

RECEIVED

9:02 am, Mar 25, 2010

Alameda County
Environmental Health

Aaron CostaProject Manager
Marketing Business Unit

Chevron Environmental Management Company 6111 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 543-2961 Fax (925) 543-2324 acosta@chevron.com

Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Chevron Service Station No. 9-4800

1700 Castro Oakland, CA

I have reviewed the attached report dated September 29, 2009.

I agree with the conclusions and recommendations presented in the referenced report. This information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Conestoga Rovers Associates, upon who assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct to the best of my knowledge.

Sincerely,

Aaron Costa Project Manager

Attachment: Report

5900 Hollis Street, Suite A Emeryville, California 94608

Telephone: (510) 420-0700 Fax: (510) 420-9170

http://www.craworld.com

September 29, 2009

Reference No. 060061

Mr. Mark Detterman Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Second Quarter 2009 Groundwater Monitoring and Sampling Report

Chevron Service Station 9-4800

1700 Castro Street Oakland, California

Fuel Leak Case No. RO0000342

Dear Mr. Detterman:

Conestoga-Rovers & Associates is submitting this *Second Quarter 2009 Groundwater Monitoring* and *Sampling Report* for the site referenced above (Figure 1) on behalf of Chevron Environmental Management Company (Chevron).

Groundwater monitoring and sampling was performed by Blaine Tech Services (Blaine Tech) of San Jose, California. Groundwater monitoring and sampling data from this event are presented in Figures 2 and 3, respectively. Groundwater monitoring and sampling data are summarized in Tables 1 and 2. Blaine Tech's May 21, 2009 Second Quarter Monitoring report is presented as Attachment A. Groundwater samples were sent to Lancaster Laboratories (Lancaster) of Pennsylvania for chemical analysis. Lancaster's June 3, 2009 report is included as Attachment B.

Equal Employment Opportunity Employer

September 29, 2009

Reference No. 060061

-2-

Please contact Charlotte Evans at (510) 420-3351 if you have any questions or require additional information.

Sincerely,

CONESTOGA-ROVERS & ASSOCIATES

Charlotte Evans

Brandon S. Wilken, P.G. #7564

Branch At, 1:1

IH/doh/2

Enc.

Figure 1 Site Vicinity Map

Figure 2 Hydrocarbon Concentration Map Figure 3 Potentiometric Surface Map

Table 1 Groundwater Monitoring Data and Analytical ResultsTable 2 Groundwater Analytical Results - Oxygenate Compounds

Attachment A Blaine Tech's May 21, 2009 Second Quarter Monitoring Report

Attachment B Lancaster Laboratories June 3, 2009 Analytical Report

cc: Mr. Aaron Costa, Chevron Environmental Management Company

FIGURES

Chevron Service Station 9-4800

Vicinity Map

TABLES

TABLE 1 Page 1 of 11

WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	Е	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-1	,		•				•			
06/04/97	30.75	4.39	25.82	711	890	100	110	29	150	<10
09/16/97	30.75	4.85	25.90	75¹	1,600	210	210	60	250	<10
12/17/97	30.75	4.88	25.87	65¹	940	120	100	41	160	<25
03/18/98	30.75	5.90	24.85	77¹	530	91	39	22	65	6.8
06/28/98	30.75	5.92	24.83	1401	1,100	220	140	37	120	14
09/07/98	30.75	5.56	25.19	280¹	1,700	530	86	84	240	49
12/09/98	30.75	5.10	25.65	240¹	1,700	240	130	100	270	32
03/11/99	30.75	5.30	25.45	981	353	53.9	28.6	20.5	56.1	14.1
06/17/99	30.75	5.39	25.36	2171	810	270	150	95	340	15
09/29/99	30.75	5.13	25.62	1531	659	76	49.7	35.1	118	12.6
12/14/99	30.75	5.07	25.68	$188^{1,2}$	2,760	287	199	139	502	<12.5
$03/09/00^3$	30.75	5.54	25.21	1661	1,590	238	94.9	72.2	247	22.3
06/10/00	30.75	5.73	25.02		1,460	242	47.8	83.8	151	97.3
09/30/00	30.75	5.30	25.45	240	650°	130	49	69	190	21
12/22/00	30.75	5.05	25.70	2009	640°	110	33	58	160	68
03/01/01	30.75	5.25	25.50	2117	1,500°	210	67.9	109	320	87.3
05/04/01	30.75	5.41	25.34	130′	991	127	32.6	73.0	137	95.4
09/05/01	30.75	5.16	25.59		/II-ANNUALLY					
12/21/01	30.75	5.17	25.58	210	2,000	220	16	110	400	34
03/15/02	30.75	5.60	25.15							
06/15/02	30.75	5.49	25.26	140	350	54	0.61	12	40	130
09/06/02	30.75	5.26	25.49		/II-ANNUALLY					
12/06/02	30.75	5.12	25.63	2,900	900	71	2.1	39	150	34
03/03/03	30.75	5.46	25.29		/II-ANNUALLY					
$06/17/03^{14}$	30.75	5.64	25.11	180	290	34	0.6	23	90	92
09/16/03	30.75	5.37	25.38		/II-ANNUALLY					
$12/31/03^{14}$	30.75	5.20	25.55	150	1,500	97	6	70	230	86
03/26/04	30.75	5.74	25.01		/II-ANNUALLY					
$08/17/04^{14}$	30.75	4.59	26.16	860	500	44	5	12	54	76
$11/16/04^{14}$	34.01	7.85	26.16	<26	570	33	<0.5	14	53	48
02/18/05	34.01	8.25	25.76		/II-ANNUALLY					
$05/06/05^{14}$	34.01	8.62	25.39	110	170	13	<0.5	4	18	220
08/05/05	34.01	8.31	25.70		/II-ANNUALLY					
$11/07/05^{14}$	34.01	7.99	26.02	260 ²⁰	180	7	<0.5	3	24	260
02/06/06	34.01	8.33	25.68		/II-ANNUALLY					
$05/08/06^{14}$	34.01	9.03	24.98	730	270	23	< 0.7	1	18	590

TABLE 1 Page 2 of 11

WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	E	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-1 (cont)										
08/08/06	34.01	8.49	25.52	SAMPLED SEN	MI-ANNUALLY					
$11/08/06^{14}$	34.01	8.11	25.90	380	<50	0.6	< 0.5	< 0.5	2	140
02/06/07	34.01	8.03	25.98	SAMPLED SEN	MI-ANNUALLY					
$05/01/07^{14}$	34.01	8.23	25.78	750	58	0.8	< 0.5	< 0.5	1	280
07/31/07	34.01	8.01	26.00		MI-ANNUALLY					
$11/08/07^{14}$	34.01	7.85	26.16	330	<50	< 0.5	< 0.5	< 0.5	0.9	270
02/04/08	34.01	8.04	25.97	SAMPLED SE	MI-ANNUALLY					
$05/01/08^{14}$	34.01	8.06	25.95	86	<50	< 0.5	< 0.5	< 0.5	< 0.5	470
08/01/08	34.01	7.97	26.04		MI-ANNUALLY					
$11/13/08^{14}$	34.01	7.88	26.13	<50	170	1	< 0.5	< 0.5	2	190
02/23/09	34.01	8.07	25.94	SAMPLED SE	MI-ANNUALLY					
05/20/09 ¹⁴	34.01	8.38	25.63	88 J	<50	0.6 J	< 0.5	< 0.5	2	190
3.5717.6										
MW-2										
06/04/97	30.00	5.13	24.87	4,000¹	13,000	790	30	420	1,700	4000
09/16/97	30.00	5.06	24.94	2,2001	4,000	360	9.7	210	460	1500
12/17/97	30.00	5.18	24.82	2,100¹	4,100	380	<10	200	460	2100
03/18/98	30.00	6.43	23.57	3,700¹	8,400	1,800	<50	350	630	13,000
$06/28/98^4$	30.00	6.21	23.79	4,4001	9,300	740	340	710	2,300	3800
09/07/98	30.00	5.78	24.22	3,100 ¹	9,900	1,000	150	640	1,800	$4500/4100^{5}$
12/09/98	30.00	5.31	24.69	1,9001	8,500	860	74	610	960	2600/2600 ⁵
03/11/99	30.00	5.79	24.21	2,700¹	12,500	1,520	42.2	645	2,250	$3400/5050^{\circ}$
06/17/99	30.00	5.69	24.31	7,150 ¹	27,000	2,200	260	1500	5,900	4700
09/29/99	30.00	5.45	24.55	3,0301	6910	582	11.1	491	1,170	1970
12/14/99	30.00	5.39	24.61	6151,2	4230	282	12.3	284	690	631
$03/09/00^3$	30.00	6.08	23.92	3,300 ¹	15,300	1,110	39.4	1,040	3,030	2,470
06/10/00	30.00	6.13	23.87		7,360	560	40.7	627	1,280	1,260
09/30/00	30.00	5.67	24.33	1,800	3,600°	280	<10	420	430	290
12/22/00	30.00	5.39	24.61	8709	1,500°	100	<1.3	160	59	380
03/01/01	30.00	5.79	24.21	1,320	2,340°	171	< 5.00	238	157	864
05/04/01	30.00	5.83	24.17	3,100	11,900	199	33.9	1,420	290	3,890
09/05/01	30.00	5.45	24.55	2,200	3,300	170	1.7	310	110	1,100
12/21/01	30.00	5.60	24.40	980	1,100	58	0.72	120	14	450
03/15/02	30.00	6.05	23.95	2,200	5,000	250	9.1	470	430	1,800
06/15/02	30.00	5.84	24.16	3,700	5,200	240	5.2	540	210	2,200

TABLE 1 Page 3 of 11

WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	B B	T	Е	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)
MW-2 (cont)			······································				•			
09/06/02	30.00	5.59	24.41	2,200	2,100	84	1.4	250	30	1,000
12/06/02	30.00	5.44	24.56	730	780	21	< 0.50	58	3.4	480
03/03/03	30.00	5.79	24.21	3,500	4,800	220	1.9	650	46	4,400
$06/17/03^{14}$	30.00	6.07	23.93	4,100	4,700	140	4	370	84	2,700
$09/16/03^{14}$	30.00	5.69	24.31	1,80015	1,300	38	<1	110	3	1,300
12/31/0314	30.00	5.64	24.36	330	990	11	< 0.5	23	3	440
03/26/04	30.00	6.25	23.75	SAMPLED SEMI	-ANNUALLY					
$08/17/04^{14}$	30.00	5.53	24.47	400	300	9	< 0.5	18	1	340
$11/16/04^{14}$	32.59	8.14	24.45	4,300	10,000	91	7	830	1,300	1,100
02/18/05	32.59	8.67	23.92	SAMPLED SEMI	-ANNUALLY					
$05/06/05^{14}$	32.59	9.06	23.53	1,300	4,900	62	4	290	320	400
	32.59	8.61	23.98	SAMPLED SEMI	-ANNUALLY					
11/07/0514	32.59	8.27	24.32	300 ²⁰	800	2	< 0.5	< 0.5	< 0.5	66
02/06/06	32.59	8.76	23.83	SAMPLED SEMI	-ANNUALLY					
$05/08/06^{14}$	32.59	9.49	23.10	2,100	6,100	32	4	430	460	360
08/08/06	32.59	8.79	23.80	SAMPLED SEMI	-ANNUALLY					
11/08/0614	32.59	8.32	24.27	770	120	12	< 0.5	0.7	8	840
	32.59	8.30	24.29	SAMPLED SEMI	-ANNUALLY					
$05/01/07^{14}$	32.59	8.54	24.05	160	850	< 0.5	< 0.5	16	36	100
07/31/07	32.59	8.28	24.31	SAMPLED SEMI	-ANNUALLY					
$11/08/07^{14}$	32.59	8.12	24.47	800	180	< 0.5	< 0.5	< 0.5	< 0.5	37
02/04/08	32.59	8.38	24.21	SAMPLED SEMI	-ANNUALLY					
$05/01/08^{14}$	32.59	8.34	24.25	500	430	< 0.5	< 0.5	< 0.5	5	120
08/01/08	32.59	8.26	24.33	SAMPLED SEMI	-ANNUALLY					
$11/13/08^{14}$	32.59	8.17	24.42	2,600	2,500	3	1	190	83	240
, ,	32.59	8.38	24.21	SAMPLED SEMI	-ANNUALLY					
05/20/09 ¹⁴	32.59	8.94	23.65	2,800 J	4,000	4	1	42	55	160
MW-3										
	31.32	5.27	26.05	<50	190	26	20	1.5	16	8.2
09/16/97	31.32	5.17	26.15	<50	270	58	53	6.1	30	21
12/17/97	31.32	5.22	26.10	<50	290	50	54	8.1	37	21
03/18/98	31.32	6.42	24.90	<50	390	140	33	4.6	30	94
	31.32	0.12	24.70							
	31.32 31.32 31.32	6.39 5.97	24.93	<50 <50	290 170	90	11 20	1.6 4.3	13 19	150 120

