SOIL AND WATER INVESTIGATION SUMMARY OF FINDINGS

Dublin Toyota UST Site 6450 Dublin Court Dublin, California

GA Project No. 147-01-04

Prepared for:

Mr. Scott Anderson 6450 Dublin Court Dublin, California

Prepared by:

Gribi Associates 1090 Adams Street, Suite K Benicia, CA 94510 (707)748-7743

June20, 2005

June 20, 2005

GA Project No. 147-01-04

Alameda County

Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, 2nd Floor Alameda, CA 94502

Attention:

Robert Schultz

Subject:

SWI Summary of Findings Dublin Toyota UST Site

6450 Dublin Court, Dublin, California Alameda County LOP Site ID No. 699 SEP 0 2 2005 Environmental Health

Ladies and Gentlemen:

Gribi Associates is pleased to submit this summary letter of findings for the recently conducted soil and water investigation (SWI) based on the revised SWI workplan (Gribi, January 2005) on behalf of Dublin Toyota for the underground storage tank (UST) site located at 6450 Dublin Court in Dublin, California (see Figure 1 and Figure 2). This letter provides a summary of field activities and soil and groundwater results for twelve soil borings conducted at the site.

SITE BACKGROUND

The Dublin Toyota UST site consisted of three USTs located in a common tank farm which was located outside near the northeast corner of the maintenance garage (see Figure 2). The USTs included two 2,000-gallon steel gasoline tanks and one 1,000-gallon steel waste oil tank. The three USTs were removed from a common excavation by Scott Company on June 10, 1998. Based on soil and grab groundwater sampling results, which showed elevated levels of gasoline- and diesel-range hydrocarbons, the UST excavation cavity was overexcavated, and approximately 500 gallons of groundwater was pumped from the excavation cavity. Approximately 93 tons of hydrocarbonimpacted soil was disposed of offsite, and the UST excavation cavity was backfilled with 162 tons of clean imported fill material.

In December 1998, Gribi Associates drilled and sampled four investigative soil borings, IB-1 through IB-4, and drilled, installed, and sampled two groundwater monitoring wells, MW-1 and MW-2, at the site. Soil and groundwater samples collected from the borings and wells contained no significant levels of hydrocarbons, except for the groundwater sample from well MW-1, located about 15 feet southwest from the former UST cavity. Groundwater samples from this well contained elevated levels of Methyl-t-butyl Ether (MTBE).

In August 2000, Gribi Associates drilled and sampled one soil boring, IB-5, inside the Dublin Toyota service building west from the former USTs, and drilled, installed, and sampled one groundwater monitoring well, MW-3, south-southwest from the former USTs. Soil analytical results from these

borings showed no detectable concentrations of gasoline-range hydrocarbons. Groundwater samples from these borings showed concentrations of MTBE that were significantly lower than MTBE concentrations in MW-1, indicating lateral attenuation of MTBE impacts in groundwater southwest from the former USTs. Subsequent groundwater monitoring of the three site groundwater monitoring wells in May 2002, November 2002, and April 2003 showed decreasing concentrations of MTBE in MW-1.

DESCRIPTION OF FIELD ACTIVITIES

The 12 investigative borings, B-1 through B-12, were drilled and sampled on Monday, Tuesday, and Wednesday, May 2, 3, and 4, 2005. All activities were conducted in accordance with the January 3, 2005 SWI Workplan submitted by Gribi Associates.

Pre-field Activities

Prior to beginning field activities, a drilling permit (No. 25060) was obtained from Alameda County Zone 7 Water Agency. A copy of the drilling permit in included as Attachment A. At least 48-hours prior to beginning field activities, notification of the scheduled activities was given to Alameda County Department of Environmental Health.

Prior to beginning field activities, the twelve soil boring locations were marked with white paint, and Underground Services Alert (USA) was notified at least 48 hours prior to drilling. In addition, a private underground utility locator was retained to conducted an independent clearance of the same proposed boring locations.

Prior to initiating drilling activities, a Site Safety Plan was prepared, and a tailgate safety meeting was conducted with all site workers.

Drilling and Sampling Activities

Location of Borings

The drilled and sampled soil boring locations are shown on Figure 2. The borings included one boring (B-1) in the source area, one four-boring transect (B-2 through B-5) about 60 feet south-southwest from the former UST excavation, a second four-boring transect (B-6 through B-9) about 150 feet south-southwest from the former UST excavation, and a third three-boring transect (B-10, B-11, and B-12) near the south-southwest project site property line, approximately 240 feet distant from the former UST excavation.

Drilling of Borings

The soil borings were drilled to depths ranging from 36 feet to 48 feet below surface grade by Gregg Drilling using direct-push hydraulically-driven soil coring equipment. For each boring, continuous soil cores were collected to total depth in each boring in a clear plastic acetate tube, nested inside a stainless steel core barrel. After each four-foot core barrel was brought to the surface and exposed, the core was sliced lengthwise to expose the soil core, examined, logged, and field screened for hydrocarbons by a qualified geologist using sight, smell, and an organic vapor monitor (OVM). Following completion, the investigative borings were grouted to match existing surface grade using a cement slurry. Soil cuttings generated during this investigation were stored onsite in sealed DOT-approved containers.

Soil Logging and Sampling

Soil logging and sampling activities were performed by a two-person team that included a registered geologist. Each soil core was first sliced open lengthwise along the length of the acetate tube, allowing full examination and logging of the soil core prior to sampling.

Approximately two soil samples were collected at each boring. Each of the two samples included a shallow soil sample (less than 15 feet) and a deep sample (30 to 40 feet in depth). Soil samples were collected from specific zones of interest using glass jars with teflon-lined septums as follows: (1) The selected soil interval was packed tightly into the jar, making sure that air pockets were minimized; (2) The jar was tightly sealed with a teflon-lined cap; and (3) The sealed soil sample were labeled and immediately placed in cold storage for transport to the analytical laboratory under formal chain-of-custody. All coring and sampling equipment was thoroughly cleaned and decontaminated between each sample collection by triple rinsing first with water, then with dilute tri-sodium phosphate solution, and finally with distilled water.

Groundwater Sampling

Approximately two grab groundwater samples were collected at each boring. Each of the two grab groundwater samples included a shallow sample (less than 20 feet in depth) and a deep sample (30 to 40 feet in depth). The shallow groundwater samples were obtained from the open boring by first placing a 1-1/4-inch diameter well casing in the boring and collecting the groundwater sample using a decontaminated stainless steel bailer.

The deep groundwater samples were collected from a second nearby boring from a water-bearing zone identified through logging of soils from the first boring. The deep groundwater samples were collected using a hydropunch-type sampler. The hydropunch-type groundwater sampling method involved pushing a four-foot screened section sheathed in an outer casing to the desired depth, and then retracting the outer casing to expose the screened interval. The groundwater sample was then collected using a decontaminated stainless steel bailer.

With both sampling methods, groundwater samples were poured directly from the bailer into laboratory-supplied containers. Each sample container was then be tightly sealed, labeled, and placed in cold storage for transport to the laboratory under formal chain-of-custody.

Laboratory Analysis of Soil and Water Samples

Twenty-eight soil samples and twenty-five grab groundwater samples were analyzed for the following parameters:

USEPA 8015M Total Petroleum Hydrocarbons as Gasoline (TPH-G) USEPA 8260B Benzene, Toluene, Ethylbenzene, Xylenes (BTEX) USEPA 8260B Oxygenates & Lead Scavengers (TBA, MTBE, DIPE, ETBE, TAME, EDB, & 1,2-DCA)

All analyses were conducted by a SunStar Laboratories (a state-certified laboratory) with two-week turnaround on results.

RESULTS OF FIELD ACTIVITIES

General Subsurface Conditions

Soils encountered in the twelve borings generally consisted of fill material to approximately 5 feet below grade, followed by clays with discontinuous interbedded sand and gravel layers ("Zone A") to approximately 25 feet below surface grade. A deeper apparently continuous sand and gravel layer ("Zone B") was encountered in all borings from about 30 feet to 35 feet in depth. Groundwater was first in encountered in the borings at depths ranging from approximately 10 to 15 feet below surface grade. No fuel hydrocarbon odors or staining were observed in any of the soil cores or soil or groundwater samples collected from the 12 borings.

Boring logs for the twelve borings are included as Attachment B. Southwest-northeast (A-A') and northwest-southeast (B-B') transect cross sections are shown on Figures 3 and 4, respectively.

Laboratory Analytical Results

Soil Analytical Results

Soil samples collected from the 12 soil borings showed elevated levels of MTBE near and immediately downgradient from the source area. Soil samples from boring B-1 (located in the source area) showed MTBE concentrations of 700 ppb and 790 ppb at depths of 7.5 feet and 10.5 feet, respectively. Soil samples from downgradient borings B-4 and B-7 showed respective maximum MTBE concentrations of 470 ppb and 65 ppb at depths of 10.5 feet and 18 feet, respectively. MTBE concentrations of less than 10 ppb were also encountered in soil samples from borings B-5 and B-8.

With the exception of one soil sample with a TBA concentration of 300 ppb at boring B-1, no other contaminants were detected in the remaining twenty-three soil samples.

Soil analytical results are summarized in Table 1. The laboratory data report for soil and groundwater samples is contained in Appendix C.

Groundwater Analytical Results

Shallow, or "Zone A", groundwater samples showed elevated MTBE levels near and immediately down-gradient from the source area. Within Zone A, groundwater MTBE concentrations in source area and immediately downgradient borings B-1, B-4, B-7, and B-8 were 20,000 ppb, 17,000 ppb, 1,500 ppb, and 480 ppb, respectively.

Deep, or "Zone B", groundwater samples showed elevated MTBE levels further away from the source area. Within Zone B, The highest MTBE groundwater concentration of 2,300 ppb was encountered at boring B-11, which is located near the southern project site property line. Additionally, Zone B groundwater MTBE concentrations of 430 ppb and 360 ppb were reported at borings B-10 and B-7, respectively.

Groundwater analytical results are summarized in Table 1 and on Figure 5 and Figure 6. The laboratory data report for soil and groundwater samples is contained in Appendix C.

Conclusions

It appears that MTBE releases from the former USTs migrated laterally approximately 150 to 200 feet in a southwest direction in the upper interval (Zone A). The MTBE then migrated vertically to the deeper sand/gravel interval (Zone B). Lateral MTBE impacts in the deeper Zone B interval were not defined during this investigation; however, the ability to further investigate these lateral MTBE impacts will be greatly hampered by the presence of US Interstate 580, which extends another 270 feet south from the project site.

Proposed Monitoring Well Installation Activities

Based on the results of the soil boring investigation, which show groundwater MTBE impacts in a shallow "A" zone near to the source and in a deeper "B" zone farther away from the source, we propose the installation and sampling of four shallow "A" zone wells and 6 deeper "B" zone wells (see Figure 7). The 4 "A" zone wells would include three wells along a plume transect further downgradient from existing well MW-3 and one well further downgradient from this transect. The 6 "B" zone wells consist of 2 three-well transects

Given the fairly well-defined water bearing zones (Zones "A" and "B") identified beneath the site, we propose to install the 10 monitoring wells using direct-push coring equipment. The wells will be constructed using 3/4 inch diameter Schedule 40 threaded PVC casing according to the following

specifications: (1) A disposable metal tip will be pushed to the desired well depth using 3-1/2-inch diameter coring pipe; (2) 0.020-inch slotted well casing will be placed at the desired depths; (3) As the outer core barrel is removed slowly, filter sand will be placed around the well casing to about 1 foot above the screened interval; (4) A 2-foot bentonite seal will be placed above the filter sand; and (5) The remaining annulus will be grouted using a cement/sand slurry (bentonite less than 5 percent) to approximate surface grade. The top of the well will be enclosed in a traffic-rated locking box set in concrete slightly above grade. Screened intervals will be chosen based on nearby soil boring lithologic logs, with Zone "A" wells screened no deeper than 20 feet in depth, and Zone "B" wells consisting of a 5-foot screened section at the appropriate Zone "B" sand/gravel depth.

We appreciate this opportunity to provide this report for your review. Please contact us if there are questions or if additional information is required.

James E. Gribi

Registered Geologist California No. 5843

No. 8343

Very truly yours,

Matthew A. Rosman Project Engineer

Enclosure

cc:

Mr. Scott Anderson, Dublin Toyota

GRIBI Associates

DESIGNED BY:	CHECKED BY:						
DRAWN BY: EGH	SCALE:						
PROJECT NO: 147-01-01							

SITE VICINITY MAP

DUBLIN TOYOTA 6450 DUBLIN COURT DUBLIN, CALIFORNIA DATE: 03/18/05 F

FIGURE: 1

GRIBI Associates

Table 1 SUMMARY OF SOIL ANALYTICAL RESULTS

Dublin Toyota 6450 Dublin Court, Dublin, California

	Sample	Sample		pa	rts per billi	on (micros	gams per kil	ogram)	
Sample ID	Date -	Depth	TPH-G	В	T	E	y	MTBE	Other Oxygenates
B-1-7.5	5/03/05	7.5	<500	<2.0	<2.0	<2.0	<2.0	700	300 TBA
B-1-10.5	5/03/05	10.5	<500	<2.0	<2.0	<2.0	<2.0	790	All ND
B-1-34.5	5/03/05	34.5	<500	<2.0	<2.0	<2.0	<2.0	<5.0	All ND
B-2-8	5/02/02	8.0	<500	<2.0	<2.0	<2.0	<2.0	<5.0	All ND
B-2-35	5/02/02	35.0	<500	<2.0	<2.0	<2.0	<2.0	<5.0	All ND
B-3-7.5	05/02/05	7.5	<500	<2.0	<2.0	<2.0	<2.0	<5.0	All ND
B-3-8.0	05/02/05	8.0	<500	<2.0	<2.0	<2.0	<2.0	<5.0	All ND
B-3-13.0	05/02/05	13.0	<500	<2.0	<2.0	<2.0	<2.0	<5.0	All ND
B-3-35.5	05/02/05	35.5	<500	<2.0	<2.0	<2.0	<2.0	<5.0	All ND
B-4-7.0	05/02/05	7.0	<500	<2.0	<2.0	<2.0	<2.0	26	All ND
B-4-10.5	05/02/05	10.5	<500	<2.0	<2.0	<2.0	<2.0	470	All ND
B-4-35	05/02/05	35.0	< <u>5</u> 00	<2.0	<2.0	<2.0	<2.0	9.4	All ND
B-5-5	05/03/05	5.0	<500	<2.0	<2.0	<2.0	<2.0	<5.0	All ND
B-5-38	05/03/05	38.0	<500	<2.0	<2.0	<2.0	<2.0	5.7	All ND
B-6-7.5	05/03/05	7.5	<500	<2.0	<2.0	<2.0	<2.0	<5.0	All ND
B-6-20	05/03/05	20.0	<500	<2.0	<2.0	<2.0	<2.0	<5.0	All ND
B-6-36	05/03/05	36.0	<500	<2.0	<2.0	<2.0	<2.0	<5.0	All ND
B-7-18	05/03/05	18.0	<500	<2.0	<2.0	<2.0	<2.0	65	All ND
B-8-10	05/04/05	10.0	<500	<2.0	<2.0	<2.0	<2.0	8.0	All ND
B-8-33	05/04/05	33.0	<500	<2.0	<2.0	<2.0	<2.0	<5.0	All ND
B-9-6	05/03/05	6.0	<500	<2.0	<2.0	<2.0	<2.0	<5.0	All ND
B-9-32	05/03/05	32.0	<500	<2.0	<2.0	<2.0	<2.0	<5.0	All ND
B-10-7.0	05/04/05	7.0	<500	<2.0	<2.0	<2.0	<2.0	<5.0	All ND
B-10-33	05/04/05	33.0	<500	<2.0	<2.0	<2.0	<2.0	<5.0	All ND
B-11-10	05/04/05	10.0	<500	<2.0	<2.0	<2.0	<2.0	<5.0	All ND
B-11-35	05/040/05	35.0	<500	<2.0	<2.0	<2.0	<2.0	9.6	All ND
B-12-11.0	05/04/05	11.0	<500	<2.0	<2.0	<2.0	<2.0	<5.0	All ND
B-12-35.5	05/04/05	35.5	<500	<2.0	<2.0	<2.0	<2.0	<5.0	All ND

Table 2 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

Dublin Toyota 6450 Dublin Court, Dublin, California

	Sample	Sample			parts per b	illion (micr	ograms per	liter)	
Sample ID	Date	Depth	TP#-G	B	T	E	X.	MTBE	Other Oxygenates
B-1-W-1	05/03/05	6-16 ft	<50	<0.50	<0.50	<0.50	<0.50	20,000	12 TAME 240 TBA
B-1-W-2	05/03/05	35-39 ft	<50	<0.50	<0.50	<0.50	<0.50	4.5	All ND
B-2-W-1	05/02/05	6-16 ft	<50	< 0.50	< 0.50	< 0.50	< 0.50	<1.0	All ND
B-2-W-2	05/02/05	36-40 ft	<50	<0.50	< 0.50	<0.50	<0.50	8.7	All ND
B-3-W-1	05/02/05	6-12 ft	<50	< 0.50	1.8	<0.50	< 0.50	23	All ND
B-3-W-2	05/02/05	6-24 ft	<50	< 0.50	< 0.50	<0.50	<0.50	110	All ND
B-3-W-3	05/02/05	36-40 ft	<50	<0.50	<0.50	<0.50	<0.50	5.3	All ND
B-4-W-1	05/02/05	6-12 ft	<50	<0.50	<0.50	<0.50	<0.50	17,000	9.9 TAME 330 TBA
B-4-W-2	05/02/05	36-40 ft	<50	<0.50	<0.50	<0.50	< 0.50	8.4	All ND
B-5-W-1	05/03/05	6-12 ft	<50	< 0.50	< 0.50	<0.50	<0.50	66	All ND
B-5-W-2	05/03/05	36-40 ft	<50	<0.50	<0.50	<0.50	<0.50	<1.0	All ND
B-6-W-1	05/03/05	6-12 ft	<50	<0.50	<0.50	<0.50	<0.50	<1.0	All ND
B-6-W-2	05/03/05	36-40 ft	<50	<0.50	<0.50	<0.50	<0.50	<1.0	All ND
B-7-W-1	05/03/05	6-20 ft	<50	< 0.50	<0.50	<0.50	<0.50	1,500	All ND
B-7-W-2	05/03/05	35-39 ft	<50	<0.50	<0.50	<0.50	<0.50	360	All ND
B-8-W-1	05/04/05	6-16 ft	<50	<0.50	< 0.50	<0.50	<0.50	480	All ND
B-8-W-2	05/04/05	32-35 ft	<50	<0.50	<0.50	<0.50	<0.50	41	All ND
B-9-W-1	05/03/05	6-20 ft	<50	<0.50	<0.50	<0.50	<0.50	2.9	All ND
B-9-W-2	05/03/05	33-37 ft	< <u>50</u>	<0.50	<0.50	<0.50	<0.50	18	All ND
B-10-W-1	05/04/05	6-12 ft	<50	<0.50	<0.50	<0.50	<0.50	<1.0	All ND
B-10-W-2	05/04/05	33-3 <u>5</u> ft	<50	<0.50	<0.50	<0.50	<0.50	430	All ND
B-11-W-1	05/040/05	6-16 ft	<50	<0.50	<0.50	<0.50	<0.50	<1.0	All ND
B-11-W-2	05/04/05	32-36 ft	<50	<0.50	<0.50	< 0.50	<0.50	2,300	All ND
B-12-W-1	05/04/05	6-12 ft	<50	<0.50	<0.50	<0.50	<0.50	4.5	All ND
B-12-W-2	05/04/05	35-39 ft	<50	<0.50	<0.50	<0.50	<0.50	13	All ND

ATTACHMENT A DRILLING PERMIT

Revised: March 26, 2002

ZONE 7 WATER AGENCY

5997 PARKSIDE DRIVE PLEASANTON, CALIFORNIA 94588-5127 VOICE (925) 484-2600 X235 FAX (925) 462-3914

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE	500 05500
harring the same of the same o	FOR OFFICE USE
LOCATION OF PROJECT Dublin Toyota	PERMIT NUMBER 25060
Dudlin Ca	WELL NUMBER
California Coordinates Source Accuracy± ft.	APN 941-1400-007-00
APN 37 42' //. 7 " N IL GOE /2/" SY' 36.4 " A.	PERMIT CONDITIONS
CHENT	Circled Permit Requirements Apply
CLIENT Name Dublin Toyofs Address City Dublin Cf Phone Zip 772 - 551	Circled Permit Requirements Apply A GENERAL 1. A permit application should be submitted so as to arrive at the Zone 7 office five days prior to proposed starting date. 2. Submit to Zone 7 within 60 days after completion of permitted work the original Department of Water Resources Water Well Drillers Report or equivalent for well projects, or drilling logs and location sketch for geotechnical projects. 3. Permit is void if project not begun within 90 days of approvations. B. WATER SUPPLY WELLS 1. Minimum surface seal diameter is four inches greater than the well casing diameter. 2. Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. 3. Grout placed by tremie. 4. An access port at least 0.5 inches in diameter is required on the wellhead for water level measurements. 5. A sample port is required on the diacharge pipe near the wellhead. C. GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS 1. Minimum surface seal diameter is four inches greater than the well or piezometer casing diameter. 2. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet. 3. Grout placed by tremie. 6. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout shall be used in place of compacted cuttings. E. CATHODIC. Fill hole above anode zone with concrete placed by tremie. WELL DESTRUCTION: See attached. G. SPECIAL CONDITIONS; Submit to Zone 7 within 60 days after completion of permitted work the well installation report including all coil and weter laboratory analysis results.
hereby agree to comply with all requirements of this permit and Alameda county Ordinance No. 73-68. PPLICANTS	Approved William Abrilo Date 4/20/05
IGNATURE MARCH Date 4/22/205	Voyman Floring Date 4/29/05
TTACH SITE PLAN OR SKETCH	U

ATTACHMENT B
BORING LOGS

LOG OF SOIL BORING

SHEET 1 OF 2

BORING LOCATION:

GRIBI Associates

BORING TYPE: SOIL BORING

PROJECT NAME: DUBLIN TOYOTA DUBLIN, CALIFORNIA

PROJECT NUMBER:

START DATE: 05/02/2005

COMPLETION DATE: 05/02/2005

DRILLING CONTRACTOR: GREGG DRILLING

DRILLING METHOD: DIRECT PUSH

BOREHOLE DIAMETER: 2.5 INCHES

COMPLETION METHOD: BORING

BORING TOTAL DEPTH: 44.0 FEET

DEPTH SCALE (FEET)	SAMPLE NO.	SAMPLE DEPTH	INTERVAL	PID READING BLOW COUNTS - INITIAL - FINAL	USCS	LOG OF MATERIAL
- - -					S S S	0.0 - 0.5 ft. Asphalt and base. 0.5 - 4.0 ft. Sitty, Clayey Sands (SC/SM) dark brown, moist, no odor or staining.
5 - - -	B-7- 7.5'	7.5 FT.			<u> </u>	4.0 - 8.0 ft. Sitt (ML) dark grey, clayey, moist, soft, slight hydrocarbon odor.
10 -	5 4 40 F	40 C FT			SC	8.0 - 11.0 ft. Clayey Sand (SC) grey, fine to medium grained, wet, soft, no odor or staining.
-	B-1-10.5'	10.5 FT.				11.0 -12.0 ft. Clay (CL) dark brown, moist, soft, no odor or staining.
-						12.0 -16.0 ft. Clay (CL) grey, wet, soft, no odor or staining, transitioning to light brown at about 15.5 feet.
15-					EMEN EMEN EMEN EMEN	Water sample B-1-W-1 collected after drilling to a depth of 16 feet. Ground water continued to rise to a level at least 9 feet below grade.
20 -						16.0 - 20.0 ft. Clay (CL) olive brown, moist, medium stiff, no odor or staining.
-						20.0 - 24.0 ft. Clay (CL) no recovery, install sand trap.
25 -						

OF JOIL DOMINO

BORING NUMBER: B-1
BORING LOCATION:

GRIBI Associates

BORING TYPE: SOIL BORING

PROJECT NAME: DUBLIN TOYOTA DUBLIN, CALIFORNIA

PROJECT NUMBER:

START DATE: 05/02/2005

COMPLETION DATE: 05/02/2005

SHEET 2 OF 2

DRILLING CONTRACTOR: GREGG DRILLING

DRILLING METHOD: DIRECT PUSH

BOREHOLE DIAMETER: 2.5 INCHES

COMPLETION METHOD: BORING

BORING TOTAL DEPTH: 44.0 FEET

DEPTH SCALE (FEET)	SAMPLE NO.	SAMPLE DEPTH	INTERVAL	PID READING BLOW COUNTS	uscs	LOG OF MATERIAL	
30 - 35 - 40 - 45 -	B-1-34.5'	34.5 FT.				24.0 - 28.0 ft. Clay (CL) olive brown, trace fine sand, moist, medium stiff, no odor or staining. 28.0 - 32.0 ft. Clay (CL) olive brown, increasing fine gained sand with content with depth moist, medium stiff, no odor or staining. 32.0 - 34.0 ft. Clay (CL) olive brown, increasing fine gained sand with content with depth moist, medium stiff, no odor or staining. 34.0 - 36.0 ft. Clayey Sand (SC) brown, fine to medium grained, moist, no odor or staining. 36.0 - 40.0 ft. Clayey Sand (SC) brown, fine to medium grained, some fine gravel moist, no odor or staining. 40.0 - 44.0 ft. Clay (CL) brown, moist, very stiff, no odor or staining. TOTAL DEPTH: 44.0 FEET (below ground surface) Water sample B-1-W-1 collected after drilling to a depth of 16 feet. Ground water continued to rise to a level at least 9 feet below grade. Water sample B-1-W-2 collected as a discrete sample from approximately 35 to 39 feet below grade at second boring. Ground water continued to rise to a level at least 9 feet below grade.	

