RO 32-1

Mr. Amir Gholami Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 Alamora County

May 2, 2003

Re:

Site Summary Conduit Study and Groundwater Monitoring Report

2345 International Boulevard (formerly E. 14th Street)

Oakland, California

Fuel Leak Case No. RO0000327

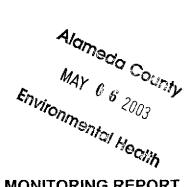


Dear Mr. Gholami:

The Site Summary, Conduit Study and Monitoring Report (Report) was mailed prior to final review. Please disregard the report sent yesterday, as the Figures were omitted. Enclosed is the Report and accept my sincere apologies for any inconvenience. Cambria looks forward to working with you on this project. If you have any questions or comments, please contact me at (510) 420-3307.

Sincerely,

Cambria Environmental Technology, Inc.


Mary C. Holland-Ford

Project Geologist

H:\Sb-2004 (UST Fund)\Stanley Wong (Credit Auto)\Correspondence\Transmittal letter May 2003.doc

Cambria Environmental Technology, Inc.

5900 Hollis Street Suite A Emeryville, CA 94608 Tel (510) 420-0700 Fax (510) 420-9170



SITE SUMMARY, CONDUIT STUDY AND MONITORING REPORT

**Credit World Auto Sales** 2345 International Boulevard Oakland, California 94601 Cambria Project No. 513-1000

April 30, 2003

Prepared for:

Mr. Stanley Wong 2200 East 12th Street Oakland, California 94606

Prepared by:

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, California 94608

Mary C. Holland-Ford Project Geologist

Cambria **Environmental** Technology, Inc.

5900 Hollis Street

Suite A

Emeryville, CA 94608

Tel (510) 420-0700

Fax (510) 420-9170

got ceriblell Bob Clark-Riddell, P.E.

Principal Engineer

# SITE SUMMARY, CONDUIT STUDY AND MONITORING REPORT Credit World Auto Sales 2345 International Boulevard Oakland, California

#### TABLE OF CONTENTS



| 1.0 INTRODUCTION                                                   | 1  |
|--------------------------------------------------------------------|----|
| 2.0 SITE BACKGROUND                                                | 1  |
| 2.1 SITE USE, LOCATION AND DESCRIPTION                             |    |
| 2.2 SITE INVESTIGATION                                             |    |
| 2.3 SITE REMEDIATION.                                              |    |
| 2.3.1 Soil Excavation                                              | 3  |
| 2.3.2 SPH Removal                                                  | 4  |
| 2.3.3 Bio-Remediation System                                       | 4  |
| 2.3.4 Vacuum Truck Operations                                      | 5  |
| 3.0 RECENT ACTIVITIES                                              | 5  |
| 3.1 GEOLOGIC CROSS SECTIONS                                        | 5  |
| 3.2 CONDUIT STUDY                                                  | 5  |
| 3.3 GROUNDWATER MONITORING                                         | 7  |
| 3.4 SPH REMOVAL ACTIVITIES                                         | 8  |
| 4.0 SUBSURFACE CONDITIONS                                          | 8  |
| 4.1 GEOLOGY                                                        | 8  |
| 4.2 Hydrogeology                                                   |    |
| 4.3 HYDROCARBON DISTRIBUTION                                       | 10 |
| 4.3.1 Chemicals Of Concern                                         |    |
| 4.3.2 Soil                                                         |    |
| 4.3.3 Groundwater                                                  | 12 |
| 5.0 RISK EVALUATION                                                | 13 |
| 5.1 SOIL                                                           | 14 |
| 5.2 Groundwater                                                    | 15 |
| 6.0 CONCLUSIONS                                                    | 16 |
| 7.0 RECOMMENDED ACTIVITIES                                         | 18 |
| 7.1 ADDITIONAL INVESTIGATION, WELL REPLACEMENT, AND WELL SURVEYING | 18 |
| 7.2 FEASIBILITY TESTING                                            | 18 |
| 7.3 INTERIM REMEDIAL ACTIVITIES                                    | 18 |
| 7.4 QUARTERLY MONITORING AND SAMPLING                              | 19 |

#### **FIGURES**

Figure I – Vicinity Map

Figure 2 – Site Plan

Figure 3 - Geologic Cross Section A-A'

Figure 4 – Geologic Cross Section B-B'

Figure 5 – Utility and Conduit Map

Figure 6 – Groundwater Elevation Contour Map

Figure 7 - Separate Phase Hydrocarbon Thickness

Figure 8 - Historical TPHg Concentrations in Soil

Figure 9 - Historical Benzene Concentrations in Soil

Figure 10 - Historical Benzene Concentrations in Groundwater



#### **TABLES**

Table 1 - Groundwater Flow Direction and Gradient

Table 2 - Soil Analytical Data

Table 3 - Groundwater Analytical Data

Table 4 - Well Completion Data

Table 5 - Summary of SPH Removal

#### **APPENDIX**

Appendix A - Background Information

Appendix B - City of Oakland Subsurface Utility Map

Appendix C - City of Oakland Bench Mark Data from Renner Surveying & Engineering

#### SITE SUMMARY, CONDUIT STUDY AND MONITORING REPORT

Credit World Auto Sales 2345 International Boulevard Oakland, California Cambria Project No. 513-1000

April 30, 2003



#### 1.0 INTRODUCTION

Cambria Environmental Technology, Inc. (Cambria) is pleased to submit this *Site Summary, Conduit Study and Monitoring Report* (Report) for the above-referenced site on behalf of Mr. Stanley Wong. As requested by the Alameda County Health Care Services Agency (ACHCSA) on September 9, 2002, this report summarizes historical site activities and subsurface conditions, and presents our conclusions and recommendations for the site. This report also describes recent activities conducted by Cambria to facilitate evaluation of the site conditions. The recent activities conducted by Cambria include preparation of geologic cross-sections, a conduit study, groundwater monitoring, and free product removal. As verbally requested by new regulatory case worker Amir Gholami, this report discusses hydrocarbon trends, plume stability, methyl tert-butyl ether, and chlorinated hydrocarbons, and includes a risk evaluation. Mr. Gholami requested comparison of contaminant concentrations to risk-based screening levels (RBSLs) established by the San Francisco Bay Regional Water Quality Control Board (RWQCB).

#### 2.0 SITE BACKGROUND

Site background information is presented below. Boring logs, analytical results and additional information from previous investigations is presented in Appendix A.

#### 2.1 Site Use, Location and Description

The site located is located in a commercial/residential area at the southwest corner of the intersection of International Boulevard (formerly East 14<sup>th</sup> Street) and Miller Avenue in Oakland, California (Figure 1). The site is at an elevation of approximately 23 feet above mean sea level, based on City of Oakland datum. The site is currently operated by Credit World Auto Sales, a

used car dealership. One building occupies the site, and the building is used as an office and automotive service bay. The remainder of the site is a paved parking area (Figure 2).

In August 1988, SCS removed four underground storage tanks (USTs) along with two dispenser islands and associated piping from the site (Figure 2). Soil samples from the fuel tank showed concentration of total petroleum hydrocarbons as gasoline (TPHg) and benzene. Soil samples from the used oil excavation area showed impact of total petroleum hydrocarbons as diesel (TPHd) and total oil and gas (TOG).



#### 2.2 Site Investigation

Several phases of soil and groundwater assessments have been conducted at the site since 1988. Soil and groundwater analytical results from these investigations is summarized in Tables 2 and 3, respectively.

November 1988: California Environmental Consultants (CEC) advanced three soil borings to assess the extent hydrocarbon impact in the soil and groundwater in the vicinity of the former UST locations. Borings B-1 and B-2 were advanced adjacent to the former fuel USTs. TPHg and benzene, toluene ethylbenzene, and xylenes (BTEX) were detected in the soil and groundwater samples from both borings. Boring B-3, located near the former used oil UST location, showed concentrations of TOG and BTEX in soil and groundwater samples.

May to August 1991: Earth Systems Environmental advanced five onsite borings (TH-1 through TH-5) and installed three groundwater monitoring wells (MW-1 through MW-3) at the site to further delineate the onsite hydrocarbon impact. Borings B-1 and B-2 were advanced adjacent to the former fuel USTs. TPHg and BTEX were detected in the soil and groundwater. Soil and groundwater samples from boring B-3, located near the former used oil UST location, showed concentrations of TOG and BTEX. Groundwater was encountered 19 feet below grade surface (bgs) during this assessment.

July 1993: Tank Protect Engineering (Tank Protect) installed two monitoring wells (TMW-4 and TMW-5) at the site. No petroleum hydrocarbons were detected in soil samples from borings for wells TMW-4 and TMW-5. Separate-phase hydrocarbons (SPH) were observed in wells MW-1, MW-2 and TMW-5 and was removed by hand bailing. Groundwater flow direction beneath the

site ranged from north-northeast to west-southwest with an average gradient of 0.029 feet/feet during this assessment. Tank Protect concluded that confined and unconfined groundwater is present beneath the site, and that wells MW-2 and MW-3 monitor an upper, unconfined water bearing zone while MW-1, TMW-4, and TMW-5 monitor both the upper unconfined zone and a lower, confined water bearing zone. Tank Protect concluded that sands logged in well MW-2 are characteristic of a buried stream channel, trending north-south beneath and across the site.



April 1997 to May 1997: Tank Protect advanced five borings (SB-1 through SB-5) to assess the offsite hydrocarbon impact. TPHg was detected in soil and water samples from boring SB-5 and benzene was detected in boring SB-2. Benzene and methyl tert-butyl ether (MTBE) were detected in groundwater from boring SB-5. No petroleum hydrocarbons or MTBE were detected in soil and groundwater samples from borings SB-1, SB-3, and SB-4. Tank Protect concluded that northern and southern extent of the hydrocarbon plume has been defined.

May 2001: Sequoia Environmental (Sequoia) advanced seven onsite borings (SB-1 through SB-7), converting boring SB-7 into monitoring well MW-6. No MTBE was detected in all soil samples. SPH was detected in wells MW-1, MW-2, MW-3 and TMW-5, and 4.5 gallons of SPH was removed by hand bailing from the monitoring wells. MTBE was not detected in all groundwater samples Sequoia reports groundwater flow to the west-southwest during this assessment.

Groundwater Monitoring: Groundwater monitoring of site wells was conducted regularly between August 1991 and December 1999, and was conducted once in 2001 and once again in 2002. Groundwater analytical data and groundwater elevation data is summarized in Table 3. Results of the groundwater monitoring are described later in this report.

#### 2.3 Site Remediation

In August 1988, SCS removed four USTs, two dispensers and associated piping from the site (Figure 2). Several remedial activities have been conducted since UST removal.

#### 2.3.1 Soil Excavation

December 1994 through October 1996: Tank Protect conducted multiple phases of soil excavation and verification sampling at the site. As shown on Figure 2, the excavation was conducted around the UST area in the center of the site, and the depth of the excavation ranged

from 12 feet to 19 feet bgs. A total of 1,550 cubic yards (cy) of soil was excavated. Approximately 1,019 cy of the excavated soil was stockpiled on site, remediated via aeration and hydrogen peroxide treatment, and placed back into the excavation cavity with the approval of the ACHCSA. Approximately 531 cy of soil was removed from the site and disposed of at a licensed facility. The final verification samples detected a TPHg maximum concentration of 110 milligrams per kilogram (mg/kg) in sidewall samples, and 66 mg/kg in excavation bottom samples. Additional information on excavation activities and confirmation sampling results is presented in Appendix A.



#### 2.3.2 SPH Removal

Due to the presence of SPH in site wells, Tank Protect installed a free product recovery system and bailed site wells during groundwater monitoring events. Groundwater monitoring and sampling results and SPH thickness information is presented in Table 3.

The free product removal system first consisted of a selective oil skimmer, down-well mounted bladder product pump, and two product storage drums. Tank Protect reported that trace quantities of free product were removed during between July 27 and August 18, 1995. To enhance free product recovery, Tank Protect installed a continuously operating free product recovery system in August 1997. Tank Protect reported removing 3 to 5 gallons of SPH between August 20, 1997 and January 14, 1998. SPH removal by manual bailing by Cambria is described below and summarized in Table 5.

#### 2.3.3 Bio-Remediation System

A bio-remediation system was installed and operated at the site by Sequoia between March 2002 and July 2002. According to Sequoia, this system pumped water from four wells (MW-1, MW-2, MW-3 and TMW-5) into four "bioreactor" tanks containing microbes, nutrients, and hydrogen peroxide. The treated, microbe-rich water was then injected into the subsurface through an infiltration well (MW-1). Monthly project updates submitted by Sequoia do not provide detailed information about system layout, startup, or operation. Between March 2002 and July 2002, four bio-treatment events were reported where treated, microbe-rich water was injected into well MW-1. The system was shut down and removed in July 2002. Groundwater samples collected by Sequoia on June 20, 2002 after the initiation of bio-remediation activities were generally

consistent with historical groundwater hydrocarbon concentration trends. Insufficient data is available to assess the effectiveness of the bio-remediation system.

#### 2.3.4 Vacuum Truck Operations

Vacuum truck operations were conducted by Sequoia on July 20, 2002 as an interim remedial measure. Vacuum truck operations were performed to remove the SPH found in wells MW-2, MW-3 and TMW-5. Details are not available describing the length of vacuum truck operations or amount of SPH and groundwater recovered.



#### 3.0 RECENT ACTIVITIES

Cambria prepared geologic cross-sections, conducted a conduit study, monitored site groundwater wells, and bailed SPH from site wells. These activities were required by ACHCSA and are described below.

#### 3.1 Geologic Cross Sections

To illustrate the site's stratigraphic and hydrogeologic characteristics, Cambria constructed geologic cross sections A-A' and B-B' from boring logs (see Figures 3 and 4). The geologic cross sections illustrate that the stratigraphy consists primarily of low to moderately permeable clays and silts with interbedded higher permeability sand and gravel layers to the total depth explored of 36 feet bgs. Two water-bearing units were encountered, and confined and unconfined conditions may be present at the site. Soil analytical results and historic high and low groundwater depths are shown on the cross sections. The site geology and hydrogeology are described further in Section 4.

#### 3.2 Conduit Study

Cambria performed a conduit study to evaluate the potential for subsurface utility conduits to serve as preferential pathways for hydrocarbon migration. To obtain information regarding buried utilities in the site vicinity, Cambria contacted the City of Oakland, Pacific Bell, Pacific Gas & Electric (PG&E), and East Bay Municipal Utilities District (EBMUD). The location, diameter and approximate depth of subsurface conduits beneath and adjacent the site are shown on Figure 5. A

subsurface utility map from the City of Oakland Department of Engineering is included in Appendix B. Based on the City of Oakland map and telephone conversations with Pacific Bell, PG&E and EBMUD, the depth to nearby utilities ranges from approximately 3 to 18 feet bgs. A telephone line is located at approximately 3.5 feet bgs along International Blvd. A sanitary sewer crosses the site (presumably shallower than 5 feet bgs) and enters a 10-inch diameter sanitary sewer beneath the middle of International Boulevard, which is located at approximately 8 to 9 feet bgs (approximate 15 feet flow line elevation). A water line crosses the site (presumably shallower than 5 feet bgs) and enters a 36-inch diameter water main near the other side of International Blvd located at 5 feet bgs. A 24-inch diameter storm drain, also on the other side of International Blvd, is located approximately 3 feet bgs (top of conduit) to 5 feet bgs (bottom of conduit; approximate 18 feet flow line elevation). A sanitary sewer (presumably 6- or 8-inch diameter) is located near the other side of Miller Avenue at approximately 8 to 9 feet bgs (approximate 14 feet flow line elevation). A 75-inch diameter storm drain is located beneath Miller Avenue at approximately 10 to 16 feet bgs, with an approximate 7 feet flow line elevation as it passes the site. Overhead electrical service runs along Miller Avenue.

To compare sewer and utility depths to groundwater depth, Cambria reviewed existing surveying information. Because surveying datum information was not provided in reviewed reports, Cambria contacted the Renner Survey Company of Burlingame, California, who researched old records and determined that the site wells were surveyed to the City of Oakland bench mark datum (See Appendix C).

As described below, site groundwater has historically fluctuated primarily between approximately 9 and 17 feet bgs, and has occasionally risen to approximately 6 feet bgs at some locations. This information suggests that onsite utility conduits and the shallow offsite storm drain beneath International Boulevard, which are shallower than 6 feet bgs, have not historically intersected site groundwater. The two offsite sanitary sewer conduits, located at approximately 8 to 9 feet bgs, do not likely intersect groundwater during its typical fluctuation between 9 to 17 feet bgs, but likely do intersect groundwater during the occasional groundwater rise to approximately 6 feet bgs. Although groundwater could occasionally intersect these sanitary sewer conduits, the prevalent clay in the shallow site subsurface would limit the potential for hydrocarbons to migrate to nearby conduits. Furthermore, groundwater analytical results from offsite borings SB-1, SB-3 and SB-4, located between the site and the sanitary sewers, suggests hydrocarbons have not migrated offsite



toward the sanitary sewers. As described below, no hydrocarbons were detected in soil or groundwater from these borings.

Our primary concern is the 75-inch storm drain beneath Miller Avenue located approximately 60 feet from site well SB-7/MW-6, which had SPH detected (0.04 feet) for the first time during monitoring in December 2002. This 75-inch diameter storm drain, located at approximately 16 feet bgs, apparently intersects groundwater almost year round and could be located within the upper sandy water-bearing unit. However, groundwater analytical results from offsite boring SB-1 (installed in 1997 and located between the site and storm drain) suggest that hydrocarbons have not migrated offsite toward the offsite storm drain (no hydrocarbons were detected in soil or groundwater from boring SB-1).



#### 3.3 Groundwater Monitoring

Cambria conducted gauging and monitoring of site wells on October 21, 2002 and December 27, 2002. During the October 2002 gauging event, groundwater monitoring wells MW-1, MW-3 and MW-6 were not accessible. SPH thickness was observed in wells MW-2 and TMW-5 at 0.24 feet and 0.10 feet, respectively. SPH was not observed in well TMW-4. Depth to groundwater in site wells ranged from 13.6 to 16.98 feet bgs. During the December 27, 2002 monitoring event, SPH was observed in all site wells and groundwater sample collection was not performed due to the presence of SPH. Groundwater monitoring data is summarized on Table 3. A groundwater elevation contour map for December 27, 2002 is presented as Figure 6.

To more accurately estimate the groundwater flow direction at the site, Cambria has estimated the top of casing elevation for wells MW-3 and TMW-4. Site records indicate that other site wells were surveyed to the Oakland datum in June 2001, while wells MW-3 and TMW-4 were not resurveyed at that time. The resurveying in June 2001 by the Renner Survey Company effectively lowered the groundwater elevation of the other site wells (MW-1, MW-2, and TMW-5) by an average of 2.80 feet. Cambria assumes that the wells were previously surveyed to NGVD 29 datum, which is approximately 3 feet higher than the City of Oakland datum. To estimate the top of casing (TOC) elevation for wells MW-3 and TMW-4 with respect to City of Oakland datum, Cambria subtracted 3 feet from the prior TOC elevation from August 1993. Figure 6 and Table 3 present the revised groundwater elevation based on the Oakland datum.

#### 3.4 SPH Removal Activities

During the December 2002 monitoring event, SPH was observed in all site wells. Cambria technicians removed approximately 13.5 liters (21.78 pounds) of SPH from site wells by hand bailing on December 27, 2002. To estimate prior SPH removal by hand bailing and/or well purging by Tank Protect, Cambria multiplied the tabulated SPH thickness (feet) by the well casing area (i. e., 2-inch diameter casing = 0.60 liters per foot) for each purging/bailing event. Cambria estimates that approximately 69.6 pounds of SPH were bailed and/or purged by others. In addition, Tank Protect reported that a continuous free product recovery system removed approximately 3 to 5 gallons (18.3 to 30.5 pounds) between August 1997 and January 1998. As summarized on Table 5, Cambria estimates that 121.88 pounds of petroleum hydrocarbons have been removed from site wells to date.

