900 Murmask Street, Suite 1B Oakland, CA 94607

510-663-2912 • Fax: 510-663-2914

PROJECT UPDATE JUNE 2002

July 20, 2002

Mr. Barney M. Chan
Hazardous Materials Specialist
Alameda County Department of Environmental Health
1131 Harbor Bay Parkway, Suite 250
Alameda, CA 94502-6577

1277

Re: Credit Auto

2345 East 14th Street Oakland, California

SEQUOIA ENVIRONMENTAL

Serving People and the Environment

Chris 'Wabuzoh, REA

Senior Geologist Chief Technical Officer

900 Murmask Street, Suite 1B Oakland, CA 94607 510-663-2912 Fax: 510-663-2914

Dear Mr. Chan:

This letter-report is to update you on the project activities at the above referenced site. The monthly update is in response to the approved workplan by the Alameda County Department of Environmental Health.

The remediation system operated for five weeks without any breakdown. There was no mechanical or electrical problem. At the beginning of this period, microbes and nutrients were added to the system.

In addition to the regular microbes and nutrients, augmentation products were added at more regular intervals during this period. The purpose of this combination was to accelerate the process of degradation of free product of petroleum hydrocarbons. Four alternating applications of bioremediation products were added during this period. The pressure of oxygen generation was monitored every two days to ensure constant pressure for the remediation system. Application of bio-treatment products was momentarily suspended on June 15, 2002. The purpose for the suspension was to allow groundwater in the monitoring wells to stabilize prior to monitoring and collection of water samples.

On June 20, 2002, four groundwater monitoring wells (MW-2, MW-3, MW-5 and MW-6) were purged with a vacuum truck. Prior to purging, the monitoring wells were gauged with interphase probe (IP) to determine the depth to groundwater and thickness of any free product. Groundwater monitoring data is presented in Table 1. Monitoring well, MW-1 (injection well) was not monitored because of the pipes in the 2" well.

TABLE 1

Groundwater Monitoring Data Before Purging

Well No.	Depth to Groundwater (ft)	Free F	Product (ft)	Observation				
		Depth	Thickness					
MW-2	14.80 ft	14.1 ft	0.7 ft	Free product				
MW-3	14.68 ft	14.66 ft	0.02 ft	Free Product				
MW-5	11.29 ft	11.24 ft	0.05 ft	Free Product				
MW-6	12.45	N/A	N/A	Clear, No hydrocarbon odor				

After purging, the wells were allowed to recharge to approximately 80% of their respective volumes. The wells were gauged with interphase probe, and groundwater samples were collected (see Table 2 for monitoring data). The samples were collected from each monitoring well with a disposable bailer. The samples were put in glass vials containing hydrochloric acid as preservative. All the samples were placed in a cooler containing ice. Following proper chain-of-custody procedure, the samples were transported to McCampbell Analytical in Pacheco, California, for chemical analyses.

TABLE 2

Groundwater Monitoring Data Before Sampling

Well No.	Depth to Groundwater (ft)	Free	Product (ft)	Observation				
		Depth	Thickness					
MW-2	12.10 ft	N/A	N/A	Hydrocarbon odor				
MW-3	14.25 ft	N/A	N/A	Hydrocarbon odor				
MW-5	11.15 ft	N/A	N/A	Hydrocarbon odor				
MW-6	12.40	N/A	N/A	Clear, No hydrocarbon odor				

All the samples were analyzed for total petroleum hydrocarbons as gasoline (TPH-g), aromatic hydrocarbons as benzene, toluene, ethylbenze and xylenes (BTEX), and methyl tertiary butyl ether (MTBE). Laboratory results show that all the monitoring wells contain detectable levels of petroleum hydrocarbons. Summary of laboratory results is presented in Table 3. Detailed laboratory results and chain-of-custody form are attached. Also attached is Table 4, which shows the comparative data for the remediation system.

TABLE 3

Summary of Groundwater Laboratory Results

Sample #	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes
MW-2	53,000	ND<1000	2.200	140	3,300	3,000
MW-3	7,800	ND<50	1,100	23	66	15
MW-5	51,000	ND<250	5,100	290	2,300	5,800
MW-6	79	ND	5.7	ND	ND	ND

Concentrations of groundwater samples are reported in parts per billion (ppb).

