TRANSMITTAL

TO: Mr. Thomas Bauhs

Chevron Products Company

P.O. Box 6004

San Ramon, California 94583

DATE:

May 29, 2001

PROJ. #:

346383.06-1

SUBJECT: Chevron Station #9-4800

1700 Castro Street Oakland, California

FROM:

Tony P. Mikacich Project Geologist Gettler-Ryan Inc. 3140 Gold Camp Drive, Suite 170 -Rancho Cordova, California 95670

WE ARE SENDING YOU:

COPIES	DATED	D	ESCRIPTION
1	May 31, 2001	Monitorii #9-4800	ng Well Installation Report, Chevron Station
THESE ARE	TRANSMITTED as	checked below:	
[] For re	eview and comment	[] Approved as submitted	[] Resubmit _ copies for approval
[] As rea	quested	[] Approved as noted	[] Submit _ copies for distribution
[] For a	pproval	[] Return for corrections	[] Return corrected prints
[X] For	your files		

COMMENTS:

Copies of the above referenced report will be distributed to the following:

Ms. Eva Chu, Alameda County Health Care Services, Dept. of Environmental Health, 1153 Harbor Bay Parkway, Suite 250, Alameda, CA 94502-6577

If you have any questions please call us in Rancho Cordova at 916.631.1300.

April 18, 2001 G-R #386383

TO:

Mr. James Brownell

Delta Environmental Consultants, Inc. 3164 Gold Camp Drive, Suite 200 Rancho Cordova, California 95670

CC: Mr. Thomas Bauhs

Chevron Products Company

P.O. Box 6004

San Ramon, California 94583

FROM:

Deanna L. Harding

Project Coordinator Gettler-Ryan Inc.

6747 Sierra Court, Suite J Dublin, California 94568

RE: Chevron Service Station

#9-4800

1700 Castro Street Oakland, California

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
2	April 12, 2001	Groundwater Monitoring and Sampling Report First Quarter - Event of March 1, 2001

COMMENTS:

Enclosed are copies of the above referenced report for your review and distribution to the following:

Ms. Eva Chu, Alameda County Health Care Services, Dept. of Environmental Health, 1131 Harbor Bay Parkway, Suite 250, Alameda, CA 94502-6577

Please provide any comments/changes and propose any groundwater monitoring modifications for the next event prior to May 2, 2001, at which time the final report will be distributed to the following:

Mr. Greg Gurss, Gettler-Ryan Inc., 3140 Gold Camp Drive, Suite 170, Rancho Cordova, CA 95670

Enclosures

trans/9-4800-TB

April 12, 2001 G-R Job #386383

Mr. Thomas Bauhs Chevron Products Company P.O. Box 6004 San Ramon, CA 94583

RE:

First Quarter Event of March 1, 2001

Groundwater Monitoring & Sampling Report

Chevron Service Station #9-4800

1700 Castro Street Oakland, California

Dear Mr. Bauhs:

This report documents the most recent groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R) at the referenced site. All field work was conducted in accordance with G-R Standard Operating Procedure - Groundwater Sampling (attached).

Static groundwater levels were measured and the wells were checked for the presence of separate-phase hydrocarbons. Static water level data, groundwater elevations, and separate-phase hydrocarbon thickness (if any) are presented in the attached Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells and submitted to a state certified laboratory for analyses. The field data sheets for this event are attached. Analytical results are presented in the table(s) listed below. The chain of custody document and laboratory analytical report are also attached.

Please call if you have any questions or comments regarding this report. Thank you.

Sincerely,

Deanna L. Harding Project Coordinator

walt

Hagop Kevork P.E. No. C55734

Figure 1:

Potentiometric Map

Table 1: Table 2:

Attachments:

Groundwater Monitoring Data and Analytical Results Groundwater Analytical Results - Oxygenate Compounds Standard Operating Procedure - Groundwater Sampling

Field Data Sheets

Chain of Custody Document and Laboratory Analytical Reports

PROJECT NUMBER 386383

REVIEWED BY

(925) 551-7555

6747 Sierra Ct., Suite J

DATE

March 1, 2001

Oakland, California

REVISED DATE

Table 1
Groundwater Monitoring Data and Analytical Results

					Oakiano, C	amorna				
WELL ID/	TOC	GWE	DTW	TPH-D	TPH-G	В	T (ppb)	E (ppb)	X (ppb)	MTBE (ppb)
DATE	(ft.)	(msl)	(ft.)	(ppb)	(ppb)	(ppb)	(рро)	(рро)	(PPO)	(РРБ)
MW-1										
06/04/97	30.75	4.39	25.82	711	890	100	110	29	150	<10
09/16/97	30.75	4.85	25.90	75¹	1600	210	210	60	250	<10
12/17/97	30.75	4.88	25.87	65 ¹	940	120	100	41	160	<25
03/18/98	30.75	5.90	24.85	77 ¹	530	91	39	22	65	6.8
06/28/98	30.75	5.92	24.83	1401	1100	220	140	37	120	14
09/07/98	30.75	5.56	25.19	280¹	1700	530	86	84	240	49
12/09/98	30.75	5.10	25.65	240^{1}	1700	240	130	100	270	32
03/11/99	30.75	5.30	25.45	98 [†]	353	53.9	28.6	20.5	56.1	14.1
06/17/99	30.75	5.39	25.36	2171	810	270	150	95	340	15
09/29/99	30.75	5.13	25.62	1531	659	.76	49.7	35.1	118	12.6
12/14/99	30.75	5.07	25.68	188 ^{1.2}	2760	287	199	139	502	<12.5
03/09/003	30.75	5.54	25.21	166 ¹	1590	238	94.9	72.2	247	22.3
06/10/00	30.75	5.73	25.02	•-	1,460	242	47.8	83.8	151	97.3
09/30/00	30.75	5.30	25.45	2407	650 ⁶	130	49	69	190	21
12/22/00	30.75	5.05	25.70	2009	640 ⁶	110	33	58	160	68
03/01/01	30.75	5.25	25.50	2117	1,500 ⁶	210	67.9	109	320	87.3
0,5/01/01	50.75	, and	20.00		,					
MW-2										
06/04/97	30.00	5.13	24.87	4,000 ¹	13,000	790	30	420	1700	4000
09/16/97	30.00	5.06	24.94	2,200 ^t	4000	360	9.7	210	460	1500
12/17/97	30.00	5.18	24.82	2,100 ^t	4100	380	<10	200	460	2100
03/18/98	30.00	6.43	23.57	3,700 ¹	8400	1800	<50	350	630	13,000
06/28/984	30.00	6.21	23.79	4,400¹	9300	740	340	710	2300	3800
09/07/98	30.00	5.78	24.22	3,100 ¹	9900	1000	150	640	1800	4500/4100 ⁵
12/09/98	30.00	5.31	24.69	1,9001	8500	860	74	610	960	2600/2600 ⁵
03/11/99	30.00	5.79	24.21	2,7001	12,500	1520	42.2	645	2250	3400/5050 ⁵
06/17/99	30.00	5.69	24.31	7,150 ¹	27,000	2200	260	1500	5900	4700
09/29/99	30.00	5.45	24.55	3,030 ^t	6910	582	11.1	491	1170	1970
12/14/99	30.00	5.39	24.61	615 ^{1,2}	4230	282	12.3	284	690	631

