Environmental Management Company 6001 Bollinger Canyon Rd, L4050 P.O. Box 6012 San Ramon, CA 94583-2324 Tel 925-842-1589 Fax 925-842-8370 Karen Streich Project Manager 10.342

April 24, ,2003

ChevronTexaco

DH

Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 Alameda County

APR 2 9 2003

Environmental Health

Re:

Chevron Service Station # 9-4800

Address: 1700 Castro Street, Oakland, CA

I have reviewed the attached routine groundwater monitoring report dated April 9, 2003

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Gettler-Ryan, Inc., upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct.

Sincerely,

Karen Streich Project Manager

Karen Streich

Enclosure: Report

April 9, 2003 G-R #386383

TO:

Mr. Robert Foss

Cambria Environmental Technology, Inc.

5900 Hollis Street, Suite A Emeryville, CA 94608 CC: Ms. Karen Streich

Chevron Products Company

P.O. Box 6004

San Ramon, California 94583

FROM:

Deanna L. Harding

Project Coordinator Gettler-Ryan Inc.

6747 Sierra Court, Suite J Dublin, California 94568 RE: Chevron Service Station

#n 40nn

#9-4800

1700 Castro Street Oakland, California

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
1	April 4, 2003	Groundwater Monitoring and Sampling Report First Quarter - Event of March 3, 2003

COMMENTS:

This report is being sent for your review. Please provide any comments/changes and propose any groundwater monitoring modifications for the next event prior to *April 23, 2003*, at which time the final report will be distributed to the following:

cc: Ms. Eva Chu, Alameda County Health Care Services, Dept. of Environmental Health, 1131 Harbor Bay Parkway, Suite 250, Alameda, CA 94502-6577

Mr. Greg Gurss, Gettler-Ryan Inc., 3140 Gold Camp Drive, Suite 170, Rancho Cordova, CA 95670

Enclosures

April 4, 2003 G-R Job #386383

Ms. Karen Streich Chevron Products Company P.O. Box 6004 San Ramon, CA 94583

RE: First Quarter Event of March 3, 2003

Groundwater Monitoring & Sampling Report

Chevron Service Station #9-4800

1700 Castro Street Oakland, California

Dear Ms. Streich:

This report documents the most recent groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R) at the referenced site. All field work was conducted in accordance with G-R Standard Operating Procedure - Groundwater Sampling (attached).

Static groundwater levels were measured and the wells were checked for the presence of separate-phase hydrocarbons. Static water level data, groundwater elevations, and separate-phase hydrocarbon thickness (if any) are presented in the attached Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells and submitted to a state certified laboratory for analyses. The field data sheets for this event are attached. Analytical results are presented in the table(s) listed below. The chain of custody document and laboratory analytical report are also attached.

Please call if you have any questions or comments regarding this report. Thank you.

Hardin,

Sincerely,

Deanna L. Harding Project Coordinator

Hagop Kevork P.E. No. C55734

Figure 1: Po

Potentiometric Map

Table 1: Groundwater Monitoring Data and Analytical Results
Table 2: Groundwater Analytical Results - Oxygenate Compounds

Attachments: Standard Operating Procedure - Groundwater Sampling

Field Data Sheets

Chain of Custody Document and Laboratory Analytical Reports

386383
FILE NAME: P:\ENNIRO\CHEVRON\9-4800\Q03-9-4800.0WG | Layout Tob: Pot1

Table 1
Groundwater Monitoring Data and Analytical Results

Chevron Service Station #9-4800 1700 Castro Street Oakland, California

WELL ID/	TOC*	GWE	DTW	трн-р	ТРН-G	В	T	E	х	MTBE
WELL ID/ DATË	(ft.)	(msl)	(ft.)	(ppb)	(ppb)	(pph)	(ppb)	(ppb)	(ppb)	(ppb)
JAIL	(1.)	(11636)	<u> </u>	<u> </u>						
/JW-1								30	150	<10
6/04/97	30.75	4.39	25.82	71 ¹	890	100	110	29	250	<10
9/16/97	30.75	4.85	25.90	75 ¹	1,600	210	210	60		<25
12/17/97	30.75	4.88	25.87	65 ¹	940	120	100	41	160	6.8
)3/18/98	30.75	5.90	24.85	771	530	91	39	22	65	14
06/28/98	30.75	5.92	24.83	140 ¹	1,100	220	140	37	120	49
)9/07/98	30.75	5.56	25.19	280¹	1,700	530	86	84	240	32
2/09/98	30.75	5.10	25.65	2401	1,700	240	130	100	270	32 14.1
03/11/99	30.75	5.30	25.45	98¹	353	53.9	28.6	20.5	56.1	
06/17/99	30.75	5.39	25.36	2171	810	270	150	95	340	15
09/29/99	30.75	5.13	25.62	153 ¹	659	76	49.7	35.1	118	12.6
12/14/99	30.75	5.07	25.68	188 ^{1,2}	2,760	287	199	139	502	<12.5
03/09/00 ³	30.75	5.54	25.21	166 ¹	1,590	238	94.9	72.2	247	22.3
06/10/00	30.75	5.73	25.02		1,460	242	47.8	83.8	151	97.3
09/30/00	30.75	5.30	25.45	240 ⁷	650 ⁶	130	49	69	190	21
12/22/00	30.75	5.05	25.70	200 ⁹	640 ⁶	110	33	58	160	68
03/01/01	30.75	5.25	25.50	2117	1,500 ⁶	210	67.9	109	320	87.3
05/04/01	30.75	5,41	25.34	130 ⁷	991	127	32.6	73.0	137	95.4
09/05/01	30.75	5.16	25.59	SAMPLED SEM	II-ANNUALLY					
12/21/01	30.75	5.17	25.58	210	2,000	220	16	110	400	34
03/15/02	30.75	5.60	25.15							
06/15/02	30.75	5.49	25.26	140	350	54	0.61	12	40	130
09/06/02	30.75	5.26	25.49	SAMPLED SEM	II-ANNUALLY					
12/06/02	30.75	5.12	25.63	2,900	900	71	2.1	39	150	34
03/03/03	30.75 3 0.75	5.46	25.29		MI-ANNUALLY				-	
03/03/03	30.73	3,40		-						
MW-2				اممما	12.000	790	30	420	1,700	4000
06/04/97	30.00	5.13	24.87	4,000 ¹	13,000	360	9.7	210	460	1500
09/16/97	30.00	5.06	24.94	2,2001	4,000	380 380	9.7 <10	200	460	2100
12/17/97	30.00	5.18	24.82	2,100 ¹	4,100		<50	350	630	13,000
03/18/98	30.00	6.43	23.57	3,700 ¹	8,400	1,800	340	710	2,300	3800
06/28/984	30.00	6.21	23.79	4,400 ¹	9,300	740	150	640	1,800	4500/4100
09/07/98	30.00	5.78	24.22	3,100 ¹	9,900	1,000	130	UTU	1,000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Table 1
Groundwater Monitoring Data and Analytical Results
Chevron Service Station #9-4800