GRIBI Associates

PROJECT NAME: DUBLIN TOYOTA DUBLIN, CALIFORNIA

PROJECT NUMBER:

BORING NUMBER: B-2

BORING TYPE: SOIL BORING

BORING LOCATION:

START DATE: 05/02/2005

COMPLETION DATE: 05/02/2005

SHEET 1 OF 2

DRILLING CONTRACTOR: GREGG DRILLING

DRILLING METHOD: DIRECT PUSH

BOREHOLE DIAMETER: 2.5 INCHES

COMPLETION METHOD: BORING

BORING TOTAL DEPTH: 36.0 FEET

DEPTH SCALE (FEET)	SAMPLE NO.	SAMPLE DEPTH	INTERVAL	PID READING BLOW COUNTS - INITIAL - FINAL	USCS	LOG OF MATERIAL
10 -	B-2-8.0'	8.0 FT.				 0.0 - 0.5 ft. Clay (CL) dark brown, moist, no odor or staining, Fill? 5.0 - 6.0 ft. Clay (CL) dark grey, sitty with some sand, moist, medium stiff, no odor or staining. 6.0 - 9.0 ft. Clay (CL) brown-grey, sandy, moist, soft, no odor or staining. 9.0 -12.0 ft. Clay (CL) dark grey, moist, medium stiff, no odor or staining. 12.0 - 13.5 ft. Sand (SP) brown, fine to medium grained, wet, no odor or staining. 13.5 -16.0 ft. Clay (CL) grey-brown, sandy, moist, medium stiff, no odor or staining. Water sample B-2-W-1 collected after drilling to a depth of 16 feet. 16.0 - 20.0 ft. Clay (CL) grey-brown, sandy, moist, medium stiff, no odor or staining. 20.0 - 24.0 ft. Clay (CL) olive-grey, silty and sandy, moist, stiff, no odor or staining.

LOG OF SOIL BORING

BORING LOCATION:

GRIBI Associates

BORING TYPE: SOIL BORING

PROJECT NAME: DUBLIN TOYOTA DUBLIN, CALIFORNIA

PROJECT NUMBER:

START DATE: 05/02/2005

COMPLETION DATE: 05/02/2005

SHEET 2 OF 2

DRILLING CONTRACTOR: GREGG DRILLING

DRILLING METHOD: DIRECT PUSH

BOREHOLE DIAMETER: 2.5 INCHES

COMPLETION METHOD: BORING

BORING TOTAL DEPTH: 36.0 FEET

SAMPLE SA				_		
30 - 32.0 ft. Clay (CL) Second State Second Sta	DEPTH SCALE (FEET)	MPLE NO.	SAMPLE DEPTH	INTERVAL	봊 - INITIAL	LOG OF MATERIAL
50-	35 - _{B-2}	2-35.0	35.0 FT.			28.0 - 32.0 ft. Clay (CL) olive brown, increasing sand with depth, moist, stiff, no odor or staining. 32.0 - 35.0 ft. Clay (CL) olive brown, increasing fine gained sand with content with depth moist, medium stiff, no odor or staining. 35.0 - 36.0 ft. Gravelly Sand (SW) brown, fine to medium grained sand, fine to coarse gravel, wet, no odor or staining. TOTAL DEPTH: 36.0 FEET (below ground surface) Water sample B-2-W-1 collected after drilling to a depth of 16 feet. Water sample B-2-W-2 collected as a discrete sample from approximately 36 to 40 feet below grade at second boring. Ground water continued to rise

LOG OF SOIL BORING BORING NUMBER: B-3

GRIBI Associates

SHEET 1 OF 2

DRILLING CONTRACTOR: GREGG DRILLING

DRILLING METHOD: DIRECT PUSH

BOREHOLE DIAMETER: 2.5 INCHES

COMPLETION METHOD: BORING

BORING TOTAL DEPTH: 36.0 FEET

GROUNDWATER DEPTH:

BORING TYPE: SOIL BORING

PROJECT NAME: DUBLIN TOYOTA DUBLIN, CALIFORNIA

PROJECT NUMBER:

BORING LOCATION:

START DATE: 05/02/2005

COMPLETION DATE: 05/02/2005

DEPTH SCALE (FEET)	SAMPLE NO.	SAMPLE DEPTH	INTERVAL	PID READING BLOW COUNTS - INITIAL - FINAL	uscs	LOG OF MATERIAL	
10 - 15 -	B-3-7.5' B-3-8.0'	7.5 FT. 8.0 FT.	INI			0.0 - 0.5 ft. Concrete. 0.5 - 6.0 ft. Silty, Clayey Sands (SC/SM) dark brown, moist, no odor or staining, Fill? 6.0 - 7.5 ft. Clay (CL) brown, some fine sands, moist, medium stiff, no odor or staining, changing to grey sandy clay at 7.0 feet 7.5 - 9.0 ft. Clayey Sand (SC) dark grey, fine to medium grained, wet, no odor or staining. 9.0 - 12.0 ft. Clay (CL) dark grey, moist, medium stiff, no odor or staining. 12.0 - 13.0 ft. Clay (CL) dark grey, moist, medium stiff, no odor or staining. 13.0 - 14.0 ft. Sand (SP) grey-brown, fine to medium grained, wet, no odor or staining. 14.0 - 16.5 ft. Clay (CL) grey-brown, sandy, moist, medium stiff, no odor or staining.	
25-					= = 	olive-grey, sandy, moist, medium stiff, no odor or staining.	

GRIBI Associates

SHEET 2 OF 2

DRILLING CONTRACTOR: GREGG DRILLING

DRILLING METHOD: DIRECT PUSH

BOREHOLE DIAMETER: 2.5 INCHES

COMPLETION METHOD: BORING

BORING TOTAL DEPTH: 36.0 FEET

GROUNDWATER DEPTH:

BORING TYPE: SOIL BORING

BORING NUMBER: B-3

BORING LOCATION:

PROJECT NAME: DUBLIN TOYOTA DUBLIN, CALIFORNIA

PROJECT NUMBER:

START DATE: 05/02/2005

COMPLETION DATE: 05/02/2005

DEPTH SCALE (FEET)	SAMPLE NO.	SAMPLE DEPTH	INTERVAL	PID READING BLOW COUNTS - INITIAL - FINAL	USCS	LOG OF MATERIAL	
						24.0 - 28.0 ft. Clay (CL) olive brown, some sands, , moist, stiff, no odor or staining.	
30 -	:					28.0 - 32.0 ft. Clay (CL) olive-grey, moist, very stiff, no odor or staining.	
35 -	B-3-35.5'	35.5 FT.		:		32.0 - 35.0 ft. Clay (CL) olive-grey, moist, very stiff, no odor or staining. 35.5 - 36.0 ft. Gravelly Sand (SW)	
	B-0-00.3	33.311.				brown, fine to medium grained sand, fine to coarse gravel, wet, no odor or staining. TOTAL DEPTH: 36.0 FEET (below ground surface) Water sample B-3-W-1 collected after drilling to a depth of 12 feet.	
40-						Water sample B-3-W-2 collected after drilling to a depth of 24 feet. Water sample B-3-W-3 collected as a discrete sample from a second boring from approximately 36 to 40 feet below grade.	1 1 1 1 1 1
45 –							
_ _ _							
50-							

LOG OF SOIL BORING

GRIBI Associates

BORING LOCATION:

BORING TYPE: SOIL BORING

PROJECT NAME: DUBLIN TOYOTA DUBLIN, CALIFORNIA

PROJECT NUMBER:

START DATE: 05/02/2005

COMPLETION DATE: 05/02/2005

SHEET 1 OF 2

DRILLING CONTRACTOR: GREGG DRILLING

DRILLING METHOD: DIRECT PUSH

BOREHOLE DIAMETER: 2.5 INCHES

COMPLETION METHOD: BORING

BORING TOTAL DEPTH: 48.0 FEET

DEPTH SCALE (FEET)	SAMPLE NO.	SAMPLE DEPTH	INTERVAL	PID READING BLOW COUNTS - INITIAL - FINAL	uscs	LOG OF MATERIAL	
10-	B-4-7.0'	7.0 FT.		· FINAL		0.0 - 0.5 ft. Concrete. 0.5 - 6.0 ft. Silty, Clayey Sands (SC/SM) dark brown, moist, no odor or staining, Fill?. 6.0 - 8.0 ft. Clay (CL) dark grey, silty and sandy, moist, soft, no odor or staining. 8.0 - 10.0 ft. Clay (CL) dark grey, silty and sandy, moist, soft, no odor or staining. 10.0 -12.0 ft. Sand (SP) grey, fine becoming fine to medium grained, wet, no odor or staining. 12.0 -15.5 ft. Sand (SP) grey, fine to medium grained, wet, no odor but slight sheen observed. 15.5 -18.0 ft. Clay (CL) grey-brown, wet, soft to medium stiff, wet, no odor or staining. 18.0 - 20.0 ft. Sand (SP) grey, fine grained, wet, no odor or staining.	
_ 25 -					?		

GRIBI Associates

SHEET 2 OF 2

DRILLING CONTRACTOR: GREGG DRILLING

DRILLING METHOD: DIRECT PUSH

BOREHOLE DIAMETER: 2.5 INCHES

COMPLETION METHOD: BORING

BORING TOTAL DEPTH: 48.0 FEET

GROUNDWATER DEPTH:

BORING TYPE: SOIL BORING

PROJECT NAME: DUBLIN TOYOTA DUBLIN, CALIFORNIA

PROJECT NUMBER:

BORING NUMBER: B-4

BORING LOCATION:

START DATE: 05/02/2005

COMPLETION DATE: 05/02/2005

DEPTH SCALE (FEET)	SAMPLE NO.	SAMPLE DEPTH	INTERVAL	PID READING BLOW COUNTS - INITIAL - FINAL	USCS	LOG OF MATERIAL	
_					? ?	24.0 - 28.0 ft. Minimal Recovery (< 1 ft.) Brown-grey, clay (CL), moist, medium stiff, no odor or staining.	
30 -						28.0 - 32.0 ft. Clay (CL) olive-grey, moist, stiff, no odor or staining.	
-		:				32.0 - 35.0 ft. Clay (CL) ollve-grey,moist, stiff, no odor or staining.	
35 -	B-4-35.0'	35.0 FT.			SM ?	35.0 - 36.0 ft. Silty Sand (SM) mottled brown and beige, fine to medium grained, wet, no odor or staining.	
-					?	36.0 - 40.0 ft. Minimal Recovery (< 1 ft) brown sand (SP), fine to medium grained, wet, no odor or staining.	
40-					SP	40.0 - 41.5 ft. Sand (SP) brown, fine to medium grained, wet, no odor or staining.	
-					E CLII E = = = = = = = = = = = = = = = = = = =	41.5 - 44.0 ft. Clay (CL) olive-brown, moist, stiff, no odor or staining.	
45 -						44.0 - 48.0 ft. Clay (CL) olive-brown, moist, stiff, no odor or staining.	
50-						TOTAL DEPTH: 48.0FEET (below ground surface) Water sample B-4-W-1 collected after drilling to a depth of 12 feet. Ground water rising to level of approximately 6.3 feet below grade. Water sample B-4-W-2 collected as a discrete sample from a second boring from approximately 36 to 40 feet below grade.	

BORING LOCATION:

LOG OF SOIL BORING

GRIBI Associates

SHEET 1 OF 2

DRILLING CONTRACTOR: GREGG DRILLING

DRILLING METHOD: DIRECT PUSH

BOREHOLE DIAMETER: 2.5 INCHES COMPLETION METHOD: BORING

BORING TOTAL DEPTH: 40.0 FEET

GROUNDWATER DEPTH:

BORING TYPE: SOIL BORING

PROJECT NAME: DUBLIN TOYOTA DUBLIN, CALIFORNIA

PROJECT NUMBER:

START DATE: 05/03/2005

COMPLETION DATE: 05/03/2005

DEPTH SCALE (FEET)	SAMPLE NO.	SAMPLE DEPTH	INTERVAL	PID READING BLOW COUNTS - INITIAL - FINAL	uscs	LOG OF MATERIAL	
					ML	0.0 - 0.5 ft. Asphalt and base. 0.5 - 4.0 ft. Silt (ML) blue-grey, clayey, moist, no odor or staining, Fill?.	
5 -	B-5-5.0*	5.0 FT.				4.0 - 8.0 ft. Clay (CL) dark grey, moist to wet, soft, no odor or staining.	
10-					?	8.0 - 12.0 ft. No Recovery	
15-						12.0 -16.0 ft. Clay (CL) dark grey changing to grey-brown, moist, soft, no odor or staining.	
20 -						16.0 - 20.0 ft. Clay (CL) grey-brown, sandy, moist, medium stiff, no odor or staining.	
- - -					? ?	20.0 - 24.0 ft. No Recovery	
25-					?		

LOG OF SOIL BORING

GRIBI Associates

BORING LOCATION:

BORING TYPE: SOIL BORING

PROJECT NAME: DUBLIN TOYOTA DUBLIN, CALIFORNIA

PROJECT NUMBER:

START DATE: 05/03/2005

COMPLETION DATE: 05/03/2005

SHEET 2 OF 2

DRILLING CONTRACTOR: GREGG DRILLING

DRILLING METHOD: DIRECT PUSH

BOREHOLE DIAMETER: 2.5 INCHES

COMPLETION METHOD: BORING

BORING TOTAL DEPTH: 40.0 FEET

DEPTH SCALE (FEET)	SAMPLE NO.	SAMPLE DEPTH	INTERVAL	PID READING BLOW COUNTS - INITIAL - FINAL	uscs	LOG OF MATERIAL	
30 - 35 - 40 - 50 -	B-5-38.0'	38.0 FT.				24.0 - 28.0 ft. No Recovery 28.0 - 32.0 ft. Minimal Recovery (< 1 ft.) Olive-grey clay (CL), moist, stiff, no odor or staining. 32.0 - 36.0 ft. No Recovery 36.0 - 37.0 ft. Clay (CL) olive-brown, wet, soft, no odor or staining. 37.0 - 39.5 ft. Sand (SP) brown, fine to medium grained, wet, no odor or staining. 39.5 - 40.0 ft. Clay (CL) brown, moist, stiff TOTAL DEPTH: 40.0 FEET (below ground surface) Water sample B-5-W-1 collected after drilling to a depth of 12 feet. Ground water rising to level of approximately 4.3 feet below grade. Water sample B-5-W-2 collected as a discrete sample from a second boring from approximately 36 to 40 feet below grade.	

GRIBI Associates

SHEET 1 OF 2

DRILLING CONTRACTOR: GREGG DRILLING

DRILLING METHOD: DIRECT PUSH

BOREHOLE DIAMETER: 2.5 INCHES

COMPLETION METHOD: BORING

BORING TOTAL DEPTH: 40.0 FEET

GROUNDWATER DEPTH:

BORING TYPE: SOIL BORING

BORING NUMBER: B-6

BORING LOCATION:

PROJECT NAME: DUBLIN TOYOTA DUBLIN, CALIFORNIA

PROJECT NUMBER:

START DATE: 05/03/05

COMPLETION DATE: 05/03/2005

H.				PID READING		
DEPTH SCALE (FEET)	SAMPLE NO.	SAMPLE DEPTH	NTERVAL	BLOW COUNTS	uscs	LOG OF MATERIAL
OEP (FE	NO.	DEPTH	Ē	¥ - INITIAL ¥ - FINAL		
						0.0 - 0.5 ft. Asphalt and base.
_						
-					SC/ SM	0.5 - 5.0 ft. Silty, Clayey Sands (SC/SM)
-						dark brown, moist, no odor or staining, Fill?
5 -						
_						5.0 - 7.5 ft. Clay (CL) dark grey, moist, stiff, no odor or staining.
_	B-6-7.5'	7.5 FT.			SC	7.5 - 8.5 ft. Clayey Sand (SC) dark grey, fine to medium grained, wet, no odor or staining
-					三事事 三事事 三十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	
10 -					= CL: =	8.5 - 12.0 ft. Clay (CL) dark grey, moist, medium stiff, no odor or staining.
_					東海 東海 東海	
****						12.0 -16.0 ft. Clay (CL)
						dark grey becoming brown, increasing silt content with depth, moist, medium stiff, no odor or staining.
15-						
_						
-					EICL∭ EIIIEIII EIIIEIII	16.0 -20.0 ft. Clay (CL) brown, moist, stiff, no odor or staining.
20 -						
_	B-6-20'	20.0 FT.			SC ■■■■	20.0 -21.0 ft. Clayey Sand (SC) brown, moist, stiff, no odor or staining.
-					╪║┋║ ┋║┋║ ┋╟┋║	24.0. 24.0.4. Clay (Cl.)
-						21.0 -24.0 ft. Silty Clay (CL) brown, moist, stiff, no odor or staining.
25-	<u>'</u>				?	
Ĺ.					•	

LOG OF SOIL BORING

SHEET 2 OF 2

BORING LOCATION:

GRIBI Associates

BORING TYPE: SOIL BORING

PROJECT NAME: DUBLIN TOYOTA DUBLIN, CALIFORNIA

PROJECT NUMBER:

START DATE: 05/03/2005

COMPLETION DATE: 05/03/2005

DRILLING CONTRACTOR: GREGG DRILLING

DRILLING METHOD: DIRECT PUSH

BOREHOLE DIAMETER: 2.5 INCHES

COMPLETION METHOD: BORING

BORING TOTAL DEPTH: 40.0 FEET

DEPTH SCALE (FEET)	SAMPLE NO.	SAMPLE DEPTH	INTERVAL	PID READING BLOW COUNTS INITIAL FINAL	uscs	LOG OF MATERIAL	
30 - 35 - 40 -	B-6-36.0'	36.0 FT.				24.0 - 28.0 ft. No Recovery 28.0 - 32.0 ft. No Recovery 32.0 - 36.0 ft. No Recovery 36.0 - 37.0 ft. Sandy Gravel (GW) brown, fine to coarse gravel with coarse sand, wet, no odor or staining. 37.0 - 40.0 ft. Clay (CL) olive-brown, moist, stiff, no odor or staining. TOTAL DEPTH: 40.0 FEET (below ground surface) Water sample B-6-W-1 collected after drilling to a depth of 12 feet. Ground water rising to level of approximately 6.0 feet below grade. Water sample B-6-W-2 collected as a discrete sample from a second boring from approximately 35 to 40 feet below grade. Ground water rising to a level of approximately 5.3 feet below grade.	

GRIBI Associates

SHEET 1 OF 2

DRILLING CONTRACTOR: GREGG DRILLING

DRILLING METHOD: DIRECT PUSH

BOREHOLE DIAMETER: 2.5 INCHES COMPLETION METHOD: BORING

BORING TOTAL DEPTH: 40.0 FEET

GROUNDWATER DEPTH:

BORING TYPE:

PROJECT NAME: DUBLIN TOYOTA DUBLIN, CALIFORNIA

PROJECT NUMBER:

BORING NUMBER: B-7

BORING LOCATION:

START DATE: 05/02/2005

COMPLETION DATE: 05/02/2005

DEPTH SCALE (FEET)	SAMPLE NO.	SAMPLE DEPTH	INTERVAL	PID READING BLOW COUNTS - INITIAL - FINAL	USCS	LOG OF MATERIAL	3
-					SC/ SM	0.0 - 0.5 ft. Asphalt and base 0.5 - 4.0 ft. Silty, Clayey Sands (SC/SM) dark brown, moist, no odor or staining, Fill?.	
5 -						4.0 - 8.0 ft. Clay (CL) dark grey, moist to wet, soft to medium stiff, 6" sandy lense at approximately 6 feet, no odor or staining.	
10 -					######################################	8.0 - 12.0 ft. Clay (CL) dark grey becoming grey-brown, moist, medium stiff, no odor or staining.	
15-						12.0 - 16.0 ft. Clay (CL) mottled grey and brown, increasing silt with depth, moist, stiff, no odor or staining.	
-	B -7-18.0'	18.0 FT.				16.0 - 17.5 ft. Clay (CL) mottled grey and brown, increasing fine grained sand with depth, moist, stiff, no odor or staining.	
20 -					SP SP SP SP SP SP SP SP SP SP SP SP SP S	17.5 - 20.0 ft. Sand (SP) brown, fine to medium grained, wet, no odor or staining.	
_						20.0 - 23.0 ft. Sand (SP) brown, fine to medium grained, wet, no odor or staining. 23.0 - 24.0 ft. Clay (CL) olive-grey, moist, stiff, no odor or staining.	
25-					?		

