be noted.

PURGEWATER CONTAINMENT

All non-hazardous purgewater evacuated from each groundwater monitoring well is captured and contained in on-board storage tanks on the Sampling Vehicle and/or special water hauling trailers. Effluent from the decontamination of reusable apparatus (sounders, electric pumps and hoses etc.), consisting of groundwater combined with deionized water and non-phosphate soap, is also captured and pumped into effluent tanks.

Non-hazardous purgewater is transported under standard Bill of Lading documentation to a Blaine Tech Services, Inc. facility before being transported to a Chevron approved disposal facility.

SAMPLE COLLECTION DEVICES

All samples are collected using disposable bailers.

SAMPLE CONTAINERS

Sample material is decanted directly from the sampling bailer into sample containers provided by the laboratory that will analyze the samples. The transfer of sample material from the bailer to the sample container conforms to specifications contained in the USEPA T.E.G.D. The type of sample container, material of construction, method of closure and filling requirements are specific to the intended analysis. Chemicals needed to preserve the sample material are commonly placed inside the sample containers by the laboratory or glassware vendor prior to delivery of the bottle to our personnel. The laboratory sets the number of replicate containers.

TRIP BLANKS

Trip Blanks, if requested, are taken to the site and kept inside the sample cooler for the duration of the event. They are turned over to the laboratory for analysis with the samples from that site.

DUPLICATES

Duplicates, if requested, may be collected at a site. The Duplicate sample is collected, typically from the well containing the most measurable contaminants. The Duplicate sample is labeled the same as the original.

SAMPLE STORAGE

All sample containers are promptly placed in food grade ice chests for storage in the field and transport (direct or via our facility) to the designated analytical laboratory. These ice chests contain quantities of restaurant grade ice as a refrigerant material. The samples are maintained in either an ice chest or a refrigerator until relinquished into the custody of the laboratory or laboratory courier.

DOCUMENTATION CONVENTIONS

A label must be affixed to all sample containers. In most cases these labels are generated by our office personnel and are partially preprinted. Labels can also be hand written by our field personnel. The site is identified with the store number and site address, as is the particular groundwater well from which the sample is drawn (e.g. MW-1, MW-2, S-1 etc.). The time and date of sample collection along with the initials of the person who collects the sample are handwritten onto the label.

Chain of Custody records are created using client specific preprinted forms following USEPA specifications.

Bill of Lading records are contemporaneous records created in the field at the site where the non-hazardous purgewater is generated. Field Technicians use preprinted Bill of Lading forms.

DECONTAMINATION

All equipment is brought to the site in clean and serviceable condition and is cleaned after use in each well and before subsequent use in any other well. Equipment is decontaminated before leaving the site.

The primary decontamination device is a commercial steam cleaner. The steam cleaner is detuned to function as a hot pressure washer that is then operated with high quality deionized water that is produced at our facility and stored onboard our sampling vehicle. Cleaning is facilitated by the use of proprietary fixtures and devices included in the patented workstation (U.S. Patent 5,535,775) that is incorporated in each sampling vehicle. The steam cleaner is used to decon reels, pumps and bailers.

Any sensitive equipment or parts (i.e. Dissolved Oxygen sensor membrane, water level indicator, etc.) that cannot be washed using the high pressure water, will be sprayed with a non-phosphate soap and deionized water solution and rinsed with deionized water.

DISSOLVED OXYGEN READINGS

Dissolved Oxygen readings are taken pre- and/or post-purge using YSI meters (e.g. YSI Model 550) or HACH field test kits.

The YSI meters are able to collect accurate in-situ readings. The probe allows downhole measurements to be taken from wells with diameters as small as two inches. The probe and reel is decontaminated between wells as described above. The meter is calibrated between wells as per the instructions in the operating manual. The probe is lowered into the water column and the reading is allowed to stabilize prior to collection.

OXYIDATON REDUCTION POTENTIAL READINGS

All readings are obtained with either Corning or Myron-L meters (e.g. Corning ORP-65 or a Myron-L Ultrameter GP). The meter is cleaned between wells as described above. The meter is calibrated at the start of each day according to the instruction manual.