Table 1
Groundwater Monitoring Data and Analytical Results

WELL ID/	TOC	GWE	DTW	TPH-D	TPH-G	В	\mathbf{r}	E	X	МТВЕ
DATE	(ft.)	(msl)	(ft.)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MW-2 (cont)				1			20.4	1040	2020	2470
03/09/00 ³	30.00	6.08	23.92	3,300 ¹	15,300	1110	39.4	1040	3030	
06/10/00	30.00	6.13	23.87		7,360	560	40.7	627	1,280	1,260
09/30/00	30.00	5.67	24.33	1,8007	3,600 ⁶	280	<10	420	430	290
12/22/00	30.00	5.39	24.61	870 ⁹	1,500	100	<1.3	160	59	380
03/01/01	30.00	5.79	24.21	1,3207	2,340 ⁶	171	<5.00	238	157	864
MW-3										
06/04/97	31.32	5.27	26.05	<50	190	26	20	1.5	16	8.2
09/16/97	31.32	5.17	26.15	<50	270	58	53	6.1	30	21
12/17/97	31.32	5.22	26.10	<50	290	50	54	8.1	37	21
03/18/98	31.32	6.42	24.90	<50	390	140	33	4.6	30	94
06/28/98	31.32	6.39	24.93	<50	290	90	11	1.6	13	150
09/07/98	31.32	5.97	25.35	<50	170	46	20	4.3	19	120
12/09/98	31.32	5.41	25.91	55¹	660	120	93	22	72	150
03/11/99	31.32	5.85	25.47	<50	653	136	69.5	13.7	63.8	144
	31.32	5.90	25.42	1031	530	190	110	24	88	210
06/17/99 09/29/99	31.32	5.61	25.71	232 ¹	433	97.8	61.4	16.9	56.6	156
		5.55	25.77	<50 ²	8650	1040	795	212	800	995
12/14/99	31.32		25.17	74.6 ¹	1170	304	103	25.2	114	539
03/09/00 ³	31.32	6.14			359	63.8	27.8	10.5	35.4	393
06/10/00	31.32	6.29	25.03	 100 ⁸	220 ⁶	42	33	12	38	67
09/30/00	31.32	5.79	25.53	100 110 ⁹	370 ⁶	96	48	18	58	180
12/22/00 03/01/01	31.32 31.32	5.52 5.75	25.80 25.57	110 ⁷	912 ⁶	218	46 89.0	36.0	110	310

Table 1
Groundwater Monitoring Data and Analytical Results

ferrer v svas	TOC	GWE	DTW	TPH-D	TPH-G	В	T	E	X	MTBE
WELL ID/ DATE	(ft.)	(msl)	(fi.)	(ppb)	(ppb)	(ppb)	(pph)	(ppb)	(ppb)	(ppb)
DATE	Uni	1	A STATE OF THE STA							
MW-4						0.1	-0.5	<0.5	7.7	4700
04/08/99	30.13	~-		 .	130	3.1	<0.5	<5.0	160	6200
06/17/99	30.13	5.19	24.94	3,780 ¹	590	58	<5.0		236	7840
09/29/99	30.13	4.96	25.17	1,130 ¹	692	10.7	<2.5	5.51		4470
12/14/99	30.13	4.91	25.22	571 ^{1,2}	625	<10	3.83	<10	94.6	
03/09/00 ³	30.13	5.45	24.68	600 ¹	402	3.76	1.18	< 0.5	71.4	3140
06/10/00	30.13	5.53	24.60		<1,000	13.2	<10.0	<10.0	97.8	3,080
	30.13	5.09	25.04	1,400 ⁷	280 ⁶	21	0.67	6.3	60	3,300
09/30/00		4.90	25.23	740 ⁹	240 ⁶	2.2	< 0.50	1.3	25	2,200
12/22/00	30.13 30.13	5.15	24.98	661 ⁷	193	2.31	< 0.500	1.34	12.1	1,220
03/01/01	20.12	0,20								
MW-5				.50	<50	<0.5	<0.5	<0.5	<0.5	<2.5
04/08/99	30.93			<50		<0.5	<0.5	<0.5	<0.5	<2.5
06/17/99	30.93	4.93	26.00	53.81	<50		<0.5	<0.5	<0.5	<2.5
09/29/99	30.93	4.73	26.20	<50	<50	<0.5		<0.5	<0.5	0.598
12/14/99	30.93	4.61	26.32	<50 ²	<50	<0.5	<0.5		<0.5	<2.5
03/09/003	30.93	5.00	25.93	<50	<50	< 0.5	<0.5	<0.5		<2.50
06/10/00	30.93	5.21	25.72		<50.0	< 0.500	< 0.500	< 0.500	<0.500	
09/30/00	30.93	4.79	26.14	1308	<50	< 0.50	< 0.50	< 0.50	<0.50	<2.5
12/22/00	30.93	4.60	26.33	250 ⁸	<50	< 0.50	< 0.50	< 0.50	< 0.50	9.1
03/01/01	30.93	4.77	26.16	77.4 ⁷	<50.0	<0.500	<0.500	<0.500	<0.500	<2.50

Table 1
Groundwater Monitoring Data and Analytical Results
Chevron Service Station #9-4800