TABLE 1 Page 4 of 11

WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	Е	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)
MW-3 (cont)										
12/09/98	31.32	5.41	25.91	55¹	660	120	93	22	72	150
03/11/99	31.32	5.85	25.47	<50	653	136	69.5	13.7	63.8	144
06/17/99	31.32	5.90	25.42	1031	530	190	110	24	88	210
09/29/99	31.32	5.61	25.71	2321	433	97.8	61.4	16.9	56.6	156
12/14/99	31.32	5.55	25.77	< 50 ⁻²	8650	1040	795	212	800	995
03/09/00°	31.32	6.14	25.18	74.6 ¹	1170	304	103	25.2	114	539
06/10/00	31.32	6.29	25.03		359	63.8	27.8	10.5	35.4	393
09/30/00	31.32	5.79	25.53	100^{8}	220°	42	33	12	38	67
12/22/00	31.32	5.52	25.80	1109	370°	96	48	18	58	180
03/01/01	31.32	5.75	25.57	144'	912°	218	89.0	36.0	110	310
05/04/01	31.32	5.96	25.36	<50	1,260	146	79.6	38.2	101	1,070
09/05/01	31.32	5.61	25.71		/II-ANNUALLY					
12/21/01	31.32	5.67	25.65	180	850	160	11	32	84	300
03/15/02	31.32	6.15	25.17							
06/15/02	31.32	6.01	25.31	<50	550	110	3.0	23	58	590
09/06/02	31.32	5.74	25.58		/II-ANNUALLY					
12/06/02	31.32	5.56	25.76	160	350	60	1.3	11	32	530
03/03/03	31.32	5.92	25.40		/II-ANNUALLY					
$06/17/03^{14}$	31.32	6.19	25.13	130	560	90	2	19	57	590
09/16/03	31.32	5.85	25.47		/II-ANNUALLY					
$12/31/03^{14}$	31.32	5.67	25.65	120	840	140	24	25	87	670
03/26/04	31.32	6.33	24.99		/II-ANNUALLY					
$08/17/04^{14}$	31.32	5.46	25.86	110	630	84	18	11	35	410
$11/16/04^{14}$	34.16	8.26	25.90	92	740	100	4	21	45	460
02/18/05	34.16	8.79	25.37		/II-ANNUALLY					
$05/06/05^{14}$	34.16	9.18	24.98	83	290	43	<1	6	11	740
08/05/05	34.16	8.81	25.35		/II-ANNUALLY					
$11/07/05^{14}$	34.16	8.47	25.69	66	220	29	0.7	3	26	440
02/06/06	34.16	8.88	25.28		/II-ANNUALLY					
$05/08/06^{14}$	34.16	9.67	24.49	310	560	70	<1	3	24	3,300
08/08/06	34.16	9.00	25.16		/II-ANNUALLY					
$11/08/06^{14}$	34.16	8.57	25.59	210	510	<0.5	<0.5	<0.5	<0.5	73
02/06/07	34.16	8.48	25.68		/II-ANNUALLY					
$05/01/07^{14}$	34.16	8.70	25.46	84	260	36	<0.5	0.8	18	1,200
07/31/07	34.16	8.46	25.70		/II-ANNUALLY					
$11/08/07^{14}$	34.16	8.29	25.87	260	270	32	0.9	3	29	440

TABLE 1 Page 5 of 11

WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В		Ē	X	MTBE
DATE	(ft.)	(msl)	(ft.)	11 H-DRO (μg/L)	(μg/L)	(μg/L)	(μg/L)	L (μg/L)	Α (μg/L)	(μg/L)
MW-3 (cont)	y •••	(11000)	y •••	(PS/	(mg//	\ r \ y /	(F8 -/	\ r \strip*-/	\ P -8/ /	(PS -/
02/04/08	34.16	8.48	25.68	SAMPLED SEM	MI ANINII AI I V					
$02/04/08$ $05/01/08^{14}$	34.16	8.48 8.50	25.66 25.66	SAMIPLED SEW 82	11-AINNUALL I 240	30	<0.5	<0.5	20	690
08/01/08	34.16 34.16	8.30 8.40	25.66 25.76	SAMPLED SEM						
$11/13/08^{14}$	34.16 34.16	8.40 8.36	25.76 25.80	SAMPLED SEN	720	 22	<0.5	<0.5	 7	 790
, ,										
02/23/09	34.16	8.44	25.72	SAMPLED SEM						
05/20/09 ¹⁴	34.16	8.86	25.30	210	460	42	<0.5	1	20	450
MW-4										
04/08/99	30.13				130	3.1	< 0.5	< 0.5	7.7	4,700
06/17/99	30.13	5.19	24.94	3,780 ¹	590	58	< 5.0	< 5.0	160	6,200
09/29/99	30.13	4.96	25.17	1,1301	692	10.7	<2.5	5.51	236	7,840
12/14/99	30.13	4.91	25.22	571 ^{1,2}	625	<10	3.83	<10	94.6	4,470
$03/09/00^3$	30.13	5.45	24.68	600¹	402	3.76	1.18	< 0.5	71.4	3,140
06/10/00	30.13	5.53	24.60		<1,000	13.2	<10.0	<10.0	97.8	3,080
09/30/00	30.13	5.09	25.04	$1,400^{7}$	280°	21	0.67	6.3	60	3,300
12/22/00	30.13	4.90	25.23	7409	240°	2.2	< 0.50	1.3	25	2,200
03/01/01	30.13	5.15	24.98	661	193	2.31	< 0.500	1.34	12.1	1,220
05/04/01	30.13	5.25	24.88	1,100′	722	12.0	< 5.00	17.1	89.4	2,390
09/05/01	30.13	4.96	25.17	2,500	1,400	23	2.2	19	260	2,300
12/21/01	30.13	5.06	25.07	1,100	310	2.9	< 0.50	2.6	32	860
03/15/02	30.13	5.44	24.69	3,100	520	5.0	< 0.50	15	6.8	2,700
06/15/02	30.13	5.29	24.84	2,400	950	16	3.6	41	100	2,200/2,40012
09/06/02	30.13	5.07	25.06	2,600	640	9.6	0.52	9.8	28	1,700
12/06/02	30.13	4.93	25.20	1,400	280	3.6	< 0.50	1.7	<1.5	730
03/03/03	30.13	5.28	24.85	1,500	280	2.7	< 0.50	7.3	2.3	910
06/17/0314	30.13	5.44	24.69	2,000	660	8	1	38	16	1,100
09/16/03 ¹⁴	30.13	5.15	24.98	2,100 ¹⁶	480	6	<1	11	3	710
$12/31/03^{14}$	30.13	5.07	25.06	1,400	220	3	< 0.5	2	<0.5	390
03/26/04	30.13	5.60	24.53	SAMPLED SEM						
$08/17/04^{14}$	30.13	4.68	25.45	2,100	470	12	1	28	4	370
11/16/04 ¹⁴	33.07	7.63	25.44	960	270	7	<0.5	7	6	270
02/18/05	33.07	8.07	25.00	SAMPLED SEM						
05/06/05 ¹⁴	33.07	8.38	24.69	350	86	0.7	< 0.5	<0.5	<0.5	110
08/05/05	33.07	8.05	25.02	SAMPLED SEM						
$11/07/05^{14}$	33.07	7.74	25.33	150	54	0.6	< 0.5	<0.5	< 0.5	59

TABLE 1 Page 6 of 11

WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	Ε	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)
MW-4 (cont)										
02/06/06	33.07	8.13	24.94	SAMPLED SEN	//I-ANNUALLY					
$05/08/06^{14}$	33.07	8.80	24.27	200	66	0.5	< 0.5	< 0.5	< 0.5	92
08/08/06	33.07	7.91	25.16	SAMPLED SEN	//I-ANNUALLY					
$11/08/06^{14}$	33.07	7.84	25.23	400	55	< 0.5	< 0.5	< 0.5	< 0.5	40
02/06/07	33.07	7.79	25.28	SAMPLED SEN	/II-ANNUALLY					
$05/01/07^{14}$	33.07	7.99	25.08	150	67	< 0.5	< 0.5	< 0.5	< 0.5	76
07/31/07	33.07	7.80	25.27	SAMPLED SEN	/II-ANNUALLY					
$11/08/07^{14}$	33.07	7.65	25.42	850	<50	< 0.5	< 0.5	< 0.5	< 0.5	44
02/04/08	33.07	7.84	25.23	SAMPLED SEN	/II-ANNUALLY					
$05/01/08^{14}$	33.07	7.86	25.21	110	<50	< 0.5	< 0.5	< 0.5	< 0.5	67
08/01/08	33.07	7.79	25.28	SAMPLED SEN	/II-ANNUALLY					
$11/13/08^{14}$	33.07	7.64	25.43	330	64	< 0.5	< 0.5	< 0.5	1	220
02/23/09	33.07	8.01	25.06	SAMPLED SEN	/II-ANNUALLY					
05/20/09 ¹⁴	33.07	8.34	24.73	560	130	< 0.5	< 0.5	< 0.5	< 0.5	190
MW-7										
05/04/0111	31.90	4.03	27.87	<50	<50.0	< 0.500	<5.00	<5.00	< 5.00	567/47012
09/05/01	31.90	3.86	28.04	<50	<50	< 0.50	< 0.50	< 0.50	<1.5	1,400/1,30012
12/21/01	31.90	3.04	28.86	210	<50	< 0.50	< 0.50	< 0.50	<1.5	620/67012
03/15/02	31.90	4.18	27.72	<50	<50	< 0.50	< 0.50	< 0.50	<1.5	320/35012
06/15/02	31.90	4.06	27.84	<50	<50	< 0.50	< 0.50	< 0.50	<1.5	850/96012
09/06/02	31.90	3.93	27.97	<50	59	< 0.50	< 0.50	< 0.50	<1.5	1,900
12/06/02	31.90	3.87	28.03	<50	68	< 0.50	< 0.50	< 0.50	<1.5	2,200
03/03/03	31.90	4.21	27.69	<50	<50	< 0.50	< 0.50	< 0.50	<1.5	1,300
$06/17/03^{14}$	31.90	4.14	27.76	<50	79	<0.5	<0.5	< 0.5	< 0.5	2,500
$09/16/03^{14}$	31.90	4.07	27.83	<50 ¹⁷	110	<5	<5	<5	<5	4,400
$12/31/03^{14}$	31.90	4.04	27.86	<50	76	<2	<2	<2	<2	3,000
$03/26/04^{14}$	31.90	4.25	27.65	<50	61	<1	<1	<1	<1	2,000
08/17/04 ¹⁴	31.90	4.02	27.88	2,200	130	<5	<5	<5	<5	8,000
$11/16/04^{14}$	34.35	6.48	27.87	<50	200	<3	<3	<3	<3	7,300
$02/18/05^{14}$	34.35	6.75	27.60	64	86	<10	<10	<10	<10	5,700
$05/06/05^{14}$	34.35	6.92	27.43	60	160	<5	<5	< 5	<5	8,400
$08/05/05^{14}$	34.35	6.70	27.65	8118	500	<5	<5	<5	<5	20,00019
$11/07/05^{14}$	34.35	6.56	27.79	68	300	<10	<10	<10	<10	24,000
$02/06/06^{14}$	34.35	6.81	27.54	7221	300	< 0.5	<0.5	< 0.5	< 0.5	14,000

TABLE 1 Page 7 of 11

WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	Ε	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-7 (cont)										
05/08/06 ¹⁴	34.35	7.20	27.15	94	80	<2	<2	3	7	6,500
08/08/0614	34.35	6.82	27.53	150	520	<10	<10	<10	<10	17,000
11/08/06 ¹⁴	34.35	6.60	27.75	440	900	<5	<5	<5	<5	41,000
$02/06/07^{14}$	34.35	6.59	27.76	200	590	<5	<5	<5	<5	31,000
$05/01/07^{14}$	34.35	6.70	27.65	190	380	<3	<3	<3	<3	14,000
$07/31/07^{14}$	34.35	6.60	27.75	270	570	<3	<3	<3	<3	15,000
$11/08/07^{14}$	34.35	6.52	27.83	150	520	<5	<5	<5	<5	25,000
$02/04/08^{14}$	34.35	6.66	27.69	87	540	<1	<1	<1	<1	17,000
$05/01/08^{14}$	34.35	6.63	27.72	< 50	230	<5	<5	<5	<5	10,000
08/01/0814	34.35	6.51	27.84	<50	330	<3	<3	<3	<3	12,000
11/13/08 ¹⁴	34.35	6.34	28.01	64	390	<10	<10	<10	<10	16,000
$02/23/09^{14}$	34.35	6.70	27.65	100	270	<3	<3	<3	<3	11,000
05/20/09 ¹⁴	34.35	6.80	27.55	48 J	210	<1	<1	<1	<1	6,300
				,						,
MW-5										
04/08/99	30.93			<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
06/17/99	30.93	4.93	26.00	53.8 ¹	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
09/29/99	30.93	4.73	26.20	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
12/14/99	30.93	4.61	26.32	< 50 ²	<50	< 0.5	< 0.5	< 0.5	< 0.5	0.598
$03/09/00^3$	30.93	5.00	25.93	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
06/10/00	30.93	5.21	25.72		< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50
09/30/00	30.93	4.79	26.14	130°	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
12/22/00	30.93	4.60	26.33	250 ⁸	<50	< 0.50	< 0.50	< 0.50	< 0.50	9.1
03/01/01	30.93	4.77	26.16	77.4	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50
05/04/01	30.93	4.89	26.04		D DUE TO INSUF	FICIENT WAT	ER			
09/05/01	30.93	4.72	26.21	SAMPLED SEM						
12/21/01	30.93	4.73	26.20	110	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
03/15/02	30.93	5.06	25.87							
06/15/02	30.93	4.95	25.98	<50	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
09/06/02	30.93	4.75	26.18	SAMPLED SEM						
12/06/02	30.93	4.61	26.32	<50	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
03/03/03	30.93	4.94	25.99	SAMPLED SEM						
$06/17/03^{14}$	30.93	5.06	25.87	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/16/03	30.93	4.84	26.09	SAMPLED SEM						
$12/31/03^{14}$	30.93	4.72	26.21	<50	<50	<0.5	<0.5	< 0.5	<0.5	< 0.5