ND Non-detect.

On the basis of field observations and analytical results, it appears that the microbes are effective in degrading free product in the groundwater monitoring wells. Our initial estimation was that the present results we observe would be attained after six to seven months of operation. In view of the promising result, it is cur intention to move the remediation system into the phase of degrading dissolved phase petroleum hydrocarbons. Tables 4 and 5 below show the comparative baseline data and first monitoring results since Sequoia Environmental commissioned remediation system.

However, due to lack of funds, the remediation system has been temporarily turned off. Remediation activities will resume as soon as funds are available.

Please feel free to call me at 510-663-2912, if you have any question about the project.

Sincerely, Sequoia Environmental Corporation

Christhoabuzoh.

Chris Wabuzoh Project Manager

TABLE 4

Comparative Data of Groundwater Sample Results

Sample #	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes
6-13-2001						
MW-2	FP		<u> </u>			
MW-3	8,400	ND	1,300	25	64	32
MW-5	FP					
MW-6	7,600	ND	1,400	42	42	14
6-20-2002						
MW-2	53,000	ND<1000	2,200	140	3,300	3,000
MW-3	7,800	ND<50	1,100	23	66	15
MW-5	51,000	ND<250	5,100	290	2,300	5,800
MW-6	79	ND	5.7	ND	ND	ND

Concentrations of groundwater samples are reported in parts per billion (ppb). ND Non-detect.

TABLE 5

Comparative Groundwater Monitoring Data

Well No.	Depth to Groundwater (ft)	Free P	roduct (ft)	Observation			
		Depth	Thickness				
6-13-01							
MW-1	15.83	11.47	4.36	Dark free product			
MW-2	2 14.84		3.15	Dark free product			
MW-3	14.70	14.30	0.4	Free product and water			
MW-5	11.31	N/A	N/A	Sheen, hydrocarbon odor			
MW-6	12.47	N/A	N/A	Clear, no hydrocarbon odor			
6-20-02			1				
MW-2	14.80 ft	14.1 ft	0.7 ft	Free product			
MW-3	14.68 ft	14.66 ft	0.02 ft	Free Product			
MW-5	11.29 ft	11.24 ft	0.05 ft	Free Product			
MW-6	12.45	N/A	N/A	Clear, No hydrocarbon odor			

			FIGL	JRE 2			
N							
	ţ	c	OMMERCIAL BUILE	DING			
	SB-4 O	MW-3 ●		\$B-5 O			
						•	
		SERVICE BAY	OFFICE			MW-6	
					/IW-1 ●		
			MW-5 ●				
	SB-3						
			PARKING		LOT	0	
		MW-2				SB-6	
	0		0				
	SB-1		SB-2	· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u>-</u>	<u>.</u>

, which is the second of the

McCampbell Analytical Inc.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

Sequoia Enviromental Corporatio	Client Project ID: SW-03	Date Sampled: 06/20/02
900Murmansk Street, Suite 1B		Date Received: 06/20/02
Oakland, CA 94607	Client Contact: Chris Wabuzoh	Date Extracted: 06/21/02-06/22/02
Gamand, G113 1007	Client P.O.:	Date Analyzed: 06/21/02-06/22/02

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction m	ethod: SW5030B			Analytical n	nethods: SW802	1B/8015Cm		1	Work Orde	r: 0206344
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Вепzепе	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	MW-2	w	53,000,a	ND<1000	2200	140	3300	3000	200	118
002Å	MW-3	w	7800,a	ND<50	1100	23	66	15	10	#
003A	MW-5	w	51,000,a	ND<250	5100	290	2300	5800	50	#
004A	MW-6	w	79,a	ND	5.7	ND	ND	ND	1	104
2										
2										
										
		;								
Reporting	Limit for DF =1;	w	50	5.0	0.5	0.5	0.5	0.5	 	g/L
ND means	not detected at or reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005		/Kg

^{*}water and vapor samples are reported in ug/L, soil and sludge samples in mg/kg, wipe samples in ug/wipe, and TCLP extracts in ug/L.

