Po335 /

CAMBRIA	То:	Mr. Barney Chan
	Company	ACHA
	Address:	
	Phone:	
3	Fax:	
	From:	Melissa Terry
	Phone:	510-420-3345
	Date:	11/5/04
Transmittal	Re:	2340 Otis Drive
·······································		Alameda CA

Dear Larry -

Enclosed is the *Tank and Dispenser Island Removal and Overexcavation Report* for the site in Alameda addressed as 2340 Otis Drive.

If you have any questions or concerns about this report, please call either myself or Bob Foss.

Thank you – Melissa Terry

Melina Terry

Sincerely.

Cambria Environmental Technology, Inc.

November 3, 2004

Mr. Barney Chan Alameda County Health Agency (ACHA) Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Tank and Dispenser Island Removal and Overexcavation Report

Chevron Service Station No. 9-6607 2340 Otis Drive Alameda, California Cambria Project No. 61E-1970

3

Dear Mr. Chan:

On behalf of Chevron Environmental Management Company (Chevron), Cambria Environmental Technology, Inc. (Cambria) is submitting the results of compliance sampling activities performed at the site referenced above. The sampling was conducted following the removal of underground storage tanks (USTs), fuel dispensers and associated product piping, and subsequent overexcavation of hydrocarbon-impacted soil. Presented below are the site background, sampling activities, discussion of analytic results and conclusions.

SITE BACKGROUND

The site is located at the western corner of Otis Drive and Park Street in Alameda, California (Figure 1). Chevron operated a service station onsite from the mid-1970s through August 2004. In September 2004, the station was demolished and all underground storage tanks (USTs) and station facilities were removed from the site. Currently the site is vacant, with a plan to redevelop it as a parking lot for a proposed new retail facility on the adjacent parcel. Surrounding site use is mixed commercial and residential. The site is located in the Alameda Bay Plain Basin and the regional lithology consists of miscellaneous Bay Mud or Merritt Sand. Prior to the early 1960s, this portion of Alameda was beneath the San Francisco Bay. The area was artificially filled using locally derived dredge material at that time. The following is a brief description of the site investigative history.

February 1991, UST and Product Line Removal, Overexcavation and Replacement: In February 1991, three fiberglass gasoline USTs and one fiberglass used-oil UST were removed from the site. Depth to water was encountered during this investigation at 6 to 7 feet below grade (fbg). Eight soil samples and two water samples (one from each UST excavation) were collected. The only hydrocarbon concentrations detected in any of the soil samples was 3,200 milligrams per kilogram (mg/kg) total oil and grease (TOG) in sample #7 from the used-oil UST excavation. Total petroleum

Cambria Environmental Technology, Inc.

5900 Hollis Street Suite A Emeryville, CA 94608 Tel (510) 420-0700 Fax (510) 420-9170

hydrocarbons as gasoline (TPHg) was detected in the water samples at 48,000 and 3,000 micrograms per liter ($\mu g/I$) in the gasoline UST and used-oil UST pits, respectively. Additional soil was subsequently overexcavated and removed from the gasoline UST pit. Confirmation soil samples #1 through #6 were collected after overexcavation to confirm that the impacted soil had been removed. No significant concentrations of hydrocarbons were detected in these confirmation samples. Additional soil was also removed from the used-oil UST pit. The excavation was widened by approximately 3 feet to remove additional impacted soil. Confirmation soil sample #1, collected after additional overexcavation, contained one order of magnitude less TOG than in sample #7. No other hydrocarbons were detected. Product lines were removed and soil samples #2 through #15 were collected from the product line trenches and beneath former dispensers. A maximum concentration of 36 mg/kg benzene was detected beneath the dispenser islands. TPHg was detected at a maximum concentration of 5,700 mg/kg in sample #13. In March 1991, further overexcavation was conducted in the product line trenches and the used-oil UST pit. Overexcavation near the former used-oil UST was limited due to the concern for the structural integrity of the building. After all overexcavation activities were completed, the highest concentration of TPHg remaining in the soil was 150 mg/kg in product trenches, 2.6 mg/kg in the gasoline UST pit, and 150 mg/kg in the used-oil UST pit. A concentration of 16,000 mg/kg TOG remained in the used-oil UST pit, detected in confirmation sample #10 at 6 fbg.

August 1991, Well Installation: In August 1991, Geraghty & Miller, Inc. installed monitoring wells MW-1 through MW-4 on the site. These monitoring wells have been monitored and sampled on a quarterly basis since that time.

Groundwater Depth and Flow Direction: Groundwater typically occurs at depths ranging from approximately 2.5 to 5.5 fbg at this site and fluctuates about 2 ft annually. Due to the proximity of the San Francisco Bay and highly permeable fill soils, a tidal influence is possible in groundwater beneath the site. Groundwater generally flows towards the south to southwest at an approximate gradient of 0.003 ft/ft.

SAMPLING ACTIVITIES

Onsite Personnel: Ms. Melissa Terry of Cambria, Mr. Barney Chan and Mr. Robert Weston of Alameda County Health Agency, and Mr. Barry McCoy of Gettler-Ryan were onsite during sampling activities.

UST and Dispenser Removal Contractor: Gettler-Ryan, Inc. and Speelman Excavation Services removed all tanks, dispensers and associated piping.

Number of USTs and Dispensers Removed: Three 12,000-gallon gasoline double-walled fiberglass USTs connected to three dispenser islands by underground piping were removed (Figure 2). One 1,000-gallon fiberglass used-oil UST was also removed. No leaks or cracks were observed in any of the USTs. The tanks were transported by Ecology Control Industries (ECI) to their facility in Richmond, California.

UST and Dispenser Sampling Date: September 9, 15, 16 and 27, 2004.

UST and Dispenser Soil and Groundwater Sampling: On September 9, 2004, Staff Scientist Melissa Terry of Cambria collected 12 soil samples and two groundwater samples under the direction of Alameda County Health Agency representatives. Four soil samples, one at the midpoint of each wall, were collected from the UST pit. Six soil samples were collected from the dispenser islands and two soil samples were collected from the used-oil UST pit. Grab water samples were collected from the bottom of both the UST pit and the used-oil pit.

Based on analytic results of initial compliance samples, Cambria returned to the site to observe the overexcavation of the dispenser island area, the used-oil UST area, and the former hydraulic hoist areas on September 15 and 16, 2004. Staff Scientist Melissa Terry collected five confirmation soil samples from the overexcavated dispenser island area, two confirmation soil samples from overexcavation of the used-oil UST, and four samples from the vicinity of the former hydraulic hoists. Water was pumped from the UST pit and a second grab sample was collected. Composite soil samples were collected from the stockpiled soil from the dispenser island and used-oil UST overexcavations for disposal profiling.

Laboratory data from the soil sample collected from the vicinity of hoist #3 indicated elevated concentrations of TOG at 12,000 mg/kg. On September 27, 2004, Cambria returned to the site to observe overexcavation of soils around former hydraulic hoist #3. Staff Scientist Melissa Terry collected two confirmation soil samples from the vicinity of hoist #3 and four composite soil samples from the stockpile generated from overexcavation of the hoist area. The location of soil samples collected during this investigation is presented on Figure 2. Analytic results for soil and water samples are presented on Tables 1 and 2, respectively.

Sampling Methodology: Soil samples were collected using steam-cleaned brass tubes that were driven into soil in the backhoe bucket. Soil stockpile samples were collected by driving four brass tubes per composite sample into the soil stockpile. All samples were preserved on ice in a cooler and delivered under chain-of-custody to McCampbell Analytical in Pacheco, California.

Chemical Analyses: Select soil and groundwater samples were analyzed for some or all of the following compounds, as directed by the ACHA:

- TPHg and TPHd by EPA Method 8015M,
- Total Oil and Grease (TOG) by EPA Method 5520,
- Benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8260B,
- Methyl tertiary butyl ether (MTBE), di-isopropyl ether (DIPE), tertiary-butyl alcohol (TBA), tertiary-amyl methyl ether (TAME), ethyl tertiary-butyl ether (ETBE), 1,2-dichloroethane (1,2-DCA), and ethylene dibromide (EDB) by EPA Method 8260B, and
- Total lead by EPA Method 6010.

Laboratory analytic results for soil and groundwater samples are summarized in Tables 1 and 2. The laboratory analytic reports are presented as Attachment B.

Soil Disposal: A total of approximately 700 cubic yards of soil were excavated, stockpiled onsite, profiled, and transported by Integrated Waste Management of Milpitas, California to Forward Landfill in Manteca, California.

SOIL ANALYTICAL RESULTS

Laboratory analytic results of soil samples collected prior to overexcavation indicated that gasoline range hydrocarbon-impacted soil was limited to the dispenser island areas. The highest concentration of TPHg in soil samples collected during this investigation was 1,500 mg/kg, in soil sample I1-D2 (Island 1, Dispenser 2), collected from the southern-most dispenser island prior to overexcavation activities. The laboratory notes indicate that this sample had "no recognizable pattern" and correspondingly low concentrations of volatile aromatics (BTEX). These results suggest that the hydrocarbons detected in these dispenser island samples likely represent older, weathered/degraded gasoline from an earlier generation release. Historical soil analytic results from the 1991 UST/line replacement lend credence to this hypothesis. After overexcavation, a soil sample collected from the same location contained only 6.4 mg/kg of TPHg. The highest concentration of TPHg detected in post-overexcavation soil samples was 160 mg/kg in sample I3-D1, collected from the northern-most

dispenser island. With the exception of soil sample I3-D1, concentrations of TPHg decreased significantly after overexcavation activities were complete. The laboratory notes indicate that sample I3-D1 had "no recognizable pattern", suggesting that the hydrocarbons detected in this dispenser island sample likely represents older, weathered/degraded gasoline from an earlier generation release.

The highest concentration of TPHd in soil samples collected during this investigation was 3,100 mg/kg, in a sample collected from the used-oil UST pit at a depth of five feet. After overexcavation, no TPHd was detected above the 1 mg/kg detection limit in the confirmation sample collected at 6 fbg. The highest concentration of TPHd detected in post-overexcavation soil samples was 6.6 mg/kg in a sample collected at 7 fbg, adjacent to the former location of hydraulic hoist #1. This sample is designated on Table 1 and Figure 2 as "used oil hoist @ 7'."

The highest concentrations of TOG in soil samples collected during this investigation were 25,000 mg/kg in a sample collected from the used-oil UST pit at 5 fbg and 12,000 mg/kg in a sample collected beneath hoist #3. After overexcavation of the used-oil UST pit, samples collected from the same area at depths of 6 and 7 fbg contained less than 50 mg/kg of TOG. Samples collected after overexcavation of the area beneath hoist #3 contained TOG at 61 and <50 mg/kg at 11 and 11.5 fbg, respectively.

The highest concentrations of BTEX in soil samples collected during this investigation were 0.74 mg/kg benzene in dispenser island sample I3-D1, 1.3 mg/kg toluene in the sample collected from the used-oil UST pit, 10 mg/kg ethylbenzene in dispenser island sample I1-D2, and 38 mg/kg xylene, also from dispenser island sample I1-D2. These concentrations were from samples collected prior to overexcavation of subsurface facilities. After overexcavation, confirmation soil samples collected showed a marked decrease in BTEX concentrations. The highest concentrations of BTEX in confirmation samples were 0.065 mg/kg benzene in dispenser island sample I2-D2, 0.98 mg/kg toluene in dispenser island sample I3-D1, 2.7 mg/kg ethylbenzene and 9.4 mg/kg xylene, both of which were from dispenser island sample I3-D1.

GROUNDWATER ANALYTICAL RESULTS

Laboratory analytical results of the groundwater sample collected from the UST pit prior to pumping showed concentrations of TPHg and benzene at 14,000 and 160 micrograms per liter (μ g/L), respectively. MTBE was not present above the detection limit of 17 μ g/L. The groundwater sample collected after pumping contained 11,000 μ g/L TPHg and 87 μ g/L benzene. MTBE was detected at a concentration of less than 25 μ g/L. The analytic report notes that this water sample contained greater

than 1 volume % sediment. As a result, even relatively low concentrations of hydrocarbons sorbed to the soil particles included in this grab tankpit water sample could yield concentrations in the ranges indicated above of both TPHg and benzene. We feel that the reported concentrations from this grab water sample may not be indicative of stable groundwater conditions after evacuating approximately 9,000 gallons of water from the tankpit. Laboratory results of the groundwater sample collected from the used-oil UST pit contained 8,200 μ g/L TPHd, 33 μ g/L TOG, and 2 μ g/L MTBE.

CONCLUSIONS

All sample locations with elevated petroleum hydrocarbon impacts were overexcavated. Final confirmation sample results show no significant residual hydrocarbon in soils in the excavated areas. Concentrations of hydrocarbons detected in groundwater samples collected from the UST pit and the used-oil UST pit are thought not to be truly representative of actual groundwater conditions, as they contained greater than 1 volume % sediment, which as stated above leads to higher reported concentrations. Quarterly monitoring of four onsite monitoring wells (now destroyed) has shown very low to non-detect concentrations of petroleum hydrocarbon constituents over the last two years. The most recent quarterly monitoring report is presented as Attachment C. Based on the very low and non-detectable concentrations of hydrocarbon constituents in soil and groundwater beneath the site, Cambria recommends that this site be closed. Additional data supporting this request is provided in Cambria's November 2, 2004 Well Destruction and Subsurface Investigation Report.

CLOSING

Please contact Mr. Robert Foss at (510) 420-3348 or bfoss@cambria-env.com with any questions or comments.

Sincerely,

Cambria Environmental Technology, Inc.

Melissa Terry Staff Scientist

Robert Foss, R.G. Associate Geologist

Figures: 1 -Vicinity Map

2 - Site Plan and Soil Sampling Locations

Tables: 1 – Soil Sample Analytic Results

2 - Groundwater Sample Analytic Results

Attachments: A – Tank Removal Sampling Procedures

B – Laboratory Analytic Reports

C - Third Quarter 2004 Groundwater Monitoring and Sampling Report

cc: Karen Streich, Chevron Products Company, P.O. Box 6004, San Ramon, CA 94583

Mr. Michael P. Corbitt, Harsch Investment Properties, 523 South Shore Center West,

Alameda, CA 94501

Mr. Larry Bornstein, Staubach Company, 6001 Bollinger Canyon Road, San Ramon,

CA 94583

i:\9-6607\station demo investigation\tank pit and dispenser island sampling report.doc

Chevron Service Station 9-6607

Vicinity Map

2340 Otis Drive Alameda, California

CAMBRIA

0 15 30 Scale (ft)

FIGURE

2

Chevron Service Station 9-6607

I1-D1 ■ Soil sample location

2340 Otis Drive

Alameda, California

CAMBRIA

Overexcavation and Compliance Sample Locations

Table 1. Analytic Results for Soil Samples - Chevron Station 9-6607, 2340 Otis Drive, Alameda, CA

Sample	Sample	Sample	TPHg	TPHd	TOG	В	T	E	X	MTBE
_ ID	Depth (ft)	Date		Co	ncentrations repor	ted in milligrams	per kilogram mg/k	g = parts per milli	on	
UST#1	9	9/9/2004	<1.0	NA	NA	<0.005	<0.005	<0.005	<0.005	<0.005
UST#2	9	9/9/2004	<1.0	NA	NA	< 0.005	< 0.005	< 0.005	< 0.005	0.011
UST#3	9	9/9/2004	17	NA	NA	0.02	0.065	0.35	1	< 0.01
UST#4	9	9/9/2004	<1.0	NA	NA	< 0.005	< 0.005	< 0.005	0.003	0.008
I1-D1	4	9/9/2004	290	NA	NA	< 0.01	< 0.01	0.026	0.036	< 0.01
I1-D2	4	9/9/2004	1,500	NA	NA	<0.5	0.64	10	38	< 0.5
I2-D1	4	9/9/2004	19	NA	NA	0.2	0.08	0.6	1.9	< 0.05
12-D2	4	9/9/2004	190	NA	NA	<0.1	< 0.1	0.11	0.53	< 0.1
I3-D1	4	9/9/2004	37	NA	NA	0.74	<0.05	2.3	0.74	<0.05
I3-D2	4	9/9/2004	<1.0	NA	NA	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
used oil @ 5	5	9/9/2004	420	3,100	25,000	<1.0	1.3	4.5	19	<1.0
used oil @ 7	7	9/9/2004	2.5	110	880	<0.005	<0.005	<0.005	< 0.005	< 0.005
I1-D1 @ 6	6	9/15/2004	4.4	NA	NA	< 0.005	0.005	0.049	0.1	0.0097
I1-D2 @ 6	6	9/15/2004	6.4	NA	NA	0.014	0.14	0.067	0.37	< 0.005
I2-D1 @ 6	6	9/15/2004	<1.0	NA	NA	0.013	< 0.005	0.01	0.018	< 0.005
I2-D2 @ 6	6	9/15/2004	1.3	NA	NA	0.065	< 0.005	0.08	0.13	0.0068
I3-D1 @ 6	6	9/15/2004	160	NA	NA	< 0.2	0.98	2.7	9.4	< 0.2
used oil @ 6	6	9/15/2004	<1.0	<1.0	<50	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
used oil hoist	7	9/15/2004	<1.0	6.6	<50	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
hoist #2	7	9/15/2004	NA	NA	120	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
hoist #3	7	9/15/2004	23	NA	12,000	0.007	0.027	0.1	0.071	< 0.005
hoist #4	7	9/15/2004	NA	NA	250	<0.005	< 0.005	<0.005	< 0.005	< 0.005
hoist #3 @ 11	11	9/27/2004	<1.0	NA	61	<0.005	<0.005	< 0.005	<0.005	NA
hoist #3 @ 11.5	11.5	9/27/2004	<1.0	NA	<50	< 0.005	< 0.005	< 0.005	< 0.005	NA

Abbreviations/Notes:

Total petroleum hydrocarbons as gasoline (TPHg) and diesel (TPHd) by EPA Method 8015

Total Oil and Grease (TOG) by EPA Method 5520

Benzene, toluene, ethylbenzene and xylenes (BTEX) by EPA Method 8260B

Methyl tertiary butyl ether (MTBE) by EPA Method 8260B

<x = Not detected above method detection limit

NA = Not analyzed

Table 2. Analytic Results for Groundwater Samples - Chevron Station 9-6607, 2340 Otis Drive, Alameda, CA

Sample	Sample	TPHg	TPHd	TOG	В	T	Е	X	MTBE	
ID	Date		Con	centrations repo	orted in microgra	ıms per liter - μg	/l = parts per bil	lion		
used oil	9/9/2004	<50	8,200	33	<0.5	<0.5	<0.5	<0.5	2	
UST pit	9/9/2004	14,000	NA	NA	160	590	620	2,700	<17	
UST pit-post	9/15/2004	11,000	NA	NA	87	390	430	2900	<25	

Abbreviations/Notes:

Total petroleum hydrocarbons as gasoline (TPHg) by EPA Method 8015M

Total petroleum hydrocarbons as diesel (TPHd) by EPA Method 8015C

Total Oil and Grease (TOG) by EPA Method 5520

Benzene, toluene, ethylbenzene and xylenes (BTEX) by EPA Method 8260B

Methyl tertiary butyl ether (MTBE) by EPA Method 8260B

<x = Not detected above method detection limit

NA = Not analyzed

ATTACHMENT A Tank Removal Sampling Procedures

TANK REMOVAL SAMPLING PROCEDURES

This document describes Cambria Environmental Technology's standard operating procedures for collecting soil and ground water samples during underground storage tank removal. These procedures ensure that the samples are collected, handled, and documented in compliance with California Administration Code Title 23: Waters; Chapter 3: Water Resources Control Board; Subchapter 16: Underground Storage Tank Regulations (Title 23). Cambria's sampling procedures are based on guidelines contained in the California State Regional Water Quality Control Board Tri-Regional Staff Recommendations for Preliminary Evaluation and Investigation of Underground Tank Sites dated August 10, 1990.

Tank Removal Sampling

The objective of sample collection during routine underground storage tank removals is to determine whether hydrocarbons or other stored chemicals have leaked to the subsurface. If no ground water is encountered within the tank excavation, Cambria will sample native soil 1 to 2 ft beneath the removed tank. Additional soil samples may also be collected at locations of obvious spillage to determine maximum concentrations in the surrounding soils. For underground storage tanks with a capacity of less than 1,000 gallons, one soil sample is collected beneath the fill end of the tank. For tanks with a capacity of between 1,000 and 10,000 gallons, one soil sample is collected beneath each end of the tank. For tanks larger than 10,000 gallons, 3 or more soil samples are collected beneath the removed tank. We also collect one soil sample for every 20 ft of product piping.

In cases where ground water is encountered within underground storage tank excavations, Cambria will collect confirmatory soil samples from the excavation sidewalls just above the soil/ground water interface and a representative ground water sample from the excavation. The excavation is typically purged and allowed to recover prior to collecting the water sample. For tanks with capacities of 10,000 gallons or less, one soil sample is collected from the wall at each end of the tank excavation. For tanks with capacities greater than 10,000 gallons, or tank clusters, at least four soil samples are collected from the excavation walls next to the tank ends. Piping samples are collected in native soil 1 to 2 ft beneath the removed piping. One sample is typically collected for every 20 linear ft of piping unless regulatory agencies approve of different sampling requirements.

The soil samples are collected in steam cleaned brass or steel tubes from either a driven split-spoon type sampler or the bucket of a backhoe. When a backhoe is used, approximately three inches of soil are scraped from the surface and the tube is driven into the exposed soil.

Upon removal from the split-spoon sampler or the backhoe, the samples are trimmed flush, capped with Teflon sheets and plastic end caps, labeled, logged and refrigerated for delivery under chain of custody to a State certified analytic laboratory.

The ground water sample is collected using steam cleaned Teflon or PVC bailers, decanted into a volatile organic analysis (VOA) bottle or other appropriate clean sample container, refrigerated and transported under chain of custody to a State certified analytic laboratory.