evron Service Station #9 1700 Castro Street Oakland, California

* GWI (msl) 5.31 5.79 5.69 5.45 6.08 6.13 5.67 5.39 6.539 6.08 6.13 5.67 6.05 6.05 6.05	24.69 24.21 24.31 24.55 24.61 23.92 23.87 24.33 24.61 24.21 24.17 24.55 24.40 23.95	1,900 ¹ 2,700 ¹ 7,150 ¹ 3,030 ¹ 615 ^{1,2} 3,300 ¹ 1,800 ⁷ 870 ⁹ 1,320 ⁷ 3,100 ⁷ 2,200 980 2,200	8,500 12,500 27,000 6910 4230 15,300 7,360 3,600 ⁶ 1,500 ⁶ 2,340 ⁶ 11,900 3,300 1,100	(ppb) 860 1,520 2,200 582 282 1,110 560 280 100 171 199 170 58	(ppb) 74 42.2 260 11.1 12.3 39.4 40.7 <10 <1.3 <5.00 33.9 1.7	(ppb) 610 645 1500 491 284 1,040 627 420 160 238 1,420 310	960 2,250 5,900 1,170 690 3,030 1,280 430 59 157 290	(ppb) 2600/2600 3400/5050 4700 1970 631 2,470 1,260 290 380 864 3,890
5.31 5.79 5.69 5.45 6.08 6.13 6.13 5.67 5.39 5.79 5.39 5.79 5.83 6.05	24.21 24.31 24.55 24.61 23.92 3.87 24.33 24.61 24.21 24.17 24.55 24.40 23.95	2,700 ¹ 7,150 ¹ 3,030 ¹ 615 ^{1,2} 3,300 ¹ 1,800 ⁷ 870 ⁹ 1,320 ⁷ 3,100 ⁷ 2,200 980	12,500 27,000 6910 4230 15,300 7,360 3,600 ⁶ 1,500 ⁶ 2,340 ⁶ 11,900 3,300 1,100	1,520 2,200 582 282 1,110 560 280 100 171 199	42.2 260 11.1 12.3 39.4 40.7 <10 <1.3 <5.00 33.9	645 1500 491 284 1,040 627 420 160 238 1,420	2,250 5,900 1,170 690 3,030 1,280 430 59 157 290	3400/5050 4700 1970 631 2,470 1,260 290 380 864
5.79 5.69 5.45 5.39 6.08 6.13 5.67 5.39 5.79 5.83 5.45 6.05	24.21 24.31 24.55 24.61 23.92 3.87 24.33 24.61 24.21 24.17 24.55 24.40 23.95	2,700 ¹ 7,150 ¹ 3,030 ¹ 615 ^{1,2} 3,300 ¹ 1,800 ⁷ 870 ⁹ 1,320 ⁷ 3,100 ⁷ 2,200 980	12,500 27,000 6910 4230 15,300 7,360 3,600 ⁶ 1,500 ⁶ 2,340 ⁶ 11,900 3,300 1,100	1,520 2,200 582 282 1,110 560 280 100 171 199	42.2 260 11.1 12.3 39.4 40.7 <10 <1.3 <5.00 33.9	645 1500 491 284 1,040 627 420 160 238 1,420	2,250 5,900 1,170 690 3,030 1,280 430 59 157 290	3400/5050 4700 1970 631 2,470 1,260 290 380 864
5.79 5.69 5.45 5.39 6.08 6.13 5.67 5.39 5.79 5.83 5.45 6.05	24.21 24.31 24.55 24.61 23.92 3.87 24.33 24.61 24.21 24.17 24.55 24.40 23.95	2,700 ¹ 7,150 ¹ 3,030 ¹ 615 ^{1,2} 3,300 ¹ 1,800 ⁷ 870 ⁹ 1,320 ⁷ 3,100 ⁷ 2,200 980	12,500 27,000 6910 4230 15,300 7,360 3,600 ⁶ 1,500 ⁶ 2,340 ⁶ 11,900 3,300 1,100	1,520 2,200 582 282 1,110 560 280 100 171 199	42.2 260 11.1 12.3 39.4 40.7 <10 <1.3 <5.00 33.9	645 1500 491 284 1,040 627 420 160 238 1,420	2,250 5,900 1,170 690 3,030 1,280 430 59 157 290	3400/5050 4700 1970 631 2,470 1,260 290 380 864
5.69 5.45 5.39 6.08 6.13 5.67 5.39 5.79 5.83 5.45 6.05	24.31 24.55 24.61 23.92 23.87 24.33 24.61 24.21 24.21 24.17 24.55 24.40 23.95	7,150 ¹ 3,030 ¹ 615 ^{1,2} 3,300 ¹ 1,800 ⁷ 870 ⁹ 1,320 ⁷ 3,100 ⁷ 2,200 980	27,000 6910 4230 15,300 7,360 3,600 ⁶ 1,500 ⁶ 2,340 ⁶ 11,900 3,300 1,100	2,200 582 282 1,110 560 280 100 171 199	260 11.1 12.3 39.4 40.7 <10 <1.3 <5.00 33.9	1500 491 284 1,040 627 420 160 238 1,420	5,900 1,170 690 3,030 1,280 430 59 157 290	4700 1970 631 2,470 1,260 290 380 864
5.45 5.39 6.08 6.13 5.67 5.39 5.79 5.83 5.45 6.05	24.55 24.61 23.92 23.87 24.33 24.61 24.21 24.17 3 24.55 24.40 23.95	3,030 ¹ 615 ^{1,2} 3,300 ¹ 1,800 ⁷ 870 ⁹ 1,320 ⁷ 3,100 ⁷ 2,200 980	6910 4230 15,300 7,360 3,600 ⁶ 1,500 ⁶ 2,340 ⁶ 11,900 3,300 1,100	582 282 1,110 560 280 100 171 199	11.1 12.3 39.4 40.7 <10 <1.3 <5.00 33.9	491 284 1,040 627 420 160 238 1,420	1,170 690 3,030 1,280 430 59 157 290	1970 631 2,470 1,260 290 380 864
5.39 6.08 6.13 5.67 5.39 5.79 5.83 5.45 5.60 6.05	24.61 23.92 23.87 24.33 24.61 24.21 24.17 24.55 24.40 23.95	615 ^{1.2} 3,300 ¹ 1,800 ⁷ 870 ⁹ 1,320 ⁷ 3,100 ⁷ 2,200 980	4230 15,300 7,360 3,600 ⁶ 1,500 ⁶ 2,340 ⁶ 11,900 3,300 1,100	282 1,110 560 280 100 171 199	12.3 39.4 40.7 <10 <1.3 <5.00 33.9	284 1,040 627 420 160 238 1,420	690 3,030 1,280 430 59 157 290	631 2,470 1,260 290 380 864
6.08 6.13	23.92 23.87 24.33 24.61 24.21 24.17 24.55 24.40 23.95	3,300 ¹ 1,800 ⁷ 870 ⁹ 1,320 ⁷ 3,100 ⁷ 2,200 980	15,300 7,360 3,600 ⁶ 1,500 ⁶ 2,340 ⁶ 11,900 3,300 1,100	1,110 560 280 100 171 199 170	39.4 40.7 <10 <1.3 <5.00 33.9	1,040 627 420 160 238 1,420	3,030 1,280 430 59 157 290	2,470 1,260 290 380 864
6.13 5.67 5.39 5.79 5.83 5.45 6.05	23.87 24.33 24.61 24.21 24.17 3 24.55 24.40 23.95	1,800 ⁷ 870 ⁹ 1,320 ⁷ 3,100 ⁷ 2,200	7,360 3,600 ⁶ 1,500 ⁶ 2,340 ⁶ 11,900 3,300 1,100	560 280 100 171 199 170	40.7 <10 <1.3 <5.00 33.9	627 420 160 238 1,420	1,280 430 59 157 290	1,260 290 380 864
5.67 5.39 5.79 5.83 5.45 5.60 6.05	24.33 24.61 24.21 24.17 3 24.55 24.40 23.95	1,800 ⁷ 870 ⁹ 1,320 ⁷ 3,100 ⁷ 2,200 980	3,600 ⁶ 1,500 ⁶ 2,340 ⁶ 11,900 3,300 1,100	280 100 171 199 170	<10 <1.3 <5.00 33.9	420 160 238 1,420	430 59 157 290	290 380 864
5.39 5.79 5.83 5.45 5.60 6.05	24.61 24.21 24.17 24.55 24.40 23.95	870° 1,320 ⁷ 3,100 ⁷ 2,200 980	1,500 ⁶ 2,340 ⁶ 11,900 3,300 1,100	100 171 199 170	<1.3 <5.00 33.9	160 238 1,420	59 157 290	380 864
5.39 5.79 5.83 5.45 5.60 6.05	24.61 24.21 24.17 24.55 24.40 23.95	1,320 ⁷ 3,100 ⁷ 2,200 980	2,340 ⁶ 11,900 3,300 1,100	171 199 170	<5.00 33.9	238 1,420	157 290	864
5.79 5.83 5.45 5.60 6.05	24.21 24.17 24.55 24.40 23.95	3,100 ⁷ 2,200 980	11,900 3,300 1,100	199 170	33.9	1,420	290	
5.83 5.45 5.60 6.05	24.17 24.55 24.40 23.95	2,200 980	3,300 1,100	170				3,890
5,45 5,60 6.05	24.55 24.40 23.95	980	1,100		1.7	210		
5.60 6.05	24,40 23.95			50		310	110	1,100
6.05	23.95	2,200		30	0.72	120	14	450
			5,000	250	9.1	470	430	1,800
7,0٦	24.16	3,700	5,200	240	5.2	540	210	2,200
5.59		2,200	2,100	84	1.4	250	30	1,000
5.44		730	780	21	< 0.50	58	3.4	480
5.79		3,500	4,800	220	1.9	650	46	4,400
		,						
2 5.27	26.05	<50	190	26	20	1.5	16	8.2
					53	6.1	30	21
							37	21
							30	94
							13	150
							19	120
					93		72	150
								144
								210
								156
								995
5.55								539
2 2 2 2	5.22 6.42 6.39 5.97 5.41 5.85 5.90 5.61	5.22 26.10 6.42 24.90 6.39 24.93 5.97 25.35 5.41 25.91 5.85 25.47 5.90 25.42 5.61 25.71	5.22 26.10 <50	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