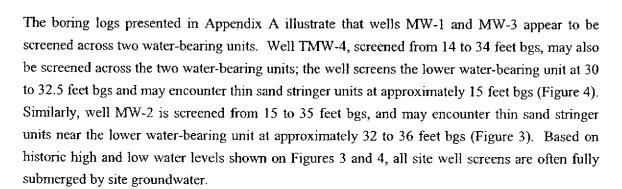
## 4.0 SUBSURFACE CONDITIONS

The site geology, hydrogeology, chemicals of concern (COC), and hydrocarbon distribution in soil and groundwater are described below.

#### 4.1 Geology

The site is located within the Coast Range geomorphic province of California. In general, the Coast Range province consists of Jurassic eugeosynclinal basement rocks and Cretaceous and Cenozoic sedimentary and volcanic rocks that have been faulted and folded with a northwest-southeast trend. The site lies within the Bay Plains Basin. Sediments beneath the site consist of coalescing alluvial deposits from the Diablo Range to the east known as the San Leandro Cone. According to the USGS Professional paper 943, the site is located on quaternary age alluvial deposits consisting of medium-grained, unconsolidated moderately sorted permeable fine sand, silt, and clayey silt with thin beds of coarse sand.

The site geology consists primarily of low to moderately permeability clays and silts with interbedded higher permeability sand and gravel layers to the total depth explored of 36 feet bgs. Aggregate base material (fill) under site asphalt at approximately one foot bgs is underlain by dry gray to black or brown clay ranging to total depths of 7½ to 12 feet bgs, with damp gray to green clay to ranging from approximately 17 to 23 feet bgs. This shallow clay is underlain by a


8

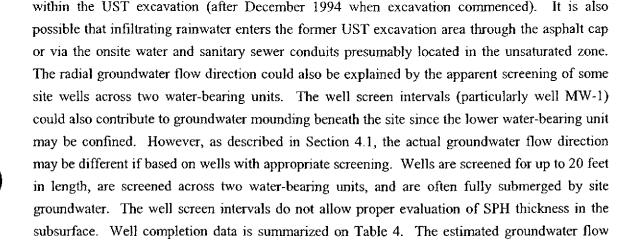






discontinuous water-bearing unit from approximately 17 to 27 feet bgs, which consists of silty to clayey sand grading to brown clayey sand. The silty/clayey sand unit is shallowest near wells MW-2 and SB-7/MW-6. This water-bearing unit is underlain by gravelly clay to a depth of 32½ feet bgs. A deeper relatively permeable sand and gravel layer is present in boring for wells MW-1 and TMW-4 at depths of 31.5 to 35 feet bgs and 30.5 to 32.5 feet, respectively. It cannot be determined if the lower and upper higher permeability sand layers shown in the geologic cross sections are interconnected or separated by the lower permeability clay layers. Geologic cross-sections are shown on Figures 3 and 4. The upper and lower sand units may be discontinuous, and may be confined or unconfined.




#### 4.2 Hydrogeology

Major groundwater bearing materials beneath the Bay Plain Basin occur at depths ranging from 50 feet to more than 1,000 feet bgs. Groundwater from these aquifers is presently used largely for irrigation and industrial purposes. Regionally, groundwater flow is generally to from the Diablo Range toward San Francisco Bay. The nearest surface water body to the site is Brooklyn Basin Tidal Canal located ½ mile to the west.

Since 1991, the depth to groundwater beneath the site has ranged from approximately 6.5 to 17 feet bgs. However, the groundwater depth has typically fluctuated between approximately 10 to 15 feet bgs. The historical high and low groundwater depths are shown on Figures 3 and 4. Historically, the groundwater flow direction has varied significantly, generally flowing either northwestward or radially outward from the center of the site. Cambria and previous site consultants have inferred a radial direction of groundwater flow based on groundwater elevation data from site wells dating back to August 1993. A radial groundwater flow direction could be







explained by water mounding within the UST cavity (from August 1993 to September 1994) or

#### 4.3 Hydrocarbon Distribution

direction from past monitoring events is summarized on Table 1.

The COCs at this site are petroleum hydrocarbons as described below. The extent of hydrocarbons in the site subsurface has been assessed by several investigations since 1988. One investigation in 1997 evaluated the offsite extent of hydrocarbons using soil borings. Described below are the COCs and the distribution of hydrocarbons in soil and groundwater.

#### 4.3.1 Chemicals Of Concern

During site investigation activities, only petroleum hydrocarbons and MTBE have been detected in analyzed soil and groundwater. The detected petroleum hydrocarbons are predominately in the gasoline, oil and grease ranges. Oil and grease has been detected primarily near the former used oil UST.

MTBE has been detected in groundwater from one boring grab sample [12 micrograms per liter (μg/L)] and sporadically in select wells by Environmental Protection Agency (EPA) Method 8020. MTBE detection have *not* been confirmed by EPA Method 8260 analysis. No MTBE was detected in site soil. This information suggests that MTBE may not be a COC at this site, and that groundwater analysis by EPA Method 8260 is merited for any detected MTBE by EPA Method 8020.





During removal of the former fuel USTs and the used oil UST (and during an investigation in 1988), select soil and groundwater samples were analyzed for volatile organic compounds (VOCs) by EPA Method 8260 and for halogenated VOCs (HVOCs) by EPA Method 8010. No HVOCs were detected in analyzed samples. Only BTEX compounds detected in samples analyzed for VOCs by EPA Method 8260. MTBE, VOC and HVOC data is presented in Tables 2 and 3. For purposes of the hydrocarbon distribution presented below, petroleum hydrocarbons are considered the COCs for the site.



#### 4.3.2 Soil

Petroleum hydrocarbons were detected in 21 of the 25 borings with analyzed soil samples. Soil analytical results are summarized in Table 2. The extent of TPHg and benzene in soil is shown on Figures 8 and 9, respectively. The vertical extent of TPHg is shown on geologic cross-sections on Figures 3 and 4.

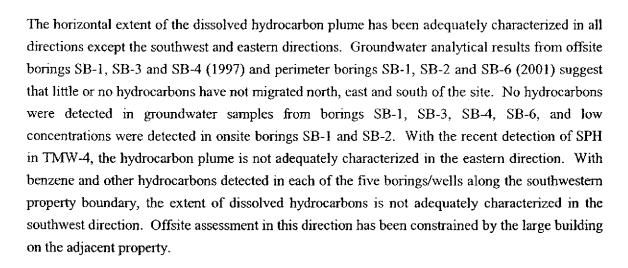
Soil analytical results indicate that petroleum hydrocarbons are primarily located in the capillary fringe and saturated zone at depths ranging from approximately 10 to 25 feet bgs. Shallower unsaturated soil has presumably been remediated by site excavation activities. Limited shallow soil data is available, and the maximum TPHg concentration detected in shallow (<10 feet bgs) was 2.4 mg/kg at 5.5 feet bgs in TMW-5, which was overexcavated around and adjacent the former USTs.

TPHg concentrations in soil are highest north and northwest of former UST excavation area (see Figure 8). The maximum detected TPHg concentrations in subsurface (≤ 10 feet bgs) soil are 4,320 mg/kg TPHg in MW-2 at 10 feet bgs, 1,800 mg/kg in SB-3 at 15 feet bgs, and 450 mg/kg in TH-4 at 19.5 feet bgs. Benzene concentrations in soil are also highest north and northwest of the former UST area, although elevated benzene concentrations are also detected southwest of the former USTs. The maximum benzene concentration detected was 61 mg/kg at 15 feet bgs in B-5, but this sample location from the 1988 UST removal may have been overexcavated. The maximum TOG concentration detected was 1,600 mg/kg in TH-4 at 19.5 feet bgs. This sample was near the former used oil UST location in the northwestern portion of the site.

The lateral extent of hydrocarbons in soil appears to be adequately defined by onsite and offsite borings in all directions, except for benzene in the west and southwest directions. No BTEX

compounds were detected by the four offsite borings (SB-1, SB-3, SB-4, and SB-5) installed in 1997. TPHg was detected in only one of the four offsite borings, at a concentration of 91 mg/kg (SB-5). However, the three offsite borings with no TPHg or BTEX detected were apparently sampled in the saturated zone, at depths of approximately 22 and 27 feet bgs. The one boring sampled near the presumed capillary fringe (SB-5 sampled at 11.5 to 12 feet bgs) had the TPHg detection of 91/ mg/kg. While *soil* sampling may not have adequately characterized capillary fringe soil, *groundwater* analytical results from these four offsite borings suggests that petroleum hydrocarbons have only migrated offsite in the northwest direction (near SB-5). No hydrocarbons were detected in grab groundwater north or south of the site, based on results from SB-1, SB-3 and SB-4 described below.




#### 4.3.3 Groundwater

Groundwater monitoring data and analytical results indicate that SPH is present across the site in all monitoring wells, the SPH plume is not stable, elevated benzene is present onsite, and the hydrocarbon extent is not fully characterized. Groundwater analytical results and monitoring data are summarized in Table 3. The current and historic maximum SPH thickness observed in the site wells is presented in Figure 7. The historical extent of benzene concentration in groundwater is shown on Figure 10.

Cambria observed SPH in all site wells during the most recent monitoring event on December 27, 2002. As shown on Figure 7, the SPH thickness on this date ranged from 0.04 feet (MW-6) to 0.43 feet (MW-2). Most importantly, SPH was detected for the first time in wells TMW-4 and MW-6 during this monitoring event. The maximum SPH thickness reported is site wells has been 7.44 feet in MW-2 (March 1995), 4.36 feet in well MW-1 (June 2001), 0.46 feet in MW-3 (March 1995), and 0.10 feet in TMW-5 (December 2002) (see Figure 7). This indicates that the greatest SPH thickness has been observed north of the former USTs (MW-2) and west-southwest of the former USTs (MW-1 and MW-3). In general, SPH thickness increases when the groundwater elevation lowers, as especially observed in wells MW-1 and MW-3. The SPH appears to be primarily located in the upper sand unit, and is likely present in historic smear zone comprised of clayey soil and possibly thin interbedded sand units. In well MW-2, the SPH thickness is typically highest when the groundwater elevation rises, possibly due to the rising water table entering the upper sand unit where elevated TPHg was detected in soil and SPH is likely present. The submerged well screen is likely effecting the SPH thickness observed in well MW-2. The detection of SPH for the first time in perimeter site wells TMW-4 and MW-6 could be

explained by SPH migration caused by groundwater mounding and the inferred radial groundwater flow direction. The SPH detection could also be explained by historic high groundwater elevation for wells TMW-4 and MW-6 during the recent monitoring.

Groundwater analytical results suggest that dissolved hydrocarbons are present across most of the site, with the highest concentrations near the former UST area. The historical benzene concentrations detected in site groundwater are shown on Figure 9. The highest benzene concentrations (>10,000 µg/L) have been detected in 26,000 µg/L in well TMW-5 (in the former UST area), 17,000 µg/L in boring B-2 immediately adjacent TMW-5, and 14,000 µg/L in boring B-1 just southwest of the former UST area. Elevated benzene concentrations (>1,000 µg/L) have been detected southwest of the former UST area (MW-1, MW-3, MW-6 and SB-5), and north of the former UST (MW-2).



#### 5.0 RISK EVALUATION

To evaluate the potential risk from residual hydrocarbons, Cambria conducted a risk evaluation using the RWQCB guidance document Application of Risk Based Screening Levels and Decision Making to Sites With Impacted Soil and Groundwater (RWQCB 2001). To conduct the risk evaluation, Cambria compared residual contaminant concentration data to Tier 1 Risk Based Screening Levels (RBSLs) ('final RBSLs') established by the RWQCB. For constituents whose residual concentrations exceed the Tier 1 RBSLs, Cambria conducted a Tier 2 risk evaluation in



accordance with the RWQCB guidance document. The Tier 2 risk evaluation involves modifying the Tier 1 RBSLs based on site-specific considerations. This risk evaluation can assist with the establishment of target cleanup levels for residual contaminants in soil and groundwater. This risk evaluation does not consider or apply to SPH present in the site subsurface.

#### 5.1 Soil



Soil analytical results and select RBSLs for the COCs are summarized on Table 2. Table 2 shows the Tier 1 *final* RBSLs for both residential and commercial categories where site groundwater is not considered a current or potential drinking water resource. Cambria included the residential RBSLs due to the presence of residences north of the site; the building southwest of the site is commercial. Table 2 also shows the 'Tier 2' RBSLs for indoor air impacts, for residential and commercial categories. Cambria presents the RBSLs for surface soil (≤3 meters bgs). The RBSLs for *subsurface* soil (>3 meters bgs) are identical or similar to the surface soil RBSLs and would be applicable to most soil analytical results which are >3 meters bgs.

Petroleum hydrocarbon concentrations in soil exceeding the Tier 1 RWQCB RBSLs for surface soil have been detected in several borings at the site. As shown on Table 2, concentrations of TPHg, TOG, benzene, ethylbenzene and xylenes in some borings exceed the commercial Tier 1 final RBSLs. Figures 8 and 9 present the historical TPHg and benzene concentrations in soil, respectively, with concentrations exceeding the commercial final RBSL shown in bold. TPHg and benzene concentrations exceeding the Tier 1 final RBSLs are located nearby the former UST area, with one benzene RBSL exceedance further from the former UST area, located along the southwest property boundary at 20 feet bgs in SB-5 (2001).

To conduct a 'Tier 2' evaluation, Cambria considered modifying Tier 1 RBSLs based on site-specific considerations. All the final RBSLs (except for benzene) are derived for the risks associated with petroleum hydrocarbons leaching from soil into groundwater. Since the impacted soil is primarily in the capillary fringe/saturated zone, and since groundwater data is present, Cambria assumes that soil leaching is not a regulatory concern. With the site fully paved and no nearby ecological receptors, Cambria assumes that the RBSL protective of indoor air impact would be the appropriate RBSL for the site. Again, the indoor air impact RBSLs for residential and commercial site use are summarized on Table 2. If indoor air impact is considered the only potential completed pathway for exposure to residual compounds, only select benzene

concentrations exceed the indoor air impact RBSL (commercial use). Figure 9 presents benzene concentrations exceeding the indoor air impact RBSL, which is the same as the Tier 1 RBSL for benzene. These exceedences are located near the former USTs and along the southwest property boundary at 20 feet bgs. No RBSLs for indoor air impacts are established for TPH compounds in soil.

#### 5.2 Groundwater



Groundwater analytical results and select RBSLs for the COCs are summarized on Table 3. Table 3 shows the Tier 1 *final* RBSLs for sites where groundwater is not considered a current or potential drinking water resource. Table 3 also shows the 'Tier 2' RBSLs for indoor air impacts. The groundwater RBSLs are not differentiated into residential and commercial categories.

Petroleum hydrocarbon concentrations in groundwater exceeding the Tier 1 RWQCB RBSLs for surface soil have been detected in several borings/wells at the site. As shown on Table 3, concentrations of TPHg, TOG, benzene, toluene, ethylbenzene, xylenes, and MTBE in some groundwater samples exceed the commercial Tier 1 final RBSLs.

To conduct a 'Tier 2' evaluation, Cambria considered modifying Tier 1 RBSLs based on site-specific considerations. The site Tier 1 final RBSLs are derived for the risks associated with protection of aquatic life. With the site fully paved and no nearby ecological receptors, Cambria assumes that the RBSL protective of indoor air impact would be the appropriate RBSL for the site. Again, the indoor air impact RBSLs are summarized on Table 3. No RBSLs for indoor air impacts are established for TPH compounds in groundwater.

If indoor air impact is considered the only potential completed pathway for exposure to residual compounds, only select benzene concentrations exceed the indoor air impact RBSL. Because site surface soil consists primarily of clay, Cambria used the benzene RBSL associated with fine-grained soil (5,800 µg/L) rather than coarse-grained soil (84 µg/L). Figure 10 presents benzene concentrations exceeding the indoor air impact RBSL. The benzene RBSL exceedences are located primarily near the former UST area (TMW-5, B-1 and B-2). While RBSL exceedences were also detected along the southwest property boundary in a grab sample from boring SB-5, groundwater samples from nearby monitoring well MW-3 are likely more representative of dissolved benzene concentrations near the southwest boundary of the site.

#### 6.0 CONCLUSIONS

Cambria concludes the following based on our review of the site conditions:

- 1. Separate-phase hydrocarbons and elevated concentrations of petroleum hydrocarbons are present in site soil and groundwater. These petroleum hydrocarbons are primarily TPHg and BTEX compounds, and TOG near the former used oil UST location. Although MTBE has been detected sporadically in groundwater, MTBE has not been confirmed by EPA Method 8260 analysis. If MTBE is confirmed in the subsurface, the MTBE would likely be from another source since the USTs were removed in 1988 prior to common MTBE use.
- 2. The site hydrogeology consists of primarily of clays and silts with interbedded higher permeability sand and gravel layers to the total depth explored of 36 feet bgs. The two sand units (upper and lower) may be discontinuous, and may be confined or unconfined by the clay layers. The groundwater flow direction at the site has varied historically, generally flowing either northwestward or radially outward from the center of the site. A radial groundwater flow direction could be explained by water mounding within the UST excavation cavity or from the apparent screening of some site wells across the two water-bearing sand units. Cambria has concluded that wells MW-1 and MW-3 appear to be screen across two water-bearing units, wells MW-2 and TMW-4 may be screened into two water-bearing units, and all site well screens are often fully submerged by site groundwater.
- 3. Separate-phase hydrocarbons (i.e., free product) have been detected in all six site wells and are likely primarily located in the capillary fringe area and submerged in the upper sandy unit at the site. SPH thickness is typically greatest when groundwater levels decrease and expose the SPH, although SPH thickness is greatest in well MW-2 when the groundwater level rises into the upper sand unit. The recent detection of SPH in perimeter site wells TMW-4 and MW-6 for the first time suggests that the SPH plume in not stable.
- 4. Petroleum hydrocarbons in soil are primarily located in the capillary fringe and saturated zone at depths ranging from approximately 10 to 25 feet bgs, with the highest concentrations detected north and northwest of former UST excavation area and elevated benzene concentrations southwest of the former USTs. Shallower unsaturated soil has presumably been remediated by site excavation activities. The lateral extent of hydrocarbons in soil



appears to be adequately defined by onsite and offsite borings in all directions, except for benzene in the west and southwest directions.

- 5. Hydrocarbons are present in groundwater across most of the site, with the highest concentrations near the former UST area. The horizontal extent of the dissolved hydrocarbon plume has been adequately characterized in all directions except the southwest and eastern directions. With the recent detection of SPH in TMW-4, the hydrocarbon plume is not adequately characterized in the eastern direction. With benzene and other hydrocarbons detected in each of the five borings/wells along the southwestern property boundary, the extent of dissolved hydrocarbons is not adequately characterized in the southwest direction. Offsite assessment in this direction has been constrained by the large building on the adjacent property.
- 6. Results of the conduit study indicate that dissolved hydrocarbons and SPH are migrating toward the 75-inch diameter storm drain beneath Miller Avenue located approximately 60 feet from site well MW-6. This storm drain, located at approximately 13 to 16 feet bgs, apparently intersects groundwater year-round, is fully submerged by groundwater periodically, and could be located within the upper sandy water-bearing unit. Groundwater analytical results from offsite boring SB-1, located between the site and the storm drain, suggest that hydrocarbons have not migrated offsite toward the offsite storm drain.
- 7. Our risk evaluation indicates while TPH, TOG and BTEX concentrations in soil and groundwater exceed Tier 1 RBSLs, only benzene exceeds the proposed 'Tier 2' RBSLs based on site-specific considerations. The proposed Tier 2 RBSL for benzene is the RBSL for indoor air impact. The Tier 2 RBSL exceedences for benzene are located nearby the former UST area and along the southwest property boundary at 20 feet bgs.
- 8. Although SPH and elevated petroleum hydrocarbons are present in the site subsurface, the migration and exposure to residual hydrocarbons can be managed. The current site capping by the building foundation and site pavement helps manages the risk. Site remediation would abate residual hydrocarbons and further reduce the risk associated with the subsurface hydrocarbons.