FERROUS IRON MEASUREMENTS

All field measurements are collected at time of sampling with a HACH test kit.

WELL GAUGING DATA

Project	# 0908U	5- 101	Date	8-25-09	_ Client _	chevon	
Site	1700	castro	87	Oalland	UA	•	

		337 11		Donath to	Thickness	Volume of Immiscibles		,	Survey Point:	
		Well Size	Sheen /	Depth to Immiscible	of Immiscible		Depth to water	Depth to well	TOB or	
Well ID	Time	(in.)	Odor	Liquid (ft.)			(ft.)	bottom (ft.)	(TOG)	Notes
Mw-l	0817	2					25.80	30.65		6.6
MW-2	0808	2					24.00	30. 29	30000000000000000000000000000000000000	6.0
MW-1 MW-2 MW-3 MW-4	0813	2	odox				25.56	30.26		6-0
MW-4	0805	2					24.97	28,85		6.0
NW-7	0825	2					74.70	30.13	J	S
·										
								American (Control of Control of C		
										ē.
						1				
				200		7				
				4	1					
	^									

CHEVRUN WELL MONITORING DATA SHEET

Project #	: 09082	5- 301		Station #: 9	-4800	
Sampler:				Date: 8-25	-09	
Weather:	cloudy			Ambient Air T	Temperature: 6	5° F
Well I.D.	I	3		Well Diameter	r: 2 3 4	6 8
Total We	ell Depth:	30.	13	Depth to Wate	er: 27.70	
Depth to	Free Prod	uct:		Thickness of F	Free Product (fe	et):
Referenc	ed to:	PVO	Grade	D.O. Meter (if	req'd):	YSI HACH
DTW wit	th 80% Re	charge [(F	Height of Water	Column x 0.20) + DTW]: 2	8.14
Purge Meth	Bailer Disposable B	Displacement	Waterra Peristaltic Extraction Pump Other	Sampling Method: Other:	Disposable Bailer Extraction Port Dedicated Tubing	<u> Diameter Multiplier</u>
U.4 1 Case Volum	_(Gals.) X _ ne Sp	3 pecified Volum	$= \frac{1.2}{\text{Mos}}$	_ Gals. lume 1" 2" 3"	0.04 4" 0.16 6" 0.37 Othe	0.65 1.47 er radius ² * 0.163
Time	Temp (°F)	рН	Cond. (mS or (LS)	Turbidity (NTUs)	Gals. Removed	Observations
0836	67.8	7.31	11 48	126	0.4	clorda
G038	67.7	9.28	1156	247	0.6	
0541)	67.7	7-21	1152	287	1.2	b
Did well	dewater?	Yes	No	Gallons actuall	ly evacuated:	1.2
Sampling	Date: 6-7	15-09	Sampling Time	=: 0945	Depth to Water	r: 28.07
Sample I.	D.: Mw.	7		Laboratory:	Lancaster Oth	ner
Analyzed	for: трн	-G BTEX	MTBE OXYS	Other: See	coe	
Duplicate	I.D.:		Analyzed for:		MTBE OXYS	Other:
D.O. (if re	eq'd):		Pre-purge:	mg/L	Post-purge:	mg/ _L
O.R.P. (if	req'd):		Pre-purge:	mV	Post-purge:	mV