2

Table 1
Groundwater Monitoring Data and Analytical Results
Chevron Service Station #9-4800

1700 Castro Street
Oakland, California

WELL ID/	TOC*	GWE	DTW	TPH-D	TPH-G	В	T	E	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(ppb)	(ppb)	(pph)	(ppb)	(ppb)	(ppb)	(ppb)
MW-3 (cont)	21.22	<i>c</i> 20	25.03		359	63.8	27.8	10.5	35.4	393
06/10/00	31.32	6.29		1008	220 ⁶	42	33	12	38	67
09/30/00	31.32	5.79	25.53	110°	370 ⁶	96	48	18	58	180
12/22/00	31.32	5.52	25.80	110 144 ⁷	912 ⁶	218	89.0	36.0	110	310
03/01/01	31.32	5.75	25.57	<50	1,260	146	79.6	38.2	101	1,070
05/04/01	31.32	5.96	25.36	SAMPLED SEM	**					
09/05/01	31.32	5.61	25.71	180	850	160	11	32	84	300
12/21/01	31.32	5.67	25.65		650					
03/15/02	31.32	6.15	25.17		550	110	3.0	23	58	590
06/15/02	31.32	6.01	25.31	<50						
09/06/02	31.32	5.74	25.58	SAMPLED SEM	350	60	1.3	11	32	530
12/06/02	31.32	5.56	25.76	160				_	_	
03/03/03	31.32	5.92	25.40	SAMPLED SEM	11-ANNUALLY	-		_		
MW-4					120	3.1	<0.5	<0.5	7.7	4,700
04/08/99	30.13				130 590	5.1 58	<5.0	<5.0	160	6,200
06/17/99	30.13	5.19	24.94	3,780 ¹		38 10.7	<2.5	5.51	236	7,840
09/29/99	30.13	4.96	25.17	1,130 ¹	692	<10.7	3.83	<10	94.6	4,470
12/14/99	30.13	4.91	25.22	571 ^{1,2}	625		1.18	<0.5	71.4	3,140
03/09/00 ³	30.13	5.45	24.68	600¹	402	3.76	<10.0	<10.0	97.8	3,080
06/10/00	30.13	5.53	24.60	7	<1,000	13.2	0.67	6.3	60	3,300
09/30/00	30.13	5.09	25.04	1,400 ⁷	280 ⁶	21	<0.50	1.3	25	2,200
12/22/00	30.13	4.90	25.23	740 ⁹	240 ⁶	2.2		1.34	12.1	1,220
03/01/01	30.13	5.15	24.98	661	193	2.31	< 0.500	17.1	89.4	2,390
05/04/01	30.13	5.25	24.88	1,1007	722	12.0	<5.00	17.1	260	2,300
09/05/01	30.13	4.96	25.17	2,500	1,400	23	2.2		32	860
12/21/01	30.13	5.06	25.07	1,100	310	2.9	<0.50	2.6		2,700
03/15/02	30.13	5.44	24.69	3,100	520	5.0	<0.50	15	6.8	2,700 2,200/2,400 ¹²
06/15/02	30.13	5.29	24.84	2,400	950	16	3.6	41	100	
09/06/02	30.13	5.07	25.06	2,600	640	9.6	0.52	9.8	28	1, 70 0 730
12/06/02	30.13	4.93	25.20	1,400	280	3.6	<0.50	1.7	<1.5	
03/03/03	30.13	5.28	24.85	1,500	280	2.7	<0.50	7.3	2.3	910

Table 1
Groundwater Monitoring Data and Analytical Results

Chevron Service Station #9-4800 1700 Castro Street Oakland, California

WELL ID/	TOC*	GWE	DTW	трн-р	TPH-G	В	T	E	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
DATE	<u> </u>	(may_	0.77							
MW-5									-0.5	-2.5
04/08/99	30.93			<50	<50	<0.5	<0.5	<0.5	<0.5	<2.5
06/17/99	30.93	4.93	26.00	53.8 ¹	<50	<0.5	<0.5	<0.5	<0.5	<2.5
09/29/99	30.93	4.73	26.20	<50	<50	<0.5	<0.5	<0.5	<0.5	<2.5
12/14/99	30.93	4.61	26.32	<50 ²	<50	<0.5	<0.5	<0.5	<0.5	0.598
03/09/003	30.93	5.00	25.93	<50	<50	< 0.5	<0.5	<0.5	<0.5	<2.5
06/10/00	30.93	5.21	25.72		<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50
09/30/00	30.93	4.79	26.14	130 ⁸	<50	< 0.50	<0.50	< 0.50	<0.50	<2.5
12/22/00	30.93	4.60	26.33	250 ⁸	<50	< 0.50	< 0.50	< 0.50	< 0.50	9.1
03/01/01	30.93	4.77	26.16	77.47	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50
05/04/01	30.93	4.89	26.04	NOT SAMPLED	DUE TO INSUFFI	CIENT WATER				
09/05/01	30.93	4.72	26.21	SAMPLED SEM						••
12/21/01	30.93	4.73	26.20	110	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
03/15/02	30.93	5.06	25.87							
06/15/02	30.93	4.95	25.98	<50	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
09/06/02	30.93	4.75	26.18	SAMPLED SEM	II-ANNUALLY					
12/06/02	30.93	4.61	26.32	<50	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
03/03/03	30.93	4.94	25.99		MI-ANNUALLY					-
03/03/03	34.73									
MW-6					-50	<0.5	<0.5	<0.5	<0.5	4.5
04/08/99	30.58				<50	<0.5	<0.5	<0.5	<0.5	<2.5
06/17/99	30.58	5.99	24.59	<50	<50		<0.5	<0.5	<0.5	4,46
09/29/99	30.58	5.81	24.77	<50	<50	< 0.5	<0.5 <0.5	<0.5	<0.5	4.13
12/14/99	30.58	5.74	24.84	<50 ²	<50	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5	2.82
03/09/003	30.58	6.49	24.09	<50	<50	<0.5		<0.500	<0.500	<2.50
06/10/00	30.58	6.58	24.00		<50.0	<0.500	<0.500		<0.50	7.3
09/30/00	30.58	6.00	24.58	1108	<50	<0.50	< 0.50	<0.50	<0.50	4.5
12/22/00	30.58	5.75	24.83	1008	<50	<0.50	<0.50	< 0.50		7.52
03/01/01	30.58	6.07	24.51	1417	<50.0	< 0.500	<0.500	<0.500	<0.500	2.74
05/04/01	30.58	6.26	24.32	<50	<50.0	<0.500	<5.00	<5.00	<5.00	
09/05/01	30.58	5.99	24.59	SAMPLED SEM						 0 <i>E</i>
12/21/01	30.58	5.93	24.65	200	<50	<0.50	< 0.50	<0.50	<1.5	8.5
03/15/02	30.58	6.44	24.14				' 			

As of 03/03/03

Table 1
Groundwater Monitoring Data and Analytical Results
Chevron Service Station #9-4800

evron Service Station #9-4 1700 Castro Street Oakland, California

Films I was	TOCH	GWE	DTW	TPH-D	TPH-G	В	T	E	Х	MTBE
WELL ID/ DATE	TOC*	GWE (msl)	(ft.)	(ppb)	(ppb)	(pph)	(ppb)	(ppb)	(ppb)	(ppb)
DATE	(/i.)	(msi)								
MW-6 (cont)							-0.50	<0.50	<1.5	4.3
06/15/02	30.58	6.25	24.33	<50	<50	<0.50	<0.50	~0.30 		
09/06/02	30.58	5.98	24.60	SAMPLED SEM				<0.50	<1.5	5.0
12/06/02	30.58	5.79	24.79	64	<50	< 0.50	< 0.50		~1.5	
03/03/03	30.58	6.14	24.44	SAMPLED SEN	11-ANNUALLY				-	
MW-7							-6.00	<5,00	<5.00	567/470 ¹²
05/04/0111	31.90	4.03	27.87	<50	<50.0	<0.500	<5.00	<0.50	<1.5	1,400/1,300 ¹²
09/05/01	31.90	3.86	28.04	<50	<50	<0.50	<0.50	<0.50	<1.5	620/670 ¹²
12/21/01	31.90	3.04	28.86	210	<50	<0.50	<0.50	<0.50	<1.5	320/350 ¹²
03/15/02	31.90	4.18	27.72	<50	<50	<0.50	<0.50	<0.50	<1.5	850/960 ¹²
06/15/02	31.90	4.06	27.84	<50	<50	<0.50	<0.50	<0.50	<1.5	1,900
09/06/02	31.90	3.93	27.97	<50	59	<0.50	<0.50		<1.5	2,200
12/06/02	31.90	3.87	28.03	<50	68	<0.50	<0.50	<0.50	<1.5	1,300
03/03/03	31.90	4.21	27.69	<50	<50	<0.50	<0.50	<0.50	<1.5	L ₃ JUU
TRIP BLANI	7									
06/04/97					<50	< 0.5	<0.5	<0.5	<0.5	<2.5
09/16/97					<50	< 0.5	<0.5	< 0.5	<0.5	<2.5
12/17/97					<50	< 0.5	<0.5	< 0.5	< 0.5	<2.5
03/18/98					<50	< 0.5	<0.5	< 0.5	<0.5	<2.5
06/28/98					<50	< 0.5	< 0.5	<0.5	<0.5	<2.5
09/07/98					<50	<0.5	< 0.5	<0.5	<0.5	<2.5
12/09/98					<50	< 0.5	< 0.5	<0.5	<0.5	<2.5
03/11/99					<50	< 0.5	< 0.5	<0.5	<0.5	<5.0
					<50	< 0.5	<0.5	< 0.5	<0.5	<2.5
06/17/99 12/14/99	 	 			<50	< 0.5	<0.5	<0.5	<0.5	<2.5
03/09/00 ³					<50	<0.5	<0.5	<0.5	<0.5	<2.5
03/09/00					<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50
06/10/00					<50	< 0.50	< 0.50	< 0.50	<0.50	<2.5
12/22/00 ¹⁰					<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
					<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50
03/01/01		·								