DF = dilution factor.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?), c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) no recognizable pattern; k) TPH pattern that does not appear to be derived from gasoline (aviation gas).

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone 925-798-1620 Fax: 925-798-1622

http://www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

BatchID: 2552

Matrix: W

WorkOrder: 0206344

EPA Method: SW802	1B/8015Cm E	xtraction:	SW5030E	3	Ext. Date:	6/20/02	s	piked Sampl	le ID: N/A	
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
Compound	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
TPH(gas)	N/A	60	N/A	N/A	N/A	102	104	1.5	80	120
MTBE	N/A	10	N/A	N/A	N/A	98.3	107	8.2	80	120
Benzene	N/A	10	N/A	N/A	N/A	103	110	6.6	80	120
Toluene	N/A	10	N/A	N/A	N/A	105	113	7.3	80	120
Ethylbenzene	N/A	10	N/A	N/A	N/A	106	113	7.0	80	120
Xylenes	N/A	30	N/A	N/A	N/A	103	110	6.2	80	120
%SS:	N/A	10	N/A	N/A	N/A	103	101	2.0	80	120

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

N/A = not enough sample to perform matrix spike, or analyte concentration in sample exceeds spike amount.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

^{*} MS and / or MSD spike recoveries may not be near 100% or their RPDs near 0% if: a) the sample is inhomogeneous AND contains significant concentrations of analyze relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

	McCAM	PBELI	ANA	LYT	ICA	LII	NC.									·			CE	ſΑ	IN	O	F	CL	JS.	ΓÖ	D,	ΥĪ	Ł	C	ŌR	D		
ļ	ľ	10 2nd AT	VENUE SO CO. CA 94	OUTH, 553-55	#D7 60									1	UF	N)	AF	(O)	UN	D I	TIN	Œ								£				A
	ne: (925) 798						•	798	8-16	22		·		RUSH 24 HR 48 HR						AR.	7	2 HR	5 DAY											
Report To:	Report To: Chris Wabuzoh Bill To: SAME Company: Sequoia Environmental Corperation 900 Murmansk Street, Swite 18							_	Analysis Request Othe						her		Com	ments																
Company: Sequ	1010 ET	nord	men	TOCK	<u></u>	0-2/	منع ن	2007	ZU	<u>')</u>						(<u>L</u>															Ì			
00	b Cand	CY WA	Cull	17	se.	le		<u>es </u>		—				38		F/B								0					1					
Tele: (s) (0 - 6	63-29	12	/4F@	Tax: (510	(66	3 ·	. <u>.</u>	91	4			EW.		왕								0168,					l					
Tele: (s) 10 - 6 Project #: 5.	W-03			rojec	t Nai	ne;	Cre	o ce	. 7	Į.	Ju.	10	,	3015)/ MTBE		352((418							270,					1					
Project Location:	Oak	land	l										Į	+		Grease (5520 E&F/B&F)	Sug		3020		7			5/8			6		i					
Project Location: Sampler Signatur	e: <u>C</u>	Mrs)	Tra	buz	och	2.								27802		9	ocari		02 /		S	_		EPA 625 / 8270 /	1		760							
			LUC		1		MA'.	ERL	₹			HOI RVI	0.0	Gas (602/8020	(51(Total Petroleum Oil &	Total Petroleum Hydrocarbons (418.1)		BTEX ONLY (EPA 602 / 3020)		EPA 608 / 8080 PCB's ONLY	EPA 624 / 8240 / 8260			}		Lead (7240/7421/239.2/6010)				. <u>7.</u>			
			<u> </u>	E.	l iğ		$\neg \top$				7		- 1	21 I	(8)	Ę	E I	10	ë	တ္တ	80 P	3	9	ds'	श्री	शु	421/			ļ	1101			
SAMPLE ID	LOCATION			Containers	Type Concainers								-	TPH	TPH as Diesel (8015)	lo le	Jo le	EPA 601/8010	N.	EPA 608 / 8080	/ 80	/ 82	EPA 625 / 8270	PAH's / PNA's by	CAM-17 Metals	LUFT 5 Metals	40/7	1			Specific Conductivity			
		Date	Time	Com) % 0	Water	<u>.</u>	5	, F		g	Ö	힐	× ×	83	l Per	P.	.601	8	809	809	624	625	Ps /	1-17	ان ا	1 (72				317.0		-	
		[→	F X	3	S .	Shudge	Ö	Ice	띪	HNO,	Other	BTEX & TPH	ici	Total	Tota	EΡΑ	BTE	EPA	EPA	EPA	EPA	PAF	CA	5	Lead	RCI	핖	TSS	Sec			
MW-2		6/20/02	m	3		1			 	/	7		-+	V								-			-	_								· · · · · · · · · · · · · · · · · · ·
mw-3		6/20/02	1 '	3		V				V	1			V													···	<u> </u>		ļ —				
mw-5		4/20/02	נהגל	3		V		T	\top	V	1		-1	V																†	 			7/11/1
mw-6		6/20/02		3		~		-	\vdash	V	V		1	V																				
					l								1																	-				
									-				1															-	├					
				 -	<u> </u>	!	+	-			_																							
			· · · · · · · · · · · · · · · · · · ·						-				-		-										<u> </u>				-					
						-+	-		$\dagger -$																************				<u> </u>					
							-		 -				-	_	-	-										<u> </u>								
				<u> </u>	 	-	-+-	-	-		\dashv																							
					 	-					-		-																					
						\vdash		-			-										\dashv													
	· · · · · · · · · · · · · · · · · · ·							+					-																					
					<u> </u>				 	\vdash	_		-																					
Relinquished By:		Date	There	- -				1			\Box	_)						1																
	.0	Date:	Time:	Y TECC	iyen 8	y: 1	(\nearrow	<u> </u>)	~/	_	ا ـ	/	-													VO	ad o	إمرا	Kare.	TAFF	і] отце	n
Chris Frobu	e o K	6/20/03 Date:	Time	Hoce	ived H	<u> </u>	<u>~</u>			_4	10		4		CE/				-				PR	ESE	ERV	ΑT	ION		MC (/381,5	IVITES	TALS) Orace	i
countries who		WHICH	*******	I TECC	. 1 (612 1)	J -					•				GOO						<u> </u>)PR								-	-
Relinquished By:		Date:	Times	Rece	lved B	y:		 					-	,1,	IEA	D 31	ı A.	. E. P	1001	DIN A			CO	(¥₹/	AIN	1916	`							- 1
						_																												- 1