CHAIN OF CUSTODY FORM

Chevron Environmental Management Company ■ 6111 Bollinger Canyon Rd. ■ San Ramon, CA 94583 COC Chevron Site Number: 94800 Chevron Consultant: CRA ANALYSES REQUIRED 4 # 11 Preservation Codes Chevron Site Global ID: T0600102076 Address: 5900 Hollis St. Suite A Emeryville, H =HCL T= Chevron Site Address: 1700 Casrto St., НХОС П CAConsultant Contact: Charlotte Evans Thiosulfate GREASE [SCREEN 310.1 ALKALINITY Oakland, CA Consultant Phone No. 510-420-3351 $N = HNO_3$ B = NaOHChevron PM: AARON COSTA Consultant Project No. 0908 25 4 $S = H_2SO_4 O =$ ⋖ర 오 OXYGENATESI ö Other Sampling Company: Blaine Tech Services Chevron PM Phone No.: (925)543-2961 STLC [413.1 Sampled By (Print): 」」 ひくんえ ☑ Retail and Terminal Business Unit (RTBU) Job ORO 田の世 □ Construction/Retail Job EPA Sampler Signature: M. Charge Code: NWRTB-0094800-0-OML Temp. Blank Check Lancaster Other Lab Special DRO. NWRTB 00SITE NUMBER-0-WBS Temp. MTBE Mn, Na Instructions Laboratories EPA6010/7000 TITLE 22 METALS SM2510B SPECIFIC CONDUCTIVITY (WBS ELEMENTS: Must meet lowest MTBE D 800 detection limits possibly SITE ASSESSMENT: A1L REMEDIATION IMPLEMENTATION: R5L 0 900 ☑ Lancaster, PA for 8260 Compounds SITE MONITORING: OML OPERATION MAINTENANCE & MONITORING: M1L Mg, I 260 Lab Contact: Jill Parker M 0 1600 GRO 1300 BIEX M THIS IS A LEGAL DOCUMENT. ALL FIELDS MUST BE FILLED OUT BTEX 2425 New Holland Pike. EPA 8260B/GC/MS TPH-G □ BTEX EPA 418.1 TRPH [] CORRECTLY AND COMPLETELY. 80 Lancaster, PA 17601 Ę, EPA150.1 PH □ Phone No: EPA 6010 Ca, (717)656-2300 8021B EThanol S EPA 8015B 4 SAMPLE ID A EPA (# of Containers Date Sample Time Container Type Notes/Comment Field Point Name Matrix Top Depth (yymmdd) 090825 W X MW-7 0845 Milcel Cas 090925 0850 V245 Relinquished By Company Date/Time: Relinquished To Date/Time Company Turnaround Time: Standard 24 Hours□ 48 hours□ 72 8-25-09 14 to 8-25-69 1410 Hours□ Other□ Relinquished By Date/Time Company Relinquished To Date/Time Čompany Sample Integrity: (Check by lab on arrival) Intact: On Ice: Temp: Relinguished By Company Date/Time Relinquished To Company Date/Time COC#

WELLHEAD INSPECTION CHECKLIST

Page ______ of _____

ClientC	revre	4					Date	8-	25-0	9
Site Address	1700	cas	to st		vale (a	ind		A.		
Job Number	690	TZ5-	101			Techi	nician	5	<u>)</u>	
•	1	l	· i	1	1	I	l I	1		1
Well ID	Well Inspected - No Corrective Action Required	WELL IS SECURABLE BY DESIGN (12"or less)	WELL IS CLEARLY MARKED WITH THE WORDS "MONITORING WELL" (12"or less)	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)	Repair Order Submitted
mu-1	5	K								
mu-1 Mer-2 Mu-3 Mu-4 Mh-7		~	~					X		
Lew-3	>	A.								
Mury	X	×								
Mh-7	\times	×								
				:						
			:			·				
									-	
NOTES: 1/2	wz,313	Bol!	ts M	iSSI	ny					
			***				· · · ·			

SOURCE RECORD **BILL OF LADING**FOR NON-HAZARDOUS PURGEWATER RECOVERED FROM GROUNDWATER WELLS AT CHEVRON FACILITIES IN THE STATE OF CALIFORNIA. THE NON-HAZARDOUS PURGE- WATER WHICH HAS BEEN RECOVERED FROM GROUND- WATER WELLS IS COLLECTED BY THE CONTRACTOR, MADE UP INTO LOADS OF APPROPRIATE SIZE AND HAULED BY IWM TO THEIR FACILITY IN SAN JOSE, CALIFORNIA.