TABLE 1 Page 8 of 11

WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	Ē	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-5 (cont)	<i>y</i>		y		••••••••••••		••••••		• • • • • • • • • • • • • • • • • • • •	
03/26/04	30.93	5.19	25.74	SAMPLED SEM	II-ANNUALLY					
08/17/04	30.93	TO BE DESTRO								
DESTROYED -		10 22 220110	, 122							
MW-6										
04/08/99	30.58				< 50	<0.5	< 0.5	< 0.5	< 0.5	4.5
06/17/99	30.58	5.99	24.59	<50	< 50	<0.5	< 0.5	< 0.5	< 0.5	<2.5
09/29/99	30.58	5.81	24.77	<50	< 50	<0.5	< 0.5	< 0.5	< 0.5	4.46
12/14/99	30.58	5.74	24.84	< 50 ²	< 50	<0.5	< 0.5	< 0.5	< 0.5	4.13
$03/09/00^{\circ}$	30.58	6.49	24.09	<50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	2.82
06/10/00	30.58	6.58	24.00		<50.0	< 0.500	< 0.500	< 0.500	< 0.500	< 2.50
09/30/00	30.58	6.00	24.58	110 ⁸	< 50	< 0.50	< 0.50	< 0.50	< 0.50	7.3
12/22/00	30.58	5.75	24.83	100°	< 50	< 0.50	< 0.50	< 0.50	< 0.50	4.5
03/01/01	30.58	6.07	24.51	141^7	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	7.52
05/04/01	30.58	6.26	24.32	<50	< 50.0	< 0.500	< 5.00	< 5.00	< 5.00	2.74
09/05/01	30.58	5.99	24.59	SAMPLED SEM	II-ANNUALLY					
12/21/01	30.58	5.93	24.65	200	< 50	< 0.50	< 0.50	< 0.50	<1.5	8.5
03/15/02	30.58	6.44	24.14							
06/15/02	30.58	6.25	24.33	<50	< 50	< 0.50	< 0.50	< 0.50	<1.5	4.3
09/06/02	30.58	5.98	24.60	SAMPLED SEM	II-ANNUALLY					
12/06/02	30.58	5.79	24.79	64	< 50	< 0.50	< 0.50	< 0.50	<1.5	5.0
03/03/03	30.58	6.14	24.44	SAMPLED SEM	II-ANNUALLY					
06/17/0314	30.58	6.47	24.11	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	13
09/16/03	30.58	6.06	24.52	SAMPLED SEM	II-ANNUALLY					
12/31/0314	30.58	6.00	24.58	< 50	<50	< 0.5	< 0.5	< 0.5	0.5	14
03/26/04	30.58	6.69	23.89	SAMPLED SEM	II-ANNUALLY					
08/17/04	30.58	TO BE DESTRO	OYED							
DESTROYED -	2005									
TRIP BLANK										
					< E 0	<0.F	<0 F	<0 F	<0.F	<2 F
06/04/97					<50 <50	<0.5 <0.5	<0.5	<0.5	<0.5	<2.5
09/16/97							<0.5	<0.5	<0.5	<2.5
12/17/97					<50	<0.5	<0.5	<0.5	<0.5	<2.5
03/18/98					<50	<0.5	<0.5	<0.5	<0.5	<2.5
06/28/98					<50	<0.5	<0.5	<0.5	<0.5	<2.5

WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	E	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(µg/L)	(μg/L)	- (μg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)
TRIP BLANK	(cont)									
09/07/98	·				< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
12/09/98					< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
03/11/99					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
06/17/99					< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
12/14/99					< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
$03/09/00^{\circ}$					<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
06/10/00					< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50
09/30/00					<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
$12/22/00^{10}$					<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
03/01/01					< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50
05/04/01					< 50.0	< 0.500	< 5.00	< 5.00	< 5.00	< 0.500
09/05/01					<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
QA										
12/21/01					<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
03/15/02					< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
06/15/02					< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
09/06/02					< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
12/06/02					<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
$03/03/03^{13}$										
$06/17/03^{14}$					<50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
$09/16/03^{14}$					<50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
12/31/03 ¹⁴					<50	< 0.5	< 0.5	<0.5	< 0.5	<0.5
$03/26/04^{14}$					<50	< 0.5	< 0.5	<0.5	< 0.5	<0.5
08/17/04 ¹⁴					<50	<0.5	<0.5	<0.5	< 0.5	<0.5
$11/16/04^{14}$					<50	<0.5	<0.5	<0.5	< 0.5	<0.5
$02/18/05^{14}$					<50	<0.5	<0.5	<0.5	< 0.5	<0.5
$05/06/05^{14}$					<50	<0.5	<0.5	<0.5	<0.5	<0.5
$08/05/05^{14}$					<50	<0.5	<0.5	<0.5	<0.5	<0.5
$11/07/05^{14}$					<50	0.619	<0.5	<0.5	<0.5	<0.5
$02/06/06^{14}$					<50	<0.5	<0.5	<0.5	<0.5	<0.5
$05/08/06^{14}$					<50	<0.5	<0.5	<0.5	<0.5	<0.5
$08/08/06^{14}$					<50	<0.5	<0.5	<0.5	<0.5	<0.5
$11/08/06^{14}$					<50	<0.5	<0.5	<0.5	<0.5	<0.5
$02/06/07^{14}$					<50	<0.5	<0.5	<0.5	<0.5	<0.5
$05/01/07^{14}$					<50	<0.5	<0.5	<0.5	<0.5	<0.5
$07/31/07^{14}$					<50	<0.5	< 0.5	<0.5	< 0.5	<0.5

TABLE 1 Page 10 of 11

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS CHEVRON SERVICE STATION 9-4800

1700 CASTRO STREET, OAKLAND, CALIFORNIA

WELL ID/	TOC*	GWE	DTW		TPH-GRO	В	T	E	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)
QA (cont)										
$11/08/07^{14}$					<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$02/04/08^{14}$					<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$05/01/08^{14}$					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$08/01/08^{14}$					<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$11/13/08^{14}$					<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$02/23/09^{14}$					<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
05/20/09 ¹⁴					<50	<0.5	<0.5	<0.5	<0.5	<0.5

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to June 10, 2000, were compiled from reports prepared by Blaine Tech Services, Inc.

	• • •	
TOC = Top of Casing	TPH-G = Total Petroleum Hydrocarbons as Gasoline	E = Ethylbenzene
(ft.) = Feet	TPH = Total Petroleum Hydrocarbons	X = Xylenes
GWE = Groundwater Elevation	DRO = Diesel Range Organics	MTBE = Methyl Tertiary Butyl Ether
(msl) = Mean sea level	GRO = Gasoline Range Organics	= Not Measured/Not Analyzed
DTW = Depth to Water	B = Benzene	$(\mu g/L)$ = Micrograms per liter
TPH-D = Total Petroleum Hydrocarbons as Diesel	T = Toluene	QA = Quality Assurance/Trip Blank

The following wells: MW-1, MW-2, MW-3, MW-4, and MW-7, were resurveyed by Morrow Surveying on September 13, 2004.

TOC elevation was surveyed on April 11, 2001, by Virgil Chavez Land Surveying. The benchmark for the survey was the top of curb at the

south end of the return at the southeast corner of Castro Street and 18th Street. (Benchmark Elevation = 29.65 feet, msl).

- ¹ Chromatogram pattern indicates an unidentified hydrocarbon.
- Sample was extracted outside EPA recommended holding time.
- TPH-G, BTEX and MTBE was analyzed outside EPA recommended holding time.
- EPA Method 8240.
- ⁵ Confirmation run.
- 6 Laboratory report indicates gasoline C6-C12.
- Laboratory report indicates unidentified hydrocarbons C9-C24.
- Laboratory report indicates unidentified hydrocarbons >C16.
- Laboratory report indicates unidentified hydrocarbons C9-C40.
- Laboratory report indicates this sample was analyzed outside of the EPA recommended holding time.
- Well development performed.
- MTBE by EPA Method 8260.
- Due to laboratory error the trip blank sample was not analyzed.
- BTEX and MTBE by EPA Method 8260.
- Laboratory report indicates the surrogate data for the method blank is outside QC limits. Results from the re-extraction are within the limits.

TABLE 1 Page 11 of 11

WELL ID/	TOC* GWE DTW TPH-DRO TPH-GRO B T E X MTBE
DATE	$(ft.) \qquad (msl) \qquad (ft.) \qquad (\mu g/L) \qquad $
	The hold time had expired prior to re-extraction so all results are reported from the original extract.
	The TPH-D result from the re-extraction is 910 ppb.
16	Laboratory report indicates the surrogate data for the method blank is outside QC limits. Results from the re-extraction are within the limits.
	The hold time had expired prior to re-extraction so all results are reported from the original extract.
	The TPH-D result from the re-extraction is 1,700 ppb.
17	Laboratory report indicates the surrogate data for the method blank is outside QC limits. Results from the re-extraction are within the limits.
	The hold time had expired prior to re-extraction so all results are reported from the original extract.
	Similar results were obtained in both extracts.
18	Laboratory report indicates the observed sample pattern is not typical of #2 fuel/diesel. It elutes in the DRO range later than #2 fuel.
19	Analytical result confirmed.
20	Laboratory report indicates the observed sample pattern includes #2 fuel/diesel and an additional pattern which elutes later in the DRO
24	range.
21	Laboratory report indicates the observed sample pattern is not typical of #2 fuel/diesel. The reported result is due to individual peak(s)
	eluting in the DRO range.

DATE	WELL ID/	ETHANOL	TBA	MTBE	DIPE	ETBE	TAME
MW-1	DATE	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
09/16/03 SAMPLED SEMI-ANNUALLY	MW-1						
12/31/03	06/17/03			92			
08/17/04	09/16/03	SAMPLED SEMI-ANI	NUALLY				
11/16/04	12/31/03	<50		86			
05/06/05	08/17/04	<50		76			
11/07/05	11/16/04	<50		48			
05/08/06	05/06/05	<50		220			
11/08/06	11/07/05	<50		260			
05/01/07	05/08/06	<50		590			
11/08/07	11/08/06	<50		140			
05/01/08 <50	05/01/07	<50		280			
11/13/08	11/08/07	<50		270			
MW-2 06/17/03	05/01/08	<50		470			
MW-2 06/17/03	11/13/08						
06/17/03 2,700 09/16/03 <130	05/20/09	<50		190			
06/17/03 2,700 09/16/03 <130							
09/16/03 <130	MW-2						
09/16/03 <130	06/17/03			2,700			
12/31/03 <50		<130					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12/31/03	<50					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03/26/04	SAMPLED SEMI-ANI	NUALLY				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	08/17/04	<50		340			
11/07/05 <50	11/16/04	<100		1,100			
05/08/06 <50	05/06/05	<50		400			
11/08/06 <50	11/07/05	<50		66			
05/01/07 <50	05/08/06	<50		360			
05/01/07 <50	11/08/06	<50		840			
05/01/08 <50 120 11/13/08 <50 240	05/01/07	<50		100			
11/13/08 <50 240	11/08/07	<50		37			
11/13/08 <50 240		<50		120			
05/20/09 <50 160		<50		240			
	05/20/09	<50		160			

DATE (μg/L) (μg/L) </th <th></th>	
06/17/03 590 09/16/03 SAMPLED SEMI-ANNUALLY 12/31/03 66 670 08/17/04 <50 410 11/16/04 <50 460 05/06/05 <100 740 11/07/05 <50 440 05/08/06 <100 3,300 11/08/06 <50 73 05/01/07 <50 1,200 11/08/07 <50 440 05/01/08 <50 690 11/13/08 <50 790	g/L) (μg/L)
09/16/03 SAMPLED SEMI-ANNUALLY 12/31/03 66 670 08/17/04 <50 410 11/16/04 <50 460 05/06/05 <100 740 11/07/05 <50 440 05/08/06 <100 3,300 11/08/06 <50 73 05/01/07 <50 1,200 11/08/07 <50 440 05/01/08 <50 690 11/13/08 <50 790	
12/31/03 66 670 08/17/04 <50	
08/17/04 <50	
11/16/04 <50	
05/06/05 <100	
11/07/05 <50	
05/08/06 <100	
11/08/06 <50	
05/01/07 <50	
11/08/07 <50	
05/01/08 <50 690 11/13/08 <50 790	
11/13/08 <50 790	
05/20/09 <50 450	
MW-4	
	100 <100
	<2 110
	in the second se
09/16/03 <100 710	
12/31/03 <50 390	
03/26/04 SAMPLED SEMI-ANNUALLY	
, ,	30.5 50
, ,	30.5
11/07/05 <50 59	
05/08/06 <50 92	
11/08/06 <50 40	
	30.5
11 100 105	
, ,	30.5 4
11/13/08 <50 220	
05/20/09 <50 58 190 <0.5 <	6 .5