Table 1 Groundwater Monitoring Data and Analytical Results

Chevron Service Station #9-4800 1700 Castro Street Oakland, California

WELL ID/	TOC*	GWE (msl)	DTW (ft.)	TPH-D (ppb)	TPH-G (ppb)	B (ppb)	T (ppb)	E (ppb)	X (ppb)	МТВЕ <i>(ррь)</i>
DATE	(ft.)	(mst)	<u> </u>	(PP5)		32.2	<u></u>			
TRIP BLANK	(cont)				.co o	<0.500	<5.00	<5.00	<5.00	<0.500
05/04/01					<50.0	<0.500				<2.5
09/05/01					<50	<0.50	<0.50	<0.50	<1.5	~2.3
QA								.o. co	~1.E	<2.5
12/21/01					<50	< 0.50	< 0.50	<0.50	<1.5	
03/15/02					<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
					<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
06/15/02					<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
09/06/02					<50	<0.50	< 0.50	<0.50	<1.5	<2.5
12/06/02					~20	~0.50	V., V			
03/03/03 ¹³				-						

Table 1

Groundwater Monitoring Data and Analytical Results

Chevron Service Station #9-4800 1700 Castro Street Oakland, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to June 10, 2000, were compiled from reports prepared by Blaine Tech Services, Inc.

TOC = Top of Casing

TPH-G = Total Petroleum Hydrocarbons as Gasoline

-- = Not Measured/Not Analyzed

(ft.) = Feet

B = Benzene

(ppb) = Parts per Billion

GWE = Groundwater Elevation

T = Toluene

QA = Quality Assurance/Trip Blank

(msl) = Mean sea level

E = Ethylbenzene

DTW = Depth to Water

X = Xylenes

TPH-D = Total Petroleum Hydrocarbons as Diesel

MTBE = Methyl tertiary butyl ether

- * TOC elevation was surveyed on April 11, 2001, by Virgil Chavez Land Surveying. The benchmark for the survey was the top of curb at the south end of the return at the southeast corner of Castro Street and 18th Street. (Benchmark Elevation = 29.65 feet, msl).
- Chromatogram pattern indicates an unidentified hydrocarbon.
- Sample was extracted outside EPA recommended holding time.
- TPH-G, B, T, E, X and MTBE was analyzed outside EPA recommended holding time.
- ⁴ EPA Method 8240.
- 5 Confirmation run.
- 6 Laboratory report indicates gasoline C6-C12.
- Laboratory report indicates unidentified hydrocarbons C9-C24.
- R Laboratory report indicates unidentified hydrocarbons >C16.
- 9 Laboratory report indicates unidentified hydrocarbons C9-C40.
- Laboratory report indicates this sample was analyzed outside of the EPA recommended holding time.
- Well development performed.
- 12 MTBE by EPA Method 8260.
- Due to laboratory error the trip blank sample was not analyzed.

Table 2
Groundwater Analytical Results - Oxygenate Compounds

Chevron Service Station #9-4800 1700 Castro Street Oakland, California

WELL ID/	ETHANOL (65b)	TBA (ρpb)	MTBE (ppb)	DIPE (ppb)	ETBE (ppb)	TAME (ppb)
DATE	(pph)	(VPV)	NPPO		N. C.	
MW-4						
04/08/99	<25,000	<5000	5400	<100	<100	<100
06/15/02		840	2,400	<2	<2	110
MW-5	~5AA	<100	<2.0	<2.0	<2.0	<2.0
04/08/99	<500	\100	~2.0	-2.0		
MW-6						
04/08/99	<500	<100	5.6	<2.0	<2.0	<2.0
MW-7						
05/04/01	<500	57	470	<2.0	<2.0	11
09/05/01	<500	<100	1,300	<2	<2	32
12/21/01	<500	<100	670	<2	<2	15
03/15/02	<500	<100	350	<2	<2	8
06/15/02		<100	960	<2	<2	18

Table 2

Groundwater Analytical Results - Oxygenate Compounds

Chevron Service Station #9-4800 1700 Castro Street Oakland, California

EXPLANATIONS:

Groundwater laboratory analytical results prior to May 4, 2001, were compiled from reports prepared by Blaine Tech Services, Inc.

TBA = Tertiary butyl alcohol

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

(ppb) = Parts per billion

-- = Not Analyzed

STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging. Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Chevron Products Company, the purge water and decontamination water generated during sampling activities is transported by IWM to McKittrick Waste Management located in McKittrick. California.

WELL MONITORING/SAMPLING FIELD DATA SHEET

ient/Facility #:	ChevronTexaco	#9-4800	Jo	ob Number:	386383			_
te Address:	1700 Castro Stre		 E	vent Date:	3.3.0	3		_ (inclus
ty:	Oakland, CA		s	ampler:	0.	0		_
<u> </u>							OK	
/eli ID	MW- \	Date M	onitored:	3.3	- Well (Condition: _	<u>OK</u>	
ell Diameter	2 in.		Volume	3/4"= 0.02	1"= 0.04	2"= 0.17	3*= 0.38	7
otal Depth	29.91 ft.		Factor (VF)	4 " = 0.66	5*= 1.02	6"= 1.50	12"= 5.80	
epth to Water	25.29 ft.		<u> </u>	3 (case volume) =			Os	
	xVF	//-	=x	3 (case volume) =		arted:		 (2400 hrs)
urge Equipment:		Sampli	ng Equipment:			ailed:		(2400 hrs
		-	able Bailer			o Product:		ft
isposable Bailer tainless Steel Baile	. —/—	•	re Bailer			o Water:		1
	· —		e Bailer			arbon Thickne		ft
itack Pump	/	Other:_			Visual (Confirmation/C	Description:	
Suction Pump	*	/			Climan	or / Absorbant	Sock (circle o	ne)
Srundfos					Amt Re	emoved from S	Skimmer:	ga
Other:					Amt Re	emoved from \	/Vell:	ga
					Produc	at Transferred	to:	
Start Time (purç Sample Time/D			r Conditions: Water Color:			Odor:		 .
Purging Flow R			t Description:					
	late. gpm.	<i></i>						
- -		f yes, Time:		_ Volume:	<u>/</u> 9	gal.		
Did well de-wa	ter?		Conductivity	Temperature	e /	gal. 15.0. (mg/L)	ORP (mV)	
Did well de-wa	ter?			· /	e /	5.0.	=	
Did well de-wa	ter?		Conductivity	Temperature	e /	5.0.	=	_
Did well de-wa	ter?		Conductivity	Temperature	e /	5.0.	=	— — —
Did well de-wa	ter?		Conductivity	Temperature	e /	5.0.	=	
Did well de-wa	ter?	pΗ	Conductivity (u mhos/cm)	Temperature (C/F)	e /	5.0.	=	
Did well de-wa	volume (gal.)	pH LAE	Conductivity	Temperature (C/F) FORMATION LABORAT	ORY	15.0. (mg/L)	(mV)	
Did well de-wa	volume (gal.)	pH	Conductivity (u mhos/cm)	Temperature (C/F) FORMATION E LABORAT LANCAS	ORY TPH	D.O. (mg/L) AM	(mV)	
Time (2400 hr.)	Volume (gal.)	pH LAB	Conductivity (u mhos/cm) ORATORY INI PRESERV. TYPE	Temperature (C/F) FORMATION LABORAT	ORY TPH	D.O. (mg/L) AM	(mV)	
Time (2400 hr.) SAMPLE ID	Volume (gal.) (#) CONTAINER x voa yiat	pH LAB	Conductivity (u mhos/cm) ORATORY INI PRESERV. TYPE	Temperature (C/F) FORMATION E LABORAT LANCAS	ORY TPH	D.O. (mg/L) AM	(mV)	Y
Time (2400 hr.) SAMPLE ID	Volume (gal.) (#) CONTAINER x voa yiat	pH LAB	Conductivity (u mhos/cm) ORATORY INI PRESERV. TYPE	Temperature (C/F) FORMATION E LABORAT LANCAS	ORY TPH	D.O. (mg/L) AM	(mV)	
Time (2400 hr.) SAMPLE ID	Volume (gal.) (#) CONTAINER x voa yiat	pH LAB	Conductivity (u mhos/cm) ORATORY INI PRESERV. TYPE	Temperature (C/F) FORMATION E LABORAT LANCAS	ORY TPH	D.O. (mg/L) AM	(mV)	-
Time (2400 hr.) SAMPLE ID	(#) CONTAINER x voa yiet x amber	pH LAB REPRIG. YES YES	Conductivity (u mhos/cm) ORATORY INI PRESERV. TYPE	Temperature (C/F) FORMATION E LABORAT LANCAS	ORY TPH	D.O. (mg/L) AM	(mV)	
Time (2400 hr.) SAMPLE ID MW- MW-	(#) CONTAINER x voa yiat	pH LAB REPRIG. YES YES	Conductivity (u mhos/cm) ORATORY INI PRESERV. TYPE	Temperature (C/F) FORMATION E LABORAT LANCAS	ORY TPH	D.O. (mg/L) AM	(mV)	