The contractor performing this work is BLAINE TECH SERVICES, INC. (BTS), 1680 Rogers Ave. San Jose CA (408)573-0555). Blaine Tech Services, Inc. is authorized by CHEVRON PRODUCTS COMPANY (CHEVRON) to recover, collect, apportion into loads, and haul the Non-Hazardous Well Purgewater that is drawn from wells at the CHEVRON facility indicated below and to deliver that purgewater to BTS. Transport routing of the Non-Hazardous Well Purgewater may be direct from one Chevron facility to BTS; from one Chevron facility to BTS via another Chevron facility; or any combination thereof. The Non-Hazardous Well Purgewater is and remains the property of CHEVRON.

This **Source Record BILL OF LADING** was initiated to cover the recovery of Non-Hazardous Well Purgewater from wells at the Chevron facility described below:

9-4800		Haron Custo	
CHEVRON#		Chevron Enginee	
	1700 custon	Oaklad	CA
street number	street name	city	state

WELL I.D. GALS.	WELL I.D. GALS.
MW-7 11.2	
added equip. rinse water / \lambda. O	any other adjustments /
TOTAL GALS. RECOVERED 2.7	loaded onto BTS vehicle #
signature	time date 010 6 / 25 / 6/
•	* * * * * * * * * * * * * * * * * * * *
unloaded by	time date 1600 B/25/K
signature for the signature	

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	ME cheuron	9-4800		PROJECT NUMBER 090825 - SON				
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIALS	
Myron 2 Ulrametr II	6222814	8-2509 0630	7,10,4 390veg	7.13, 10.01,4.12		1900	81	
			·	r .		A Shinder		
	·							
			11071			ASSESSED TO THE PARTY OF THE PA		
				·				

ATTACHMENT B

LANCASTER LABS' SEPTEMBER 10, 2009 ANALYTICAL REPORT

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

925-842-8582

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

September 10, 2009

SAMPLE GROUP

The sample group for this submittal is 1159489. Samples arrived at the laboratory on Thursday, August 27, 2009. The PO# for this group is 0015040460 and the release number is COSTA.

 Client Description
 Lancaster Labs Number

 MW-7-W-090825 NA Water
 5761923

 QA-T-090825 NA Water
 5761924

METHODOLOGY

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC Chevron c/o CRA Attn: Report Contact
COPY TO
ELECTRONIC CRA Attn: Charlotte Evans
COPY TO

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jill M Parker at (717) 656-2300

Respectfully Submitted,

Robin C. Runkle Senior Specialist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 5761923