ATTACHMENT B Laboratory Analytic Reports

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www mccampbell com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #61E-1970; 9-6607	Date Sampled: 09/15/04
5900 Hollis St, Suite A		Date Received: 09/16/04
P	Client Contact: Melissa Terry	Date Extracted: 09/22/04
Emeryville, CA 94608	Client P.O.:	Date Analyzed: 09/23/04

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline *

ction method:	SW5030B	Analyt	ical methods: SW8015Cm	Work Order:	040924
Lab ID	Client ID	Matrix	ТРН(g)	DF	% S
001A	II-D1@6	S	4.4,b	1	99.2
002A	I1-D2@6	s	6.4,b,m	1	83.2
003A	i2-Di@6	S	ND	1	93.0
004۸	12-D2@6	S	1.3,a	1	84.4
005A	I3-D1@6	S	160,b,m	40	103
006A	Used Oil @ 6	s	ND	1	86.7
007A	Used Oil Hoist @ 7	S	ND	1	88.9
009A	Hoist #3	S	23,a	1	89.
·					
	ng Limit for DF =1;	w	NA	1	۱A
	ans not detected at or the reporting limit	S	1.0	mg	/Kg

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas), m) no recognizable pattern; n) results are reported by dry weight.

DHS Certification No. 1644

_Angela Rydelius, Lab Manager

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

L								
Cambria Env	. Technology	Client Pro	ject ID: #61E-	1970; 9-6607	Date Sampled:	09/15/04	1	
5900 Hollis S	St, Suite A				Date Received:	09/16/04	ì	···········
F	74.04600	Client Cor	ntact: Melissa T	erry	Date Extracted:	09/22/04	,	
Emeryville, (JA 94608	Client P.O).;		Date Analyzed:	09/23/04		
	Diese	el Range (C	•	table Hydrocar	bons as Diesel*			
Extraction method:	SW3550C		Analytical me	hods: SW8015C		Work O	rder:	0409240
Lab ID	Client ID	Matrix		ТРН(d)	I	F	% SS
0409240-006A	Used Oil @ 6	s		ND			1	105
0409240-007A	Used Oil Hoist @ 7	s		6.6,	g		1	106
	,							

Reporting Limit for DF =1; ND means not detected at or	w	NA	NA
above the reporting limit	S	1.0	mg/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel is significant; d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

_Angela Rydelius, Lab Manager

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560

IVIC	Campbell An	aiyticai,	inc.	Website: www.i	ne:925-798-1620 Fax mccampbell.com E-mail	c : 925-798-16 : main@mccar	22 npbell.com	l
Cambria Env.	Technology	Client Pro	ject ID: #61E-	1970; 9-6607	Date Sampled:	09/15/04		
5900 Hollis St	, Suite A				Date Received:	09/16/04		
Emeryville, CA	A 04608	Client Cor	ıtact: Melissa T	erry	Date Extracted:	09/22/04		
Emeryvine, Cz	1 94000	Client P.O			Date Analyzed:	09/22/04		
Analytical methods:	SM5520E/F	Petroleum	Oil & Grease v	with Silica Gel Clea	nn-Up*	W	ork Order:	0409240
Lab ID	Client ID	Matrix		POG			DF	% SS
0409240-006A	Used Oil @ 6	S		ND			1	N/A
0409240-007A	Used Oil Hoist @ 7	S		ND			1	N/A
0409240-008A	Hoist #2	s		120			1	N/A
0409240-009A	Hoist #3	s		12,000			I	N/A
0409240-010A	Hoist #4	S		250	<u>.</u>		1	N/A
·								
			·					
						 -		
· · · · · · · · · · · · · · · · · · ·								
					 -		<u> </u>	
Reporting	Limit for DF =1;	W		NA			N	 NA

* water samples are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in mg/wipe, product/oil/non-aqueous liquid samples in mg/L.

50

DF = dilution factor.

= surrogate diluted out of range.

ND means not detected at or

above the reporting limit

g) sample extract repeatedly cleaned up with silica gel until constant IR result achieved; h) a lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment.

mg/Kg

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone . 925-798-1620 Fax : 925-798-1622
Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: S

WorkOrder, 0409240

EPA Method: SW8021B/8015Cm Extraction: SW5030B BatchID: 13256 Spiked Sample ID: 0409333-001A										
Analyte	Sample mg/Kg	Spiked mg/Kg	MS* % Rec.	MSD* % Rec.	MS-MSD % RPD	LCS % Rec.	LCSD % Rec.	LCS-LCSD % RPD	Acceptar Low	nce Criteria (%) High
TPH(btex) [£]	ND	0.60	93.7	96	2.38	98.3	99 8	I 43	70	130
мтве.	ND	0.10	85.7	88.8	3.47	96.7	102	4.90	70	130
Benzenc	ИD	0.10	93.3	98.7	5.64	98.9	99 6	0.740	70	130
Toluene	ND	0.10	86 1	80.1	7 .17	80.1	81.4	1.58	70	130
Ethylbenzene	ND	0 10	94.9	100	5.64	97.7	99	1.36	70	130
Xylenes	ND	0.30	85	90	5.71	85.7	90	4.93	70	130
%SS.	91.0	0.10	99	100	. 1.48	100	99	1.28	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions.

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample, LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation

QA/QC Officer

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons, a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery

[£] TPH(btex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram, sample peak coelutes with surrogate peak

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds splke amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

110 2nd Avenue South, #D7. Pacheco, CA 94553-5560 Telephone . 925-798-1620 Fax . 925-798-1622 Website www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SM5520E/F

Matrix S

WorkOrder 0409240

EPA Method: SM5520E/F	Ε	Extraction:	PR5520_	SG_S	Batch	ID: 13178	S	piked Sampl	e ID: 04092	246-001A
Analyte	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
Allalyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
POG	ND	100	92	94	2.15	93	92	1.08	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked), RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content

M QA/QC Officer

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.mccampbell.com E-mail: mam@mccampbell.com

QC SUMMARY REPORT FOR SW8260B

Matrix: S

WorkOrder: 0409240

EPA Method: SW8260B	E	extraction:	SW5030E	3	Batch	ID [.] 13176		piked Sampl	e ID: 040	9241-001A
Analyte	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptan	ce Criteria (%)
7 thatyte	μg/Kg	µg/Kg	% Rec	% Rec.	% RPD	% Rec	% Rec.	% RPD	Low	High
tert-Amyl methyl ether (TAME)	ND	50	82.9	84.6	2.01	90.9	90.2	0.726	70	130
Benzene	ND	50	115	118	2.36	123	121	1 24	70 :	130
t-Butyl alcohol (TBA)	ND	250	77.4	76.9	0.650	90.8	91.8	1.07	70	130
1,2-Dibromoethane (EDB)	ND	50	92.8	93.8	1.09	108	104	4.15	70	130
1.2-Dichloroethane (1.2-DCA)	ND	50	107	110	2.07	108	110	1 86	70	130
Diisopropyl ether (DIPE)	ND	50	114	118	3 26	116	119	2.64	70	130
Ethyl tert-butyl ether (ETBE)	ND	50	99.6	102	2.03	110	109	1.02	70	130
Methyl-t-butyl ether (MTBE)	ND	50	88.5	89.9	1.57	99.7	100	0.308	70	130
Toluene	ND	50	109	110	1.44	120	114	4.98	70	130
%SSI	98.9	50	93	93	0	98 7	100	1.28	70	130
%SS2·	105	50	103	104	0 473	103	102	0 617	70	130
%\$S3	103	50	121	119	I 51	112	113	1 59	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: . NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample, LCSD = Laboratory Control Sample Duplicate, RPD = Relative Percent Deviation

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2)

* MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QA/QC Officer

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail. main@mccampbell.com

QC SUMMARY REPORT FOR SW8015C

Matrix: S

WorkOrder, 0409240

EPA Method: SW8015C	E	xtraction:	SW35500	;	Batch	ID: 13260	5	Spiked Sampl	e ID: 040	9333-001A
Analyte	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptan	ice Criteria (%)
Allalyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec	% RPD	Low	High
TPH(d)	ND	150	98.9	96.4	2.58	93.6	97.4	4.03	70	130
%SS:	114	50	118	118	0	110	118	6.49	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike, MSD = Matrix Spike Duplicate, LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate, RPD = Relative Percent Deviation

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2)

* MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance critena due to one or more of the following reasons. a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

AL QA/QC Officer

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

CHAIN-OF-CUSTODY RECORD

Page I of I

WorkOrder: 0409240

ClientID: CETE

Report to:

Melissa Terry

Cambria Env. Technology

5900 Hollis St, Suite A Emeryville, CA 94608

TEL. FAX:

(510) 420-0700

(510) 420-9170 ProjectNo: #61E-1970; 9-6607

PO:

Bill to:

Accounts Payable

Cambria Env. Technology

5900 Hollis St, Ste. A Emeryville, CA 94608

Date Received:

Requested TAT:

9/16/04

1 day

Date Printed: 9/22/04

									 •		Re	que	ted	Test	s (S	ee le	geno	bel	ow)					-		
Sample ID	ClientSampID	Matrix	Collection Date	Hold	. 1		2	3	 4	5		6	-1	7	ــــــــــــــــــــــــــــــــــ	8	9		10	J .	11	1	2	13	14	15
0409240-001	I1-D1@6	0-1		T 1				·	 	J												,				
0409240-002	parameter - market	Soil	9/15/04 1:30:00 PM		<u> </u>	1 1/2	<u> </u>	<u> </u>	 	·	<u>!</u>							``		1_						
	I1-D2@6	Soil	9/15/04 1:25:00 PM	<u> </u>	l		A	<u> </u>	 	<u> </u>	i	_	;		<u> </u>	j				:			!			
0409240-003	I2-D1@6	Soil	9/15/04 12:17:00		· 	(in telemony	Α	<u> </u>					;		;	1		;		•			Ţ			
0409240-004	12-D2@6	Soil	9/15/04 12:11:00				A	Α			T		7 "		T					- 1			— j-	•	i ·	
0409240-005	I3-D1@6	Soil	9/15/04			,	A	Α					1		1					<u> </u>			- i			+
0409240-006	Used Oil @ 6	Soil	9/15/04 11:37:00		Α		A	Α					┪		!			_					-			
0409240-007	Used Oil Hoist @ 7	Soil	9/15/04 11:34:00		A	W/# PLETE	A	A			+		+-		 -			- } -							r -	
0409240-008	Hoist #2	Soil	9/15/04 2:35:00 PM		Α			Α					+		!					—			+		-	
0409240-009	Hoist #3	Soil	9/15/04 2:45:00 PM		Α	/	Ą	Α					T			-		-		;					<u> </u>	
0409240-010	Hoist #4	Soil	9/15/04 2:50:00 PM		A			Α					 		;·	+		+-			_				r-)	

Test Legend:

1	5520E_SG_S
6	
11	

2	G-MBTEX_S
7	
[12]	

3	MBT	EXOX	Y-8260E	3_S	
8		• _			-
13					

4		
9)	_	1
14		. 1

5	**	w	
·			
10		•	 7
4.5			- 1
15			- 1
·	-		-

Prepared by: Melissa Valles

Comments:

Tph (g), Tph (d), and 5520 added 9/22 per fax on a 48 hr rush

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

cetter

RUSHI

0409240

												-6/	Æ.	Ы	-3	¥ 15	Ζ,	y _														
	McCAM					LIN	VC.				•	77 <u></u> -		-	=	= (Œ,	CH	AJ	N	OF	C	US	T	OJ.)	RE.	C	ORI)		
	1		VENUE SC CO, CA 945										'	TU)	RN	AR	O	UNI	TC	'IM	E		Ę	1	1		1	Ç	Ì	Ę]	
Telephon	e: (925) 798		00, 011 74.)35-550		ax: (925	798	3-16	22			1										RU			4 HR		48 J		72 I	HR	5 DAY
*													Į E	DF	Req	uire							No		W	te 01	<u> </u>		No			
Report To: Mel				ill To	:	50	w	_					+-	Ta3	o 🖾	2		Ana	lysi	s Re	eque	st	- (1	Т	- ,	┼	101	her	+-	omn	ients
Company: Cam	Dria Er	Missi	monto	<u>L</u> _									114	aka		r					1	1	1	Ì					1 }			
5900 Hol Emergui	1113 37.	, S w1	CA						τ.				-1 2		F/B				ľ	- {	1			1	Ì		1	†		- (
Tele: (510) 42	11e CA	9900	28 E	-Mail ax: (UNV.	·(D)	7 F		E&	=							83	1			SCAY					
Project #: 61E.	1070			rojec											3520	418							5	ł				1		- 1	•	
Project Location:		a		Tojec	LIVAL	iic.	7		<u>~</u>				٢		Grease (5520 E&F/B&	Total Petroleum Hydrocarbons (418.1)		BTEX ONLY (EPA 602 / 8020)	i	2	ļ	}	EPA 625 / 8270 / 8310		1	ေ	50x>+0b	1		-		
Sampler Signature	e: MeV (s	2 10	mi					•					TPH a Gas 1402/8020		Grea	carb		2/8		EPA 608 / 8080 PCB's ONLY			5	İ		Lead (7240/7421/239.2/6010) RCI	1 3	٠,				
January	10000		PLING		0	, n	<i>f</i> A 7	RD	······································	М	ETI	HOD	٤ [٣	<u> </u>	1	ydro		4 60		B's	8260		EPA			39.2	18	3	5			
		SAIVI	CLUIG	ည	ner	<u> </u>	IAI	T.L.	`	PRI	ESEI	RVEI	ا رْق	8015	n Oil	n Hy	0	(EP,	0	PPC	8/0	٥	اھ	S	ا م	22		* 5	š			
SAMPLE ID				Containers	Containers								1 2	TPH as Diesel	Total Petroleum	len	EPA 601 / 8010	Ľ	EPA 608 / 8080	808	EPA 624 / 8240 /	EPA 625 / 8270	PAH's / PNA's by	CAM-17 Metals	LUFT 5 Metals	24	S S	-		Į		
(Field Point Name)	LOCATION	Date	Time	nta	ਹਿੰ	<u> </u>		ge G	<u>ب</u> د ا			m :] [Petro	Petr	0	Ö	/ 80	/80	74/	25/	~	2	5	42		7				
		"""	1 1010	S	Type	Water	Soil	Sindge	Other	Ice	HC	HNO,		H.	tal	gal	A 6	lex	9 A 6	9 V 6	PA 6	Y 6	۶)	ξ		Lead (MIBE	7				
				#	F	5	Š -	4 5	0	¥	Ħ	# 0	1	F	Ĕ	Ĕ	Ξ	9.	E	囧	囧	国	اھ	J.	<u> </u>	i s	2	7	2	\bot		
II-0166		1330	9/15	1			X			X			X														X	\geq		\perp		
D-02G6		1325	n	1			X_{-}			X			<u> </u> X														X	X				
[2-DI @ 6		1217	u	١			X			X			\mathbb{I}														X					
C2-D2C6		1211	11	1			X			X			λ														X	X				
13-DIC6		12. 1	1		<u> </u>		X			X		_	15	(\neg				X	X				
				 	ļ			+					*		-		\vdash				$\neg \dagger$		_	1	-1-	_		* -		十		
usedoil @6		1137	n	1			X	1		X		~-{	٦	(X	X							1	1		1	1	X	X		\top		
usedoilhoiste7		1134	11	1			X			X			X	(X	X												X					
hoist#2		1435	11	l i			X		\dagger	۱	_		Ť	<u> </u>	X						\neg	7	\top	1	_		又	X	7			
hoist#3		1445	11	1			X	_	1	以	$\neg \uparrow$	_	乜		λ	 				$\neg \uparrow$		7	-				V	╲		\top		
hoist#4		1450	n	Ħ	 		X-	+	+-	$\langle \rangle$			f	1	∇		 				十		_	+	\dashv		Ŕ	分	7	+		
1101.21 17-1		11730	 " -	 \			7	+-	-		-	_	+	+			 					\dashv		-	+	\perp		Y	++	+		
	······································		 				+	+-	+			-								\dashv		+	\dashv	\dashv	\dashv		+	+	+	+		
			 	 	-	\vdash	-		-		\dashv		-	+-	┼~							-			-	-	╫	╁		+		
Relinquished By:		Date:	Time:	Bass	iyed B		بل.	ل_	1				+				<u></u>										_L	<u></u>				
		9-16-04	J	- X	<u> </u>		<u>{</u>	\ <u>/</u> -	()	~	ت	-		-		- 7	1.		-		ř	-	-			-	VOA:	s	O&G	ME	ials	OTHER
Meline lem Reinquished By:	4	Date:	10 0	Rem	<i>e</i> ∕- ived B			<u> </u>					-	ICI		<u> </u>			_	. /						TION						
	ı					. ·									OD (AD S								PPR ON:			TE	\checkmark					
Relinquished By:		Date:	Time:	Rece	ived B	v:							\dashv		CHL						3					ED IN	V LA	В				
·																•					-							_		-		

Ethanol

Toluene

Xylenes

Ethylbenzene

Ethyl tert-butyl ether (ETBE)

Methyl-t-butyl ether (MTBE)

McCampbell Analytical, Inc.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project II	D: #61E-1970; 9	9-6607	Dat	e Sampled: 09/	15/04	
5900 Hollis St, Suite A			[Dat	e Received: 09/	16/04	
Emeryville, CA 94608	Client Contact:	Melissa Terry		Dat	e Extracted:	·	
Emeryvine, CA 94008	Client P.O.:			Dat	e Analyzed: 09/	16/04-09	/17/04
Extraction Method: SW5030B	• •	ates and BTEX b	-			Work (Order: 0409240
Lab ID	0409240-001A	0409240-002A	0409240-003	3A	0409240-004A		
Client ID	I1-D1@6	II-D2@6	12-D1@6		I2-D2@6	Reporti	ng Limit for
Matrix	S	S	S		S	T.)F =1
DF	1	1	1		1	S	W
Compound		Conce	entration			μg/Kg	ug/L
tert-Amyl methyl ether (TAME)	ND	ND	ND		ND	5.0	NA
Венгене	ND	14	13		65	5.0	NA
t-Butyl alcohol (TBA)	ND	ND	ND		48	25	NA
1,2-Dibromoethane (EDB)	ND	ND	ND		ND	5.0	NA
1,2-Dichloroethane (1,2-DCA)	ND	ND	ND		ND	5.0	NA
Diisopropyl ether (DIPE)	ND	ND	ИD		ND	5.0	NA

Surrogate Recoveries (%)

ND

67

ND

ИD

140

370

ND

10

ND

ND

ND

18

ND

80

ND

6.8

ND

130

250

5.0

5.0

5.0

5.0

5.0

NA

NA

NA

NA

NA

NA

Ì		Sulic	gate Recoveries	(70)		
	%SS1:	103	102	101	100	
	%SS2:	101	103	103	103	
	%SS3:	98.1	99.7	99.5	103	
	Comments					

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND

49

ND

9.7

5.0

100

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or surrogate coelutes with another peak.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
ebsite: www.mccambbell.com

Zyp"		<u>l</u>	weosite; www.i	necan	poen com is-man: mani	@mccampoen.c	om
Cambria Env. Technology	Client Project II	D: #61E-1970; 9	-6607	Date	e Sampled: 09/	15/04	,
5900 Hollis St, Suite A				Date	e Received: 09/	16/04	· · · · · · · · · · · · · · · · · · ·
Emeryville, CA 94608	Client Contact:	Melissa Terry		Date	e Extracted:		,
Emeryvine, CA 94000	Client P.O.:			Date	e Analyzed: 09/	16/04-09/1	7/04
The second second	• •	ites and BTEX b	•	· 			
Extraction Method. SW5030B		alytical Method: SW826			0.1000.10.000.1	Work Ord	er: 0409240
Lab ID	0409240-005A	0409240-006A	0409240-00	/A	0409240-008A		
Client ID	I3-D1@6	Used Oil @ 6	Used Oil Ho @7	ist	Hoist #2	Reporting	
Matrix	S	S	S		S	Dr	'=1
DF	40	1	1		1	S	W
Compound		Conc	entration			μg/Kg	ug/L
tert-Amyl methyl ether (TAME)	ND<200	ND	ND		ND	5.0	NA
Benzene	ND<200	ND	ND		ND	5.0	NA
t-Butyl alcohol (TBA)	ND<1000	ND	ND		ND	25	NA
1,2-Dibromoethane (EDB)	ND<200	ND	ND		ND	5.0	NA
1,2-Dichloroethane (1,2-DCA)	ND<200	ND	ND		ND	5.0	NA
Diisopropyl ether (DIPE)	ND<200	ND	ND		ND	5.0	NA
Ethanol	ND<10,000	ND	ND		ND .	250	NA
Ethylbenzene	2700	ND	ND		ND	5.0	NA
Ethyl tert-butyl ether (ETBE)	ND<200	ND	ND		ND	5.0	NA
Methyl-t-butyl ether (MTBE)	ND<200	ND	ND		ND	5.0	NA
Toluene	980	ND	ND		ND	5.0	NA
Xylenes	9400	ND	ND		ND	5.0	NA
	Surre	gate Recoveries	(%)				
%\$\$1:	104	99.1	100		103		
%\$\$2:	99.3	103	103		105		
%\$\$3:	97.6	101	102		106		

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content.

Comments

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in μg/L, soil/sludge/solid samples in μg/kg, wipe samples in μg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or surrogate coelutes with another peak.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project II	D: #61E-1970; 9	-6607	Date Sampled:	09/15/04	
5900 Hollis St, Suite A			;	Date Received:	09/16/04	
	Client Contact:	Melissa Terry		Date Extracted:		
Emeryville, CA 94608	Client P.O.:		 .	Date Analyzed:	09/16/04-09/1	7/04
Extraction Method. SW5030B		ites and BTEX b	•		Work Ord	ier: 0409240
Lab ID	0409240-009A	0409240-010A				
Client ID	Hoist #3	Hoist #4			Reporting	
Matrix	S	S			DI	=1
DF	. 1	1			s	w
Compound		Conce	entration		μg/Kg	ug/L
tert-Amyl methyl ether (TAME)	ND	ND			5.0	NA
Benzene	7.7	ND			5.0	NA
t-Butyl alcohol (TBA)	ND	ND			25	NA
1,2-Dibromoethane (EDB)	ND	ND			5.0	NA
1,2-Dichloroethane (1,2-DCA)	ND	ND			5.0	NA
Diisopropyl ether (DIPE)	ND	ND			5.0	NA
Ethanol	ND	ND			250	NA
Ethylbenzene	100	ND			5.0	NA
Ethyl tert-butyl ether (ETBE)	ND	ND			5.0	NA
Methyl-t-butyl ether (MTBE)	ND	ND			5.0	NA
Toluene	27	ND			5.0	NA
Xylenes	71	ND			5.0	NA
	Surro	gate Recoveries	(%)		i	
%SS1:	108	93.4				<u> </u>
%SS2·	102	107				
%SS3:	110	99.8				
Comments		outed in 11 off meillah	dooloolid oo			

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content.