Add/Replaced Lock: _____

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility #: C	hevronTexaco	#9-480	D .	Job Number:	386383	
Site Address: 1	700 Castro Sti	reet		Event Date:	3.3 07	(inclusiv
City:	Dakland, CA			Sampler:	0.0.	
Well ID _	MW-2	Date	Monitored:	3.}	Well Condition: _O/c	······································
Well Diameter Total Depth	2 in.		Volume Factor (VF	3/4"= 0.02 4"= 0.66	1"= 0.04 2"= 0.17 3"= 0.0 5"= 1.02 6"= 1.50 12"= 5	
Depth to Water _	37.11 ft. 5.41 xv	F <u>.17</u>	= .919	x3 (case volume) =	Estimated Purge Volume:	gal.
Purge Equipment: Disposable Bailer Stainless Steel Bailer	<u>×</u>	Disp	pling Equipment: osable Bailer sure Bailer	<i>X</i>	Time Started: Time Bailed: Depth to Product: Depth to Water:	(2400 hrs) (2400 hrs) ft
Stack Pump Suction Pump		Disc Othe	rete Bailer er:		Hydrocarbon Thickness: Visual Confirmation/Description	on:
Grundfos Other:					Skimmer / Absorbant Sock (ci Arnt Removed from Skimmer: Arnt Removed from Well: Product Transferred to:	gal gal
Start Time (purge)	: 1015	Weat	her Conditions:	clone	ly	
Sample Time/Date	,		Water Color			•
Purging Flow Rate	e: <u> </u>	Sedime	ent Description		<u></u>	
Did well de-water	?	If yes, Tim	ie:	_ Volume:	gal.	
Time (2400 hr.)	Volume (gal.)	pH .	Conductivity (u mhos/cm)	Temperature (GF)		nV)
1617		7.50	165	19.3		
1019	<u> </u>	7.43	162	19.0		
1029		7.38	160	18.8		
SAMPLE ID	(#) CONTAINER	LA REFRIG.	BORATORY IN		RY ANALYSES	
MW- 2	X voa vial	YES	HCL	LANCASTE		
MW-	∂ x amber	YES	NP	LANGASTE		
COMMENTO						
COMMENTS:					· · · · · · · · · · · · · · · · · · ·	

Add/Replaced Plug: _____ Size:__

GETTLER-RYAN INC.

WELL MONITORING/SAMPLING **FIELD DATA SHEET**

lient/Facility #:	ChevronTexaco	#9-4800	Jo	b Number: 🗵	886383	
ite Address:	1700 Castro Sti	eet	E	vent Date:	3.3.03	(inclus
ity:	Oakland, CA		S	ampler:	0.0.	
Vell ID	MW- }	Date	Monitored:	3 - 3	Well Condition: (Ok
Vell Diameter	2 in.	Date				
			Volume	3/4"= 0.02	1 - 0.0-	r= 0.38 2= 5.80
otal Depth	76.38 tr.		Factor (VF)	4"= 0.66	5-1.02 0-7.00 1	4,44
epth to Water		F	=x3	(case volume) = E	stimated Purge Volume:	gal.
					Time Started:	(2400 hrs)
urge Equipment:			oling Equipment:		Time Bailed: Depth to Product:	(2400 hrs
Disposable Bailer		-	sable Bailer		Depth to Water:	n
Stainless Steel Baile	· <u>/</u>		sure Bailer		Hydrocarbon Thickness:	ft
Stack Pump Suction Pump		Disci Othe	ete Beiler r:		Visual Confirmation/Des	
Grundfos					Skimmer / Absorbant So	ck (circle one)
Other:					Amt Removed from Skin	nmer: ga
					Amt Removed from Well	
					Product Transferred to:_	
Purging Flow R Did well de-wat			nt Description: e:		gal.	
Did Well de-Wa	lei :	// // // // // // // // // // // // //			/ /	
Time (2400 hr.)	Volume (gal:)	pН	Conductivity (u mhos/cm)	Temperature (C/F)	D.O. (mg/L)	ORP (mV)
			DODATORY INC	OPMATION		
SAMPLE ID	(#) CONTAINER	LA REFRIG.	BORATORY INF			
SAMPLE ID	(#) CONTAINER	REFRIG.		LANCASTE	R TPH-G(8015)/BTEX+N	/
SAMPLE ID MW- MW-		REFRIG. YES	PRESERV. TYPE	LABORATO	R TPH-G(8015)/BTEX+N	
MW-	x voa via	REFRIG. YES	PRESERV. TYPE HCL	LANCASTE	R TPH-G(8015)/BTEX+N	/
MW-	x voa via	REFRIG. YES	PRESERV. TYPE HCL	LANCASTE	R TPH-G(8015)/BTEX+N	
MW-	x voa via x amber	YES YES	PRESERV. TYPE HCL	LANCASTE	R TPH-G(8015)/BTEX+N	
MW-	x voa via x amber	YES YES	PRESERV. TYPE HCL	LANCASTE	R TPH-G(8015)/BTEX+N	/

Add/Replaced Lock: _____

WELL MONITORING/SAMPLING FIELD DATA SHEET

Site Address: 17	hevronTexaco 700 Castro Str akland, CA		E	ob Number: 3 vent Date: _ ampler: _	86383 3.3.03 D.O.	(inclusiv
Well ID	MW- 4	Date	Monitored: 3	3.0}	Well Condition:	2k
Well Diameter Total Depth	2 in. うりよる ft.		Volume	3/4"= 0.02		= 0.38 "= 5.80
	3.41 xv		Factor (VF)		stimated Purge Volume:	
Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Other:	<u>+</u>	Sam Disp Pres	pling Equipment: osable Bailer sure Bailer rete Bailer	*	Time Started: Time Bailed: Depth to Product: Depth to Water: Hydrocarbon Thickness: Visual Confirmation/Described Absorbant Social Amt Removed from Well: Product Transferred to:	(2400 hrs) (2400 hrs) ft ft ff ft attription: k (circle one) mer:gel
Start Time (purge): Sample Time/Date Purging Flow Rate Did well de-water?	ファー gpm.	<u>⊘}</u> Sedime	water Color: Water Color: ent Description: ee: Conductivity (umhos/cm)	Volume:	Odor: gal. D.O. (mg/L)	ORP (mV)
(2400 hr.)	(gal.)		(a mnos/cm)			
0150	. 5	7.83	312	18.9		
0153	1.5	7.76	316 315	18.7 18.6		
		LA	BORATORY INFO	ORMATION		
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE		ANALYS	SES
MW- Cf	🤰 x voa vial	YES	HCL.	LANCASTER	TPH-G(8015)/BTEX+MT	BE(8021)
MW-	∑ x amber	YES	NP	LANCASTER	TPH-D	
COMMENTS:		 -				