Group No. 1159489

CZ

MW-7-W-090825 NA Water Facility #94800 BTST

1700 Castro St-Oakland T0600102076 MW-7

Collected: 08/25/2009 08:45 by JO Account Number: 10991

Submitted: 08/27/2009 09:05 Chevron

Reported: 09/10/2009 at 15:27 6001 Bollinger Canyon Rd L4310

Discard: 10/11/2009 San Ramon CA 94583

COMW7

Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
Volatiles	SW-846	8260B	ug/l	ug/l	ug/l	
Benzene		71-43-2	N.D.	3	5	5
Ethanol		64-17-5	N.D.	250	1,300	5
Ethylbenzene		100-41-4	N.D.	3	5	5
Methyl Tertiary But	yl Ether	1634-04-4	5,700	25	50	50
Toluene		108-88-3	N.D.	3	5	5
Xylene (Total)		1330-20-7	N.D.	3	5	5
latiles	SW-846	8015B	ug/l	ug/l	ug/l	
TPH-GRO N. CA water	C6-C12	n.a.	160	50	100	1
tractable TPH	SW-846	8015B	ug/l	ug/l	ug/l	
from the reextraction the	on are wi erefore,	thin the limits. all results are re	The hold time heported from the	ad expired prior to	100	1
	Volatiles Benzene Ethanol Ethylbenzene Methyl Tertiary But Toluene Xylene (Total) latiles TPH-GRO N. CA water tractable TPH TPH-DRO CA C10-C28 DRO was detected in from the reextracti the reextraction th	Volatiles SW-846 Benzene Ethano1 Ethylbenzene Methyl Tertiary Butyl Ether Toluene Xylene (Total) latiles SW-846 TPH-GRO N. CA water C6-C12 tractable TPH SW-846 TPH-DRO CA C10-C28 DRO was detected in the meth from the reextraction are wi the reextraction therefore,	Volatiles SW-846 8260B Benzene 71-43-2 Ethanol 64-17-5 Ethylbenzene 100-41-4 Methyl Tertiary Butyl Ether 1634-04-4 Toluene 108-88-3 Xylene (Total) 1330-20-7 latiles SW-846 8015B TPH-GRO N. CA water C6-C12 n.a. tractable TPH SW-846 8015B TPH-DRO CA C10-C28 n.a. DRO was detected in the method blank at a conc from the reextraction are within the limits. the reextraction therefore, all results are results.	Volatiles SW-846 8260B ug/1 Benzene 71-43-2 N.D. Ethanol 64-17-5 N.D. Ethylbenzene 100-41-4 N.D. Methyl Tertiary Butyl Ether 1634-04-4 5,700 Toluene 108-88-3 N.D. Xylene (Total) 1330-20-7 N.D. latiles SW-846 8015B ug/l TPH-GRO N. CA water C6-C12 n.a. 160 tractable TPH SW-846 8015B ug/l DRO was detected in the method blank at a concentration of 33 from the reextraction are within the limits. The hold time h	Analysis Name CAS Number Result Wethod Detection Limit* Wolatiles SW-846 8260B Benzene 71-43-2 N.D. 64-17-5 N.D. 250 Ethanol Methyl Tertiary Butyl Ether 100-41-4 N.D. 3 Methyl Tertiary Butyl Ether 108-88-3 N.D. 3 Xylene (Total) 1330-20-7 N.D. 3 ND. 3 Xylene (Total) 1330-20-7 N.D. 3 Latiles SW-846 8015B TPH-GRO N. CA water C6-C12 n.a. 160 50 Laticatable TPH SW-846 8015B TPH-DRO CA C10-C28 N.B. SW-846 8015B TPH-DRO CA C10-C28 N.B. SW-846 8015B TPH-DRO CA C10-C28 N.B. SW-846 8015B Lug/l TPH-DRO CA C10-C28 N.B. The hold time had expired prior to the reextraction are within the limits. The hold time had expired prior to the reextraction therefore, all results are reported from the original extract.	Analysis Name CAS Number Result Method Detection Limit* Quantitation

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
06067	BTEX, MTBE, ETOH	SW-846 8260B	1	Z092423AA	08/31/2009 00:10	Michael A Ziegler	5
06067	BTEX, MTBE, ETOH	SW-846 8260B	1	Z092423AA	08/31/2009 00:36	Michael A Ziegler	50
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z092423AA	08/31/2009 00:10	Michael A Ziegler	5
01163	GC/MS VOA Water Prep	SW-846 5030B	2	Z092423AA	08/31/2009 00:36	Michael A Ziegler	50
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09243A20A	08/31/2009 15:46	Tyler O Griffin	1
01146	GC VOA Water Prep	SW-846 5030B	1	09243A20A	08/31/2009 15:46	Tyler O Griffin	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	092400010A	09/02/2009 08:50	Diane V Do	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	092400010A	08/29/2009 13:45	JoElla L Rice	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 5761924

Group No. 1159489

CA

Chevron

QA-T-090825 NA Water Facility #94800 BTST

1700 Castro St-Oakland T0600102076 QA

Collected: 08/25/2009 08:50 by JO Account Number: 10991

Submitted: 08/27/2009 09:05

Reported: 09/10/2009 at 15:27 6001 Bollinger Canyon Rd L4310

Discard: 10/11/2009 San Ramon CA 94583

CSOQA

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-8	46 8260B	ug/l	ug/l	ug/l	
06054	Benzene	71-43-2	N.D.	0.5	1	1
06054	Ethylbenzene	100-41-4	N.D.	0.5	1	1
06054	Methyl Tertiary Butyl Ethe	er 1634-04-4	N.D.	0.5	1	1
06054	Toluene	108-88-3	N.D.	0.5	1	1
06054	Xylene (Total)	1330-20-7	N.D.	0.5	1	1
GC Vol	latiles SW-8	46 8015B	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	100	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	Z092423AA	08/31/2009 01:02	Michael A Ziegler	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z092423AA	08/31/2009 01:02	Michael A Ziegler	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09243A20A	08/31/2009 12:08	Tyler O Griffin	1
01146	GC VOA Water Prep	SW-846 5030B	1	09243A20A	08/31/2009 12:08	Tyler O Griffin	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: Chevron Group Number: 1159489