GRIBI Associates

SHEET 2 OF 2

DRILLING CONTRACTOR: GREGG DRILLING

DRILLING METHOD: DIRECT PUSH

BOREHOLE DIAMETER: 2.5 INCHES

COMPLETION METHOD: BORING

BORING TOTAL DEPTH: 40.0 FEET

GROUNDWATER DEPTH:

BORING TYPE:

BORING NUMBER: B-7

BORING LOCATION:

PROJECT NAME: DUBLIN TOYOTA DUBLIN, CALIFORNIA

PROJECT NUMBER:

START DATE: 05/02/2005

COMPLETION DATE: 05/02/2005

DEPTH SCALE (FEET)	SAMPLE NO.	SAMPLE DEPTH	INTERVAL	PID READING & BLOW COUNTS - INITIAL - FINAL	uscs	LOG OF MATERIAL	
					?	24.0 - 28.0 ft. No Recovery	
30 -					?	28.0 - 32.0 ft. No Recovery	
					?	32.0 - 35.0 ft. No Recovery	
35 -					? SM OO =================================	35.0 - 36.0 ft. Sand (SP) brown, fine grained with some clay, no odor or staining. 36.0 - 40.0 ft. Unrecovered Sample could not remove sample from core barrel, according to driller: sand from 36 to 37feet, coarse gravel from 37-38 feet,and clay from 38-40.	
45 -					= W == W	TOTAL DEPTH: 40.0 FEET (below ground surface) Water sample B-7-W-1 collected after drilling to a depth of 20 feet. Water sample B-7-W-2 collected as a discrete sample from a second boring from approximately 35 to 39 feet below grade. Ground water rising to a level of approximately 19.7 feet below grade.	
50-							

GRIBI Associates

SHEET 1 OF 2

BORING LOCATION:

BORING NUMBER: B-8

BORING TYPE:

PROJECT NAME: DUBLIN TOYOTA DUBLIN, CALIFORNIA

PROJECT NUMBER:

START DATE: 05/03/2005

COMPLETION DATE: 05/03/2005

DRILLING CONTRACTOR: GREGG DRILLING

DRILLING METHOD: DIRECT PUSH

BOREHOLE DIAMETER: 2.5 INCHES

COMPLETION METHOD: BORING

BORING TOTAL DEPTH: 36.0 FEET

DEPTH SCALE (FEET)	SAMPLE NO.	SAMPLE DEPTH	INTERVAL	PID READING BLOW COUNTS - INITIAL - FINAL	USCS	LOG OF MATERIAL	
10-	B-6-10.0	10.0 FT.		÷ - FINAL		0.0 - 0.5 ft. Asphalt and base. 0.5 - 4.0 ft. Silty, Clayey Sands (SC/SM) dark brown, moist, no odor or staining, Fill?. 4.0 - 8.0 ft. Clay (CL) dark grey, moist, medium stiff, no odor or staining. 8.0 - 12.0 ft. Clay (CL) dark grey, moist, medium stiff, no odor or staining. 12.0 -13.0 ft. Clay (CL) dark grey, moist, medium stiff, no odor or staining. 13.0 -15.0 ft. Clay (CL) light brown, trace fine grain sand, moist, stiff, no odor or staining. 15.0 -16.0 ft. Clay (CL) dark grey, some organic matter, moist, stiff, no odor or staining. 16.0 - 20.0 ft. Clay (CL) olive-brown, moist, stiff, no odor or staining.	
25-	}				?		

GRIBI Associates

SHEET 2 OF 2

BORING NUMBER: B-8

BORING LOCATION:

BORING TYPE:

PROJECT NAME: DUBLIN TOYOTA DUBLIN, CALIFORNIA

PROJECT NUMBER:

START DATE: 05/03/2005

COMPLETION DATE: 05/03/2005

DRILLING CONTRACTOR: GREGG DRILLING

DRILLING METHOD: DIRECT PUSH

BOREHOLE DIAMETER: 2.5 INCHES

COMPLETION METHOD: BORING

BORING TOTAL DEPTH: 36.0 FEET

DEPTH SCALE (FEET)	SAMPLE NO.	SAMPLE DEPTH	INTERVAL	PID READING BLOW COUNTS - INITIAL - FINAL	uscs	LOG OF MATERIAL	
30 - 35 - 40 - 45 -	B-8-33.0'	33.0 FT.				28.0 - 31.0 ft. Clay (CL) clive-grey, moist, stiff, no odor or staining. 31.0 - 32.0 ft. Sand (SP) clive-grey, fine grain, moist, no odor or staining. 32.0 - 35.0 ft. Minimal Recovery (< 1 ft.) Based on recovery and drillers observation: fine to medium grain sand from 32 to 35 feet followed by clay from 35 to 36 feet. TOTAL DEPTH: 36.0 FEET (below ground surface) Water sample B-8-W-1 collected after drilling to a depth of 16 feet. Water sample B-8-W-2 collected as a discrete sample from a second boring from approximately 32 to 35 feet below grade.	

GRIBI Associates

BORING NUMBER: B-9

BORING LOCATION:

BORING TYPE:

PROJECT NAME: DUBLIN TOYOTA DUBLIN, CALIFORNIA

PROJECT NUMBER:

START DATE: 05/03/05

COMPLETION DATE: 05/03/2005

SHEET 1 OF 2

DRILLING CONTRACTOR: GREGG DRILLING

DRILLING METHOD: DIRECT PUSH

BOREHOLE DIAMETER: 2.5 INCHES

COMPLETION METHOD: BORING

BORING TOTAL DEPTH: 40.0 FEET

DEPTH SCALE (FEET)	SAMPLE NO.	SAMPLE DEPTH	INTERVAL	PID READING BLOW COUNTS - INITIAL - FINAL	uscs	LOG OF MATERIAL	
5 -						0.0 - 0.5 ft. Asphalt and base. 0.5 - 4.0 ft. Clayey Silts/ Silty Clays (CL/ML) dark grey silty clays to clayey silts, moist, Fill?	
-	B-9-6.0'	6.0 FT.				4.0 - 8.0 ft. Sitty Clay (CL) dark grey becoming grey-brown at 7 feet, moist, soft, no odor or staining.	
10 -					SC .	8.0 - 12.0 ft. Clayey Sand (SC) grey-brown, moist, medium stiff, no odor or staining. 12.0 - 13.0 ft. Clay (CL)	
15-						grey-brown, moist, medium stiff, no odor or staining. 13.0 -16.0 ft. Clay (CL) olive-brown, trace of fine grain sand, moist, medium stiff, no odor or staining.	
20 -						16.0 -20.0 ft. Clay (CL) olive-brown, trace of fine grain sand, moist, medium stiff, no odor or staining.	
						20.0 -24.0 ft. Clay (CL) olive-brown, moist to wet, soft to medium stiff, no odor or staining.	
25-							

GRIBI Associates

BORING NUMBER: B-9 **BORING LOCATION:**

BORING TYPE:

PROJECT NAME: DUBLIN TOYOTA DUBLIN, CALIFORNIA

PROJECT NUMBER:

START DATE: 05/03/2005

COMPLETION DATE: 05/03/2005

SHEET 2 OF 2

DRILLING CONTRACTOR: GREGG DRILLING

DRILLING METHOD: DIRECT PUSH

BOREHOLE DIAMETER: 2.5 INCHES

COMPLETION METHOD: BORING

BORING TOTAL DEPTH: 40.0 FEET

DEPTH SCALE (FEET)	SAMPLE NO.	SAMPLE DEPTH	INTERVAL	PID READING BLOW COUNTS - INITIAL - FINAL	USCS	LOG OF MATERIAL	
30 - - - - - - - - - - - - - - - - - - -	B-9-32.0'	32.0 FT.				24.0 - 28.0 ft. Clay (CL) mottled olive and brown, increasing silt content with depth, moist, stiff, no odor or staining. 28.0 - 29.0 ft. Clay (CL) mottled olive and brown, increasing silt content with depth, moist, stiff, no odor or staining. 29.0 - 32.0 ft. Clayey Silt (ML) brown, some fine grain sand, moist, medium stiff, no odor or staining. 32.0 - 36.0 ft. Minimal Recovery (< 1 ft.) Based on recovery and driller's observation: gravelly sand (SW) from 32 to 36 feet, fine to coarse sand with fine gravel. 36.0 - 40.0 ft. Minimal Recovery (< 1 ft.) Based on recovery and driller's observation: gravelly sand (SW) from 36 to 37 feet followed by clay (CL) from 37 to 40 feet. TOTAL DEPTH: 40.0 FEET (below ground surface) Water sample B-9-W-1 collected after drilling to a depth of 20 feet. Water sample B-9-W-2 collected as a discrete sample from a second boring from approximately 33 to 37 feet below grade. Ground water rising to a level of approximately 26 feet below grade.	

SHEET 1 OF 2

BORING LOCATION:

BORING NUMBER: 8-10

GRIBI Associates

BORING TYPE:

PROJECT NAME: DUBLIN TOYOTA DUBLIN, CALIFORNIA

PROJECT NUMBER:

START DATE: 05/04/2005

COMPLETION DATE: 05/04/2005

DRILLING METHOD: DIRECT PUSH

DRILLING CONTRACTOR: GREGG DRILLING

BOREHOLE DIAMETER: 2.5 INCHES

COMPLETION METHOD: BORING

BORING TOTAL DEPTH: 36.0 FEET

				_		
DEPTH SCALE (FEET)	SAMPLE NO.	SAMPLE DEPTH	INTERVAL	PID READING BLOW COUNTS - INITIAL - FINAL	uscs	LOG OF MATERIAL
					XXX	0.0 - 0.5 ft. Asphalt and base
					SC/ SM	0.5 - 3.0 ft. Silty, Clayey Sands (SC/SM) dark brown, moist, no odor or staining, Fill?.
_					CL	3.0 - 4.0 ft. Clay (CL) dark grey, moist to wet, soft, no odor or staining
5 -						
					EMEN ECLIM EMEN EMEN	4.0 - 8.0 ft. Clay (Ct.) dark grey, moist, soft, 6" clayey sand (SC) lense at 6 feet, no odor or staining.
	B-10-7.0'	7.0 FT.			## ## ## ## ## ## ## ## ## ## ## ##	
10 -						8.0 - 12.0 ft. Clay (CL)
					#	dark grey, moist, medium stiff, 6" coarse sand (SP) lense at 8.5 feet, becoming brown at 11 feet, no odor or staining.
				:		12.0 - 16.0 ft. Clay (CL)
15-					三川三川 三川 三川	olive-brown, silty, very stiff, 1' sandy lense at 13 feet, no odor or staining.
-						16.0 - 20.0 ft. Clay (CL) olive-brown, silty, very stiff, becoming olive-grey , no odor or staining.
20 -						or staining.
-						20.0 - 24.0 ft. Clay (CL)
-						olive-grey, moist, stiff, localized clayey silts, no odor or staining.
_ 25 - -						

GRIBI Associates

SHEET 2 OF 2

BORING LOCATION:

BORING NUMBER: B-10

BORING TYPE:

PROJECT NAME: DUBLIN TOYOTA DUBLIN, CALIFORNIA

PROJECT NUMBER:

START DATE: 05/04/2005

COMPLETION DATE: 05/04/2005

DRILLING CONTRACTOR: GREGG DRILLING

DRILLING METHOD: DIRECT PUSH

BOREHOLE DIAMETER: 2.5 INCHES

COMPLETION METHOD: BORING

BORING TOTAL DEPTH: 36.0 FEET

DEPTH SCALE (FEET)	SAMPLE NO.	SAMPLE DEPTH	INTERVAL	PID READING BLOW COUNTS - INITIAL - FINAL	USCS	LOG OF MATERIAL	
30 - 35 - 40 - 45 -	B-10-33'	33.0 FT.				24.0 - 28.0 ft. Clay (CL) olive-grey, moist, very stiff to hard, no odor or staining. 28.0 - 30.0 ft. Clay (CL) olive-grey, increasing silt and fine grain sand with depth, becoming silty, sandy clay at 30 feet, moist, very hard, no odor or staining. 32.0 - 35.5 ft. Sand (SP) brown, fine to medium grain, wet, no odor or staining. 35.5 - 36.0 ft. Gravelly Sand (SW) fine to coarse sand with fine gravel, moderately cemented, hard, moist, no odor or staining. TOTAL DEPTH: 36.0 FEET (below ground surface) Water sample B-10-W-1 collected after drilling to a depth of 12 feet. Water sample B-10-W-2 collected as a discrete sample from approximately 33 to 35 feet below grade at second boring.	

GRIBI Associates

SHEET 1 OF 2

DRILLING METHOD: DIRECT PUSH **BOREHOLE DIAMETER: 2.5 INCHES**

COMPLETION METHOD: BORING

DRILLING CONTRACTOR: GREGG DRILLING

BORING LOCATION:

BORING NUMBER: B-11

BORING TYPE:

PROJECT NAME: DUBLIN TOYOTA DUBLIN, CALIFORNIA

PROJECT NUMBER:

START DATE: 05/04/2005

COMPLETION DATE: 05/04/2005

GROUNDWATER DEPTH:

BORING TOTAL DEPTH: 36.0 FEET

DEPTH SCALE (FEET)	SAMPLE NO.	SAMPLE DEPTH	INTERVAL	PID READING BLOW COUNTS - INITIAL - FINAL	uscs	LOG OF MATERIAL	
- - -					SC/ SM	0.0 - 0.5 ft. Asphalt and base. 0.5 - 4.0 ft. Silty, Clayey Sands (SC/SM) dark brown, moist, no odor or staining, Fill?.	
5 -				·		4.0 - 8.0 ft. Clay (CL) dark grey, moist, medium stiff, no odor or staining.	
10 -	B-11-10'	10.0 FT.			######################################	8.0 - 12.0 ft. Clay (CL) dark grey becoming brown-grey, moist, medium stiff, no odor or staining.	
15 -						12.0 -16.0 ft. Clay (CL) brown-grey, moist, medium stiff, no odor or staining. 16.0 - 20.0 ft. No Recovery	
20 -					? ? ?	·	
25-					?	20.0 - 24.0 ft. No Recovery	

BORING NUMBER: B-11

LOG OF SOIL BORING

GRIBI Associates

SHEET 2 OF 2

DRILLING CONTRACTOR: GREGG DRILLING

DRILLING METHOD: DIRECT PUSH

BOREHOLE DIAMETER: 2.5 INCHES

COMPLETION METHOD: BORING

BORING TOTAL DEPTH: 36.0 FEET

GROUNDWATER DEPTH:

BORING TYPE:

PROJECT NAME: DUBLIN TOYOTA DUBLIN, CALIFORNIA

PROJECT NUMBER:

BORING LOCATION:

START DATE: 05/04/2005

COMPLETION DATE: 05/04/2005

DEPTH SCALE (FEET)	SAMPLE NO.	SAMPLE DEPTH	INTERVAL	PID READING BLOW COUNTS PINITIAL FINAL	USCS	LOG OF MATERIAL	
30 - 40 - 50 -	B-11-35'	35.0 FT.		FINAL		24.0 - 25.0 ft. No Recovery 25.0 - 26.0 ft. Sand (SP) brown, fine to medium grain, wet, no odor or staining. 26.0 - 28.0 ft.Clay (CL) olive-grey, moist, very stiff, no odor or staining. 28.0 - 32.0 ft. No Recovery Drillers observation: clay from 28 feet to 31 feet followed by sand at about 31 feet. 32.0 - 36.0 ft. Minimal Recovery (< 1 ft.) Based on recovery and drillers observation: fine to coarse grain sand with fine to coarse gravel, wet. TOTAL DEPTH: 36.0 FEET (below ground surface) Water sample B-11-W-1 collected after drilling to a depth of 16 feet. Water sample B-11-W-2 collected as a discrete sample from approximately 32 to 36 feet below grade at second boring.	

GRIBI Associates

SHEET 1 OF 2

DRILLING CONTRACTOR: GREGG DRILLING

DRILLING METHOD: DIRECT PUSH

BOREHOLE DIAMETER: 2.5 INCHES COMPLETION METHOD: BORING

BORING TOTAL DEPTH: 40.0 FEET

GROUNDWATER DEPTH:

BORING TYPE:

PROJECT NAME: DUBLIN TOYOTA DUBLIN, CALIFORNIA

PROJECT NUMBER:

BORING NUMBER: B-12

BORING LOCATION:

START DATE: 05/04/05

COMPLETION DATE: 05/04/2005

DEPTH SCALE (FEET)	SAMPLE NO.	SAMPLE DEPTH	INTERVAL	PID READING BLOW COUNTS - INITIAL - FINAL	USCS	LOG OF MATERIAL
5 -						0.0 - 0.5 ft. Asphalt and base. 0.5 - 4.0 ft. Silty, Clayey Sands (SC/SM) dark brown, moist, no odor or staining, Fill?.
10 -	B-12-11.01	11.0 FT.				4.0 - 8.0 ft. Clay (CL) dark grey, moist, medium stiff, no odor or staining. 8.0 - 12.0 ft. Clay (CL) dark grey becoming brown-grey, moist, medium stiff, 6" fine to coarse gravel (GW) lense at 11 feet, no odor or staining. 12.0 -16.0 ft. Clay (CL) brown-grey, moist, medium stiff, no odor or staining.
15 - - -						16.0 - 20.0 ft. Clay (CL) brown-grey, moist, medium stiff, no odor or staining.
20 -						20.0 - 24.0 ft. Clay (CL) olive-grey, moist, stiff, 6" clayey sand (SC) lense at 23 feet, no odor or staining.

GRIBI Associates

SHEET 2 OF 2

BORING LOCATION:

BORING NUMBER: B-12

BORING TYPE:

PROJECT NAME: DUBLIN TOYOTA DUBLIN, CALIFORNIA

PROJECT NUMBER:

START DATE: 05/04/2005

COMPLETION DATE: 05/04/2005

DRILLING CONTRACTOR: GREGG DRILLING

DRILLING METHOD: DIRECT PUSH

BOREHOLE DIAMETER: 2.5 INCHES

COMPLETION METHOD: BORING

BORING TOTAL DEPTH: 40.0 FEET

DEPTH SCALE (FEET)	SAMPLE NO.	SAMPLE DEPTH	INTERVAL	PID READING BLOW COUNTS	USCS	LOG OF MATERIAL	
30 - 35 - 40 - 45 - 45 -	B-12-35.5	SAMPLE DEPTH	INTE			24.0 - 28.0 ft. Clay (CL) olive-grey, moist, stiff, no odor or staining. 28.0 - 31.0 ft. Clay (CL) olive-grey, increasing silt content with depth, moist, stiff, no odor or staining. 31.0 - 32.0 ft. Clayey Silt (ML) olive-grey, some fine grain sand, moist, medium stiff, no odor or staining. 32.0 - 34.0 ft. Clay (CL) olive-grey, moist, very stiff, increasing grain size with depth, no odor or staining. 34.0 - 36.0 ft. Silty Sand (SM) olive-brown, very fine grain, increasing grains size with depth, moist, no odor or staining. 36.0 - 39.0 ft. Sand (SP) brown, fine to coarse with 1' gravelly lens at 37.5 feet, wet, no odor or staining. 39.0 - 40.0 ft. Sandy Silt (ML) brown, very fine grain sand, silty clay (CL) in shoe, moist, no odor or staining. TOTAL DEPTH: 40.0 FEET (below ground surface) GROUNDWATER DEPTH: not recorded Water sample B-12-W-1 collected after drilling to a depth of 12 feet. Water sample B-12-W-2 collected as a discrete sample from approximately 35 to 39 feet below grade at second boring.	
50 –							

ATTACHMENT C LABORATORY ANALYTICAL RESULTS

SunStar Laboratories, Inc.

13 May 2005

Jim Gribi **Gribi Associates** 1090 Adam Street, Suite K Benicia, CA 94510

RE: Dublin Toyota

Enclosed are the results of analyses for samples received by the laboratory on 05/06/05 09:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Dennis Dorning

Gribi Associates 1090 Adam Street, Suite K Benicia CA, 94510

Project: Dublin Toyota

Project Number: [none] Project Manager: Jim Gribi Reported: 05/13/05 15:30

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B-4-7.0	T500549-01	Soil	05/02/05 08:15	05/06/05 09:00
B-4-35	T500549-02	Soil	05/02/05 11:30	05/06/05 09:00
B-3-7.5	T500549-03	Soil	05/02/05 13:40	05/06/05 09:00
B-3-8.0	T500549-04	Soil	05/02/05 13:50	05/06/05 09:00
B-3-13.0	T500549-05	Soil	05/02/05 14:20	05/06/05 09:00
B-3-35.5	T500549-06	Soil	05/02/05 15:40	05/06/05 09:00
B-2-8	T500549-07	Soil	05/02/05 00:00	05/06/05 09:00
B-2-35	T500549-08	Soil	05/02/05 18:25	05/06/05 09:00
B-4-W-1	T500549-09	Water	05/02/05 08:40	05/06/05 09:00
B-4-W-2	T500549-10	Water	05/02/05 12:45	05/06/05 09:00
B-3-W-1	T500549-11	Water	05/02/05 12:00	05/06/05 09:00
B-3-W-2	T500549-12	Water	05/02/05 14:35	05/06/05 09:00
B-3-W-3	T500549-13	Water	05/02/05 16:00	05/06/05 09:00
B-2-W-1	T500549-14	Water	05/02/05 17:40	05/06/05 09:00
B-2-W-2	T500549-15	Water	05/02/05 18:45	05/06/05 09:00
B-1-7.5	T500549-16	Soil	05/03/05 07:45	05/06/05 09:00
B-1-10.5	T500549-17	Soil	05/03/05 08:05	05/06/05 09:00
B-1-34.5	T500549-18	Soil	05/03/05 08:25	05/06/05 09:00
B-5-5	T500549-19	Soil	05/03/05 09:55	05/06/05 09:00
B-5-38	T500549-20	Soil	05/03/05 10:30	05/06/05 09:00
B-6-7.5	T500549-21	Soil	05/03/05 12:30	05/06/05 09:00
B-6-20	T500549-22	Soil	05/03/05 12:45	05/06/05 09:00
B-6-36	T500549-23	Soil	05/03/05 13:10	05/06/05 09:00
B-7-18	T500549-24	Soil	05/03/05 14:10	05/06/05 09:00
B-9-6	T500549-25	Soil	05/03/05 16:25	05/06/05 09:00
B-9-32	T500549-26	Soil	05/03/05 17:15	05/06/05 09:00
B-1-W-1	T500549-27	Water	05/03/05 07:55	05/06/05 09:00
B-1-W-2	T500549-28	Water	05/03/05 09:10	05/06/05 09:00
B-5-W-1	T500549-29	Water	05/03/05 09:50	05/06/05 09:00

SunStar Laboratories, Inc.

Gribi Associates 1090 Adam Street, Suite K Benicia CA, 94510

Project: Dublin Toyota

Project Number: [none]
Project Manager: Jim Gribi

Reported: 05/13/05 15:30

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B-5-W-2	T500549-30	Water	05/03/05 10:45	05/06/05 09:00
B-6-W-1	T500549-31	Water	05/03/05 12:25	05/06/05 09:00
B-6-W-2	T500549-32	Water	05/03/05 13:25	05/06/05 09:00
B-7-W-1	T500549-33	Water	05/03/05 14:15	05/06/05 09:00
B-7-W-2	T500549-34	Water	05/03/05 15:20	05/06/05 09:00
B-9-W-1	T500549-35	Water	05/03/05 16:35	05/06/05 09:00
B-9-W-2	T500549-36	Water	05/03/05 17:35	05/06/05 09:00
B-12-W-1	T500549-37	Water	05/04/05 08:00	05/06/05 09:00
B-12-W-2	T500549-38	Water	05/04/05 09:45	05/06/05 09:00
B-8-W-1	T500549-39	Water	05/04/05 11:00	05/06/05 09:00
B-8-W-2	T500549-40	Water	05/04/05 12:45	05/06/05 09:00
B-11-W-1	T500549-41	Water	05/04/05 14:00	05/06/05 09:00
B-11-W-2	T500549-42	Water	05/04/05 16:00	05/06/05 09:00
B-10-W-1	T500549-43	Water	05/04/05 17:10	05/06/05 09:00
B-10-W-2	T500549-44	Water	05/04/05 18:30	05/06/05 09:00
B-12-11.0	T500549-45	Soil	05/04/05 08:10	05/06/05 09:00
B-12-35.5	T500549-46	Soil	05/04/05 09:05	05/06/05 09:00
B-8-10	T500549-47	Soil	05/04/05 10:45	05/06/05 09:00
B-8-33	T500549-48	Soil	05/04/05 12:00	05/06/05 09:00
B-1 1-10	T500549-49	Soil	05/04/05 13:50	05/06/05 09:00
B-11-35	T500549-50	Soil	05/04/05 14:55	05/06/05 09:00
B-10-7.0	T500549-51	Soil	05/04/05 17:00	05/06/05 09:00
B-10-33	T500549-52	Soil	05/04/05 17:50	05/06/05 09:00
B-4-10.5	T500549-53	Soil	05/05/05 00:00	05/06/05 09:00

SunStar Laboratories, Inc.