McCampbell Analytical Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

WorkOrder: 0206344

Client:

Sequoia Environmental Corporation 900Murmansk Street, Suite 1B Oakland, CA 94607 TEL:

(510) 614-1900

FAX:

(510) 614-2923

ProjectNo: SW-03

PO:

20-Jun-02

					•		Requeste	d Tests	
Sample ID	ClientSampID	Matrix	Collection Date	Bottle	8021B/8015	J. J	2007210	i	The second section of the section of th
0206344-001	MW-2	Water	6/20/02	T	Α		!		
0206344-002	MW-3	Water	6/20/02		А				
0206344-003	MW-5	Water	6/20/02		Α				
0206344-004	MW-6	Water	6/20/02		Α				

Comments:

Date/Time	Date/Time
Relinquished by:	Received by:
Relinquished by:	Received by:
Relinquished by:	Received by:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

PROJECT UPDATE JUNE 2002

July 20, 2002

Mr. Barney M. Chan Hazardous Materials Specialist Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 RO 327

JUL 2 2 2002

Re:

Credit Auto

2345 East 14th Street Oakland, California

Dear Mr. Chan:

This letter-report is to update you on the project activities at the above referenced site. The monthly update is in response to the approved workplan by the Alameda County Department of Environmental Health.

The remediation system operated for five weeks without any breakdown. There was no mechanical or electrical problem. At the beginning of this period, microbes and nutrients were added to the system.