Reported: 09/10/09 at 03:27 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank MDL**	Blank <u>LOQ</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: Z092423AA	Sample num	ber(s): 5	761923-576	61924					
Benzene	N.D.	0.5	1	ug/l	101		79-120		
Ethanol	N.D.	50.	250	ug/l	86		40-158		
Ethylbenzene	N.D.	0.5	1	ug/l	103		79-120		
Methyl Tertiary Butyl Ether	N.D.	0.5	1	ug/l	98		76-120		
Toluene	N.D.	0.5	1	ug/l	103		79-120		
Xylene (Total)	N.D.	0.5	1	ug/l	104		80-120		
Batch number: 09243A20A	Sample num	ber(s): 5	761923-576	61924					
TPH-GRO N. CA water C6-C12	N.D.	50.	100	ug/l	127	127	75-135	0	30
Batch number: 092400010A	Sample num	ber(s): 5	761923						
TPH-DRO CA C10-C28	33 J	32.	100	ug/l	91	94	56-122	3	20

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS <u>%REC</u>	MSD %REC	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: Z092423AA	Sample	number(s	s): 5761923	3-57619	24 UNSI	PK: P761917			
Benzene	108	105	80-126	2	30				
Ethanol	101	90	37-164	12	30				
Ethylbenzene	96	95	71-134	2	30				
Methyl Tertiary Butyl Ether	103	101	72-126	2	30				
Toluene	104	102	80-125	2	30				
Xylene (Total)	96	95	79-125	1	30				
Batch number: 09243A20A		number(s		3-57619	24 UNSI	PK: P761988			
TPH-GRO N. CA water C6-C12	136		63-154						

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: BTEX+MTBE by 8260B

Batch number: Z092423AA

Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

	me: Chevron	DM.	Group Number: 1159489				
Reported:	09/10/09 at 03:27	PM	g				
			Surrogate Quality Control				
5761923	83	81	85	78			
5761924	84	82	85	79			
Blank	84	81	86	79			
LCS	84	83	85	81			
MS	84	83	85	80			
MSD	84	83	85	80			
Limits:	80-116	77-11	3 80-113	78-113			
Analysis Name: TPH-GRO N. CA water C6-C12 Batch number: 09243A20A Trifluorotoluene-F							
5761923	95						
5761924	87						
Blank	87						
LCS	126						
LCSD	129						
MS	133						
Limits:	63-135						
	me: TPH-DRO CA C10-C28 r: 092400010A						
	Orthoterphenyl						
5761923	123						
Blank	86						
LCS	102						
LCSD	104						
Limits:	59-131						