12:16

1090 Adam Street, Suite K Benicia CA, 94510 Project: Dublin Toyota

Project Number: [none] Project Manager: Jim Gribi Reported: 05/13/05 15:30

B-4-7.0 T500549-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons l	oy EPA 8015m								
C6-C12 (GRO)	ND	500	ug/kg	1	5050614	05/06/05	05/10/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		84.8 %	65-	135	Ħ	"	n	n	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	2.0	ug/kg	i	5050613	05/06/05	05/10/05	EPA 8260B	
1,2-Dichloroethane	ND	2.0	Ħ	"	II .	II	II	11	
Benzene	ND	2.0	H	н	11	II .	II .	**	
Toluene	ND	2.0	rt .	ш	11	II .	II .	*1	
Ethylbenzene	ND	2.0	lf.	ш	"	n n	II .	P.	
m,p-Xylene	ND	4.0	п	19	*	**	**	*1	
o-Xylene	ND	2.0	II	17	It	Ħ	'n	•11	
Tert-amyl methyl ether	ND	5.0	II	H	11	н	**	*1	
Tert-butyl alcohol	ND	20	11	11	ч	n	rr	er	
Di-isopropyl ether	ND	5.0	11	н	н	"	11	ш	
Ethyl tert-butyl ether	ND	5.0	n	Ħ	u	I t	**	II	
Methyl tert-butyl ether	26	5.0	II.	11	п	fi	#	11	
Surrogate: Toluene-d8		96.3 %	85.8-	113	,,	n	п	#	
Surrogate: 4-Bromofluorobenzene		93.9 %	73.5-	115	#	u	n	n	
Surrogate: Dibromofluoromethane		88.3 %	79-i	26	n	"	n	H	

SunStar Laboratories, Inc.

Gribi Associates 1090 Adam Street, Suite K

Benicia CA, 94510

Project: Dublin Toyota

Project Number: [none] Project Manager: Jim Gribi Reported: 05/13/05 15:30

B-4-35 T500549-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons b	y EPA 8015m								
C6-C12 (GRO)	ND	500	ug/kg	1	5050614	05/06/05	05/09/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		84.8 %	65	135	#	n	"	n	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	2.0	ug/kg	1	5050613	05/06/05	05/06/05	EPA 8260B	
1,2-Dichloroethane	ND	2.0	II	**	*	II	**	11	
Benzene	ND	2.0	н	17	rt	IJ	11	11	
Toluene	ND	2.0	11	91	11	18	"	"	
Ethylbenzene	ND	2.0	**		**	11	"		
m,p-Xylene	ND	4.0	*1	н	#	11	н	n	
o-Xylene	ND	2.0	n	u	**		11	"	
Tert-amyl methyl ether	ND	5.0	**	н	**	**	H	n	
Tert-butyl alcohol	ND	20	n	a	**	16	Ħ	H	
Di-isopropyl ether	ND	5.0	tt		"	"	н	11	
Ethyl tert-butyl ether	ND	5.0	11	н	н	н	п	"	
Methyl tert-butyl ether	9.4	5.0	"	10	II	**	IJ	n	
Surrogate: Toluene-d8		93.8 %	85.8-	-113	n	"	#	Ħ	
Surrogate: 4-Bromofluorobenzene		101 %	73.5-	-115	n	п	#	#	
Surrogate: Dibromofluoromethane		88.0 %	<i>79-</i> .	126	"	rr .	,,	n	

SunStar Laboratories, Inc.

1090 Adam Street, Suite K Benicia CA, 94510 Project: Dublin Toyota

Project Number: [none] Project Manager: Jim Gribi Reported: 05/13/05 15:30

B-3-7.5 T500549-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
1 22	2,100,400	SunStar La							
Purgeable Petroleum Hydrocarbons l	by EPA 8015m			-					
C6-C12 (GRO)	ND	500	ug/kg	1	5050614	05/06/05	05/07/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		70.2 %	65-	135	"	"	n	н	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	2.0	u g/k g	1	5050613	05/06/05	05/09/05	EPA 8260B	
1,2-Dichloroethane	ND	2.0	#	**	**	*	н	"	
Benzene	ND	2.0	Ħ	11	**	**	8	25	
Toluene	ND	2.0	19	**	**	**	H	H	
Ethylbenzene	ND	2.0	Tf.	"	IT	tt	1*	**	
m,p-Xylene	ND	4.0	11		H	ш	*	10	
o-Xylene	ND	2.0	IT	H	н	II .	17	10	
Tert-amyl methyl ether	ND	5.0	11	H	Ħ	п	**	IF	
Tert-butyl alcohol	ND	20	"	1)	п	u	,	II .	
Di-isopropyl ether	ND	5.0	**	11	1(II	н	п	
Ethyl tert-butyl ether	ND	5.0	n	17	II	IJ	н	ш	
Methyl tert-butyl ether	ND	5.0	rt .	17	"	11	11	II	
Surrogate: Toluene-d8		104 %	85.8-	113	п	ņ	n	n	
Surrogate: 4-Bromofluorobenzene		89.6 %	73.5-	115	μ	"	n	n	
Surrogate: Dibromofluoromethane		91.3 %	79-1	126	*	"	p	n	

SunStar Laboratories, Inc.

Project: Dublin Toyota

1090 Adam Street, Suite K Benicia CA, 94510

Project Number: [none]
Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-3-8.0 T500549-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons l	oy EPA 8015m								
C6-C12 (GRO)	ND	500	ug/kg	1	5050614	05/06/05	05/07/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		80.8 %	65-	135	n	"	,,	"	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	2.0	ug/kg	1	5050613	05/06/05	05/09/05	EPA 8260B	
1,2-Dichloroethane	ND	2.0	п	**	**	п	п	п	
Benzene	ND	2.0	11	**	**	II	**	II .	
Toluene	ND	2.0	11	ti	Ħ	н	*	II	
Ethylbenzene	ND	2.0	Ħ	п	π	31	**	11	
m,p-Xylene	ND	4.0	H	U	u	**	п	"	
o-Xylene	ND	2.0	77	n	11	11	IJ	**	
Tert-amyl methyl ether	ND	5.0	•1	и	*	*	U	11	
Tert-butyl alcohol	ND	20	*7	n	# 1	16	В	11	
Di-isopropyl ether	ND	5.0	н	11	н	**	h	17	
Ethyl tert-butyl ether	ND	5.0	н	19	It	11	19	41	
Methyl tert-butyl ether	ND	5.0	18	91	ĮI.	"	. "	n	
Surrogate: Toluene-d8		103 %	85.8-	-113	n	n	н	n	
Surrogate: 4-Bromofluorobenzene		91.4 %	73.5-	-115	"	н	"	"	
Surrogate: Dibromofluoromethane		89.8 %	<i>79</i>	126	#	n	rr	"	

SunStar Laboratories, Inc.

1090 Adam Street, Suite K

Benicia CA, 94510

Project: Dublin Toyota

Project Number: [none]

Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-3-13.0 T500549-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons l	by EPA 8015m								
C6-C12 (GRO)	ND	500	ug/kg	1	5050614	05/06/05	05/09/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		86.4 %	65-	135	"	n	п	Ħ	_
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	2.0	ug/kg	1	5050613	05/06/05	05/06/05	EPA 8260B	
1,2-Dichloroethane	ND	2.0	11	•	n	II	u	**	
Benzene	ND	2.0	ш	н	**	n	n	**	
Toluene	ND	2.0	H	н	*	и	II .	rt .	
Ethylbenzene	ND	2.0	II	n	**	11	"	**	
m,p-Xylene	ND	4.0	II	II	Ħ	11	II	17	
o-Xylene	ND	2.0	11	11	н	**	**	11	
Tert-amyl methyl ether	ND	5.0	n	ш	It	*	**	11	
Tert-butyl alcohol	ND	20	11	11	"	**	*	Ħ	
Di-isopropyl ether	ND	5.0	n	19	n	17	IJ	t t	
Ethyl tert-butyl ether	ND	5.0	n	11	Ħ	17	11	ít	
Methyl tert-butyl ether	ND	5.0	н	11	Ħ	19	11	ır	
Surrogate: Toluene-d8		93.4 %	85.8-	113	n	п	tt	н	
Surrogate: 4-Bromofluorobenzene		101 %	73.5-	115	n	n	"	n	
Surrogate: Dibromofluoromethane		95.3 %	79-1	126	n	ti	n	n	

SunStar Laboratories, Inc.

Gribi Associates 1090 Adam Street, Suite K Project: Dublin Toyota

Benicia CA, 94510

Project Number: [none]
Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-3-35.5 T500549-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons I	by EPA 8015m								
C6-C12 (GRO)	ND	500	ug/kg	1	5050614	05/06/05	05/07/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		81.6 %	65-1	35	n	"	"	11	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	2.0	ug/kg	1	5050613	05/06/05	05/06/05	EPA 8260B	-
1,2-Dichloroethane	ND	2.0	"	н	н	ш	н	II .	
Benzene	ND	2.0	*	**	**	11	**	12	
Toluene	ND	2.0	11	H	**	**	**	19	
Ethylbenzene	ND	2.0	51	11	**	**	"	**	
m,p-Xylene	ИD	4.0	n	n	н	Ħ	п	*	
o-Xylene	ND	2.0	H	11	II	•	U	**	
Tert-amyl methyl ether	ND	5.0	u .	п	IJ	**	n	sr	
Tert-butyl alcohol	ND	20	п	"	11	ij	17	н	
Di-isopropyl ether	ND	5.0	11	**	"	u u	R		
Ethyl tert-butyl ether	ND	5.0	f1	11	н	II.	п	11	
Methyl tert-butyl ether	ND	5.0	11	н	*	п	н	п	
Surrogate: Toluene-d8		93.9 %	85.8-	113	н	H	n	"	
Surrogate: 4-Bromofluorobenzene		102 %	73.5-	115	"	"	rr	"	
Surrogate: Dibromofluoromethane		88.4 %	79-1.	26	rr .	"	rr rr	"	

SunStar Laboratories, Inc.

1090 Adam Street, Suite K Benicia CA, 94510 Project: Dublin Toyota

Project Number: [none]
Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-2-8 T500549-07 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons by	EPA 8015m								
C6-C12 (GRO)	ND	500	ug/kg	1	5050614	05/06/05	05/07/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		88.0 %	65	135	n	"	n	n	
Volatile Organic Compounds by EPA N	Aethod 8260B								
1,2-Dibromoethane (EDB)	ND	2.0	ug/kg	1	5050613	05/06/05	05/06/05	EPA 8260B	
1,2-Dichloroethane	ND	2.0	**	**	"	11	*	· ·	
Benzene	ND	2.0	#1	71	II .	п	н	II.	
Toluene	ND	2.0	**	**	"	II .	**	n	
Ethylbenzene	ND	2.0	**	**	II	u	"	II .	
m,p-Xylene	ND	4.0	"	**	II	u	"	n .	
o-Xylene	ND	2.0	"	**	11	н	**	n .	
Tert-amyl methyl ether	ND	5.0	**	"	II	μ	н	п	
Tert-butyl alcohol	ND	20	P	**	"	11	Ħ	ii.	
Di-isopropyl ether	ND	5.0	tt	н	JI	II	íi .	19	
Ethyl tert-butyl ether	ND	5.0	tt	Ħ	В	IJ	II	**	
Methyl tert-butyl ether	ND	5.0	Ħ	u	H	n	II .	11	
Surrogate: Toluene-d8		93.5 %	85.8	113	"	"	U	"	
Surrogate: 4-Bromofluorobenzene		101 %	73.5	115	"	"	n	"	
Surrogate: Dibromofluoromethane		91.6%	79	126	"	"	"	u	

SunStar Laboratories, Inc.

Gribi Associates 1090 Adam Street, Suite K Benicia CA, 94510

Project: Dublin Toyota

Project Number: [none] Project Manager: Jim Gribi Reported: 05/13/05 15:30

B-2-35 T500549-08 (Soil)

Analyte	Dlk	Reporting	71 14	7518 41	Th. 1	n 1			NT .
Anatyte	Result	Limit SupStan L	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Purgeable Petroleum Hydrocarbons	by FPA 2015m	SunStar L	HOOFHUUT	ies, inc.					
C6-C12 (GRO)	ND	500	ug/kg	1	5050614	05/06/05	05/09/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		88.8 %	65-	135	#	"	n	"	
Volatile Organic Compounds by EPA	Method 8260B		•						
1,2-Dibromoethane (EDB)	ND	2.0	ug/kg	1	5050613	05/06/05	05/10/05	EPA 8260B	
1,2-Dichloroethane	ND	2.0	"	11		*1	H		
Benzene	ND	2.0	11	**	11	**)1	n	
Toluene	ND	2.0	11	Ħ	•	H	17	п	
Ethylbenzene	ND	2.0	"	17	"	п	n	п	
m,p-Xylene	ND	4.0	H	**	Ħ	II	и	IJ	
o-Xylene	ND	2.0	II	H	**	н	**	**	
Tert-amyl methyl ether	ND	5.0	11	ıı .	It	11	ur .		
Tert-butyl alcohol	ND	20	0	н	п	H	н	11	
Di-isopropyl ether	ND	5.0	**	11	u	11	н	**	
Ethyl tert-butyl ether	ND	5.0	**	19	μ	Ħ	D	11	
Methyl tert-butyl ether	ND	5.0	11	ti .	**	tt	11	tr	
Surrogate: Toluene-d8		95.9 %	85.8-	-113	n	"	"	п	
Surrogate: 4-Bromofluorobenzene		97.9 %	73.5-	-115	"	п	"	n	
Surrogate: Dibromofluoromethane		100 %	<i>79-1</i>	126	"	n	"	n	

SunStar Laboratories, Inc.

0.12

1090 Adam Street, Suite K Benicia CA, 94510 Project: Dublin Toyota

Project Number: [none]
Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-4-W-1 T500549-09 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons b	y EPA 8015m								
C6-C12 (GRO)	ND	50	ug/l	1	5050703	05/07/05	05/08/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		76.6 %	65	135	'n	"	"	п	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.0	ug/l	1	5050704	05/07/05	05/07/05	EPA 8260B	
1,2-Dichloroethane	ND	0.50	"	Ħ	п	н	It	u	
Benzene	ND	0.50	н	п	п	п	fi	n	
Toluene	ND	0.50	п	n	n	n	п	n	
Ethylbenzene	ND	0.50	II	11	**	н	11	н	
m,p-Xylene	ND	1.0	11	**	**	н	11	**	
o-Xylene	ND	0.50	11	**	н	I+	*	10	
Tert-amyl methyl ether	9.9	2.0	**	Ħ	11	**	tt	n	
Tert-butyl alcohol	330	10	n	11	**	U	1)	**	
Di-isopropyl ether	ND	2.0	***	н	п	**	ír	n	
Ethyl tert-butyl ether	ND	2.0	H	н	п	n	u	a	
Methyl tert-butyl ether	17000	50	н .	50	IJ	u	05/09/05	Ш	
Surrogate: Toluene-d8	<u> </u>	91.0 %	87.6-	115	"	и	05/07/05	"	
Surrogate: 4-Bromofluorobenzene		102 %	80-1	112	"	"	"	"	
Surrogate: Dibromofluoromethane		89.8 %	78.6-	122	"	"	"	"	

SunStar Laboratories, Inc.

1090 Adam Street, Suite K Benicia CA, 94510 Project: Dublin Toyota

Project Number: [none]
Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-4-W-2 T500549-10 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La							
Purgeable Petroleum Hydrocarbons I	by EPA 8015m								
C6-C12 (GRO)	ND	50	ug/l	1	5050703	05/07/05	05/08/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		78.2 %	65-	135	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.0	ug/l	1	5050704	05/07/05	05/07/05	EPA 8260B	
1,2-Dichloroethane	ND	0.50	n n	n	н	11	н	п	
Benzene	ND	0.50	н	**	"	••	**		
Toluene	ND	0.50	n	*	U	n	n	и	
Ethylbenzene	ND	0.50	**	н	н	"	н		
m,p-Xylene	ND	1.0	II	ч	11	•	и	*	
o-Xylene	ND	0.50	91	U	**	n	п	н	
Tert-amyl methyl ether	ND	2.0	r+	**	Ħ	u	11	**	
Tert-butyl alcohol	ND	10	Ц	"	h	II	17	н	
Di-isopropyl ether	ND	2.0	II	**	п	H	**	н	
Ethyl tert-butyl ether	ND	2.0	п	#	н	11	11	u	
Methyl tert-butyl ether	8.4	1.0	11	Ħ	**	**	H	и	
Surrogate: Toluene-d8		93.5 %	87.6	-115	"	"	#	,,	
Surrogate: 4-Bromofluorobenzene		102 %	80	112	"	"	п	н	
Surrogate: Dibromofluoromethane		89.0 %	78.6·	-122	"	"	п	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dennis Dorning, Project Manager

1090 Adam Street, Suite K Benicia CA, 94510 Project: Dublin Toyota

Project Number: [none]
Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-3-W-1 T500549-11 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons h	y EPA 8015m								
C6-C12 (GRO)	ND	50	ug/l	1	5050703	05/07/05	05/08/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene	-	73.0 %	65	135	"	"	н	"	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.0	ug/l	1	5050704	05/07/05	05/07/05	EPA 8260B	
1,2-Dichloroethane	ND	0.50	11	*	ıı .	tt	п	n .	
Benzene	ND	0.50	"	11	п	п	п	н	
Toluene	1.8	0.50	H		μ	п	11	10	
Ethylbenzene	ND	0.50	II		11	н	**	**	
m,p-Xylene	ND	1.0	II	11	**	н	**	n	
o-Xylene	ND	0.50	+I	**	н	Ħ	**	11	
Tert-amyl methyl ether	ND	2.0	**	**		11	tt	n	
Tert-butyl alcohol	ND	10	11	**	u	"	п	11	
Di-isopropyl ether	ND	2.0	8 1	11	II .	н	11	II.	
Ethyl tert-butyl ether	ND	2.0	Ħ	п	II.	IJ	*1	n	
Methyl tert-butyl ether	23	1.0	fi .	н	**	n	77	w.	
Surrogate: Toluene-d8		93.5 %	87.6-	115	n	"	ff	и	
Surrogate: 4-Bromofluorobenzene		102 %	80-1	12	rr rr	"	rr	"	
Surrogate: Dibromofluoromethane		91.8 %	78.6-	122	"	rr r	п	n	

SunStar Laboratories, Inc.

Gribi Associates 1090 Adam Street, Suite K Benicia CA, 94510 Project: Dublin Toyota

Project Number: [none] Project Manager: Jim Gribi Reported: 05/13/05 15:30

B-3-W-2 T500549-12 (Water)

Analyte	Result	Reporting <u>Limit</u>	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons l	by EPA 8015m		÷						
C6-C12 (GRO)	ND	50	ug/l	1	5050703	05/07/05	05/08/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		77.6%	65-	135	"	н	#	H	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.0	ug/l	1	5050704	05/07/05	05/07/05	EPA 8260B	
1,2-Dichloroethane	ND	0.50	H	**	**	11	"	**	
Benzene	ND	0.50	17	п	U	11	rr	n	
Toluene	ND	0.50	*1	п	н	.,	п	n .	
Ethylbenzene	ND	0.50	17	"	11	H	п	11	
m,p-Xylene	ND	1.0	II	н	Ħ	н	11	*1	
o-Xylene	ND	0.50	П	#	#	п	**	**	
Tert-amyl methyl ether	ND	2.0	11	**	•	*1	rt	t r	
Tert-butyl alcohol	ND	10	н	н	Ħ		19		
Di-isopropyl ether	ND	2.0	77	п	п	14		II	
Ethyl tert-butyl ether	ND	2.0	n	п	ji		Ħ	п	
Methyl tert-butyl ether	110	1.0	H	**	**	Ħ	ш	n .	
Surrogate: Toluene-d8		96.0 %	87.6-	-115	n	n	#	#	
Surrogate: 4-Bromofluorobenzene		108 %	80	112	"	n	#	u	
Surrogate: Dibromofluoromethane		90.0 %	<i>78.6</i> -	-122	'n	"	"	"	

SunStar Laboratories, Inc.

1090 Adam Street, Suite K Benicia CA, 94510 Project: Dublin Toyota

Project Number: [none] Project Manager: Jim Gribi Reported: 05/13/05 15:30

B-3-W-3 T500549-13 (Water)

Analyte	Result	Reporting Limit	_ Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons b	y EPA 8015m								
C6-C12 (GRO)	ND	50	ug/l	1	5050703	05/07/05	05/08/05	EPA 8015m	· · · · · · · · · · · · · · · · · · ·
Surrogate: 4-Bromofluorobenzene		76.2 %	65-	135	n	н	н	'n	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.0	ug/l	1	5050704	05/07/05	05/07/05	EPA 8260B	
1,2-Dichloroethane	ND	0.50	"	n	H	н	"	**	
Benzene	ND	0.50	IP	Ħ	n '	n .	11	"	
Toluene	ND	0.50	•	11	**	**	H	**	
Ethylbenzene	ND	0.50	**	**	н	н	n	tt	
m,p-Xylene	ND	1.0	ff	Ħ	II	п	"	п	
o-Xylene	ND	0.50	п	(t	п	п	"	n .	
Tert-amyl methyl ether	ND	2.0	ıı	п	10	II.	п	н	
Tert-butyl alcohol	ND	10	11	n	17	"	п	**	
Di-isopropyl ether	ND	2.0	"	**	*1	H	11	**	
Ethyl tert-butyl ether	ND	2.0	IF	**	II.	**		**	
Methyl tert-butyl ether	5.3	1.0	17	**	•	**	11	n	
Surrogate: Toluene-d8		94.2 %	87.6	-115	n	В	"	н	
Surrogate: 4-Bromofluorobenzene		105 %	80	112	"	"	"	"	
Surrogate: Dibromofluoromethane		87.8 %	78.6-	122	#	"	n	"	

SunStar Laboratories, Inc.

Gribi Associates 1090 Adam Street, Suite K Benicia CA, 94510

Project: Dublin Toyota

Project Number: [none] Project Manager: Jim Gribi Reported: 05/13/05 15:30

B-2-W-1 T500549-14 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ries, Inc.					
Purgeable Petroleum Hydrocarbons b	y EPA 8015m								
C6-C12 (GRO)	ND	50	ug/l	1	5050703	05/07/05	05/08/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		78.8 %	65-	135	"	n	n .	n	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.0	ug/l	1	5050704	05/07/05	05/07/05	EPA 8260B	
1,2-Dichloroethane	ND	0.50	n	n	If		U	**	
Benzene	ND	0.50	H	11	"	TP		er	
Toluene	ND	0.50	It	n	"	15	n	11	
Ethylbenzene	ND	0.50	II	"	H		u	"	
m,p-Xylene	ND	1.0	li .	н	ш	++	Nt.	**	
o-Xylene	ND	0.50	н	n	U	It	н	n	
Tert-amyl methyl ether	ND	2.0		**	11	п	"	u .	
Tert-butyl alcohol	ND	10	II.	н	77	"	н	11	
Di-isopropyl ether	ND	2.0	н	"	11	"	п	•	
Ethyl tert-butyl ether	ND	2.0	11	"	*1	**	п	11	
Methyl tert-butyl ether	ND	1.0	u .	н	**	11	D	11	
Surrogate: Toluene-d8		92.0 %	87.6	-115	п	п	n	"	
Surrogate: 4-Bromofluorobenzene		110 %	80-	112	n	Ħ	#	#	
Surrogate: Dibromofluoromethane		88.2 %	78.6	-122	n	Ħ	"	"	

SunStar Laboratories, Inc.