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe product/oil/non-aqueous liquid samples in mg/L.

110 2nd Avenuc South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail main@mccampbell.com

QC SUMMARY REPORT FOR SW8260B

Matrix: S

WorkOrder: 0409240

EPA Method: SW8260B	E	extraction:	SW5030E	3	Batch	ID: 13176	S	piked Sampl	e ID: 0409	241-001A
Analyte	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptanc	e Criteria (%)
Analyte	μg/Kg	μg/Kg	% Rec.	% Rec	% RPD	% Rec.	% Rec	% RPD	Low	High
tert-Amyl methyl ether (TAME)	ND	50	82.9	84.6	2 01	90.9	90.2	0.726	70	130
Benzene	ND	50	115	118	2 36	123	121	1 24	70	130
t-Butyl alcohol (TBA)	ND	250	77 4	76.9	0.650	90.8	91.8	1.07	70 -	130
1.2-Dibromoethane (EDB)	ND	50	92 8	93.8	1.09	108	104	4.15	70 '	130
1,2-Dichlorocthane (1,2-DCA)	ND	50	107	110	2.07	108	110	1 86	70	130
Diisopropyl ether (DIPE)	ND	50	114	118	3 26	116	119	2.64	70 ,	130
Ethyl tert-butyl ether (ETBE)	ND	50	99.6	102	2 03	110	109	1 02	70	130
Methyl-t-butyl ether (MTBE)	ND	50	88.5	89.9	1.57	99.7	100	0.308	70 :	130
Toluene	ND	50	109	110	1,44	120	114	4 98	70	130
%SS1·	98.9	50	93	93	0	98.7	100	1.28	70	130
%SS2 [.]	105	50	103	104	0.473	103	102	0 617	70	130
%\$\$3:	103	50	121	119	151	112	113	1.59	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions.

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate, LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels

XX QA/QC Officer

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0409240

ClientID: CETE

	ov. Technology St, Suite A	TEL: FAX: Projec PO:	(510) 420-0700 (510) 420-9170 ttNo: #61E-1970; 9-6607		Accounts Payable Cambria Env. Technology 5900 Hollis St, Ste. A Emeryville, CA 94608									Date Received: Date Printed:			
							F	Request		(See I							
Sample ID	ClientSampID	Matrix	Collection Date Hold	1 2	3	4	5	6	7	. 8	. 9	10	11	12	13	14	15
0409240-001	11-D1@6	Soil	9/15/04 1:30:00 PM	Α		-		1		,,	i		T		-	[7
0409240-002	I1-D2@6	Soil	9/15/04 1:25:00 PM	A													
0409240-003	I2-D1@6	Soil	9/15/04 12:17:00	A						-		1		1	:	Ī	
0409240-004	I2-D2@6	Soil	9/15/04 12:11:00	A		'					-		Ť.,		į	1 -	1
0409240-005	I3-D1@6	Soil	9/15/04	A						;	1	1				!	\top
0409240-006	Used Oil @ 6	Soil	9/15/04 11:37:00	A						<u> </u>	-	1		1			1
0409240-007	Used Oil Hoist @ 7	Soil	9/15/04 11:34:00	A						:	1					Ī	-
0409240-008	Hoist #2	Soil	9/15/04 2:35:00 PM	A						,	<u> </u>			1	;		
0409240-009	Hoist #3	Soil	9/15/04 2:45:00 PM	A ·							!						
0409240-010	Hoist #4	Soil	9/15/04 2:50:00 PM	A		-								†	- +	;	1
1	1 lost 174	1 3011	9/13/04/2:30:30 PM	771-781	<u> </u>	na na na ' sa'		L		·	· · · · · · · · · · · · · · · · · · ·			<u> </u>			
Test Legend:																	
	XY-8260B_S	2	3			- -		4					5		-		
6		7	8					9					10		-		
11		2	13	<u>-</u> <u>-</u>	·			14		-		,	15 }	-			** **
					-	-	-					P1		by: M	elissa -	Valles	

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

ex-

- 211000 0409240

Sep

17

2004

3:38PM

MCCAMPBELL ANALYTICAL

9257984612

70.2

	McCAMPBELL ANALYTICAL INC.									2	10	CHAIN OF CUSTODY RECORD									- [
	11		ENUE SO															Ū					i		1	1	•	1	Q		ξ	⊋	Q	1
Telemban	e: (925) 798-		O, CA 945	53-550		ax: (925	179	8-1 <i>6</i>	22														ISB		4 B			B HJ			IIR	5 DA	<i>!</i> }
													Į.	CDI	Re	qui	red	? Co					No		Wì	ite.	<u>90</u>	(DV		No		C		-
Report To: Meli	12 Tem	<u> </u>		in To		40	~~	<u>ا</u>					 	,		_ ,		<u>Ar</u>	217	sis R	equ	lest							Oth	er -	-+	Comi	nemis	\dashv
Company: Com.	bria er	<u>luj ron</u>	mantal	<u></u>									╣		Œ	7			1		'				ĺ	ļ			- 1	1	- 1			
5900 H	llis St.	, Suit	<u>la</u>						τ;				٠,	2	ě	2							٥	- (Í	1	1	XXX	•					
Emeruul	IR. CA	946	75 _ B	-Mail							W.	Cox			4	3 2	-						83	ļ		Ì	i	3	ł	- [1			
Tele: (510)U47	rele: (510) U420-3345 Fax: (510) 420-9170 relect #: 618-1470 Project Name: 9-6607											1	ASSOCIATION OF A GOOD SEED		Total Peroleum Hydrocaroons (*18.1)						EPA 625 / 8270 / 8310			ļ				- 1				- {		
Project#: 616-	MIO		P	rojec	INNI	ne:	4-	ماعا	<u>v (</u>				- 1	9		<u> </u>	90	EPA 601 / 8010 BTEX ONLY (EPA 602 / 8020)	`	اح.	}		18			6	}	50xy+PP	- }	- }	1	•		}
Project Location:	Promier	200											4 §			2		8/8		Z)		8			(09)]	3]	- }		,	
Sampler Signatur	e: WAXAN									M	ETR	άD	٠ ١	2	.الح	i i	ğ	09		EPA 608 / 8080 PCB's ONLY	8		E.	ļ	Ì	Lead (7240/7421/239.2/6010)		ğ	8260		1			1
		SAMI	LING	, L	iers	I	MA]	EKL	X			VEI	2(3	3) 3	ž K	ا اد		EP		100	18			, pa		21/2					1			-
CANEDI DIO				i ii	is.		- [Ì			-	1		-	ž \.		2 3		808	808	2	827(₹A's)Cda	19	77.		STEX	4	- [- [
SAMPLE ID (Field Point Name)	LOCATION		T	Containers	Type Containers	1.					1	, n	F	- 1	TPH as Diese	Total Petroleum On		EPA 601 / 8010	EPA 508 / 8080	8	EPA 624 / 8240 / 8260	EPA 625 / 8270	PAH's / PNA's by	CAM-17 Metals	LUFT 5 Metals	724	'	6	.3	- {	- [Ì
,		Date	Time	5	ad	Water	=	Alr	Other	Ice	ol:	HING			E .	9	8	A S	8	9 ×	× 6	A 6	E.	ż	F) pe	RC!	MIBB	the state	- 1				1
-]		#	Ħ,	B	Soil	ক 8	ā Ō	2		Ξļζ	5[]	1	<u> </u>	<u>۽ ا</u> ڊ	2	<u> </u>		亩	E G	山山	à	Ü	7	Ă	×	2	75					
II-0166		1330	9/15				X			X				<			\prod											X	X	_				_
D-0206		1325	स	1	<u> </u>		X	Ì		X	1.			X				a/	1		V	L	L					X	X		_			_
T2-DI C 6		1217	11	1			X		_}	X				X							7	1_						X	X					4
12-0206		1211-	11	1			X	7	7	X	1		\	<						3	3							X	X					
13-DIC6			1	 			X	\neg	T	X	\neg	\Box	7	<	1	T	T		1	2 /	\mathbb{K}) .	X	X	, }	1			╛
13-01-0		 	 		-			1	_		1	-	1		1	1		_																\exists
used oil 06		1137	11,				X			X			1	$\langle \rangle$	V	X												X	X					
usedoil hoiste7		1134	11]		X			X	_		D	$\sqrt{2}$		X						<u> </u>	_					X	X					_
hoi+#2		1435	117	1			X			M									\perp									X	X		_			
hoist#3		1445	11	1			X		Ţ	M	Ţ					X				_]	L	1_	_		<u> </u>			X	X					
hoist#4		1450	11	1.1		1	X			X			\prod			X			_									X	X					
11032131		1170	1-"-	1	1	1-		1				1	X	I			1		1		1		T					1						
	 -	1		 	1-	1		1		1		1	1	1			1		1	7	1	1	<u>├</u>									-		
<u> </u>	 	+	 	1-	†-	+		_	_	1		_	1	-	+	_	7	+	1	1	+	1	\top		1	1	T	1						
Relinquished By: Date: Time: Receiped By:						_	#				i	<u></u>					<u></u>			-			بيوسط. ا	····	1		1	\neg						
Melina Ter	rd	9160	11010		Qe	بري	L	V	يؤر	N	<u>_</u>				(Att (10	1	ş				1	DTA	ret	י	 AM			s to	O&G	1"	ietal	ot)	ER.
Refinquished By: Dato: Timet Received Dy:				GOOD CONDITION PRESERVATION APPROPRIATE																														
				HEAD SPACE ABSENT CONTAINERS							1																							
Relinquished By:		Date;	Time:	Re	ceived	By:					DECHLORINATED IN LABPERSERVED IN LAB																							

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.mccampbell.com E-mail: man@mccampbell.com

Cambria Env. Technology	Client Project ID: #61E-1970; 96607	Date Sampled: 09/16/04
5900 Hollis St, Suite A		Date Received: 09/16/04
Emerguille CA 94608	Client Contact: Melissa Terry	Date Extracted: 09/17/04
Emeryvine, CA 94000	Client P.O.:	Date Analyzed: 09/17/04
Emeryville, CA 94608	<u></u>	

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction method: SW5030B Analytical methods: SW8021B/8015Cm Work Order: 0409239 MTBE Lab ID Client ID Matrix TPH(g) Benzene Toluene Ethylbenzene Xylenes % SS 11,000,a,i ND<100 210 001C UST pit-post 61 270 2100 : 20 96.9

							<u> </u>	J	1
							ı		
									-
			<u></u>			<u> </u>			
								 - -	
					<u> </u>	<u></u>		-	
	-								
	,								
						<u></u>		<u></u> _	
Reporting Limit for DF =1; ND means not detected at or	W	50	5.0	0.5	0.5	0.5	0.5	1	μg/L
above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than -1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env.	Technology	Client Projec	et ID: #61E-1970; 96607	Date Sampled: 09/16/04	1	
5900 Hollis S	t, Suite A			Date Received: 09/16/04	1	
Emeryville, C	'A 04608	Client Conta	ct: Melissa Terry	Date Extracted: 09/17/04	Į.	
emeryvnie, C	A 34000	Client P.O.:		Date Analyzed: 09/17/04	1	
Extraction method:		ine Range (C	6-C12) Volatile Hydrocarbons : Analytical methods SW8015Cm		/ork Order	: 0409239
Lab ID	Client ID	Matrix	TPH(g)		DF	% SS
001C	UST pit-post	w	11,000,a,i		20	96.9
-						
20 44 50 THE R. P. LEWIS CO. L.						
المرافقة المرافقة الله المرافقة						
E.SEESE						
					-	
					1	
		 				
					- - -	
						
Reportin	g Limit for DF =1;	w	50			ug/L
ND mean above t	is not detected at or the reporting limit	S	NA			NA
	1 U DOLD A	****		· · · · · · · · · · · · · · · · · · ·		

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; c) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request.

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in μg/wipe, product/oil/non-aqueous liquid samples in mg/L.

Extraction Method: SW5030B

McCampbell Analytical, Inc.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Work Order: 0409239

Cambria Env. Technology	Client Project ID: #61E-1970; 96607	Date Sampled: 09/16/04	
5900 Hollis St, Suite A		Date Received: 09/16/04	
	Client Contact: Melissa Terry	Date Extracted: 09/16/04	
Emeryville, CA 94608	Client P.O.:	Date Analyzed: 09/16/04	

Volatile Organics by P&T and GC/MS (Basic Target List)* Analytical Method: SW8260B

0409239-001A Lab ID UST pit-post Client ID Matrix Water Reporting Reporting Concentration * DF Compound Concentration * DF Compound ND<250 50 Acrolein (Propenal) ND<250 50 5.0 5.0 Acctone ND<100 50 ND<25 50 2.0 tert-Amyl methyl ether (TAME) 0.5 Acrylonitrile 87 50 Bromobenzene ND<25 50 0.5 0.5 Benzene ND<25 50 Bromodichloromethane ND<25 50 0.5 0.5 Bromochloromethane 50 ND<25 50 ND<25 0.5 **Bromomethane** 0.5 Bromoform ND<100 50 ND<250 t-Butyl alcohol (TBA) 50 5.0 2.0 2-Butanone (MEK) 50 ND<25 0.5 sec-Butyl benzene 50 0.5 n-Butyl benzene ND<25 50 0.5 Carbon Disulfide ND<25 50 0.5 tert-Butyl benzene ND<25 50 Chlorobenzene ND<25 50 0.5 0.5 Carbon Tetrachloride ND<25 50 2-Chloroethyl Vinyl Ether ND<50 50 1.0 Chloroethane 0.5 ND<25 50 ND<25 50 0.5 Chloromethane 0.5 Chloroform ND<25 50 ND<25 50 4-Chlorotoluene 0.5 0.5 2-Chlorotoluene 1.2-Dibromo-3-chloropropane ND<25 50 0.5 ND<25 50 0.5 Dibromochloromethane ND<25 50 0.5 ND<25 50 0.5 1,2-Dibromoethane (EDB) Dibromomethane ND<25 50 1.3-Dichlorobenzene ND<25 50 0.5 0.5 1,2-Dichlorobenzene 50 Dichlorodifluoromethane ND<25 ND<25 0.5 50 0.5 1,4-Dichlorobenzene ND<25 50 0.5 1,2-Dichloroethane (1,2-DCA) ND<25 50 0.5 1,1-Dichloroethane 1,1-Dichloroethene ND<25 50 0.5 cis-1,2-Dichloroethene ND<25 50 0.5 ND<25 50 0.5 ND<25 50 0.5 trans-1,2-Dichloroethene 1,2-Dichloropropane ND<25 50 0.5 2,2-Dichloropropane ND<25 50 0.5 1,3-Dichloropropane

Methyl-t-butyl ether (MTBE)	ND<25	50	0.5	0.5 Methylene chloride ND<25		50	0.5
4-Methyl-2-pentanone (MIBK)	ND<25	50	0.5	Naphthalene	230	50	0.5
Nitrobenzene	ND<500	50	10	n-Propyl benzene	140	50	0.5
Styrene	ND<25	50	0.5	1,1,1,2-Tetrachloroethane	ND<25	50	0.5
1,1,2,2-Tetrachloroethane	ND<25	50	0.5	Tetrachloroethene	ND<25	50	0.5
Toluene	390	50	0.5	1,2,3-Trichlorobenzene	ND<25	50	0.5
1,2,4-Trichlorobenzene	ND<25	50	0.5	1,1,1-Trichloroethane	ND<25	50	0.5
1,1,2-Trichloroethane	ND<25	50	0.5	Trichloroethene	ND<25	50	0.5
Trichlorofluoromethane	ND<25	50	0.5	1,2,3-Trichloropropane	ND<25	50	0.5
1,2,4-Trimethylbenzene	1100	50	0.5	1,3,5-Trimethylbenzene	390	50	0.5
Vinyl Chloride	ND<25	50	0.5	Xylenes	2900	50	0.5
		Sur	rogate R	ecoveries (%)			
%SS1:	10			%SS2:	10	6	

%SS3: Comments:

1,1-Dichloropropene

Ethylbenzene

Hexachlorocthane

Isopropylbenzene

Freon 113

trans-1,3-Dichloropropene

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

111

ND<25

ND<25

ND<500

ND<25

430

38

50

50

50

50

50

50

0.5

0.5

0.5

10

0.5

0.5

cis-1,3-Dichloropropene

Diisopropyl ether (DIPE)

Hexachlorobutadiene

4-Isopropyl toluene

2-Hexanone

Ethyl tert-butyl ether (ETBE)

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content.

ND<25

ND<25

ND<25

ND<25

ND<25

ND<25

50

50

50

50

50

50

0.5

0.5

0.5

0.5

0.5

0.5

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil / sludge / solid samples in µg/kg, wipe samples in µg/wipe, product / oil / non-aqueous liquid samples in mg/L.

110 2nd Avenue South, #D7, Pacheco, CA 945 3-5560
Telephone: 925-798-1620 Fax 925-798-1622
Website: www.inccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: W

WorkOrder: 0409239

EPA Method: SW8021B/80	15Cm E	Extraction:	SW5030E	3	Batch	ID: 13172	s	piked Sampl	e ID:	0409250-002A		
Analyte	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Accep	tance Criteria (%)		
, may to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Lo	w High		
TPH(blex) [£]	ND	60	97 8	83	16 4	100	84.1	175	70) 130		
мтве	ND	10	100	82.9	18.7	97	102	4.90	70) 130		
Benzene	ND	10	90.9	91	0.129	948	94	0 878	70) 130		
Toluene	ND	10	94.1	908	3,53	89.5	87.9	1.81	70	130		
Ethylbenzenc	ND	10	93.5	93.3	0.254	96.1	95.2	0.871	70	0 130		
Xylenes	ND	30	94.7	94.3	0 353	86.3	86	0.387	71	0 130		
%SS:	83.6	10	102	99	2 19	96.7	98.5	1.80	70	0' 130		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions.

NONE

MS = Matrix Spike, MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample, LCSD = Laboratory Control Sample Duplicate, RPD = Relative Percent Deviation.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2)

^{*} MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery

[£] TPH(blex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram, sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate

Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.inccampbell com E-mail: main@inccampbell com

QC SUMMARY REPORT FOR SW8260B

Matrix: W

WorkOrder. 0409239

EPA Method: SW8260B	E	xtraction:	SW5030B		Batch	ID: 13173	s	piked Sampl	e ID. 04092	35-004C
Analyte	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
, many to	µg/L	μg/L	% Rec	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
tert-Amyl methyl ether (TAME)	ND	10	83.5	83.4	0.117	818	82	0.237	70	130
Benzene	4 20	10	125	125	0	113	115	1 18	70	130
t-Butyl alcohol (TBA)	ND	50	76.1	78 3	2.88	91.2	92 6	1 55	70 .	130
Chlorobenzene	ND	10	101	99 3	1.80	109	109	0	70	130
1,2-Dibromoethane (EDB)	ND	10	93 7	93.5	0 140	104	105	0.922	70	130
1.2-Dichloroethane (1.2-DCA)	ND	10	111	110	0 409	99.3	100	0.848	70	130
1.1-Dichloroethene	ND	10	109	106	2.62	125	121	3.56	70	130
Diisopropyl ether (DIPE)	ND	10	122	119	1.68	101	104	2.58	70	130
Ethyl tert-butyl ether (ETBE)	ND	10	103	103	0	101	100	0 399	70	130
Methyl-t-butyl ether (MTBE)	ND	10	93.5	93.2	0.337	104	104	0	70	130
Toluene	ND	10	116	113	2 66	110	111	0.878	70	130
Trichtoroethene	ND	10	88 9	87 1	2.03	91.3	89 8	1 64	70	130
%\$\$1	90.4	10	102	105	2 09	97.5	97.1	0 459	70	130
%SS2.	102	10	104	105	0.822	100	99 9	0.545	70	130
%\$\$3·	110	10	120	118	1.09	105	108	2 80	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike, MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample, LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2)

* MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons, a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chlonde and acetone may occasionally appear in the method blank at low levels

QA/QC Officer

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

66, CA 94353-3560 798-1620

WorkOrder: 0409239

ClientID: CETE

Report to:					Bill to: Requested TAT								
Melissa Ter	•	TEL:	(510) 420-070	00			ounts Pag	•					
	nv. Technology	FAX:	(510) 420-917	7 0		Car	nbria Env	. Technolo	gy				
5900 Hollis	St, Suite A	ProjectN	No: #61E-1970; 9	6607		590	0 Hollis S	it, Ste. A		Date Received	l:	9/16/04	
Emeryville,	CA 94608	PO:				Em	eryville, C	A 94608		Date Printed:		9/16/04	
				,			Reques	ted Tests (See legend	below)	,		
Sample ID	ClientSamplD	Matrix	Collection Date	Hold 1	2 3	4	6	7	8 9	10 11 12	13	14 15	
0409239-001	UST pit-post	Water	9/16/04 9:00:00 AM		c]								

Test Legend:

1 8260B_W	2 G-MBTEX_W	3	4 1	5
6	7([8]	9	10
11	12]	13	14)	15

Prepared by: Melissa Valles

Comments:

آ		McCAM					LII	۷C.	············			*		T			<u> </u>	C	HA	JN	O	F C	US	ST	OE	A I	ŖĒ	CC	R	D		
		1	10 2nd AV	VENUE SC CO, CA 945)UTH, 553-556	#D7 60								T	'UF	en .	AR	OU	ND	TI	Æ			ב		L			-	_	Ō	
	. Telephor	ne: (925) 798		,			ax: ((925	79 (8-16	22			E	ar i	Reas	nire	d? C	oelt	(No	rms	n	RU No			HR te-O		48 E (W)	IR No		2 HR	5 DAY
į	Report To: Mai	ssa Tem	7	B	ill To);	40	·~	٤			-		Ť			-,,,		naly								Ī		her		Comn	nents
	Company: Caus	bria Er	(viron	mauta	<u> </u>											E.	-															
}	5900 Ho	llis St.	, Suit	e A										- ;;		F/B&							0			İ	2	3				
	Emergui Tele: (Sip.) 4	The CA	9460	28 E	-Mai ax: (I: MI	<u>2000</u>	X G	<u>. a</u>	NDVI 170	<u>a-</u>	env	.Cow	4		E&1	\exists					}	1831		1		6	826	1 1			
	Project #: 618			<u>.</u> P	rojec	t Nan	ノコ ne:	a -	(de	67				-(Ē		5520	(418	١,					270	ļ			3	3 1	82.70		ı	
	Project Location:		a_						36.15					- Ç		ase (Suoc		8020	Į,			8/57			9	3	\ \ \ \	2			
	Sampler Signatur	e: Melus	n Ter	nl	7.1				.,					7,807		Gre	ocarl	- [;	027	ő			A 62		1 5	00/7		(SC)	[~		,	
		,	SAMI	PLING		er3	ľ	MA7	TRI.	X	PR	AETH ESEI	IOD RVEL	Gas 502/	TPH as Diesel (8015)	Total Petroleum Oil & Grease (5520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)		BIEX UNLY (EPA 6027 8020) FPA 608 / 8080	EPA 608 / 8080 PCB's ONLY	EPA 624 / 8240 / 8260		PAH's / PNA's by EPA 625 / 8270 / 8310	ļ	3	Lead (1240/1421/255.2/0010) RCI	7	8 5	N		ı	
	OANGE TIED			1	i ii	tain								70	sel (8	enm	em	010	7 080 7 080	080	240	3270	A's	etals	tals	747	14	20	Š		ľ	
	SAMPLE ID (Field Point Name)	LOCATION	D-4-	Time	<u>ş</u>	Ö	إيرا		وا					Ē	Dic:	etrol	etrol	3/16	0 N	8/8	24/8	3 / 52	N.	Z	Ž S	0477	1	<u>3</u> >	!		ŀ	
	`		Date	Time	Containers	Type Containers	Water	Soil	Air	Other	Ice	HCI	HNO.		H as	tal P	otal P	EPA 601 / 8010	BTEX ONLY (J FPA 608 / 8080	9 V	2A 6	EPA 625 / 8270	Ę.	CAM-17 Metals	LUFT 5 Metals	RCI C	Ş	3 8	S.		ł	
120				<u> </u>	**	F	>	8	∢ 0	5 0	×	莱	E) T	F	Ĕ	ř	E	n E	丽	<u> </u>	函	2	O	5).	7 8	1	2 6	N			
17	USTPIT . DOST		9.16	0900	6	NOV	X				X	X		X	_										_		>	∇	X		 	
	1 1			<u> </u>	<u> </u>	<u> </u>															<u> </u>			_			_	_				
	· · · · · · · · · · · · · · · · · · ·			<u> </u>	<u> </u>															_					_		1					-,
ļ		,,			<u> </u>						L				ļ										_		_					
					<u> </u>	ļ							_	1											_		_					
					<u> </u>			_	\perp				_							1					_		_				·	
			<u> </u>			<u> </u>					_			_ _	<u> </u>		_			-	1				_	_	1				 	
			<u> </u>	<u> </u>	ļ	ļ		-			_										ļ				_						<u> </u>	
			ļ	<u> </u>	ļ	ļ		_ _			_							_									1	-			ļ	
			<u> </u>	<u> </u>	<u> </u>						<u> </u>				-					<u> </u>					_	_	1	—				
			 	<u> </u>	ļ						_			_						_	ļ				\perp	_		_				
			ļ	ļ	ļ					\bot	L				ļ						ļ				-		_				<u> </u>	
				<u> </u>	<u> </u>	ļ					ļ	-	_		_			_		<u> </u>	ļ					\perp	\bot			-		
		<u> </u>	ļ		<u> </u>	<u> </u>			Ш.					 			- 1				<u></u>											
	Relinquished By:	1	Date:	Time:	Rece	eixed B	, (\bigcirc	~~~								je.									VO.	6 10)&G	L	CETALS	OTHER
	Meuni em Relinquished By:	[9-16 Date:	Time:	Rece	elved B	- \(\frac{1}{2}\)		>"							/t°		_		**	/					TON	<u>~</u>					~
		1		1			* -								GO(HE/) (L VD 2	LUN PAC	DIT. E A	ION_ BSEI	VT	_~		(PPI									
	Relinquished By:		Date:	Time:	Rece	eived B	y:			,									ED I		\B_	` `				ED II	N L	AB				
				1	1																											

110 2nd Avenue South, #D7, Pacheco, CA 94553 5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #61E-1970; 9-6607	Date Sampled: 09/15/04-09/16/04
5900 Hollis St, Suite A		Date Received: 09/16/04
Emanuello CA 04608	Client Contact: Melissa Terry	Date Extracted: 09/16/04
Emeryville, CA 94608	Client P.O.:	Date Analyzed: 09/16/04

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction	nethod: SW5030B			Analytical	methods: SW80213	3/8015Cm		Work (Order: 0	409238
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	COMP1	s	320,b,m	ND<2.0	ND<0.20	2.2	2.9	21	40	118
002A	Comp2	s	250,b,m	ND<2.0	ND<0.20	3.2	2.9	19	40	111
	···									
								,	\ 	ļ
								· · · · · · · · · · · · · · · · · · ·		
	,,,,,,	_								
							ļ			ļ
		-					_		ļ <u>.</u>	
									ļ	
			-							
		-		E						
								1	<u>_</u>	<u> </u>
Reporting	Limit for DF =1;	w	NA	NA	NA	NA	NA	NA	1	ug/L

ND means not detected at or	- 44	INA	IVA	IVA	INA.	NA.	NA.	1	ug/L
above the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005		mg/Kg
							<u> </u>	<u> </u>	

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/\psi$ ipe, product/oil/non-aqueous liquid samples in mg/L.

_Angela Rydelius, Lab Manager

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; c) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) results are reported by dry weight.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env	. Technology	Client Pro	ject ID: #611	E-1970; 9-6607	Date Sampled: 09/15/0	4-09/16/	04
5900 Hollis S	St, Suite A				Date Received: 09/16/0)4	
E	TA 0.4600	Client Co	ntact: Melissa	Теггу	Date Extracted: 09/16/0)4	
Emeryville, C	A 94008	Client P.C).:		Date Analyzed: 09/16/0)4	
Extraction method:	SW3050B			by ICP* methods: 6010C		Work Order:	0409238
Lab ID	Client ID	Matrix	Extraction		Lead	DF	% SS
0409238-001A	COMP1	S	TTLC		18	1	109
0409238-002A	Comp2	s	TTLC		9.4	1	110
	30. Addison and a second						
· ·							
			:				
						!	
Dan:-	o Vissis for DE -1.						
ND mear	ng Limit for DF =1; ns not detected at or	W	TTLC		NA .		g/L
above	the reporting limit	S	TTLC		5.0	mg	g/Kg

*water/product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

means surrogate recovery outside of acceptance range due to matrix interference; & means surrogate diluted out of acceptance range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

Analytical Methods: EPA 6010C/200.7 for all elements except: 200.9 (water/liquid-Sb, As, Pb, Se, Tl); 245.1 (Hg); 7010 (sludge/soil/solid/oil/product/wipe/filter - As, Se, Tl); 7471B (Hg).

i) liquid sample that contains greater than ~1 vol. % sediment; this sediment is extracted with the liquid, in accordance with EPA methodologies and can significantly effect reported metal concentrations; j) reporting limit raised due to insufficient sample amount; k) results are reported by dry weight; y) estimated values due to low surrogate recovery; z) reporting limit raised due to matrix interference.

Jy

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone 925-798-1620 Fax . 925-798-1622
Website: www.inccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: S

WorkOrder: 0409238

EPA Method: SW8021B/80	15Cm E	Extraction:	SW5030E	3	Batch	ID: 13156	S	piked Sampl	e ID: 0	409204-097A
Analyte	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Accept	ance Criteria (%)
, mayto	mg/Kg	mg/Kg	% Rec	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
TPH(btex) [£]	ND	0.60	94.8	95.9	1.13	118	96.4	20 3	70	130
мтве	ND	0.10	83.6	86.9	3 91	99.7	96.9	2 85	70	130
Benzene	ND	0.10	99.6	101	1.03	116	97.5	17.2	70	130
Foluene	ND	010	80 5	82.1	1.94	107	82 1	26.7	70	130
Ethylbenzene	ND	0.10	101	102	. 1.50	118	97	19.3	70	130
Xylenes	ND	0.30	89.7	90	0.371	110	85.7	24.9	70	130
%SS.	89 6	0.10	104	104	0	110	102	7.69	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions.

NONE.

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample, LCSD = Laboratory Control Sample Duplicate, RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS / MSD spike recoverles and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax 925-798-1622
Website: www.mccampbell.com E-mail: man@mccampbell.com

QC SUMMARY REPORT FOR 6010C

Matrix: S

WorkOrder: 0409238

EPA Method 6010C	ŧ	Extraction:	SW3050E	3	Batch	ID: 13168	8	Spiked Samp	e ID: 040)9246-001A
Analyte	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Accepta	nce Criteria (%)
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
Lead	ND	50	93 2	95	1.97	89.7	89.6	0.0558	80	120
%SS.	106	250	102	108	5 83	103	108	4.44	80	120

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions NONU

MS = Matrix Spike, MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2)

* Acceptance Criteria for MS / MSD is between 70% and 130%. MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0409238

Į.

ClientID: CETE

Report to:		Bill to:	Requested TAT:	1 day
Melissa Terry	TEL: (510) 420-0700	Accounts Payable		-
Cambria Env. Technology	FAX: (510) 420-9170	Cambria Env. Technology		
5900 Hollis St, Suite A	ProjectNo: #61E-1970; 9-6607	5900 Hollis St, Ste. A	Date Received:	9/16/04
Emeryville, CA 94608	PO:	Emeryville, CA 94608	Date Printed:	9/16/04
		Requested Tests (See legend	below)	

Sample ID	ClientSamplD	Matrix	Collection Date	Hold	1	2	 3	4	5	. 6	5 <u>-</u>	7	8	9 .	10	11 12	13	1	4 : 15	
0409238-001	COMP1	Soil	9/15/04 2:45:00 PM	1 🔲	Α	Α	 				-						- I	T]
0409238-002	Comp2	Soil	9/16/04 9:00:00 AM	4 🗆	Α	A											i			
											-									

Test Legend:

1 G-MBTEX_S	2 PB_S	3	4	5
[6]	7	8	9 ;	10
[11]	12	13	[14]	15

Prepared by: Elisa Venegas

Comments: ON 24HR TAT

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

MOCAMPRO -

KUSHI

		<u> </u>																						-3-	'جب			المتكند					
	McCAM					LII	NC	4											H	AI	N	O)	F (CU	SI	\mathbf{O}	P	R	E(. [O]	RD		
	1		ENUE SO											Т	'UR	iN.	AR	οŧ	INI) T	IM	Œ				_ /		, '	١				<u> </u>
Talanhan	e: (925) 798		CO, CA 945	53-556		יעם	(97	5) 79	98-1	621)		Ì	_											JSH		24 H			8 HR		72 HR	5 DAY
					A -	ал.	()	J) 1.	70·x					EI	OF I	≷eq	uire			_				No	<u> </u>	W	rite.	<u>e4</u>	(DW		No		
Report To: Med	ssa Tem	Ĭ		ill To	:	4	*^	e							 -	1			Ana	lysi	s R	equ	est				, ,	_		Othe	sr_	Com	ments
Company: Cam	bia Gr	www.ib)	moute	<u> </u>												(F)		l	- 1		ļ		l	Į			2		il		į	l	_
5900 Ho	lis St.	Suit	<u>e A</u>													B&				i		ļ					}		1 1		ŀ	L	recal
Emeryvi	ile, CA	9460	B E	-Mai	: mt	en	γG	LCA	<u>mb</u>	<u> </u>	<u>-u</u>	<u>\J.(</u>	Mai	MTBI		S&F				}	-	- [}	310			K			}	}	100	CIC Act
5900 Hb Emeryul Tele: (510) 42	0.3345		F	ax: (510	<u>) 4</u>	20	۶۰ ۴	117	0				(S) (S)		201	18.1	ĺ			į			2			15					10	(result INM 942-14
Project #: 6 -	1970		<u>P</u>	rojec	t Nan	ne:	9.	\mathcal{U}	0	<u> 7 </u>				N [®]		55	15 (4		8		ا ــ			82								400	000 10
Project Location:	Alamed	<u>a</u>												20		Grease (5520 E&F/B&F)	rbor	1	/ 80	- {	Ž	1		EPA 625 / 8270 / 8310	 		010	, !	1			TOD.	
Sampler Signature	: Melu	m ler	<u> </u>	,										Gas (602/8020			roca	l	602		0 \$ 1	8	1	PA (3.276						६
	•	SAMI	PLING		2]	MΑ	TR	IX	,	ME RES			88	(8015)	Oil &	Hyd		PA	ĺ		/ 82		×Έ			/23	, 1				147	-
	AMPLE ID lo CATION Date Time USAMPLING SAMPLING SAMPLING STATE OF THE SAMPLE ID LOCATION Date Time USAMPLE ID LOCATION DATE OF THE SAMPLE ID LOCATION DATE OF TH											1		S G	1 -	Œ.	Ę	2	Y (E	8	80	240	22	s,	stats	als	742	i I			}	MIT	417
SAMPLE ID	LOCATION	į		ig.	ont							[.		HAL	TPH as Diesel	Total Petroleum	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010	BTEX ONLY (EPA 602 / 8020)	EPA 608 / 8080	EPA 608 / 8080 PCB's ONLY	EPA 624 / 8240 / 8260	EPA 625 / 8270	PAH's / PNA's by	CAM-17 Metals	LUFT 5 Metals	Lead (7240/7421/239.2/6010)					510.	em/ 420.91
(Field Point Name)		Date	Time	#	Ü	Water			Sludge	힐	_	ے ا	2 2	BTEX & TPH	as	Pe	l Pel	<u>8</u>	X	8	99	624	39	s.	1-1/2 1.7	T 5	102		1				
				U #	Type	×a	Soil	Air	剧	cine.	3 2	HNO	Other	E E	HAL	Fota	Tota	EPA	BTE	EPA	EPA	EPA	EPA	PA	3	E	Leac	RCI		- }	}	1	
			 	-			\		-	- (7	4-	+-						-						-		V				-	+	
COMPI		9.15	1445	4	ļ		Χ				X_		 	X				_							_				\vdash				posite
ABCO			1	<u> </u>											1_									L	<u> </u>	<u> </u>						San	iples
								_												į							İ					for	_ 1
Orman 2	······································	9-16	0900	A			X				Z	\top		X											"		X				j	Ui	Sposel
COMP2 ABCD		110	0,00	4					+	-		+	+	1	1	-											1	<u> </u>					illina
HOLV	·	 	 	├	 -				+	╅	-	╅	┼┈	1-	╁	-				\neg	_				_	-	 				1		
		ļ	 	 	 	\vdash				+			+-	╂─	┼										├	┼-	-		-	-+	-	Hour	pesés
	···		ļ	ļ		<u> </u>			_						-											-			-				······································
						_				\perp				_	<u> </u>										ļ	<u> </u>	 	<u> </u>		_		_	
			<u> </u>	<u>l</u>	<u> </u>	L				_[_				L	<u> </u>											<u> </u>		<u> </u>					
												T				1					- {					_					L		
			1	1	1					\top																							
		 		1-	 	1	-			+	+	+	+-	1		1							_		1	T	1					1	
			 	1-	-	+-	-		\dashv	+	-	+-	+-	1	-	-									 	+-	 	-	 	_			· · · · · · · · · · · · · · · · · · ·
		<u> </u>	<u> </u>	ļ	 					-				╁	+-		-						├	 -			+-	├	╂╼┤	\vdash			
		<u> </u>	<u> </u>		<u> </u>						ļ_			L	<u></u>										<u> </u>		<u> </u>						
Relinquished By:		Date:	Time:	Rec	ived i	y:	7	1	2	<u> </u>								_										•	/OAS	100	&G	METAL	OTHER
Melina am		9.16	1025	1	<u> </u>			<u>v</u> _	<u> </u>	- (4	ICE	/t°					_		J	PRI	ESE	RV.	ATI				×\r	METAL	UMER
Relinquished By:		Date:	Time:	Rec	eived E	3y:									GO	OD						_		API	PRO	PR	IAT	E					
<u>'</u>				<u> </u>											HEA							ъ	. (ERS		<u> </u>	0			
Relinquished By:		Date:	Time:	Rec	eived E	3y:									DEC	HL	/UKU	UYA	T ET	ΙN	LΑ	.B		_ 12	ek.)LK	VEL) 114	LAE)			
1		ì	1	1										1																			

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.nccampbell.com E-mail: main@mccampbell.com

							
Cambria Env.	Technology	Client Project	t ID: #61E-1970; 9-6607	Date Sampled: 09/16/04			
5900 Hollis St	, Suite A			Date Received: 09/16/04	!		
Emeryville, CA	\ 04608	Client Contac	t: Melissa Terry	Date Extracted: 09/22/04			
Emery vine, ex	1) 4000	Client P.O.:		Date Analyzed: 09/22/04	Ì		
Analytical methods:	SM5520E/F	Petroleum Oil	& Grease with Silica Gel Cle	-	ork Orde	r: 04	109238
Lab ID	Client ID	Matrix	POG		DF	7 9	% SS
0409238-002A	Comp2	S	58		1		N/A
WHI AND INTERNAL IN THE REAL PROPERTY OF THE P							
THE RESERVE ASSESSED ASSESSED.							
						ļ	
					!	\perp	
are to the the state from		-					
<u>.</u> , .,		<u> </u>				_	
					,		
The second of th							
						_	
					,	4_	
						<u> </u>	
						<u>_</u>	
	Limit for DF =1; not detected at or	W	NA		4	NA	
<u> </u>	e reporting limit	S	50			ng/K	
* water samples are DF = dilution facto # = surrogate dilute	r.	sludge/solid sample	s in mg/kg, wipe samples in mg/wipe,	product/oil/non-aqueous liquid san	nples in	mg/I	<u>.</u>
g) sample extract re liquid sample that o	epeatedly cleaned up wi contains greater than ~1	th silica gel until cor vol. % sediment.	nstant IR result achieved; h) a lighter th	an water immiscible sheen/product	is pres	ent; i)

DHS Certification No. 1644

Angela Rydelius, Lab Manager

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #61E-1970; 9-6607	Date Sampled: 09/16/04
5900 Hollis St, Suite A		Date Received: 09/16/04
·	Client Contact: Melissa Terry	Date Extracted: 09/22/04
Emeryville, CA 94608	Client P.O.:	Date Analyzed: 09/22/04-09/23/04

Compound Concentration DF Limit Compound Concentration DF Limit Compound Concentration DF Limit Compound Concentration DF Limit Compound Concentration DF Limit Compound Concentration DF Limit Compound Concentration DF Limit Compound Concentration DF Limit Compound Concentration DF Limit Compound Concentration DF DF Concentration DF DF Concentration DF DF DF DF DF DF DF D	Emeryville, CA 94608	Client P.O.	P.O.: Date Analyzed: 09/22/04-09/23/04								
Client ID Compound Concentration DF Compound DF Compound DF Compound DF Compound DF Compound DF DF DF DF DF DF DF D		Volatile Organic	es by P	&T and	d GC/MS (Basic Targe	et List)*					
Compound	Extraction Method: SW5030B		Ana	lytical Met	hod: SW8260B		Work Order: 0	409238			
Matrix Soil Population DF Population Concentration DF Population Compound Concentration DF Population Concentration DF Concentration Concentration DF Concentration Concentration DF Concentration Concentration DF DF Concentration DF Concentration DF Concentration D	Lab ID				0409238-002A						
Matrix Soil Compound Concentration * DF Papering Compound Concentration * DF Concentrati	Client ID		•		Comp2						
Compound Concentration DF	Matrix										
Acetone ND<5000 100 30 Acrolein (Propenal) ND<5000 100 3	Compound	Concentration *	DF		Compound	Concentratio	n* DF	Reporting			
Acrylonitrile ND-2000 100 20 tert-Amyl methyl ether (TAME) ND-500 100 5								50			
Benzene								5.0			
Bromochloromethane								5.0			
Bromoform								5.0			
2-Butanone (MEK) ND<2000 100 20 t-Butyl alcohol (TBA) ND<2500 100 2 -Butyl benzene ND<500 100 5.0 sec-Butyl benzene ND<500 100 5.0 -Butyl benzene ND<500 100 5.0 Carbon Dissulfide ND<500 100 5.0 -Butyl benzene ND<500 100 5.0 Carbon Dissulfide ND<500 100 5.0 -Butyl benzene ND<500 100 5.0 Carbon Dissulfide ND<500 100 5.0 -Butyl benzene ND<500 100 5.0 Chlorobenzene ND<500 100 5.0 -Butyl benzene ND<500 100 5.0 Chlorobenzene ND<500 100 5.0 -Butyl benzene ND<500 100 5.0 Chlorobenzene ND<500 100 5.0 -Butyl benzene ND<500 100 5.0 Chlorobenzene ND<500 100 5.0 -Butyl benzene ND<500 100 5.0 Chlorobenzene ND<500 100 5.0 -Butyl benzene ND<500 100 5.0 Chlorobenzene ND<500 100 5.0 -Butyl benzene ND<500 100 5.0 Dibromo-3-chloropropane ND<500 100 5.0 -Butyl benzene ND<500 100 5.0 Dibromo-3-chloropropane ND<500 100 5.0 -Butyl benzene ND<500 100 5.0 Dibromo-3-chloropropane ND<500 100 5.0 -Butyl benzene ND<500 100 5.0 Dibromo-dhane ND<500 100 5.0 -Butyl benzene ND<500 100 5.0 Dibromo-dhane ND<500 100 5.0 -Butyl benzene ND<500 100 5.0 Dibromo-dhane ND<500 100 5.0 -Butyl benzene ND<500 100 5.0 Dibromo-dhane ND<500 100 5.0 -Butyl benzene ND<500 100 5.0 Dibromo-dhane ND<500 100 5.0 -Butyl benzene ND<500 100 5.0 Dibromo-dhane ND<500 100 5.0 -Butyl benzene ND<500 100 5.0 Dibromo-dhane ND<500 100 5.0 -Butyl benzene ND<500 100 5.0 Dibromo-dhane ND<500 100 5.0 -Butyl benzene ND<500 100 5.0 Dibromo-dhane ND<500 100 5.0 -Butyl benzene ND<500 100 5.0 Dibromo-dhane ND<500 100 5.0 -Butyl benzene ND<500 100 5.0 Dibromo-dhane ND<500 100 5.0 -Butyl benzene ND<500 100 5.0 Dibromo-dhane ND<500 100 5.0 -Butyl benze					·			5.0			
n-Butyl benzene 1300 100 5.0 sec-Butyl benzene ND<500 100 5.0 Carbon Disulfide ND<500 100 5 Carbon Tetrachforide ND<500				,				25			
tert-Butyl benzene								5.0			
Carbon Tetrachloride				t				5.0			
Chloroethane				f							
Chloroform											
2-Chlorotoluene											
Dibromochloromethane											
1,2-Dibromoethane (EDB)											
1,2-Dichlorobenzene	The state of the s										
1,4-Dichlorobenzene											
1,1-Dichloroethane											
T_1-Dichloroethene		· — — — — — — — — — — — — — — — — — — —						5.0			
trans-1,2-Dichloroethene ND<500 100 5.0 1,2-Dichloropropane ND<500 100 5 1,3-Dichloropropane ND<500								5.0			
1,3-Dichloropropane		, 						5.0			
1,1-Dichloropropene				+				5.0			
trans-1,3-Dichloropropene ND<500 100 5.0 Diisopropyl ether (DIPE) ND<500 100 5 Ethylbenzene 820 100 5.0 Ethyl tert-butyl ether (ETBE) ND<500								5.0			
Ethylbenzene 820 100 5.0 Ethyl tert-butyl ether (ETBE) ND<500 100 5 Freon 113 ND<10,000				 				5.0			
ND<10,000				· · · · · · · · · · · · · · · · · · ·				5.0			
Hexachloroethane								5.0			
Isopropylbenzene								5.0			
Methanol ND<250,000 100 2500 Methyl-t-butyl ether (MTBE) ND<500 100 5 Methylene chloride ND<500								5.0			
Methylene chloride ND<500 100 5.0 4-Methyl-2-pentanone (MIBK) ND<500 100 5 Naphthalene 3700 100 5.0 Nitrobenzene ND<10,000								5.0			
Naphthalene								5.0			
ND-500								5.0			
1,1,1,2-Tetrachloroethane ND<500 100 5.0 1,1,2,2-Tetrachloroethane ND<500 100 5 Tetrachloroethene ND<500								100			
Tetrachloroethene ND<500 100 5.0 Toluene 950 100 5 1,2,3-Trichlorobenzene ND<500								5.0			
1,2,3-Trichlorobenzene ND<500 100 5.0 1,2,4-Trichlorobenzene ND<500 100 5 1,1,1-Trichloroethane ND<500											
1,1,1-Trichloroethane ND<500 100 5.0 1,1,2-Trichloroethane ND<500 100 5 Trichloroethene ND<500		· · · · · · · · · · · · · · · · · · ·						5.0			
Trichloroethene ND<500 100 5.0 Trichlorofluoromethane ND<500 100 5 1,2,3-Trichloropropane ND<500								5.0			
1,2,3-Trichloropropane ND<500 100 5.0 1,2,4-Trimethylbenzene 16,000 100 5 1,3,5-Trimethylbenzene 4700 100 5.0 Vinyl Chloride ND<500								5.0			
1,3,5-Trimethylbenzene 4700 100 5.0 Vinyl Chloride ND<500 100 5 Xylenes Surrogate Recoveries (%) %SS1: 88.0 %SS2: 99.0		· · · · · · · · · · · · · · · · · · ·						5.0			
Xylenes				·				5.0			
Surrogate Recoveries (%) %SS1: 88.0 %SS2: 99.0		 			vinyi Chioride	ND<500	100	5.0			
%SS1: 88.0 %SS2: 99.0	Ayienes	15,000									
				rogate Re							
%SS3: 105					%SS2:		99.0				
<u></u>	%S\$3:	10:	5								