In addition to the regular microbes and nutrients, augmentation products were added at more regular intervals during this period. The purpose of this combination was to accelerate the process of degradation of free product of petroleum hydrocarbons. Four alternating applications of bioremediation products were added during this period. The pressure of oxygen generation was monitored every two days to ensure constant pressure for the remediation system. Application of bio-treatment products was momentarily suspended on June 15, 2002. The purpose for the suspension was to allow groundwater in the monitoring wells to stabilized prior to monitoring and collection of water samples.

On June 20, 2002, four groundwater monitoring wells (MW-2, MW-3, MW-5 and MW-6) were purged with a vacuum truck. Prior to purging, the monitoring wells were gauged with interphase probe (IP) to determine the depth to groundwater and thickness of any free product. Groundwater monitoring data is presented in Table 1.

TABLE 1

Groundwater Monitoring Data Before Purging

Well No.	Depth to Groundwater	Free Proc	luct	Observation
		Depth	Thickness	
MW-2	14.80 ft	14.1 ft	0.7 ft	Free product
MW-3	14.68 ft	14.66 ft	0.02 ft	Free Product
MW-5	11.29 ft	11.24 ft	0.05 ft	Free Product
MW-6	12.45	N/A	N/A	Clear, No hydrocarbon odor

After purging, the wells were allowed to recharge to approximately 80% of their respective volumes. The wells were gauged with interphase probe, and groundwater samples were collected (see Table 2 for monitoring data). The samples were collected from each monitoring well with a disposable bailer. The samples were put in glass vials containing hydrochloric acid as preservative. All the samples were placed in a cooler containing ice. Following proper chain-of-custody procedure, the samples were transported to McCampbell Analytical in Pacheco, California, for chemical analyses.

TABLE 2

Groundwater Monitoring Data Before Sampling

Well No.	Depth to Groundwater	Free Pro	duct	Observation
		Depth	Thickness	
MW-2	12.10 ft	N/A	N/A	Hydrocarbon odor
MW-3	14.25 ft	N/A	N/A	Hydrocarbon odor
MW-5	11.15 ft	N/A	N/A	Hydrocarbon odor
MW-6	12.40	N/A	N/A	Clear, No hydrocarbon odor

All the samples were analyzed for total petroleum hydrocarbons as gasoline (TPH-g), aromatic hydrocarbons as benzene, toluene, ethylbenze and xylenes (BTEX), and methyl tertiary butyl ether (MTBE). Laboratory results show that all the monitoring wells contain detectable levels of petroleum hydrocarbons. Summary of laboratory results is presented in Table 3. Detailed laboratory results and chain-of-custody form are attached. Also attached is Table 4, which shows the comparative data for the remediation system.

TABLE 3

Summary of Groundwater Laboratory Results

Sample #	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes
MW-2	53.000	ND<1000	2,200	140	3,300	3,000
MW-3	7,800	ND<50	1,100	23	66	15
MW-5	51.000	ND<250	5,100	290	2,300	5,800
MW-6	79	ND	5.7	ND	ND	ND

Concentrations of groundwater samples are reported in parts per billion (ppb).

ND Non-detect.

On the basis of field observations and analytical results, it appears that the microbes are effective in degrading free product in the groundwater monitoring wells. Our initial estimation was that the present results we observe would be attained after six to seven months of operation. In view of the promising result, it is our intention to move the remediation system into the phase of degrading dissolved phase petroleum hydrocarbons.

However, due to lack of funds, the remediation system has been temporarily turned off. Remediation activities will resume as soon as funds are available.

Please feel free to call me at 510-663-2912, if you have any question about the project.

Sincerely,

Chris 'Wabuzoh Project Manager

tous/bralazoh.