2.12

1090 Adam Street, Suite K Benicia CA, 94510 Project: Dublin Toyota

Project Number: [none] Project Manager: Jim Gribi Reported: 05/13/05 15:30

B-2-W-2 T500549-15 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons by	EPA 8015m								
C6-C12 (GRO)	ND	50	ug/l	1	5050703	05/07/05	05/08/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		78.0 %	65-	135	H	n	31	"	
Volatile Organic Compounds by EPA M	Tethod 8260B								
1,2-Dibromoethane (EDB)	ND	1.0	ug/l	1	5050704	05/07/05	05/07/05	EPA 8260B	-
1,2-Dichloroethane	ND	0.50	**	It	**	11	"		
Benzene	ND	0.50	11	**	u	**	**	п	
Toluene	ND	0.50	,,	**	п	н	*	п	
Ethylbenzene	ND	0.50	17	"	11	ц	11	n	
m,p-Xylene	ND	1.0	II	II .		II	н	•	
o-Xylene	ND	0.50	п	n	11	II	11	π	
rert-amyl methyl ether	ND	2.0	*1	**		**	*	**	
Fert-butyl alcohol	ND	10	19	#	н	11	п		
Di-isopropyl ether	ND	2.0	17	**	п	**	н	н	
Ethyl tert-butyl ether	ND	2.0	**	п	n	II .	**	11	
Methyl tert-butyl ether	8.7	1.0	It	п	**	II .	u	**	
Surrogate: Toluene-d8		95.5 %	87.6-	-115	"	"	#	#	
Surrogate: 4-Bromofluorobenzene		105 %	80	112	#	"	"	a	
Surrogate: Dibromofluoromethane		88.8 %	78.6-	122	*	ĸ	"	"	

SunStar Laboratories, Inc.

1090 Adam Street, Suite K Benicia CA, 94510 Project: Dublin Toyota

Project Number: [none]
Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-1-7.5 T500549-16 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori		·				
Purgeable Petroleum Hydrocarbons I	y EPA 8015m			-					
C6-C12 (GRO)	ND	500	ug/kg	1	5050614	05/06/05	05/07/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		79.1 %	65-1	35	n	"	rr	"	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	2.0	ug/kg	1	5050613	05/06/05	05/10/05	EPA 8260B	-
1,2-Dichloroethane	ND	2.0	1)	11	11	u	11	п	
Benzene	ND	2.0	11	"	Ħ	п	**	n.	
Toluene	ND	2.0	н	11	*1	п	**	n	
Ethylbenzene	ND	2.0	17	11	10	10	10	**	
m,p-Xylene	ND	4.0	Ħ		**	H		**	
o-Xylene	ND	2.0	H	**	tı	**	**	tt	
Tert-amyl methyl ether	ND	5.0	(f	tt .	п	**	rt	11	
Tert-butyl alcohol	300	20	ц	u	п	II.	п	tr	
Di-isopropyl ether	ND	5.0	п		11	ц	μ	**	
Ethyl tert-butyl ether	ND	5.0	11	n	11	ш	11	н	
Methyl tert-butyl ether	700	5.0	11	*	•	п	**	п	
Surrogate: Toluene-d8		95.6 %	85.8-	113	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		104 %	73.5-	115	"	"	"	#	
Surrogate: Dibromofluoromethane		94.6 %	<i>79-1</i>	26	"	"	"	#	

SunStar Laboratories, Inc.

1090 Adam Street, Suite K Benicia CA, 94510 Project: Dublin Toyota

Project Number: [none] Project Manager: Jim Gribi Reported: 05/13/05 15:30

B-1-10.5 T500549-17 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons l	by EPA 8015m								
C6-C12 (GRO)	ND	500	ug/kg	1	5050614	05/06/05	05/10/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		84.0 %		135	"	"	n	"	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	2.0	ug/kg	1	5050613	05/06/05	05/10/05	EPA 8260B	
1,2-Dichloroethane	ND	2.0	"	•	#	**	н	11	
Benzene	ND	2.0	**	**	u	**	ır	п	
Toluene	ND	2.0	H	**	п	***	н	**	
Ethylbenzene	ND	2.0	u	п	н	п	н	••	
m,p-Xylene	ND	4.0	11		10	II	11	π	
o-Xylene	ND	2.0	*1		н	n	**	11	
Tert-amyl methyl ether	ND	5.0	н	#	10	н	#1	"	
Tert-butyl alcohol	ND	20	11	п	н	n	**	п	
Di-isopropyl ether	ND	5.0	10	**	n	11	ħ	11	
Ethyl tert-butyl ether	ND	5.0	IF	Ħ	n	Ħ	н	**	
Methyl tert-butyl ether	790	5.0	п	п	.,	u	II	ri	
Surrogate: Toluene-d8		96.9 %	85.8-	·113	"	#	"	īf	
Surrogate: 4-Bromofluorobenzene		101 %	73.5-	115	#	"	"	rr	
Surrogate: Dibromofluoromethane		94.0 %	79-1	126	"	"	"	JI.	

SunStar Laboratories, Inc.

Gribi Associates 1090 Adam Street, Suite K Benicia CA, 94510

Project: Dublin Toyota

Project Number: [none] Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-1-34.5 T500549-18 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note:
		SunStar L	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015m								
C6-C12 (GRO)	ND	500	ug/kg	1	5050614	05/06/05	05/09/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		88.8 %	65	135	n	īr	"	n	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	2.0	ug/kg	1	5050613	05/06/05	05/06/05	EPA 8260B	
1,2-Dichloroethane	ND	2.0	н —	•	п	"	ıı .	•	
Benzene	ND	2.0	71	Ħ	11	14	ŋ	п	
Toluene	ND	2.0		п			**	11	
Ethylbenzene	ND	2.0	It	11	**	н	11	**	
m,p-Xylene	ND	4.0	II	11	н	II	•	**	
o-Xylene	ND	2.0	а	*1	u	"	н	**	
Tert-amyl methyl ether	ND	5.0	H	TŤ	II .	n	11	ti	
Tert-butyl alcohol	ND	20	n.	et .	,,	**	11	n	
Di-isopropyl ether	ND	5.0	н	н	11	*	n	11	
Ethyl tert-butyl ether	ND	5.0	R	IF	Ħ	tr	H	**	
Methyl tert-butyl ether	ND	5.0	11	п	rr	II .	**	**	
Surrogate: Toluene-d8		95.0 %	85.8-	113	ıı	#	Ħ	п	
Surrogate: 4-Bromofluorobenzene		101 %	73.5-	115	μ	"	н	rr .	
Surrogate: Dibromofluoromethane		96.9 %	79-1	26	#	"	n	n	

SunStar Laboratories, Inc.

0.50

1090 Adam Street, Suite K Benicia CA, 94510 Project: Dublin Toyota

Project Number: [none] Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-5-5 T500549-19 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons i	y EPA 8015m								
C6-C12 (GRO)	ND	500	ug/kg	1	5050614	05/06/05	05/09/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		85.6 %	65-	135	"	,,	,,	"	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	2.0	ug/kg	1	5050613	05/06/05	05/06/05	EPA 8260B	
1,2-Dichloroethane	ND	2.0	"	**	п	II	**	0	
Benzene	ND	2.0	п	a	11	n	п	и	
Toluene	ND	2.0	11	II .	#	**		50	
Ethylbenzene	ND	2.0	H	11	n	11	11	n	
m,p-Xylene	ND	4.0	11	н	**	**	#	**	
o-Xylene	ND	2.0	tt	**	"		11	ri	
Tert-amyl methyl ether	ND	5.0	fi .	н	II .	II	u	11	
Tert-butyl alcohol	ND	20	11	11	77	**	11	,,	
Di-isopropyl ether	ND	5.0	**	n	er	H	11	n	
Ethyl tert-butyl ether	ND	5.0	tr	**	11	**	•	"	
Methyl tert-butyl ether	ND	5.0	17	**	ti	11	**	п	
Surrogate: Toluene-d8	<u> </u>	92.9 %	85.8-	113	n	п	"	н	
Surrogate: 4-Bromofluorobenzene		102 %	73.5-	115	"	"	n	"	
Surrogate: Dibromofluoromethane		91.5 %	79-I	26	#	n	,,	n	

SunStar Laboratories, Inc.

12:12

Gribi Associates 1090 Adam Street, Suite K Benicia CA, 94510

Project: Dublin Toyota

Project Number: [none]
Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-5-38 T500549-20 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015m								
C6-C12 (GRO)	ND	500	ug/kg	1	5050614	05/06/05	05/07/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		79.0 %	65-1	135	н	н	ıı	"	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	2.0	ug/kg	1	5050613	05/06/05	05/07/05	EPA 8260B	
1,2-Dichloroethane	ND	2.0	11	+		H	19	n	
Benzene	ND	2.0	II.	H	11	ii .	R	U	
Toluene	ND	2.0	17	п	"	19	u	11	
Ethylbenzene	ND	2.0	n	11	11		11		
m,p-Xylene	ND	4.0	Ħ	н	H	Ħ	,,	11	
o-Xylene	ND	2.0	н	**	H	**	11	D	
Tert-amyl methyl ether	ND	5.0	*1	H	II .	II	H	п	
Tert-butyl alcohol	ND	20	n	It	"	п	II	п	
Di-isopropyl ether	ND	5.0	**		**	н	II	11	
Ethyl tert-butyl ether	ND	5.0	n	11	11	н	*1	"	
Methyl tert-butyl ether	5.7	5.0	IP	**	"	"	"	11	
Surrogate: Toluene-d8		94.3 %	85.8-	113	n		"	#	
Surrogate: 4-Bromofluorobenzene		103 %	73.5-	115	,,	TT .	"	"	
Surrogate: Dibromofluoromethane		91.9 %	79-I	26	*	n	"	#	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dennis Dorning, Project Manager

1090 Adam Street, Suite K Benicia CA, 94510

Project: Dublin Toyota

Project Number: [none] Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-6-7.5 T500549-21 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.				•	
Purgeable Petroleum Hydrocarbons l	by EPA 8015m								
C6-C12 (GRO)	ND	500	ug/kg	1	5050614	05/06/05	05/07/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		80.0 %	65-	135	,,	"	ır	п	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	2.0	ug/kg	1	5050613	05/06/05	05/07/05	EPA 8260B	
1,2-Dichloroethane	ND	2.0	"	11	**		H	10	
Benzene	ND	2.0	п	11	11	11	H	••	
Toluene	ND	2.0	*1	n	11	n	**	n .	
Ethylbenzene	ND	2.0	11	11	#	II	н	ш	
m,p-Xylene	ND	4.0	н	u	н	n	II.	11	
o-Xylene	ND	2.0	It	n	**	"	n	**	
Tert-amyl methyl ether	ND	5.0	II	H	n	11	Ħ	**	
Tert-butyl alcohol	ND	20	**	17	ıı .	"	#	п	
Di-isopropyl ether	ND	5.0	TT	#F		μ	ti	II.	
Ethyl tert-butyl ether	ND	5.0	n	п	*1	n	(I	li	
Methyl tert-butyl ether	ND	5.0	п	II.	91	11	11	11	
Surrogate: Toluene-d8		92.7 %	85.8-	113	11	"	и.	rr	
Surrogate: 4-Bromofluorobenzene		99.9 %	73.5-	115	"	rr	"	**	
Surrogate: Dibromofluoromethane		88.6 %	79-1	126	"	п	ų	н	

SunStar Laboratories, Inc.

Gribi Associates 1090 Adam Street, Suite K

Benicia CA, 94510

Project: Dublin Toyota

Project Number: [none]
Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-6-20 T500549-22 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons b	y EPA 8015m								
C6-C12 (GRO)	ND	500	ug/kg	1	5050614	05/06/05	05/07/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		80.8 %	65	135	n	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	2.0	ug/kg	1	5050613	05/06/05	05/09/05	EPA 8260B	
1,2-Dichloroethane	ND	2.0	"	Ħ	**	n .	"	II .	
Benzene	ND	2.0	*1	11	17	11	H.	ij	
Toluene	ND	2.0	n		n	**	#	**	
Ethylbenzene	ND	2.0	41	п	u	Ħ		**	
m,p-Xylene	ND	4.0	n	п	п	**	н	71	
o-Xylene	ND	2.0	II.	11	11	ri	п	**	
Tert-amyl methyl ether	ND	5.0	п	**	79	п	н	н	
Tert-butyl alcohol	ND	20	11	"	51	**	rt .	11	
Di-isopropyl ether	ND	5.0	*1	11	**	**	п	11	
Ethyl tert-butyl ether	ND	5.0	н	**	ft	**	ıπ	**	
Methyl tert-butyl ether	ND	5.0	*1	u	II.		H	••	
Surrogate: Toluene-d8		107 %	85.8-	113	#	rr	li .	#	
Surrogate: 4-Bromofluorobenzene		99.8 %	<i>73.5-</i>	115	"	n	n	"	
Surrogate: Dibromofluoromethane		89.1 %	79-1	26	"	μ	#	tr	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dennis Dorning, Project Manager

1090 Adam Street, Suite K Benicia CA, 94510 Project: Dublin Toyota

Project Number: [none] Project Manager: Jim Gribi Reported: 05/13/05 15:30

B-6-36 T500549-23 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	_Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons l	by EPA 8015m								
C6-C12 (GRO)	ND	500	ug/kg	1	5050614	05/06/05	05/07/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		83.2 %	65-	<u> 135</u>	0	**	"	n	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	2.0	ug/kg	I	5050613	05/06/05	05/09/05	EPA 8260B	· -
1,2-Dichloroethane	ND	2.0	"	"	**	п	**	75	
Benzene	ND	2.0	11	71	ji .	**	**	rr	
Toluene	ND	2.0	*1	**	**	11	п	п	
Ethylbenzene	ND	2.0	Ħ	"	u	**	"	п	
m,p-Xylene	ND	4.0	lt.	li .	ıı .	н	**	n	
o-Xylene	ND	2.0)1	17	11	II	и	**	
Tert-amyl methyl ether	ND	5.0	11		**	II	11	н	
Tert-butyl alcohol	ND	20	H	11	n	14	**	**	
Di-isopropyl ether	ND	5.0	#1	"	11	n	n	Ħ	
Ethyl tert-butyl ether	ND	5.0	н	u	et	11		п	
Methyl tert-butyl ether	ND	5.0	Ir	n	п	ц	li	n	
Surrogate: Toluene-d8		104 %	85.8-	113	"	n	n	"	
Surrogate: 4-Bromofluorobenzene		94.8 %	73.5-	115	n	"	"	"	
Surrogate: Dibromofluoromethane		95.0 %	79-1	26	"	#	n	Ħ	

SunStar Laboratories, Inc.

1090 Adam Street, Suite K

Benicia CA, 94510

Project: Dublin Toyota

Project Number: [none]
Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-7-18 T500549-24 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015m								
C6-C12 (GRO)	ND	500	ug/kg	1	5050614	05/06/05	05/10/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		88.0 %	65-1	135	"	"	n	п	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	2.0	ug/kg	1	5050613	05/06/05	05/10/05	EPA 8260B	
1,2-Dichloroethane	ND	2.0	"	*	h	10	**	11	
Benzene	ND	2.0	п	**	n	Ħ	11	"	
Toluene	ND	2.0	11	н	**	н	"	"	
Ethylbenzene	ND	2.0	"	п	н	n .	"	,	
m,p-Xylene	ND	4.0	"	п	н	н	n.	H	
o-Xylene	ND	2.0	11	11	п	11	u	•	
Tert-amyl methyl ether	ND	5.0	H	**	n	+r	n n	"	
Tert-butyl alcohol	ND	20	u	n	••	11	"	II .	
Di-isopropyl ether	ND	5.0	II	ıı	,,	**	v	ji .	
Ethyl tert-butyl ether	ND	5.0	II	17	**		**	n .	
Methyl tert-butyl ether	65	5.0	11	н	**	11	#	*	
Surrogate: Toluene-d8		97.9 %	85.8-	113	"	n	fr	"	
Surrogate: 4-Bromofluorobenzene		98.4 %	73.5-	115	Ħ	n	rr	"	
Surrogate: Dibromofluoromethane		94.5 %	79-1	26	tr	"	rr	"	

SunStar Laboratories, Inc.

2.12

1090 Adam Street, Suite K

Benicia CA, 94510

Project: Dublin Toyota

Project Number: [none] Project Manager: Jim Gribi Reported: 05/13/05 15:30

B-9-6 T500549-25 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons b	y EPA 8015m								
C6-C12 (GRO)	ND	500	ug/kg	1	5050614	05/06/05	05/08/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		77.9 %	65-	135	"	,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	n	.
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	2.0	ug/kg	1	5050613	05/06/05	05/07/05	EPA 8260B	
1,2-Dichloroethane	ND	2.0	"	Ħ	11	It	п	II.	
Benzene	ND	2.0	It	II .	11	11	п	п	
Toluene	ND	2.0		41	**	11	**	11	
Ethylbenzene	ND	2.0	*1	н	н	97	tl	te	
m,p-Xylene	ND	4.0	11		"	*1	**	**	
o-Xylene	ND	2.0	11	u	lt .		н	**	
Tert-amyl methyl ether	ND	5.0	Ħ	n	n	ц	п	II .	
Tert-butyl alcohol	ND	20	п	11	"	н	1)	п	
Di-isopтopyl ether	ND	5.0	11	п	19	t t	н	10	
Ethyl tert-butyl ether	ND	5.0		"	**	n	**	**	
Methyl tert-butyl ether	ND	5.0	п	н	n .	**	Ħ		
Surrogate: Toluene-d8		92.8 %	85.8-	113	"	'n	,,	n	
Surrogate: 4-Bromofluorobenzene		102 %	73.5-	115	"	"	#	,,	
Surrogate: Dibromofluoromethane		91.8 %	79-1	26	"	"	#	,,	

SunStar Laboratories, Inc.

7.12

Project: Dublin Toyota

Project Number: [none]
Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-9-32 T500549-26 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015m								
C6-C12 (GRO)	ND	500	ug/kg	1	5050614	05/06/05	05/08/05	EPA 8015m	•
Surrogate: 4-Bromofluorobenzene		75.8 %	65-	135	"	"	,,	u	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	2.0	ug/kg	1	5050613	05/06/05	05/07/05	EPA 8260B	
1,2-Dichloroethane	ND	2.0	11	"	u	II.	Ħ	rr	
Benzene	ND	2.0	•1	**	U	II	ú	u	
Toluene	ND	2.0	**	п	91	10	ıı .	II	
Ethylbenzene	ND	2.0	11	п	**	**	11	11	
m,p-Xylene	ND	4.0	н	**	**	11	19	**	
o-Xylene	ND	2.0	18		n	*	11	Ħ	
Tert-amyl methyl ether	ND	5.0	п	11	п	и	"	"	
Tert-butyl alcohol	ND	20	91	Ħ	n	11	п	н	
Di-isopropyl ether	ND	5.0	11	li .	**	Ħ	н	**	
Ethyl tert-butyl ether	ND	5.0		п	tr	11	"	11	
Methyl tert-butyl ether	ND	5.0	17	11	**	**	**	"	
Surrogate: Toluene-d8		96.4 %	85.8-	-113	н	"	11	n	
Surrogate: 4-Bromofluorobenzene		97.2 %	73.5-	115	n	n	rr	"	
Surrogate: Dibromofluoromethane		89.3 %	79-1	126	*	,,	"	tt .	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dennis Dorning, Project Manager

1090 Adam Street, Suite K

Benicia CA, 94510

Project: Dublin Toyota

Project Number: [none]

Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-1-W-1 T500549-27 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Ртерагеб	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015m								
C6-C12 (GRO)	ND	50	ug/l	1	5050703	05/07/05	05/09/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		90.6 %	65-	135	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.0	ug/l	1	5050704	05/07/05	05/07/05	EPA 8260B	
1,2-Dichloroethane	ND	0.50	*	ŧı	11	п	Ħ	IJ	
Benzene	ND	0.50	II .		n	п	q	•	
Toluene	ND	0.50	п	19	**	11	n	Ħ	
Ethylbenzene	ND	0.50	,,	•	ц	tr	н	19	
m,p-Xylene	ND	1.0	н	17	u	11	**	tt	
o-Xylene	ND	0.50	11	w	II.	n	Ħ	u	
Tert-amyl methyl ether	12	2.0	H	u	**	II	п	11	
Tert-butyl alcohol	240	10	II	11	11	n	IJ	**	
Di-isopropyl ether	ND	2.0	и	11	**	**	**	19	
Ethyl tert-butyl ether	ND	2.0	,,	"	н	н	**	**	
Methyl tert-butyl ether	20000	50	11	50	n	tt	05/09/05	II.	
Surrogate: Toluene-d8		91.0 %	87.6-	115	"	"	05/07/05	"	
Surrogate: 4-Bromofluorobenzene		100 %	80-1	112	"	,,	n	"	
Surrogate: Dibromofluoromethane		88.5 %	78.6-	122	TT TT	"	*	"	

SunStar Laboratories, Inc.

Gribi Associates 1090 Adam Street, Suite K

Benicia CA, 94510

Project: Dublin Toyota

Project Number: [none] Project Manager: Jim Gribi Reported: 05/13/05 15:30

B-1-W-2 T500549-28 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note:
		SunStar L	aborato	ries, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015m								
C6-C12 (GRO)	ND	50	ug/l	1	5050703	05/07/05	05/09/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		89.4 %	65-	135	"	"	"	,,	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.0	ug/l	1	5050704	05/07/05	05/07/05	EPA 8260B	
1,2-Dichloroethane	ND	0.50	"		"	"	11		
Benzene	ND	0.50	н		"	U.	**	**	
Toluene	ND	0.50	r r	11		Ш	н		
Ethylbenzene	ND	0.50	п	**		11	· ·	u .	
m,p-Xylene	ND	1.0	11	11	**	**	п	н	
o-Xylene	ND	0.50	n	**	"	11	51	ď	
Tert-amyl methyl ether	ND	2.0	17	n	u u		н	**	
Tert-butyl alcohol	ND	10	Ħ	IJ	II	**	**	er er	
Di-isopropyl ether	ND	2.0	#	p	11	Ir		n	
Ethyl tert-butyl ether	ND	2.0	μ	11	*1	п	п	п	
Methyl tert-butyl ether	4.5	1.0	11	n	17	11	п	II	
Surrogate: Toluene-d8		95.5 %	87.6	-115	#	u	"	H	
Surrogate: 4-Bromofluorobenzene		105 %	80-	112	n	"	"	n	
Surrogate: Dibromofluoromethane		87.8 %	78.6	-122	н	"	"	"	

SunStar Laboratories, Inc.