#### 7.0 RECOMMENDED ACTIVITIES

Based on our conclusions for the site, Cambria offers the recommendations presented below.

#### 7.1 Additional Investigation, Well Replacement, and Well Surveying

Cambria recommends preparation of a workplan to further define the extent of hydrocarbons at the site. The proposed investigation would assess offsite soil and groundwater south and east of the site, beyond the recent observation of free product in site wells TMW-4 and MW-6. The investigation would further evaluate conditions between the site and the 75-inch diameter storm drain beneath Miller Avenue, which could act as a conduit for hydrocarbon migration. The investigation would include continuous coring to further evaluate soil hydrogeology and the depth of SPH. The workplan would also evaluate the existing well screen intervals and propose abandonment and replacement of wells. Finally, the investigation workplan would propose well installation for feasibility testing (recommended below). In conjunction with the additional investigation, Cambria recommends surveying of wells MW-3 and TMW-4 (and any new wells) to the City of Oakland datum. The other site wells have been surveyed to the Oakland datum, while wells MW-3 and MW-4 are presumably surveyed to NGVD 29 datum, which is approximately 3 feet higher than the Oakland datum.

#### 7.2 Feasibility Testing

To facilitate evaluation of appropriate remedial alternatives, Cambria recommends conducting a feasibility test. The feasibility test would most likely use dual-phase extraction techniques to assess hydrocarbon recovery rates, vapor flow rates, groundwater extraction rates, SPH recovery rates and thickness in the formation, and radius of influence. Results of the feasibility testing would be used in preparation of a corrective action plan for site remediation. Cambria recommends preparation of a feasibility test plan in conjunction with the investigation workplan.

#### 7.3 Interim Remedial Activities

Because of the unstable SPH plume and the continued presence of SPH in site wells, Cambria recommends implementing hydrocarbon recovery using passive skimmers and hand bailing. During the recent monitoring event Cambria hand bailed approximately 13.5 liters of SPH from



Site Summary, Conduit Study and Monitoring Report
World Credit Auto
Oakland, California
April 30, 2003

## CAMBRIA

site wells. To enhance SPH recovery, Cambria recommends installing passive SPH skimmers in wells MW-1 and MW-2, which have historically contained the highest SPH thickness at the site. The passive skimmers consist of an active buoy assembly designed to remove free product to a sheen. The buoy allows free product but not water to collect in the 2 liter (0.53 gallon) collection canister. The buoy system is equally effective with water table fluctuations as great as 24 inches.

(3)

Cambria proposes hand bailing of the remaining site wells that contain SPH. Cambria proposes monitoring/emptying of the skimmers and hand bailing on a monthly basis during the winter and spring months, and on a semi-monthly (every two weeks) during the dry summer and fall months. The monitoring, emptying and bailing schedule would be modified as dictated by the actual SPH recovery rates in the individual wells. SPH recovery may be discontinued upon implementation of a more permanent corrective action.

#### 7.4 Quarterly Monitoring and Sampling

Cambria recommends continued quarterly groundwater monitoring to further evaluate SPH thickness, groundwater flow direction, and plume stability. All groundwater wells will be gauged and inspected for SPH on a quarterly basis. Groundwater samples will be collected from site wells without SPH and analyzed for TPHg by modified EPA Method 8015, and BTEX and MTBE by EPA Method 8020, with confirmation analysis for detectable MTBE by EPA Method 8260. Quarterly groundwater monitoring and SPH removal reports will be prepared.

H:\Sb-2004 (UST Fund)\Stanley Wong (Credit Auto)\Summary Report\Site Summary Report.doc

May 1, 2003

Mr. Amir Gholami Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re:

Site Summary and Groundwater Monitoring Report

2345 International Boulevard (formerly E. 14th Street)

Oakland, California

Fuel Leak Case No. RO0000327



Dear Mr. Gholami:

On behalf of Mr.'s Aaron and Stanley Wong, Cambria Environmental Technology, Inc. (Cambria) has prepared this *Site Summary, Conduit Study and Monitoring Report* for the site referenced above. As requested by the Alameda County Health Care Services Agency, this report incorporates fourth quarter 2002 monitoring results.

We look forward to working with you on this project. If you have any questions or comments, please contact me at (510) 420-3307 or Mr. Bob Clark-Riddell at (510) 420-3303.

Sincerely,

Cambria Environmental Technology, Inc.

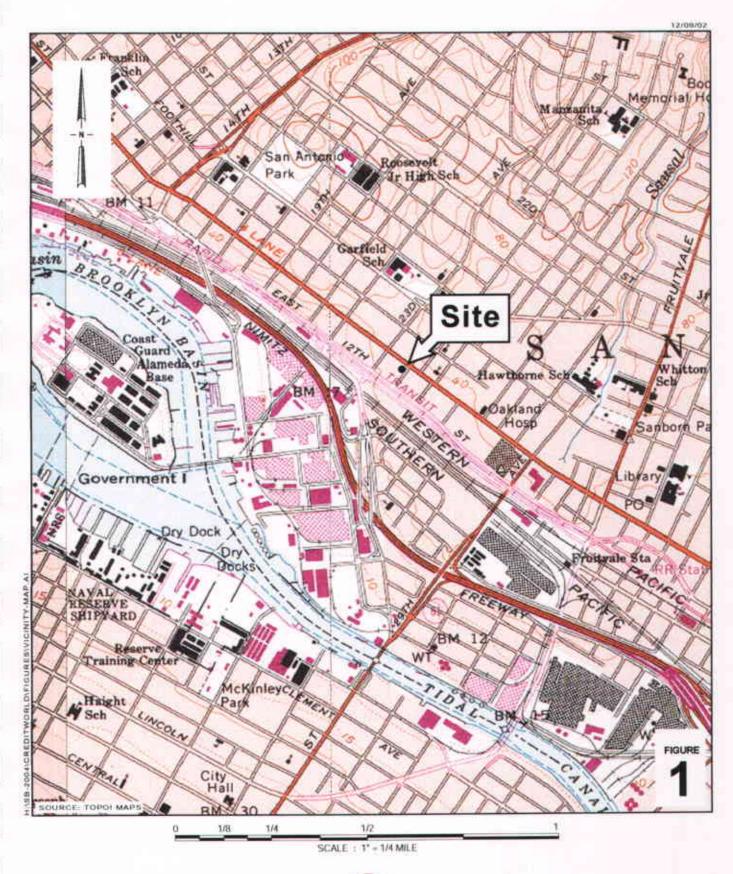
Mary C. Holland-Ford

Project Geologist

cc: Mr. Stanley Wong, 2200 East 12th Street, Oakland, California 94606

H:\Sb-2004 (UST Fund)\Stanley Wong (Credit Auto)\Correspondence\Transmittal letter May 2003.doc

Cambria Savironmental echnology, Inc.


5900 Hollis Street

ite A

meryville, CA 94608

Tel (\$10) 420-0700

(\$510) 420-9170



## **Credit World Auto Sales**

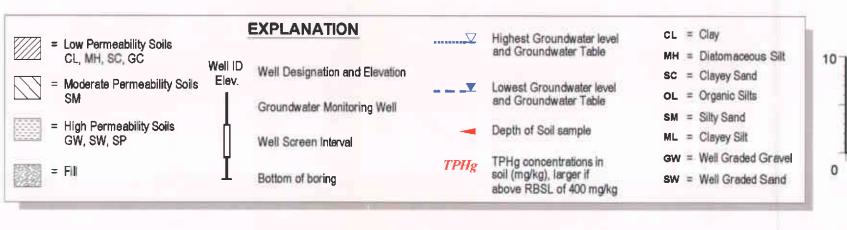
2345 E. 14th Street Oakland, California



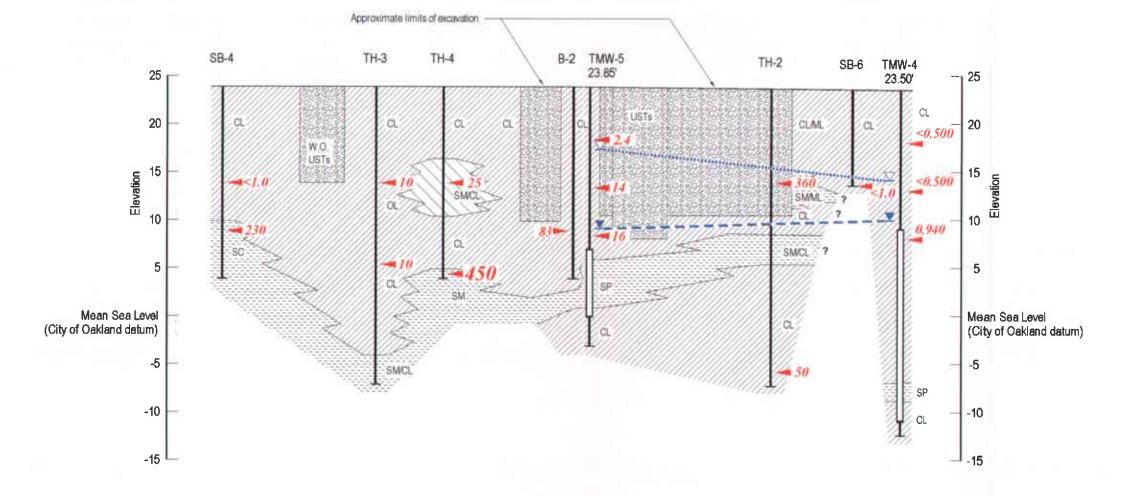
**Vicinity Map** 

CAMBRIA

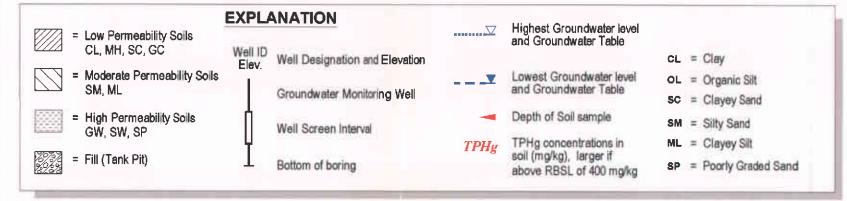
Credit World Auto Sales 2345 International Boulevard Oakland, Califomia

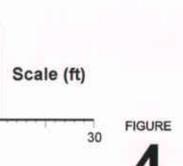



**FIGURE** 


Scale (ft)