TABLE 2 Page 3 of 5

WELL ID/	ETHANOL	TBA	MTBE	DIPE	ETBE	TAME
DATE	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-7						
05/04/01	<500	57	470	<2.0	<2.0	11
09/05/01	<500	<100	1,300	<2	<2	32
12/21/01	<500	<100	670	<2	<2	15
03/15/02	<500	<100	350	<2	<2	8
06/15/02		<100	960	<2	<2	18
06/17/03		37	2,500	< 0.5	< 0.5	53
09/16/03	<500		4,400			
12/31/03	<200		3,000			
08/17/04	<500	<50	8,000	<5	<5	140
11/16/04	<250		7,300			
02/18/05	<1,000		5,700			
05/06/05	<500	<50	8,400	<5	<5	140
08/05/05	<500		20,0001			
11/07/05	<1,000		24,000			
02/06/06	<50		14,000			
05/08/06	<200		6,500			
08/08/06	<1,000		17,000			
11/08/06	<500		41,000			
02/06/07	<500		31,000			
05/01/07	<250	<10	14,000	<3	<3	260
07/31/07	<250		15,000			
11/08/07	<500		25,000			
02/04/08	<100		17,000			
05/01/08	<500	<20	10,000	<5	<5	170
08/01/08	<250		12,000			
11/13/08	<1,000		16,000			
02/23/09	<250		11,000			
05/20/09	<100	31	6,300	<1	<1	120
MW-5						
	~ 500	~ 100	<2.0	~2 0	~ 2.0	<2.0
04/08/99	<500	<100	<2.0 <0.5	<2.0	<2.0	
06/17/03	 CAMDLED CEMI ANNII	 TATTV				
09/16/03	SAMPLED SEMI-ANNU		 <0 F			
12/31/03	<50 TO BE DESTROYED		<0.5			
08/17/04 DESTROYED - 20						
DESTRUTED - 20	03					

TABLE 2 Page 4 of 5

WELL ID/ ETHAN	IOL TBA	MTBE DII		TAME
DATE (µg/L) (μg/L)	(μg/L) (μg/	1,) (11971,)	(μg/L)

TABLE 2 Page 5 of 5

GROUNDWATER ANALYTICAL RESULTS - OXYGENATE COMPOUNDS CHEVRON SERVICE STATION 9-4800

1700 CASTRO STREET, OAKLAND, CALIFORNIA

WELL ID/ DATE	ETHANOL (μg/L)	TBA (μg/L)		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ETBE (µg/L)	TAME (μg/L)
MW-6						_
04/08/99	<500	<100	5.6	<2.0	<2.0	<2.0
06/17/03			13			
09/16/03	SAMPLED SEMI-ANNU	JALLY				
12/31/03	<50		14			
08/17/04	TO BE DESTROYED					
DESTROYED -	2005					

EXPLANATIONS:

Groundwater laboratory analytical results prior to May 4, 2001, were compiled from reports prepared by Blaine Tech Services, Inc.

TBA = t-Butyl alcohol

MTBE = Methyl Tertiary Butyl Ether

DIPE = di-Isopropyl ether

ETBE = Ethyl t-butyl ether

TAME = t-Amyl methyl ether

 $(\mu g/L)$ = Micrograms per liter

-- = Not Analyzed

Laboratory report confirmed analytical result.

ATTACHMENT A

BLAINE TECH'S MAY 21, 2009 SECOND QUARTER MONITORING

May 21, 2009

Chevron Environmental Management Company Aaron Costa 6111 Bollinger Canyon Rd. San Ramon, CA 94583

> Second Quarter 2009 Monitoring at Chevron Service Station 94800 1700 Casrto St. Oakland, CA

Monitoring performed on May 20, 2009

Blaine Tech Services, Inc. Groundwater Monitoring Event 090520-DR2

This submission covers the routine monitoring of groundwater wells conducted on May 20, 2009 at this location. 5 monitoring wells were measured for depth to groundwater (DTW). 5 monitoring wells were sampled. All sampling activities were performed in accordance with local, state and federal guidelines.

Water levels measurements were collected using an electronic slope indicator. All sampled wells were purged of three case volumes or until water temperature, pH and conductivity stabilized. Purging was accomplished using electric submersible pumps, positive air-displacement pumps or stainless steel, Teflon or disposable bailers. Subsequent sample collection and sample handling was performed in accordance with EPA protocols using disposable bailers. Alternately, where applicable, wells were sampled utilizing no-purge methodology. All reused equipment was decontaminated in an integrated stainless steel sink with de-ionized water supplied Hotsy pressure washer and Liquinox or equivalent.

Samples were delivered under chain-of-custody to Lancaster Laboratories of Lancaster, Pennsylvania, for analysis. Monitoring well purgewater and equipment rinsate water was collected and transported under bill-of-lading to IWM facilities of San Jose, California.

Second Quarter Groundwater Monitoring at Chevron 94800, 1700 Casrto St., Oakland, CA

Enclosed documentation from this event includes copies of the Well Gauging Sheet, Well Monitoring Data Sheets, and Chain-of-Custody.

Blaine Tech Services, Inc.'s activities at this site consisted of objective data and sample collection only. No interpretation of analytical results, defining of hydrogeologic conditions or formulation of recommendations was performed.

Please call if you have any questions.

Sincerely,

Pott Cin

Pete Cornish Blaine Tech Services, Inc.

Project Manager

attachments: SOP

Well Gauging Sheet

Individual Well Monitoring Data Sheets

Chain of Custody

Wellhead Inspection Form

Bill of Lading Calibration Log

cc: CRA

Attn: Charlotte Evans 5900 Hollis St. Suite A Emeryville, CA 94608

BLAINE TECH SERVICES, INC. METHODS AND PROCEDURES FOR THE ROUTINE MONITORING OF GROUNDWATER WELLS AT CHEVRON SITES

Blaine Tech Services, Inc. performs environmental sampling and documentation as an independent third party. We specialize in groundwater monitoring assignments and intentionally limit the scope of our services to those centered on the generation of objective information.

To avoid conflicts of interest, Blaine Tech Services, Inc. personnel do not evaluate or interpret the information we collect. As a state licensed contractor (C-57 well drilling –water – 746684) performing strictly technical services, we do not make any professional recommendations and perform no consulting of any kind.

SAMPLING PROCEDURES OVERVIEW

SAFETY

All groundwater monitoring assignments performed for Chevron comply with Chevron's safety guidelines, 29 CFR 1910.120 and SB-198 Injury and Illness Prevention Program (IIPP). All Field Technicians receive the full 40-hour 29CFR 1910.120 OSHA SARA HAZWOPER course, medical clearance and on-the-job training prior to commencing any work on any Chevron site.

INSPECTION AND GAUGING

Wells are inspected prior to evacuation and sampling. The condition of the wellhead is checked and noted according to a wellhead inspection checklist.

Standard measurements include the depth to water (DTW) and the total well depth (TD) obtained with industry standard electronic water level indicators that are graduated in increments of hundredths of a foot.

The water in each well is inspected for the presence of immiscibles. When free product is suspected, its presence is confirmed using an electronic interface probe (e.g. GeoTech). No samples are collected from a well containing over two-hundredths of a foot (0.02') of product.

EVACUATION

Depth to water measurements are collected by our personnel prior to purging and minimum purge volumes are calculated anew for each well based on the height of the water column and the diameter of the well. Expected purge volumes are never less than three case volumes and are set at no less than four case volumes in some jurisdictions.

Well purging devices are selected on the basis of the well diameter and the total volume to be

evacuated. In most cases the well will be purged using an electric submersible pump (i.e. Grundfos) suspended near (but not touching) the bottom of the well.

PARAMETER STABILIZATION

Well purging completion standards include minimum purge volumes, but additionally require stabilization of specific groundwater parameters prior to sample collection. Typical groundwater parameters used to measure stability are electrical conductivity, pH, and temperature. Instrument readings are obtained at regular intervals during the evacuation process (no less than once per case volume).

Stabilization standards for routine quarterly monitoring of fuel sites include the following: Temperature is considered to have stabilized when successive readings do not fluctuate more than +/- 1 degree Celsius. Electrical conductivity is considered stable when successive readings are within 10%. pH is considered to be stable when successive readings remain constant or vary no more than 0.2 of a pH unit.

DEWATERED WELLS

Normal evacuation removes no less than three case volumes of water from the well. However, less water may be removed in cases where the well dewaters and does not immediately recharge.

MEASURING RECHARGE

Upon completion of well purging, a depth to water measurement is collected and notated to ensure that the well has recharged to within 80% of its static, pre-purge level prior to sampling.

Wells that do not immediately show 80% recharge or dewatered wells will be allowed approximately 2 hours to recharge prior to sampling or will be sampled at site departure. All wells requiring off-site traffic control in the public right-of-way, the 80% recharge rule may be disregarded in the interests of Health and Safety. The sample may be collected as soon as there is sufficient water. The water level at time of sampling will be noted.

PURGEWATER CONTAINMENT

All non-hazardous purgewater evacuated from each groundwater monitoring well is captured and contained in on-board storage tanks on the Sampling Vehicle and/or special water hauling trailers. Effluent from the decontamination of reusable apparatus (sounders, electric pumps and hoses etc.), consisting of groundwater combined with deionized water and non-phosphate soap, is also captured and pumped into effluent tanks.

Non-hazardous purgewater is transported under standard Bill of Lading documentation to a Blaine Tech Services, Inc. facility before being transported to a Chevron approved disposal facility.

SAMPLE COLLECTION DEVICES

All samples are collected using disposable bailers.

SAMPLE CONTAINERS

Sample material is decanted directly from the sampling bailer into sample containers provided by the laboratory that will analyze the samples. The transfer of sample material from the bailer to the sample container conforms to specifications contained in the USEPA T.E.G.D. The type of sample container, material of construction, method of closure and filling requirements are specific to the intended analysis. Chemicals needed to preserve the sample material are commonly placed inside the sample containers by the laboratory or glassware vendor prior to delivery of the bottle to our personnel. The laboratory sets the number of replicate containers.

TRIP BLANKS

Trip Blanks, if requested, are taken to the site and kept inside the sample cooler for the duration of the event. They are turned over to the laboratory for analysis with the samples from that site.

DUPLICATES

Duplicates, if requested, may be collected at a site. The Duplicate sample is collected, typically from the well containing the most measurable contaminants. The Duplicate sample is labeled the same as the original.

SAMPLE STORAGE

All sample containers are promptly placed in food grade ice chests for storage in the field and transport (direct or via our facility) to the designated analytical laboratory. These ice chests contain quantities of restaurant grade ice as a refrigerant material. The samples are maintained in either an ice chest or a refrigerator until relinquished into the custody of the laboratory or laboratory courier.

DOCUMENTATION CONVENTIONS

A label must be affixed to all sample containers. In most cases these labels are generated by our office personnel and are partially preprinted. Labels can also be hand written by our field personnel. The site is identified with the store number and site address, as is the particular groundwater well from which the sample is drawn (e.g. MW-1, MW-2, S-1 etc.). The time and date of sample collection along with the initials of the person who collects the sample are handwritten onto the label.

Chain of Custody records are created using client specific preprinted forms following USEPA specifications.

Bill of Lading records are contemporaneous records created in the field at the site where the non-hazardous purgewater is generated. Field Technicians use preprinted Bill of Lading forms.

DECONTAMINATION

All equipment is brought to the site in clean and serviceable condition and is cleaned after use in each well and before subsequent use in any other well. Equipment is decontaminated before leaving the site.

The primary decontamination device is a commercial steam cleaner. The steam cleaner is detuned to function as a hot pressure washer that is then operated with high quality deionized water that is produced at our facility and stored onboard our sampling vehicle. Cleaning is facilitated by the use of proprietary fixtures and devices included in the patented workstation (U.S. Patent 5,535,775) that is incorporated in each sampling vehicle. The steam cleaner is used to decon reels, pumps and bailers.

Any sensitive equipment or parts (i.e. Dissolved Oxygen sensor membrane, water level indicator, etc.) that cannot be washed using the high pressure water, will be sprayed with a non-phosphate soap and deionized water solution and rinsed with deionized water.

DISSOLVED OXYGEN READINGS

Dissolved Oxygen readings are taken pre- and/or post-purge using YSI meters (e.g. YSI Model 550) or HACH field test kits.

The YSI meters are able to collect accurate in-situ readings. The probe allows downhole measurements to be taken from wells with diameters as small as two inches. The probe and reel is decontaminated between wells as described above. The meter is calibrated between wells as per the instructions in the operating manual. The probe is lowered into the water column and the reading is allowed to stabilize prior to collection.

OXYIDATON REDUCTION POTENTIAL READINGS

All readings are obtained with either Corning or Myron-L meters (e.g. Corning ORP-65 or a Myron-L Ultrameter GP). The meter is cleaned between wells as described above. The meter is calibrated at the start of each day according to the instruction manual.

FERROUS IRON MEASUREMENTS

All field measurements are collected at time of sampling with a HACH test kit.