	Surro	gate Recoveries (%)	
%S\$1:	88.0	%SS2:	99.0
%SS3:	105		
Comments:			

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in μg/L, soil/sludge/solid samples in μg/kg, wipe samples in μg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project II	D: #61E-1970; 9	-6607	Date Sampled: (09/16/04						
5000 XI-111. Gr. G. 'r- A				Date Received: 09/16/04							
5900 Hollis St, Suite A				Zute kesserreu.	737 10, 0 1						
Emeryville, CA 94608	Client Contact:	Melissa Terry		Date Extracted: ()9/16/04-09/	22/04					
Emery vine, err 5 voor	Client P.O.:	Client P.O.: Date Analyzed: 09/23/04									
CAM / CCR 17 Metals*											
Lab ID	0409238-002A				Reporting L	imit for DF =1;					
Client ID	Comp2					s not detected reporting limit					
Matrix	S				s	w					
Extraction Type	TTLC				mg/Kg	mg/L					
	ICP	Metals, Concenti	ation*								
Analytical Method: 6010C	Ext	raction Method: SW305	0B		Work O	rder: 0409238					
Dilution Factor	1				1	1					
Antimony	ND				5.0	NA					
Arsenic	ND				5.0	NA					
Barium	49				1.5	NA					
Beryllium	ND				1.5	NA					
Cadmium	ND				1.5	NA					
Chromium	36				1.5	NA					
Cobalt	4.6		1		1.5	NA					
Сорреі	13				1.5	NA					
Lead	14				5.0	NA					
Molybdenum	ND				1.5	NA					
Nickel	25				1.5	NA					
Selenium	ND				5.0	NA					
Silver	ND				1.5	NA					
Thallium	ND				5.0	NA					
Vanadium	23				5.0	NA					
Zinc	34		l		5.0	NA					
%SS:	114										
Analytical Method: SW7471B	Cold Vapor Metals, Concentration* Analytical Method: SW7471B Extraction Method: SW7471B										
Dilution Factor	1	TOTAL PARTIES STORY			1 1	1					
Mercury	ND				0.06	NA NA					
Comments			<u> </u>								

means surrogate recovery outside of acceptance range due to matrix interference; & means surrogate diluted out of acceptance range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument; **special large volume digestion

Analytical Methods: EPA 6010C/200.7 for all elements except: 200.9 (water/liquid-Sb, As, Pb, Se, Tl); 245.1 (Hg); 7010 (sludge/soil/solid/oil/product/wipe/filter - As, Se, Tl); 7471B (Hg).

i) liquid sample that contains greater than ~1 vol. % sediment; this sediment is extracted with the liquid, in accordance with EPA methodologies and can significantly effect reported metal concentrations; j) reporting limit raised due to insufficient sample amount; k) results are reported by dry weight; y) estimated values due to low surrogate recovery; 2) reporting limit raised due to matrix interference.

^{*}water/product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

110 2nd Avenue South, #D7. Pacheco, CA 94553-\$560
Telephone 925-798-1620 Fax 925-798-1622
Website: www.nccampbell.com E-mail.main@nccambbell.com

QC SUMMARY REPORT FOR SW8260B

Matrix: S

WorkOrder: 0409238

EPA Method: SW8260B	E	xtraction:	SW5030B	3	Batch	ID: 13254	S	piked Sampl	e ID: 04	109318-002A
Analyte	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Accept	ance Criteria (%)
Allaiyte	µg/Kg	μg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
tert-Amyl methyl ether (TAME)	ND	50	84.4	83.8	0.683	80	88	9.46	70	130
Benzene	ND	50	121	116	3.48	113	117	3.40	70	130
t-Butyl alcohol (TBA)	ND	250	86.4	86.9	0.576	94 5	97.4	2 95	70	130
Chlorobenzene	ND	50	101	97 5	3.66	103	109	5.89	70	130
1,2-Dibromoethane (EDB)	ND	50	97.1	96.9	0.173	95.6	102	6.79	70	130
1,2-Dichloroethane (1,2-DCA)	ИD	50	114	111	3.20	96.3	99.7	3 51	70	130
1,1-Dichloroethene	ND	50	107	106	, 0.817	112	115	2.31	70	130
Diisopropyl ether (DIPE)	ND	50	118	117	0.909	105	110	4.64	70	130
Ethyl tert-butyl ether (ETBE)	סא	50	101	100	0.952	100	106	5 44	70	130
Methanol	ND	12500	91.9	87.5	4.96	101	101	0	70	130
Methyl-t-butyl ether (MTBE)	DN	50	92.4	91.6	0.902	101	108	6.76	70	130
Tolucue	ND	50	113	109	4.06	103	108	4 76	70	130
Trichloroethene	ND	50	90.4	86.4	4.42	88 6	92.2	4.03	70	130
%SS1·	106	50	101	99	1 65	97	95	2.72	70	130
%\$\$2.	106	50	104	103	0 678	91	96	5 97	70	130
%SS3	121	50	114	116	1 65	105	100	4 85	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

MS = Matrix Spike; MSD = Matrix Spike Duplicate, LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation

% Recovery = 100 * (MS-Sample) / (Amount Spiked), RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

M QA/QC Officer

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone 925-798-1620 Fax 925-798-1622 Website; www.mccampbell.com E-mail. man@inccampbell com

QC SUMMARY REPORT FOR SM5520E/F

Matrix: S

WorkOrder, 0409238

EPA Method: SM5520E/F	E	xtraction:	PR5520_	sg_s	Batch	ID: 13178		Spiked Sampl	e ID: 0409	246-001A
Analyte	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
1 110.710	mg/Kg	mg/Kg	% Rec.	% Rec	% RPD	% Rec	% Rec	% RPD	Low	High
POG	ND	100	92	94	2 15	93	92	1.08	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions.

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery

N/A = not enough sample to perform matrix spike and matrix spike duplicate

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample difuted due to high matrix or analyte content.

QA/QC Officer

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone 925-798-1620 Fax 925-798-1622
Website www.mccampbell.com E-mail main@mccampbell.com

OC SUMMARY REPORT FOR CAM17

Matrix: S

WorkOrder: 0409238

	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec	% Rec.	% RPD	Low	High
EPA Method: 6010C	E	xtraction:	SW3050E	3	BatchID;	13168		Spiked Sam	ple ID: 0409	246-001A
Antimony	10.86	50	106	104	1.26	107	109	1.53	80	120
Arsenic	7.035	50	88 5	91.3	2.74	90.7	98 6	8 40	80	120
Barium	35.6	50	89 4	78	7.36	94 4	95 5	I 16	80	120
Beryllium	0 305	50	95.5	96.5	1.04	91.3	94 9	3 87	80	120
Cadmium	ND	50	92 1	97 9	611	92 4	99 4	7.25	80	120
Chromium	10.26	50	93.9	96.6	2.38	98	102	4 34	80	120
Cobalt	3.415	50	94.1	92.9	1.25	93.4	92 4	1.13	80	120
Copper	4.365	50	93.5	95	1 46	91.8	95.3	3.69	80	120
Lead	ND	50	93.2	95	1.97	89.7	89.6	0 0558	80	120
Molybdenum	0.1747	50	92.4	92.3	0.162	94 4	100	5.81	80	120
Nickel	11 05	50	91.2	95.6	3 77	98	95.6	2.53	80	120
Selenium	ND	50	87	90	3.45	94 7	99 2	4.64	80	120
Silver	ND	5	99.7	104	4 46	108	111	3.15	80	120
Thallium	I 124	50	85 3	85.7	0.456	86	96	111	80	120
Vanadium	30.25	50	94 1	85.4	5 76	90.6	92.4	2.08	80	120
Zinc	21.57	50	92.2	85.3	5 27	879	96.6	9.48	80	120
%SS.	106	100	102	108	5.83	103	108	4 44	80	120
EPA Method: SW7471B	E	Extraction:	SW74718	3	BatchID: 13271 Spiked Sample ID. 0409348-001A					
Mercury	ND	0.25	99.4	93 9	5 77	86.8	100	14 3	80	120

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate, RPD = Relative Percent Deviation

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2)

* Acceptance Criteria for MS / MSD is between 70% and 130%. MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content

NONE

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

CHAIN-OF-CUSTODY RECORD

of I

WorkOrder: 0409238

ClientID: CETE

Report to:						Bill to:					R	equeste	d TAT:	1	day
Melissa Terry Cambria Env. Technology 5900 Hollis St, Suite A Emeryville, CA 94608		TEL: (510) 420-0700 FAX: (510) 420-9170 ProjectNo: #61E-1970; 9-6607 PO:			Accounts Payable Cambria Env. Technology 5900 Hollis St, Ste. A Emeryville, CA 94608					Date Received: Date Add-On: Date Printed:		9/2	6/04 2/04 2/04		
Sample ID	ClientSampID	Matrix	Collection Date	Hold 1	2 3	4 5	Request	ed Tests (See leg	end bel		 11 ,	12 1		4 15
0409238-002	Comp2	Soil 9	1/16/04 9:00:00 AM	A	AIA		1	<u> </u>]		- r			- 1	1

Test Legend:

6 7 11 12 13 14 15	1 5520E_SG_S	2 8260B_S	3 CAM17_S	4	5
11 12 13 14 15	6		8	9	· 10
	11	12 }	13	14	15

Prepared by: Elisa Venegas

Comments:

ON 24HR TAT-CAM17,5520 & VOC ADDED ON 9/22 PER MELISSA ON 24HR

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

CHAIN OF CUSTODY RECORD McCAMPBELL ANALYTICAL INC. 110 2nd AVENUE SOUTH, #D7 TURN AROUND TIME PACHECO, CA 94553-5560 5 DAY 48 HR 72 HR RUSH 24 HR Fax: (925) 798-1622 Telephone: (925) 798-1620 White Of (DW) EDF Raquired? Coelt (Normal) No No Analysis Request Other Comments Report To: Maissa Terry Bill To: some. Grease (5520 E&F/B&F) 722 SPA 624/8240/8260 SECONDE PERTHELISSUE Company: Cambria Environmental 石 Fox regults to INM 408-942-1499 5900 Hollis St., Suite A PAH's / PNA's by EPA 625 / 8270 / 8310 94608 GAM-17 Metals 92 Holisca 24h E-Mail: mterry @cambria-env.com b Total Petroleum Hydrocarbons (418.1) Fax: (510) 420. 9170 Tele: (510) 420. 3345 Project Name: 9-6607 Project #: 61E-1970 BTEX ONLY (EPA 602 / 8020) Lead (7240/7421/239.2/6010) EPA 608 / 8080 PCB's ONLY Project Location: Alameda Sampler Signature: Welvon Tem Total Petroleum Oil & METHOD TPH as Diesel (8015) SAMPLING MATRIX Type Containers PRESERVED Containers EPA 601 / 8010 EPA 625 / 8270 EPA 608 / 8080 LUFF 5 Metals BTEX & TPH SAMPLE ID LOCATION Sludge (Field Point Name) Water HINO, Date Time Other Other HCI Soil RCI Air Ice Composite 9.15 COMPI 1445 ABCD 9.16 0900 COMP2 ABCD Received By: Relinquished By: Date: Time: METALS OTHER O&G 1025 9.16 **PRESERVATION** ICE/to Received By: Time: Relinquished By: Date: GOOD CONDITION APPROPRIATE CONTAINERS HEAD SPACE ABSENT PERSERVED IN LAB DECHLORINATED IN LAB_ Received By: Relinquished By: Date: Time:

110 2nd Avenue South, #D7, Pacheco, CA 94553-\$560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #51E-1970	Date Sampled: 09/27/04
5900 Hollis St, Suite A		Date Received: 09/27/04
Emeryville, CA 94608	Client Contact: Melissa Terry	Date Extracted: 09/27/04
Emeryonie, CA 94008	Client P.O.:	Date Analyzed: 09/27/04-09/28/04

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extractio	n method: SW5030B				methods: SW8021		III DI EA and		Work Order: 040			
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS		
001A	hoist#3@11	s	ND		ND	ND	ND	ND	1	101		
002A	hoist#3@11.5	S	ND		ND	ND	ND	ND	1	95.3		
003A	СОМРЗА,В,С,D	S	33,g,m		0.030	0.17	0.10	0.16	1	111		
								-	-			
									-			
									 			
	 				<u></u>				 			
										<u> </u>		
			·									
							 		 			
									 			
	<u> </u>			<u></u>		<u> </u>	<u> </u>			<u> </u>		
ND mea	ng Limit for DF =1; ns not detected at or	W	NA NA	NA 0.05	NA 0.005	NA 0.005	NA NA	NA	1	ug/L		
above	the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	1	mg/K		

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in μg/L, soil/sludge/solid samples in mg/kg, wipe samples in μg/wipe, product/oil/non-aqueous liquid samples in mg/L.

Angela Rydelius, Lab Manager

[#] cluttered chromatogram; sample peak coclutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas), m) no recognizable pattern; n) results are reported by dry weight.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

		,		· · · · · · · · · · · · · · · · · · ·		
Cambria Env. 7	Fechnology	Client Pro	ject ID: #51E-1970	Date Sampled: 09/27/	04	
5900 Hollis St,	Suite A			Date Received: 09/27/)4	
Emeryville, CA	94608	Client Con	ntact: Melissa Terry	Date Extracted: 09/27/	04	
innery vine, er	171000	Client P.C).: 	Date Analyzed: 09/27/	04	
Analytical methods	SM5520E/F	Petroleum	Oil & Grease with Silica Gel Clea		Work Order:	0409414
Lab ID	Client ID	Matrix	POG		DF	% SS
0409414-001A	hoist#3@11	s	61		1	N/A
0409414-002A	hoist#3@11.5	s	ND		1	N/A
0409414-003A	COMP3A,B,C,D	s	3300		1	N/A
	de Aula des o Millo					
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
	· · · · · · · · · · · · · · · · · · ·					
Reporting I	Limit for DF =1; not detected at or	w	NA		1	NA.
above the	reporting limit	S	50		- 11	g/Kg
* water samples are DF = dilution factor		sludge/solid sar	nples in mg/kg, wipe samples in mg/wipe, p	oroduct/oil/non-aqueous liquid s	samples in r	ng/L.

= surrogate diluted out of range.

g) sample extract repeatedly cleaned up with silica gel until constant IR result achieved; h) a lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.mccampbell.com E-mail: mam@mccampbell.com

Ly.			Website. www	лиссанфоен.сонг с-нап: на	шелксапросил	
Cambria Env. Technology	Client Project ID): #51E-1970		Date Sampled: 09	9/27/04	
5900 Hollis St, Suite A				Date Received: 09	9/27/04	
E	Client Contact:	Melissa Terry		Date Extracted: 09	9/27/04	:
Emeryville, CA 94608	Client P.O.:			Date Analyzed: 09	9/27/04	
	CA	AM / CCR 17 N	letals*	4 40 1000		
Lab ID	0409414-003A				Reporting Lir	mit for DF =1;
Client ID	COMP3A,B,C,D					not detected
Matrix	S				S S	eporting limit W
Extraction Type	TTLC				mg/Kg	mg/L
	ICP	Metals, Concer	tration*			4
Analytical Method: 6010C		action Method: SW3			Work Ord	ler: 0409414
Dilution Factor	1				1	1
Antimony	ND				5.0	NA
Arsenic	ND				5.0	NA
Barium	57				1.5	NA
Beryllium	ND				1.5	NA
Cadmium	ND				1.5	NA
Chromium	30				1.5	NA
Cobalt	4.9				1.5	NA
Copper	13				1.5	NA
Lead	9.6				5.0	NA
Molybdenum	ND				1.5	NA
Nickel	24				1.5	NA
Selenium	ND				5.0	NA
Silver	ND				1.5	NA
Thallium	ND				5.0	NA
Vanadium	23				5.0	NA
Zinc	30				5.0	NA
%SS:	93.7					<u> </u>
Analytical Method: SW7471B		por Metals, Co				
Dilution Factor	1				1	1
Mercury	ND				0.06	NA
Comments					1	+
	1 U COL D / COL					

*water/product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

means surrogate recovery outside of acceptance range due to matrix interference; & means surrogate diluted out of acceptance range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument; **special large volume digestion

Analytical Methods: EPA 6010C/200.7 for all elements except: 200.9 (water/liquid- Sb, As, Pb, Se, Tl); 245.1 (Hg); 7010 (sludge/soil/solid/oil/product/wipe/filter - As, Se, Tl); 7471B (Hg).

i) liquid sample that contains greater than ~1 vol. % sediment; this sediment is extracted with the liquid, in accordance with EPA methodologies and can significantly effect reported metal concentrations; j) reporting limit raised due to insufficient sample amount; k) results are reported by dry weight; y) estimated values due to low surrogate recovery; z) reporting limit raised due to matrix interference.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax 925-798-1622 Website: www mccampbell.com E-mail. main@mccampbell.com

OC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: S

WorkOrder: 0409414

EPA Method: SW8021	B/8015Cm E	Extraction:	SW5030	3	Batch	ID: 13315	S	piked Sampl	e ID: 040	9399-010A
A t. 4 -	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptan	ce Criteria (%
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
TPH(btex) [£]	ND	0.60	92.8	96.2	3.62	96.2	95.6	0.637	70	130
МТВЕ	ND	0.10	88 8	94.9	6.63	99.6	92.7	7.21	70	130
Benzene	ND	0.10	97.5	105	7.23	107	104	3.53	70	130
Toluene	ND	0.10	85.2	85	0.192	86.8	83	4.38	70	130
Ethylbenzene	ND	0 10	97.4	104	6.52	103	101	2.34	70	130
Xylenes	ND	0.30	85.3	91	6.43	90.7	90	0.738	70	130
%\$S:	83.0	0.10	96	111	14.6	115	112	2.64	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery

[£] TPH(blex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

110 2nd Avenue South, #D7, Pacheco, CA 94553-\$560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SM5520E/F

Matrix: S

WorkOrder: 0409414

EPA Method. SM5520E/F	E	Extraction:	PR5520_	sg_s	Batch	ID: 13328		piked Sampl	e ID: 04	109414-002A
Analyte	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Accepta	ance Criteria (%)
Analyto	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec	% Rec.	% RPD	Low	High
POG	ND	100	93	91	2.17	100	100	0	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate, LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

____QA/QC Officer

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone . 925-798-1620 Fax : 925-798-1622
Website www.mccampbell.com E-nrail: main@mccampbell.com

QC SUMMARY REPORT FOR CAM17

Matrix: S

WorkOrder: 0409414

	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
EPA Method: 6010C	E	xtraction:	SW3050	3	BatchID:	13316		Spiked Sam	ple ID: 0409	399-010A
Antimony	0.4555	50	84.1	88.7	5.32	92.1	88.6	3.93	80	120
Arsenic	4.858	50	87.3	86.6	0.724	86.8	86.4	0.462	80	120
Barium	122	50	NR	NR	NR	91.1	93.1	2.17	80	120
Beryllium	0.4838	50	99.5	100	0.546	94.4	92.3	2.25	80	120
Cadmium	0.06425	50	92.2	90	2.36	89.8	89.4	0.502	80	120
Chromium	36.55	50	110	91.7	10.4	95	94.4	0.633	80	120
Cobalt	7.285	50	93.8	91.6	2.10	91.4	91.3	0.0547	80	120
Соррег	9.568	50	96.8	89.8	6.23	90.7	88.7	2.17	80	120
Lead	7.638	50	93.5	91.1	2 23	91	90.4	0.772	80	120
Molybdenum	0.08742	50	93.3	95	1.86	96	95.1	0.890	80	120
Nickel	27.3	50	104	89.4	9.68	94.4	93	1.55	80	120
Selenium	ND	50	91.5	94.6	3.33	90.2	92.2	2.30	80	120
Silver	ND	5	93.8	97.8	4.17	91.6	94.9	3.59	80	120
Thallium	2.013	50	88.9	90.3	1.49	86.4	88.7	2.63	80	120
Vanadium	40.85	50	112	84.4	15.2	86.4	86.5	0.174	80	120
Zinc	29	50	128	105	13.1	91.3	92.6	1.41	80	120
%\$S:	100	100	99	95	3.68	101	97	4.10	80	120

EPA Method: SW7471B	E	xtraction:	SW7471E	3	BatchID:	13314	_ ;	Spiked Sam	ple ID: 0409	396-010A
Мегсигу	ND	0.25	114	104	8.36	86.1	84.1	2.27	80	120

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2)

* Acceptance Criteria for MS / MSD is between 70% and 130%. MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

(925) 798-1620

110 Second Avenue South, #D7 Pacheco, CA 94553-5560

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0409414

114

ClientID: CETE

Requested TAT: Bill to: 1 day Report to: Accounts Payable Melissa Terry TEL: (510) 420-0700 Cambria Env. Technology Cambria Env. Technology FAX: (510) 420-9170 Date Received: 9/27/04 5900 Hollis St, Suite A ProjectNo: #51E-1970 5900 Hollis St, Ste. A Emeryville, CA 94608 Date Printed: Emeryville, CA 94608 PO: 9/27/04 Requested Tests (See legend below) Collection Date Hold 11 12 15 Sample ID ClientSampID Matrix 9/27/04 10:00:00 Α 0409414-001 hoist#3@11 Soil 0409414-002 Soil 9/27/04 10:10:00 Α hoist#3@11.5 9/27/04 10:15:00 0409414-003 COMP3A,B,C,D Soil

Test Legend:

[1]	5520E_SG_S	2	CAM17_S	3 G-MBTE	x_s	4	 5
6		7		8	}	9 .	 10 {
11	-	. 12		13	3	[14]	 15

Prepared by: Rosa Venegas

Comments: 24 TAT

OK.