2.12

1090 Adam Street, Suite K Benicia CA, 94510 Project: Dublin Toyota

Project Number: [none] Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-5-W-1 T500549-29 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.			-		
Purgeable Petroleum Hydrocarbons l	y EPA 8015m								
C6-C12 (GRO)	ND	50	ug/l	1	5050703	05/07/05	05/09/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		87.0 %	65-	135	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.0	ug/l	1	5050704	05/07/05	05/07/05	EPA 8260B	
1,2-Dichloroethane	ND	0.50	11	10		u	IJ	n	
Benzene	ND	0.50	11	H		IJ	11	n	
Toluene	ND	0.50	11	11	n n	**		н	
Ethylbenzene	ND	0.50	*	**	n	n	n	**	
m,p-Xylene	ND	1.0	11	II	*	11	11	ti .	
o-Xylene	ND	0.50	11	н	u	ır	Ħ	ш	
Tert-amyl methyl ether	ND	2.0	**	**	n	II	11	11	
Tert-butyl alcohol	ND	10	Ħ	11	**	II .	11	**	
Di-isopropyl ether	ND	2.0	0	**	ır	11	**	11	
Ethyl tert-butyl ether	ND	2.0	tt	ш	11	н	11	"	
Methyl tert-butyl ether	66	1.0	п	11	II .	**	u	п	
Surrogate: Toluene-d8		95.2 %	87.6	.115	"	n	n	"	
Surrogate: 4-Bromofluorobenzene		105 %	80	112	"	"	#	"	
Surrogate: Dibromofluoromethane		90.5 %	78.6-	122	"	"	n	"	

SunStar Laboratories, Inc.

Project: Dublin Toyota

Project Number: [none]
Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-5-W-2 T500549-30 (Water)

2000019 00 (11202)													
Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes					
	SunStar La	aborator	ies, Inc.										
y EPA 8015m			-										
ND	50	ug/l	1	5050703	05/07/05	05/09/05	EPA 8015m						
	92.6 %		135	"	n	n .	и						
Method 8260B													
ND	1.0	ug/l	1	5050704	05/07/05	05/07/05	EPA 8260B						
ND	0.50	1)	**	11	11	"	"						
ND	0.50	II	**	п		\$f	и						
ND	0.50	п	P	"	H		п						
ND	0.50	п	п		п	10	11						
ND	1.0	н	IJ	н	ji	**	11						
ND	0.50	11	н		**	п	н						
ND	2.0	11	**	tt	**	п	**						
ND	10	n	Ħ	n	Ħ	n	H						
ND	2.0	It	19	ıı .	**	*	**						
ND	2.0	п	"	11	97	#	10						
ND	1.0	11	н	**	н	11	11						
	93.5 %	87.6-	-115	#	n	Ħ	#						
	100 %	80-	112	"	"	n	"						
	88.0 %			"	"	n	"						
	Method 8260B ND ND ND ND ND ND ND ND ND N	Result Limit SunStar Late	ND Sug/l Page P	ND 1.0 ug/l limit li	ND 1.0 ug/l l 5050704	ND 1.0 ug/l 1 5050704 05/07/05	ND 1.0 ug/l 1 5050704 05/07/05 05/07/05 ND 0.50 ug/l 1 5050704 05/07/05 05/07/05 ND 0.50 ug/l 1 5050704 05/07/05 05/07/05 ND 0.50 ug/l ug/l	ND 1.0 ug/l 1 5050704 05/07/05 05/09/05 EPA 8260B ND 0.50 ug/l 1 5050704 05/07/05 05/09/05 EPA 8260B ND 0.50 ug/l 1 5050704 05/07/05 05/07/05 EPA 8260B ND 0.50 ug/l ug/l					

SunStar Laboratories, Inc.

2.12

1090 Adam Street, Suite K

Benicia CA, 94510

Project: Dublin Toyota

Project Number: [none] Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-6-W-1 T500549-31 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	_ Prepared	Analyzed	Method	Notes
		SunStar L	borator	ies, Inc.					
Purgeable Petroleum Hydrocarbons i	y EPA 8015m			•					
C6-C12 (GRO)	ND	50	ug/l	1	5050703	05/07/05	05/09/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		79.0 %	65-	135	"	"	"	и	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.0	ug/l	1	5050704	05/07/05	05/07/05	EPA 8260B	
1,2-Dichloroethane	ND	0.50	"	**	u	II	n	H	
Benzene	ND	0.50	п	u	D	17	п	h	
Toluene	ND	0.50	+1	19	**	**	11	п	
Ethylbenzene	ND	0.50	H	11	"	**	*	**	
m,p-Xylene	ND	1.0	ŧı	77	17	н	**	n	
o-Xylene	ND	0.50	r•	**	н	и		•	
Tert-amyl methyl ether	ND	2.0	ш	н	п	D	п	н	
Tert-butyl alcohol	ND	10	11	II.	11	*	ıı .	п	
Di-isopropyl ether	ND	2.0	*1	10	**	tr	II.	n	
Ethyl tert-butyl ether	ND	2.0	н	ŧ	н	11	**	"	
Methyl tert-butyl ether	ND	1.0	n	**	P	ш		11	
Surrogate: Toluene-d8		94.8 %	87.6-	115	ū	ıı	п	rr .	
Surrogate: 4-Bromofluorobenzene		102 %	80-1	12	"	"	n	It	
Surrogate: Dibromofluoromethane		88.2 %	78.6-	122	,,	*	"	n	

SunStar Laboratories, Inc.

12-12

Project: Dublin Toyota

Project Number: [none] Project Manager: Jim Gribi Reported: 05/13/05 15:30

B-6-W-2 T500549-32 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.			<u> </u>		
Purgeable Petroleum Hydrocarbons b	y EPA 8015m			·					
C6-C12 (GRO)	ND	50	ug/l	1	5050703	05/07/05	05/09/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		87.8 %	65-	135	n	"	ıı	n	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.0	ug/l	1	5050704	05/07/05	05/07/05	EPA 8260B	•
1,2-Dichloroethane	ND	0.50	It	n	n.	п	**	11	
Benzene	ND	0.50	11	п	11	II	н	PF .	
Toluene	ND	0.50	•11	*1	*	**	**	ш	
Ethylbenzene	ND	0.50	**	**	"	n	,,	п	
m,p-Xylene	ND	1.0	11	11	11	**	u	н	
o-Xylene	ND	0.50	n	"	"	N	II	**	
Tert-amyl methyl ether	ND	2.0	IP	II .	II	n	**	Ħ	
Tert-butyl alcohol	ND	10	II	II .	II	II .	11	**	
Di-isopropyl ether	ND	2.0	11	11	D	и	11	**	
Ethyl tert-butyl ether	ND	2.0	n		**	II.	н	н	
Methyl tert-butyl ether	ND	1.0	"	11	н	н	II	II.	
Surrogate: Toluene-d8		94.0 %	87.6-	115	#	"	н	#	
Surrogate: 4-Bromofluorobenzene		108 %	80	112	"	"	"	,,	
Surrogate: Dibromofluoromethane		93.0 %	78.6-	122	17	n	#	"	

SunStar Laboratories, Inc.

chain of custody document. This analytical report must be reproduced in its entirety.

The results in this report apply to the samples analyzed in accordance with the

Dennis Dorning, Project Manager

1090 Adam Street, Suite K Benicia CA, 94510 Project: Dublin Toyota

Project Number: [none] Project Manager: Jim Gribi Reported: 05/13/05 15:30

B-7-W-1 T500549-33 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	borator	ies, Inc.	·—·				
Purgeable Petroleum Hydrocarbons k	y EPA 8015m			•					
C6-C12 (GRO)	ND	50	ug/l	1	5050703	05/07/05	05/09/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		88.4 %	65-	135	"	,,	n	"	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.0	ug/l	1	5050704	05/07/05	05/07/05	EPA 8260B	
1,2-Dichloroethane	ND	0.50	n	R	ıı .	и	Ħ	"	
Benzene	ND	0.50	If	ш	11	11	n	n .	
Toluene	ND	0.50	п	н	**	11	п	11	
Ethylbenzene	ND	0.50	*1	#	Ħ	н	н	11	
m,p-Xylene	ND	1.0	n	17	W	**	*	**	
o-Xylene	ND	0.50		н	u	R	19	II	
Tert-amyl methyl ether	ND	2.0	tr.	п	U	II .	**	п	
Tert-butyl alcohol	ND	10	н	11	**	,,	п	**	
Di-isopropyl ether	ND	2.0	11	11	Ħ	п	19	tf	
Ethyl tert-butyl ether	ND	2.0	H	н	11	H	11	11	
Methyl tert-butyl ether	1500	10	71	10	R	19	05/09/05	n	
Surrogate: Toluene-d8		95.0 %	87.6-	115	п	71	05/07/05	п	
Surrogate: 4-Bromofluorobenzene		104 %	80-1		"	n	"	n	
Surrogate: Dibromofluoromethane		87.2 %	78.6-	122	#	#	n	,,	

SunStar Laboratories, Inc.

Gribi Associates 1090 Adam Street, Suite K

Benicia CA, 94510

Project: Dublin Toyota

Project Number: [none] Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-7-W-2 T500549-34 (Water)

Analyte	Result	Reporting Limit	_ Units	Dilution	Batch_	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015m								
C6-C12 (GRO)	ND	50	ug/l	1	5050703	05/07/05	05/09/05	EPA 8015m	•
Surrogate: 4-Bromofluorobenzene		87.2 %	65-	135	"	ft	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.0	ug/l	1	5050704	05/07/05	05/07/05	EPA 8260B	
1,2-Dichloroethane	ND	0.50	11	**	H	**	**	"	
Benzene	ND	0.50	It	"	*1	1r	н	ц	
Toluene	ND	0.50	п	**	*		II.	11	
Ethylbenzene	ND	0.50	11	н	п	17	19		
m,p-Xylene	ND	1.0	н	n	п	п	Ħ	tt	
o-Xylene	ND	0.50	91	"	**	11	n	**	
Tert-amyl methyl ether	ND	2.0	H		Ħ	**	Ħ	II.	
Tert-butyl alcohol	ND	10	IF	tl	11	11	ц	II	
Di-isopropyl ether	ND	2.0	II .	11	**	**	II	n	
Ethyl tert-butyl ether	ND	2.0	11	Ħ	н	n	II	**	
Methyl tert-butyl ether	360	1.0	**	п	n.	II	**	n	
Surrogate: Toluene-d8		95.2 %	87.6-	115	#	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	80-1	112	"	"	n	"	
Surrogate: Dibromofluoromethane		89.8 %	78.6-	122	"	"	**	tt	

SunStar Laboratories, Inc.

1090 Adam Street, Suite K Benicia CA, 94510 Project: Dublin Toyota

Project Number: [none] Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-9-W-1 T500549-35 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	ies, Inc.					
Purgeable Petroleum Hydrocarbons l	y EPA 8015m								
C6-C12 (GRO)	ND ·	50	ug/l	1	5050703	05/07/05	05/09/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		85.6 %	65-1	135	n	n	н	"	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.0	ug/l	1	5050704	05/07/05	05/07/05	EPA 8260B	
1,2-Dichloroethane	ND	0.50	"	ır	н	11	r	н	
Benzene	ND	0.50	II.	**	п	n	97	п	
Toluene	ND	0.50	II	u	11	11	н	19	
Ethylbenzene	ND	0.50	*1	II.	*1	н	п	W.	
m,p-Xylene	ND	1.0	1f	*1	10		"	**	
o-Xylene	ND	0.50	"	17	II .	17	n	н	
Tert-amyl methyl ether	ND	2.0	II	R	11	. 11	H	II	
Tert-butyl alcohol	ND	10	II	п	,,	ti .	II .	11	
Di-isopropyl ether	ND	2.0	11	п	**	11	II	st	
Ethyl tert-butyl ether	ND	2.0	II	**	78	D	•	**	
Methyl tert-butyl ether	2.9	1.0	н	**	n	**	11	rr ·	
Surrogate: Toluene-d8	-	94.8 %	87.6-	115	н	n	rı	h	
Surrogate: 4-Bromofluorobenzene		103 %	80-1	12	"	n	п	"	
Surrogate: Dibromofluoromethane		89.0 %	78.6-A	122	"	*	n	"	

SunStar Laboratories, Inc.

Gribi Associates 1090 Adam Street, Suite K

Project: Dublin Toyota

Benicia CA, 94510

Project Number: [none]
Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-9-W-2 T500549-36 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	•	SunStar La	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015m					•			
C6-C12 (GRO)	ND	50	ug/l	1	5050703	05/07/05	05/09/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		86.0 %	65	135	н	н	"	п	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.0	ug/l	1	5050704	05/07/05	05/08/05	EPA 8260B	
1,2-Dichloroethane	ND	0.50	IF.			•	н	11	
Benzene	ND	0.50	II	п	tí	н	н	"	
Toluene	מא	0.50	1)	**	**	п	11		
Ethylbenzene	ND	0.50	n	**	**	ш	**	н	
m,p-Xylene	ND	1.0	11	17	п	11	**	•	
o-Xylene	ND	0.50	н	"	11	•	11	n	
Tert-amyl methyl ether	ND	2.0	n	п	*	**	n	п	
Tert-butyl alcohol	ND	10	μ	H	**	н	U	**	
Di-isopropyl ether	ND	2.0	11	11	н	11	п	**	
Ethyl tert-butyl ether	ND	2.0	n	**	"	п	D	***	
Methyl tert-butyl ether	18	1.0	17	11	II.	**	*	**	
Surrogate: Toluene-d8	<u></u>	94.2 %	87.6-	115	μ	"	н	īt	
Surrogate: 4-Bromofluorobenzene		104 %	80-1	12	"	"	"	"	
Surrogate: Dibromofluoromethane		90.2 %	78. <i>6</i> -	122	"	"	"	n	

SunStar Laboratories, Inc.

1090 Adam Street, Suite K Benicia CA, 94510 Project: Dublin Toyota

Project Number: [none] Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-12-W-1 T500549-37 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar La	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons l	by EPA 8015m								
C6-C12 (GRO)	ND	50	ug/l	1	5050703	05/07/05	05/09/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene	-	86.2 %	65-	135	"	,,	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.0	ug/l	1	5050704	05/07/05	05/08/05	EPA 8260B	
1,2-Dichloroethane	ND	0.50	ir	11	μ	ft	#	ц	
Benzene	ND	0.50	п	н	**	II	н	п	
Toluene	ND	0.50	41	п	n	,	IJ	19	
Ethylbenzene	ND	0.50	n	11	**	u	**	Ħ	
m,p-Xylene	ND	1.0	"	**	п	**	**	11	
o-Xylene	ND	0.50	19	n	п	(f	11	**	
Tert-amyl methyl ether	ND	2.0	и	"	17	u	n	u	
Tert-butyl alcohol	ND	10	н	Ħ	**	ı	II .	11	
Di-isopropyl ether	ND	2.0	n	п	17	17	н	11	
Ethyl tert-butyl ether	ND	2.0	19	II .	**	н		tt	
Methyl tert-butyl ether	4.5	1.0	н	W.	п	*	**	п	
Surrogate: Toluene-d8		92.5 %	87.6-	115	"	IJ	"	n	.
Surrogate: 4-Bromofluorobenzene		103 %	80-1	112	"	"	n	n	
Surrogate: Dibromofluoromethane		92.5 %	78.6-	122	"	"	#	"	

SunStar Laboratories, Inc.

Project: Dublin Toyota Number: [none]

Project Number: [none] Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-12-W-2 T500549-38 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator						
Purgeable Petroleum Hydrocarbons by	⁷ EPA 8015m			•					
C6-C12 (GRO)	ND	50	ug/l	1	5050703	05/07/05	05/09/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		86.6 %	65-	 135	"	"	"	n	
Volatile Organic Compounds by EPA M	Aethod 8260B								
1,2-Dibromoethane (EDB)	ND	1.0	ug/l	1	5050704	05/07/05	05/08/05	EPA 8260B	
1,2-Dichloroethane	ND	0.50	11	**	n	"	"	*	
Benzene	ND	0.50	41	n	*1	п	п	н	
Toluene	ND	0.50	n	94		*1	*	п	
Ethylbenzene	ND	0.50	**	**	**	"	н	*1	
m,p-Xylene	ND	1.0	r i	a	"	•	п		
o-Xylene	ND	0.50	п	11	н	**	11	11	
Tert-amyl methyl ether	ND	2.0	11	**	11	ıı	**	н	
Tert-butyl alcohol	ND	10	н	44	11	11	,,	II	
Di-isopropyl ether	ND	2.0	11		11	н	H	11	
Ethyl tert-butyl ether	ND	2.0	н	н	ч	H	п	"	
Methyl tert-butyl ether	13	1.0	ır	п	u	••		**	
Surrogate: Toluene-d8		95.0 %	87.6-	115	n	n .	,,	r!	
Surrogate: 4-Bromofluorobenzene		103 %	80-1	12	#	,,	"	"	
Surrogate: Dibromofluoromethane		87.5 %	78.6		"	"	"	n	

SunStar Laboratories, Inc.

0.12

1090 Adam Street, Suite K Benicia CA, 94510 Project: Dublin Toyota

Project Number: [none] Project Manager: Jim Gribi Reported: 05/13/05 15:30

B-8-W-1 T500549-39 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons k	y EPA 8015m								
C6-C12 (GRO)	ND	50	ug/l	1	5050703	05/07/05	05/09/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		83.8 %	65-	135	#	"	n	n	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.0	ug/l	1	5050704	05/07/05	05/08/05	EPA 8260B	<u>.</u>
1,2-Dichloroethane	ND	0.50	11	17	н	11	Ħ	**	
Benzene	ND	0.50	н	ш	11	n	н	n	
Toluene	ND	0.50	+1	п	**	"	п	п	
Ethylbenzene	ND	0.50	I†	**	TI	п	h	10	
m,p-Xylene	ND	1.0	п	**		ji .	**	н	
o-Xylene	ND	0.50	*1	**	ш	*	n	**	
Tert-amyl methyl ether	ND	2.0		11	ti.	**	н	п	
Tert-butyl alcohol	ND	10	**	11	**	н	ч	11	
Di-isopropyl ether	ND	2.0	U.	H	11	п	II	"	
Ethyl tert-butyl ether	ND	2.0	II.	н	tt	11	**	11	
Methyl tert-butyl ether	480	1.0	11	**	II.	Ħ	"	rr	
Surrogate: Toluene-d8		92.2 %	87.6-	115	"	"	rt .	ņ	
Surrogate: 4-Bromofluorobenzene		102 %	80-2	112	"	U	n	,,	
Surrogate: Dibromofluoromethane		90.2 %	78.6-	122	"	u	н	"	

SunStar Laboratories, Inc.

0.4

Project: Dublin Toyota

Project Number: [none] Project Manager: Jim Gribi Reported: 05/13/05 15:30

B-8-W-2 T500549-40 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborato	ies, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015m								
C6-C12 (GRO)	ND	50	ug/l	1	5050703	05/07/05	05/09/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		86.0 %	65-	135	#	"	11	н	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.0	ug/l	1	5050704	05/07/05	05/08/05	EPA 8260B	
1,2-Dichloroethane	ND	0.50	11	**	**	II .	n	II.	
Benzene	ND	0.50	и	Ħ	rt	11	11	**	
Toluene	ND	0.50	**	п	п	10		*	
Ethylbenzene	ND	0.50	n		п	**	Ħ	rr .	
m,p-Xylene	ND	1.0	17	11	11		п	**	
o-Xylene	ND	0.50	H	"	**	tt	n	n	
Tert-amyl methyl ether	ND	2.0	Iŧ	11	11	п	н	п	
Tert-butyl alcohol	ND	10	ш		"	п	**	п	
Di-isopropyl ether	ND	2.0	11	n	H	**	17	n	
Ethyl tert-butyl ether	ND	2.0	11	п	п	11	н	H	
Methyl tert-butyl ether	41	1.0	11	**	11	**	II .	# ·	
Surrogate: Toluene-d8		93.5 %	87.6	-115	#	п	п	"	
Surrogate: 4-Bromofluorobenzene		103 %	80-	112	"	m .	"	"	
Surrogate: Dibromofluoromethane		88.8 %	78.6	-122	"	n	#	H	

SunStar Laboratories, Inc.

0:10

1090 Adam Street, Suite K Benicia CA, 94510 Project: Dublin Toyota

Project Number: [none] Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-11-W-1 T500549-41 (Water)

Analyte	Result	Reporting Limit	<u>Units</u>	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015m								
C6-C12 (GRO)	ND	50	ug/l	1	5050703	05/07/05	05/10/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		85.4 %	65-	135	"	"	"	n	·
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.0	ug/l	1	5050704	05/07/05	05/08/05	EPA 8260B	
1,2-Dichloroethane	ND	0.50	"	II.	n	u	II	"	
Benzene	ND	0.50	Ŋ	11		U	n	"	
Toluene	ND	0.50		11		11	,,	u	
Ethylbenzene	ND	0.50	#	*11	10	**	Ħ	H	
m,p-Xylene	ND	1.0	H	tt	*1	17	**	**	
o-Xylene	ND	0.50	It	п	Ħ	n	н	10	
Tert-amyl methyl ether	ND	2.0	11	11	ſI .	11	11	н	
Tert-butyl alcohol	ND	10	*1	*	п	**	tı	u	
Di-isopropyl ether	ND	2.0	n	11	н	11	11	n	
Ethyl tert-butyl ether	ND	2.0	ŧi.	Ħ	**	T)		**	
Methyl tert-butyl ether	ND	1.0	11	п	**	н	u	н	
Surrogate: Toluene-d8		91.2 %	87.6-	115	"	<i>n</i>	p	rr .	
Surrogate: 4-Bromofluorobenzene		103 %	80-1		n	"	,,	rr .	
Surrogate: Dibromofluoromethane		88.0 %	78.6-	122	#	"	"	<i>n</i>	

SunStar Laboratories, Inc.

Project: Dublin Toyota

Project Number: [none] Project Manager: Jim Gribi Reported: 05/13/05 15:30

B-11-W-2 T500549-42 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratoı	ies, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015m								
C6-C12 (GRO)	ND	50	ug/l	1	5050703	05/07/05	05/10/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		80.4 %	65-	135	#	"	n	n	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.0	ug/l	1	5050704	05/07/05	05/08/05	EPA 8260B	
1,2-Dichloroethane	ND	0.50	71	II.		п	11	"	
Benzene	ND	0.50	"	п	ır	п	**	11	
Toluene	ND	0.50	н	11	п	н	*	**	
Ethylbenzene	ND	0.50	Ħ	**	U	11	н	*	
m,p-Xylene	ND	1.0	II		II	*	н	"	
o-Xylene	ND	0.50	II	**	**	11	п	n .	
Tert-amyl methyl ether	ND	2.0	11	"	P	"	"	11	
Tert-butyl alcohol	ND	10	н	"	н	**	ĸ	••	
Di-isopropyl ether	ND	2.0	51	II .	*	н	#1	Ħ	
Ethyl tert-butyl ether	ND	2.0	FT	11	Ħ	п	17	17	
Methyl tert-butyl ether	2300	10	IT	10	п	11	05/09/05	**	
Surrogate: Toluene-d8		91.2 %	87.6	-115	#	"	05/08/05	11	
Surrogate: 4-Bromofluorobenzene		102 %	80-	112	"	"	n	H	
Surrogate: Dibromofluoromethane		92.2 %	78.6	-122	"	"	u	n	

SunStar Laboratories, Inc.