WELL GAUGING DATA

Project #	090520-	DQZ	Date	5120709	Client	chewon	
				t		,	
Site	1700	Curton	SL	Oakland	C1A		

		337 11		D .1 .	Thickness	l	1		Survey	
		Well Size	Sheen /	Depth to Immiscible			Depth to water	Depth to well	Point: TOB or	
Well ID	Time	(in.)	Odor	Liquid (ft.)	Liquid (ft.)	(ml)	(ft.)	bottom (ft.)	TOC	Notes
MW-1	1330	1_		-			25.63	30.69	A STREET, STRE	
MW-2	1338	1					23.65	30.69 30.28	Sainting and the printers of	
MW-3 MW-4	1334	2					25.30	30.24	and the second second	
MW-H	1332	2					24.73	28.89	CONTRACTOR AND A STATE OF THE S	
MW-7	1341	7					27.55	30.13		
				÷ .						
					.5	:-				:
		4		***************************************						
					,					
		· · · · · · · · · · · · · · · · · · ·								
	-									

CHEVRUN WELL MONITORING DATA SHEET

					PREAL (C)		L) B		
Project #	#: 69052	10 - DR	22	Station #: 9-4800					
Sampler	DE J	Ů .		Date: 1	Date: 5/20/09				
Weather	: (l	der		Ambier	nt Air I	Temperature:	75°F		
Well I.D			Well D	iametei	r: ② 3 4	1 6 8	3		
Total We	ell Depth:	300	9	Depth t	o Wate	er: 25.63			
Depth to	Free Produ	uct:				Free Product (f	eet):		
Referenc	ed to:	PVC	Grade	D.O. M	eter (if	req'd):	YSI	НАСН	
DTW wi	th 80% Red	charge [(F	Height of Water	· Column	x 0.20) + DTW]: 7	1.6.62		
Purge Meth	od: Bailer ⊁Disposable B	ailer Displacement	Waterra Peristaltic Extraction Pump Other	Sampling		: Bailer Disposable Baile Extraction Port Dedicated Tubing	r		
O. O 1 Case Volu	(Gals.) X ne Sp	3 ecified Volur	= Z.4 nes Calculated Vo	Gals.	Well Diamet 1" 2" 3"	0.04 4" 0.16 6"	(<u>Multiplier</u> 0.65 1.47 radius ² * 0.163	
Time	Temp (°F)	рН	Cond. (mS or (15)	Turbi (NT	•	Gals. Removed	l Obs	servations	
1359	67.7	6.9	1209	フ	600	0.8	elend	11	
1401	67.8	6.6	1215	710	000	1.6	11	7	
1403	67.9	6.6	1218	>	ice	2.4	/ [
Did well	dewater?	Yes	No	Gallons	actuall	y evacuated:	2-4		
Sampling	Date: 5 [2	20/09	Sampling Time	e: 1-110	>	Depth to Wat	er: 26.	64	
Sample I.	D.: ML	1-1		Laborate	ory:	Lancaster C	ther		
Analyzed	for: трн-	G BTEX	MTBE OXYS	Other:	See	Coe		W. 1. W	
Duplicate	2 I.D.:		Analyzed for:	TPH-G E		MTBE OXYS	Other:		
D.O. (if r	eq'd):		Pre-purge:		mg/L	Post-purge	•	mg/L	
O.R.P. (if	rea'd):	***************************************	Pre-purge:	propie tilebranes	mV	Post-nurge		mV	

Blaine Tech Services, Inc., 1680 Rogers Avenue, San Jose, CA 95112 (408) 573-0555

CHEVA JN WELL MONITORING DALA SHEET

			•				
Project #: 090520 - C)R2	Station #: 9-4800					
Sampler: DR/Jo			Date: 5/20/09				
Weather: Suny		Ambient Air		700			
Well I.D.: MW = 2		Well Diamete	r: (2) 3 4	6 8			
Total Well Depth: 37	0.28	Depth to Wate	er: 23.65				
Depth to Free Product:			Free Product (fe	eet):			
Referenced to: PVC) Grade	D.O. Meter (it	req'd):	YSI HACH			
DTW with 80% Recharge [(Height of Wate	r Column x 0.20)) + DTW]:	24.98			
Purge Method: Bailer Disposable Bailer Positive Air Displaceme Electric Submersible	Waterra Peristaltic nt Extraction Pump Other	Sampling Method Other	Disposable Bailer Extraction Port Dedicated Tubing	- Diameter Multiplier			
Case Volume (Gals.) X Specified Vo	= 3 lumes Calculated Vo	Gals. 1"	0.04 4" 0.16 6" 0.37 Oth	0.65 1.47			
Time Temp (°F) pH	(mS or (uS)	Turbidity (NTUs)	Gals. Removed	Observations			
1406 68,3 7.01	1009	36	b.0	Expended particles			
1407 678 691	1007	310	2.0	1			
1408 86.2 6.88	999	305	3.0				
				A			
Did well dewater? Yes	No	Gallons actuall	y evacuated:	3.0			
Sampling Date: 5/20/09	Sampling Time	e: 1415	Depth to Water	r: 24,72			
Sample I.D.: MW - L		Laboratory:	Lancaster Otl				
Analyzed for: TPH-G BTEX	MTBE OXYS	Other: See	Coc				
Duplicate I.D.:	Analyzed for:		ATBE OXYS	Other:			
D.O. (if req'd):	Pre-purge:	$^{mg}/_{L}$	Post-purge:	mg/L			
O.R.P. (if req'd):	Pre-purge:	mV	Post-purge:	m [®] V			

CHEV. JA WELL MONITORING DA. A SHEET

Project #	69052	10 - DR	22	Station #:	- 4800			
Sampler:				Date: 5/20/09				
Weather:	: Cle	cy			Femperature:	75°F		
Well I.D	: MW-	-3	1970 C	Well Diamete				
Total We	ell Depth:			Depth to Wate	er: 75.30			
	Free Produ				Free Product (fe	eet):		
Referenc		(PVC)	Grade	D.O. Meter (i		YSI HACH		
DTW wit	th 80% Red	charge [(I	Height of Water	Column x 0.20)) + DTW]: 2(5.29		
Purge Meth	Bailer XDisposable Ba	Displacement	Waterra Peristaltic Extraction Pump Other		Disposable Bailer Extraction Port Dedicated Tubing			
して 1 Case Volum	_(Gals.) X ne Spo	3 ecified Volun	= 2,4 nes Calculated Vo	Gals. Well Diame 1" 2" 3"	Multiplier Well 0.04 4" 0.16 6" 0.37 Oth	Diameter Multiplier 0.65 1.47 er radius ² * 0.163		
Time	Temp (°F)	pН	Cond. (mS or (µS)	Turbidity (NTUs)	Gals. Removed	Observations		
1420	66.9	6.9	1339	209	0.8	color		
1422	67.2	6.7	1328	491	1.6	" / cloudy		
1424	67 · l	6-6	1323	604	2-4	11 (1		
Did well o	dewater?	Yes	(Vi)	Gallons actuall	y evacuated:	2.4		
Sampling	Date: 5/2	0/09	Sampling Time	: 1435	Depth to Wate	r: 26.20		
Sample I.I	D.: ML	· - 3		Laboratory:	Lancaster Ot	her		
Analyzed	for: TPH-	G BTEX	MTBE OXYS	Other: See	Coe			
Duplicate	I.D.:		Analyzed for:	TPH-G BTEX M	NTBE OXYS	Other:		
D.O. (if re	eq'd):		Pre-purge:	mg/ _L	Post-purge:	$^{mg}/_{L}$		
O.R.P. (if	req'd):		Pre-purge:	mV	Post-purge:	mV		

CHEVILIN WELL MONITORING DALA SHEET

Project #: 690520 - DR2	Station #: 9-4860	
Sampler: DP/Jo	Date: 5/20/09	
Weather: Suny	Ambient Air Temperature: 40°	
Well I.D.: MW 4	Well Diameter: (2) 3 4 6 8	
Total Well Depth: 28.84	Depth to Water: 24.73	
Depth to Free Product:	Thickness of Free Product (feet):	
Referenced to: PVC Grade	D.O. Meter (if req'd): YSI HACH	
DTW with 80% Recharge [(Height of War	er Column x 0.20) + DTW]: 25-55	
Purge Method: Bailer Waterra Disposable Bailer Peristaltic Positive Air Displacement Extraction Pump Electric Submersible Other	The state of the s	
Case Volume Specified Volumes Calculated	Well Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65 2" 0.16 6" 1.47 3" 0.37 Other radius² * 0.163	
Time Temp (°F) pH Cond. (mS or µS)	Turbidity (NTUs) Gals. Removed Observations	
1336 69.7 6.81 928	627 196 charles	
1337 701 6.77 918	648 1.1	
1338 70.2 6.73 910	663 1.8	-
well draw Down	DTW 27.16 (Past reduced))
Did well dewater? Yes (No)	Gallons actually evacuated: しる	
Sampling Date: 5/20/09 Sampling Tir	ne: 1345 Depth to Water: 24.91	
Sample I.D.: Mu- H	Laboratory: Lancaster Other	
Analyzed for: трн-G втех мтве охуѕ	Other: See Coe	
Duplicate I.D.: Analyzed for	: TPH-G BTEX MTBE OXYS Other:	
D.O. (if req'd): Pre-purg	e: mg/L Post-purge: mg	3/ _L
O.R.P. (if reg'd): Pre-purg	e: mV Post-nurge m	\overline{V}

CHEVRUN WELL MONITORING DATA SHEET

						ц			
Project #	: 090	520-	DRZ	Station #:	29-4800				
Sampler:	DR	1 To		Date: 5/2					
Weather:	Ci	ur		Ambient Air Temperature: 75° F					
Well I.D.	·: Mu	<u>/-7</u>		Well Diameter:					
Total We	ell Depth:		30.13	Depth to Wate	er: 27.55				
Depth to	Free Produ	ıct:		Thickness of I	Free Product (fe	et):			
Referenc	ed to:	PVQ	Grade	D.O. Meter (it	f req'd):	YSI HACH			
DTW wit	th 80% Rec	charge [(F	Height of Water	Column x 0.20)) + DTW]: 2	8.67			
Purge Meth	Bailer Disposable Ba	Displacement	Waterra Peristaltic Extraction Pump Other	Sampling Method Other	X Disposable Bailer Extraction Port Dedicated Tubing				
0.4 1 Case Volun	_(Gals.) X ne Spe	3 ecified Volun		Gals3"	ter Multiplier Well 0.04 4" 0.16 6" 0.37 Othe	Diameter Multiplier 0.65 1.47 er radius ² * 0.163			
Time	Temp (°F)	рН	Cond. (mS or (µS)	Turbidity (NTUs)	Gals. Removed	Observations			
1442	6.6	7.3	1139	70	0.4	0.0001.001010			
1443	18.7	7.2	1141	143	6.8				
1445	18.5	7.	1147	221	Ĭ. Z				
Did well	dewater?	Yes	No	Gallons actual	ly evacuated:	1.2			
Sampling	Date: 5/2	releq_	Sampling Time	e: 1455	Depth to Water	r: 27.91			
Sample I.	D.: MW	- 7		Laboratory:	Lancaster Oth	ier			
Analyzed	for: TPH-	G BTEX	MTBE OXYS	Other: Sec	Cac				
Duplicate	I.D.:		Analyzed for:	TPH-G BTEX N	MTBE OXYS	Other:			
D.O. (if re	eq'd):		Pre-purge:	mg/L	Post-purge:	mg/ _L			
O.R.P. (if	rea'd):		Pre-purge:	mV	Post-purge:	mV			

CHAIN OF CUSTODY FORM

C	hevron	Environ	mental Mana	gement Compai	ny = 6111 Bol	linger Canyon	Rd.≡	Sa	n Ra	amo	on, (CA	945	83		CC	C	of \
Chevron Site Number	94800			Chevron Consulta	int: <u>CRA</u>				ANALYSES REQUIRED									
Chevron Site Global II	D: <u>T060010</u>	02076		Address: 5900 Hol	lis St. Suite A Er	neryville,		+							1-	H	1	Preservation Codes
Chevron Site Address	1700 Ca	srto St.,_		CAConsultant Con	tact: Charlotte Eva	<u>ns</u>												H =HCL T= Thiosulfate
Oakland, CA				Consultant Phone	No. <u>510-420-3351</u>			SCREEN				F		GREASE				N =HNO ₃ B = NaOH
Chevron PM: AARON	COSTA			Consultant Projec	t No. <u>09052e - DR 2</u>			S				ALKALINITY		≪				S = H ₂ SO ₄ O =
Chevron PM Phone No.: (925)543-2961 Sam			Sampling Compar			I I				STLC 🗆			1 OIL				Other	
☑ Retail and Terminal Business Unit (RTBU) Job ☑ Construction/Retail Job			Job	Sampled By (Prin	t): D. Rayng/	1.O.hz	OXYGENATESIT	ORO			TS 🗆	310.1		413.1				
⊠ Construction/Retail Job				Sampler Signature:		M XC	Ö			TLC [EPA		EPA					
Charge Code: NWR NWRTB (800-0-OML JMBER-0- WE	3S	Lancaster Laboratories	Other Lab	Temp. Blank Check Time Temp.	è	[20],		a			ے		CrossA			Special Instructions
(WBS ELEMENTS: SITE ASSESSMENT: A1L	REMEDIATIO	и Імрі емекітаті	ON: R5 I			1400 30E	の キング MTRF [本	H H	3E []	Mn, Na	22 METALS		TIVI		國	M	(3)	Must meet lowest detection limits possible
SITE MONITORING: OML	O PERATION	Maintenance &	Monitoring: M1L			1300 206	A S	M	MTBE	Mg, N			NDOC		00		(0,2/c)	for 8260 Compounds
THIS IS A LEGAL DOCK	JMENT. AL	<u>L</u> FIELDS MUS COMPLETE	T BE FILLED OUT	2425 New Holland Pike, Lancaster, PA 17601			AS X	GRO		Ϋ́	11.		00 0		200	(8015)		
307.11.12				Phone No: (717)656-2300			8260B/GC/MS		BTEX	Sa, Fe,	T 000	표	SPECIF	TRPH	20 0	5	MIBE	
	SAMPL	E ID					260E	8015B	8021B	6010 Ca,	7/01/	0.1	0B S	18.1	2	١.	2	
Field Point Name	Matrix	Top Depth	Date (yymmdd)	Sample Time	# of Containers	Container Type	EPA 8260 TPH-G IT	EPA 8	EPA 8	EPA 6	EPA6010/7000 TITLE	EPA150.1 PH□	SM2510B SPECIFIC CONDUCTIVITY	1 7	5 Ox	HAL	BTCX	Notes/Comment
MW-1	W		090520	1410	6 HEL cas/ Fronters	Itch vens/Amago	K	X										
MW-2	W			1415	2,2400 Tags		X	X										
MW.3	W			1435			K	7										
mw-4	W			1345			X.	Ϋ́							K			
MW-7	W			1455	V	1	X	X							X			
af	T		V	1345	2 1/ce vers	11-CL VEGS										χ	K	
									100p									-
											J							
Relinquished By	Comp		ate/Time:	Relinquished To	Company	Date/Time					und T		اــــــا دا ۱ ا د		l1	46.		7 70
Relinquished By	B1	4000 1	20109 1915		375	5/20/09	160	5	Ηοι	ndaro urs□		Othe					ours[72
reiniquisned by	Comp	pany L	ate/Time	Relinquished To	Company	Date/Time			Sar	nple	Integ	rity:	(Chec	k by	lab d	on ar	rival)	
Relinquished By	Comp	pany D	ate/Time	Relinquished To	Company	Date/Time			Inta	ict: _	-	On I	ce:		Te	mp: _		
•				-,		20071110										π		