RUSHI

0409414

					77.474	. 7	YN						Т					$\overline{}$	TT	TR	T (T		TIC	YTC/	AT	V	B	E C	'O'	DD	<u> </u>	
M	cCAMPI	BELL 10 2 ^{md} av	ANAL	~XY	JCA #D7	۱ L,	١I٧	C.						ברוך) אירון	ירצו	N 1	. T'S 4	ل ۱۲۲	MA NIP	ll. TT) 	ノド 7	C		1	32				. U. I	RD		Q
		PACHEC	O. CA 945	53-550	30									11	υK	IN A	УК(JU	ND	11	i kyi	D.		سب RUS	` [4.00	HR	3 /	48 I	-		ZHR	
	site: <u>www.mc</u>		com Ema	ii: ma	n@ni.	ax: (pbe	1.001	n 2.1.6	22			1	ED	FR	.equ	irec	1? C	oelt	(N	orn	nal)		io.	W	rite	On	(D	w)	N			
Report To: YV	e: (925) 798-		R	ill To		$\frac{ax}{4}$			-10	** £			╁	_								Reg		t						C)ther	- 1	Comments
Company: Cam	bria En	ومطمؤل	mount	ıl.	•								†							Ĭ													Filter
5000 H	allia St	Su	+c.A											42	İ	E	}		ĺ							0							Samples
Finalous	110 CA	., 200	F	-Mai	l: m	ten	\sim	3.0	am	bri	مے۔	'n.	con	•		/B&	9		İ				İ			831						-	for Metals
5900 H Emelya Tele: (510)	120- 33	45	F	ax: (510)42	o l	1170	2				$\Box t$	氫		E&F	418			ļ						/ 0/:						-	analysis:
Project #: 5	ject #: 5 E - 970 Project Name: 5 E - 970								_ \	M		2520	Sug)20)		>,					625/8270/8310	<u>@</u>	6					Yes / No				
Project Location:	ject Location: Alameda								4	8070		ase (carb	ĺ	/ 86		Z			ŀ			/ 602	602	9	ļ		-					
Sampler Signature	e: Mell	ne Te	in	,	,								_	205/	۵	S	dro	121	209		B's			560	5	EPA	910	2	/ 60			ļ	
	T	SAMP	LING		sua	M	IAI	RIX		M PR	ESE)	10D Rye	<u>.</u>	Gas \$02/8020	TPH as Diesel (8015)	Total Petroleum Oil & Grense (5520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010 / 8021	BTEX ONLY (EPA 602 / 8020)		EPA 608 / 8082 PCB's ONLY	=	7.1	EPA 524.2 / 624 / 8260	EPA 525 / 625 / 8270	PAH's / PNA's by EPA	CAM-17 Metals (6010 / 6020)	LUFT 5 Metals (6010 / 6020)	Lead (200.8 / 200.9 / 6010)				
				Containers	Type Containers		\top						- 1	Hal) las) Em	leur	3010	(۲	EPA 608 / 8081	8087	EPA 8140 / 8141	EPA 8150 / 8151	/ 62	625	YA's	leta	etal	8/2				
SAMPLE ID (Field Point Name)	LOCATION			tain	Į į	1.		- a					\perp	HdT 7	Die	irole	etro	7	Z	/ 80	/ 80	140	150	24.2	25 /	ă/	17 %	S N	200			·	
(Flere Come Name)		Date	Time	uo,	ĕ	Water	₌	Sludge	Other	뗼	HCL	HN03	Other 	BTEX.	Has	al Pe	ta F	A 6	Ĕ	A 6	¥ 6	8 ¥.	A 8	A 5	A S	M,	Ż	E	ba O			٠ ،	
				#	Ę	3	Soll v	हैं ई	ŏ	ICE	Ħ	E	ōΝ	الظ	ן בֿן	Tot	Ţ	E	BI	EF	EF	EF	E	E	函	P/4	Ö	1	ı	L.,			
hoist#3e11	· · · · · · · · · · · · · · · · · · ·	9/20/04	(000)	1			X	1		X				X		X											<u> </u>				igsqcut		
heist#32115		9/27/ml	10/0	1	1		7			M		\neg		X		X								_									····
100142010		10101	10,0	 	 		\uparrow	+					Ť																	ļ., _			
1011021B1	7	9/27	1015	4	 		d	+		X	7		_	X	•	X											X						
COMP3A,B,C	<u> </u>	100	(0/)	 	\vdash	1 1	-	+-			_																						
PROPERTY				\vdash	 		十	+	┼			\dashv		\dashv														1					
		 			 	+	-		\vdash		+	+	\dashv											_			 	1		<u> </u>			
	· · · · · · · · · · · · · · · · · · ·			[-	╁	+	+-	+	+			\dashv	\dashv						-				ļ. —	 		 			1	 	1-		
		 		 	ļ	\longrightarrow	\dashv	+	-			-					 				-			┼─-	 	\vdash	\vdash	+	+	 			
	·			<u> </u>	ļ			!	igaplus				\dashv									-	 -	├-	_			┼-		1-	+	-	
				<u> </u>	ļ		_	<u></u>	ــــــــــــــــــــــــــــــــــــــ										_			<u> </u>	ļ <u>.</u>	 	-	-	 	-	 	 -	+		
				<u> </u>	<u> </u>				\perp			_	\perp		 .		<u> </u>		<u> </u>				ļ	ļ	 	ļ	ļ	-	╁	-	 		
				_																		<u> </u>	ļ		<u> </u>	ļ.,		ļ	1	<u> </u>	ـــــ		
																								_		<u> </u>		\perp	1_	ļ			· · · · · · · · · · · · · · · · · · ·
	-								T																							<u> </u>	
Relinquished By:		Date:	Time:	Rect	ejyed)	377	人)	<u> </u>					ICI	E/t"_			37W										C	MMC	1ENT	rs:	<u>. </u>	
Molina	and_	121/01	11115	1	<u>X</u> ,	V	<u>يل</u>	<u> </u>	~~					HE	EAD:	SPA	NDIT CE A	BSE	NT_				_										
Relinquished By:		Date:	Time:	Rece	eived I	y:								DE	CHI	.OR	INA	TED	IN Ē NTA		RS	/											
			<u> </u>										_				DI					<u> </u>											
Relinquished By:		Date:	Time:	Reco	eived I	By:												V	OAS	10	&G	м	ETA	LS	ОТ	HER	₹						
			1										- [PR	ESE	RYA	ATIO		.,, ti.)			pН								_			

GETTLER-RYAN INC.

TRANSMITTAL

September 15, 2004

R #386502

TO:

Mr. Bruce Eppler

Cambria Environmental Technology, Inc.

4111 Citrus Avenue, Suite 12 Rocklin, California 95677

FROM:

Deanna L. Harding

Project Coordinator Gettler-Ryan Inc.

6747 Sierra Court, Suite J Dublin, California 94568 DEGE UG

SEP 1 7 2004

By

RE:

Chevron Service Station

#9-6607

2340 Otis Drive Alameda, California MTI: 61D-1970

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
2	September 14, 2004	Groundwater Monitoring and Sampling Report Third Quarter - Event of August 13, 2004

COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced report for <u>your</u> use and distribution to the following:

Ms. Karen Streich, Chevron Texaco Company, P.O. Box 6012, Room K2256, San Ramon, CA 94583

Please provide any comments/changes and propose any groundwater monitoring modifications for the next event prior to *October 6*, 2004, at which time the final report will be distributed to the following:

Mr. Barney Chan, Alameda County Health Care Services, Dept. of Environmental Health, 1131 Harbor Bay Parkway, Suite 250, Alameda, CA 94502-6577
 Mr. Wayne Weber, Chevron Station #9-6607, 2340 Otis Dr., Alameda, CA 94501
 Harsh Investment Corp., 523 West Plaza, South Shore Center, Alameda, CA 94501

Enclosures

trans/9-6607-ks

September 14, 2004 G-R Job #386502

Ms. Karen Streich ChevronTexaco Company P.O. Box 6012, Room K2256 San Ramon, CA 94583

RE: Third Quarter Event of August 13, 2004

Groundwater Monitoring & Sampling Report

Chevron Service Station #9-6607

2340 Otis Drive Alameda, California

Dear Ms. Streich:

This report documents the most recent groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R) at the referenced site. All field work was conducted in accordance with G-R Standard Operating Procedure - Groundwater Sampling (attached).

Static groundwater levels were measured and the wells were checked for the presence of separate-phase hydrocarbons. Static water level data, groundwater elevations, and separate-phase hydrocarbon thickness (if any) are presented in the attached Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells and submitted to a state certified laboratory for analyses. The field data sheets for this event are attached. Analytical results are presented in the table(s) listed below. The chain of custody document and laboratory analytical report are also attached.

Please call if you have any questions or comments regarding this report. Thank you.

Sincerely,

Deanna L. Harding Project Coordinator

Hagop Kevork P.E. No. C55734

Figure 1: Potentiometric Map

Table 1: Groundwater Monitoring Data and Analytical Results
Table 2: Groundwater Analytical Results - Oxygenate Compounds
Attachments: Standard Operating Procedure - Groundwater Sampling

Field Data Sheets

Chain of Custody Document and Laboratory Analytical Reports

6747 Sierra Court, Suite J • Dublin, CA 94568 • (925) 551-7555 • Fax (925) 551-7888
3140 Gold Camp Drive, Suite 170 • Rancho Cordova, CA 95670 • (916) 631-1300 • Fax (916) 631-1317
1364 N. McDowell Blvd., Suite B2 • Petaluma, CA 94954 • (707) 789-3255 • Fax (707) 789-3218

PROJECT NUMBER

Chevron Service Station #9-6607 2340 Olis Drive Alameda, California

August 13, 2004

REVISED DATE

REVIEWED BY

Groundwater Monitoring Data and Analytical Results

Chevron Service Station #9-6607 2340 Otis Drive Alameda, California

Table 1

WELL ID	TOC*	DTW	GWE	TPH-D	TPH-G	•		E	X	MTBE	TOG
DATE	(0.)	(p)	(mxl)	(ppb)	(pph)	(fpb)	(ppt)	(ppb)	(Oph)	(pph)	(pph)
MW-1											
n8/2 i /9 i	7.12	6, FO	1.02		<50	<0.5	<0.5	<0.5	<0.5	••	
01/09/92	7.12	3.96	3.16		<50	<0.5	<0.5	<0.5	<0.5		<5.000
₩₩. 04/2 0/92	7.12	3.90	3.22		<50	<0.5	<0.5	<0.5	<0.5		
07/25/92	7.12	4,18	2.94		<50	<0.5	<0.5	<0.5	<0.5		••
11/24/92	7.12	4,72	2.40		<50	<0.5	<0.5	<0.5	<0.5		
01/21/93	7.12	3.18	3.94		<50	<0.5	0.7	<0.5	1.0		
04/13/93	7.12	3.70	3.42		<50	<0.5	<0.5	<0.5	1.0		
07/14/93	7.12	4.21	2.91		<50	<0.5	<0.5	< 0.5	<0.5		-
10/26/93	7.12	4.28	2.84		<50	<0.5	<0.5	<0.5	<0,5		
01/11/94	7.12	4.16	2.96		<50	<0.5	< 0.5	< 0.5	<0.5		
03/31/94	7.12	3.88	3.24		<50	<0.5	0.6	<0.5	0.7		
07/14/94	7.12	3.00	4.12		<50	<0.5	<0.5	<0.5	<0.5		
10/12/94 ¹	7.12	4.25	2.87	••	80	<0.5	<0.5	<0.5	<0.5	121	
01/11/95	7.12	3.12	4.00		<50	<0.5	<0.5	<0.5	<0.5	130	<i>-</i> -
	7.12	3.46	3,66		<50	<0.5	<0.5	<0.5	<0.5	170	
04/05/95 ³ 07/13/95	7.12 7.12	3.99	3.13		<125	<1.2	<1.2	<1.2	<1.2	400	
10/05/95	7.12	4.38	2.74	**	<50	<0.5	2.3	0.66	4.0	300	
10/03/96	7.12	4,44	2.68		<50	0.63	<0.5	<0.5	<0.5	560	44
01/22/97	7.12 7.12	3.39	3.73		<200	<2.0	<2.0	<2.0	<2.0	530/880 ⁵	**
	6.92	3.70	3.22		<125	<1.2	<1.2	<1.2	<1.2	610	
04/(10/97*	6.92	3.87	3.05		240	47	<2.0	<2.0	<2.0	990	
07/09/97	6.92	3.97	2.95		250	<2.0	<2.0	<2.0	<2.0	1,000	
10/16/97	6.92 6.92	3.45	2.93 3.47		<200	<2.0	<2.0	<2.0	<2.0	_ A	-
01/08/98	6.92 6.92	3,61	3.47		170	20	<0.5	<0.5	<0.5	1,700	
04/24/98		3.85	3.97		160	58	1.1	<0.5	0,59	1.500/1.600 ⁵	
07/15/98	6.92	4.12			140	<0.5	<0.5	<0.5	<0.5	1,200	
10/27/98	6.92	4.12 4.48	2.80 2.44	-	<250	<2.5	<2.5	<2.5	<2.5	1,330	
01/20/99	6.92				150	73	<0.5	<0.5	<0.5	620	
04/19/99	6.92	2.71 3.97	4.21 2.95	**	142	<0.5	0.82	<0.5	2.08	824	
07/29/99	6.92	3.97 4,06			<200	<2.0	<2.G	<2.0	<2.0	972	
10/25/99	6.92		2,86					<0.5	<0.5	972 1,170	
01/24/00	6,92	2.89	4.03	_	143	<0.5	<0.5				
04/03/00	6.92	3.60	3.32		1309	22	<0.50	<0.50	<0.50	550 850	44
07/03/00	6.92	4,06	2.86		180°	12	<1.0	<1.0	<1.0	850	

Table 1 Groundwater Monitoring Data and Analytical Results

Chevron Service Station #9-6607 2340 Otis Drive Alameda, California

WELL ID/	10C*	DTW	CWE	TPH-D	TPH-G	B	•	K.	X	MTBE	TOG
DATE	(h.)	(fi.)	(msl)	(pph)	(ppb)	(ppb)	(pph)	(pph)	(pph)	(ppb)	(pgb)
MW-1 (cont)										e10	
10/02/00 ¹¹	6.92	4.03	2.89		1 20¹⁶	<0.50	<0.50	<0.50	<0.50	520	
01/09/01	6.92	4,07	2.85		<250	<2.5	<2.5	<2.5	<2.5	510	**
04/09/01	6.92	3.57	3.35	-	120	<0.500	<2.60	<0.500	<2.00	683	**
08/23/01	6.92	3.90	3.02		<50	<0.50	<0.50	<0.50	<0.50	350	••
11/27/01	6.92	3.90	3.02		270	<0.50	. <0,50	<0.50	<1.5	280	
02/26/02	6,92	3.51	3.41		820	<0.50	<0.50	<0.50	<1.5	- 1,600	
05/22/02	6.92	3.78	3.14		350	<0.50	<0.50	<0.50	<1.5	1,100/1,00012	
08/15/02	6.92	4.01	2.91		460	<0.50	<0.50	<0,50	<1.5	820/850 ¹²	
11/14/02	6.92	3.91	3.01		100	< 0.50	<0.50	<0.50	<1.5	310/29012	
02/03/03	6,92	3.71	3.21	**	300	< 0.50	<0.50	<0.50	<1.5	650/780 ¹²	
05/09/03	6.92	3.95	2.97		330	<0.5	<0.5	<0.5	<1.5	810/740 ¹²	
OR/15/03 ¹³	6.92	4.02	2.90		51	<0.5	<0.5	<0.5	<0.5	110	
1 1/14/03 ¹³	6,92	4.08	2.84	**	<50	<0.5	<0.5	<0.5	<0.5	11	
02/13/0413	6.92	3.59	3.33		170	<0.5	<0.5	<0.5	<0.5	410	
05/14/04 ¹³	6.92	4,09	2.83		83	2	<0.5	<0.5	<0.5	250	
08/13/04 ¹³	6.92	4.05	2,87		<50	<0.5	<0.5	<0.5	<0.5	78 -	
MW-2									• •		
08/21/91	7.43	6,40	1,03	**	430	170	0.9	1.0	3.6	# -	~e and
01/09/92	7,43	4.23	3.20		58	16	<0.5	<0.5	<0.5		<5,000
A4/20/92	7,43	4.17	3.26	10 -≠	180	9.6	<0.5	0.8	<0.5		-
07/25/92	7,43	4.47	2.96	_	220	8.0	0,7	4.0	8.6		
11/24/92	7.43	5.82	1.61		72	3.2	<0.5	0.5	0.6		-
01/21/93	7.43	3.35	4.08		<50	0.8	<0.5	<0.5	<0.5		
04/13/93	7.43	4.02	3.41		78	<0.5	<0.5	<0.5	0.6		
07/14/93	7.43	4.49	2.94		<50	<0.5	<0.5	<0.5	<0.5	**	
10/26/93	7.43	4.56	2.87		<50	<0.5	0.9	<0.5	0.6		**
01/11/94	7.43	4.39	3,04		<\$0	<0.5					
03/31/94	7,43	4.18	3.25		<50	0.5	<0.5	<0.5	0.8		
07/14/94	7.43	4.90	2.53		<50	< 0.5	<0.5	<0.5	0.6	77	
10/12/94 ²	7.43	4.54	2.89		<50	<0.5	<0.5	<0.5	<0.5	2,900	
01/11/95	7.43	3.26	4.17		<50	< 0.5	<0.5	<0.5	<0.5	2,500	

Table 1 Groundwater Monitoring Data and Analytical Results Chevron Service Station #9-6607

2340 Otis Drive Alameda, California

					Alameda, Cali	(011114					
WELLE IDA	T0C+	DTW	CWE	TPH D	зрн-с		1	6	X	MTRE	TOG
VEGE III. MTE	(9.)	(fi.)	(msl)	(oph)	(23/8)	(ppb)	(ppb)	(pph)	(pph)	(ppb)	(prb)
M. P. Mariana and Assessment											
MW-Z (conf)							-0.5	<0.5	<0.5	<2.0	
14/05/95 ³	7.43	3,65	3,78		<50	<0.5	<0.5		<2.5	1,100	
17/13/95	<i>7</i> .43	4.31	3.12	**	<250	<2.5	<2.5	<2.5		280	
10/05/95	. 7.43	4,68	2.75	4-	<50	<0.5	1.9	0.54	3,4	1.000	
10/03/96	7.43	4.80	2.63		<500	<5.0	<5.0	<5.0	<5.0	1,300/1.6005	
n1/22/97	7,43	3.36	4.07		540 [™]	<5.0	<5.0	<5.0	<5.0	970	
04/09/97	7.43	4.25	3.18		<500	<5.0	<5.0	<5.0	<5.0	710	
N7/N9 <i>1</i> 97	7.43	4,48	2.95		<125	<1.2	<1.2	<1.2	<1.2		
10/16/97	7.43	4.44	2.99		<100	0.1>	<1.0	<1.0	<1.0	1,000 8	
01/08/98	7.43	3.79	3,64	••	. 68	<0.5	<0.5	<0.5	<0.5	R	
Λ4/24 <i>/</i> 98	7,43	3.95	3.48		<50	<0.5	<0.5	<0.5	<0.5	490	
07/15/98	7.43	4,30	3.13		51	1.2	1.2	<0.5	<0.5	480	
10/27/98	7.43	4,45	2.98		<50	<0.5	<0.5	<0.5	<0.5	180	
01/20/99	7.43	4.21	3.22		<50	<0.5	<0.5	<0.5	<0.5	388	
04/19/99	7.43	4.38	3.05		620	13	35	F1	78	510	
07/29/99	7.43	4.49	2.94	~	<50	<0.5	<0.5	<0.5	<0.5	229	
10/25/99	7.43	4.55	2.88	**	<50	<0.5	<0.5	<0.5	<0.5	314	
01/24/00	7.43	2.82	4.61	**	<50	<0.5	<0.5	<0.5	<0.5	236	
04/03/00	7.43	4.05	3.38		<50	<0.50	< 0.50	<0.50	<0.50	420	
97/03/ 90	7,43	4.52	2.91	₩=	1409	<0.50	<0.50	<0.50	88.0	1,300	
10/02/00	7,43	4.55	2.88		<1,000	<10	<10	<10	<10	1.300	~-
01/09/01	7.43	4.45	2.98		<1,000	<10	<10	<10	<10	1,190	
04/09/01	7,43	3.96	3.47		214	< 0.500	<2.00	0.512	<2.00	1,770	
08/23/01	7.43	4.38	3.05	••	130	24	<0.50	<0.50	<0.50	440	
£1/27/01	7.43	4.25	3.18		<i>6</i> 50	<0.50	<0.50	<0.50	<1.5	770	
02/26/02	7,43	3,98	3.45	_	160	<0.50	<0.50	<0.50	<1.5	470	•
05/22/02	7.43	4,23	3.20		86	<0.50	<0.50	<0.50	<1.5	320/300 ¹²	
08/15/02	7.43	4.52	2.91		66	<0.50	<0.50	<0.50	<1.5	260/290 ¹²	
- 11/14/02	7,43	4.29	3.14		<50	<0.50	<0.50	<0.50	<1.5	120/12012	
02/03/03	7.43	4,10	3.33		80	<0.50	<0.50	<0.50	- <1.5 -	190/20012	
05/09/03	7,43	4.1R	3.25	==	94	<0.5	<0,5	<0.5	<1.5	190/15012	
08/15/03 ¹³	7.43	4.45	2.98		240	<1	<1	<i< td=""><td><1</td><td>740</td><td>=-</td></i<>	<1	740	=-
[(/] 4/63 ¹³	7,43	4,51	2,92		<50	<0.5	<0.5	<0.5	<0.5	9	-