WELL ID/	TOC	GWE	DTW	TPH-D	TPH-G	В	T	E	X	MTBE
)ATE	(ft.)	(msl)	(ft.)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
			_							
MW-6					.50	<0.5	<0.5	<0.5	<0.5	4.5
04/08/99	30.58				<50 -50	<0.5	<0.5	<0.5	<0.5	<2.5
06/17/99	30.58	5.99	24.59	<50	< 50		<0.5	<0.5	<0.5	4.46
09/29/99	30.58	5.81	24.77	<50	<50	<0.5	<0.5	<0.5	<0.5	4.13
12/14/99	30.58	5.74	24.84	<50 ²	<50	<0.5	<0.5	<0.5	<0.5	2.82
03/09/00 ³	30.58	6.49	24.09	<50	<50	<0.5		< 0.500	<0.500	<2.50
06/10/00	30.58	6.58	24.00	••	<50.0	<0.500	<0.500		<0.50	7.3
09/30/00	30.58	6.00	24.58	1108	<50	<0.50	<0.50	< 0.50	<0.50	4.5
12/22/00	30.58	5.75	24.83	1008	<50	<0.50	<0.50	<0.50	<0.50 < 0.500	7.52
03/01/01	30.58	6.07	24.51	1417	<50.0	<0.500	< 0.500	<0.500	<0.500	1.32
TRIP BLANK	•				<50	<0.5	<0.5	<0.5	<0.5	<2.5
06/04/97					<50	<0.5	< 0.5	< 0.5	< 0.5	<2.5
09/16/97	•-	••			<50	<0.5	< 0.5	< 0.5	< 0.5	<2.5
12/17/97					<50 <50	<0.5	<0.5	<0.5	< 0.5	<2.5
03/18/98	••					<0.5	<0.5	<0.5	< 0.5	<2.5
06/28/98					<50	<0.5	<0.5	< 0.5	<0.5	<2.5
09/07/98					<50		<0.5	<0.5	<0.5	<2.5
12/09/98					<50	<0.5	<0.5	<0.5	<0.5	<5.0
03/11/99					<50	<0.5		<0.5	<0.5	<2.5
06/17/99	••				<50	<0.5	<0.5	<0.5	<0.5	<2.5
12/14/99					<50	<0.5	<0.5	<0.5	<0.5	<2.5
03/09/003					<50	<0.5	<0.5		<0.500	<2.50
06/10/00					<50.0	<0.500	<0.500	<0.500		<2.5
09/30/00					<50	<0.50	<0.50	<0.50	<0.50	<2.5
12/22/0010				aw.	<50	<0.50	<0.50	<0.50	<0.50	
03/01/01					< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50

Table 1

Groundwater Monitoring Data and Analytical Results

Chevron Service Station #9-4800 1700 Castro Street Oakland, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to June 10, 2000, were compiled from reports prepared by Blaine Tech Services, Inc.

TOC = Top of Casing

B = Benzene

-- = Not Measured/Not Analyzed

(ft.) = Feet

T = Toluene

(ppb) = Parts per Billion

GWE = Groundwater Elevation

E = Ethylbenzene

(msl) = Mean sea level

X = Xylenes

DTW = Depth to Water

MTBE = Methyl tertiary butyl ether

TPH-D = Total Petroleum Hydrocarbons as Diesel

TPH-G = Total Petroleum Hydrocarbons as Gasoline

- Chromatogram pattern indicates an unidentified hydrocarbon.
- Sample was extracted outside EPA recommended holding time.
- 3 TPH-Gasoline, Benzene, Toluene, Ethyl Benzene Xylene & MTBE was analyzed outside EPA recommended holding time.
- EPA Method 8240.
- 5 Confirmation run.
- 6 Laboratory report indicates gasoline C6-C12.
- Laboratory report indicates unidentified hydrocarbons C9-C24.
- Laboratory report indicates unidentified hydrocarbons >C16.
- 9 Laboratory report indicates unidentified hydrocarbons C9-C40.
- Laboratory report indicates this sample was analyzed outside of the EPA recommended holding time.

 Table 2

 Groundwater Analytical Results - Oxygenate Compounds

WELL ID/ DATE	ETHANOL (ppb)	TBA (ppb)	MTBE (ppb)	DIPE (ppb)	ÉTBE (ppb)	TAME (ppb)
MW-4 04/08/99	<25,000	<5000	5400	<100	<100	<100
MW-5 04/08/99	<500	<100	<2.0	<2.0	<2.0	<2.0
MW-6 04/08/99	<500	<100	5.6	<2.0	<2.0	<2.0

EXPLANATIONS:

Groundwater laboratory analytical results were compiled from reports prepared by Blaine Tech Services, Inc.

TBA = Tertiary butyl alcohol

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

(ppb) = Parts per billion

STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, static water level measurements are collected with the interface probe and are also recorded in the field notes.

After water levels are collected and prior to sampling, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or polyvinyl chloride bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging. Purging continues until these parameters stabilize.

Groundwater samples are collected using Chevron-designated disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Chevron Products Company, the purge water and decontamination water generated during sampling activities is transported by IWM to McKittrick Waste Management located in McKittrick, California.

\sim 1		FIELD DATA	A SHEET				
Alelin – ,	nevron 1-4800		Job#:	<u>3</u>	86 3 8	33	
acility#	<u> </u>	- 	Date:		3-1-01		
Address: 1 fc	o Castro	0					
City: <u>CaK</u>	land, C	<u> </u>	Sample	er:	T.C.		
Well ID	MW-1	Well Conditi	on:		0.K	<u> </u>	
Well Diameter		Hydrocarboi Thickness:	1 0		Amount Ba (product/wate		(Gallons)
Total Depth	29.88 n	Volume	2" = 0.1	7 6' = 1.5	3" = 0.38	4" 12" = 5.80	= 0.66
Depth to Water	25.50 tt.	Factor (VF)					
	<u>4.38</u> x v	1F <u>-17</u> = -74	_ X 3 (case v	olume) = I	Estimated Pur	ge Volume: _	2.0 (gal.)
Purge	Disposable Bailer		Sampling	Nis	posable Ba	iler	
Equipment:	Bailer Stack		Equipment:	Bail	ег		
	Suction				ssure Baile b Sample	r	
	Grundfos				181:		
	Other:						
Starting Time:	10:52	Weath	er Condition	ns:	Cloury		
Sampling Time:	1100		Color: <u>C</u>			Odor:	
Purging Flow Ra	te:		ent Descrip				
Did well de-wate	er? <i>N</i>	If yes;	Time:		Volum	ne:	(oal.)
	Volume pH (gal.) 23 i	Conductivity	Tempe		D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
	7121	- <u>686 -</u> 673 _	68.3				
	5 7.21	- <u>661</u>	68.5				. <u></u>
10:58	- +1					· 	
100							
					<u> </u>		
		LABORATOR	Y INFORMA	TION			
SAMPLE ID	(#) - CONTAINER		ERV. TYPE	LABO	RATORY		YSES
MW- /	3 VOAVIAL	Y HO		SEQUOIA		TPH(G)/btex/	mtbe
mu-1	1 AMBCK	7 -		1/		TPH-D	
				<u> </u>	-		
001115150	Replace Me	weren live!	2			<u> </u>	
COMMENTS:	- ryine me	2000					
	·				•		