WELLHEAD INSPECTION CHECKLIST

Page of

Client _ Che	uvon						Date	5/200	9	
Site Address	1700	Custro	<u>St.</u>	0a	kland	CAA.				
Job Number	09052	2- DR2				Techr	nician _.	DR1	50	
Well ID	Well Inspected - No Corrective Action Required	WELL IS SECURABLE BY DESIGN (12"or less)	WELL IS CLEARLY MARKED WITH THE WORDS "MONITORING WELL" (12"or less)	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)	Repair Order Submitted
MW-1	X	X	X							
MW-Z		X	×					<u>\</u>		
MW-3	X	X	<u> </u>							
MW-7	X	Χ	X							
MW.7 mw-4	X	大	X							
							~~~~			
NOTES:	MW-2	3(3	Bolts un	issty						
								<del></del>		

SOURCE RECORD **BLL OF LADING**FOR NON-HAZARDOUS PURGEWATER RECOVERED FROM GROUNDWATER WELLS AT CHEVRON FACILITIES IN THE STATE OF CALIFORNIA. THE NON-HAZARDOUS PURGE- WATER WHICH HAS BEEN RECOVERED FROM GROUND- WATER WELLS IS COLLECTED BY THE CONTRACTOR, MADE UP INTO LOADS OF APPROPRIATE SIZE AND HAULED BY IWM TO THEIR FACILITY IN SAN JOSE, CALIFORNIA.

The contractor performing this work is BLAINE TECH SERVICES, INC. (BTS), 1680 Rogers Ave. San Jose CA (408)573-0555). Blaine Tech Services, Inc. is authorized by CHEVRON PRODUCTS COMPANY (CHEVRON) to recover, collect, apportion into loads, and haul the Non-Hazardous Well Purgewater that is drawn from wells at the CHEVRON facility indicated below and to deliver that purgewater to BTS. Transport routing of the Non-Hazardous Well Purgewater may be direct from one Chevron facility to BTS; from one Chevron facility to BTS via another Chevron facility; or any combination thereof. The Non-Hazardous Well Purgewater is and remains the property of CHEVRON.

This **Source Record BILL OF LADING** was initiated to cover the recovery of Non-Hazardous Well Purgewater from wells at the Chevron facility described below:

9-4800			
CHEVRON#		Chevron En	gineer
1700	coustro s	A. Oaklan	d a
street number	street na	ame city	state

WELL I.D.	GALS.	WELL LD	CALC
WELL I.D.	GALS.	WELL I.D.	GALS.
Min-j	12,4		
mw-2	13.0	/	
MW-3	12.4	/	
an y	11.8		
mw.7	11.2	/	
		/	
	/		,
			•
added equip. rinse water <u>/</u>		any other adjustments <u>/</u>	
TOTAL GAL	.s. D <u>/3</u> 8	loaded onto BTS vehicle #	_7}
BTS event#	090520-DAZ time	da	te 5 / 20 / 09
signature <			
* * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * *	* * * * *
REC'D AT	375	time da	ate 5   2
unloaded by signature			

## TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	ME Chewan C	Datland 9.	4860	PROJECT NUM	MBER 090520 ~	Dez	
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIALS
Myran L Ukuneta II	6223839 07090225694	5/20/04 1320	7,10,4 3900 cus	7.02, 10,04 4.02	4	700	SO
Huch Ryladuety	07090225694	5(20/09	5 (50/500	4-8/48/502	9	700	2
		·			U		
				٧.			
			·				
				·			

### TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	ME Chevan	Outland a	7-48002	PROJECT NUM	1BER 090520 -	D.C. 7	
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	95	INITIALS
Myren L Ullmarkr	6207529	5/20/04 1315	7.0 10.0 4.0 3900	7.01 9.48 3.9 3902		67.5-67.7	
Hach 7 h.d. Arich	071100026534	5/20/-9 1320	56 \$ 55 5.7		Ÿ	valinoushasa	De
				u" .			
				·			

### ATTACHMENT B

LANCASTER LABORATORIES JUNE 3, 2009 ANALYTICAL REPORT



2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

#### ANALYTICAL RESULTS

Prepared for:

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

925-842-8582

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

June 03, 2009

#### **SAMPLE GROUP**

The sample group for this submittal is 1146163. Samples arrived at the laboratory on Saturday, May 23, 2009. The PO# for this group is 0015040460 and the release number is COSTA.

Client Description	<u>Lancaster Labs Number</u>
MW-1-W-090520 NA Water	5681577
MW-2-W-090520 NA Water	5681578
MW-3-W-090520 NA Water	5681579
MW-4-W-090520 NA Water	5681580
MW-7-W-090520 NA Water	5681581
QA-T-090520 NA Water	5681582

#### **METHODOLOGY**

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Chronicle.

ELECTRONIC CRA COPY TO Attn: Charlotte Evans



2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jill M Parker at (717) 656-2300

Respectfully Submitted,

Robin C. Runkle Senior Specialist



2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 5681577

Group No. 1146163

CA

Chevron

MW-1-W-090520 NA Water Facility #94800 BTST

1700 Castro St-Oakland T0600102076 MW-1

Collected: 05/20/2009 14:10 by DR Account Number: 10991

Submitted: 05/23/2009 10:30

Reported: 06/03/2009 at 16:02 6001 Bollinger Canyon Rd L4310

Discard: 07/04/2009 San Ramon CA 94583

OAK-1

CAT No.	Analysis Name		CAS Number	As Rec Result	eived	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
SW-846	8260B	GC/MS Vola	tiles	ug/l		ug/l	ug/l	
06067	Benzene		71-43-2	0.6	J	0.5	1	1
06067	Ethanol		64-17-5	N.D.		50	250	1
06067	Ethylbenzene		100-41-4	N.D.		0.5	1	1
06067	Methyl Tertiary Buty	yl Ether	1634-04-4	190		0.5	1	1
06067	Toluene		108-88-3	N.D.		0.5	1	1
06067	Xylene (Total)		1330-20-7	2		0.5	1	1
SW-846	8015B	GC Volatil	es	ug/l		ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.		50	100	1
SW-846	8015B	GC Extract	able TPH	ug/l		ug/l	ug/l	
06609	TPH-DRO CA C10-C28		n.a.	88	J	33	100	1

#### General Sample Comments

State of California Lab Certification No. 2116

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
06067	BTEX, MTBE, ETOH	SW-846 8260B	1	Z091531AA	06/02/2009 11:5	4 Ginelle L Feister	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z091531AA	06/02/2009 11:5	4 Ginelle L Feister	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09147B08B	06/01/2009 17:4	4 Carrie E Youtzy	1
01146	GC VOA Water Prep	SW-846 5030B	1	09147B08B	06/01/2009 17:4	4 Carrie E Youtzy	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	091460016A	05/28/2009 13:5	4 Diane V Do	1
02376	Extraction - Fuel/TPH	SW-846 3510C	1	091460016A	05/27/2009 01:4	5 Roman Kuropatkin	1
	(Waters)						



2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 5681578

Group No. 1146163

CA

Chevron

MW-2-W-090520 NA Water Facility #94800 BTST

1700 Castro St-Oakland T0600102076 MW-2

Collected: 05/20/2009 14:15 by DR Account Number: 10991

Submitted: 05/23/2009 10:30

Reported: 06/03/2009 at 16:02 6001 Bollinger Canyon Rd L4310

Discard: 07/04/2009 San Ramon CA 94583

OAK-2

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
SW-846	8260B	GC/MS Vola	tiles	ug/l	ug/l	ug/l	
06067	Benzene		71-43-2	4	0.5	1	1
06067	Ethanol		64-17-5	N.D.	50	250	1
06067	Ethylbenzene		100-41-4	42	0.5	1	1
06067	Methyl Tertiary But	yl Ether	1634-04-4	160	0.5	1	1
06067	Toluene		108-88-3	1	0.5	1	1
06067	Xylene (Total)		1330-20-7	55	0.5	1	1
SW-846	8015B	GC Volatil	es	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	4,000	50	100	1
SW-846	8015B	GC Extract	able TPH	ug/l	ug/l	ug/l	
06609	TPH-DRO CA C10-C28		n.a.	2,800	64	200	2

#### General Sample Comments

State of California Lab Certification No. 2116

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
06067	BTEX, MTBE, ETOH	SW-846 8260B	1	Z091531AA	06/02/2009 12:19	Ginelle L Feister	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z091531AA	06/02/2009 12:19	Ginelle L Feister	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09147B08B	06/01/2009 18:08	Carrie E Youtzy	1
01146	GC VOA Water Prep	SW-846 5030B	1	09147B08B	06/01/2009 18:08	Carrie E Youtzy	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	091460016A	05/29/2009 10:03	Diane V Do	2
02376	Extraction - Fuel/TPH	SW-846 3510C	1	091460016A	05/27/2009 01:4	Roman Kuropatkin	1
	(Waters)						



2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 5681579

Group No. 1146163

CA

Chevron

MW-3-W-090520 NA Water Facility #94800 BTST

1700 Castro St-Oakland T0600102076 MW-3

Collected: 05/20/2009 14:35 by DR Account Number: 10991

Submitted: 05/23/2009 10:30

Reported: 06/03/2009 at 16:02 6001 Bollinger Canyon Rd L4310

Discard: 07/04/2009 San Ramon CA 94583

OAK-3

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
SW-846	8260B	GC/MS Vola	tiles	ug/l	ug/l	ug/l	
06067	Benzene		71-43-2	42	0.5	1	1
06067	Ethanol		64-17-5	N.D.	50	250	1
06067	Ethylbenzene		100-41-4	1	0.5	1	1
06067	Methyl Tertiary Buty	yl Ether	1634-04-4	450	0.5	1	1
06067	Toluene		108-88-3	N.D.	0.5	1	1
06067	Xylene (Total)		1330-20-7	20	0.5	1	1
SW-846	8015B	GC Volatil	es	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	460	50	100	1
SW-846	8015B	GC Extract	able TPH	ug/l	ug/l	ug/l	
06609	TPH-DRO CA C10-C28		n.a.	210	32	100	1

#### General Sample Comments

State of California Lab Certification No. 2116

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
06067	BTEX, MTBE, ETOH	SW-846 8260B	1	Z091531AA	06/02/2009 12:44	Ginelle L Feister	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z091531AA	06/02/2009 12:44	Ginelle L Feister	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09147B08B	06/01/2009 18:33	Carrie E Youtzy	1
01146	GC VOA Water Prep	SW-846 5030B	1	09147B08B	06/01/2009 18:33	Carrie E Youtzy	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	091460016A	05/28/2009 16:18	Diane V Do	1
02376	Extraction - Fuel/TPH	SW-846 3510C	1	091460016A	05/27/2009 01:45	Roman Kuropatkin	1
	(Waters)						



2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 5681580

Group No. 1146163

CA

MW-4-W-090520 NA Water Facility #94800 BTST

1700 Castro St-Oakland T0600102076 MW-4

Collected: 05/20/2009 13:45 by DR Account Number: 10991

Submitted: 05/23/2009 10:30 Chevron

Reported: 06/03/2009 at 16:02 6001 Bollinger Canyon Rd L4310

Discard: 07/04/2009 San Ramon CA 94583

OAK-4

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
SW-846	8260B	GC/MS Vola	tiles	ug/l	ug/l	ug/l	
06059	t-Amyl methyl ether		994-05-8	6	0.5	1	1
06059	Benzene		71-43-2	N.D.	0.5	1	1
06059	t-Butyl alcohol		75-65-0	58	2	5	1
06059	Ethanol		64-17-5	N.D.	50	250	1
06059	Ethyl t-butyl ether		637-92-3	N.D.	0.5	1	1
06059	Ethylbenzene		100-41-4	N.D.	0.5	1	1
06059	di-Isopropyl ether		108-20-3	N.D.	0.5	1	1
06059	Methyl Tertiary But	yl Ether	1634-04-4	190	0.5	1	1
06059	Toluene		108-88-3	N.D.	0.5	1	1
06059	Xylene (Total)		1330-20-7	N.D.	0.5	1	1
SW-846	8015B	GC Volatil	es	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	130	50	100	1
SW-846	8015B	GC Extract	able TPH	ug/l	ug/l	ug/l	
06609	TPH-DRO CA C10-C28		n.a.	560	33	100	1