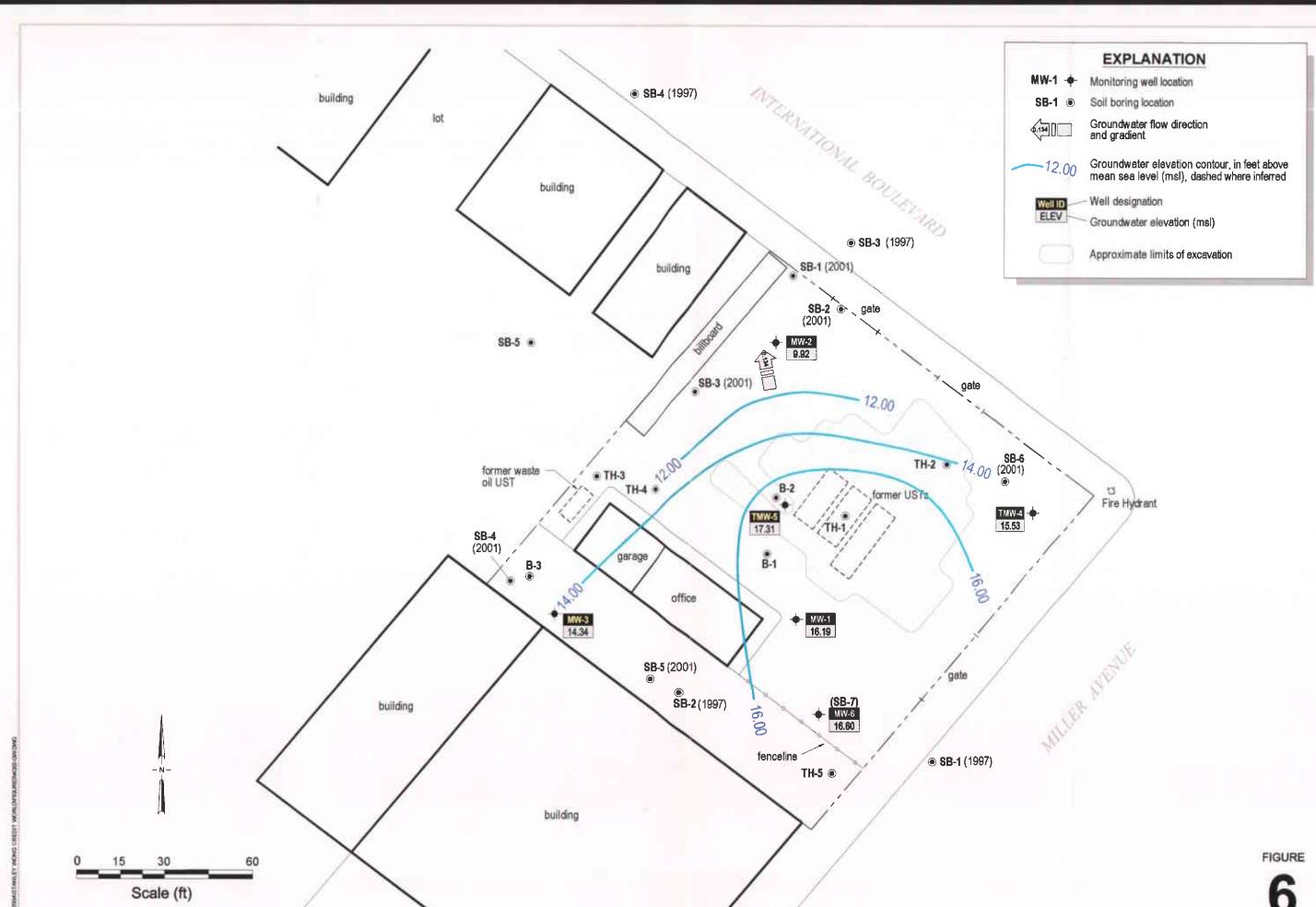








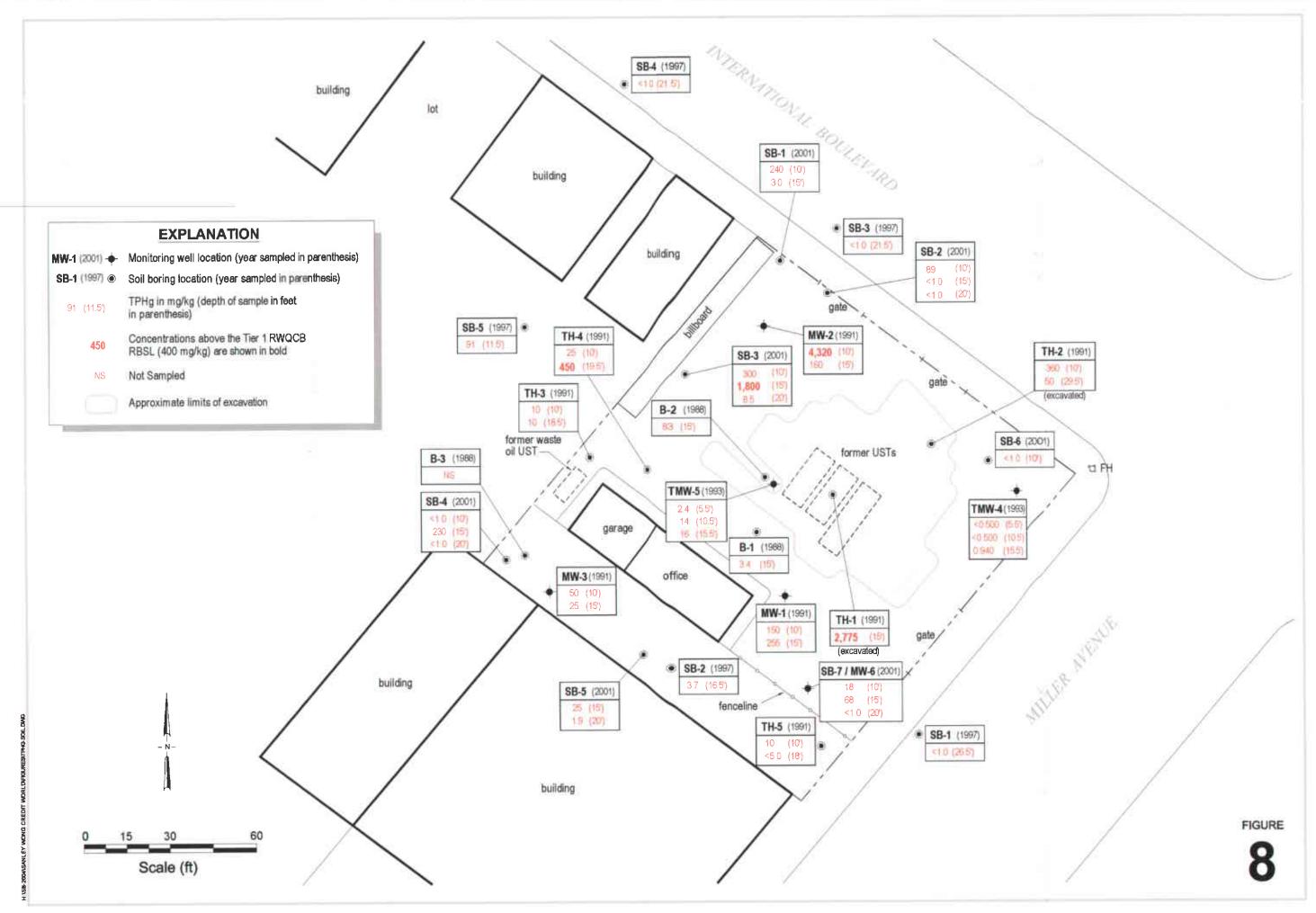





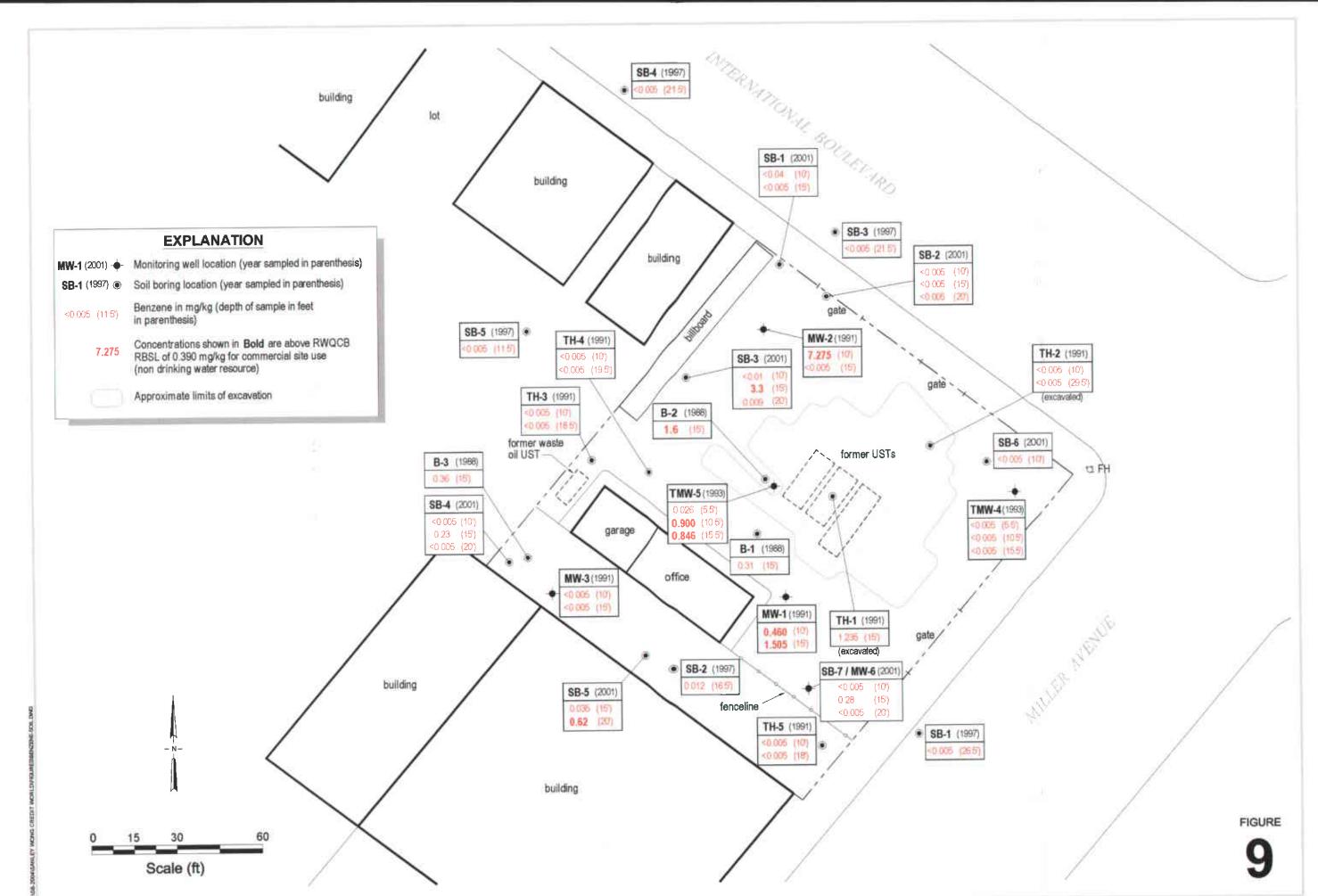







O

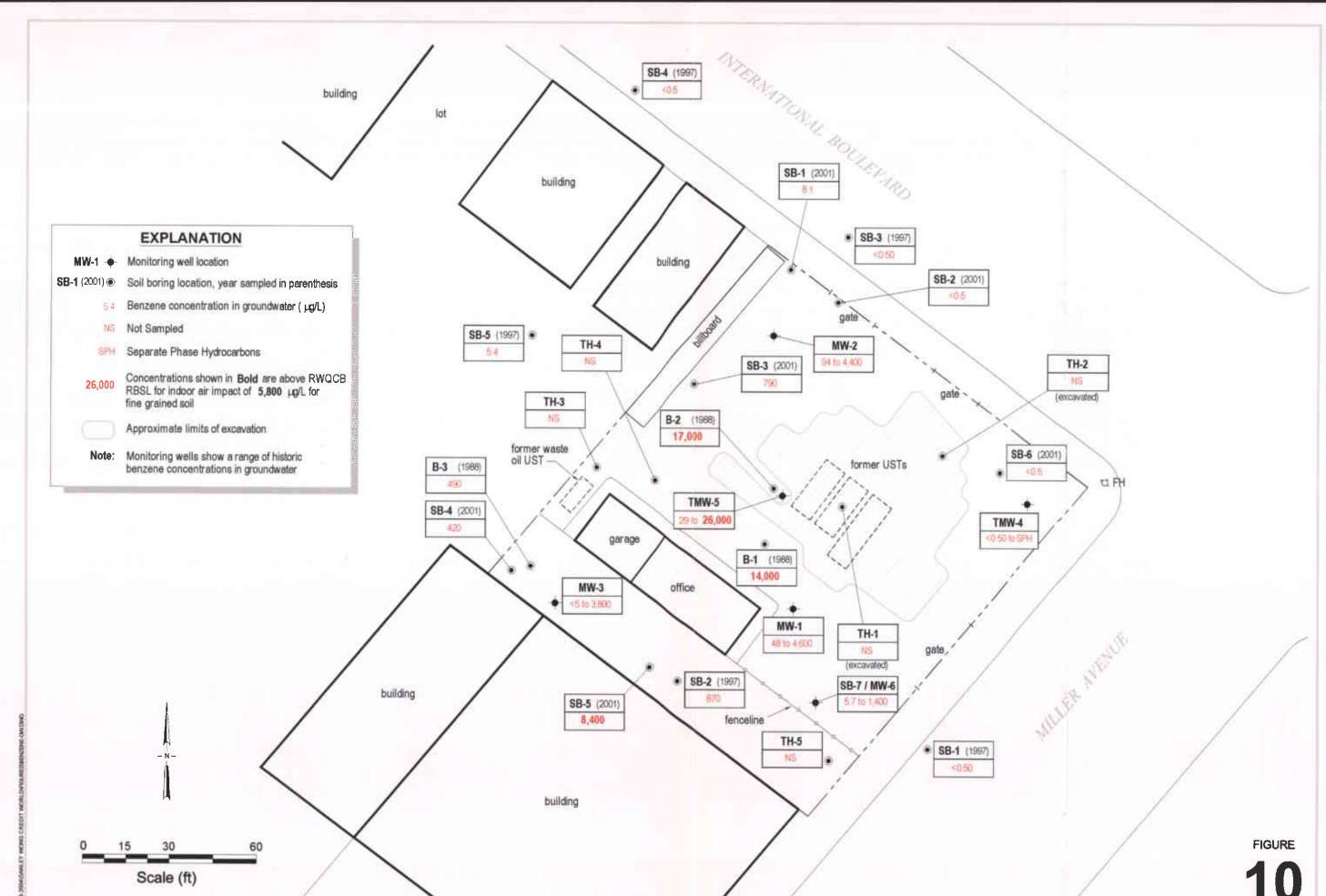



2345 International Boulevard Oakland, California
















Credit World Auto Sales 2345 International Boulevard Oakland, California



**Table 1. Groundwater Flow Direction and Gradient**Credit World Auto Sales

2345 International Boulevard, Oakland, California

| Date<br>Measured | Hydraulic Gradient | Flow Direction |
|------------------|--------------------|----------------|
| 04-16-92         | 0.021              | Northwest      |
| 06-11-93         | 0.026              | Northwest      |
| 08-17-93         | 0.029              | Radial         |
| 03-31-94         | 0.050              | Radial         |
| 06-27-94         | 0.020              | Radial         |
| 09-16-94         | 0.0179-0.0411      | Radial         |
| 03-31-95         | 0.075              | Radial         |
| 06-28-95         | 0.025-0.053        | Radial         |
| 09-28-95         | 0.025              | Northwest      |
| 12-26-95         | 0.048              | Radial         |
| 03-22-96         | 0.034-0.132        | Radial         |
| 06-20-96         | 0.016              | Northwest      |
| 09-30-96         | 0.019              | Northwest      |
| 12-27-96         | 0.024-0.029        | North-Northwes |
| 03-07-97         | 0.020-0.035        | North-Northwes |
| 06-28-97         | 0.027-0.04         | Northwest      |
| 09-18-97         | 0.02-0.026         | Radial         |
| 12-30-97         | 0.025-0.030        | North-Northwes |
| 03-25-98         | 0.021-0.033        | Radial         |
| 06-29-98         | 0.013-0.019        | Northwest      |
| 10-02-98         | 0.011-0.019        | Northwest      |
| 12-08-98         | 0.23               | Northwest      |
| 03-26-99         | 0.01               | North-Northwes |
| 06-15-99         | 0.01               | Northwest      |
| 09-15-99         | 0.011              | North-Northwes |
| 12-28-99         | 0.02               | North-Northwes |

Table 2. Soil Analytical Data - Credit World Auto Sales 2345 International Boulevard, Oakland, California

| Sample                             | Date                   | Depth       | TPHg                 | TPHd                 | TOG                  | Benzene             | Toluene              | Ethylbenzene        | Xvlenes              | MTBE                 | VOC•    | HVOCs |
|------------------------------------|------------------------|-------------|----------------------|----------------------|----------------------|---------------------|----------------------|---------------------|----------------------|----------------------|---------|-------|
| Location                           | Sampled                | (feet)      | (mg/kg)              | (mg/kg)              | (mg/kg)              | (mg/kg)             | (mg/kg)              | (mg/kg)             | (mg/kg)              | (mg/kg)              | (mg/kg) |       |
|                                    | <del></del> -          | · · · ·     |                      |                      | 1 11 00              |                     |                      |                     |                      |                      |         |       |
| Residential Final F<br>Risk Driver | (BSL - non drink       | ing water   | 400<br>soil leaching | 500<br>soil leaching | 500<br>soil leaching | 0.180<br>indoor air | 8 4<br>soi) leaching | 24<br>soil leaching | 1.0<br>soil leaching | 1.0<br>soil leaching | N/A     | N/A   |
| Commercial Final                   | BBCI                   |             | 400                  | 500                  | 500                  | 0.39                | 8.4                  | 24                  | 1.0                  | 1.0                  | N/A     | N/A   |
| Risk Driver                        | ROSE - RUN WIN         | KINY WALL   | soil leaching        |                      | soil leaching        | indoor air          | o.4<br>soil leaching | soil leaching       | soil leaching        | soil leaching        | WA      | IWA.  |
|                                    |                        | <del></del> |                      |                      | <u>_</u>             |                     |                      |                     |                      |                      | 31/4    | 21/4  |
| Residential RBSL -                 |                        |             | NE                   | NE                   | NE                   | 0.180               | 30                   | 76                  | 210                  | 3.4 (68)             | N/A     | N/A   |
| Commercial RBSL                    | - indoor air impa      | er          | NE                   | NE                   | NE                   | 0.390               | 89                   | 220                 | 210                  | 12 (290)             | N/A     | N/A   |
|                                    |                        |             |                      |                      |                      |                     |                      |                     |                      |                      |         |       |
| SCS Engineers                      |                        |             |                      |                      |                      |                     |                      |                     |                      |                      |         |       |
| B-1                                | 8/25/1988              | 15          | 360                  |                      |                      | 0.3                 | 2.2                  | 3.4                 | 31                   |                      | _       |       |
| B-2<br>B-3                         | 8/25/1988<br>8/25/1988 | 15<br>15    | 1,500                | _                    |                      | 3.0                 | 6.4                  | 2.5                 | 160                  |                      | -       |       |
| B-4                                | 8/25/1988              | 1.3         | 130<br>150           |                      |                      | 0.17<br>0.8         | 0.4<br>1.9           | 1.3<br>8.7          | 10<br>86             |                      |         |       |
| B-5                                | 8/25/1988              |             | 79 <b>0</b>          | -                    |                      | 0.8<br>61           | 1.3                  | 4.8                 | 30                   |                      |         |       |
| B-6                                | 8/25/1988              |             | 1,300                | _                    |                      | 1.5                 | 4.7                  | 4.8<br>9.6          | 75                   |                      |         |       |
| B-7                                | 8/25/1988              |             | 1,500                | 110                  | 570                  | (<5.0)              | (<5.0)               | (5.0)               | (48)                 |                      | ND*     |       |
| B-8                                | 8/25/1988              |             |                      | 65                   | 780                  | (<5.0)<br>(<5.0)    | (<5.0)<br>(<5.0)     | (5.0)               | (12)                 |                      | ND*     |       |
| D*0                                | 0/23/1700              |             | **                   | 0.5                  | 700                  | (<0.0)              | (0.0)                | (5.0)               | (12)                 | -                    | 1410    |       |
| California Euria                   |                        | anleaute    |                      |                      |                      |                     |                      |                     |                      |                      |         |       |
| California Envir<br>B-1            | 10/3/1988              |             | 3.4                  |                      |                      | 0.21                | -0.1                 | an 1                | 0.14                 |                      |         |       |
|                                    |                        | 15          |                      | -                    |                      | 0.31                | <0.1                 | <0.1                | 0.14                 |                      |         |       |
| B-2<br>B-3                         | 10/3/1988              | 15          | 83                   |                      |                      | 1.6                 | 1.1                  | 1.8                 | 9.6                  |                      | ND*     | ND    |
| B-3                                | 10/3/1988              | 15          |                      |                      | 88                   | (0.36)              | (0.65)               | (0.47)              | (0.85)               |                      | MD.     | ND    |
| Earth Systems E                    | invironmental          |             |                      |                      |                      |                     |                      |                     |                      |                      |         |       |
| TH-1                               | 8/21/1991              | 15-15.5     | 2,775                |                      | **                   | 1.235               | 1.060                | 1.625               | 5.280                |                      |         |       |
| TH-2                               | 8/21/1991              | 10-10.5     | 360                  |                      |                      | <0.005              | < 0.005              | <0.005              | 0.770                |                      |         |       |
| TH-2                               | 8/21/1991              | 29.5-30     | 50                   |                      | _                    | <0.005              | < 0.005              | <0.005              | < 0.005              |                      |         |       |
| ТН-3                               | 8/22/1991              | 10-10.5     | 10                   |                      | 60                   | < 0.005             | < 0.005              | <0.005              | < 0.005              |                      |         |       |
| TH-3                               | 8/22/1991              | 18.5-19     | 10                   |                      | 20                   | < 0.005             | < 0.005              | < 0.005             | < 0.005              |                      |         |       |
| TH-4                               | 8/22/1991              | 10-10.5     | 25                   |                      | 40                   | < 0.005             | <0.005               | < 0.005             | 0.175                |                      |         |       |
| TH-4                               | 8/22/1991              | 19.5-20     | 450                  |                      | 1,690                | < 0.005             | < 0.005              | <0.005              | < 0.005              |                      |         |       |
| TH-5                               | 8/22/1991              | 10-10.5     | 10                   |                      |                      | < 0.005             | < 0.005              | < 0.005             | < 0.005              |                      |         |       |
| TH-5                               | 8/22/1991              | 18-18.5     | <5.0                 |                      | _                    | < 0.005             | < 0.005              | < 0.005             | < 0.005              | -                    |         |       |
| MW-1                               | 5/22/1991              | 10-10.5     | 150                  |                      |                      | 0.460               | 0.365                | 0.305               | 0.960                |                      |         |       |
| MW-1                               | 5/22/1991              | 15-15.5     | 255                  |                      |                      | 1.505               | 4.255                | 4.015               | 4.270                |                      |         |       |
| MW-2                               | 8/21/1991              | 10-10.5     | 4,320                | _                    |                      | 7.275               | 6.620                | 3.470               | 13.815               |                      |         |       |
| MW-2                               | 8/21/1991              | 15-15.5     | 160                  |                      |                      | < 0.005             | < 0.005              | < 0.005             | < 0.005              |                      | _       |       |
| MW-3                               | 8/22/1991              | 10-10.5     | 50                   |                      | 90                   | < 0.005             | < 0.005              | <0.005              | < 0.005              |                      | _       |       |
| MW-3                               | 8/22/1991              | 15-15.5     | 25                   |                      | 40                   | < 0.005             | < 0.005              | < 0.005             | < 0.005              |                      |         |       |
|                                    |                        |             |                      |                      |                      |                     |                      |                     |                      |                      |         |       |
| Tank Protect En                    |                        |             |                      |                      |                      |                     |                      |                     |                      |                      |         |       |
| TMW-4                              | 7/22/1993              | 5.5-6       | <0.500               |                      |                      | <0.0050             | <0.0050              | <0.0050             | < 0.015              |                      |         |       |
| TMW-4                              | 7/22/1993              | 10.5-11     | <0.500               |                      |                      | < 0.0050            | <0.0050              | <0.0050             | < 0.015              |                      |         |       |
| TMW-4                              | 7/22/1993              | 15.5-16     | 0.940                |                      |                      | <0.0050             | < 0.0050             | <0.0050             | <0.015               |                      |         |       |
| TMW-5                              | 7/23/1993              | 5.5-6       | 2.4                  |                      |                      | 0.026               | <0.0050              | <0.0050             | 0.053                |                      |         |       |
| TM/W-5                             | 7/23/1993              | 10.5-11     | 14                   |                      | -                    | 0.900               | <0.0050              | 1.6                 | < 0.140              |                      |         |       |
| TMW-5                              | 7/23/1993              | 15.5-16     | 16                   | **                   |                      | 0.840               | <0.0050              | 0.690               | 1.3                  | ••                   |         |       |
| SB-1                               | 4/21/1997              | 26.5-27     | <1.0                 |                      |                      | < 0.005             | <0.005               | <0.005              | <0.005               | < 0.05               |         | _     |
| SB-2                               | 4/21/1997              | 16.5-17     | 3.7                  |                      | _                    | 0.003               | 0.003                | 0.042               | <0.003<br><0.005     | <0.05                |         |       |
| SB-3                               | 5/1/1997               | 21.5-22     | <1.0                 |                      | _                    | < 0.012             | < 0.0071             | <0.005              | <0.003               | <0.05                |         |       |
| SB-4                               | 5/1/1997               | 21.5-22     | <1.0                 | -                    |                      | <0.005              | <0.005               | <0.005              | <0.005               | <0.05                |         | _     |
| SB-5                               | 5/1/1997               | 13.5-12     | 91                   |                      |                      | < 0.005             | <0.005               | <0.005              | <0.005               | <0.05                |         | _     |
| 30-7                               | 21 11 1 3 2 1          | 11.3-14     | 71                   |                      | _                    | ~0.002              | ~0.000               | ~0.003              | ~0.000               | ~0.0J                |         | _     |

Table 2.

Soil Analytical Data - Credit World Auto Sales 2345 International Boulevard, Oakland, California

| Sample<br>Location                  | Date<br>Sampled | Depth<br>(feet) | TPHg<br>(mg/kg)      | TPHd<br>(mg/kg)      | TOG<br>(mg/kg)       | Benzene<br>(mg/kg)  | Toluene<br>(mg/kg)   | Ethylbenzene<br>(mg/kg) | Xylenes<br>(mg/kg)   | MTBE<br>(mg/kg)      | VOCs<br>(mg/kg) | HVOCs<br>(mg/kg) |
|-------------------------------------|-----------------|-----------------|----------------------|----------------------|----------------------|---------------------|----------------------|-------------------------|----------------------|----------------------|-----------------|------------------|
| Residential Final RI<br>Risk Driver | BSL - non drink | ing water       | 400<br>sail leaching | 500<br>soil leaching | 500<br>soil leaching | 0.180<br>indoor air | 8.4<br>soil leaching | 24<br>soil leaching     | 1.0<br>soil leaching | 1.0<br>soil leaching | N/A             | N/A              |
| Commercial Final F<br>Risk Driver   | BSL - non drin  | king water      | 400<br>soil leaching | 500<br>soil leaching | 500<br>soil teaching | 0.39<br>indoor air  | 8.4<br>soil leaching | 24<br>soil leaching     | 1.0<br>soil leaching | 1.0<br>soil leaching | N/A             | N/A              |
| Residential RBSL - it               | ndoor air impac | ·f              | NE                   | NE                   | NE                   | 0.180               | 30                   | 76                      | 210                  | 3.4 (68)             | N/A             | N/A              |
| Commercial RBSL -                   | indoor air impa | ct              | NE                   | NE                   | NE                   | 0.390               | 89                   | 220                     | 210                  | 12 (290)             | N/A             | N/A              |
| Sequola Environe                    |                 |                 |                      |                      |                      |                     |                      |                         |                      | ·                    | ·               |                  |
| SB-1                                | 5/22/2001       | 10              | 240                  |                      | _                    | < 0.04              | 0.19                 | 0.19                    | 0.45                 | < 0.20               |                 |                  |
| SB-1                                | 5/22/2001       | 15              | 3.0                  |                      |                      | < 0.005             | 0.005                | 0.009                   | 0.013                | <0.05                | _               |                  |
| SB-2                                | 5/22/2001       | 10              | 89                   |                      |                      | <0.005              | < 0.005              | 0.033                   | 0.25                 | < 0.10               | _               |                  |
| SB-2                                | 5/22/2001       | 15              | <1.0                 |                      |                      | < 0.005             | < 0.005              | < 0.005                 | < 0.005              | < 0.05               | _               |                  |
| SB-2                                | 5/22/2001       | 20              | <1.0                 |                      |                      | < 0.005             | < 0.005              | <0.005                  | < 0.005              | < 0.05               |                 |                  |
| SB-3                                | 5/22/2001       | 10              | 300                  |                      |                      | < 0.01              | < 0.01               | 0.76                    | 1.2                  | <0.20                |                 |                  |
| SB-3                                | 5/22/2001       | 15              | 1,800                |                      |                      | 3.3                 | 5.5                  | 48                      | 53                   | <2.0                 | -               |                  |
| SB-3                                | 5/22/2001       | 20              | 8.5                  |                      |                      | 0.009               | 0.023                | 0.10                    | 0.12                 | <0.05                |                 |                  |
| SB-4                                | 5/22/2001       | 10              | <1.0                 |                      | ~~                   | < 0.005             | < 0.005              | < 0.005                 | < 0.005              | <0.05                |                 |                  |
| SB-4                                | 5/22/2001       | 15              | 230                  |                      |                      | 0.23                | < 0.005              | 1.5                     | 1.1                  | <0.10                |                 |                  |
| SB-4                                | 5/22/2001       | 20              | <1.0                 |                      |                      | < 0.005             | < 0.005              | <0.005                  | < 0.005              | <0.05                | <b>-</b>        |                  |
| SB-5                                | 5/22/2001       | 15              | 25                   |                      |                      | 0.035               | < 0.005              | 0.10                    | 0.11                 | <0.05                |                 |                  |
| SB-5                                | 5/22/200}       | 20              | 1.9                  |                      |                      | 9.62                | <0.005               | <0.005                  | < 0.005              | <0.05                |                 |                  |
| SB-6                                | 5/22/2001       | 10              | <1.0                 |                      |                      | < 0.005             | <0.005               | <0.005                  | <0.005               | <0.05                | _               |                  |
| SB-7 (MW-6)                         | 5/22/2001       | 10              | 18                   | **                   |                      | <0.005              | < 0.005              | 0.056                   | 0.11                 | <0.05                |                 |                  |
| SB-7 (MW-6)                         | 5/22/2001       | 15              | 68                   |                      |                      | 0.28                | 0.25                 | 0.36                    | 0.35                 | < 0.10               |                 |                  |
| SB-7 (MW-6)                         | 5/22/2001       | 20              | <1.0                 |                      |                      | <0.005              | <0.005               | <0.005                  | <0.005               | <0.05                | _               |                  |

#### Abbreviations and Notes:

1,300 = concentrations exceeding commercial final RBSLs shown in bold.