\sim 1	_	FIELD	DAIA	SHEE I				
acility#	nevron 1-4800			Job#:		3638		.
ddross: 170	o Castro	<u>st.</u>		Date:	3	-1-01		
city: Oak	land, C	Α		Sample	r:	T.C.		<u> </u>
Weil ID	MW-Z	Well C	ondition). <u>k</u>	 	
Vell Diameter	<u> </u>	•	carbon ness:	or		Amount Ba		(Gallons)
Total Depth	29.69 ft.		ne r (VF)	2" = 0.17	6 " = 1.5	3" = 0.38 0	12" = 5.80 4'	' = 0.66
Depth to Water	24.21 h	<u> </u>			<u></u>			
	<u>5.48</u> × v	r <u>+17</u> :			olume) = i	Estimated Pur	ge Volume:	3. 0 (gal.)
Purge Equipment:	Disposable Bailer Bailer			npling iipment:	(Disp Bail	oosable Ba	iler	
•	Stack				Pre	ssure Baile	r	
	Suction Grundfos					b Sample		
	Other:				Otr	ier:		
Starting Time:	11 40		Weather	Condition	ns: _(Cloury	Odor:	 1
Sampling Time:			Sediment	Descript	ion:			
Purging Flow Ra	4.7	-101114	If ves:	Time:		Volun	ne:	(<u>oal.</u>)
Did well de-wate	er <i>r</i>		,,					
	Volume pH	umh	uctivity nos/cm	Temper		D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
11:34 1	(gal.) 7.16 2.09	- + 1		68-				
,,,,		- 		67.0	1			
11:38	3.0 7.03							
		_						
			ATORY I PRESER	NFORMA	YUN LABO	RATORY	ANA	LYSES
SAMPLE ID	(#) - CONTAINER	REFRIG.		V. TTPE	SEQUOI		TPH(G)/btex	mtbe
MW- Z	3 VOAVIAL	Y	HCL			//	アクソーク	
Mu-Z	1 Amile	4						
			 				1	
	<u> </u>		1				<u> </u>	
CONMACNITE	Replace A	14STEE	Lick	.	<u>, </u>			
COMMENTS:	- THINKE	<u> </u>						
, 						•		

\sim 1		FIELD DATA	SHEET	•		
Client/ Cr acility#	levron 1-4800		Job#:	<u> 38638</u>		
Address: 170	o Castro	St	Date:	3-1-0	<u>'</u>	
	land, C	Δ	Sample	r:		
Well ID	MW-3	Well Conditio	n:	0.1		
Well Diameter		Hydrocarbon Thickness:	Ø	Amount Ba		(Gallons)
Total Depth	29.44 1	Volume Factor (VF)	2" = 0.17	3" = 0.38 6" = 1.50	4" = 12" = 5.80	= 0.66
Depth to Water	25,57 ft.				2	
			X 3 (case vo	olume) = Estimated Pu	rge volume:	
Purge Equipment:	Disposable Bailer Bailer		quipment:	Disposable Ba Bailer		
	Stack Suction			Pressure Baile	er	
	Grundfos			Grab Sample Other:		
	Other:					
Starting Time:	1120	Weathe	r Condition	is: Cloudy	Odor: 9	
Sampling Time:	1/25		color:C		Oddi	
Purging Flow Ra		<u>m.</u> Sedime	nt Descript	tion:	ne:	(gal.)
Did well de-wate	er?N	If yes;	Time:	Volun	6	
Time	Volume pH (gal.) 7	Conductivity µmhos/cm	Tempe •F <u>Ó ♂</u> .	rature D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
$\frac{1/2}{1/23}$ -	(gal.) 1.0 7.16 1.0 7.08	681	67			
$\frac{119}{1129}$ -	2.0 7.0b	676	68			
11 	7.00					
		LABORATORY	INFORMA	TION LABORATORY	ANALY	rses
SAMPLE ID	(#) - CONTAINER			SEQUOIA	TPH(G)/btex/m	tbe
MW- 3	3 VOAVIAL	Y HC		1111	7PH-D	
// //	1 AMBER	<u> </u>				
COMMENTS:		·				
COMMENTS.				<u> </u>		,

9/97-fieldet.fm

Client/	nevron	,,,,,	, ,	1 4.	3.X	°638	22	
Facility#	1-4800			ob#:	<u> </u>	-1 -0		
Address: <u>17C</u>	0 Castro	<u>) of .</u>	D	ate:				
city: OaK	land, C	<u>`A</u>	s	ampler	:	7. C.		
	And U				0.14	_		
Well ID	MW-4	Weil	Condition:					
Well Diameter			ocarbon (ness:	W		mount Ba		(Gallons)
Total Depth	28.34 th	Vol		" = 0.17		3" = 0.38		' = 0.66
Depth to Water	24.98 tt.	<u> </u>						
	3.36 x	vf <u>.17</u>	= <u>.57</u> x3	(case volu	ıme) = Es	timated Pur	ge Volume: _	Z.O (gal.)
Purge Equipment:	Disposable Bailer Bailer	>	Samp Equip	ling ment:	(Dispo	osable Ba	iler	
•	Stack Suction				Pres	sure Baile	r	
	Grundfos					Sample r:		
	Other:				Othe			
Starting Time:	11 50		Weather Co					
Sampling Time:	1200		Water Color	: <u>Gn</u>	y		Odor: W	
· —		mop.	Sediment D					
Did well de-wate			If yes; Tim	1e:		_ Volum	ne:	(gal.)
	Volume pH (gal.) 7.7	μт	hos/cm	Temperat	ture	D.O. (mg/L)	ORP (mV)	- Alkalinity - (ppm)
1156 -	(8al.) 7.03 7.09		<u>:6 </u>	67.9				
	1.0 7.09 2.0 7.01		8	68.1				
							. 	
								