#### General Sample Comments

State of California Lab Certification No. 2116

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time		Analyst	Dilution Factor
06059	BTEX+5 Oxygenates+ETOH	SW-846 8260B	1	Z091523AA	06/02/2009 02	2:46	Michael A Ziegler	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z091523AA	06/02/2009 02	2:46	Michael A Ziegler	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09147B08B	06/01/2009 18	8:57	Carrie E Youtzy	1
01146	GC VOA Water Prep	SW-846 5030B	1	09147B08B	06/01/2009 18	8:57	Carrie E Youtzy	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	091460016A	05/28/2009 11	1:29	Diane V Do	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	091460016A	05/27/2009 01	1:45	Roman Kuropatkin	1



2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 5681581

Group No. 1146163

CA

Chevron

MW-7-W-090520 NA Water Facility #94800 BTST

1700 Castro St-Oakland T0600102076 MW-7

Collected: 05/20/2009 14:55 by DR Account Number: 10991

Submitted: 05/23/2009 10:30

Reported: 06/03/2009 at 16:02 6001 Bollinger Canyon Rd L4310

Discard: 07/04/2009 San Ramon CA 94583

OAK-7

CAT No.	Analysis Name		CAS Number	As Rece Result	ived	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
SW-846	8260B	GC/MS Vola	tiles	ug/l		ug/l	ug/l	
06059	t-Amyl methyl ether		994-05-8	120		1	2	2
06059	Benzene		71-43-2	N.D.		1	2	2
06059	t-Butyl alcohol		75-65-0	31		4	10	2
06059	Ethanol		64-17-5	N.D.		100	500	2
06059	Ethyl t-butyl ether		637-92-3	N.D.		1	2	2
06059	Ethylbenzene		100-41-4	N.D.		1	2	2
06059	di-Isopropyl ether		108-20-3	N.D.		1	2	2
06059	Methyl Tertiary But	yl Ether	1634-04-4	6,300		10	20	20
06059	Toluene		108-88-3	N.D.		1	2	2
06059	Xylene (Total)		1330-20-7	N.D.		1	2	2
SW-846	8015B	GC Volatil	es	ug/l		ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	210		50	100	1
SW-846	8015B	GC Extract	able TPH	ug/l		ug/l	ug/l	
06609	TPH-DRO CA C10-C28		n.a.	48	J	32	100	1

#### General Sample Comments

State of California Lab Certification No. 2116

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
06059	BTEX+5 Oxygenates+ETOH	SW-846 8260B	1	Z091523AA	06/02/2009 03:11	Michael A Ziegler	2
06059	BTEX+5 Oxygenates+ETOH	SW-846 8260B	1	Z091523AA	06/02/2009 03:36	Michael A Ziegler	20
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z091523AA	06/02/2009 03:11	Michael A Ziegler	2
01163	GC/MS VOA Water Prep	SW-846 5030B	2	Z091523AA	06/02/2009 03:36	Michael A Ziegler	20
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09147B08B	06/01/2009 23:03	Carrie E Youtzy	1
01146	GC VOA Water Prep	SW-846 5030B	1	09147B08B	06/01/2009 23:03	Carrie E Youtzy	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	2	091460016A	05/29/2009 16:13	Lisa A Reinert	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	091460016A	05/27/2009 01:45	Roman Kuropatkin	1



2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 5681582

Group No. 1146163

CA

Chevron

QA-T-090520 NA Water Facility #94800 BTST

1700 Castro St-Oakland T0600102076 QA

Collected: 05/20/2009 13:45 Account Number: 10991

Submitted: 05/23/2009 10:30

Reported: 06/03/2009 at 16:02 6001 Bollinger Canyon Rd L4310

Discard: 07/04/2009 San Ramon CA 94583

OA-QA

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
SW-846	8260B GC/MS Vol	atiles	ug/l	ug/l	ug/l	
06054	Benzene	71-43-2	N.D.	0.5	1	1
06054	Ethylbenzene	100-41-4	N.D.	0.5	1	1
06054	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1	1
06054	Toluene	108-88-3	N.D.	0.5	1	1
06054	Xylene (Total)	1330-20-7	N.D.	0.5	1	1
SW-846	5 8015B GC Volati	les	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	100	1

#### General Sample Comments

State of California Lab Certification No. 2116

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	Z091513AA	06/01/2009 03:43	Michael A Ziegler	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z091513AA	06/01/2009 03:43	Michael A Ziegler	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09147B08B	06/01/2009 14:28	Carrie E Youtzy	1
01146	GC VOA Water Prep	SW-846 5030B	1	09147B08B	06/01/2009 14:28	Carrie E Youtzy	1



2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

### Quality Control Summary

Client Name: Chevron Group Number: 1146163

Reported: 06/03/09 at 04:02 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

#### Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank MDL**	Blank <u>LOQ</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: Z091513AA	Sample numb	per(s): 56	81582						
Benzene	N.D.	0.5	1	uq/l	93	89	80-116	4	30
Ethylbenzene	N.D.	0.5	1	uq/l	97	93	80-113	5	30
Methyl Tertiary Butyl Ether	N.D.	0.5	1	ug/l	99	98	78-117	1	30
Toluene	N.D.	0.5	1	ug/l	95	91	80-115	5	30
Xylene (Total)	N.D.	0.5	1	ug/l	98	93	81-114	5	30
Batch number: Z091523AA	Sample numb	ber(s): 56	81580-568	1581					
t-Amyl methyl ether	N.D.	0.5	1	ug/l	91		78-117		
Benzene	N.D.	0.5	1	ug/l	90		80-116		
t-Butyl alcohol	N.D.	2.	5	ug/l	98		74-116		
Ethanol	N.D.	50.	250	ug/l	100		40-158		
Ethyl t-butyl ether	N.D.	0.5	1	ug/l	88		75-118		
Ethylbenzene	N.D.	0.5	1	ug/l	95		80-113		
di-Isopropyl ether	N.D.	0.5	1 1 1	ug/l	94		71-124		
Methyl Tertiary Butyl Ether	N.D.	0.5	1	ug/l	95		78-117		
Toluene	N.D.	0.5		ug/l	94		80-115		
Xylene (Total)	N.D.	0.5	1	ug/l	96		81-114		
Batch number: Z091531AA	Sample numb		81577-568						
Benzene	N.D.	0.5	1	ug/l	87		80-116		
Ethanol	N.D.	50.	250	ug/l	81		40-158		
Ethylbenzene	N.D.	0.5	1	ug/l	89		80-113		
Methyl Tertiary Butyl Ether	N.D.	0.5	1	ug/l	90		78-117		
Toluene	N.D.	0.5	1	ug/l	90		80-115		
Xylene (Total)	N.D.	0.5	1	ug/l	90		81-114		
Batch number: 09147B08B	Sample numb								
TPH-GRO N. CA water C6-C12	N.D.	50.	100	ug/l	118	127	75-135	7	30
Batch number: 091460016A	Sample numb								
TPH-DRO CA C10-C28	N.D.	32.	100	ug/l	83	88	56-122	6	20

#### Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS <u>%REC</u>	MSD <u>%REC</u>	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Ratch number: 7091513AA	Sample	number(g)	. 5681582	IMCDK	P6776	57			

 Batch number:
 Z091513AA
 Sample number(s):
 56815

 Benzene
 99
 80-126

 Ethylbenzene
 102
 77-125

#### *- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.



2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

### Quality Control Summary

Client Name: Chevron Group Number: 1146163

Reported: 06/03/09 at 04:02 PM

### Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	<u>Limits</u>	RPD	MAX	Conc	Conc	RPD	Max
Methyl Tertiary Butyl Ether	106		72-126						
Toluene	101		80-125						
Xylene (Total)	103		79-125						
Batch number: Z091523AA	Sample	number(	s): 568158	0-56815	81 UNS	PK: P680466			
t-Amyl methyl ether	90	88	75-122	3	30				
Benzene	93	91	80-126	2	30				
t-Butyl alcohol	94	97	67-119	3	30				
Ethanol	93	90	37-164	3	30				
Ethyl t-butyl ether	90	89	74-122	2	30				
Ethylbenzene	98	90	77-125	8	30				
di-Isopropyl ether	85	92	70-129	8	30				
Methyl Tertiary Butyl Ether	97	92	72-126	3	30				
Toluene	95	91	80-125	4	30				
Xylene (Total)	97	90	79-125	7	30				
Batch number: Z091531AA	Sample	number(	s): 568157	7-56815	79 UNS	PK: P679657			
Benzene	90 -	93	80-126	3	30				
Ethanol	80	78	37-164	2	30				
Ethylbenzene	94	96	77-125	2	30				
Methyl Tertiary Butyl Ether	90	90	72-126	0	30				
Toluene	95	96	80-125	1	30				
Xylene (Total)	94	96	79-125	2	30				
Batch number: 09147B08B	Sample	number(	s): 568157	7-56815	82 UNS	PK: P678661			
TPH-GRO N. CA water C6-C12	109		63-154						

#### Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: TPH-DRO CA C10-C28 Batch number: 091460016A

Orthoterphenyl

5681577	76			
5681578	161*			
5681579	86			
5681580	92			
5681581	83			
Blank	92			
LCS	107			
LCSD	110			
Limits:	59-131			