Table 1 Groundwater Monitoring Data and Analytical Results

Chevron Service Station #9-6607 2340 Otis Drive Alameda, California

					Alameda, Cali	TOTHER					
WELDIDA	TOC	DTW	CWE	TPH-D	TPH-G	В		L	X	MTBE	TOG
DATE	(ft)	(f.)	(mxl)	(pph)	(pph)	(ppb)	(pph)	(pph)	(pph)	(pph)	(ppb)
MW-2 (cont)											
02/13/04 ¹³	7.43	4,05	3.38		<50	<0.5	<0.5	<0,5	<0.5	29	
05/14/04 ¹³	7.43	4.51	2.92		<50	<0.5	<0.5	<0.5	<0.5	14	
08/13/94 ⁶⁵	7.43	4,48	2.95		<50	<0.5	<0.5	<0.5	<0.5	<0.5	•••
MW-3							-	•		=	
08/21/91	8,07	7.10	0.97	_	<50	<0.5	<0.5	<0.5	<0.5		
01/09/92	8.07	5.03	3.04		<50	<0.5	<0.5	<0.5	<0.5		<5,000
04/20/92	8,07	4.91	3.16		<50	<0.5	<0.5	<0.5	<0,5	**	
07/25/92	8.07	5.34	2.73	40	<50	1.0	1.0	1.0	3.4		
11/24/92	8.07	5.00	3.07		<50	<0.5	<0.5	<0.5	<0.5		
01/21/93	8.07	4.34	3.73		<50	<0.5	0.5	<0.5	1.0		
04/13/93	8.07	4.84	3.23		<50	<0.5	<0.5	<0.5	0.6		
07/14/93	8.07	5.29	2.78		<50	<0.5	<0.5	<0.5	2.0		
10/26/03	8.07	5.36	2.71		<50	<0.5	<0.5	<0.5	<0.5	**	
01/11/94	8.07	5.22	2.85		<50	<0.5	0.1	<0.5	<0.5	-	
03/31/94	8,07	4.99	3.08		<50	<0.5	<0.5	<0.5	<0.5	**	
07/14/94	8,07	5.36	2.71		<50	<0.5	<0.5	<0.5	<0.5		
10/12/94	8,07	5,02	3.05		<50	<0.5	<0.5	<0.5	<0.5		•••
01/11/95	8.07	4.35	3.72		<50	<0.5	<0.5	< 0.5	0.7	<5.0	
04/05/95³	8,07	2.64	5.43		<50	<0.5	<0.5	<0.5	<0.5	<5.0	
07/13/95	8.07	5.13	2.94		<50	<0.5	<0.5	<0.5	<0.5		
t0/05/95	8.07	5.46	2.61		<50	<0.5	1.2	<0.5	<0.5		
10/03/96	8.07	5.53	2.54		<50	0.98	1.2	0.53	2.5	<2.5	
01/22/97	8.07	4.62	3.45	_	<50	<0.5	<0.5	<0.5	<0.5	<2.5	
04/09/97^	8,00	5.05	2.95	SAMPLED AT	NUALLY					•••	
07/00/97	8.00	5.14	2.86			••		E#-		••	
10/16/97	8_00	5.20	2.80		<50	<0.5	<0.5	<0.5	<0.5	<2.5	••
01/08/98	8,00	4.75	3.25		<50	<0.5	<0.5	<0.5		9,3	
04/24/98	8,00	4.73	3.27	••							
07/15/9R	8,00	5.07	2.93			••					
10/27/98	8.00	5.24	2.76								
01/20/99	8,00	5.18	2.82	40	<50	<0.5	<0.5	<0.5	<0.5	42_2	

P.08/24

Table 1 Groundwater Monitoring Data and Analytical Results

Chevron Service Station #9-6607 2340 Otis Drive Alameda, California

WELL ID		TOC*	DTW	CME	TPH-D	1PH-G	В	1	E	X	MTBE	TOG (pph)	
DATE.		<i>(f)</i>	(g.)	(#11)	(ррь)	(ppd)	(ppb)	(epb)	(ppb)	(pph)	(pph)	(Pyo)	i
MW-3 (cont)													•
04/19/99		8,00	4.26	3.74	940						_		
07/29/99		8.00	5.18	2.82				**					
10/25/99		8.00	5.27	2.73						••	••		
01/24/00		8.00	4.22	3.78		<50	<0.5	<0.5	<0.5	<0.5	71.1		
04/03/00		8,00	4,90	3.10	4*			••					
07/03/00	יוּא	8,00	5.25	2.75				-					
10/02/00		8,00	5.29	2.71	4-				_		••	**	
10/09/01		8.00	5.27	2.73		<50	<0.50	<0.50	<0.50	<0.50	120		
04/09/01		8,00	4,81	3.19									
08/23/01		8.00	5.24	2.76									
11/27/01		8,90	5.14	2.86	SAMPLED AN	NUALLY			44			~ "	
02/26/02		8,00	4.78	3,22	•-	<50	<0.50	<0,50	<0.50	<1.5	190	••	
05/22/02		8.00	5.03	2.97	SAMPLED AN	NUALLY			••	••			
08/15/02		8.00	5.27	2.73	SAMPLED AN	NUALLY							
11/14/02		8.00	5,08	2.92	44	<50	<0.50	<0.50	<0.50	<1.5	<2.5/<2'2		
02/03/03		8.00	4.88	3.12	4-4	<50	<0.50	< 0.50	<0.50	<1.5	82/8812		
05/09/03		00.8	5.10	2.90		<50	<0.5	<0.5	<0.5	<1.5	150/180 ¹²		
08/15/03 ¹³		8.00	5.18	2.82		<50	<0.5	<0.5	<0.5	<0.5	190		
11/14/03 ¹³		8.00	5.23	2.77	**	<50	< 0.5	<0.5	<0.5	<0.5	0.6		
02/13/04 13		8,00	4.86	3.14		<50	<0.5	< 0.5	< 0.5	<0.5	36		
05/14/04 ¹³		8,00	5.25	2.75		<50	<0.5	<0.5	<0.5	<0.5	5		
08/13/0413		8.00	5,21	2.79	**	<50	<0.5	<0.5	<0.5	<0.5	2	**	
MW-4													
08/21/91		7.85	6.85	1,00		<50	0.6	<0.5	<0.5	<0.5		<5,000	
01/09/92		7,85	4.70	3.15		<50	<0.5	<0.5	<0.5	<0,5		<5,000	
04/20/92		7.85	4,64	3.21		<50	<0.5	<0.5	<0.5	<0.5		<5,000	
07/25/92		_7.85	4,95	2,90	7 8	<50		- 					
11/24/92		7.85	5.42	2.43		<50	<0.5	< 0.5	<0.5	1,0		<5,000	
01/21/93		7.85	4.07	3,78	<10	<50	<0.5	0.5	<0.5	0.7		~ -	
04/13/93		7.85	4.45	3,40	<10	<50	<0.5	<0.5	<0.5	1.0		~-	
07/14/93		7.85	4,90	2.95	***	<50	<0.5	<0.5	<0.5	<0.5		*4	
		,,,,,	44.611	20.00		-547	-0.0	-1740	*****				

Table 1 Groundwater Manitoring Data and Analytical Results Chevron Service Station #9-6607

2340 Otis Drive Alameda, California

					Alameda, Cali	ifornia						1
WELLID/ DATE	10C*	DTW (II)	GWE (mxl)	TPH-D (pph)	TPH-G (ppb)	¥ (pph)	T (opbj	(66p) E	X ((pph)	MTBE (pph)	TOG (Nyh))T-26-2004
UA LECCOSCIONA	<u> </u>	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	A STATE OF THE STA			-						4
MW-4 (conf)						3.0	3.0	2.0	3.0	_	- -	14
10/26/93	7.85	4,95	2.90		<50	2.0	0.5	<0.5	<0.5			14:21
01/11/94	7.85	4.77	3.08		<50	<0.5	<0.5	<0.5	1.0		p.a.	₽-
03/31/94	7.85	4.65	3.20		<50	<0.5	1.2	<0.5	2.0			
07/14/94	7.85	5.05	2,80		<50	0.9	0.9	<0.5	0.7			
10/12/94	7.85	4.88	2.97		<50	<0.5	. 0,9 0,8	0.7	1.5	<5.0		
01/11/95	7.85	4,00	3.85		<50	<0.5	o.a <0.5	<0.5	<0.5	<2.0	<5.000	
04/05/95*	7.85	4.22	3.63	••	<50	<0.5		<0.5	<0.5			
07/13/95	7,85	4.71	3.14	**	<50	<0.5	<0.5	<0.5	<0.5		_	
10/05/95	7.85	5.02	2,83	••	<50	<0.5	<0.5	2.5	12	<2.5	pa-	
10/03/96	7,85	5.08	2.77	-	100	5.5	5,6		<0.5	<2.5		
01/22/97	7.85	4.28	3.57		<\$0	<0.5	<0.5	<0.5				
04/09/97	7.85	4,60	3.25	SAMPLED AN	NUALLY				e= ue			
07/09/97	7,85	4.79	3.06	-				 -A 5	<0.5	2.7		
10/16/97	7.85	4,81	3.04		<50	<0.5	<0.5	<0.5	<0.5	<2.5	P==	
01/08/98	. 7.85	4_37	3.48	=4	<50	<0.5	<0.5	<0,5			=-	
04/24/98	7.R5	4,34	3.51			-			==	••	~~	
07/15/98	7.85	4,46	3.39	wF		-					~-	
10/27/98	7.85	4.52	3.33					 -0.5	 -0.5	<2.0		
01/20/99	7.85	4.32	3.53		<50	<0.5	<0.5	<0.5	<0.5		-	
04/19/99	7.85	4,07	3.78						•=			
04/19/99	7,85	4.87	2.98		-		-				<u></u>	
10/25/99	7.85	4.9D	2,95	**		**			 -0.5	 *		
01/24/00	7.85	4.32	3.53	••	<50	<0.5	<0,5	<0.5	<0.5	<2.5		
04/03/00	7.85	4.38	3.47							**		
	NP 7.85	4.88	2.97	-			***	-		-		
10/02/00	7.85	4,89	2.96		••							
01/09/01	7.85	4.93	2.92		<50	<0.50	<0.50	<0.50	<0.50	<2.5		
	7.85	4.48	3.37	44		_ ·						
0R/23/01	7,85	4.85	3.00	-	***	p=						
11/27/01	7.85	4,80	3,05	SAMPLED A	NNUALLY		~-		**			τ
02/26/02	7.85	4.40	3.45		<50	<0.50	<0.50	<0.50	<1.5	<2.5		Ž.
05/22/02	7.85	4.64	3,21	SAMPLED A	NNUALLY		*	**	-			P.10/24
08/15/02	7.85	4.91	2.94	SAMPLED A					-			12

Table 1 Groundwater Monitoring Data and Analytical Results

Chevron Service Station #9-6607 2340 Otis Drive Alameda, California

					Alameua, Car						
WELL ID/	10C*	DTW	GWE	T.PH-D	TPH-G	B		E	X	MTBE	TOG
DATE	(g)	(fr)	(mxl)	(pph)	(ppb)	(opb)	(ppb)	(pph)	(pph)	(ppb)	(pph)
MW-4 (cont)											
[1/14/02	7.85	4.73	3,12	SAMPLED AN	NUALLY		••			••	
n2/03/03	7.85	4.52	3.33		<50	<0.50	<0.50	<0.50	<1.5	<2.5/<0.5 ¹²	
05/09/03	7.85	4.75	3,10	SAMPLED AN	NUALLY			••			
18/15/03	7,85	4.82	3.03	SAMPLED AN	NUALLY	44		••			
11/14/03	7.85	4.85	3.00	SAMPLED AN	NUALLY		**				
02/13/04 13	7.85	4.52	3.33		<50	<0.5	<0.5	<0.5	<0.5	4	
35/14/04	7.85	4.87	2.98	SAMPLED AN	NUALLY						**
08/13/04 ¹³	7.85	4,79	3.06		<50	<0.5	<0.5	<0.5	<0.5	2	
THE TOTAL A BILLY										-	
TRIF BLANK 18-LB											
11/21/93			44		<50	<0.5	<0.5	<0.5	<0.5		
14/13/93	~-		••	_ 	<50	<0.5	<0.5	<0.5	<0,5		
17/14/93			••		<50	<0.5	<0.5	<0.5	<0.5		**
10/26/93					<50	<0.5	<0.5	<0.5	< 0.5		
01/11/94					<50	<0.5	<0.5	<0.5	<0.5		
03/31/94			98		<50	<0.5	<0.5	<0.5	<0.5		
07/14/94					<50	<0.5	<0.5	<0.5	<0.5		
10/12/94			••		<50	<0.5	<0.5	<0.5	<0.5		***
01/11/95					<50	<0.5	<0.5	<0.5	<0.5		
04/05/95					<50	<0.5	< 0.5	<0.5	<0.5		
07/13/95		***		••	<50	<0.5	<0.5	<0.5	<0.5		
10/05/95			**		<50	<0.5	<0.5	<0.5	< 0.5		
10/03/96					<50	<0.5	<0.5	< 0.5	<0.5		-
n 1/22/97			·		<50	<0.5	<0.5	<0.5	<0.5	<2.5	_
04/09/97					<50	<0.5	<0.5	<0.5	<0.5	<2.5	
07/09/97	-				<50	<0.5	<0.5	<0.5	<0.5	<2.5	
10/16/97					<50	< <u>0.</u> 5	< 0,5		< 8.5	<2.5	
01/08/98				~~	<50	<0.5	<0.5	<0.5	<0.5	<2.5	
04/24/9R	**			w-e	<50	<0.5	<0.5	<0.5	<0.5	<2.5	
07/\$5/9B	••			~-	<50	<0.5	<0.5	< 0.5	<0,5	<2.5	
10/27/98			••		<50	<0.5	<0.5	<0.5	< 0.5	<2.5	

Table 1
Groundwater Monitoring Data and Analytical Results

Chevron Service Station #9-6607 2340 Otis Drive Alameda, California

WELL 10/	TOC*	DTW	GWE	TPH-D	TPH-G	1	1	E	X	MTBE	. 10G
)ATE	(f-)	(ft.)	(mxl)	(ppb)	(pøb)	(ppb)	(ppt)	(pph)	(pph)	(pyb)	(ppb)
TRIP BLANK (car	nt)				<50	<0.5	<0.5	<0.5	<0.5	<2.0	
01/20/99			-		<50	<0.5	<0.5	<0.5	<0.5	<2.5	
14/19/99			**		<50	<0,5	<0.5	<0.5	<0.5	<5.0	
17/29/99	-+				<50	<0.5	<0.5	<0.5	<0.5	<5.0	
10/25/99	••			-	<50	<0.5	<0.5	<0.5	<0,5	<2.5	
01/24/00						<0.50	<0.50	<0.50	<0.50	· <5.0	
04/03/00			•-		<50 <50	<0.50	<0.50	<0.50	<0.50	<2.5	
07/03/00						<0.50 <0.50	<0.50	<0.50	<0.50	<2.5	
10/02/00	_				<50	<0.50	<0.50	<0.50	<0.50	<2.5	
10/09/01				-	<50			<0.500	<2.00	< 0.500	
14/09/01	**		••		<50.0	<0.500	<2.00			<2.5	
08/23/01		••	***	••	<50	<0.50	<0.50	<0.50	<0.50	~2.3	
QΛ					_					-26	
11/27/01					<50	<0.50	<0.50	<0.50	<1.5	<2.5	
02/26/02		-	**		<50	<0.50	<0.50	<0.50	<1,5	<2.5	
05/22/02		· -			<50	<0.50	<0.50	<0.50	<1.5	<2,5	
08/15/02			-		<50	<0.50	<0.50	<0.50	<1.5	<2.5	~=
11/14/02					<50	<0.50	<0.50	<0.50	<1.5	<2.5	
02/03/03					<50	<0.50	<0.50	<0.50	<1.5	<2.5	
05/09/03					<50	<0.5	<0.5	<0.5	<1.5	<2.5	
08/15/03 ¹³					<50	<0.5	<0.5	<0.5	<0.5	<0.5	
11/14/03 ¹³	••				<50	<0.5	<0_5	<0.5	<0.5	<0.5	
92/13/04 ¹³					<50	<0.5	<0.5	<0.5	<0.5	<0.5	
05/14/04 ¹³					<50	<0.5	<0.5	<0.5	< 0.5	<0.5	
08/13/04 ¹³		_			<50	<0.5	<0.5	<0.5	<0.5	<0.5	

Table 1

Groundwater Monitoring Data and Analytical Results

Chevron Service Station #9-6607 2340 Otis Drive Alameda, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to April 3, 2000, were compiled from reports prepared by Blaine Tech Services, Inc.

TOC = Top of Casing

TPH-G = Total Petroleum Hydrocarbons as Gasoline

TOG = Total Oil and Grease

(fL) = Fcct

B = Benzene

(ppb) = Parts per billion

DTW = Depth to Water

T = Toluene

NP = No Purge

GWE = Groundwater Elevation

E = Ethylhenzene

--= Not Measured/Not Analyzed

(msl) = Mean sea level

X = Xylenes

QA = Quality Assurance/Trip Blank

TPILD = Total Petroleum Hydrocarbons as Diesel

MTBE = Methyl tertiary butyl ether

- * TOC elevations are relative to msl.
- Laboratory report indicates Volatile Organic Compounds (VOCs) were <5.0-<50 ppb.
- Laboratory report indicates VOCs were <50-<500 ppb.</p>
- 3 Laboratory report indicates Polynuclear Aromatics (PNAs) were <5.0 ppb.</p>
- Laboratory report indicates VOCs were <5.0 ppb.</p>
- 5 Confirmation of MTBE.
- Wellhead elevation altered due to maintenance.
- Chromatogram pattern indicates an unidentified hydrocarbon.
- No value for MTBE could be determined; see laboratory report.
- Laboratory report indicates gasoline C6-C12.
- Laboratory report indicates unidentified hydrocarbons C6-C12.
- 11 Laboratory report indicates this sample was analyzed outside the EPA recommended holding time.
- 12 MTBE by EPA Method 8260.
- BTEX and MTBE by EPA Method 8260.

Table 2
Groundwater Analytical Results - Oxygenate Compounds
Chevron Service Station #9-6607

Chevron Service Station #9-6607 2340 Otis Drive Alameda, California

									- Company of the Comp
WELLID	DATE	ETHANOL	TRA	MITBE	DIFE	ETBE	TAME	t;2-DCA (ppb)	EDB (mph)
		(ppb)	(pp5)	(pph)	(ppb)	(pph)	(pph)	(P)(e)	and a second
					_	_	410	<2	<2
MW-1	05/22/02	<500	<100	000,1	<2.	<2	296	<2	<2
	ብጽ/15/02	<500	<100	850	<2	<2		<2	<2
	1 //14/02	<500	<100	290	<2	•	83	<0.5	<0.5
	02/03/03	<50	24	780	<0.5	<0.5	240		<0.5
	05/09/03	<50	44	740	<0.5	<0.5	220	<0.5	<0.5
	08/15/03	<50	20	110	<0,5	_ <0.5	10	<0.5	
	11/14/03	<50	<5	E 1	<0.5	<0.5	0,8	<0.5	<0.5
	02/13/04	<50	23	450	<0.5	<0.5	120	<0.5	<0.5
	05/14/04	<50	9	250	<0.5	<0.5	69	<0.5	<0.5
	08/13/04	<50	<5	78	<0.5	<0.5	17	<0.5	<0.5
MW-2	05/22/02	<500	130	300	<2	<2	28	<2	<2
2	08/15/02	<500	<100	290	<2	<2	23	<2	<2
	11/14/02	<500	<100	120	<2	<2	7	<2	<2
	02/03/03	<50	55	200	<0.5	<0.5	22	<0.5	<0.5
	05/09/03	<50	38	150	<0.5	< 0.5	15	<0.5	<0.5
	08/15/03	<100	<10	740	<1	<1	200	<1	<1
	11/14/03	<50	<5	9	<0.5	<0.5	<0.5	<0.5	<0.5
	02/13/04	<50	11	29	<0.5	<0.5	2	<0.5	<0.5
	05/14/04	<50	<5	[4	<0.5	<0.5	<0.5	<0.5	<0.5
	08/13/04	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
									_
MW-3	11/14/02	<500	<100	<2	<2	<2	<2	<2	<2
-	02/03/03	<50	<5	88	<0.5	<0.5	1	<0.5	<0.5
	05/09/03	<50	<5	100	<0.5	<0.5	2	<0.5	<0.5
	08/15/03	<50	<5	190	<0.5	<0.5	4	<0.5	<0.5
	15/14/03	<50	<5	0.6	<0.5	<0.5	<0.5	<0.5	<0.5
	02/13/04	<50	<5	36	<0.5	<0.5	0.5	<0.5	<0.5
	05/14/04	<50	<5	5	<0.5	<0.5	<0.5	<0.5	<0.5
	08/13/04	< 5 0	<5	2	<0.5	<0.5	<0.5	<0.5	<0.5

Table 2
Groundwater Analytical Results - Oxygenate Compounds
Chevron Service Station #9-6607

vron Service Station #9-66 2340 Otis Drive Alameda, California

				Migilioua, C					
WCEL1D	DATE	ETHANOL (mh)	TBA (pph)	МТВБ (ppb)	DIPE (ppb)	ETBE (ppb)	TAME (ppb)	1,2-DCA (pyb)	EDB (pph)
MW-4	02/03/03	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	05/09/03	SAMPLED ANNUALLY							-0.5
	02/13/04	<50	<5	4	<0.5	<0.5	I	<0.5	<0.5
	48/13/04	<50	<5	2	<0.5	<0,5	<0.5	<0.5	<0.5

Table 2

Groundwater Analytical Results - Oxygenate Compounds

Chevron Service Station #9-6607 2340 Otis Drive Alameda, California

EXPLANATIONS:

TBA = Tertiary butyl alcohol

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary anyl methyl ether

1.2-DCA = 1.2-Dichloroethane

EDB = 1.2-Dibromocthane

(pph) = Parts per billion

-- = Not Analyzed

ANALYTICAL METHOD:

EPA Method 8260 for Oxygenate Compounds

STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging. Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by ChevronTexaco Company, the purge water and decontamination water generated during sampling activities is transported by IWM to McKittrick Waste Management located in McKittrick, California.