		LABO	RATORY INF	ORMAT	ION			
SAMPLE ID	(#) - CONTAINER	REFRIG.	PRESERV. T	YPE	LABOR	YROTA		YSES
MW- 4	3 VOAVIAL	Y	HCL		EQUOIA		TPH(G)/btex/	mtbe ·
11 11	1 AMRON	7			11 1	<u> </u>	TPHO	
			<u> </u>				<u> </u>	
COMMENTS:								
COMMENTS: ,								
	······································							•

9/97-fieldat.frm

~ !		FIELD I	DATA SHE	E1			
71101111	evron -4800		Job		3638.		
acility#	o Castro	- Sight	Dat	e:	3-1-01		
		<u> </u>			T.6		
city: OaK	land, C	[-]	San	npler:	<u> </u>		
Well 1D	MW-5	Well C	ondition:		<u>/-</u>		
Well Diameter	<u> </u>	Hydrod Thicks	carbon ness:		mount Bail product/water	:	(Gallons)
Total Depth	27.98 tt.	Volum	ne 2" = r (VF)	: 0.17 6" = 1.5	3" = 0.38 0]	4" 2" = 5.80	= 0.66
Depth to Water	26.16 th	<u>. </u>					
	1.82 x v	r <u>.17</u> =	<u>· 30</u> x 3 (c)	sse volume) =	stimated Purg	e Volume: <u>/</u>	. (gal.)
Purge	Disposable Bailer	\supset	_ Samplin Equipm	ent: Disj	posable Bail	er	
Equipment:	Bailer Stack			Bail	er ssure Bailer		
	Suction -				ssure baller b Sample	,	
	Grundfos				ner:	 ·	
	Other:						
	1125		Weather Cond	litions: <u> </u>	loven		
Starting Time:	0.30		Water Color:	Classe		Odor:	
Sampling Time:	// 30		Sediment Des				
Purging Flow Ra	.6.	4.64.4.7	if yes; Time			e:	(gal.)
Did well de-wate	er? <i>N</i>		n yes, this				
1.27	Volume pH (gal.) 25 7.33	μ mh		emperature 68.1	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
	· 50 <u>7.28</u>			68.1			
1128 _	1.0 7.26	- -		681			
1139 -	7.00					·	
		LABOR	ATORY INFO	RMATION		ANAI	.YSES
SAMPLE ID	(#) - CONTAINER	REFRIG.	PRESERV. TY	PE LABC	RATORY	TPH(G)/btex/	
MW-5	3 VOAVIAL	Y	HCL	SEQUOI		TPH-1	
11 11	1 AMBUR	- 4					
	 		 				
	<u> </u>	<u> </u>	<u>, </u>				
COMMENTS:							· · ·

9/97-fieldal.frm

ient/ Cr. cility#	nevron 1-4800		Job#:	3863	33
ddress: 170	o Castro	<u>st.</u>	Date:	3	-1-01
	land, S		Sampl	er:	
Well ID	MW-6	Well Co	ondition:	0.16	
ell Diameter	in.	Hydrod Thickn		Amount B	
otal Depth	28.14 ft.	Volum Factor	2" = 0.1		4" = 0.66
eptii to watei		vf <u>=17</u> =	-6/ x 3 (case v	olume) = Estimated Pt	urge Volume: <u>Z-6 (aal.</u>
Purge quipment:	Disposable Bailer Bailer Stack Suction Grundfos Other:		Sampling Equipment:	Disposable B Bailer Pressure Bail Grab Sample Other:	er
-	1108 1110 te:	V	Vater Color: <u> </u>	ns: Cloury lean tion: Volu	Odor: S/EGUT
Time 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Volume pH (gal.) 7.36 7.29 2.0 2.20	Condu µmho 78	ctivity Tempers of 68	D.O. (mg/L)	ORP Alkalinic (mV) (ppm)
SAMPLE ID	(#) - CONTAINER	LABORA REFRIG.	TORY INFORMA	ATION LABORATORY	ANALYSES
MW- 6	3 VOAVIAL	Y	HCL	SEQUOIA	TPH(G)/btex/mtbe
11 11	1 AMBER	4		" "	TPHOP
COMMENTS:					1

Fax. cop	уо	of Lo	ab (Report a	ınd (COC	to	Che	vrop	ı Co	ntac	ا: داد)							Cust	<u>od</u>	y-Record
Chevron Produ P.O. BOX 6 San Ramon, C/ FAX (925)842	5004 A 945	83	Consulta Consulta Addr	Facility Number Facility Address ant Project Number ont Name GET ress 6747 S ject Contact (Nor	ttler- Sierr	-RYAN A COU ANNA 5-551	N INC. URT, S L. H/	SUITE ARDIN	E J, I	DUBL1	IN, C.	-789 9	— 1.6 — 1.6 568 1.6 — 1.8 9 81	.aberato .aberato .aberato Samples Signoluro	ory Name ory Service ory Service Collecte	(Phone ce Order ce Code ed by (P	92 SE or —— Nama) _		42-86 OIA	090	<i>MARON</i> IDAH		Remorks
Sample Number	Number of Containers	Motte S = Sol A = Ar Water C = Charcod	ξ	Octs/Tene	8020 + 8015)				- 1				_ 1		BTEX/ATBE/Nept. (BG20)		1 1		·				MKCDO6 Lob Sample No.
TB-LB.	1	M	HCL	3-1-01	X		بر						 	-			 						02
mw-Z:	广			1146	X		XX	 : 	 			-					<u> </u>			 	1		.04
mu-J mw-y	士	士	上	1200	X		K	-		 			[<u> </u>		 	-	-		-		 	04
mw.6	T	0	b	11 36	<u>X</u>		X	-	-	-	 	-			 			 		1_		 	07
mw.6	:	+		11	二		<u> </u>					-	_	+-	-	+-	-	 	 	-	-		ř.
	-	-	-	<u></u>	-	_	-	.,	<u> </u>	<u> </u>		 	 	1		<u> </u>	 	-	-	_		_	
			上		1			<u> </u>	 	-	+	-	+-	+	-	-	 	 		上			
	-	+-	+	-	_	<u> </u>			上	 	 	1	1	-	1	1	1	<u> </u>	<u> </u>	-	_	 	-
Relinquished By	_	,	<u> </u>	Organization G-R INC.	Date/1	Time	-	th ell		Alar.	nul	,	ganizatio	3	Date/Time	קמבין	+			Turn	24	ime (Ci 4 Hrs. 8 Hrs.	
winhed By	(Signa		2	Organization Organization	Date/1 3/12 Dole/1	loi	<u></u>	ter	M		By (Sign		MH	ي (3/2/0 3/2/0		lced Y		-	٠,	5 10	o Are. Days Days- Contract	

20 March, 2001

GETTLER-RY

Deanna L. Harding Gettler Ryan / Geostrategies - Dublin (Chevron) 6747 Sierra Court, Suite J Dublin, CA 94568

RE: Chevron

Sequoia Report: MKC0062

Enclosed are the results of analyses for samples received by the laboratory on 03/02/01 18:15. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeff Smyly Project Manager

CA ELAP Certificate #1210

885 Jarvis Drive Morgan Hill, CA 95037 (408) 776-9600 FAX (408) 782-6308 www.sequoialabs.com

Gettler Ryan / Geostrategies - Dublin (Chevron)