TPHg = Total petroleum hydrocarbons as gasotine

Benzene, Tohume, Ethylbenzene, Xylenes by EPA Method 8020, and by 8260 if in parenthesis

MTBE methyl ten butyl ether by EPA Method 8020

VOCs = volatile organic compounds by EPA Method 8260

ND = not detected above laboratory detection limits

ND\* = not detected with the exception of reported concentrations for benzene, toluene, ethylbenzene and xylenes

HVOCs = halogenated volatile organic compounds by EPA Method 8010

mg/kg = Milligrams per kilogram

<n = Below detection limit of n mg/kg

- = Not analyzed

Residential RBSLs = Table B-1 - Risk Based Screening Level Components for Surface Soil (Potentially Impacted Groundwater is not a Current or Potential Source

of Drinking Water) for commercial/industrial reuse for established by the SFBRWQCB, Interim Final December 2001. (The risk driver is also shown), MTBE RBSL for coarse soil (line soil). Commercial RBSLs = Table B-2 - Risk Based Screening Level Components for Surface Soil (Potentially Impacted Groundwater is not a Current or Potential Source

of Drinking Water) for commercial/industrial reuse for established by the SFBRWQCB, Interim Final December 2001. (The risk driver is also shown). MTBE RBSL for coarse soil (fine soil).

RBSLs for indoor air = Tables B-I and B-2 from SFBRWQCB above, Interim Final December 2001

Table 3. Groundwater Analytical Data - Credit World Auto Sales, 2345 International Boulevard, Oakland, California

| Sample ID/   | Date           | Casing             | Depth to     | Depth to   | SPH        | GW        |                |              |                |              |                 |                |              |        |
|--------------|----------------|--------------------|--------------|------------|------------|-----------|----------------|--------------|----------------|--------------|-----------------|----------------|--------------|--------|
| Well ID      | Sampled        | Elevation          | GW           | SPH        | Thickness  | Elevation | TPHg           | Benzene      | Toluene        | Ethylbenzene | Xylenes         | MTBE           | TOG          | VOCs   |
|              |                | (feet)             | (feet bgs)   | (feet bgs) | (feet)     | (feet)    | (ug/L)         | (ug/L)       | (ug/L)         | (ug/L)       | (ug/L)          | (ug/L)         | (ug/L)       | (ug/L) |
| Final RBSL - | Potential Drie | nking Water S      | Source       |            |            |           | 100            | 1.0          | 40             | 30           | 13              | 5.0            | 640          | N/A    |
|              | Risk I         | Orlver             |              |            |            |           | human toxicity | aquatic life | aquatic life   | aquatic life | aquatic life    | taste & odor   | aquatic life |        |
| Final RBSL - | Not a Potenti  | al Drinking H      | Vater Source |            |            |           | 500            | 46           | 130            | 290          | 13              | 1,800          | 640          | N/A    |
|              | Risk L         | Driver             |              |            |            |           | aquatic life   | aquatic life | aquatic life   | aquatic life | aquatic life    | aquatic life   | aquatic life |        |
| RBSL - Indoo | or Air Impact  |                    |              |            |            |           | NE             | 84 (5800)    | 76000 (530000) | 170,000      | 150000 (160000) | 50000(4.9E+05) | NE           | N/A    |
| California E | Invironment    | al Consultar       | <u>1ts</u>   |            |            |           |                |              |                |              |                 |                |              |        |
| B-1-W        | 10/3/1988      |                    |              |            |            |           | 67,000         | 14,000       | 2,400          | 2,500        | 9,100           | ••             | ••           |        |
| B-2-W        | 10/3/1988      |                    |              |            |            |           | 110,000        | 17,000       | 2,600          | 3,000        | 12,000          |                |              |        |
| B-3-W        | 10/3/1988      |                    |              | ••         |            |           |                | (490)        | (160)          | (770)        | (1,300)         |                | 290,000      | ND*    |
| Tank Protec  | et Engineerir  | ıσ                 |              |            |            |           |                |              |                |              |                 |                |              |        |
| SB-1W        | 4/21/1997      | <u></u>            |              |            | ••         |           | <50            | <0.50        | <0.50          | <0.50        | <0.50           | <5.0           |              |        |
| 5B-2W        | 4/21/1997      | **                 |              | ,,         |            |           | 6,100          | 870          | 35             | 17           | 28              | <5.0           |              |        |
| SB-3W        | 5/1/1997       |                    |              |            |            | ••        | <50            | <0.50        | <0.50          | <0.50        | <0.50           | <5.0           |              |        |
| SB-4W        | 5/1/1997       |                    |              |            |            |           | <50            | < 0.50       | <0,50          | <0.50        | <0.50           | <5.0           |              | ••     |
| SB-5W        | 5/1/1997       |                    |              | **         | ••         |           | 890            | 5.4          | <0.50          | 1.4          | <0.50           | 12             |              |        |
| Sequoia Env  | vironmental    |                    |              |            |            |           |                |              |                |              |                 |                |              |        |
| SB-I         | 5/22/2001      |                    |              |            |            |           | 11,000         | 8.1          | 23             | 81           | 7.1             | <20            | ••           | ••     |
| SB-2         | 5/22/2001      |                    |              |            |            | -         | 1,200          | <0.5         | 3.5            | 5.5          | <0.5            | < 5.0          |              |        |
| SB-3         | 5/22/2001      |                    |              |            | <b>~</b> • | ••        | 53,000         | 790          | 110            | 2,000        | 2,000           | <200           |              |        |
| SB-4         | 5/22/2001      |                    |              |            |            |           | 170,000        | 420          | <45            | 1,500        | 800             | <200           |              |        |
| SB-5         | 5/22/2001      |                    |              | ••         | ••         |           | 27,000         | 8,400        | 99             | 230          | 120             | <500           |              |        |
| SB-6         | 5/22/2001      |                    |              | -          |            |           | 50             | <0.5         | <0.5           | <0.5         | <0.5            | <5.0           |              | ••     |
| Monitoring   | Well Sampli    | ng Data            |              |            |            |           |                |              |                |              |                 |                |              |        |
| MW-1         | 12/30/1997     | 27.33 <sup>b</sup> | 10.96        | 10.79      | 0.17       | 16.51     | 61,000         | 4,300        | 1,800          | 1,600        | 6,900           | 1,400          |              |        |
| MW-I         | 3/24/1998      | 27.33              | 9.33         | -          | 0.00       | 18.00     | 24,000         | 1,000        | 1,000          | 1,300        | 4,300           | 2,000          |              |        |
| MW-1         | 6/29/1998      | 27.33              | 12.20        | -          | 0.00       | 15.13     | 130,000        | 3,800        | 370            | 1,200        | 4,200           | 3,300          |              | **     |
| MW-I         | 10/2/1998      | 27.33              | 13.46        |            | 0,00       | 13.87     | 22,000         | 66           | 21             | 26           | 140             | <0.50          |              |        |
| MW-1         | 12/10/1998     | 27.33              | 10,49        | +-         | 0.00       | 16.84     | 32,000         | 4,600        | 970            | 1,700        | 4,900           | <250           | -            |        |
| MW-1         | 3/26/1999      | 27.33              | 9.44         |            | 0.00       | 17.89     | 230,000        | 370          | 290            | 280          | 720             | <0.50          |              |        |
| MW-1         | 6/11/1999      | 27.33              | 12,56        | 12.55      | 0.01       | 14.78     | 180,000        | 210          | 170            | 220          | 400             | <0.50          |              |        |
| MW-1         | 9/15/1999      | 27.33              | 14.85        | 13.85      | 1.00       | 13.28     | 21,000         | 3,800        | 280            | 590          | 2,200           | <250           |              |        |
| MW-1         | 12/28/1999     | 27.33              | 14,50        | 13,18      | 1,32       | 13.89     | 27,000         | 48           | 36             | 46           | 83              | <0.5           |              |        |
| MW-1         | 6/13/2001      | 24.37°             | 15.83        | 11.47      | 4.36       | 12.03     |                | ••           |                |              |                 |                |              | ••     |
| MW-1         | 12/27/2002     | 24,37              | 8.31         | 8.15       | 0.16       | 16,19     |                |              |                |              |                 |                |              |        |

Table 3. Groundwater Analytical Data - Credit World Auto Sales, 2345 International Boulevard, Oakland, California

| Sample ID/   | Date          | Casing             | Depth to    | Depth to   | SPH       | GW        |                | _            |                |              |                 |                | <b>TIC</b> 2 | 1100   |
|--------------|---------------|--------------------|-------------|------------|-----------|-----------|----------------|--------------|----------------|--------------|-----------------|----------------|--------------|--------|
| Well ID      | Sampled       | Elevation          | GW          | SPH        | Thickness | Elevation | TPHg           | Benzene      | Toluene        | Ethylbenzene | Xylenes         | MTBE           | TOG          | VOCs   |
|              |               | (feet)             | (feet bgs)  | (feet bgs) | (feet)    | (feet)    | (ug/L)         | (ug/L)       | (ug/L)         | (ug/L)       | (ug/L)          | (ug/L)         | (ug/L)       | (ug/L) |
| Final RBSL - |               | -                  | lource      |            |           |           | 100            | 1.0          | 40             | 30           | 13              | 5.0            | 640          | N/A    |
|              | Risk I        | Orlver             |             |            |           |           | human toxicity | aquatic life | aquatic life   | aquatic life | aquatic life    | taste & odor   | aquatic life |        |
| Final RBSL - | Not a Potenti | al Drinking H      | ater Source |            |           |           | 500            | 46           | 130            | 290          | 13              | 1,800          | 640          | N/A    |
|              | Risk I        | )river             |             |            |           |           | aquatic life   | aquatic life | aquatic life   | aquatic life | aquatic life    | aquatic life   | aquatic life |        |
| RBSL - Indoo | r Air Impact  |                    |             |            |           |           | NE             | 84 (5800)    | 76000 (530000) | 170,000      | [50000 (160000) | 50000(4.9E+05) | NE           | N/A    |
| MW-2         | 8/23/1991     | 98.585*            | 13.77       |            | 0.00      | 84,82     | 10,000         | <5           | <5             | <5           | <5              | ••             |              |        |
| MW-2         | 4/16/1992     | 25.92 <sup>b</sup> | 15.38       | 12.57      | 2.81      | 12.79     |                | ••           |                | -            | ••              | <del></del>    | 44           |        |
| MW-2         | 6/11/1993     | 25.92              | 13.19       |            | 0.00      | 12.74     |                |              |                |              |                 |                |              | ••     |
| MW-2         | 8/17/1993     | 25.92              | 14.04       | 14.03      | 0.01      | 11.89     | 49,000         | 94           | 240            | 250          | 980             |                |              |        |
| MW-2         | 3/28/1994     | 25.92              | 13.61       | 13.07      | 0.54      | 12.74     | 14,000         | 4,200        | <250           | 910          | 1,400           |                |              |        |
| MW-2         | 6/27/1994     | 25.92              | 14.24       | 13.44      | 0.80      | 12.32     | 24,000         | 4,400        | 72             | 1,100        | 1,700           |                |              |        |
| MW-2         | 9/16/1994     | 25.92              | 17.82       | 13,36      | 4.46      | 11,67     | 40,000         | 2,300        | 250            | 2,000        | 4,100           | •-             |              |        |
| MW-2         | 3/31/1995     | 25.92              | 16.72       | 9.28       | 7.44      | 15.15     | 28,000         | 4,000        | <120           | 1,100        | 1,400           |                |              | ••     |
| MW-2         | 6/28/1995     | 25.92              | 13,50       | 12.77      | 0.73      | 13.00     | 40,000         | 2,700        | 130            | 1,760        | 2,900           | **             |              | ••     |
| MW-2         | 9/28/1995     | 25.92              | 14.63       | 14.09      | 0.54      | 11.72     | 7,500          | 420          | 14             | 250          | 190             | <62            |              |        |
| MW-2         | 12/26/1995    | 25.92              | 12.58       | 11.68      | 0.90      | 14.06     | 22,000         | 1,300        | 88             | 950          | 1,800           | <250           |              | ••     |
| MW-2         | 3/22/1996     | 25.92              | 11.46       | 11.31      | 0.15      | 14.58     | 9,800          | 2,200        | <120           | 400          | <380            | <1,200         |              |        |
| MW-2         | 6/20/1996     | 25.92              | 13.08       | 12.71      | 0.37      | 13.14     | 35,000         | 770          | < 0.50         | 240          | <0.50           | 550            | ••           |        |
| MW-2         | 9/30/1996     | 25,92              | 16.67       | 12.92      | 3.75      | 12.25     | 58,000         | 1,600        | 230            | 2,200        | 4,000           | <5.0           |              | ••     |
| MW-2         | 12/27/1996    | 25.92              | 15.74       | 8.17       | 7.57      | 16.24     | 29,000         | 2,100        | < 0.50         | 1,200        | 1,800           | <5.0           |              |        |
| MW-2         | 3/7/1997      | 25.92              | 12.55       |            | 0.00      | 13.37     | 13,000         | 1,300        | 37             | 290          | 180             | <5.0           |              |        |
| MW-2         | 6/28/1997     | 25.92              | 11.98       | 11.94      | 0.04      | 13.97     | 12,000         | 840          | <0.50          | 640          | 360             | <5.0           |              |        |
| MW-2         | 9/18/1997     | 25.92              | 13.44       | 13.44      | 0.00      | 12.48     | 12,000         | 680          | < 0.50         | 320          | 84              | <5.0           | ••           |        |
| MW-2         | 12/30/1997    | 25.92              | 11.31       |            | 0.00      | 14.61     | 13,000         | 1,100        | 40             | 350          | 220             | <5.0           |              |        |
| MW-2         | 3/25/1998     | 25.92              | 10.02       |            | 0,00      | 15.90     | 8,100          | 1,300        | 51             | 410          | 230             | 670            | ••           |        |
| MW-2         | 6/29/1998     | 25.92              | 11.96       | ••         | 0.00      | 13.96     | 12,000         | 880          | 13             | 180          | 72              | 430            |              |        |
| MW-2         | 10/2/1998     | 25.92              | 13.74       |            | 0.00      | 12.18     | 47,000         | 140          | 100            | 110          | 200             | <0.50          | ••           | **     |
| MW-2         | 12/10/1998    | 25.92              | 12.91       | 10.81      | 2.10      | 14.69     | 26,000         | 1,000        | 210            | 1,500        | 1,900           | <1,000         |              |        |
| MW-2         | 3/26/1999     | 25.92              | 9,06        | 8.86       | 0.20      | 17.02     | 110,000        | 190          | 150            | 120          | 380             | <0.50          |              |        |
| MW-2         | 6/11/1999     | 25.92              | 12,18       |            | 0.00      | 13.74     | 190,000        | 310          | 250            | 320          | 540             | <0.50          |              |        |
| MW-2         | 9/15/1999     | 25.92              | 15.59       | 12.59      | 3.00      | 12,73     | 25,000         | 720          | <100           | 1,300        | 1,600           | <1,000         |              |        |
| MW-2         | 12/28/1999    | 25.92              | 16,81       | 12.31      | 4.50      | 12.71     | 75,000         | 130          | 98             | 130          | 230             | < 0.50         |              |        |
| MW-2         | 6/13/2001     | 23.16°             | 14.84       | 11.69      | 3.15      | 10.84     | ••             | <del>-</del> | -              | ••           |                 | ••             | ••           |        |
| MW-2         | 6/20/2002     | 23.16              | 14.80       | 14,10      | 0.70      | 8.92      | 53,000         | 2,200        | 140            | 3,300        | 3,000           | <1,000         |              | ••     |
| MW-2         | 10/21/2002    | 23,16              | 16.98       | 16.74      | 0.24      | 6.37      |                | ••           |                | -            | ••              |                |              |        |
| MW-2         | 12/27/2002    | 23.16              | 13.58       | 13.15      | 0.43      | 9,92      |                | -            | -              |              | ••              | 4-             |              |        |
| MW-3         | 8/23/1991     | 99.25°             | 15.07       |            | 0.00      | 84,18     | <5,000         | <5           | <5             | <5           | <5              |                |              | _      |
| MW-3         | 4/16/1992     | 27.57 <sup>b</sup> | 14.14       | 13.98      | 0.16      | 13,56     |                | ••           |                | <del></del>  |                 |                | ••           |        |
| MW-3         | 6/11/1993     | 27,57              | 14,28       |            | 0.00      | 13.30     |                |              |                |              |                 |                |              | **     |
| MW-3         | 8/17/1993     | 27.57              | 15.77       |            | 0.00      | 11.80     | 9,600          | 4.1          | 17             | 28           | 54              |                |              |        |
| MW-3         | 3/28/1994     | 27.57              | 14.35       | ••         | 0.00      | 13.22     | 8,400          | 2,400        | 56             | 67           | 200             |                |              |        |