GETTLER-RYAN INC.

WELL MONITORING/SAMPLING FIELD DATA SHEET

	^.	evronTexaco	49-6607	7	Job Number:	386502		_,,,	
ClienVFacility		40 Otis Drive			Event Date:	8-1	3-04		(inclusi
Site Address:					Sampler:	506			
City:	Al	ameda, CA							
		MW-	Date	Monitored:	8.13-04	Well C	ondition: _	<u>O.</u>	<u>k</u>
Well ID		4 in.	-				2"= 0.17	3*= 0.38	
Well Diamete	er			Volume Factor (V	3/4"= 0,02 F) 4"= 0,66	5"= 0.04 5"= 1.02	6°= 1.50	12"= 5.80	
Total Depth		22.94 tt.		<u> </u>					
Depth to Wa		18.89 xV	F 0-66	= 12-47	7 x3 case volume=	Estimated Pu	rge Volume:_	3/	gal.
		_ 				Time Sta	rted:		_(2400 hrs)
Purge Equipm	ent:		Sam	pling Equipmen	t:	Time Bai			(2400 hrs) ft
Disposable Ball			Disp	osable Bailer			Product:		
Stainless Steel			Pres	sure Baller			Water: rbon Thickne	55: -4	A A
Stack Pump	5 0/40.		Disc	rete Baller		- Visual C	Ovnoitematro Ovnoitematro	escription:	
Suction Pump		1	Othe	:r:		i			
Grundfos						Skimmer	r / Absorbant	Sock (circle	gal
Other:						Amt Ren	noved from V	Vell:	gal
						Water R	emaved:		
		·				Product	Transferred t	io:	
Purging Flo	ne/Date ow Rate	: 1330 18. : 3 gpm.	13-04 Sedime	Water Colo ent Descriptio		<u> </u>		<u>u-n</u>	
Sample Tin	ne/Date ow Rate	: 1330 18. : 3 gpm.	13-04 Sedime	Water Colo ent Descriptio e:	n: <u>cle.</u> n: Volume: _	gs	al.	ORF	
Sample Tin Purging Flo Did well de	ne/Date ow Rate :-water? me	: 1330 18: 2 gpm.	13-04 Sedime	Water Colo ent Descriptio	or: <u>Clea</u> n: Volume: Volume: (C/E)	g:			
Sample Tin Purging Flo Did well de Tin (240	ne/Date ow Rate :-water? me io hr.)	2 gpm. Volume (gal.)	Sedime	Water Coldent Descriptione:	or: <u>Clea</u> n: Volume: Temperature (C/E)	g:	al. 0.0.	ORP	
Sample Tin Purging Flo Did well de Tin (240	ne/Date ow Rate :-water? me	: 1330 / 8 · · · · · · · · · · · · · · · · · ·	Sedime If yes, Tim	Water Colo ent Descriptione: Conductivity (u mhos/cm)	or:	g:	al. 0.0.	ORP	
Sample Tin Purging Flo Did well de Tin (240	ne/Date ow Rate :-water? me io hr.)	Volume (gal.)	Sedime If yes, Tim pH 7-43	Water Colorent Descriptione: Conductivity (umhos/cm) 6.13	or: <u>Clea</u> n: Volume: Temperature (C/E)	g:	al. 0.0.	ORP	
Sample Tin Purging Flo Did well de Tin (240	ne/Date ow Rate :-water? me io hr.)	Volume (gal.)	Sedime If yes, Tim pH 7-43	Water Colorent Descriptione: Conductivity (u mhos/cm) 6.13 6.12	or:	g:	al. 0.0.	ORP	
Sample Tin Purging Flo Did well de Tin (240	ne/Date ow Rate :-water? me io hr.)	Volume (gal.)	13-04 Sedime If yes, Tim pH 7-43 7-45	Water Colo	or: Clean: Volume: Volume: C/E) 71.2 69.8 70.6	g:	al. 0.0.	ORP	
Sample Tin Purging Flo Did well de	me/Date ow Rate -water? me 0 hr.) 0 8 7 3 20	Volume (gal.) 12 25 37	13-04 Sedime If yes, Tim pH 7-43 7-45	Water Colorent Descriptione: Conductivity (umhos/cm) 6:13 6:12 6:12 6:12	Volume:	ga G (m	al. O.O. ng/L)	ORP	
Sample Tin Purging Flo Did well de (240 13 13 SAMPL	me/Date cow Rate c-water? me co hr.) co 8 compared to 13 compared to 20 compared to 15 compared	Volume (gal.) 12 25 37 (#) CONTAINER	Sedime If yes, Tim PH 7.43 7.43 7.43 LA REFRIG.	Water Colorent Descriptione: Conductivity (umhos/cm) 6 - 1 3 6 - 1 2 6 - 1 2 BORATORY II	Volume:	ge (m	AN/ (8015)/BTEX	ORF (mV)	
Sample Tin Purging Flo Did well de (240 13 13	me/Date cow Rate c-water? me co hr.) co 8 compared to 13 compared to 20 compared to 15 compared	Volume (gal.) 12 25 37	Sedime If yes, Tim PH 7.43 7.43 7.43 LA REFRIG.	Water Colorent Descriptione: Conductivity (umhos/cm) 6:13 6:12 6:12 6:12	Volume:	ge (m	al. D.O. Ig/L)	ORF (mV)	
Sample Tin Purging Flo Did well de (240 13 13	me/Date cow Rate c-water? me co hr.) co 8 compared to 13 compared to 20 compared to 15 compared	Volume (gal.) 12 25 37 (#) CONTAINER	Sedime If yes, Tim PH 7.43 7.43 7.43 LA REFRIG.	Water Colorent Descriptione: Conductivity (umhos/cm) 6 - 1 3 6 - 1 2 6 - 1 2 BORATORY II	Volume:	ge (m	AN/ (8015)/BTEX	ORF (mV)	
Sample Tin Purging Flo Did well de (240 1 3 1 3	me/Date cow Rate c-water? me co hr.) co 8 compared to 13 compared to 20 compared to 15 compared	Volume (gal.) 12 25 37 (#) CONTAINER	Sedime If yes, Tim PH 7.43 7.43 7.43 LA REFRIG.	Water Colorent Descriptione: Conductivity (umhos/cm) 6 - 1 3 6 - 1 2 6 - 1 2 BORATORY II	Volume:	ge (m	AN/ (8015)/BTEX	ORF (mV)	
Sample Tin Purging Flo Did well de (240 13 13	me/Date cow Rate c-water? me co hr.) co 8 compared to 13 compared to 20 compared to 15 compared	Volume (gal.) 12 25 37 (#) CONTAINER	Sedime If yes, Tim PH 7.43 7.43 7.43 LA REFRIG.	Water Colorent Descriptione: Conductivity (umhos/cm) 6 - 1 3 6 - 1 2 6 - 1 2 BORATORY II	Volume:	ge (m	AN/ (8015)/BTEX	ORF (mV)	
Sample Tin Purging Flo Did well de (240 13 13	me/Date ow Rate c-water? me io hr.) 0 8 7 3 20 E ID	Volume (gal.) 12 25 37 (#) CONTAINER	Sedime If yes, Tim PH 7.43 7.43 7.43 LA REFRIG.	Water Colorent Descriptione: Conductivity (umhos/cm) 6 - 1 3 6 - 1 2 6 - 1 2 BORATORY II	Volume:	ge (m	AN/ (8015)/BTEX	ORF (mV)	
Sample Tin Purging Flo Did well de (240 1 2 / 3 1 3 SAMPL MW	me/Date ow Rate c-water? me io hr.) 0 8 7 3 20 E ID	Volume (gal.) 12 25 37 (#) CONTAINER	Sedime If yes, Tim PH 7.43 7.43 7.43 LA REFRIG.	Water Colorent Descriptione: Conductivity (umhos/cm) 6 - 1 3 6 - 1 2 6 - 1 2 BORATORY II	Volume:	ge (m	AN/ (8015)/BTEX	ORF (mV)	

GETTLER-RYAN INC.

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility #:	ChevronTexac	o #9-660	7	Job Number:	386502		 .
-	2340 Otis Drive			Event Date:	8-13-04		(inclusive
Site Address: City:	Alameda, CA	11		Sampler:	Joe_		
Well ID	MW-3	Date	e Monitored:	8-13-04	Well Condition:	0 · Ł	
Well Diameter Total Depth Depth to Water	2.3.55 ft.		Volume Factor (VF		1"= 0.04 2"= 0.17 5"= 1.02 6"= 1.50	3°= 0.38 12°= 5.80	
	18.3.4 ×				Estimated Purge Volume:	(al. 2400 hrs)
Purge Equipment: Disposable Bailer Stainless Steel Baile		Dis	npling Equipment posable Bailer ssure Bailer		Time Bailed: Depth to Product; Depth to Water:		(2400 hrs)
Stack Pump Suction Pump			crete Baller er:		Hydrocarbon Thickness Visual Confirmation/De	scription:	T I
Grundfos Other:					Skimmer / Absorbant S Amt Removed from Sk Amt Removed from We Water Removed: Product Transferred to:	immer: oll:	e) gal gal
Sample Time/D Purging Flow R Did well de-wat	ate: 2 · 1 gpm.	Sedim	Water Color: ent Description: ne:			<u> </u>	
Start Time (purg Sample Time/D		13-04	her Conditions: Water Color:	clea		MITTE	
Time (2400 hr.)	· '	pH	(umhos/cm) Y	Temperature (C7)	D.O. (mg/L)	ORP (mV)	
1108	12	7.38	3.50	69.0			
(2000 11 13	$\frac{24}{36}$	7:41	3.58	76.4			<u>-</u>
		1.0	BORATORY INF	ORMATION			
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE		Y ANAL	YSES	
MW- CL		YES	HCL	LANCASTER	TPH-G(8015)/BTEX+N 8 OXYS(8260)	ATBE(8260)/	
COMMENTS:							
Add/Repl	aced Lock:		1	Add/Replaced	Plug:Siz	e:	

Chevron California Region Analysis Request/Chain of Custody

Lancaster Laboratories Where quality is a science.					åc	11 11	DAC	γ ι	9	F	osti g. L	incati 133	er Le 32	be at	ories - 21	44.0	nly	Oroupal scr#:	908	<i>3</i> 0a
Where quality is a science.	08	1604	-0	b	AU	UL W. <u>11</u>	<u> </u>		`	•				este			_			
Cami	ria MTI Pro	ect未61D	-1970														_			
Facility #: S\$#9-6607 G-R#386502 Glob	aLID#T0600	100316			Matri	5	-	T R	_	_	res	ervati	on C	GC 91	T	П	-	Preserva H = HCl	tive Code T = Thios	
Site Addres 2340 OTIS DRIVE, ALAMEDA	CA	 			:		ľ	~	3				1		 	П		N = HNO ₃ S = H ₂ SO ₄	B = NaOl O = Othe	
	ConsultanCA			Γ		۲ پ	<u> </u>		TPH 8015 NOD DRO Silva Cel Cleanup		_							J value report		
Consultant/OfficeG-R, Inc., 6747 Sierra Cou	1, Suite J, Di	ıblin, Ca. 9	4568						8		260		1					Must mest lov	vesi delecti	on limits
Consultant Pij. MgrDeanne L. Harding (de	rana Ogrin c.	:om)			□ Posecte □ NPDES	Oil C Air C	E POR SE POST		B		82							possible for 6:		FELENCIER
Consultant Phone #925-551-7555	Fax #925.5	51-7899				3	5 8	S 30	9			7421				İ		B021 MTBE Con ☐ Confirm higher		en.
Sampler: JOE ASEMIAN	·				1	Air		8	8	5	Graffe	٦	ł					Confirm all his		
Service Order #: IN	on SAR:				_{&}	X 2	RTEX + MIRE	TPH BO15 MOD	2	8260 full scen	Oxygenetes	7420			İ			☐Run or)	-	et hii
ample Identification	Date Collected	Time Collected	Grab	ij	Ş X			Ĕ	Ĕ	820	7	3						Runox)	a on all hit	3
24	-	_	4	I	V		2	17										Comments / F	lemarks	
MUI-1	8-13-04	1330	1			16	<i>'</i>	1	1				4	_ -	 -					
Mw-2		1245	├ -	1	1	1-14		4:	_	-	7		+		┿	\vdash				
mw-3 mw-4	11	1040	Y	╊	V			大	+	╁╌	V	-			╁╌	╁┤	-			
71,00		1070		╁	╁			-	十	╁			十	1	t^{-}	\Box	\vdash	·		
													\Box							
3				4	<u> </u>	1	-		4	-	<u> </u>	-	\dashv		-		-	·		
	ļ	-	╂╌├╌	╀		┦-}-	+	- -	╄	╂	-	┼╌╂	-+	-	┼	-	-			
	}		┢┼	╁		1 +			╁	+	-		\dashv		╁╴	\vdash	╁╌			
				十		11	1	1	十	十			寸		十	1				
				Ţ					Ţ		Ļ	Ц	Ţ							·
Turnaround Jime Requested (TAT) (please ch	36)	Relinge	iorizo by	_ر	·			•		Date		Time 143		aceiv					Date Date	Time
STD. TAD 72 hour 48 hour	•	Ratingu	ished by	庚	·				Ť	Date	, †	Time	Ī	SOLV			7		Date	Time
2411dur 4 day 5 day		Q	أكسم	عجا		۹			_			75)	_	سمر	علم	<u> 00</u>	1	wgl	14/464	7
Data Package Options (please circle if required) QC Summary Type 1 — Full	-	12	<u> </u>	يع	<u>ر) , د</u>			34	2 8		64	/53		eceivi	_ <u>D</u>	H	<u>-L</u>	~	B/17/0	-
Type 1 — Full Type VI (Rew Cate) — Coek Deliverable not need WIP (RWQCB)	EDF/EDD	Relinqu UPS		Con edEx		d Cecta Con	7	<u>ソ</u>					H.	- South	XV.	ትህ	V		Sim	1
Dłak		Temper	rature U	on R	lece ipt	3	Ŀ	∑ c°					٦	nappo	Sool	s Inta	ct?	/63 No	1	1
Lancas	er Laboratories,	Inc., 2425 Nor	w Hollan	d Pik	e. PO	Box 124	(25.1	#DC#	ther !	PA 17	605.5	2425	1717	\ <i>@</i> <&	230c			<u> </u>	3460 Re	v. 7/30/0

Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

Analysis Report

ne Fais, PC 5to 12425. Lancaster, PA 17605-5425 -717-656-2300 Feb:717-656-2661 - Wennidancesterlybs.com

Questions? Contact your Client Services Representative Megan A Moeller at (717) 656-2300.

Respectfully Submitted,

Victoria M. Martell Chemist

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 -717-656-2300 Fax, 717-656-2661 - www.lancasterlabs.com

Page | of 1

Lancaster Laboratories Sample No. WW 4333211

MW-1-W-040913 Grab Water Facility# 96607 Job# 386502 MTI# 61D-1970 GRD 2340 Otis Dr-Alameda T0600100316 MW-1

Collected: 08/13/2004 13:30 by JA

Submitted: 08/18/2004 08:55 Reported: 08/24/2004 at 19:02

Discard: 09/24/2004

Account Number: 10904

ChevronTexaco c/o Cambria

Suite 9

4111 Citrus Avenue Rocklin CA 95677

ΔT	T	М	٦
U	4	1.	,-

CAT	Analysis Name	CAS Mumber	As Received Result	As Received Method Detection Limit	Unite	Dilution Factor
D1728	TPH-GRO - Waters The reported concentration of gasoline constituents eluting start time.	n.a. TPH-GRO does no prior to the C6	N.D. t include MTBE o (n-hexane) TPH-	50. or other GRO range	ug/1	
01594	BTEX+5 Oxygenates+EDC+EDB+ETOH	I				
		64-17-5	N.D.	50.	ug/l	1
01587	Ethanol	1634-04-4	78.	0.5	ug/l	1
02010	Mathyl Tertiary Butyl Ether	108-20-3	N.D.	0.5	ug/l	ı
03077	di-Isopropyl ether		N.D.	0.5	<i>u</i> 9/1	ı
02013	Ethyl t-butyl ether	637-92-3	17.	0.5	ug/l	1
02014	't-Amyl methyl ether	994-05-8	N.D.	5.	ug/1	1
02015	t-Butyl alcohol	75-65-0		0,5	ug/l	긔
05401	Benzene	71-43-2	N.D.	0.5	ug/1	ı
05402	1.2-Dichloroethane	107-06-2	N.D.	0.5	ug/l	1
05407	Toluene	108-86-3	M.D.	0.5	ug/1	ı
05412	1,2-Dibromoethane	106-93-4	N.D.		ug/l	1
05415	Sthylbenzene	100-41-4	N.D.	0.5	ug/1	1
06310		1330-20-7	n.D.	0.5	-91-	

State of California Lab Certification No. 2116

		Laboratory	Chro	nicle Analysis		Dilution
CAT No.	Analysis Name TPH-GRO - Waters	Method N. CA LUPT Gasoline	Trial#	Date and Time 08/19/2004 20:55	Analyst Michael F Barrow	Factor 1
01728	BTEX-5	Method SW-846 SZ60B	1	08/22/2004 22:41	Marc S Neal	1
01346 01363	Oxygenates+EDC+EDB+ETOB GC VOA Water Frep GC/MS VOA Water Prep	SW-646 5030E		09/19/2004 20:55 05/22/2004 22:41	Michael F Barrow Marc S Neal	n.8. n.s.

Dup RPD

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 -717-656-2300 Fax, 717-656-2681 - www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: ChevronTexaco c/o Cambria Reported: 08/24/04 at 07:03 PM

Group Number: 908302

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank Rosult	Blank ML	Report Dnits	lcs <u>trec</u>	LCSD NRC	LCS/LCSD <u>Limits</u>	RPD	RPD Nax
Batch number: 04232A08B	Sample n		4333210-42	33214	107	70-130	1	30
TPH-GRO - Waters	מ,א.	50.	ug/1	108	107	/0-130	-	
Batch number: 2042351AA	Sample n	umber(s):	4333210			40 405		
Methyl Tertiary Butyl Ether	N.D.	0.5	υg/l	53		77-127		
Benzene	N.D.	0.5	ug/l	98		85-117		
	N.D.	0,5	uĝ/l	100		85-11 5		
Toluene	N.D.	0.5	ug/l	302		82-119		
Ethylbenzene		0.5	นฐี/1	96		83-113		
Xylene (Total)	N.D.	· -						
Batch number: 2042352AA	Sample r	umber(s):	4333211-43	333214		45 345		i
Ethanol	N.D.	50.	ug/l	103		46-145		
Methyl Tertiory Butyl Ether	N.D.	0.5	ug/1	95		77-127		
di-Isopropyl ether	N.D.	0.5	υg/l	96		67-130		1
Ethyl t-butyl ether	N.D.	0.5	ug/l	무의		74-120		
ELDAT CAMPA COMEN	N.D.	0.5	ນຊື/1	93 87		79-113		İ
t-Amyl methyl ether	N.D.	5.	ug/1	20		57-141		
t-Butyl alcohol		ő. s	นอี/โ	91		25-117		į
Benzene	й.b.			102		77-132		!
1,2-Dichloroethane	N.D.	0.5	ug/1	69		85-115		
Toluene	N.D.	0.5	ug/l			81-114		
1,2-Dibromoethane	N.D.	0.5	ug/l	53		82-119		i
Ethylbenzene	N.D.	0.5	ug/l	91				ļ
Xylene (Total)	n.D.	0.5	ug/l	88		83-113		

Sample Matrix Quality Control

Analysis Name	ms <u>\rec</u>	nsd <u>\rec</u>	ms/msd <u>Limite</u>	RPD	rPD MAX	BKG Cons	DUP <u>Cone</u>	Dup <u>RPD</u>	
Batch number: 04232A05E TPH-GRO - Waters	Semple 100	number	(e): 433321 63-154	0-43312	14				
Estch number: Z042351AA	Sample number(s): 4333210								
Methyl Tertiary Butyl Ether	50 50	92	69-134	1	30				
Benzens	100	100	83-12E	0	30				
Toluene	102	102	63-127	e e	30				
Ethlipeusena	101	102	82-129	3	30				
Xylene (Total)	97	56	\$2-130	3	30				
Batch number: 2042352AA									
Ethanol	68	27	13-153	24	30				
Methyl Tertiary Butyl Ether	95	97	69-134	3	30				

• Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancester, PA 17605-2425 •717-656-2800 Fax.717-656-2681• www.lancasterjabs.com

Page 3 of 3

Quality Control Summary

*- Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The background result was more than four times the spike added.