6747 Sierra Court, Suite J

Dublin CA, 94568

Project: Chevron

Project Number: 9-4800

Project Manager: Deanna L. Harding

Reported:

03/20/01 09:04

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
TB-LB	MKC0062-01	Water	03/01/01 00:00	03/02/01 18:15
MW-1	MKC0062-02	Water	03/01/01 11:00	03/02/01 18:15
MW-2	MKC0062-03	Water	03/01/01 11:40	03/02/01 18:15
MW-3	MKC0062-04	Water	03/01/01 11:25	03/02/01 18:15
MW-4	MKC0062-05	Water	03/01/01 12:00	03/02/01 18:15
MW-5	MKC0062-06	Water	03/01/01 11:30	03/02/01 18:15
MW-6	MKC0062-07	Water	03/01/01 11:10	03/02/01 18:15

Sequoia Analytical - Morgan Hill

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Smyly, Project Manager

6747 Sierra Court, Suite J

Dublin CA, 94568

Project: Chevron

Project Number: 9-4800

Project Manager: Deanna L. Harding

Reported: 03/20/01 09:04

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT

Sequoia Analytical - Morgan Hill

		eporting		~	n . 1	D	Analyzad	Method	Notes
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	140163
TB-LB (MKC0062-01) Water	Sampled: 03/01/01 00:00	Received	: 03/02/0	1 18:15					
Purgeable Hydrocarbons	ND	50.0	ug/l	1	1C05003	03/05/01	03/05/01	DHS LUFT	
Benzene	ND	0.500	**	"	**	••	**	77	
Toluene	ND	0.500	н	h		II .	"	"	
Ethylbenzene	ND	0.500	n	*	н	•	11	11	
Xylenes (total)	ND	0.500	**	7	"	n	10	**	
Methyl tert-butyl ether	ND	2.50		11	**	"			
Surrogate: a,a,a-Trifluorotoluen	ie	95.0 %	70-	-130	"	n	"	"	
MW-1 (MKC0062-02) Water	Sampled: 03/01/01 11:00	Received:	03/02/0	1 18:15		<u> </u>			
Purgeable Hydrocarbons	1500	250	ug/l	5	1C06001	03/06/01	03/06/01	DHS LUFT	P-01
Benzene	210	2.50	.,	**	н	"	"	"	
Toluene	67.9	2.50	**		**	H	41	91	
Ethylbenzene	109	2.50	"		**	-	**	н	
Xylenes (total)	320	2.50	u	11	••	11	••	,,	
Methyl tert-butyl ether	87.3	12.5	*	r+		н	»		
Surrogate: a,a,a-Trifluorotoluel	ne	94.4 %	70	-130	"	"	"	"	
MW-2 (MKC0062-03) Water	Sampled: 03/01/01 11:40	Received	: 03/02/0	1 18:15					
Purgeable Hydrocarbons	2340	500	ug/l	. 10	1C05005	03/05/01	03/05/01	DHS LUFT	P-01
Benzene	171	5.00		n	**	"	77	**	
Toluene	ND	5.00	U	"	**	"	II .	"	
Ethylbenzene	238	5.00	**	n	*11	11	ęr	11	
Xylenes (total)	157	5.00	17	•	(r	H	#	H	
Methyl tert-butyl ether	864	25.0	**	**					
Surrogate: a,a,a-Trifluorotolue	ne	113 %	70	0-130	"	"	#	**	

6747 Sierra Court, Suite J

Dublin CA, 94568

Project: Chevron

Project Number: 9-4800

Project Manager: Deanna L. Harding

Reported:

03/20/01 09:04

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 (MKC0062-04) Water	Sampled: 03/01/01 11:25	Received:	03/02/0	18:15					
Purgeable Hydrocarbons	912	250	ug/l	5	1C06001	03/06/01	03/06/01	DHS LUFT	P-01
Benzene	218	2.50	11	11	II .	**	. "	н	
Toluene	89.0	2.50	u	**	**	11	11	n	
Ethylbenzene	36.0	2.50	*1		*1	**	P	11	
Xylenes (total)	110	2.50	•	**	"	II .	"	**	
Methyl tert-butyl ether	310	12.5	**	"	n		**		
Surrogate: a,a,a-Trifluorotolue	ne	136 %	70-	130	н	*	H	μ	S-02
MW-4 (MKC0062-05) Water	Sampled: 03/01/01 12:00	Received:	03/02/0	1 18:15				. 	
Purgeable Hydrocarbons	193	50.0	սջ/1	1	1C05003	03/05/01	03/05/01	DHS LUFT	
Benzene	2.31	0.500	**	44	11	*		*1	
Toluene	ND	0.500		**	11		**	н	
Ethylbenzene	1.34	0.500	н	**	**	**	u	**	
Xylenes (total)	12.1	0.500	Ħ	**	**	**	17	It	
Methyl tert-butyl ether	1220	25.0	**	10	н		03/05/01		M-03
Surrogate: a,a,a-Trifluorotolue	ne	96.0 %	70	-130	"	#	03/05/01	*	
MW-5 (MKC0062-06) Water	Sampled: 03/01/01 11:30	Received	: 03/02/0	1 18:15					
Purgeable Hydrocarbons	ND	50.0	u g/l i	1	1C05003	03/05/01	03/05/01	DHS LUFT	
Benzene	ND	0.500	**	. "	-	11	**	*	
Toluene	ND	0.500		**	II .	11	"	•	
Ethylbenzene	ND	0.500	**	u,	н	, "	**	*	
Xylenes (total)	ND	0.500	"	"	•	**	•	14	
Methyl tert-butyl ether	ND	2.50	**	n	<u>.</u>	<u> </u>	н	н	
Surrogate: a,a,a-Trifluorotolue	ne	88.2 %	70	-130	,,	"	11	"	

Project: Chevron

6747 Sierra Court, Suite J

Dublin CA, 94568

Project Number: 9-4800

Project Manager: Deanna L. Harding

Reported: 03/20/01 09:04

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT

Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-6 (MKC0062-07) Water	Sampled: 03/01/01 11:10	Received:	03/02/01	18:15	·				
Purgeable Hydrocarbons	ND	50.0	ug/l	1	1C05003	03/05/01	03/05/01	DHS LUFT	
Benzene	ND	0.500	"	**	*		10	"	
Toluene	ND	0.500	t)	11	11	я	30	н	
Ethylbenzene	ND	0.500	ıı.	**	**		н		
Xylenes (total)	ND	0.500	**		**		**	**	
Methyl tert-butyl ether	7.52	2.50	"			н			
Surrogate: a,a,a-Trifluorotolue	ne	93.1 %	70-1	30	"	"	μ	"	