Table 3. Groundwater Analytical Data - Credit World Auto Sales, 2345 International Boulevard, Oakland, California

| Sample ID/   | Date               | Casing             | Depth to    | Depth to   | SPH       | GW        |                |              |                |              |                 |                |              |             |
|--------------|--------------------|--------------------|-------------|------------|-----------|-----------|----------------|--------------|----------------|--------------|-----------------|----------------|--------------|-------------|
| Well ID      | Sampled            | Elevation          | GW          | SPH        | Thickness | Elevation | TPHg           | Benzene      | Toluene        | Ethylbenzene | Xylenes         | MTBE           | TOG          | VOCs        |
|              |                    | (feet)             | (feet bgs)  | (feet bgs) | (feet)    | (feet)    | (ug/L)         | (ug/L)       | (ug/L)         | (ug/L)       | (ug/L)          | (ug/L)         | (ug/L)       | (ug/L)      |
| Final RBSL - | Potential Dri      | nking Water S      | онгсе       |            |           |           | 100            | 1.0          | 40             | 30           | 13              | 5.0            | 640          | N/A         |
|              | Risk I             | Driver             |             |            |           |           | human toxicity | aquatic life | aquatic life   | aquatic life | aquatic life    | taste & odor   | aquatic life |             |
| Final RBSL - | Not a Potenti      | al Drinking W      | ater Source |            |           |           | 500            | 46           | 130            | 290          | 13              | 1,800          | 640          | N/A         |
|              | Risk I             | )river             |             |            |           |           | aquatic life   | aquatic life | aquatic life   | aquatic life | aquatic life    | aquatic life   | aquatic life |             |
| RBSL - Indoo | or Air Impact      |                    |             |            |           |           | NE             | 84 (5800)    | 76000 (530000) | 170,000      | 150000 (160000) | 50000(4,9E+05) | NE           | N/A         |
| MW-3         | 6/27/1994          | 27.57              | 14.77       |            | 0.00      | 12.80     | 9,900          | 3,300        | <22            | <25          | 73              |                |              |             |
| MW-3         | 9/16/1994          | 27.57              | 15.42       | 15.37      | 0.05      | 12.19     | 16,000         | 2,300        | 80             | 620          | 240             |                |              |             |
| MW-3         | 3/31/1995          | 27.57              | 12.98       | 12.52      | 0.46      | 14.96     | 16,000         | 2,800        | 70             | <25          | 920             |                |              |             |
| MW-3         | 6/28/1995          | 27.57              | 14.20       | 14.15      | 0.05      | 13,41     | 11,000         | 2,300        | 32             | 81           | 240             |                |              |             |
| MW-3         | 9/28/1995          | 27.57              | 15.17       | ••         | 0.00      | 12.40     | 6,300          | 1,900        | <42            | 200          | <120            | <420           |              |             |
| MW-3         | 12/26/1995         | 27.57              | 13.33       | 13.27      | 0,06      | 14.29     | 25,000         | 3,800        | 97             | 94           | 1,600           | <250           |              |             |
| MW-3         | 3/22/1995          | 27.57              | 12.81       | 12.77      | 0.04      | 14.79     | 16,000         | 3,100        | 75             | 69           | 350             | 250            |              |             |
| MW-3         | 6/20/1996          | 27.57              | 13.95       | 13.88      | 0.07      | 13.68     | 8,500          | 1,400        | 28             | 140          | 15              | 220            |              |             |
| MW-3         | 9/24/1996          | 27.57              | 14.86       | 14.82      | 0.04      | 12.74     | 12,000         | 2,400        | 87             | 340          | 110             | <5.0           |              |             |
| MW-3         | 12/27/1996         | 27,57              | 11.04       | 10.98      | 0.06      | 16.58     | 5,800          | 1,700        | 28             | <0.50        | 42              | 240            |              | ••          |
| MW-3         | 3/10/1997          | 27.57              | 13.80       |            | 0,00      | 13.77     | 9,000          | 1,700        | <0.50          | 110          | < 0.50          | <5.0           |              |             |
| MW-3         | 6/28/1997          | 27.57              | 13.72       | 13.66      | 0.06      | 13.90     | 15,000         | 2,200        | <0.50          | 160          | 190             | <5.0           |              |             |
| MW-3         | 9/18/1997          | 27.57              | 14.76       |            | 0.00      | 12.81     | 28,000         | 3,800        | <0.50          | 100          | <0.50           | <5.0           |              |             |
| MW-3         | 12/30/1997         | 27.57              | 12.97       |            | 0.00      | 14.60     | 21,000         | 2,200        | <0.50          | 31           | < 0.50          | 300            |              |             |
| MW-3         | 3/24/1998          | 27.57              | 11,75       |            | 0,00      | 15.82     | 2,300          | 870          | 7,2            | 20           | <0.50           | 8.5            |              |             |
| MW-3         | 6/29/1998          | 27,57              | 13.38       |            | 0.00      | 14.19     | 6,500          | 1,300        | 12             | 62           | 14              | 140            |              |             |
| MW-3         | 10/2/1998          | 27.57              | 14,42       |            | 0.00      | 13.15     | 11,000         | 31           | 27             | 35           | 69              | < 0.50         |              |             |
| MW-3         | 12/10/1998         | 27.57              | 12.55       |            | 0.00      | 15.02     | <2,500         | 2,800        | 68             | 42           | 55              | <250           |              |             |
| MW-3         | 3/26/1999          | 27.57              | 10.54       |            | 0.00      | 17.03     | 10,000         | 21           | 14             | 10           | 41              | <0.50          |              |             |
| MW-3         | 6/15/1999          | 27.57              | 13.91       |            | 0.00      | 13.66     | 87,000         | 90           | 71             | 92           | 180             | <0.50          |              |             |
| MW-3         | 9/15/1999          | 27.57              | 14.70       |            | 0.00      | 12.87     | 8,700          | 2,100        | 71             | 110          | 66              | <100           |              | ••          |
| MW-3         | 12/28/1999         | 27.57              | 15.16       | 14.91      | 0.25      | 12.61     | 4,300          | 7.7          | 5.2            | 7.2          | 13              | < 0.50         |              |             |
| MW-3         | 6/13/2001          | 24.57°             | 14.70       | 14.30      | 0.40      | 10.19     | 8,400          | 1,300        | 25             | 64           | 32              | <20            |              |             |
| MW-3         | 6/20/2002          | 24.57*             | 14.68       | 14.66      | 0.02      | 9.91      | 7,800          | 1,100        | 23             | 66           | 15              | <50            | ••           |             |
| MW-3         | 12/27/2002         | 24.57°             | 11.37       | 11.20      | 0.17      | 13.34     | -              |              |                |              |                 |                |              |             |
|              |                    |                    |             |            |           |           |                |              |                |              |                 |                |              |             |
| TMW-4        | 8/1 <b>7</b> /1993 | 26.50 <sup>b</sup> | 13.26       |            | 0.00      | 13.24     | 150            | <0.50        | 0.8            | 1.4          | 3.7             |                |              | ••          |
| TMW-4        | 3/28/1994          | 26.50              | 12.40       |            | 0.00      | 14.10     | <50            | <0.50        | <0.50          | <0.50        | <1.5            |                |              |             |
| TMW-4        | 6/27/1994          | 26.50              | 12.84       |            | 0.00      | 13.66     | <50            | <0.50        | <0.50          | <0.50        | <1.5            |                |              |             |
| TMW-4        | 9/16/1994          | 26.50              | 13.58       |            | 0.00      | 12.92     | <50            | <0.50        | <0.50          | < 0.50       | <1.5            | <del></del>    |              |             |
| TMW-4        | 3/31/1995          | 26.50              | 10.23       | **         | 0.00      | 16.27     | <50            | <0.50        | <0.50          | <0.50        | <1.5            |                |              | ,.          |
| TMW-4        | 6/28/1995          | 26.50              | 12.21       |            | 0.00      | 14.29     | <50            | <0.50        | <0.50          | < 0.50       | <1.5            | ••             | ••           |             |
| TMW-4        | 9/28/1995          | 26.50              | 13.38       | ••         | 0.00      | 13.12     | <50            | < 0.50       | <0.50          | <0.50        | <1.5            | <5.0           |              |             |
| TMW-4        | 12/26/1995         | 26.50              | 11.32       |            | 0.00      | 15.18     | <50            | <0.50        | <0.50          | <0.50        | <1.5            | <5,0           | ••           | ••          |
| TMW-4        | 3/22/1996          | 26.50              | 10.54       |            | 0.00      | 15.96     | <50            | < 0.50       | < 0.50         | <0.50        | <1.5            | <5.0           |              |             |
| TMW-4        | 6/20/1996          | 26.50              | 12.14       | ••         | 0.00      | 14,36     | <50            | <0.50        | <0.50          | <0.50        | <0.50           | <5.0           | **           | **          |
| TMW-4        | 9/24/1996          | 26,50              | 13.01       |            | 0.00      | 13.49     | <50            | < 0.50       | <0.50          | <0.50        | <0.50           | <5.0           | ••           | ••          |
| TMW-4        | 12/27/1996         | 26,50              | 9.51        |            | 0.00      | 16.99     | <50            | <0.50        | <0.50          | < 0.50       | < 0.50          | <5.0           |              | <del></del> |

Table 3. Groundwater Analytical Data - Credit World Auto Sales, 2345 International Boulevard, Oakland, California

| Sample ID/   | Date                   | Casing             | Depth to     | Depth to   | SPH       | GW        |                |              |                |              |                 |                |              |        |
|--------------|------------------------|--------------------|--------------|------------|-----------|-----------|----------------|--------------|----------------|--------------|-----------------|----------------|--------------|--------|
| Well ID      | Sampled                | Elevation          | GW           | SPH        | Thickness | Elevation | TPHg           | Benzene      | Toluene        | Ethylbenzene | Xylenes         | MTBE           | TOG          | VOCs   |
|              |                        | (feet)             | (feet bgs)   | (feet bgs) | (feet)    | (feet)    | (ug/L)         | (ug/L)       | (ug/L)         | (ug/L)       | (ug/L)          | (ug/L)         | (ug/L)       | (ug/L) |
| Final RBSL - | Potential Drii         | nking Water S      | ource        |            |           |           | 100            | 1.0          | 40             | 30           | 13              | 5.0            | 640          | N/A    |
|              | Risk I                 | Driver             |              |            |           |           | human toxicity | aquatic life | aquatic life   | aquatic life | aquatic life    | taste & odor   | aquatic life |        |
| Final RBSL - | Not a Potenti          | al Drinking W      | Vater Source |            |           |           | 500            | 46           | 130            | 290          | 13              | 1,800          | 640          | N/A    |
|              | Risk I                 | Oriver             |              |            |           |           | aquatic life   | aquatic life | aquatic life   | aquatic life | aquatic life    | aquatic life   | aquatic life |        |
| RBSL - Indoo | or Air Impact          |                    |              |            |           |           | NE             | 84 (5800)    | 76000 (530000) | 170,000      | 150000 (160000) | 50000(4.9E+05) | NE           | N/A    |
| TMW-4        | 3/10/1997              | 26.50              | 11.92        |            | 0.00      | 14.58     | <50            | <0.50        | < 0.50         | <0.50        | < 0.50          | <5.0           | ••           |        |
| TMW-4        | 6/27/1997              | 26.50              | 10,70        |            | 0.00      | 15.80     | <50            | <0.50        | < 0.50         | <0.50        | < 0.50          | <5.0           |              |        |
| TMW-4        | 9/18/1997              | 26.50              | 12.94        |            | 0,00      | 13.56     | <50            | < 0.50       | < 0.50         | < 0.50       | < 0.50          | <5.0           |              |        |
| TMW-4        | 12/30/1997             | 26.50              | 10,92        |            | 0.00      | 15.58     | <50            | < 0.50       | < 0.50         | < 0.50       | < 0.50          | <5.0           |              |        |
| TMW-4        | 3/25/1998              | 26.50              | 9.60         |            | 0.00      | 16.90     | <50            | < 0.50       | < 0.50         | < 0.50       | < 0.50          | <5.0           |              |        |
| TMW+4        | 6/29/1998              | 26,50              | 11.32        |            | 0.00      | 15.18     | <50            | < 0.50       | <0.50          | < 0.50       | < 0.50          | <5.0           | ••           |        |
| TMW-4        | 10/2/1998              | 26.50              | 12.56        | **         | 0.00      | 13.94     | <50            | < 0.50       | <0.50          | <0.50        | <0.50           | < 0.50         |              |        |
| TMW-4        | 12/10/1998             | 26.50              | 10.44        |            | 0.00      | 16.06     | <50            | < 0.50       | <0.50          | <0.50        | < 0.50          | < 0.50         |              |        |
| TMW-4        | 3/26/1999              | 26.50              | 9.38         | ••         | 0.00      | 17,12     | <50            | < 0.50       | <0.50          | <0.50        | < 0.50          | <0,50          | v=           |        |
| TMW-4        | 6/15/1999              | 26.50              | 11,58        |            | 0.00      | 14.92     | <50            | < 0.50       | <0,50          | <0.50        | < 0.50          | <0.50          |              |        |
| TMW-4        | 9/15/1999              | 26.50              | 12.89        |            | 0.00      | 13.61     | <50            | < 0.50       | < 0.50         | <0.50        | < 0.50          | <5.0           |              |        |
| TMW-4        | 12/28/1999             | 23.50°             | 12.92        |            | 0.00      | 10.58     | <50            | < 0.50       | <0.50          | <0.50        | < 0.50          | <0.50          |              |        |
| TMW-4        | 10/21/2002             | 23.50°             | 12.70        |            | 0.00      | 10.80     |                |              | **             |              |                 |                |              |        |
| TMW-4        | 12/27/2002             | 23.50°             | 9.07         | 8.95       | 0.12      | 14.53     |                |              |                |              |                 | ••             |              |        |
| TMW-5        | 8/17/1993              | 26.51 <sup>b</sup> | 12.98        | 12.95      | 0.03      | 13.55     | 120,000        | 640          | 730            | 790          | 3,600           | **             |              | **     |
| TMW-5        | 3/28/1994              | 26.51              | 11,39        | ••         | 0.00      | 15.12     | 70,000         | 23,000       | 1,500          | 4,100        | 15,000          | **             |              |        |
| TMW-5        | 6/28/1994              | 26.51              | 12.24        |            | 0.00      | 14.27     | 56,000         | 26,000       | 940            | 5,500        | 26,000          |                |              |        |
| TMW-5        | 9/16/1994              | 26.51              | 13.02        | 12.97      | 0.05      | 13.53     | 96,000         | 17,000       | 720            | 3,500        | 12,000          |                |              | ••     |
| TMW-5        | 3/31/1995              | 26.51              | 7.38         | ••         | 0.00      | 19.13     | 64,000         | 13,000       | 470            | 3,500        | 6,100           |                | ••           |        |
| TMW-5        | 6/28/1995              | 26.51              | 11.31        | 11.25      | 0.06      | 15.25     | 65,000         | 9,000        | 240            | 2,600        | 5,300           |                | **           | ••     |
| TMW-5        | 9/28/1995              | 26.51              | 14.42        | -          | 0.00      | 12.09     | 79,000         | 17,000       | 1,800          | 2,700        | 7,000           | <1,200         |              |        |
| TMW-5        | 12/26/1995             | 26.51              | 10.16        | 10.11      | 0.05      | 16.39     | 110,000        | 11,000       | 800            | 2,300        | 4,500           | <1,200         |              |        |
| TMW-5        | 3/22/1996              | 26.51              | 7.59         | 7.54       | 0.05      | 18.96     |                | ••           |                |              |                 |                |              |        |
| TMW-5        | 6/26/1996 <sup>d</sup> |                    | 7.12         |            | 0.00      |           | 30,000         | 4,000        | 180            | 1,500        | 2,500           | 830            |              | ••     |
| TMW-5        | 9/30/1996              |                    | 7.42         |            | 0.00      |           | 6,900          | 1,600        | 79             | 130          | 370             | <5.0           |              |        |
| TMW-5        | 12/27/1996             | ••                 | 6.38         |            | 0.00      |           | 78,000         | 12,000       | 1,900          | 2,900        | 9,700           | <5.0           |              | ••     |
| TMW-5        | 3/10/1997              |                    | 11.12        |            | 0.00      |           | 84,000         | 9,900        | 1,100          | 2,600        | 8,800           | < 5.0          |              |        |
| TMW-5        | 8/17/1997              |                    | 12.98        | 12.95      | 0.03      | ••        | ••             | ••           |                |              |                 |                | ••           |        |
| TMW-5        | 9/18/1997              |                    | 12.00        |            | 0.00      |           | 65,000         | 8,000        | <0.5           | 2,000        | 4,700           | <5.0           |              |        |
| TMW-5        | 12/30/1997             |                    | 8.97         |            | 0.00      |           | 79,000         | 6,400        | 340            | 2,300        | 5,500           | <5.0           |              | ••     |
| TMW-5        | 3/25/1998              | ••                 | 7.32         | ••         | 0.00      |           | 20,000         | 6,000        | 260            | 2,700        | 5,800           | 2,400          |              |        |
| TMW-5        | 6/29/1998              |                    | 11.50        |            | 0.00      |           |                |              | ••             |              | ••              |                |              |        |
| TMW-5        | 10/8/1998              | -                  | 12.56        |            | 0.00      |           | 46,000         | 120          | 98             | 120          | 240             | <0.50          |              | ••     |
| TMW-5        | 12/8/1998              |                    | 10.14        | ••         | 0.00      | ••        | 46,000         | 5,900        | 320            | 2,200        | 5,400           | <1,200         |              |        |
| TMW-5        | 3/26/1999              |                    | 7.08         |            | 0.00      |           | 35,000         | 69           | 61             | 37           | 120             | <0.50          |              |        |
| TMW-5        | 6/11/1999              |                    | 11.40        |            | 0.00      |           | 26,000         | 29           | 32             | 43           | 72              | <0.50          | **           |        |

Table 3. Groundwater Analytical Data - Credit World Auto Sales, 2345 International Boulevard, Oakland, California