TABLE 4

Comparative Data of Groundwater Sample Results

TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes
FP					
8,400	ND	1,300	25	64	32
FP					
7,600	ND	1,400	42	42	14
				-	
53,000	ND<1000	2,200	140	3,300	3,000
7,800	ND<50	1,100	23	66	15
51,000	ND<250	5,100	290	2,300	5,800
79	ND	5.7	ND	ND	ND
	8,400 FP 7,600 53,000 7,800 51,000	8,400 ND FP 7,600 ND 53,000 ND<1000 7,800 ND<50 51,000 ND<250	8,400 ND 1,300 FP 7,600 ND 1,400 53,000 ND<1000 2,200 7,800 ND<50 1,100 51,000 ND<250 5,100	8,400 ND 1,300 25 FP 7,600 ND 1,400 42 53,000 ND<1000 2,200 140 7,800 ND<50 1,100 23 51,000 ND<250 5,100 290	8,400 ND 1,300 25 64 FP 7,600 ND 1,400 42 42 53,000 ND<1000 2,200 140 3,300 7,800 ND<50 1,100 23 66 51,000 ND<250 5,100 290 2,300

McCampbell Analytical Inc. | 110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 | Telephone : 925-798-1620 | Fax : 925-798-1622 | http://www.mccampbell.com | E-mail: main@mccampbell.com | | Sequoia Enviromental Corporatio | Client Project ID: SW-03 | Date Sampled: 06/20/02 | | 900Murmansk Street, Suite 1B | Date Received: 06/20/02 | | Oakland, CA 94607 | Client Contact: Chris Wabuzoh | Date Extracted: 06/21/02-06/22/02 | | Client P.O.: | Date Analyzed: 06/21/02-06/22/02 |

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction me	ethod: SW5030B			Analytical n	nethods: SW802	1B/8015Cm		,	Work Orde	r: 0206344
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	MW-2	w	53,000,a	ND<1000	2200	140	3300	3000	200	118
002A	MW-3	w	7800,a	ND<50	1100	23	66	15	10	#
003A	MW-5	w	51,000,a	ND<250	5100	290	2300	5800	50	#
004A	MW-6	w	79,a	ND	5.7	ND	ND	ND	1	104

						,,				
		1		:						
	S Co									
Constant								<u> </u>		
ND means	Limit for DF =1; not detected at or reporting limit	W	50	5.0 0.05	0.5 0.005	0.5 0.005	0.5	0.5		g/L /Kg

^{*}water and vapor samples are reported in ug/L, soil and sludge samples in mg/kg, wipe samples in ug/wipe, and TCLP extracts in ug/L.

DF = dilution factor.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) no recognizable pattern; k) TPH pattern that does not appear to be derived from gasoline (aviation gas).

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

BatchID: 2552 Matrix: W WorkOrder: 0206344

SW8021B/8015Cm	Extraction:	SW5030E	3	Ext. Date:	6/20/02	Spiked Sample ID: N/A						
Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)			
µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High			
N/A	60	N/A	N/A	N/A	102	104	1.5	80	120			
N/A	10	N/A	N/A	N/A	98.3	107	8.2	80	120			
N/A	10	N/A	N/A	N/A	103	110	6.6	80	120			
N/A	10	N/A	N/A	N/A	105	113	7.3	80	120			
N/A	10	N/A	N/A	N/A	106	113	7.0	80	120			
N/A	30	N/A	N/A	N/A	103	110	6.2	80	120			
N/A	10	N/A	N/A	N/A	103	101	2.0	80	120			
	Sample µg/L N/A N/A N/A N/A N/A N/A N/A	Sample Spiked μg/L μg/L μg/L N/A 60 N/A 10 N/A 10 N/A 10 N/A 10 N/A 10 N/A 30 N/A 30	Sample Spiked MS* μg/L μg/L % Rec. N/A 60 N/A N/A 10 N/A N/A 10 N/A N/A 10 N/A N/A 10 N/A N/A 30 N/A	Sample Spiked MS* MSD* μg/L μg/L % Rec. % Rec. N/A 60 N/A N/A N/A 10 N/A N/A N/A 30 N/A N/A	Sample Spiked MS* MSD* MS-MSD* μg/L μg/L % Rec. % Rec. % RPD N/A 60 N/A N/A N/A N/A 10 N/A N/A N/A N/A N/A N/A N/A N/A	Sample Spiked MS* MSD* MS-MSD* LCS μg/L μg/L % Rec. % Rec. % RPD % Rec. N/A 60 N/A N/A N/A 102 N/A 10 N/A N/A N/A 98.3 N/A 10 N/A N/A N/A 103 N/A 10 N/A N/A N/A 105 N/A 10 N/A N/A N/A 104 N/A 30 N/A N/A N/A N/A 103	Sample Spiked MS* MSD* MS-MSD* LCS LCSD μg/L μg/L % Rec. % Rec. % RPD % Rec. % Rec. N/A 60 N/A N/A N/A 102 104 N/A 10 N/A N/A N/A 98.3 107 N/A 10 N/A N/A N/A 103 110 N/A 10 N/A N/A N/A 105 113 N/A 10 N/A N/A N/A 106 113 N/A 30 N/A N/A N/A 103 110	Sample Spiked MS* MSD* MS-MSD* LCS LCSD LCS-LCSD μg/L μg/L % Rec. % Rec. % RPD % Rec. % Rec. % RPD N/A 60 N/A N/A N/A 102 104 1.5 N/A 10 N/A N/A N/A 98.3 107 8.2 N/A 10 N/A N/A N/A 103 110 6.6 N/A 10 N/A N/A N/A 105 113 7.3 N/A 10 N/A N/A N/A 106 113 7.0 N/A 30 N/A N/A N/A 103 110 6.2	Sample Spiked MS* MSD* MS-MSD* LCS LCS LCS-LCSD Acceptance μg/L μg/L % Rec. % Rec. % Rec. % Rec. % Rec. % RPD Low N/A 60 N/A N/A N/A 102 104 1.5 80 N/A 10 N/A N/A N/A 98.3 107 8.2 80 N/A 10 N/A N/A N/A 103 110 6.6 80 N/A 10 N/A N/A N/A 105 113 7.3 80 N/A 10 N/A N/A N/A 106 113 7.0 80 N/A 30 N/A N/A N/A 103 110 6.2 80			