Analysis Name: TPH-GRO N. CA water C6-C12

Batch number: 09147B08B

Trifluorotoluene-F

#### *- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.



2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

### Quality Control Summary

Client Name: Chevron Group Number: 1146163

Reported: 06/03/09 at 04:02 PM

### Surrogate Quality Control

Sel1577   103			-	-	
5681578         105           5681580         103           5681581         102           5681582         104           Blank         102           LCSD         123           LCSD         124           MS         111           Limits:         63-135           Analysis Name:         STEXX-MTRE by 8260B           Batch number:         2091513AA           Dibromofluoromethane         1,2-Dichloroethane-d4         Toluene-d8         4-Bromofluorobenzene           5681582         90         86           Blank         87         84         91         87           LCS         88         85         90         89           LCS         87         85         89         90           MS         89         86         91         89           Limits:         80-116         77-113         80-113         78-113           Analysis Name:         BTEX+5 Coxygenates+ETOH         85         89         86           F661581         84         83         90         86           F681580         87         85         89         86           F681581	5681577	103			
5681579         106           5681581         122           5681582         104           Blank         102           LCS         123           LCSD         124           MS         111           Limits:         63-135           Analysis Name: BTEX+MTBE by 8260B           Batch number: Z091513AR         Dibromofluoromethane         1,2-Dichloroethane-d4         Toluene-d8         4-Bromofluorobenzene           5691592         90         86           Blank         87         90         86           LCSD         88         85         90         89           LCSD         88         85         89         90           MS         89         86         91         89           Inmits:         80-116         77-113         80-113         78-113           Analysis Name: BTEX+5 Cxyspenates+ETOH         85         89         96           Batch number: Z091523AR         Dibromofluoromethane         1,2-Dichloroethane-d4         Toluene-d8         4-Bromofluorobenzene           5681580         87         85         89         96           Blank         88         85         90         90					
See   103   103   104   104   105   104   105   104   105   104   105   104   105   104   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105					
See   See   122   104   102   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103					
5681582         104           Blank         102           LCS         123           LCSD         124           MS         111           Limits:         63-135           Analysis Name:         BTEX*MTBE by 8260B           Batch number:         2091513AA           Dibromofluoromethane         1,2-Dichloroethane-d4         Toluene-d8           4-Bromofluorobenzene         6681582         90         86           Blank         87         84         91         87           LCS         88         85         90         89           LCSD         87         85         89         90           MS         89         86         91         89           Limits:         80-16         77-113         80-113         78-113           Analysis Name:         BTEX+5 Oxygenates+ETOH         85         89         86           5681580         87         85         89         86           5681581         84         83         90         85           LCS         88         85         90         85           Blank         88         85         90         86					
Blank   102					
LCS					
LCSD 124 MS 111  Limits: 63-135  Analysis Name: BTEX+MTBE by 8260B Batch number: 2091513AA Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene  5681582 90 87 Blank 87 84 91 87 LCS 88 85 90 89 LCSD 87 85 89 90 MS 89 86 91 89  Limits: 80-116 77-113 80-113 78-113  Analysis Name: BTEX+5 Oxygenates+ETOH Batch number: 2091523AA Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene  5681580 87 85 89 86 Blank 88 87 91 86 S681581 84 83 90 85 Blank 88 87 91 87 LCS 88 88 85 90 90 MSD 87 86 86 90 87  Analysis Name: BTEX, MTBE, ETOH Batch number: 2091531AA Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene  5681577 86 85 92 87 Batch number: 2091531AA Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene  5681579 86 85 92 87 S681579 85 84 91 90 91 S681579 85 84 91 96 S681579 85 84 91 96 S681579 85 87 85 90 91 S681579 85 84 91 86 S681579 85 87 87 90 88 S68158 87 90 88 S68158 87 90 88 S68158 90 80 88 S68158 90 80 80 S68158 90					
MS					
Analysis Name: BTEX+MTBE by 8260B Batch number: Z091513AA					
## Part	MS	111			
### Batch number: Z091513AA   1,2-Dichloroethane-d4   Toluene-d8   4-Bromofluorobenzene   5681582   90	Limits:	63-135			
Dibromofluoromethane	Analysis N	Name: BTEX+MTBE by 8260B			
Seal	Batch numb		1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	m-1 10	4. D
Red		Dibromoliuoromethane	1,2-Dichioroethane-d4	Toruene-d8	4-Bromorruorobenzene
Blank	5681582	90	87	90	86
LCS 88 85 87 85 89 90 89   LCSD 87 85 89 90 90 89   Limits: 80-116 77-113 80-113 78-113    Analysis Name: BTEX+5 Oxygenates+ETOH Batch number: Z091523AA Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene 5681580 87 85 89 86   S681581 84 83 90 85 85 89 86   LCS 88 85 90 90 90 90 85   MSD 87 86 85 90 88   Limits: 80-116 77-113 80-113 78-113    Analysis Name: BTEX, MTBE, ETOH Batch number: Z091531AA Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene 5681577 86 85 90 90 91   S681577 86 85 90 91 91   S681578 87 85 90 91 91   S681579 85 84 91 85   S681579 85 84 91 85   S681579 85 84 91 86   S681579 85 84 91 86 86 85 90 85   S681579 85 84 91 86 86 85 90 85   S681579 85 84 91 86 86 86 85 90 85   S681579 85 84 91 86 86 86 85 90 85   S681579 85 84 91 86 86 86 85 90 85   S681579 85 84 91 86 86 86 85 90 85   S681579 85 86 86 90 85   S681579 85 86 86 90 85   S681579 85 86 86 86 90 85   S681579 85 86 86 86 90 86 86 86 86 90 89 89 89 89 80 80 80 80 80 80 80 80 80 80 80 80 80					
LCSD					
MS         89         86         91         89           Limits:         80-116         77-113         80-113         78-113           Analysis Name:         BTEX+5 Oxygenates+ETOH Batch number:         Z091523AA         A-Bromofluorobenzene           5681580         87         85         89         86           5681581         84         83         90         85           Blank         88         87         91         87           LCS         88         85         90         90           MSD         87         86         90         88           Limits:         80-116         77-113         80-113         78-113           Analysis Name:         BTEX, MTBE, ETOH Batch number:         Z091531AA         78-113         78-113           Analysis Name:         BTEX, MTBE, ETOH Batch number:         2091531AA         70 plothloroethane-d4         Toluene-d8         4-Bromofluorobenzene           5681577         86         85         90         91           5681578         87         85         90         91           5681579         85         84         91         86           Blank         88         85         90 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
Limits: 80-116 77-113 80-113 78-113  Analysis Name: BTEX+5 Oxygenates+ETOH Batch number: Z091523AA Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene 5681580 87 85 89 86 5681581 84 83 90 85 Blank 88 87 91 87 LCS 88 85 90 90 90 90 MS 88 85 91 90 90 MS 88 85 91 90 88 85 91 90 88 85 91 90 88 85 91 90 88 85 91 90 88 85 91 90 88 85 91 90 88 85 91 90 88 85 91 90 88 85 91 90 88 85 91 90 88 85 91 90 88 85 91 90 88 85 91 90 88 85 91 90 88 85 91 90 90 90 90 90 90 90 90 90 90 90 90 90					
Analysis Name: BTEX+5 Oxygenates+ETOH Batch number: Z091523AA Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene  5681580 87 85 89 86 5681581 84 83 90 85 Blank 88 87 91 87 LCS 88 85 90 90 90 MS 88 85 91 90 MSD 87 86 90 88  Limits: 80-116 77-113 80-113 78-113  Analysis Name: BTEX, MTBE, ETOH Batch number: Z091531AA Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene  5681578 87 85 90 91 5681579 85 84 91 86 Blank 88 85 90 91 5681579 85 84 91 86 Blank 88 85 90 85 LCS 87 87 90 88 MSD 87 90 88 MSD 87 90 88 MSD 87 90 88	MS	69	00	91	63
Batch number: Z091523AA	Limits:	80-116	77-113	80-113	78-113
Batch number: Z091523AA	Analweie N	Jame: BTFX+5 Ovvgenateg+FT	OH		
Dibromofluoromethane	Ratch numb	name. BIEATS Oxygenacester	OII		
5681580         87         85         89         86           5681581         84         83         90         85           Blank         88         87         91         87           LCS         88         85         90         90           MSD         87         86         91         90           MSD         87         86         90         88           Limits:         80-116         77-113         80-113         78-113           Analysis Name:         BTEX, MTBE, ETOH         Batch number:         Z091531AA         78-113           Dibromofluoromethane         1,2-Dichloroethane-d4         Toluene-d8         4-Bromofluorobenzene           5681577         86         85         90         91           5681578         87         80         91         86           Blank         88         95         90         85           LCS         87         87         90         88           MS         87         90         88           MS         86         86         90         89	Datell Hulli		1 2-Dichloroethane-d/	Toluene-d8	1-Bromofluorobenzene
5681581       84       83       90       85         Blank       88       87       91       87         LCS       88       85       90       90         MSD       87       86       90       88         Limits:       80-116       77-113       80-113       78-113         Analysis Name:       BTEX, MTBE, ETOH       Batch number:       Z091531AA       78-113         Dibromofluoromethane       1,2-Dichloroethane-d4       Toluene-d8       4-Bromofluorobenzene         5681577       86       85       92       87         5681578       87       85       90       91         5681579       85       84       91       86         Blank       88       85       90       85         LCS       87       87       90       88         MS       87       87       90       88         MSD       86       86       90       89		DIDIOMOTIUOIOMECHANE	1,2-Dichioloechane-d4	TOTUETIE-U0	4-BIOMOII dOI ODEMZEME
5681581       84       83       90       85         Blank       88       87       91       87         LCS       88       85       90       90         MSD       87       86       90       88         Limits:       80-116       77-113       80-113       78-113         Analysis Name:       BTEX, MTBE, ETOH       Batch number:       Z091531AA       78-113         Dibromofluoromethane       1,2-Dichloroethane-d4       Toluene-d8       4-Bromofluorobenzene         5681577       86       85       92       87         5681578       87       85       90       91         5681579       85       84       91       86         Blank       88       85       90       85         LCS       87       87       90       88         MS       87       87       90       88         MSD       86       86       90       89	5691590	97	9.5	9.0	9.6
Blank       88       87       91       87         LCS       88       85       90       90         MS       88       85       91       90         MSD       87       86       90       88         Limits:       80-116       77-113       80-113       78-113         Analysis Name:       BTEX, MTBE, ETOH       Batch number:       Z091531AA       4-Bromofluorobenzene         Dibromofluoromethane       1,2-Dichloroethane-d4       Toluene-d8       4-Bromofluorobenzene         5681577       86       85       90       91         5681578       87       85       90       91         5681579       85       84       91       86         Blank       88       85       90       85         LCS       87       87       90       85         LCS       87       87       90       88         MSD       86       86       90       89					
LCS       88       85       90       90         MS       88       85       91       90         MSD       87       86       90       88         Limits:       80-116       77-113       80-113       78-113         Analysis Name:       BTEX, MTBE, ETOH       Batch number:       Z091531AA       A-Bromofluorobenzene         Dibromofluoromethane       1,2-Dichloroethane-d4       Toluene-d8       4-Bromofluorobenzene         5681577       86       85       92       87         5681578       87       85       90       91         5681579       85       90       91       86         Blank       88       85       90       85         LCS       87       87       90       85         LCS       87       87       90       88         MSD       86       86       90       89					
MSD 87 86 90 88  Limits: 80-116 77-113 80-113 78-113  Analysis Name: BTEX, MTBE, ETOH Batch number: Z091531AA					
MSD 87 86 90 88  Limits: 80-116 77-113 80-113 78-113  Analysis Name: BTEX, MTBE, ETOH Batch number: Z091531AA					
Limits: 80-116 77-113 80-113 78-113  Analysis Name: BTEX, MTBE, ETOH Batch number: Z091531AA					
Analysis Name: BTEX, MTBE, ETOH Batch number: Z091531AA	MSD	87	86	90	88
Batch number:         Z091531AA         1,2-Dichloroethane-d4         Toluene-d8         4-Bromofluorobenzene           5681577         86         85         92         87           5681578         87         85         90         91           5681579         85         84         91         86           Blank         88         85         90         85           LCS         87         87         90         88           MS         87         90         88           MSD         86         86         90         89	Limits:	80-116	77-113	80-113	78-113
Dibromofluoromethane         1,2-Dichloroethane-d4         Toluene-d8         4-Bromofluorobenzene           5681577         86         85         92         87           5681578         87         85         90         91           5681579         85         84         91         86           Blank         88         85         90         85           LCS         87         87         90         88           MS         87         87         90         89           MSD         86         86         90         89	Analysis N	Name: BTEX, MTBE, ETOH			
5681577     86     85     92     87       5681578     87     85     90     91       5681579     85     84     91     86       Blank     88     85     90     85       LCS     87     87     90     88       MS     87     87     90     89       MSD     86     86     90     89	Batch numb	per: Z091531AA			
5681578     87     85     90     91       5681579     85     84     91     86       Blank     88     85     90     85       LCS     87     87     90     88       MS     87     87     90     89       MSD     86     86     90     89		Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5681579     85     84     91     86       Blank     88     85     90     85       LCS     87     87     90     88       MS     87     87     90     89       MSD     86     86     90     89	5681577	86	85	92	87
5681579     85     84     91     86       Blank     88     85     90     85       LCS     87     87     90     88       MS     87     87     90     89       MSD     86     86     90     89	5681578	87	85	90	91
Blank     88     85     90     85       LCS     87     87     90     88       MS     87     87     90     89       MSD     86     86     90     89		85			86
LCS 87 87 90 88 MS 87 87 90 89 MSD 86 86 90 89					
MS 87 87 90 89 MSD 86 86 90 89					
MSD 86 86 90 89					
Limits: 80-116 77-113 80-113 78-113	עפויו	00	00	<i>9</i> U	09
	Limits:	80-116	77-113	80-113	78-113

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

57209-03 10991/1146163/5681577-82 **CHAIN OF CUSTODY FORM** Chevron Environmental Management Company = 6111 Bollinger Canyon Rd. = San Ramon, CA 94583 COC **ANALYSES REQUIRED** Chevron Site Number: 94800 Chevron Consultant: CRA HH 11+ H H Preservation Codes Chevron Site Global ID: T0600102076 Address: 5900 Hollis St. Suite A Emeryville, H=HCL T= HVOCI Chevron Site Address: 1700 Casrto St., CAConsultant Contact: Charlotte Evans Thiosulfate GREASE SCREEN EPA 310.1 ALKALINITY Oakland, CA Consultant Phone No. 510-420-3351 N =HNO₃ B = NaOH Consultant Project No. 0905 20 - DR 2 S = H2SO4 O = Chevron PM: AARON COSTA ಳ 오 OXYGENATEST ğ Other Sampling Company: Blaine Tech Services Chevron PM Phone No.: (925)543-2961 413.1 Sampled By (Print): D. Raung 8 ☑ Retail and Terminal Business Unit (RTBU) Job EPA ⊠ Construction/Retail Job 크 Sampler Signature: -Ì. Other Lah Jemp. Blank Check Ethano! Charge Code: NWRTB-0094800-0-OML Lancaster Special 8 Time Temp. 22 METALS Instructions NWRTB 00SITE NUMBER-0-WBS MIBER SM2510B SPECIFIC CONDUCTIVITY Mg, Mn, Na Laboratories R Must meet lowest (WBS ELEMENTS: 3°C MTBE 1400 detection limits possible SITE ASSESSMENT: A1L REMEDIATION IMPLEMENTATION: R5L 0 1300 for 8260 Compounds Lancaster, PA (8015) SITE MONITORING: OML OPERATION MAINTENANCE & MONITORING: M1L X Lab Contact: Jill Parker 82 GRO SRO EPA6010/7000 TITLE BTEX [] × THIS IS A LEGAL DOCUMENT. ALL FIELDS MUST BE FILLED OUT 2425 New Holland Pike. EPA 418.1 TRPH [] EPA 8260B/GC/MS TPH-G II BTEX CORRECTLY AND COMPLETELY. Lancaster, PA 17601 EPA 6010 Ca, Fe, Oxys by Æ Phone No: S (717)656-2300 **EPA 8015B** EPA150.1 Hat BTCX SAMPLE ID # of Containers Notes/Comment Date Sample Time **Container Type** Field Point Name Top Depth Matrix b (yymmdd) 6 Helicas/ Francis MW-1 1410 HEL was / Andre W 090520 1415 MW-2 1/ 1435 mw.3 W 1345 mw-4 W MW.7 1455 W T 1345 Ha vers HEL LEGS X CA Date/Time Relinguished By Company Date/Time: Relinguished To Company Turnaround Time: Standard A 24 Hours□ 48 hours□ 72 BISBIS 5/20/09 5/20/09 1515 1605 Hours□ Other[] Date/Time Company Date/Time Relinguished To Company Sample Integrity: (Check by lab on arrival) Relinquished By Temp: 18-3-4 e 5/22/09 1375 UI intact: -On Ice: Religiuished To Company Company Date/Time w <223b2

# Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	1	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

**Inorganic Qualifiers** 

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

lifier	(uu	9	 u	٠, ٥	٠,

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.