Add/Replaced Plug: _____ Size:_

WELL MONITORING/SAMPLING FIELD DATA SHEET

lient/Facility #:	ChevronTexaco	#9-4800	١ .	Job Number:	386383	
ite Address:	1700 Castro Stro			Event Date:	3.3.03	(inclusi
City:	Oakland, CA			Sampler:	P.O.	
Vell ID	MW-5	Date	Monitored:	3-3	Well Condition:	OK
Vell Diameter	2 in.					3"= 0.38
Total Depth	27.96 ft.		Volume Factor (VF	3/4"= 0.02) 4"= 0.66	1"= 0.04 2"= 0.17 5"= 1.02 6"= 1.50	12"= 5.80
Depth to Water	25.99 ft.		1 20,01 (**			
opui to mator	xVF		_=	x3 (case volume) =	Estimated Purge Volume	e: gal.
				ه.	Time Started:	(2400 hrs)
urge Equipment:		Sam	pling Equipment	:	Time Bailed:	(2400 hrs)
Disposable Bailer		Disp	osable Bailer		Depth to Product	ft]
Stainless Steel Baile	er	Pres	sure Bailer		Depth to Water	ness: ft
Stack Pump		Disc	rete Bailer		Hydrocarbon Thicks	1633
Suction Pump	/	Othe	r:		Visual Confirmation	/Description.
Grundfos					Skimmer / Absorba	nt Sock (circle one)
Other:		-			Amt Removed from	
7	···				Amt Removed from	
					Product Transferre	d to:
Did well de-wa Time (2400 hr.	Volume	lf yes, Tim	Conductivity (u mhos/cm)	Volume: Temperature (C/F)		ORP (mV)
		LA	BORATORY IN			MALVOES
SAMPLE 10	(#) CONTAINER	REFRIG.	PRESERV. TY			EX+MTBE(8021)
MW-	x voa vial	YES	HCL	LANCAS"		EX-14110E(0021)
MW-	x amber	YES	NP	LANCAS	IER IFFE	
COMMENTS	s: Monitor	مادر				
	placed Lock:	را <u>دٍ</u>		Add/Renlace	ed Plug:	Size:

WELL MONITORING/SAMPLING FIELD DATA SHEET

	00 Castro Stre akland, CA	et		Event Date:	3.303	(inclus
	akland, CA	-				
/ell ID				Sampler:	<i>P.</i> 0.	
-·· · -	MW-6	Date	Monitored:	3.3	Well Condition:	0K
Vell Diameter	2 in.		Volume	3/4"= 0.02	1"= 0.04 2"= 0.17	3"= 0.38
otal Depth	28.08 ft.		Factor (Vi		5"= 1.02 6"= 1.50	12*≈ 5.80
epth to Water	24.44 ft.		<u> </u>			
_	xVF		=	x3 (case volume) =	Estimated Purge Volume	
urge Equipment:	_	San	pling Equipment	t:	Time Started:	
sposable Bailer		Disp	osable Bailer		Depth to Product:	ft
tainless Steel Bailer			ssure Bailer		Depth to Water	f
tack Pump		Disc	crete Bailer	,	Hydrocarbon Thickn	ess:ft
uction Pump		Oth	er:		Visual Confirmation/	/Description:
irundfos		_		-	Skimmer / Absorbar	et Cock (circle one)
Other:	-				38	Skimmer: gai
7						Well:gal
					Product Transferred	
Time (2400 hr.)	Volume (gal.)	pH	Conductivity (u mhos/cm)	Volume: Temperature (C/F)	D.O. (mg/L)	ORP (mV)
SAMPLE ID	(#) CONTAINER	LA REFRIG. YES	BORATORY IN PRESERV. TYF			NALYSES X+MTBE(8021)
MW-	x amber	YES	NP	LANCASTE		
COMMENTS:	Monitor o	nly				

Add/Replaced Lock: _____

WELL MONITORING/SAMPLING **FIELD DATA SHEET**

ient/Facility#: 「	Dient/Facility #: ChevronTexaco #9-4800) J	ob Number:	386383	
· · · · · · · · ·	1700 Castro St	reet	 E	vent Date:	3.703	(inclus
-	Oakland, CA			Sampler:	0.0.	
/ell ID	MW-7	Date	Monitored:	2.3.03	Well Condition:	OK
/ell Diameter	2 in.	Dato			<u>-</u>	
•	2 9. 95 ft.		Volume	3/4"= 0.02	1"= 0.04 2"= 0.17 5"= 1.02 6"= 1.50	3"= 0.38 12"= 5.80
otal Depth			Factor (VF)	4*= 0.66	5"= 1.02 6"= 1.50	A
epth to Water		vF <u>ران</u>	_= .394_x	3 (case volume) =	Estimated Purge Volume:	gal.
··········· Facilinaments			pling Equipment:		Time Started:	(2400 hrs) (2400 hrs)
urge Equipment:	7		osable Bailer	X	Time Bailed: Depth to Product:	(2400 ills
isposable Bailer			sure Bailer		Depth to Water:	
tainless Steel Bailer		•	rete Bailer		Hydrocarbon Thickness	ss:ft
Stack Pump			er:		Visual Confirmation/D	
Suction Pump Srundfos		Ouk	·''•			On all (airele area)
Other:					Skimmer / Absorbant Amt Removed from S	
Juner:					Amt Removed from V	
					Product Transferred t	
Start Time (purge Sample Time/Da Purging Flow Ra Did well de-wate Time (2400 hr.)	ate: 1102 13 ate:gpm.		Water Color: ent Description: ne: Conductivity (u mhos/cm)		gal.	ORP (mV)
1014		7.61	370	18.5		
1056	1	7.54	366	18.4		
			ABORATORY INF	OPMATION		
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE		DRY ANA	ALYSES
MW- 7	3 x voa via	YES	HCL	LANCAST	ER TPH-G(8015)/BTEX	+MTBE(8021)
MW-	م x amb€		NP	LANCAST	ER TPH-D	
		1				
COMMENTS:						

Chevron California Region Analysis Request/Chain of Custody For Lancaster Laboratories use only

Lancaster Laborato Where quality is a science.	ries .	130	500			Acc	zt.#:	0	704	, S:	F ample	or La : #:_	4(10r L	abofa	/-0	s use	only	SCR#:
Where quality is a science.	BA 3/5/-3	03	0503	3 ~ 6	0	2 Y	l l	Γ			Ā	nal	/505	Req	ueste	ed			
Enaility #: SS#9-4800 G-R#38	26202 Clai	hallD#T060	00102076		Т	Matrix	.	+			F	res	ervat	ion	Code	s			Preservative Codes
Facility #: SS#9-4800 G-R#38	CALC AND	Dat 10#1000	00102070			10121713		\mathcal{H}	#	Ι					_		+		H = HCl T = Thiosulfate N = HNO₃ B = NaOH
Site Address: 1700 CASTRO ST.,	OAKLANL), CA	04440014		L	_				dnue									$S = H_2SO_4$ $O = Other$
Chevron PM: KS	Lead (Consultant:	CAMBRIA			စဟ	ဖြ			3								İ	☐ J value reporting needed
Consultant/Office: G-R, Inc., 6747	Sierra Co	urt, Suite J,	Dublin, Ca	9456	8	☐ Potable☐ NPDES	of Containers	☐ 8021 &		Silica Gel Cleanup									☐ Must meet lowest detection limits possible for 8260 compounds
Consultant Prj. Mgr.:Deanna L. Ha	rding (de	anna@grin	c.com)		-		වි			S									8021 MTBE Confirmation
Consultant Phone #:925-551-7555		_ Fax #:		899			o	8260	GRO S	DRO BRO		S.	□ 7421 [Confirm highest hit by 8260
Sampler: Pavid Okinote				\prod_{i}	₽		Air A			S S	5	Oxygenates		.					☐ Confirm all hits by 8260
Service Order #:	No	on SAR:	· · · · · · · · · · · · · · · · · · ·		Composite	5	Oil	BTEX + MTBE	TPH 8015 MOD	TPH 8015 MOD DRO	8260 full scan	ŏ	7420	ļ					Run oxy s on highest hit
		Date	Time Collected	Grab		Water			E	Œ	8260		Lead						☐ Run oxy s on all hits
Sample Identification	QA	Collected 3.3.03	Collected	+	+	\times	2		14							\perp		1_	Comments / Remarks
	MU-J		1030	X		\leq	5		- ×	/ ×						_		-	_
	MW-4		1002	X		×	5			' ×	ļ					-		 	-
	MW-7	Ψ	1102	X	\bot	18	2	1	١×	 	-				-		+	+-	-
			 	1		-	╁╌╂╌	+	- -	+	-	 	H			-	+	+	-
		<u> </u>		+	╁		┼┼╌	+	+	+	 			_		1	+-		1
				1	 	 -		_ _		1]
			 													\perp	_	1	_
					\bot	<u> </u>	<u> </u>	<u> </u>		_	1_					-}-		+	-
			<u> </u>	\downarrow	_	<u> </u>	-	1	_ _	+	╁-	_	╁╌┨	_	_	-	+-	-	-
		ļ. <u></u>		1	+	 	╁┈┼╴	╬	- -	+	┼-	<u> </u>	\vdash			+		+	-
		<u> </u>	Relingu	uished b	v:	7 1		<u></u>		╌┰	Date	Т	Time	, '	Receiv	ed by	<u></u> y:		Date Time
Turnaround Time Requested (TAT	「) (please circ	le)	Relinqu		£.	ad .	M	Ø			1-Y0)		Y/5	_				1	35/03/20
STD. TAT 72 hour	48 hour		Relinqu	uished b	y:					-	Date 5/0	ברים קרום	Time ムンス		Receiv	ved by	y: 	/	Date Time 3/5/05/11/5
24 hour 4 day	5 day		Reling	ulshed b					<u> </u>		Date	ı, İ	Time	,	<i>حد ز</i> ع Receiv	ved b	<u></u> у:	- B-	Date Time
Data Package Options (piease circle	if required)		l′	مصدح	ر مارستا		ma	-e	سس	3,	15/6	17/	50	رم رم	Ai.	ba	ru l	-	3/5/63
QC Summary Type I — Full Type VI (Raw Data) ☐ Coelt Deliver	able not need	ed	Relinqu	uished b	-			~ /	<u> </u>	<u>ー</u>	60	<u> </u>	0	1	Received by: \ \ \ \ Date Time			Date Time	
WIP (RWQCB)			UPS		edEx		Othe	حح	1	11.1	101	ı	<u>×</u>	+		<u> </u>	1/X	N	TA WITH STATE
Disk			Tempe	rature L	lpon F	Receipt	150)	_ C°						Custo	dy Se	als in	tact?	(Yes) No
																			3460 Rev 7/30/01