| Sample ID/   | Date                   | Casing        | Depth to    | Depth to   | SPH       | GW        |                |              |                |              |                 |                |              |        |
|--------------|------------------------|---------------|-------------|------------|-----------|-----------|----------------|--------------|----------------|--------------|-----------------|----------------|--------------|--------|
| Well ID      | Sampled                | Elevation     | GW          | SPH        | Thickness | Elevation | TPHg           | Benzene      | Toluene        | Ethylbenzene | Xylenes         | MTBE           | TOG          | VOCs   |
|              |                        | (feet)        | (feet bgs)  | (feet bgs) | (feet)    | (feet)    | (ug/L)         | (ug/L)       | (ug/L)         | (ug/L)       | (ug/L)          | (ug/L)         | (ug/L)       | (ug/L) |
| Final RBSL - | Potential Dri          | iking Water S | ource       |            |           |           | 100            | 1.0          | 40             | 30           | 13              | 5.0            | 640          | N/A    |
|              | Risk I                 | Oriver        |             |            |           |           | human toxicity | aquatic life | aquatic life   | aquatic life | aquatic life    | taste & odor   | aquatic life |        |
| Final RBSL - | Not a Potenti          | al Drinking W | ater Source |            |           |           | 500            | 46           | 130            | 290          | 13              | 1,800          | 640          | N/A    |
|              | Risk L                 | )river        |             |            |           |           | aquatic life   | aquatic life | aquatic life   | aquatic life | aquatic life    | aquatic life   | aquatic life |        |
| RBSL - Indoo | r Air Impaci           |               |             |            |           |           | NE             | 84 (5800)    | 76000 (530000) | 170,000      | 150000 (160000) | 50000(4,9E+05) | NE           | N/A    |
| TMW-5        | 9/15/1999              | _             | 12.52       | ·          | 0.00      |           | 37,000         | 7,300        | 400            | 2,400        | 6,000           | <1,000         | **           | ••     |
| TMW-5        | 12/28/1999             | **            | 12.44       |            | 0.00      | ••        | 25,000         | 44           | 32             | 41           | 75              | <0.50          |              |        |
| TMW-5        | 5/23/2001              | 23,85°        | 11.31       |            | 0.00      | 12.54     |                |              |                |              |                 |                |              | **     |
| TMW-5        | 6/20/2002              | 23.85         | 11.29       | 11.24      | 0.05      | 12.60     | 51,000         | 5,100        | 290            | 2,300        | 5,800           | <250           | -#           | **     |
| TMW-5        | 10/21/2002             | 23.85         | 13.60       | 13.50      | 0.10      | 10.33     |                |              | **             |              |                 |                |              | ••     |
| TMW-5        | 12/27/2002             | 23.85         | 6,60        | 6,53       | 0.07      | 17.31     |                |              |                | -            |                 |                |              |        |
| MW-6         | 5/23/2001              | 23.81°        | 12.47       | ••         | 0,00      | 11.34     |                |              |                | -            |                 |                |              |        |
| MW-6         | 6/13/2001              | 23.81         | 12.47       |            | 0.00      | 11.34     | 7,600          | 1,400        | 42             | 19           | 14              | <10            |              |        |
| MW-6         | 6/20/2002              | 23.81         | 12.45       | ••         | 0.00      | 11.36     | 79             | 5.7          | <0.5           | <0.5         | <0.5            | <5.0           |              |        |
| MW-6         | 12/27/2002             | 23.81         | 7.24        | 7.20       | 0.04      | 16.60     | -              | -            |                | -            |                 |                |              | •-     |
| RIP BLANK    | 8/17/1993              |               | -           |            | -         |           | <50            | <0.50        | <0.50          | <0.50        | <0.50           | **             |              |        |
| RIP BLANK    | 3/28/1994              |               |             | ••         |           | ••        | <50            | <0.50        | < 0.50         | <0.50        | <1.5            |                |              | ••     |
| RIP BLANK    | 6/27/19 <del>9</del> 4 |               |             |            | -         | **        | <50            | < 0.50       | <0.50          | <0.50        | <1.5            | **             |              |        |
| RIP BLANK    | 9/16/1994              |               |             | ••         |           | ••        | <50            | <0.50        | <0.50          | <0.50        | <1.5            |                |              |        |
| RIP BLANK    | 3/31/1995              |               |             | _          |           |           | <50            | < 0.50       | <0,50          | <0.50        | <1.5            |                | **           |        |
| RIP BLANK    | 6/28/1995              | ••            |             | -          |           |           | <50            | < 0.50       | <0.50          | < 0.50       | <1.5            | <5.0           |              | **     |
| TRIP BLANK   | 9/28/1995              |               |             | ••         | ••        |           | <50            | <0.50        | <0.50          | <0.50        | <1.5            |                |              |        |
| RIP BLANK    | 12/26/1995             | **            |             |            |           |           | <50            | < 0.50       | <0.50          | < 0.50       | <1.5            | <5.0           | ••           | ••     |
| RIP BLANK    | 3/22/1996              |               |             |            |           | **        | <50            | < 0.50       | < 0.50         | <0.50        | <1.5            | <5.0           |              |        |
| RIP BLANK    | 9/24/1996              | ••            |             |            |           |           | <50            | <0.50        | <0.50          | < 0.50       | < 0.50          | <5.0           | **           |        |
| RIP BLANK    | 9/30/1996              |               |             |            |           | ••        | <50            | < 0.50       | <0.50          | < 0.50       | <0.50           | <5.0           | ••           | ••     |
| RIP BLANK    | 6/20/1996              | **            |             |            |           |           | <50            | < 0.50       | <0.50          | <0.50        | <0.50           | <5.0           |              |        |
| RIP BLANK    | 12/27/1996             |               |             |            | **        | ••        | <50            | <0.50        | <0.50          | <0.50        | <0.50           | <5.0           |              |        |
| RIP BLANK    | 3/10/1997              |               |             |            |           |           | <50            | < 0.50       | < 0.50         | <0.50        | < 0.50          | <5.0           |              |        |
| RIP BLANK    | 9/18/1997              |               |             |            | ••        | ••        | <50            | <0.5         | <0.5           | <0.5         | <0.5            | <5.0           |              | ••     |
| RIP BLANK    | 12/30/1997             |               |             | ••         |           | **        | <50            | <0.5         | <0.5           | <0.5         | <0.5            | <5.0           |              | ••     |
| RIP BLANK    | 3/25/1998              |               | •           | ••         | ••        | ••        | <50            | <0.5         | <0.5           | <0.5         | <0.5            | <5,0           |              |        |
| RIP BLANK    | 6/29/1998              |               |             |            |           |           | <50            | <0.5         | <0.5           | <0.5         | <0.5            | <5.0           |              |        |
| RIP BLANK    | 10/2/1998              |               |             |            |           | ••        |                | ••           |                | ••           |                 |                |              |        |
| RIP BLANK    | 12/10/1998             |               |             |            | ••        | ••        | ••             |              |                | ••           | *-              |                |              | ••     |
| RIP BLANK    | 3/26/1999              | ••            |             | ••         | ••        |           | <50            | < 0.50       | <0.50          | <0.50        | <0.50           | <0.50          |              |        |
| RIP BLANK    | 6/15/1999              |               | ••          | ••         | ••        |           | <50            | <0.50        | <0.50          | <0.50        | <0.50           | <0.50          |              | **     |
| RIP BLANK    | 9/15/1999              |               |             | **         | ••        | ••        | 33,000         | 6,200        | 300            | 2,000        | 4,800           | <1,000         | ••           |        |
| TRIP BLANK   | 12/28/1999             | ••            | ••          |            |           |           | <50            | < 0.50       | < 0.50         | < 0.50       | <0.50           | <0.50          |              |        |

Table 3. Groundwater Analytical Data - Credit World Auto Sales, 2345 International Boulevard, Oakland, California

| Sample ID/   | Date          | Casing        | Depth to    | Depth to   | SPH       | GW        |                |              | · · · · · · · · · · · · · · · · · · · |              |                 |                |              |        |
|--------------|---------------|---------------|-------------|------------|-----------|-----------|----------------|--------------|---------------------------------------|--------------|-----------------|----------------|--------------|--------|
| Well ID      | Sampled       | Elevation     | GW          | SPH        | Thickness | Elevation | TPHg           | Benzene      | Toluene                               | Ethylbenzene | Xylenes         | MTBE           | TOG          | VOCs   |
|              |               | (feet)        | (feet bgs)  | (feet bgs) | (feet)    | (feet)    | (ug/L)         | (ug/L)       | (ug/L)                                | (ug/L)       | (ug/L)          | (ug/L)         | (ug/L)       | (ug/L) |
| Final RBSL - | Potential Dri | nking Water S | ource       |            |           |           | 100            | 1.0          | 40                                    | 30           | 13              | 5.0            | 640          | N/A    |
|              | Risk I        | Ortver        | _           |            |           |           | human toxicity | aquatic life | aquatic life                          | aquatic life | aquatic life    | taste & odor   | aquatic life |        |
| Final RBSL - | Not a Potenti | al Drinking W | ater Source |            |           |           | 500            | 46           | 130                                   | 290          | 13              | 1,800          | 640          | N/A    |
|              | Risk 1        | Orlver        |             |            |           |           | aquatic life   | aquatic life | aquatic life                          | aquatic life | aquatic life    | aquatic life   | aquatic life |        |
| RBSL - Indoo | or Air Impact |               |             |            |           |           | NE             | 84 (5800)    | 76000 (530000)                        | 170,000      | 150000 (160000) | 50000(4.9E+05) | NE           | N/A    |

#### Abbreviations and Methods:

bgs = below grade surface

(ug/L) = micrograms per Liter

Depth to GW = Depth to groundwater relative to top of easing

SPH = Separate phase hydrocarbons

TOG = Total oil and grease by modified EPA Method 3550

TPHg = Total petroleum hydrocarbons as gasoline by modified EPA Method 8015

Benzene, Toluene, Ethylbenzene, Xylenes by EPA Method 8020, and by 8260 if in parenthesis

MTBE methyl tert butyl ether by EPA Method 8020

VOCs = volatile organic compounds by EPA Method 8260

ND\* = not detected with the exception of reported concentrations for benzene, toluene, ethylbenzene and xylenes

GW Elevation = Groundwater elevation in relation to mean sea level; calculated according to the relationship GW elevation = TOC - DTW + (0.8)(SPH thickness)

a = Relative to site datum established by Earth Systems Engineering

b = Top of casing elevation surveyed 8/10/93 by professional engineer (assumed based on NGVD 29 datum that is approximately 3 feet higher than City of Oakland datum)

c = Top of casing elevation surveyed 6/13/01 to City of Oakland datum by Renner Survey Company of Burlingame, CA. for Sequoia Environmental. Wells MW-3 and MW-4 were not surveyed

d = Casing damaged during excavation activities; not surveyed

e = Assumed top of casing elevation relative to City of Oakland datum, estimated by subtracting 3.00 feet from previous elevation presumably from NGVD 29 datum

1,300 = concentrations exceeding commercial final RBSLs (not a potential drinking water resource) shown in bold

Final RBSL - Potential Drinking Water Source = Table F-1 - Components for Groundwater Screening Levels (Groundwater is not a Current or Potential Drinking

Water Resource) established by the SFRWQCB, Interim Final December 2001. (The risk driver is also shown)

Final RBSL - Not A Potential Drinking Water Source = Table F-2 - Components for Groundwater Screening Levels (Groundwater is not a Current or Potential Drinking

Water Resource) established by the SFRWQCB, Interim Final December 2001. (The risk driver is also shown).

RBSLs for indoor air = Tables F-1 and F-2 from SFRWQCB above, Interim Final December 2001

**Table 4. Well Completion Data -** Credit World Auto Sales, 2345 International Boulevard, Oakland, California

| Well No. | Installation<br>Date | Boring<br>Diameter<br>(inches) | Well<br>Diameter<br>(inches) | Screen<br>Size<br>(inches) | Total<br>Depth<br>(feet bgs) | Surface<br>Seal<br>(feet bgs) | Sand Pack<br>Interval<br>(feet bgs) | Screened<br>Interval<br>(feet bgs) |
|----------|----------------------|--------------------------------|------------------------------|----------------------------|------------------------------|-------------------------------|-------------------------------------|------------------------------------|
| MW-1     | 5/22/1991            | 8                              | 2                            | 0.010                      | 35                           | 0-12                          | 12-35                               | 15-35                              |
| MW-2     | 8/21/1991            | 8                              | 2                            | 0.010                      | 35                           | 0-12                          | 12-35                               | 15-35                              |
| MW-3     | 8/22/1991            | 8                              | 2                            | 0.010                      | 35                           | 0-12                          | 12-35                               | 15-35                              |
| TMW-4    | 7/22/1993            | 8                              | 2                            | 0.010                      | 36                           | 0-12                          | 12-34                               | 14-34                              |
| TMW-5    | 7/23/1993            | 8                              | 2                            | 0.010                      | 27                           | 0-15                          | 15-24                               | 17-24                              |
| MW-6     | 5/22/2001            | 6.75                           | 4                            | 0.020                      | 20                           | 0-13                          | 13-20                               | 15-20                              |

bgs = below ground surface

ft-msl = feet above mean sea level

**Table 5. Separate Phase Hydrocarbon Removal** - Credit World Auto Sales ternational Boulevard, Oakland, California

| Sample ID/<br>Well JD | Date<br>Sampled          | Casing<br>Elevation<br>(feet) | Depth to<br>GW<br>(feet bgs) | Depth to<br>SPH<br>(feet bgs) | SPH Thickness<br>(feet) | GW Elevation<br>(feet) | Hydrocarbons<br>Removed<br>(liters) | Hydrocarbons<br>Removed<br>(lbs.) | Cumulative<br>Hydrocarbons<br>Removed<br>(lbs.) |
|-----------------------|--------------------------|-------------------------------|------------------------------|-------------------------------|-------------------------|------------------------|-------------------------------------|-----------------------------------|-------------------------------------------------|
| MW-1                  | 12/30/1997               | 27.33                         | 10.96                        | 10.79                         | 0.17                    | 16.51                  | 0.10                                | 0.17                              | 0.17                                            |
| MW-I                  | 6/11/1999                | 27.33                         | 10.96                        | 10.79                         | 0.17                    | 14.78                  | 0.01                                | 0.01                              | 0.17                                            |
| MW-I                  | 9/15/1999                | 27.33                         | 14,85                        |                               |                         |                        | 0.60                                | 0.97                              | 1,15                                            |
| MW-1                  | 12/28/1999               | 27.33                         | 8.3 t                        | 13.85<br>8.15                 | 1.00<br>0.16            | 13.28<br>19.15         | 0.10                                | 0.16                              | 1.31                                            |
| MW-I                  | 6/13/2001                | 24.37                         | 8.31                         | 8.15                          | 0.16                    |                        | 0.10                                | 0.16                              | 1.46                                            |
| MW-1                  | 5/13/2001<br>\$2/27/2003 | 24.37<br>24.37                | 8.31                         | 8,15<br>8,15                  | 0.16<br>0.16            | 16.19<br>16.19         | 3.00                                | 4.84                              | 6,30                                            |
|                       | ,                        |                               |                              |                               |                         |                        |                                     |                                   |                                                 |
| MW-2                  | 6/28/1995                | 25.92                         | 13,50                        | 12.77                         | 0.73                    | 13.00                  | 0.44                                | 0.71                              | 0.71                                            |
| MW-2                  | 9/28/1995                | 25,92                         | 14.63                        | 14.09                         | 0.54                    | 11,72                  | 0.33                                | 0.53                              | 1.24                                            |
| MW-2                  | 12/26/1995               | 25.92                         | 12.58                        | 11.68                         | 0.90                    | 14.06                  | 0.54                                | 0.88                              | 2.12                                            |
| MW-2                  | 3/22/1996                | 25.92                         | 11.46                        | 11.31                         | 0.15                    | 14,58                  | 0.09                                | 0 15                              | 2.26                                            |
| MW-2                  | 6/20/1996                | 25.92                         | 13.08                        | 12,71                         | 0.37                    | 13,14                  | 0.22                                | 036                               | 2.62                                            |
| MW-2                  | 9/30/1996                | 25.92                         | 16,67                        | 12.92                         | 3.75                    | 12,25                  | 2.27                                | 3.66                              | 6.28                                            |
| MW-2                  | 12/27/1996               | 25.92                         | 15.74                        | 8.17                          | 7.57                    | 16.24                  | 4.58                                | 7 38                              | 13.66                                           |
| MW-2                  | 6/28/1997                | 25.92                         | 11,98                        | 11.94                         | 0.04                    | 13.97                  | 0.02                                | 0.04                              | 13.70                                           |
| MW-2                  | 9/18/1997                | 25.92                         | 13.44                        | 13.44                         | 0,00                    | 12.48                  | 0.00                                | 0.00                              | 13.70                                           |
| MW-2                  | 12/10/1998               | 25.92                         | 12.91                        | 10.81                         | 2.10                    | 14.69                  | 1.27                                | 2.05                              | 15.75                                           |
| MW-2                  | 3/26/1999                | 25.92                         | 9.06                         | 8.86                          | 0.20                    | 17.02                  | 0.12                                | 0.19                              | 15,94                                           |
| MW-2                  | 9/15/1999                | 25.92                         | 15.59                        | 12,59                         | 3.00                    | 12.73                  | 1.81                                | 2.92                              | 18.87                                           |
| MW-2                  | 12/28/1999               | 25.92                         | 16.81                        | 12.31                         | 4.50                    | 12.7}                  | 2.72                                | 4.39                              | 23.25                                           |
| MW-2                  | 6/13/2001                | 23.16                         | 14.84                        | 11.69                         | 3.15                    | 10.84                  | 9.45                                | 15 23                             | 38.49                                           |
| MW-2                  | 6/20/2002                | 23.16                         | 14.80                        | 14.10                         | 0.70                    | 8.92                   | 0.42                                | 0.68                              | 39.17                                           |
| MW-2                  | 10/21/2002               | 23.16                         | 16.98                        | 16,74                         | 0.24                    | 6.37                   | 0.00                                | 0.00                              | 39.17                                           |
| MW-2                  | 12/27/2002               | 23.16                         | 13.58                        | 13,15                         | 0.43                    | 9.92                   | 3.00                                | 4.84                              | 44.00                                           |
| MW-3                  | 4/16/1992                | 27.57                         | 14.14                        | 13.98                         | 0.16                    | 13.56                  | 0.10                                | 0.16                              | 0.16                                            |
| MW-3                  | 9/16/1994                | 27.57                         | 15.42                        | 15,37                         | 0.05                    | 12.19                  | 0.03                                | 0.05                              | 0.20                                            |
| MW-3                  | 3/31/1995                | 27,57                         | 12.98                        | 12.52                         | 0.46                    | 14.96                  | 0.28                                | 0.45                              | 0.65                                            |
| MW-3                  | 6/28/1995                | 27,57                         | 14.20                        | 14.15                         | 0.05                    | 13.41                  | 0.03                                | 0.05                              | 0.70                                            |
| MW-3                  | 12/26/1995               | 27.57                         | 13.33                        | 13.27                         | 0.06                    | 14.29                  | 0.04                                | 0.06                              | 0.76                                            |
| MW-3                  | 3/22/1995                | 27.57                         | 12.81                        | 12,77                         | 0.04                    | 14.79                  | 0.02                                | 0.04                              | 0.80                                            |
| MW-3                  | 6/20/1996                | 27.57                         | 13.95                        | 13.88                         | 0.07                    | 13.68                  | 0.04                                | 0.07                              | 0,87                                            |
| MW-3                  | 9/24/1996                | 27.57                         | 14.86                        | 14.82                         | 0.04                    | 12.74                  | 0.02                                | 0.04                              | 0.91                                            |
| MW-3                  | 12/27/1996               | 27.57                         | 11.04                        | 10.98                         | 0.06                    | 16.58                  | 0.04                                | 0.06                              | 0.97                                            |
| MW-3                  | 6/28/1997                | 27.57                         | 13,72                        | 13.66                         | 0.06                    | 13.90                  | 0.04                                | 0.06                              | 1.02                                            |
| MW-3                  | 12/28/1999               | 27.57                         | 15,16                        | 14.91                         | 0.25                    | 12.61                  | 0.15                                | 0.24                              | 1.27                                            |
| MW-3                  | 6/13/2001                | 27.57                         | 14.70                        | 14.30                         | 0.40                    | 13.19                  | 7,56                                | 12.19                             | 13.45                                           |
| MW-3                  | 6/20/2002                | 27.57                         | 14.68                        | 14.66                         | 0.02                    | 12.91                  | 0.01                                | 0.02                              | 13.47                                           |
| MW-3                  | 12/27/2002               | 27.57                         | 11.37                        | 11.20                         | 0.17                    | 16.34                  | 3.60                                | 4.84                              | 18.31                                           |
| TMW-4                 | 12/27/2002               | 26.50                         | 9.07                         | 8.95                          | 0.12                    | 17.53                  | 1.50                                | 2.42                              | 2.42                                            |
| TMW-5                 | 8/17/1993                | 26.51                         | 12.98                        | 12.95                         | 0,03                    | 13.55                  | 0.02                                | 0.029                             | 0,03                                            |
| TMW-5                 | 9/16/1994                | 26.51                         | 13.02                        | 12,97                         | 0,05                    | 13.53                  | 0.03                                | 0.049                             | 0.08                                            |
| TMW-5                 | 6/28/1995                | 26.51                         | 11.31                        | 11.25                         | 0.06                    | 15.25                  | 0.04                                | 0.058                             | 0.14                                            |
| TMW-5                 | 12/26/1995               | 26.51                         | 10.16                        | 10.11                         | 0.05                    | 16,39                  | 0.03                                | 0.049                             | 0.19                                            |
| TMW-5                 | 3/22/1996                | 26.51                         | 7.59                         | 7.54                          | 0.05                    | 18.96                  | 0.03                                | 0.049                             | 0.23                                            |

Table 5. Separate Phase Hydrocarbon Removal - Credit World Auto Sales temational Boulevard, Oakland, California