6747 Sierra Court, Suite J

Dublin CA, 94568

Project: Chevron

Project Number: 9-4800

Project Manager: Deanna L. Harding

Reported: 03/20/01 09:04

Diesel Hydrocarbons (C9-C24) by DHS LUFT

Sequoia Analytical - Morgan Hill

Analyte	F Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (MKC0062-02) Water	Sampled: 03/01/01 11:00	Received:	03/02/01	18:15					
Diesel Range Hydrocarbons	211	50.0	ug/l	1	1C12021	03/12/01	03/15/01	DHS LUFT	D-15
Surrogate: n-Pentacosane		80.1 %	50-1	50	*	,	"	*	
MW-2 (MKC0062-03) Water	Sampled: 03/01/01 11:40	Received:	03/02/01	18:15				·	
Diesel Range Hydrocarbons	1320	50.0	ug/l	1	1C12021	03/12/01	03/19/01	DHS LUFT	D-15
Surrogate: n-Pentacosane		87.5 %	50-1	50	"	u	*	Ħ	
MW-3 (MKC0062-04) Water	Sampled: 03/01/01 11:25	Received:	03/02/01	18:15					
Diesel Range Hydrocarbons	144	50.0	ug/l	1	1C12021	03/12/01	03/19/01	DHS LUFT	D-15
Surrogate: n-Pentacosane		76.9 %	50-1	150	"	*	"	n .	
MW-4 (MKC0062-05) Water	Sampled: 03/01/01 12:00	Received:	03/02/01	18:15					
Diesel Range Hydrocarbons	661	50.0	ug/l	1	1C12021	03/12/01	03/19/01	DHS LUFT	D-15
Surrogate: n-Pentacosane		90.2 %	50-	150	"	,,	π	"	
MW-5 (MKC0062-06) Water	Sampled: 03/01/01 11:30	Received	: 03/02/01	18:15					
Diesel Range Hydrocarbons	77.4	50.0	ug/l	1	1C12021	03/12/01	03/19/01	DHS LUFT	D-15
Surrogate: n-Pentacosane		83.1 %	50-	150	*	n	#	"	
MW-6 (MKC0062-07) Water	Sampled: 03/01/01_11:10	Received	: 03/02/01	18:15					
Diesel Range Hydrocarbons	141	54.3	u g/l	1	1C12021	03/12/01	03/20/01	DHS LUFT	D-15
Surrogate: n-Pentacosane		89.8 %	50-	150	"	"	"	n	

6747 Sierra Court, Suite J

Dublin CA, 94568

Project: Chevron

Project Number: 9-4800

Project Manager: Deanna L. Harding

Reported: 03/20/01 09:04

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1C05003 - EPA 5030B [P/T]										
Blank (1C05003-BLK1)				Prepared	& Analyz	ed: 03/05/0	01			
Purgeable Hydrocarbons	ND	50.0	ug/l							
Benzene	ND	0.500	•							
Toluene	ND	0.500	п							
Ethylbenzene	ND	0.500	"							
Xylenes (total)	ND	0.500	**							
Methyl tert-butyl ether	ND	2.50	"							
Surrogate: a,a,a-Trifluorotoluene	9.53		"	10.0		95.3	70-130			
LCS (1C05003-BS1)				Prepared	& Analyz	ed: 03/05/	01			
Benzene	8 18	0.500	ug/l	10.0		81.8	70-130			
Toluene	8.94	0.500	п	10.0		89.4	70-130			
Ethylbenzene	9.72	0.500	**	10.0		97.2	70-130			
Xylenes (total)	28.6	0.500	**	30.0		95.3	70-130			
Surrogate: a,a,a-Trifluorotoluene	9.60		,,	10.0		96.0	70-130			
Matrix Spike (1C05003-MS1)	s	ource: MKC(062-06	Prepared	& Analyz	ed: 03/05/	01	·————		
Benzene	8.27	0.500	ug/l	10.0	ND.	82.7	60-140			
Toluene	8.61	0.500	11	10.0	ND	86.1	60-140			
Ethylbenzene	8.84	0.500	п	10.0	ND	88.4	60-140			
Xylenes (total)	28.8	0.500	**	30.0	ND	96.0	60-140			
Surrogate: a,a,a-Trifluorotoluene	9.46		"	10.0		94.6	70-130			
Matrix Spike Dup (1C05003-MSD1)	S	ource: MKC	0062-06	Prepared	d & Analy	zed: 03/05	/01			
Benzene	7.79	0.500	น <u>ะ</u> /โ	10.0	ND	77.9	60-140	5.98	25	
Toluene	8.04	0.500	••	10.0	ND	80.4	60-140	6.85	25	
Ethylbenzene	8.24	0.500	**	10.0	ND	82.4	60-140	7.03	25	
Xylenes (total)	26.7	0.500		30.0	ND	89.0	60-140	7.57	25	
Surrogate: a,a,a-Trifluorotoluene	8.87		11	10.0		88.7	70-130			

885 Jarvis Drive Morgan Hill, CA 95037 (408) 776-9600 FAX (408) 782-6308 www.sequoialabs.com

Gettler Ryan / Geostrategies - Dublin (Chevron)

6747 Sierra Court, Suite J

Dublin CA, 94568

Project: Chevron

Project Number: 9-4800

Project Manager: Deanna L. Harding

Reported: 03/20/01 09:04

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1C05005 - EPA 5030B [P/T]										
Blank (1C05005-BLK1)				Prepared	& Analyz	ed: 03/05/	01	<u>-</u>		
urgeable Hydrocarbons	ND	50.0	սջ/1							
Benzene	ND	0.500	**							
°oluene	ND	0.500	н							
thylbenzene	ND	0.500	**							
(ylenes (total)	ND	0.500	**							
Methyl tert-butyl ether	ND	2.50	11							
Surrogate: a,a,a-Trifluorotoluene	9.97		**	10.0		99.7	70-130			
LCS (1C05005-BS1)				Prepared	& Analyz	ed: 03/05/	/01			
Purgeable Hydrocarbons	229	50.0	ug/l	250		91.6	70-130			
Surrogate: a,a,a-Trifluorotoluene	18.6		"	10.0		186	70-130			S-0.
Matrix Spike (1C05005-MS1)	s	ource: MKC0	059-01	Prepared	& Analyz	zed: 03/05	/01			
Purgeable Hydrocarbons	236	50.0	ug/l	250	ND	77.7	60-140			
Surrogate: a,a,a-Trifluorotoluene	19.9		"	10.0		199	70-130			S-0
Matrix Spike Dup (1C05005-MSD1)	S	Source: MKC0	059-01	Prepared	& Analy	zed: 03/05	/01	_		
Purgeable Hydrocarbons	228	50.0	ug/l	250	ND	74.5	60-140	3.45	25	
Surrogate: a,a,a-Trifluorotoluene	19.8		"	10.0		198	70-130			S-0
Batch 1C06001 - EPA 5030B [P/T]										
		-		Prepared	i & Analy	zed: 03/06	5/01			
Blank (1C06001-BLK1) Purgeable Hydrocarbons	ND	50.0	ug/l							
Purgeable Hydrocarbons Benzene	ND	0.500	*							
Benzene Toluene	ND	0.500								
Toluene Ethylbenzene	ND	0.500	"							
Etnyloenzene Xylenes (total)	ND	0.500	н							
Methyl tert-butyl ether	ND	2.50	4							
				10.0	 .	97.7	70-130			-
Surrogate: a,a,a-Trifluorotoluene	9.77		#	10.0		97.7	70-130			