ANALYTICAL RESULTS

Prepared for:

ChevronTexaco 6001 Bollinger Canyon Rd L4310

> San Ramon CA 94583 925-842-8582

> > Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

A STATE OF THE STA

医数别性病 医乳球菌科病 经人工的复数数

SAMPLE GROUP

The sample group for this submittal is 843778. Samples arrived at the laboratory on Thursday, March 06, 2003. The PO# for this group is 99011184 and the release number is STREICH.

Client Description			Lancaster Labs Number
OA-T-030303	Grab	Water	4006601
MW-2-W-030303	Grab	Water	4006602
MW-4-W-030303	Grab	Water	4006603
MW-7-W-030303	Gтаb	Water	4006604

1 COPY TO

Cambria C/O Gettler- Ryan

Attn: Deanna L. Harding

Questions? Contact your Client Services Representative Teresa L Cunningham at (717) 656-2300.

Respectfully Submitted,

Victoria M. Martell
Chemist

Page 1 of 1

4006601 Lancaster Laboratories Sample No. WW

Collected:03/03/2003 00:00

Account Number: 10904

Submitted: 03/06/2003 11:30

ChevronTexaco 6001 Bollinger Canyon Rd L4310 Reported: 03/24/2003 at 13:40

Discard: 04/24/2003

QA-T-030303

Grab Water San Ramon CA 94583

Facility# 94800 Job# 386383

GRD

T0600102076 1700 Castro St Oakland QA

QATAK

As Received

Dilution As Received Method CAT Units Factor CAS Number Result Detection No. Analysis Name Limit

State of California Lab Certification No. 2116

Due to a laboratory error the trip blank sample was not analyzed.

Laboratory Chronicle

CAT Analysis Dilution

Trial# Date and Time Factor Analyst No. Analysis Name Method

ChevronTexaco

Page 1 of 2

Lancaster Laboratories Sample No. WW 4006602

Collected: 03/03/2003 10:30

by DO

Account Number: 10904

Submitted: 03/06/2003 11:30

Reported: 03/24/2003 at 13:40

Discard: 04/24/2003

Grab

Water

San Ramon CA 94583

6001 Bollinger Canyon Rd L4310

Facility# 94800

MW-2-W-030303

Job# 386383

GRD

1700 Castro St Oakland

T0600102076 MW-2

W2OAK

				As Received				
CAT			As Received	Method		Dilution		
No.	Analysis Name	CAS Number	Result	Detection	Units	Factor		
				Limit	(2	_		
05553	TPH - DRO CA LUFT (Waters)	n.a.	3,500.	120.	ug/l	5		
	According to the California LUFT							
Range Organics was performed by peak area comparison of the sample pattern to that of our #2 fuel oil reference standard (between C10 and C28 normal hydrocarbons).								
	Site-specific MS/MSD samples wer		_					
	was performed to demonstrate pre	ecision and ac	curacy at a batch	l level.		•		
01729	TPH-GRO - Waters							
01730	TPH-GRO - Waters	n.a.	4,800.	·50.	ug/l	1		
	The reported concentration of TPH-GRO does not include MTBE or other gasoline constituents eluting prior to the C6 (n-hexane) TPH-GRO range start time.							
	A site-specific MSD sample was	not submitted	for the project.	A LCS/LCSD		•		
	was performed to demonstrate pro	ecision and ac	curacy at a batch	ı level.				
02159	BTEX, MTBE							
02161	Benzene	71-43-2	220.	0.50	ug/l	1		
02164	Toluene	108-88-3	1.9	0.50	ug/l	1		
02166	Ethylbenzene	100-41-4	650.	5.0	ug/l	10		
02171	Total Xylenes	1330-20-7	46.	1.5	ug/l	1		
02172	Methyl tert-Butyl Ether	1634-04-4	4,400.	25.	ug/l	10		
	A site-specific MSD sample was							
	was performed to demonstrate pr	ecision and ac	curacy at a batch	n level.				

State of California Lab Certification No. 2116

Laboratory Chronicle

Analysis CAT No. Analysis Name Method Trial# Date and Time

Analyst

Dilution Factor

Analysis Report

REPRINT

Page 2 of 2

4006602 Lancaster Laboratories Sample No. WW

Collected:03/03/2003 10:30

by DO

Account Number: 10904

Submitted: 03/06/2003 11:30

Reported: 03/24/2003 at 13:40

Discard: 04/24/2003

MW-2-W-030303

Grab

Water

ChevronTexaco

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Facility# 94800 Job# 386383

GRD

1700 Castro St Oakland T0600102076 MW-2

WZOAK						
05553	TPH - DRO CA LUFT (Waters)	CALUFT-DRO/8015B,	1	03/12/2003 16:10	Tracy A Cole	5
01729	TPH-GRO - Waters	Modified N. CA LUFT Gasoline	1	03/11/2003 02:35	Melissa D Mann	1
01/29	IFN-GRO - Waters	Method	-	00,11,1000		
02159	BTEX, MTBE	SW-846 8021B	1	03/11/2003 02:35	Melissa D Mann	1
02159	BTEX, MTBE	SW-846 8021B	1	03/11/2003 13:53	Melissa D Mann	10
01146	GC VOA Water Prep	SW-846 5030B	1	03/11/2003 02:35	Melissa D Mann	n.a.
07003	Extraction - DRO (Waters)	TPH by CA LUFT- DRO/8015B, mod	1	03/11/2003 10:20	Amanda W Herr	1

Page 1 of 2

Lancaster Laboratories Sample No. 4006603

Collected:03/03/2003 10:02

by DO

Account Number: 10904

Submitted: 03/06/2003 11:30

ChevronTexaco

6001 Bollinger Canyon Rd L4310 Reported: 03/24/2003 at 13:40

Discard: 04/24/2003

MW-4-W-030303

Grab

Water

San Ramon CA 94583

Facility# 94800

Job# 386383

GRD

1700 Castro St Oakland

T0600102076 MW-4

W4QAK

CAT		•	As Received	As Received Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
05553	TPH - DRO CA LUFT (Waters) According to the California LUFT Range Organics was performed by to that of our #2 fuel oil refer hydrocarbons). Site-specific MS/MSD samples wer was performed to demonstrate pre	peak area com rence standard re not submitt	parison of the same (between Cl0 and ed for the project	mple pattern C28 normal t. A LCS/LCSD	ug/1	1
01729	TPH-GRO - Waters					
01730	TPH-GRO - Waters A site-specific MSD sample was mas performed to demonstrate pro	n.a. not submitted ecision and ac	280. for the project curacy at a batch	50. A LCS/LCSD level.	ug/l	1
02159	BTEX, MTBE					
02161	Benzene	71-43-2	2.7	0.50	ug/l	1
02164	Toluene	108-88-3	N.D.	0.50	ug/l	1
02166	Ethylbenzene	100-41-4	7.3	0.50	ug/l	1
02171	Total Xylenes	1330-20-7	2.3	1.5	ug/l	1
02172	Methyl tert-Butyl Ether	2.5	ug/l	1		
	A site-specific MSD sample was was performed to demonstrate pr	not submitted ecision and ac	for the project. curacy at a batch	A LCS/LCSD level.		