2.12

1090 Adam Street, Suite K Benicia CA, 94510 Project: Dublin Toyota

Project Number: [none]
Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-10-W-1 T500549-43 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons b	y EPA 8015m								
C6-C12 (GRO)	ND	50	ug/l	1	5050703	05/07/05	05/10/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		84.6 %	65-	135	"	"	n	#	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.0	ug/l	1	5050704	05/07/05	05/08/05	EPA 8260B	
1,2-Dichloroethane	ND	0.50	"	11	11	п	41	11	
Benzene	ND	0.50	ц	н	н	11	11	W.	
Toluene	ND	0.50	п	**	u .	11	**	n	
Ethylbenzene	ND	0.50	11	"	11	Ħ	11	п	
m,p-Xylene	ND	1.0	н	IJ	11	н	п	п	
o-Xylene	ND	0.50	41	••	91	*1	11	**	
Tert-amyl methyl ether	ND	2.0	н	**	n	н	11	N	
Tert-butyl alcohol	ND	10	11	"	"	II .	n	91	
Di-isopropyl ether	ND	2.0	н	m	н	11	H	ŧı	
Ethyl tert-butyl ether	ND	2.0	#1	m	u	**	It	n	
Methyl tert-butyl ether	ND	1.0	н	п	11	n	II .	11	
Surrogate: Toluene-d8		94.0 %	87.6-	115	"	ır	"	n n	
Surrogate: 4-Bromofluorobenzene		104 %	80-1	112	"	u	"	**	
Surrogate: Dibromofluoromethane		86.8 %	78.6-	122	"	n	#	tt .	

SunStar Laboratories, Inc.

Project: Dublin Toyota

Project Number: [none]
Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-10-W-2 T500549-44 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratoi	ries, Inc.					
Purgeable Petroleum Hydrocarbons l	by EPA 8015m								
C6-C12 (GRO)	ND	50	ug/l	1	5050703	05/07/05	05/10/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		81.8 %	65-	.135	n	п	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.0	ug/l	1	5050704	05/07/05	05/08/05	EPA 8260B	
1,2-Dichloroethane	ND	0.50	н —	Ħ	**	11	n	и	
Benzene	ND	0.50	If	Ji	10	ur .	u	*	
Toluene	ND	0.50	II	11	H	н	11	•	
Ethylbenzene	ND	0.50	11	•	n	17	**	11	
m,p-Xylene	ND	1.0	91	11	п	H.		**	
o-Xylene	ND	0.50	71	11	11	п	11	tr	
Tert-amyl methyl ether	ND	2.0	17	**	tr .	n	r	u,	
Tert-butyl alcohol	ND	10	n	п	**	"	ц	*	
Di-isopropyl ether	ND	2.0	IF	11	11	н	п	**	
Ethyl tert-butyl ether	ND	2.0	11		н		*1	17	
Methyl tert-butyl ether	430	1.0	н	41	II .	н	11	H	
Surrogate: Toluene-d8		94.2 %	87.6	-115	"	n	"	п	
Surrogate: 4-Bromofluorobenzene		106 %	80-	112	"	"	"	"	
Surrogate: Dibromofluoromethane		89.5 %	78.6	-122	"	"	n	#	

SunStar Laboratories, Inc.

1090 Adam Street, Suite K Benicia CA, 94510 Project: Dublin Toyota

Project Number: [none]
Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-12-11.0 T500549-45 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratorie	s, Inc.					
Purgeable Petroleum Hydrocarbons l	oy EPA 8015m								
C6-C12 (GRO)	ND	500	ug/kg	1	5050614	05/06/05	05/08/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		77.3 %	65-13	35	н	n	"	н	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	2.0	ug/kg	1	5050613	05/06/05	05/07/05	EPA 8260B	
1,2-Dichloroethane	ND	2.0	"	*1	"	ır	11	ŋ	
Benzene	ND	2.0	It	11	н	II	н	**	
Toluene	ND	2.0	п	11	**	н	п	н	
Ethylbenzene	ND	2.0	n		tt	**	11	36	
m,p-Xylene	ND	4.0	n		II .	n	Ħ	н	
o-Xylene	ND	2.0	н	**	н	11	11	II	
Tert-amyl methyl ether	ND	5.0	R	ш	11	11	19	11	
Tert-butyl alcohol	ND	20	11	II .	+r	II .	н	11	
Di-isopropyl ether	ND	5.0	11	**	**	i i	11	11	
Ethyl tert-butyl ether	ND	5.0	**	"	u	tr	H	n	
Methyl tert-butyl ether	ND	5.0	11	D	п	tt.	н	U	
Surrogate: Toluene-d8		95.5 %	85.8-1	13	"	"	н	"	
Surrogate: 4-Bromofluorobenzene		104 %	73.5-1.	15	"	n	п	,,	
Surrogate: Dibromofluoromethane		91.8 %	79-12	6	"	,,	ມ	"	

SunStar Laboratories, Inc.

1090 Adam Street, Suite K

Benicia CA, 94510

Project: Dublin Toyota

Project Number: [none]
Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-12-35.5 T500549-46 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.	·		· ·		
Purgeable Petroleum Hydrocarbons by	y EPA 8015m								
C6-C12 (GRO)	ND	500	ug/kg	1	5050614	05/06/05	05/10/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		84.0 %	65-	135	μ	#	"	rr	
Volatile Organic Compounds by EPA I	Method 8260B								
1,2-Dibromoethane (EDB)	ND	2.0	ug/kg	1	5050613	05/06/05	05/07/05	EPA 8260B	
1,2-Dichloroethane	ND	2.0	- +	н	H	••	11	**	
Benzene	ND	2.0	*1	u	(t	**		"	
Toluene	ND	2.0	**	п	11	w	Ħ	99	
Ethylbenzene	ND	2.0	**	11	ıı	н	u	•	
m,p-Xylene	ND	4.0	•	**	**	11	ш	*	
o-Xylene	ND	2.0	Ħ	n	11	II.	11	Ħ	
Tert-amyl methyl ether	ND	5.0	ш	**	**	11	w	п	
Tert-butyl alcohol	ND	20	II		H	11	**	11	
Di-isopropyl ether	ND	5.0	ŧI	ŧ	**	"	11	11	
Ethyl tert-butyl ether	ND	5.0	11	п	11	11	P.	**	
Methyl tert-butyl ether	ND	5.0	**	11	п	**	n	tr	
Surrogate: Toluene-d8		94.1 %	85.8-	113	"	"	U	"	
Surrogate: 4-Bromofluorobenzene		103 %	73. 5 -	115	*	rr	ņ	"	
Surrogate: Dibromofluoromethane		87.3 %	79-	126	"	n	"	"	

SunStar Laboratories, Inc.

12:16

1090 Adam Street, Suite K Benicia CA, 94510 Project: Dublin Toyota

Project Number: [none]
Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-8-10 T500549-47 (Soil)

Analyte	Result	Reporting Limit	<u>U</u> nits	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons l	y EPA 8015m								
C6-C12 (GRO)	ND	500	ug/kg	1	5050614	05/06/05	05/08/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		76.6 %	65-	135	ff.	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	2.0	ug/kg	1	5050613	05/06/05	05/07/05	EPA 8260B	
1,2-Dichloroethane	ND	2.0	п	,,	**	II	11	11	
Benzene	ND	2.0	11	H	11	11	11	H	
Toluene	ND	2.0	11	*	**	и	*	**	
Ethylbenzene	ND	2.0	n	n	II	"	II	tr	
m,p-Xylene	ND	4.0	n	II.	n	11	lı	n .	
o-Xylene	ND	2.0	11	n	**	II .	11	н	
Tert-amyl methyl ether	ND	5.0	II		н	IJ	**	п	
Tert-butyl alcohol	ND	20		11	**	*	*1	н	
Di-isopropyl ether	ND	5.0	H		н	11		**	
Ethyl tert-butyl ether	ND	5.0	н	u	u	Ħ	p p	н	
Methyl tert-butyl ether	8.0	5.0	IF	п	D	н	1)	п	
Surrogate: Toluene-d8		94.3 %	85.8-	113	"		"	"	
Surrogate: 4-Bromofluorobenzene		102 %	73.5-	115	"	#	"	"	
Surrogate: Dibromofluoromethane		93.1 %	79-1	26	"	"	rı	"	

SunStar Laboratories, Inc.

Project: Dublin Toyota

Project Number: [none] Project Manager: Jim Gribi Reported: 05/13/05 15:30

B-8-33 T500549-48 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Ртерагед	Analyzed	Method	Notes
		SunStar L				~ <u>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ </u>			A 1 V 1 V 0
Purgeable Petroleum Hydrocarbons	by EPA 8015m			•					
C6-C12 (GRO)	ND	500	ug/kg	1	5050614	05/06/05	05/08/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		78.6 %	65-1	35	#	н	H	#	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	2.0	ug/kg	1	5050613	05/06/05	05/07/05	EPA 8260B	
1,2-Dichloroethane	ND	2.0	n	**	11	**	11	P	
Benzene	ND	2.0	**	**	н	H		п	
Toluene	ND	2.0	lt.	н	#	н	πŧ	11	
Ethylbenzene	ND	2.0	11	11	*	п	v		
m,p-Xylene	ND	4.0	t†	11	rr	"	н	**	
o-Xylene	ND	2.0	IT	**	II .	11	u	87	
Tert-amyl methyl ether	ND	5.0	п	п	п	11	n	tt	
Tert-butyl alcohol	ND	20	11	**	11		11	II	
Di-isopropyl ether	ND	5.0	**	н	ut.	n	tr	п	
Ethyl tert-butyl ether	ND	5.0	н	u	11	ii .	н	11	
Methyl tert-butyl ether	ND	5.0	71	п	"	п	*		
Surrogate: Toluene-d8		95.2 %	85.8-	113	н	"	"	"	
Surrogate: 4-Bromofluorobenzene		101 %	73.5-	115	Ħ	"	#	"	
Surrogate: Dibromofluoromethane		89.5 %	79-1.	26	*	"	и		

SunStar Laboratories, Inc.

1090 Adam Street, Suite K Benicia CA, 94510 Project: Dublin Toyota

Project Number: [none] Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-11-10 T500549-49 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons l	oy EPA 8015m								
C6-C12 (GRO)	ND	500	ug/kg	1	5050614	05/06/05	05/08/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		88.0 %	65-	135	ņ	,,	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	2.0	ug/kg	1	5050613	05/06/05	05/10/05	EPA 8260B	
1,2-Dichloroethane	ND	2.0	"	"	19	"	H	H	
Benzene	ND	2.0	μ	Ħ	Ħ	II	"	**	
Toluene	ND	2.0	11	It	п	n	H	lt.	
Ethylbenzene	ND	2.0	H	n	11	11	11	ш	
m,p-Xylene	ND	4.0	н		н	**	**	11	
o-Xylene	ND	2.0	It.	11	w	**	n	н	
Tert-amyl methyl ether	ND	5.0	п		u	II	"	11	
Tert-butyl alcohol	ND	20	"	п	11	н	ıı .	н	
Di-isopropyl ether	ND	5.0	H	ij	н	**	п	ш	
Ethyl tert-butyl ether	ND	5.0	**	31	er .	11	"	n	
Methyl tert-butyl ether	ND	5.0	lt.	**	**	н	**	17	
Surrogate: Toluene-d8		99.0 %	85.8-	113	rı	n		H.	
Surrogate: 4-Bromofluorobenzene		104 %	73.5-	115	,,	"	n	"	
Surrogate: Dibromofluoromethane		93.3 %	79-1	26	"	u	"	"	

SunStar Laboratories, Inc.

Project: Dublin Toyota

1090 Adam Street, Suite K Benicia CA, 94510

Project Number: [none]
Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-11-35 T500549-50 (Soil)

Analyte	Result	Reporting <u>Li</u> mit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015m								
C6-C12 (GRO)	ND	500	ug/kg	1	5050614	05/06/05	05/09/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		90.4 %	65	135	"	#	n	"	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	2.0	ug/kg	1	5050613	05/06/05	05/07/05	EPA 8260B	
1,2-Dichloroethane	ND	2.0	11	"	п	Ħ	н	**	
Benzene	ND	2.0	n	**	II .	**	11	17	
Toluene	ND	2.0	t!	11	II	**	**	rt	
Ethylbenzene	ND	2.0	II	27	**	п	*	ıı .	
m,p-Xylene	ND	4.0	11	tt	17	п	п	**	
o-Xylene	ND	2.0	II	U	H	n .	п	11	
Tert-amyl methyl ether	ND	5.0	11	11	**	11	н		
Tert-butyl alcohol	ND	20	н	Ħ	Ħ		**	н	
Di-isopropyl ether	ND	5.0	11	**	н	#	"	11	
Ethyl tert-butyl ether	ND	5.0	11	**	п	11	н	**	
Methyl tert-butyl ether	9.6	5.0	n	#	II	"	n	Ħ	
Surrogate: Toluene-d8		92.9 %	85.8-	113	"	"	"	n	·
Surrogate: 4-Bromofluorobenzene		101 %	73.5-	115	"	n	U	n	
Surrogate: Dibromofluoromethane		92.8 %	79-1	26	"	n	n	"	

SunStar Laboratories, Inc.

1090 Adam Street, Suite K Benicia CA, 94510 Project: Dublin Toyota

Project Number: [none] Project Manager: Jim Gribi Reported: 05/13/05 15:30

B-10-7.0 T500549-51 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons b	y EPA 8015m								
C6-C12 (GRO)	ND	500	ug/kg	1	5050614	05/06/05	05/10/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		81.6 %		135	"	"	n	"	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	2.0	ug/kg	1	5050613	05/06/05	05/07/05	EPA 8260B	
1,2-Dichloroethane	ND	2.0	"	ti	17	ij	11	"	
Benzene	ND	2.0	n	11	11	*	Ħ	n	
Toluene	ND	2.0	**	*		*	п	**	
Ethylbenzene	ND	2.0	PT	н	u	**	11	ti	
m,p-Xylene	ND	4.0	II.	Ħ	n	ıı .	н	**	
o-Xylene	ND	2.0	п	п	**	μ	*	п	
Tert-amyl methyl ether	ND	5.0	Ħ	n	17	**	п	11	
Tert-butyl alcohol	ND	20	If .	**	*1	11	n	"	
Di-isopropyl ether	ND	5.0	**	11	п	н	**	TI .	
Ethyl tert-butyl ether	ND	5.0	D.	**	11	IJ	IJ	**	
Methyl tert-butyl ether	ND	5.0	п	п	**	U	**	II .	
Surrogate: Toluene-d8	· · ·	98.4 %	85.8-	113	"	"	n	н	 .
Surrogate: 4-Bromofluorobenzene		99.1 %	73.5-	115	"	"	"	"	
Surrogate: Dibromosluoromethane		116%	79-1	26	n	u	"	н	

SunStar Laboratories, Inc.

Project: Dublin Toyota

Project Number: [none]
Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-10-33 T500549-52 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015m								
C6-C12 (GRO)	ND	500	ug/kg	1	5050614	05/06/05	05/08/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		76.9 %	65-1	35	"	n	п	n	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	2.0	ug/kg	1	5050613	05/06/05	05/07/05	EPA 8260B	
1,2-Dichloroethane	ND	2.0	Ħ	н	н	11	Ħ	P	
Benzene	ND	2.0	If	11	п		п		
Toluene	ND	2.0	II .	n	н	n	ш		
Ethylbenzene	ND	2.0	11	"	17	н	11	et	
m,p-Xylene	ND	4.0	•1	n	10	II	**	п	
o-Xylene	ND	2.0	11	**	11	11	77		
Tert-amyl methyl ether	ND	5.0	**	*	**		и	9	
Tert-butyl alcohol	ND	20	19	н	n	n	Ħ	tr	
Di-isopropyl ether	ND	5.0	11		,,		ш	11	
Ethyl tert-butyl ether	ND	5.0	II	11	11	н	ìı	**	
Methyl tert-butyl ether	ND	5.0	ŧı .	**	*	п	11	n	
Surrogate: Toluene-d8		98.7 %	85.8	113	н	"	H	ų	
Surrogate: 4-Bromofluorobenzene		110 %	73.5-	115	"	"	"	"	
Surrogate: Dibromofluoromethane		114%	79-1	26	rr	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dennis Dorning, Project Manager

1090 Adam Street, Suite K

Benicia CA, 94510

Project: Dublin Toyota

Project Number: [none]
Project Manager: Jim Gribi

Reported: 05/13/05 15:30

B-4-10.5 T500549-53 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	ies, Inc.					
Purgeable Petroleum Hydrocarbons b	y EPA 8015m								
C6-C12 (GRO)	ND	500	ug/kg	1	5050614	05/06/05	05/08/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		79.0 %	65-1	135	"	,,	#	"	
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	2.0	ug/kg	1	5050613	05/06/05	05/09/05	EPA 8260B	******
1,2-Dichloroethane	ND	2.0	11	**	II	11	37	"	
Benzene	ND	2.0	Ħ	и	11	u	п	н	
Toluene	ND	2.0	u .	ıı	"	II .	н	**	
Ethylbenzene	ND	2.0	II .	11	**	и	n	tr	
m,p-Xylene	ND	4.0	11	"	11	*	,,	"	
o-Xylene	ND	2.0	н	**	п	tı	71	н	
Tert-amyl methyl ether	ND	5.0	18	#	ŋ	11	"	п	
Tert-butyl alcohol	ND	20	n	II .	"	II .	H	11	
Di-isopropyl ether	ND	5.0	IF	п	•	ш	II	**	
Ethyl tert-butyl ether	ND	5.0	н	п	п	II.	II	W	
Methyl tert-butyl ether	470	5.0	п	11	**	D	n	11	
Surrogate: Toluene-d8		103 %	85.8	113	rr	"	"	п	<u> </u>
Surrogate: 4-Bromofluorobenzene		91.8 %	73.5-	115	"	"	u	n	
Surrogate: Dibromofluoromethane		89.0 %	79-1	26	"	"	п	n	

SunStar Laboratories, Inc.

0.0

Project: Dublin Toyota

Project Number: [none]
Project Manager: Jim Gribi

Reported: 05/13/05 15:30

Purgeable Petroleum Hydrocarbons by EPA 8015m - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5050614 - EPA 5030 GC										
Blank (5050614-BLK1)				Prepared:	05/06/05	Analyzed	l: 05/07/05			
C6-C12 (GRO)	ND	500	ug/kg							
Surrogate: 4-Bromofluorobenzene	95.7		ij	125		76.6	65-135			
Blank (5050614-BLK2)				Prepared:	05/06/05	Analyzed	: 05/08/05			
C6-C12 (GRO)	ND	500	ug/kg	•						
Surrogate: 4-Bromofluorobenzene	96.8		"	125		77.4	65-135			
LCS (5050614-BS1)				Prepared:	05/06/05	Analyzed	: 05/07/05			
C6-C12 (GRO)	14000	500	ug/kg	13800		101	75-125			
Surrogate: 4-Bromofluorobenzene	105		"	125		84.0	65-135			
LCS (5050614-BS2)				Prepared:	05/06/05	Analyzed	: 05/10/05			
C6-C12 (GRO)	13200	500	ug/kg	13800		95.7	75-125			
Surrogate: 4-Bromofluorobenzene	105		n	125		84.0	65-135			
LCS Dup (5050614-BSD1)				Prepared:	05/06/05	Analyzed	: 05/09/05			
C6-C12 (GRO)	14600	500	ug/kg	13800		106	75-125	4.20	20	
Surrogate: 4-Bromofluorobenzene	117		"	125		93.6	65-135			
LCS Dup (5050614-BSD2)				Prepared:	05/06/05	Analyzed	: 05/09/05			
C6-C12 (GRO)	15000	500	ug/kg	13800		109	75-125	12.8	20	
Surrogate: 4-Bromofluorobenzene	120		"	125		96.0	65-135			
Matrix Spike (5050614-MS1)	So	urce: T50054	19-01	Prepared:	05/06/05	Analyzed	: 05/07/05			
C6-C12 (GRO)	1800	500	ug/kg	13800	ND	13.0	65-135			QM-07
Surrogate: 4-Bromofluorobenzene	29.9		n	125		23.9	65-135			QM-07
Matrix Spike (5050614-MS2)	So	urce: T50054	19-53	Prepared:	05/06/05	Analyzed	: 05/10/05			
C6-C12 (GRO)	596	500	ug/kg	13800	ND	4.32	65-135			QM-07
Surrogate: 4-Bromofluorobenzene	5.63		"	125		4.50	65-135			QM-07

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dennis Dorning, Project Manager

Gribi Associates 1090 Adam Street, Suite K Project: Dublin Toyota

Benicia CA, 94510

Project Number: [none] Project Manager: Jim Gribi Reported: 05/13/05 15:30

Purgeable Petroleum Hydrocarbons by EPA 8015m - Quality Control SunStar Laboratories, Inc.

			-						
Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
. <u>.</u>									
So	urce: T50054	19-01	Prepared:	05/06/05	Analyzed	1: 05/07/05	,		
7480	500	ug/kg	13800	ND	54.2	65-135	122	20	QM-0
88.8		n	125	•	71.0	65-135			QM-0
So	urce: T50054	19-53	Prepared:	05/06/05	Analyzed	: 05/10/05			
12700	500	ug/kg	13800	ND	92.0	65-135	182	20	QM-0
91.1		"	125		72.9	65-135			
			Prepared:	05/07/05	Analyzed	: 05/08/05			
ND	50	ug/l						•	
37.8		n	50.0		75.6	65-135			
			Prepared:	05/07/05	Analyzed	: 05/09/05			
ND	50	ug/l							
42.6	<u>.</u>		50.0		85.2	65-135			
			Prepared:	05/07/05	Analyzed	: 05/08/05			
6090	50	ug/l	5500		111	75-125			
42.9		rr .	50.0		85.8	65-135			
			Prepared:	05/07/05	Analyzed	: 05/10/05			
5530	50	ug/l	5500		101	75-125			
43.9		"	50.0	-	87.8	65-135			
Sou	ırce: T50054	9-09	Prepared:	05/07/05	Analyzed	: 05/08/05			
5680	50	ug/l	5500	ND	103	65-135			
45.2		"	50.0		90.4	65-135			
	ND 37.8 ND 42.6 6090 42.9 5580	Source: T50054 T480 500 88.8 Source: T50054 12700 500 91.1 Source: T50054 12700 500 42.6 Source: T50054 5680 50 Source: T50054 5680 50 Source: T50054 5680 50 Source: T50054 So	Source: T500549-01 7480 500 ug/kg 88.8 "	Result Limit Units Level Source: T500549-01 Prepared: 7480 500 ug/kg 13800 88.8 " 125 Source: T500549-53 Prepared: 12700 500 ug/kg 13800 91.1 " 125 Prepared: ND 50 ug/l 37.8 " 50.0 Prepared: ND 50 ug/l 42.6 " 50.0 Prepared: 6090 50 ug/l 5500 42.9 " 50.0 Prepared: 5530 50 ug/l 5500 43.9 " 50.0 Source: T500549-09 Prepared: 5680 50 ug/l 5500	Result Limit Units Leve! Result Source: T500549-01 Prepared: 05/06/05 7480 500 ug/kg 13800 ND 88.8 " 125 Source: T500549-53 Prepared: 05/06/05 12700 500 ug/kg 13800 ND 91.1 " 125 Prepared: 05/07/05 ND 50 ug/l 37.8 " 50.0 Prepared: 05/07/05 ND 50 ND 50 ug/l 42.6 " 50.0 Prepared: 05/07/05 6090 50 ug/l 5500 42.9 " 50.0 Prepared: 05/07/05 5530 50 ug/l 5500 43.9 " 50.0 Source: T500549-09 Prepared: 05/07/05 5680 50 ug/l 5500 ND	Source: T500549-01	Result Limit Units Level Result %REC Limits	Result Limit Units Level Result %REC Limits RPD	Result Limit Units Level Result %REC Limits RPD Limit

SunStar Laboratories, Inc.