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

N/A = not enough sample to perform matrix spike, or analyte concentration in sample exceeds spike amount.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS – MSD) / (MS + MSD) * 2.

^{*} MS and / or MSD spike recoveries may not be near 100% or their RPDs near 0% if: a) the sample is inhomogeneous AND contains significant concentrations of analyze relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

	McCAM	PBELI	ANA	LYT	ICA	ī. ī	NC						Т					CT.	řÀ	INI	$\overline{\Delta}$	17 4	T	I C'r	ΓŃ	IT.	C Y	3 Y 7	Ċ	on	T	rite.	
		10 2nd A	VENUE S	OUTH,	#3)7	~	1. 4 4.2	•					Ι,	TU	D NI	A T									U		Y RECORE			J)	г.	æ	
Telepho	ne: (925) 798	PACHE6 -1620	CO, CA 94	1553-55		Corver :	(034	5) 79	91. L <i>a</i>	(7.7				Į (i	X CL ¥	EXX	CO	OIX	IJ,	Ę ŁĖV	(EE)			Ç. USF	ı	يا [24]			Ę 48∃		-	 ′2 HR	⊠ 5 DAY
Report To:	X15 1/12	36470	oh i	ill Te)!	3	A 11	15					- -					An	alve	is 12	ens	10ef			-			1		her		Comi	
Company! Seq.	uoja Er	フレットロン	ımen	tal		02	مرار بر مراق ک	200	20	ー トフ				7	T			7,,,,,	1, 5 3	1.5	ecq.	10.50		ŀ			Τ	 		1161	Τ	Com	nents
900	Marmo	erisk	Strace	7,	Su	ite	1	В		<u> </u>		•	1		3. KF			3															
Oa	kland	, CA	940	07				A					3015) MTBE		&F/F								\$310					Ì					
Tele: (x)10-6	63-29	12	1	Tax: (50	س-	66	3 ·	Ç	91	4		Z S		0 E	8.1)							/ 83									•	
Tele: (s) 10 - 6 Project #: 5	W-03	<u>, </u>		Projec	t Na	ne;	\mathcal{C}_{t}	200	17	Ĺ	re	10	3015		(552	(4)		8					3270					1					
Project Location: Sampler Signatur	_Oak	lano	2	· ,		д							± 50 ±		age:	pous		302(į	4LY			625 / 8270 /			10							
Sampler Signatur	e: 🐣	1		Ouz	0-6	<u> </u>				1 2			72/80		5	ocar		02 /		ु	a		₹			760				}			
		SAMI	LING	1.	Siz	İ	MA	TRE	X.			HOD RVEI	Gas (602/8020	(8015)	Total Petroleum Oil & Grease (5520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)		BTEX ONLY (EPA 602 / 3020)		EPA 608 / 8080 PCB's ONLY	EPA 624 / 8240 / 8260		Y EPA			Lead (7240/7421/239.2/6010)				Ϋ́			
				i Si	in								3	1	E T	E	10	(E	စ္တ	80 I	/0+	6	, s D	sie	ris	421/		}		duct			
SAMPLE ID	LOCATION		[# Containers	Type Containers								BTEX & TPH	TPH as Diesel	10 le	role.	EPA 601 / 8010	NL	EPA 608 / 8080	/ 30	/ 82	EPA 625 / 8270	P.Y.A	Me	Mete	7/04		ĺ		Conductivity	ļ		
		Date	Time		3	Water		000	Other		_	တို့ ရုံ	×	3	2	Pe	. 601	0 X	809	608	624	625	\s_1	T-17	T 5	(72		l		offic			