State of California Lab Certification No. 2116

Laboratory Chronicle

No. Analysis Name

CAT

05553

TPH - DRO CA LUFT (Waters)

Method CALUFT-DRO/8015B, Modified

Analysis Trial# Date and Time 1 03/12/2003 06:56

Analyst Tracy A Cole Dilution Factor 1

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717_656_7300 Fav. 717_656_7681

Analysis Report

Amanda W Herr

REPRINT

Page 2 of 2

1

Lancaster Laboratories Sample No. WW 4006603

Collected:03/03/2003 10:02

by DO

Account Number: 10904

ChevronTexaco

Submitted: 03/06/2003 11:30

Reported: 03/24/2003 at 13:40

Discard: 04/24/2003

MW-4-W-030303

Grab

Water

03/11/2003 10:20

San Ramon CA 94583

6001 Bollinger Canyon Rd L4310

Facility# 94800 Job# 386383 GRD

1700 Castro St Oakland

T0600102076 MW-4

W4OAK

01729 TPH-GRO - Waters N. CA LUFT Gasoline 1 03/11/2003 03:08 Melissa D Mann 1

Method

02159 BTEX, MTBE SW-846 8021B 1 03/11/2003 03:08 Melissa D Mann 1 01146 GC VOA Water Prep SW-846 5030B 1 03/11/2003 03:08 Melissa D Mann n.a.

07003 Extraction - DRO (Waters) TPH by CA LUFT-

DRO/8015B, mod

Page 1 of 2

4006604 Lancaster Laboratories Sample No. WW

Collected:03/03/2003 11:02

by DO

Account Number: 10904

Submitted: 03/06/2003 11:30

Reported: 03/24/2003 at 13:40

ChevronTexaco

6001 Bollinger Canyon Rd L4310

Discard: 04/24/2003

MW-7-W-030303

Water Grab

San Ramon CA 94583

As Paraivad

Facility# 94800

Job# 386383

GRD

1700 Castro St Oakland

T0600102076 MW-7

W7OAK

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
05553	TPH - DRO CA LUFT (Waters)	n.a.	N.D.	50.	ug/l	1
	According to the California LUFT	Protocol, the	quantitation for	Diesel		
	Range Organics was performed by					
	to that of our #2 fuel oil refer hydrocarbons).					
	Site-specific MS/MSD samples wer	e not submitte	ed for the project	. A LCS/LCSD		
	was performed to demonstrate pre-					
01729	TPH-GRO - Waters					
01730	TPH-GRO - Waters	n.a.	N.D.	50.	ug/l	1
	A site-specific MSD sample was r					
	was performed to demonstrate pre	ecision and acc	curacy at a batch	level.		
02159	BTEX, MTBE					
02161	Benzene	71-43-2	N.D.	0.50	ug/l	1
02164	Toluene	108-88-3	N.D.	0.50	ug/l	1
02166	Ethylbenzene	100-41-4	N.D.	0.50	ug/1	1
02171	Total Xylenes	1330-20-7	N.D.	1.5	ug/l	1
02172	Methyl tert-Butyl Ether	1634-04-4	1,300.	13.	ug/l	5
001/2	A site-specific MSD sample was		•	A LCS/LCSD		
	was performed to demonstrate pr					
	was betrought to demonstrate bro	CCISION GIR AC	caracy at a sacca			

State of California Lab Certification No. 2116

Laboratory	Chronicle
Habbialby	CITTOTITCE

Analysis

Analyst

Dilution Factor

No. Analysis Name 05553 TPH - DRO CA LUFT (Waters)

CAT

Method CALUFT-DRO/8015B, Modified

Trial# Date and Time 03/12/2003 07:18

Tracy A Cole

Analysis Report

REPRINT

Page 2 of 2

4006604 Lancaster Laboratories Sample No. WW

by DO Collected:03/03/2003 11:02

Account Number: 10904

ChevronTexaco

03/11/2003 10:20

Submitted: 03/06/2003 11:30

Reported: 03/24/2003 at 13:40

Extraction - DRO (Waters)

Discard: 04/24/2003

MW-7-W-030303

07003

Water Grab

TPH by CA LUFT-

DRO/8015B, mod

San Ramon CA 94583

6001 Bollinger Canyon Rd L4310

GRD Facility# 94800 Job# 386383

1700 Castro St Oakland T0600102076 MW-7

W7OAK						
01729	TPH-GRO - Waters	N. CA LUFT Gasoline	1	03/11/2003 03:42	Melissa D Mann	1
		Method				
02159	BTEX, MTBE	SW-846 8021B	1	03/11/2003 03:42	Melissa D Mann	1
02159	BTEX. MTBE	SW-846 8021B	1	03/11/2003 12:46	Melissa D Mann	5
01146	GC VOA Water Prep	SW-846 5030B	1	03/11/2003 03:42	Melissa D Mann	n.a.
07003	Extraction - DPO (Waters)	TPH by CA LUFT-	1	03/11/2003 10:20	Amanda W Herr	1

Page 1 of 2

Quality Control Summary

Client Name: ChevronTexaco

Group Number: 843778

Reported: 03/24/03 at 01:41 PM

Laboratory Compliance Quality Control

Analysis Name	Blank Result	Blank <u>MDL</u>	Report Units	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: 030690027A	Sample n	umber(s):	4006602-40			5.0		
TPH - DRO CA LUFT (Waters)	N.D.	50.	ug/l	93	95	54-120	3	20
Batch number: 03069A53A	Sample n	number(s):	4006602-46	006604				
TPH-GRO - Waters	N.D.	50.	ug/l	88	88	70-130	1	30
Benzene	N.D.	.5	ug/l	95	96	80-118	1	30
Toluene	N.D.	.5	ug/1	97	96	82-119	1	30
Ethylbenzene	N.D.	. 5	ug/l	97	97	81-119	0	30
-	N.D.	1.5	ug/1	100	100	82-120	1	30
Total Xylenes Methyl tert-Butyl Ether	N.D.	2.5	ug/l	107	106	79-127	0	30
Batch number: 03069A53B	Sample :	number(s):	4006602,4	006604			_	
Ethylbenzene	N.D.	.5	ug/1	97	97	81-119	0	30
Methyl tert-Butyl Ether	N.D.	2.5	ug/l	107	106	79-127	0	30

Sample Matrix Quality Control

	MS	MSD	ms/msd		RPD	BKG	DUP	DUP	Dup RPD	
Analysis Name	%REC	%REC	<u>Limits</u>	RPD	MAX	Conc	Conc	RPD	Max	
Batch number: 03069A53A	Sample number(s): 4006602-4006604									
TPH-GRO - Waters	102		70-130							
Benzene	104		67-136							
Toluene	104		78-129							
Ethylbenzene	105		75-133							
Total Xylenes	107		86-132							
Methyl tert-Butyl Ether	104		66-136							
Batch number: 03069A53B	Sample number(s): 4006602,4006604									
Ethylbenzene	105		75-133							
Methyl tert-Butyl Ether	104		66-136							

Surrogate Quality Control

Analysis Name: TPH - DRO CA LUFT (Waters)

Batch number: 030690027A Orthoterphenyl

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.

Page 2 of 2

Quality Control Summary

Client Name: ChevronTexaco Group Number: 843778

Reported: 03/24/03 at 01:41 PM

Surrogate Quality Control

4006602 100 4006603 117 4006604 111 Blank 96 LCS 93 LCSD 92

Limits: 59-139

Analysis Name: BTEX, MTBE Batch number: 03069A53A

Trifluorotoluene-F Trifluorotoluene-P 4006602 94 103 4006603 83 93 4006604 97 84 98 Blank 85 LCS 89 101 LCSD 101 89 MS 100 Limits: 57-146 66-136

Analysis Name: TPH-GRO - Waters

Batch number: 03069A53B

Trifluorotoluene-P Trifluorotoluene-F 102 Blank 89 LCS 89 101 LCSD 89 101 100 MS 88 Limits: 57-146 66-136

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The background result was more than four times the spike added.