Benicia CA, 94510

Project: Dublin Toyota

1090 Adam Street, Suite K

Project Number: [none]
Project Manager: Jim Gribi

Reported: 05/13/05 15:30

Purgeable Petroleum Hydrocarbons by EPA 8015m - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5050703 - EPA 5030 GC										
Matrix Spike (5050703-MS2)	Sou	rce: T50054	19-44	Prepared:	05/07/05	Analyzed	: 05/10/05			
C6-C12 (GRO)	6010	50	ug/l	5500	ND	109	65-135			
Surrogate: 4-Bromofluorobenzene	42.3		"	50.0		84.6	65-135			·
Matrix Spike Dup (5050703-MSD1)	Sour	rce: T50054	19-09	Prepared:	05/07/05	Analyzed	: 05/08/05			
C6-C12 (GRO)	5400	50	ug/l	5500	ND	98.2	65-135	5.05	20	
Surrogate: 4-Bromofluorobenzene	43.1		п	50.0		86.2	65-135			
Matrix Spike Dup (5050703-MSD2)	Soui	ce: T50054	19-44	Prepared:	05/07/05	Analyzed	05/10/05			
C6-C12 (GRO)	5870	50	ug/l	5500	ND	107	65-135	2.36	20	
Surrogate: 4-Bromofluorobenzene	40.6		"	50.0		81.2	65-135			

SunStar Laboratories, Inc.

1090 Adam Street, Suite K

Benicia CA, 94510

Project: Dublin Toyota

Project Number: [none] Project Manager: Jim Gribi Reported: 05/13/05 15:30

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5050613 - EPA 5030 GCMS					· · · · · · · · · · · · · · · · · · ·					
Blank (5050613-BLK1)			7.7	Prepared	& Analyza	ed: 05/06	/05			
1,2-Dibromoethane (EDB)	ND	2.0	ug/kg	<u> </u>						
1,2-Dichloroethane	ND	2.0								
Benzene	ND	2.0	u							
Toluene	ND	2.0	n							
Ethylbenzene	ND	2.0	**							
m,p-Xylene	ND	4.0	**							
o-Xylene	ND	2.0	11							
Tert-amyl methyl ether	ND	5.0	71							
Tert-butyl alcohol	ND	20	H							
Di-isopropyl ether	ND	5.0	u							
Ethyl tert-butyl ether	ND	5.0	п							
Methyl tert-butyl ether	ND	5.0	n							
Surrogate: Toluene-d8	96.6		"	100		96.6	85.8-113			
Surrogate: 4-Bromofluorobenzene	104		"	100		104	73,5-115			
Surrogate: Dibromofluoromethane	90.1		"	100		90.1	79-126			
Blank (5050613-BLK2)				Prepared:	05/06/05	Analyzeo	1: 05/07/05			
1,2-Dibromoethane (EDB)	ND	2.0	ug/kg			,				
1,2-Dichloroethane	ND	2.0	"							
Benzene	ND	2.0	17							
Toluene	ND	2.0	**							
Ethylbenzene	ND	2.0	tr							
m,p-Xylene	ND	4.0	14							
o-Xylene	ND	2.0								
Tert-amyl methyl ether	ND	5.0	н							
Tert-butyl alcohol	ND	20	п							
Di-isopropyl ether	ND	5.0	п							
Ethyl tert-butyl ether	ND	5.0	n							
Methyl tert-butyl ether	ND	5.0	19							
Surrogate: Toluene-d8	93.1		<i>"</i>	100		93.1	85.8-113		 -	
Surrogate: 4-Bromofluorobenzene	111		"	100		111	73.5-115			
Surrogate: Dibromofluoromethane	117		#	100		117	79-126			

SunStar Laboratories, Inc.

0:12

Gribi Associates 1090 Adam Street, Suite K Project: Dublin Toyota

1090 Adam Street, Suite K Benicia CA, 94510 Project Number: [none]
Project Manager: Jim Gribi

Reported: 05/13/05 15:30

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Danuit	Reporting	TT_:4	Spike	Source	0/nra	%REC	DDD	RPD	37-4
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5050613 - EPA 5030 GCMS										
LCS (5050613-BS1)				Prepared:	05/06/05	Analyze	d: 05/07/05			
Benzene	255	2.0	ug/kg	250		102	75-125			
Toluene	205	2.0	**	250		82.0	75-125			
Surrogate: Toluene-d8	94.2		n	100		94.2	85.8-113			
Surrogate: 4-Bromofluorobenzene	102		n	100		102	73.5-115			
Surrogate: Dibromofluoromethane	103		н	100		103	79-12 6			
LCS (5050613-BS2)				Prepared:	05/06/05	Analyze	d: 05/07/05			
Benzene	265	2.0	ug/kg	250		106	75-125		. ===	
Toluene	265	2.0	**	250		106	75-125			
Surrogate: Toluene-d8	102		"	100		102	85.8-113			
Surrogate: 4-Bromofluorobenzene	102		"	100		102	73.5-115			
Surrogate: Dibromofluoromethane	113		#	100		113	79-126			
Matrix Spike (5050613-MS1)	Soi	ırce: T500 5 4	19-01	Prepared:	05/06/05	Analyze	1: 05/07/05			
Benzene	85.4	2.0	ug/kg	250	ND	34.2	75-125			QM-05
Toluene	66.0	2.0	11	250	ND	26.4	75-125			QM-05
Surrogate: Toluene-d8	91.7	****	"	100		91.7	85.8-113			•
Surrogate: 4-Bromofluorobenzene	102		,,	100		102	73.5-115			
Surrogate: Dibromofluoromethane	81.7		Ħ	100		81.7	79-126			
Matrix Spike (5050613-MS2)	Sou	rce: T50054	9-52	Prepared:	05/06/05	Aпаlyzeo	1: 05/07/05			
Benzene	252	2.0	ug/kg	250	ND	101	75-125			
Toluene	250	2.0	*1	250	ND	100	75-125			
Surrogate: Toluene-d8	102		n	100	<u> </u>	102	85.8-113			
Surrogate: 4-Bromofluorobenzene	102		n	100		102	73.5-115			
Surrogate: Dibromofluoromethane	115		"	100		115	79-126			
Matrix Spike Dup (5050613-MSD1)	Sou	<u>ırce: T50054</u>	9-01	Prepared:	05/06/05	Analyzed	1: 05/07/05			
Benzene	127	2.0	ug/kg	250	ND	50.8	75-125	39.2	20	QM-05
Toluene	121	2.0	п	250	ND	48.4	75-125	58.8	20	QM-05
Surrogate: Toluene-d8	98.0		"	100		98.0	85.8-113	·		
Surrogate: 4-Bromofluorobenzene	107		**	100		107	73.5-115			
Surrogate: Dibromofluoromethane	95.9		"	100		95.9	79-126			

SunStar Laboratories, Inc.

1090 Adam Street, Suite K Benicia CA, 94510 Project: Dublin Toyota

Project Number: [none]
Project Manager: Jim Gribi

Reported: 05/13/05 15:30

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5050613 - EPA 5030 GCMS				•			, '-,	· · · · · · · · · · · · · · · · · · ·		
Matrix Spike Dup (5050613-MSD2)	So	urce: T50054	19-52	Prepared:	05/06/05	Analyzeo	1: 05/07/05			
Benzene	234	2.0	ug/kg	250	ND	93.6	75-125	7.41	20	
Toluene	234	2.0	u	250	ND	93.6	75-125	6.61	20	
Surrogate: Toluene-d8	103		"	100		103	85.8-113			
Surrogate: 4-Bromofluorobenzene	112		"	100		112	73.5-115			
Surrogate: Dibromofluoromethane	118		tt	100		118	<i>79-126</i>			
Batch 5050704 - EPA 5030 GCMS										
Blank (5050704-BLK1)		11 1		Prepared	& Analyz	ed: 05/07/	05			
1,2-Dibromoethane (EDB)	ND	1.0	ug/l	<u> </u>	<u> </u>			·		
1,2-Dichloroethane	ND	0.50	Ü							
Benzene	ND	0.50	н							
Toluene	ND	0.50	17							
Ethylbenzene	ND	0.50	11							
m,p-Xylene	ND	1.0	77							
o-Xylene	ND	0.50	Ħ							
Tert-amyl methyl ether	ND	2.0	*1							
Tert-butyl alcohol	ND	10	**							
Di-isopropyl ether	ND	2.0	**							
Ethyl tert-butyl ether	ND	2.0	91							
Methyl tert-butyl ether	ND	1.0	н							
Surrogate: Toluene-d8	<i>37.6</i>		n	40.0		94.0	87.6-115			
Surrogate: 4-Bromofluorobenzene	42.0		n	40.0		105	80-112			
Surrogate: Dibromofluoromethane	35.7		"	40.0		89.2	78.6-122			
Blank (5050704-BLK2)				Prepared a	& Analyze	ed: 05/07/	05			
1,2-Dibromoethane (EDB)	ND	1.0	ug/l							
1,2-Dichloroethane	ND	0.50	19							
Benzene	ND	0.50	11							
Toluene	ND	0.50	**							
Ethylbenzene	ND	0.50	**							
m,p-Xylene	ND	1.0	n 							
o-Xylene	ND	0.50	11							
Tert-amyl methyl ether	ND	2.0	11							
Tert-butyl alcohol	ND	10	H H							
Di-isopropyl ether	ND	2.0	11							
Ethyl tert-butyl ether	ND ND	2.0	"							
Methyl tert-butyl ether		0.1								
Surrogate: Toluene-d8	37.7		<i>n</i>	40.0		94.2	87.6-115			
Surrogate: 4-Bromofluorobenzene	40.6		<i>"</i>	40.0		102	80-112			
Surrogate: Dibromofluoromethane	35.1		"	40.0		87.8	78.6-122			

SunStar Laboratories, Inc.

1090 Adam Street, Suite K Benicia CA, 94510 Project: Dublin Toyota

Project Number: [none]
Project Manager: Jim Gribi

Reported: 05/13/05 15:30

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Kesun	Limit	OHIIS	Level	resuit	AUVER	Limits	INI D		110103
Batch 5050704 - EPA 5030 GCMS										
LCS (5050704-BS1)				Prepared	& Analyz	ed: 05/07/	05			
Benzene	94.8	0.50	ug/l	100		94.8	75-125			
Toluene	99.3	0.50	н	100		99.3	75-125			
Surrogate: Toluene-d8	37.5		#	40.0		93.8	87.6-115			
Surrogate: 4-Bromofluorobenzene	40.8		rr	40.0		102	80-112			
Surrogate: Dibromofluoromethane	35.4		u	40.0		88.5	<i>78.6-122</i>			
LCS (5050704-BS2)				Prepared:	05/07/05	Analyzed	1: 05/08/05			
Benzene	73.1	0.50	ug/l	100		73.I	75-125			QM-07
Toluene	76.6	0.50	М	100		76.6	75-125			QM-07
Surrogate: Toluene-d8	36.8		н	40.0		92.0	87.6-115		-	
Surrogate: 4-Bromofluorobenzene	41.0		tt	40.0		102	80-112			
Surrogate: Dibromofluoromethane	36.6		n	40.0		91.5	78.6-122			
Matrix Spike (5050704-MS1)	So	urce: T50054	19-09	Prepared	& Analyz	ed: 05/07/	05			
Benzene	89.2	0.50	ug/I	100	ND	89.2	75-125		•	
Toluene	94.0	0.50	11	100	ND	94.0	75-125			
Surrogate: Toluene-d8	36.8		"	40.0		92.0	87.6-115			
Surrogate: 4-Bromofluorobenzene	41.2		"	40.0		103	80-112			
Surrogate: Dibromofluoromethane	35.8		"	40.0		89.5	78.6-122			
Matrix Spike (5050704-MS2)	So	urce: T50054	9-44	Prepared:	05/07/05	Analyzed	1: 05/08/05			
Benzene	94.4	0.50	ug/l	100	ND	94.4	75-125			
Toluene	96.4	0.50	**	100	ND	96.4	75-125			
Surrogate: Toluene-d8	39.0	_	"	40.0		97.5	87.6-115			
Surrogate: 4-Bromofluorobenzene	40.0		"	40.0		100	80-112			
Surrogate: Dibromofluoromethane	36.1		n	40.0		90.2	78.6-122			
Matrix Spike Dup (5050704-MSD1)	So	urce: T50054	9-09	Prepared a	& Analyze	ed: 05/07/	05			
Benzene	88.3	0.50	ug/l	100	ND	88.3	75-125	1.01	20	
Toluene	92.3	0.50	11	100	ND	92.3	75-125	1.83	20	
Surrogate: Toluene-d8	37.2		н	40.0		93.0	87.6-115			
Surrogate: 4-Bromofluorobenzene	40.8		"	40.0		102	80-112			
Surrogate: Dibromofluoromethane	34.7		"	40.0		86.8	78.6-122			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dennis Dorning, Project Manager

Project: Dublin Toyota

1090 Adam Street, Suite K

Project Number: [none] Project Manager: Jim Gribi Reported: 05/13/05 15:30

Benicia CA, 94510

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5050704 - EPA 5030 GCMS			_							
Matrix Spike Dup (5050704-MSD2)	Sou	rce: T50054	19-44	Prepared:	05/07/05	Analyzeo	1: 05/08/05			
Benzene	87.5	0.50	ug/l	100	ND	87.5	75-125	7.59	20	
Toluene	88.2	0.50	"	100	ND	88.2	75-125	8.88	20	
Surrogate: Toluene-d8	36.9		rt	40.0		92.2	87.6-115			
Surrogate: 4-Bromofluorobenzene	41.4		п	40.0		104	80-112			
Surrogate: Dibromofluoromethane	35.8		n	40.0		89.5	78.6-122			

SunStar Laboratories, Inc.

Gribi Associates
Project: Dublin Toyota
1090 Adam Street, Suite K
Project Number: [none]
Reported:
Benicia CA, 94510
Project Manager: Jim Gribi
05/13/05 15:30

Notes and Definitions

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

recovery.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dennis Dorning, Project Manager

Client: Gribi As				Dat	e:	5	/0	5/	65	-			Pag	ie: (Of	6								
Address: 1090 Ada. Phone: 707-748-7	~ St.	Suite A	(Beni	icia, CA	-				ject	-						Toy								
Phone: 707-748-7	2743	Fax: 7	07-748	- 7763	-							Te Te	20.0	ma	<u> </u>			nt Project						
Project Manager: 3 i-	Gaibi				-										<u>- Ç</u>	-		Proposal #:						
					-			Dat	GII #	•	<u> </u>	OU) Y	7			Prop	iosai #:						
Sample ID B-Y-7.0 B-Y-3S B-3-7.5 B-3-8.0 B-3-13.0 B-3-35.5 B-2-8 B-2-35	Date Sampled 5/02/05	200	Sample Type So:{ Received by: Received by:	rata 5%	EPA 8010	2 <u>5</u>) ate	EPA 8270	me Ra	YEPA 8015M (gasoline)	EPA 8015M (diesel)		Display to Title 22 Metals	al # c	of conta	N/NA	Preservative	osal#:	Comme			Total # of containers		
Relinquished by: (signature) Sample disposal Instructions: Dis	Date / Tim		Received by:			ickun		/ Tin	ne	Received good condition/cold Turn around time:														

Client: Gribi As	sociates				_								05				Pag	ge:	<u>ک</u>	Of	6	
Address: 1090 Address: 707 - 748 - 1	ins St 1	#K , 1	Benicia.	CH				Pro	ject	Nar	ne:	D	461	h	Tay	0/4						
Phone: 707 - 748 -	7743	Fax: 7	07-748	·7763	_										7.		Clie	nt Proj	iect #:			
Project Manager: 7:	Ercili				-								54					posal #				
			 		-				011.77	•	,,,		<u> </u>				_ ; . •	oodi ii	· ·			
Sample ID	Date Sampled S/oz/o S	Z 40 1e	Received by	y: (signature)	EPA 8010	5/1	Date C S Date	EPA 8270	em EPA 418.1	EPA 8015M (gasoline)	than the second of the second	EPA 6010/7000 RCRA (8) Metals	sa system of the state of the s	tai # dody s	eals Y	## QI Avolatory ID 13 14 15 15 15 15 15 15 15	Preservative			Not		Total # of containers
romquancu by, (signature)	Daterin	ıc	irreceived D)	y: (signature)			Date	e / Tí	HE													
Somele disposal featurations (C)		-1-	D-t	-414			_			نـــــ	Turr	n arc	ound	time):							
Sample disposal Instructions: Di	ısposaı @ \$2.00 ea	cn	Return to	ciient	F	Pickup	·	_														

Client: Gribi Mss Address:					 -			Pro	te: ject				46/	,in 7	Toyo	+4		e: 3			
Phone:		Fax:							lect								Clien	t Projec	t #:		
Project Manager:					_			Bat	ch #	t :	7	200	5	19			Prop	osal #:			
Sample ID B-1-7-5 B-1-10.5 B-1-34.5 B-5-38 B-6-7.5 B-6-20 B-6-16 B-7-18 B-9-6 B-9-32	Date Sampled S / 03/05	Time 0745 0805 0825 0925 (030 1730 1745 1310 1410 1625	Sample Type Sail	Container Type	EPA 8010	4 XEPA 8020/602 BTEY		EPA 8270	EPA 418.1	KEPA 8015M (gasoline)	EPA 8015M (diesel)	EPA 6010/7000 RCRA (8) Metals		X 8260B Lan Trewarder		17 20 21 22 25 25 25 25 25 26 25 26 26 26 26 26 26 26 26 26 26 26 26 26	Preservative		Comr	ments	Total # of containers
Relinquished by: (signature) Relinquished by: (signature)	Date/Tin	۵	oilan (y: (signature) Walk y: (signature)	5/3	10	5	Date / Time A Date / Time Date / Time			(ADD) Chain of Cus				:t? Y/f	N/NA N/NA			N	lotes	
Relinquished by: (signature)	Date / Tin	ne	Received by	y: (signature)			Date	e / Ti	ime					od con: time:_	dition/	cold	L				

Client: Grib: A.	_			Dat	le:		5/	65	6/0	5			Pag	e: C	1	Of	6					
Address:								Pro	ject	Nai	me:	D	261	'n	10y	o Le						
Phone:		Fax:							lecto								Clier	nt Proje	ect#	:		
Project Manager:				•••	_			Batch #: 7500 549 Proposal #:										-				
T Tojout Managor.					_				.011 77	•		500	<u>, , , , , , , , , , , , , , , , , , , </u>	f			<u> 1 10p</u>	0341 77	•			
Sample ID B-1-W-1 B-1-W-2 B-5-W-1 B-6-W-1 B-6-W-2 B-7-W-1 B-9-W-2	Date Sampled 5-/03/or	Time 0755 0910 1950 1225 1325 1415 1522 1635		Container Type	EPA 8010	4 KEPA 8020/602 BTEX		EPA 8270	EPA 418.1	EPA 8015M (gasoline)		6010/7000 RCRA (8) Metais	EPA 6010/7000 Title 22 Metals	X 800 G Lee & Sanda a		# Cl Paporatory ID # 25 1 25 25 25 25 25 25 25 25 25 25 25 25 25	Preservative			Comme	nts	Action 2 C Total # of confainers
Relinquished by: (signature) Relinquished by: (signature)	Date / Tim Date / Tim	<i>4</i> 0	Wan	r: (signature)	2	5/8	5/0	ate / Time			Total # of o					l/NA				No	tes	
Relinquished by: (signature)	Date / Tim	ne	Received by			Date	Date / Time					ed god ound t	ime:_	tition/	cold							
Sample disposal Instructions:	isnosal @ \$2 00 ea		Dicku	<u></u>				•											 			

Client Gnb. A.	_		_	ate:			05							ge:	5	Of	4					
Address:					_		P	rojec	t Na	me	<u> </u>	20	6/1	<u> </u>	70	VO.	<u>/</u> c					
Phone:		Faxc			_		C	ollec	tor.	M	1. 1	P	nc	7			Clie	ent Pa	roject	#-		
Project Manager.					_			atch			٦٢							posa				
			T		1	<u>a</u> 6												T-				
	Date		Sample	Container	A 8010	EPA 8020/602 87.EX	EPA 8270	EPA 418.1	A 8015M (gasoline)	EPA 8015M (diesel)	EPA 6010/7000 RCRA (8) Metals	A 6010/7000 Title 22 Metale	to B Carperson			Laboratory ID #	Preservative					Total # of containers
Sample ID	Sampled	Туре	EPA	G 0		E	[교	E F	8		82		ļ	ğ	9	[Comm	ante	1 5		
13-12-11-0	5/04/05	99/0	Type _So?/	jar		X			₹	T-			×		_	45-		1		OMINI	ans	 -
B-12-35.5	<u> </u>	0905				I			1							46						
13-8-10	 	1045	4		\Box	Ш										47	·	1				-+
B-8-33	4-4-	1200	ļ l			11								\Box		48						
13-11-10	 	1320											\mathcal{I}	_1		49		1				
13-11-35	<u> </u>	1455				\coprod								T		50		 				- + +
B-10-7.0	- 	1700											П			57						-
B-10-33	 	1750	9	V		7	-		Ø				₹	\dashv		52						4
	<u> </u>												\dashv	┰┼	\dashv			<u> </u>				-
						+	-	_					\blacksquare	\neg	_							
							上							_	+			ļ <u>.</u>	-			
					-		┨—	-			\dashv			\neg	1							
Relinquished by: (signature)	5/05/05/1	200	Received by	(signature)	5/	So	ile/1	_	Total # of				# of containers				ļ		No	es	I	
Relinquished by: (signature)	nquished by: (signature) Date/ Time Received by: (signature							ime						dy seals Y/N/NA Is intact? Y/N/NA								
Relinquished by: (signature)	ruished by: (signature) Date / Time Received by: (signature)							ine	_	Received good condition/cold												
Sample disposal Instructions: Di		ckup				Tun	aro	und	time	:		<u> </u>	[

SunStar Laboratories, Inc. 3002 Dow Ave, Suite 212 Tustin, CA 92780 1-800-781-6777

Chain of Custody Record

Client: Gribi	MSSociati	? 5						Da	te:	5	-/6	87	05				Pag	ae:	6	Of	6	
Address:					_			Pro	iect					olin	7	7600						
Phone:		Fax:			_									200		· / D /		nt Proj	ioct #:			
Project Manager:					-				ch f													
					-			Dai	UTI f			500		77	,		Prop	osal #	7:			
Sample ID B-12-W-1 B-12-W-2 B-8-W-1 B-8-W-1 B-11-W-1 B-11-W-2 B-10-W-2	Date Sampled 5/04/05	Time 0800 0945 (100 1245 /400 /600 17/0 /430	Sample Type M&Lr	Container Type Vsv4	EPA 8010	KEPA 8020/602 BTE	ļ	EPA 8270	EPA 418.1	X EPA 8015M (gasoline)	EPA 8015M (diesel)	EPA 6010/7000 RCRA (8) Metals	EPA 6010/7000 T	X 8260 B CX48-70+15		2 2 2 2 Laboratory ID #	Preservative		C	Comme	nts	Total # of containers
																						<u> </u>
Relinguished by: (signature)	Date / Tim		Received by	(signature)	5/0:	-	ا ۱۲۱ء دا	me	70	Cha	in of 0		tal # of o						Not	es		
Relinquished by; (signature)	Date / Tim	e	Received by	: (signature)	7-7			/ Ti	me	Chain of Custody seals Y Seals intact? Y					t? Y/N	/NA						
Relinquished by: (signature)	Date / Tim	e	Received by	7 Ti	ne					od cond	dition/c	cold	L									
Sample disposal Instructions: Dis	posal @ \$2.00 ead		Return to d				Turn	aro	und	time:_			[-		 				