				#	Ę	×	Soil	Sludoe	Ö	a:a[띪	HNO, Other	댎	id:	Tola	Tota	EPA	BTE	EPA	EPA	EPA	EPA	PAH's / PNA's by	CAM-17 Metals	LUFT 5 Metals	Lead	RC!	ρĦ	TSS	Specific			
MW-2		6/20/02	pm	3		~			+	7			1	,							_												
mw-3		6/20/01		3		V				v	~		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \															-	 	-			
MW-5		6/20/02	מנידן	3		V		\top	1		~		し	<u> </u>	· 																}		
mw-6		6/20/02		3					1-	Ž	1		V		ļ																		
		120702	/	-/-		-			-				╁	+																			
			·						·	\vdash			- 		<u> </u>											-				ļ			
							+		 -				-	· [i		~													ļ			
					ļ				ļ					-	ļ				- 4														
				[1	_	ļ				_														
																						l					i						
<u>.</u>		·									_																						
				l . i																													
																																	-
									ļ .				1 -							1													
													1	1			-													-			
					. ــــــــــــــــــــــــــــــــــــ		-	\pm	 		_		┨					-	+			-											
Relinquished By:		Dates	Time:	Rece	yen #	γ:		1)	لبرا	\triangleleft		<u>-J)</u> -	-	<u> </u>										!							1		
Christ Anobus	eal	6/20/02		\geq	1	A		Z		4	7	ァ ファ	K	-													VOA	kd o	&Gl	ME	TALS	отцев	, l
Relinquished By:		Date:	Time	Rece	ved B	<u>т</u> у!				_4	9 6	d	٢	ICE	/t"				_					RV.									_]
					`	-								GOO HEA	JD (2 (1)	ON. Pac	DET Tr. A	AO). 12a.	NT.)PR AINI				ar-	•				İ
Relinquished By:		Date:	Time:	Rece	ved B	y:						 · · ·	1	- A 19C		7 % (-	- R24 (*)		.41. 1. 1.			U	14/	42131	124 (1)								}
										_		,																					- 1

McCampbell Analytical Inc.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

CHAIN-OF-CUSTODY RECORD

Page 1 of I

WorkOrder: 0206344

Client:

Sequoia Environmental Corporation 900Murmansk Street, Suite 1B

Oakland, CA 94607

TEL:

(510) 614-1900

FAX: ProjectNo:

(510) 614-2923 SW-03

PO:

20-Jun-02

Sample ID	ClientSampID	Matrix	Collection Date	Bottle	8021B/8015						
0206344-001	MW-2	Water	6/20/02		Α		1	i	i		
0206344-002	MW-3	Water	6/20/02		Α						
0206344-003	MW-5	Water	6/20/02		Α			:			
0206344-004	MW-6	Water	6/20/02		Α						

(Comments:			
		Date/Time -		Date/Time
į ·	Relinquished by:		Received by:	
	Relinquished by:		Received by:	
	Relinquished by:		Received by:	

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.