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

			2609-1	•		CUSTODY FOR											
		Environ	mental Mana	gement Compa		linger Canyon	Rd.■	Saı	n Ra	ımo							<u>of</u>
Chevron Site Numbe				Chevron Consulta	ant: <u>CRA</u>		*	#				ANAL	YSE	S RE	QUII		Preservation Codes
Chevron Site Global	ID: <u>T060010</u>	02076		Address: _5900 но	Ilis St. Suite A E	meryville,	*	Ţ									
Chevron Site Address	s: <u>1700 Ca</u>	srto St.,		CAConsultant Contact: Charlotte Evans			HVOC	_ z						Se □			H =HCL T= Thiosulfate
Oakland, CA				Consultant Phone	No. <u>510-420-335</u>	<u>1</u>	₹	SCREEN				ALKALINITY		GREASE			N =HNO ₃ B = NaOH
Chevron PM: AARON	I COSTA			Consultant Project	ot No. <u>0906</u> :	25. 30/						ΙŽ		OIL & C			S = H ₂ SO ₄ O = Other
Chevron PM Phone N	No.: <u>(925)54</u>	<u>13-2961</u>		Sampling Compa	ny: Blaine Tech Se	ervices	ATE				STLC [310.1 A		413.10			Acct#1095
☑ Retail and Termina ☑ Construction/Reta		Unit (RTBU)	Job	Sampled By (Prin		<u> </u>	OXYGENATES	ORO				EPA 31(EPA 41:			Grp#115948
				Sampler Signatur	//		já	₩.			TTLC	Ė		Ü			
	00SITE NU	800-0-OML JMBER-0-W		Lancaster Laboratories	Other Lab	Temp. Blank Check Time Temp.	iii Se	DRO TE		Sa	ALS 🗆		VITY				Special instructions Must meet lowest
(WBS ELEMENTS SITE ASSESSMENT: A1L SITE MONITORING: OML	REMEDIATIO			⊠ Lancaster, PA Lab Contact: Jill Parker		0 400 2°C 0 400 (°C 1(00 vc 1300 2°C	MTBE	15a2	MTBE	Mg, Mn,	22 METALS		ONDUCTI		09	2109	detection limits possible for 8260 Compounds
THIS IS A LEGAL DOC CORRE	CUMENT. <u>AL</u> CTLY AND	<u>LL</u> FIELDS MU COMPLETE	ST BE FILLED OUT LY.	2425 New Holland Pike, Lancaster, PA 17601 Phone No: (717)656-2300			A 8260B/GC/MS H-G CI BTEX M	3 GRO	э втех 🗆	Fe, K,	EPA6010/7000 TITLE	ЬН□	SM2510B SPECIFIC CONDUCTIVITY	EPA 418.1 TRPH □	28 /5	6	Sample # 5761923-
	SAMPL	FID					Sec	015	021	6010 Ca,	7010	50.1	90	18.1	and	4	
Field Point Name	Matrix	Top Depth	Date (yymmdd)	Sample Time	# of Containers	Container Type	EPA 8	EPA 8015B	EPA 8021B	EPA 6	EPA60	EPA150.1 PH []	SM25	EPA 4	Etho	Ha.	Notes/Comment s
MW-7	W		শ্রেক শ্রেপ	0845	8	mixal	X	X							×		
OA	S		090925	0850	2	was	ト									×	
· -																	
															\vdash		
					;												
Relinquished By	Com		Date/Time:	Relinquished To	Company	Date/Time	1			naroi ndaro	und T		4 Ho	urs□		48 hou	
nus/	15/2	<u>/</u>	5-25-09 14 to	100	1815 	8-25-69 14	Ь		Hou	ırs□		Othe	r□				
Relinquished By	Com	> 4	Date/Time	Refinquished To	Company C	Date/Time 8/26/31 /	410		San		integ	On t		ж бу 	_	n arriv np: <u>/</u>	18-3-02
Relinquished By	Com	pany [I 264	Date/Time	Felinguished To	Company EDEX	Date/Time								-	coc		
				huish	M	glown oned											

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- less than The number following the sign is the limit of quantitation, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. ppm For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- parts per billion dqq
- Dry weight Results printed under this heading have been adjusted for moisture content. This increases the analyte weight basis concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

Α

В

С

D

Ε

J

Ν

Ρ

Organi	$i \sim C$	กเลา	ifiar	•
Organi		luai	IIIEI	3

TIC is a possible aldol-condensation product Analyte was also detected in the blank	B E	Value is <crdl, but="" due="" estimated="" interference<="" th="" to="" ≥idl=""></crdl,>
Pesticide result confirmed by GC/MS	М	Duplicate injection precision not met
Compound quatitated on a diluted sample	N	Spike amount not within control limits
Concentration exceeds the calibration range of	S	Method of standard additions (MSA) used
the instrument		for calculation
Estimated value	U	Compound was not detected
Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Concentration difference between primary and	*	Duplicate analysis not within control limits

Correlation coefficient for MSA < 0.995

Inorganic Qualifiers

U Compound was not detected

confirmation columns >25%

X,Y,ZDefined in case narrative

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have guestions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.