6747 Sierra Court, Suite J

Dublin CA, 94568

Project: Chevron

Project Number: 9-4800

Project Manager: Deanna L. Harding

Reported: 03/20/01 09:04

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1C06001 - EPA 5030B [P/T]				<u> </u>						
LCS (1C06001-BS1)				Prepared	& Analyz	ed: 03/06/	01			
Benzene	9.52	0.500	ug/l	10.0		95.2	70-130			
Toluene	10.3	0.500		10.0		103	70-130			
Ethylbenzene	10.7	0.500	н	10.0		107	70-130			
Xylenes (total)	30.1	0.500	н	30.0		100	70-130			
Surrogate: a,a,a-Trifluorotoluene	10.2	_	"	10.0		102	70-130			
Matrix Spike (1C06001-MS1)	Se	ource: MKC0	094-04	Prepared	& Analyz					
Benzene	9.45	0.500	ug/l	10.0	ND	94.5	60-140			
Toluene	9.96	0.500	n	10.0	ND	99.6	60-140			
Ethylbenzene	10.4	0.500	H	10.0	ND	104	60-140			
Xylenes (total)	30.4	0.500	**	30.0	ND	101	60-140			
Surrogate: a,a,a-Trifluorotoluene	9.82		"	10.0		98.2	70-130			
Matrix Spike Dup (1C06001-MSD1)	S	ource: MKC0	094-04	Prepared	& Analyz	ed: 03/06/	01			
Benzene	9.67	0.500	ug/l	10.0	ND	96.7	60-140	2.30	25	
Toluene	10.1	0.500	**	10.0	ND	101	60-140	1.40	25	
Ethylbenzene	10.6	0.500	*	10.0	ND	106	60-140	1.90	25	
Xylenes (total)	30.7	0.500	"	30.0	ND	102	60-140	0.982	25	
Surrogate: a,a,a-Trifluorotoluene	10.1		"	10.0		101	70- 130			

885 Jarvis Drive Morgan Hill, CA 95037 (408) 776-9600 FAX (408) 782-6308 www.sequoialabs.com

Gettler Ryan / Geostrategies - Dublin (Chevron)

Project: Chevron

6747 Sierra Court, Suite J

Dublin CA, 94568

Project Number: 9-4800

Project Manager: Deanna L. Harding

Reported:

DDD

O/DEC

03/20/01 09:04

Diesel Hydrocarbons (C9-C24) by DHS LUFT - Quality Control Sequoia Analytical - Morgan Hill

Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	Limit_	Notes
						. <u> </u>		-	
			Prepared:	03/12/01	Analyzed	: 03/15/01			
ND	50.0	ug/l							
68.5	-	"	100		68.5	50-150			
			Prepared	03/12/01	Analyzed	: 03/15/01			
773	50.0	ug/l	1000		77.3	60-140			
73.2		"	100		73. 2	50-150			
Se	ource: MKC0	066-02	Prepared	: 03/12/01	Analyzed	1: 03/15/01			
782	50.0	ug/l	1000	ND	78.2	50-150			
64.8			100		64.8	50-150			
S	ource: MKC(066-02	Prepared	: 03/12/01	Analyzed	i: 03/15/01			
764	50.0	ц g/l	1000	ND	76.4	50-150	2.33	50 	
68.8			100		68.8	50-150			
	ND 68.5 773 73.2 Sc 782 64.8 S 764	ND 50.0 68.5 773 50.0 73.2 Source: MKC0 782 50.0 64.8 Source: MKC0 764 50.0	ND 50.0 ug/l	Result Limit Units Level ND 50.0 ug/l 68.5 " 100 Prepared: 773 50.0 ug/l 1000 73.2 " 100 Prepared: 782 50.0 ug/l 1000 64.8 " 100 Prepared: 764 50.0 ug/l 1000	Result Limit Units Level Result ND 50.0 ug/l 68.5 " 100 Prepared: 03/12/01 773 50.0 ug/l 1000 73.2 " 100 Source: MKC0066-02 Prepared: 03/12/01 782 50.0 ug/l 1000 ND 64.8 " 100 Source: MKC0066-02 Prepared: 03/12/01 764 50.0 ug/l 1000 ND	Result Limit Units Level Result %REC Prepared: 03/12/01 Analyzed ND 50.0 ug/l 100 68.5 Prepared: 03/12/01 Analyzed 773 50.0 ug/l 1000 77.3 73.2 " 100 73.2 Source: MKC0066-02 Prepared: 03/12/01 Analyzed 782 50.0 ug/l 1000 ND 78.2 64.8 " 100 64.8 Source: MKC0066-02 Prepared: 03/12/01 Analyzed 764 50.0 ug/l 1000 ND 76.4	Prepared: 03/12/01 Analyzed: 03/15/01	Prepared: 03/12/01 Analyzed: 03/15/01	Result Limit Units Level Result %REC Limits RPD Limit

885 Jarvis Drive Morgan Hill, CA 95037 (408) 776-9600 FAX (408) 782-6308 www.sequoialabs.com

Gettler Ryan / Geostrategies - Dublin (Chevron)

6747 Sierra Court, Suite J

Dublin CA, 94568

Project: Chevron

Project Number: 9-4800

Project Manager: Deanna L. Harding

Reported:

03/20/01 09:04

Notes and Definitions

D-15 Chromatogram Pattern: Unidentified Hydrocarbons C9-C24

M-03 Sample was analyzed at a second dilution.

P-01 Chromatogram Pattern: Gasoline C6-C12

S-02 The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds

present in the sample.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

The results in this report apply to the samples analyzed in accordance with the chain of

custody document. This analytical report must be reproduced in its entirety.