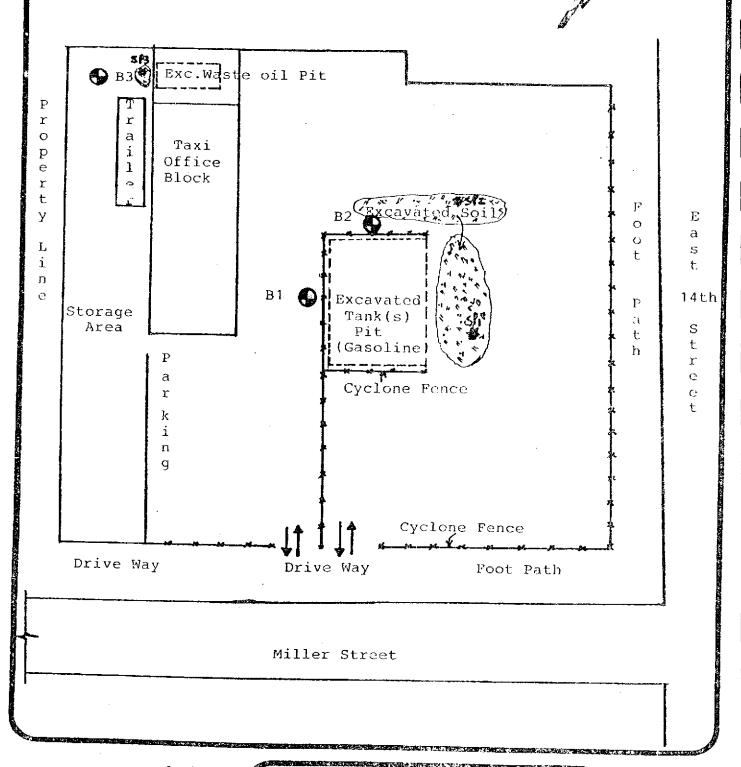
| Sample ID/<br>Well ID | Date<br>Sampled | Casing<br>Elevation<br>(feet) | Depth to<br>GW<br>(feet bgs) | Depth to<br>SPH<br>(feet bgs) | SPH Thickness<br>(feet) | GW Elevation<br>(feet) | Hydrocarbons<br>Removed<br>(liters) | Hydrocarbons<br>Removed<br>(lbs.) | Cumulative<br>Hydrocarbons<br>Removed<br>(lbs.) |
|-----------------------|-----------------|-------------------------------|------------------------------|-------------------------------|-------------------------|------------------------|-------------------------------------|-----------------------------------|-------------------------------------------------|
| TMW-5                 | 8/17/1997       |                               | 12 98                        | 12.95                         | 0.03                    |                        | 0.02                                | 0.029                             | 0.26                                            |
| TMW-5                 | 5/23/2001       | 23.85                         | 11 31                        |                               | 0.00                    | 12.54                  | 9.45                                | 15.23                             | 15.47                                           |
| TMW-5                 | 6/20/2002       | 23.85                         | 11.29                        | 11 24                         | 0.05                    | 12.60                  | 0.03                                | 0.049                             | 15.52                                           |
| TMW-5                 | 10/21/2002      | 23.85                         | 13.60                        | 13.50                         | 0.10                    | 10.33                  | 0.00                                | 0.00                              | 15.52                                           |
| TMW-5                 | 12/27/2002      | 23.85                         | 13.60                        | 13.50                         | 0.10                    | 10.33                  | 1.50                                | 2.42                              | 17.93                                           |
| MW-6                  | 12/27/2902      | 23,81                         | 7.24                         | 7.20                          | 0.04                    | 16.60                  | 1.50                                | 2.42                              | 2.42                                            |

Hydrocarbons removed by bailing or purging (lbs.) = 91.38

Hydrocarbons removed by free product removal system (see Note I) (lbs) = 30.5

Total estimated hydrocarbons removed (lbs) = 121.88

SPH Removal data provided for 5/23/01, 6/13/01, and 12/27/02 data.


bgs = below ground surface

When data is unavailable, hydrocarbon removal volume prior to 12/27/2002 is estimated by multiplying the well casing area (2\* diameter casing = 0.60L/ft) by SPH thickness (feet)

<sup>1.</sup> Tank Protect reported that the continuous free product removal system removed approximately 3 to 5 gailons between 8/20/97 and 1/14/98.

# Appendix A

Background Information





The second secon

Site Plan Showing Association of Three Borings at 2345 East 14th Street, Oakland, CA. Scale 1"=25'

FIGURE NO.

CALIFORNIA ENVIRONMENTAL CONSULTANTS

| Field focall                           | EXPLO                                  | ORAT                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ⊃R<br>∹√  | ING                                | PROJECT No CEC/SBh ONE 2 Oct 3,88 BORING No CLIENT West Coast Tank Testing B2  LOCATION 2345 East 14th Street LOGGED BY TS DRILLER Hew Drilling of 1  Orilling method Solid Stem Auger |
|----------------------------------------|----------------------------------------|--------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ************************************** | E S S                                  | Exc:<br>Gaselma<br>Tanks | Enchant                                 | Foot Park                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 Est 14. |                                    | CME-55 Mobile Drill Rig Hole dis Ginches Casing Installation data                                                                                                                      |
| Fochel<br>Torr vana<br>Tar<br>Pochel   | TSF<br>Blows/ft.<br>or<br>Pressure PSI |                          | S N S S S S S S S S S S S S S S S S S S | eje o<br>Ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Semple of | Soll Group<br>Symbol<br>(U.S.C.S.) | Water level                                                                                                                                                                            |
|                                        |                                        |                          | inch<br>brass<br>es                     | -<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                                    | 0-9" Asphalt/Base rock  Black silty clay w/ gasoline odor.Damp                                                                                                                         |
|                                        | 3 4 7 7                                | D.2-5                    |                                         | American formation and interest of the second control of the secon |           | C                                  | Black to greenish silty clay W/ gasoline<br>editr. Dama, soft to med.still.                                                                                                            |
|                                        | 3 8 10                                 | B2-1(                    |                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | ${ m CL}$                          | Greenish, soft to med.stiff silty clay w/ some sand. Slight discoloration and damp.                                                                                                    |
|                                        | 10<br>15<br>15                         | B2=1                     |                                         | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | CL S                               | Greenish to brown silty clay w/ some sand<br>Med. stiff and Damp.Slight discoloration<br>observed.                                                                                     |
|                                        |                                        |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | W                                  | Water encountered at 19 feet.Boring bot                                                                                                                                                |
| CALIF                                  |                                        |                          | PY VALL                                 | i<br>N<br>FY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VI        | RON                                | MENTAL CONSULTANTS AN JOSE, CA 95129 • (408) 725-2644                                                                                                                                  |

|                    | EXPLORATORY BORIN                       |                                 |               |                                       |           |            |                                    | PROJECT No CEC/SB . ONE 2 Oct 3,88  CLIENT West Coa.: Tank Testing  LOCATION 2345 East 14th Street  TS  LOGGED BY DRILLER Hew Drilling |
|--------------------|-----------------------------------------|---------------------------------|---------------|---------------------------------------|-----------|------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Groune             | + 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ***                             | Sec.          |                                       | East Path | EAST 14 SE |                                    | Orilling method Solid Stem Auger CME-55 Mobile Drill Riq Moledta 6 inche Cosing Installation data                                      |
| Pocket<br>Tory vos | Pockei<br>Penairometer<br>18F           | Blows/fl.<br>or<br>Pressure PBt | Type of Banks | S S S S S S S S S S S S S S S S S S S | Ft.       | e joint se | Sell Group<br>Symbol<br>(U.S.C.S.) | #aior level ▼ 19 ft                                                                                                                    |
|                    |                                         |                                 |               | inch<br>hrass<br>es                   | -         |            | CL                                 | 0-9" Asphalt/Base rock  Damp silty clay. Soft and Blackish                                                                             |
|                    |                                         | 3 3 6                           | B1-5          |                                       | 5         |            | CL                                 | Blackish silty clay, soft to med.stiff with gasoline odor.                                                                             |
|                    |                                         | 4 8 10                          | R1-10         |                                       | 10        |            | CL                                 | Damp greenish to Black silty clay W/ some sand content. Slight discoloration observed.Med. stiff w/ gasoline odor.                     |
|                    |                                         | 15<br>13<br>18                  | B1-1          |                                       | 15        |            | CL<br>&SM                          | Moist greenish silty sandy clay w/ fines<br>Med.stiff to stiff w/ slight discolorati                                                   |
|                    |                                         |                                 |               |                                       |           |            | <b>y</b>                           | Ground water encountered at 19 feet. Boring bottom.                                                                                    |
| CA                 | LIFO                                    |                                 |               | PY VALL                               | EY A      | 4VE        | NUE • SA                           | MENTAL CONSULTANTS AN JOSE, CA 95129 • (408) 725-2644                                                                                  |



# SEQUOL) ANALYTICAL

680 Chesapeake Drive - Redwood City, CA 94063 (415) 364-9222 · FAX (415) 364-9233

California Environmental Consultants

1117 Happy Valley Avenue

San Jose, CA 95129 Attn: Munir Butt

Date Sampled: 10/03/88 Date Received: 10/03/88

Date Analyzed: 10/12/88 Date Reported: .10/31/88

Project:#CEC-SBW 9-88-2

#### TOTAL PETROLEUM FUEL HYDROCARBONS WITH BTEX DISTINCTION

| Sample Sample Number Description Soil |        | Low to Medium<br>Boiling Point<br><u>Hydrocarbons</u><br>ppm | Benzene<br>ppm | <u>Toluene</u> | Ethyl<br>Benzene<br>ppm | Xylenes<br>ppm |  |
|---------------------------------------|--------|--------------------------------------------------------------|----------------|----------------|-------------------------|----------------|--|
| 8100025                               | B1-15' | 3.4                                                          | 0.31           | N.D.           | N.D.                    | 0.14           |  |
| 8100026                               | B2-15' | 83                                                           | 1.6            | 1.1            | 1.8                     | 9.6            |  |

Detection Limits:

1.0

0.05

0.1

0.1

0.1

Method of Analysis: EPA 5030 or 3810/8015/8020

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton

Laboratory Director



# SEQUOL. ANALYTICAL

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9222 • FAX (415) 364-9233

California Environmental Consultants 1117 Happy Valley Avenue

San Jose, CA 95129 Attn: Munir Butt Date Sampled: 10/03/88
Date Received: 10/03/88
Date Analyzed: 10/06/88

Date Reported: 10/06/88

Project: #CEC/SBW 9-88-2

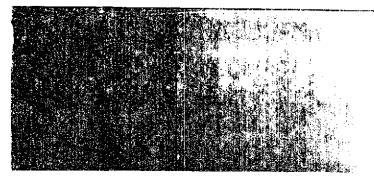
#### HALOGENATED VOLATILE ORGANICS

Sample Number 8100027

Sample Description

Soil, B3-15'

| Analyte                   | Detection Lin | nit_                | Sample Results |
|---------------------------|---------------|---------------------|----------------|
|                           | µg/kg         |                     | μg/kg          |
| Bromodichloromethane      |               |                     | N.D.           |
| Bromoform                 | . 25          |                     | . N.D.         |
| Bromomethane              |               |                     | N.D.           |
| Carbon tetrachloride      | . 25          |                     | N.D.           |
| Chlorobenzene             | . 25          |                     | . N.D.         |
| Chloroethane              | . 130         |                     | . N.D.         |
| 2-Chloroethylvinyl ether  |               |                     |                |
| Chloroform                | . 25          | • • • • • • • • • • |                |
| Chloromethane             |               |                     | · •            |
| Dibromochloromethane      |               |                     | · · · · ·      |
| l,2-Dichlorobenzene       |               |                     | - · ·          |
| 1,3-Dichlorobenzene       |               |                     | . N.D.         |
| 1,4-Dichlorobenzene       |               |                     | . M.D.         |
| 1,1-Dichloroethane        | 25            |                     | . N.D.         |
| I,2-Dichloroethane        | 25            | *******             | . N.D.         |
| 1,1-Dichloroethene        | . 25          |                     | . N.D.         |
| trans-1,2-Dichloroethene  | . 25          |                     | . N.D.         |
| 1,2-Dichloropropane       | . 25          |                     | . N.D.         |
| cis-1,3-Dichloropropene   | <b>.</b> 25   |                     | . N.D.         |
| trans-1,3-Dichloropropene | . 25          |                     | . N.D.         |
| Methylene chloride        | . 50          |                     | . N.D.         |
| 1,1,2,2-Tetrachloroethane | . 25          |                     | . N.D.         |
| Tetrachloroethene         | . 25          |                     | . N.D.         |
| 1,1,1-Trichloroethane     | . 25          |                     |                |
| 1,1,2-Trichloroethane     | . 25          |                     | . N.D.         |
| Trichloroethene           | . 25          |                     |                |
| Trichlorofluoromethane    | . 25          |                     |                |
| Vinyl chloride            | 50            |                     |                |
|                           | =             |                     |                |


Method of Analysis: EPA 5030/8010

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director

| Cr                      | MAIN FSP                                      | AMPLE CUSIULE, SCUMB                              | -                                            |
|-------------------------|-----------------------------------------------|---------------------------------------------------|----------------------------------------------|
| Collector: aum          | us Shork                                      | Date Sampled: 0.03.88. Time: 2-                   | 30pM                                         |
| Location of Sampling: _ | 2315 East                                     | Am Street,                                        |                                              |
| Location of Sumpring.   | Oakland,                                      | CA:                                               |                                              |
| Project Number:         | SBN 9.84.2                                    | Survey Number:                                    |                                              |
| Sample Type: Grow       | Ground                                        | World                                             |                                              |
| Container Type and Cond | dition: Sik hum                               | but Agent Vots                                    | . 0 . 7                                      |
| Contract Laboratory Rec | ord/Name: SECU                                | ais Analytical Car, 2549 Middle July L            | J leingot Ch                                 |
|                         |                                               | 0                                                 | सान्यपटि                                     |
| Sample ID               | 7                                             | Field Information                                 | <del></del>                                  |
| <u> </u>                | grab                                          | tround Water Sangle from 500                      | mp b1                                        |
|                         |                                               |                                                   |                                              |
| <b>L</b> .U             | 7 18                                          | The date to the                                   | <del></del>                                  |
| 12) - 11                | Lakera                                        | homen part public bombos                          | 7 22                                         |
|                         |                                               |                                                   | · · · · · · · · · · · · · · · · · · ·        |
| hack                    | 7 18                                          | from Water South for the                          |                                              |
| 173-11                  | Star 1                                        | round Water Somple four by                        | ~~ <u>) (°) 3</u>                            |
| 7                       | . ^                                           | 0 6                                               | <del></del>                                  |
| Analysis Requested:     | moluse tro                                    | tes Souther BI-W are                              | S. R. W.                                     |
| - (i) TRH               | C by 8                                        | Al Fry Method 5030                                | 2 1) L-W                                     |
| (D) (S, 7)              | Y-1 C                                         |                                                   |                                              |
|                         | -All J                                        | EPA Tyl Method 602                                |                                              |
| (I) Araha               | met. 8a                                       | while B3-W by.                                    |                                              |
|                         | EAA Melt                                      | 5030 and                                          |                                              |
| Results Needed By: (2)  |                                               | 4 3 EPA 602, Q EPA 503                            | M Q E                                        |
| <b>5</b> ,.             | ,—— <u>——————————————————————————————————</u> | t Great dos , W etta 305                          |                                              |
| Travel Blank:           | □ Yes ੈ No                                    | Travel Blank to be Analyzed Separately:           | ⊕Yes EÌ No                                   |
| Duplicate Samples:      | ☐ Yes ☐ No                                    | Duplicates to be Analyzed Separately:             | ☐ Yes ☐ No                                   |
| Field Blank:            | □ Yes □ No                                    | Field Blank to be Analyzed Separately:            | ☐ Yes ID No                                  |
| Background Soll Sample: | □ Yes 申 No                                    | Background Soil Sample to be Analyzed Separately: | Fi Yes (T. No                                |
|                         | ,                                             | •                                                 |                                              |
| Chain of Custody: /     | •                                             | - <b>*</b> A                                      |                                              |
| 1                       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~        | Sally that 3                                      | ,84                                          |
| Field Personnel         | _                                             | 1) + Date Sec                                     | <i>_</i> U                                   |
| Courser                 |                                               | Date   Date                                       | <u>.                                    </u> |
| 3                       | y                                             | /0/3/98 2:3                                       | <u>0</u>                                     |
| Lab                     | ,                                             | Date                                              |                                              |
|                         |                                               |                                                   |                                              |
| 1117 (                  | HAPPY VALLEY AVE                              | NUE * SAN JOSE, CA 95129 * (408) 725-2644         |                                              |





California Environmental Consultants 1117 Happy Valley Avenue

San Jose, CA 95129 Attn: Munir Butt Date Sampled: 10/03/88
Date Received: 10/03/88
Date Extracted: 10/28/88
Date Reported: 10/31/88

Project: #CEC/SBW 9-88-2

#### TOTAL OIL AND GREASE

| Sample<br>Number | Sample<br>Description<br>Water | Detection Limit ppm | Gravimetric Petroleum Oll ppm |
|------------------|--------------------------------|---------------------|-------------------------------|
| 8100019          | в3-w                           | 5.0                 | 290                           |

Method of Analysis: EPA 3550 with trichlorotrifluoroethane and gravimetric determination.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director



# SEQUOIL ANALYTICAL

680 Chesapeake Drive + Redwood City, CA 94063 (415) 364-9222 + FAX (415) 364-9233

California Environmental Consultants 1117 Happy Valley Avenue San Jose, CA 95129 Attn: Munir Butt

Date Sampled: 10/03/88
Date Received: 10/03/88
Date Analyzed: 10/06/88
Date Reported: 10/31/88

Project: #CEC/SBW 9-88-2

#### AROMATIC VOLATILE ORGANICS

Sample Number 8100019

Sample Description
Water, B3-W

| Analyte             | Detection Limit |                     | Sample Results |  |
|---------------------|-----------------|---------------------|----------------|--|
|                     | μg/L            |                     | µg/L           |  |
| Benzene             |                 |                     |                |  |
|                     |                 | • • • • • • • • • • | 490            |  |
| Chlorobenzene       | 50              |                     | N.D.           |  |
| 1,4-Dichlorobenzene | 100             |                     | N.D.           |  |
| 1.3-Dichlorobenzene | 100             | ******              | N.D.           |  |
| 1,2-Dichlorobenzene |                 |                     | N.D.           |  |
| Ethyl Benzene       | 25              |                     | 770            |  |
| Toluene             | 25              |                     | 160            |  |
| Xylenes             | 25              |                     | 1300           |  |

Method of Analysis: EPA 5030/8020

THE RESERVE OF THE PARTY OF THE

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton Laboratory Director



# SEQUOIA NALYTICAL

680 Chesapeake Drive - Redwood City, CA 94063 (415) 364-9222 - FAX (415) 364-9233

California Environmental Consultants

1117 Happy Valley Avenue

San Jose, CA 95129 Attn: Munir Butt

Date Sampled: 11/02/88

11/02/88 Date Received:

Date Analyzed: 11/03/88 Date Reported: 11/07/88

Project: CEC/SBW9.88.2.1

#### TOTAL PETROLEUM FUEL HYDROCARBONS WITH BTEX DISTINCTION

| Sample<br>Number | Sample Description Soil | Low to Medium<br>Boiling Point<br><u>Hydrocarbons</u><br>ppm | Point |      | Ethyl Toluene Benzene Xy ppm ppm |      |
|------------------|-------------------------|--------------------------------------------------------------|-------|------|----------------------------------|------|
| 8110126          | SPl                     | 1.3                                                          | N.D.  | N.D. | N.D.                             | N.D. |
| 8110127          | SP2                     | 13                                                           | N.D.  | N.D. | N.D.                             | N.D. |

Detection Limits:

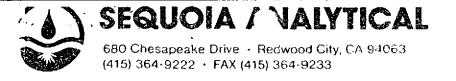
1.0

0.05

0.1

0.1

0.1


Method of Analysis: EPA 5030 or 3810/8015/8020

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL LABORATORY

Arthur G. Burton

Laboratory Director



California Environmental Consultants

1117 Happy Valley Avenue

San Jose, CA 95129 Attn: Munir Butt Date Sampled: 11/02/88

Date Received: 11/02/88

Date Analyzed: 11/03/88
Date Reported: 11/07/88

Project: CEC/SBW9.88.2.1

#### AROMATIC VOLATILE ORGANICS

ample Number

8110128

Sample Description

Soil, SP3

| nalyte             | Detection Lim | it Sample Results |
|--------------------|---------------|-------------------|
|                    | μg/kg         | µg/kg             |
| елгеле             | 5.0           | N.D.              |
| hlorobenzene       | 5.0           | N.D.              |
| ,4-Dichlorobenzene | 10            | H.D.              |
| ,3-Dichlorobenzene | 10            | 16.11.            |
| ,2-Dichlorobenzene | 10            | N.D.              |
| thyl Benzene       | 5.0           | N.D.              |
| oluene             | 5.0           | N.D.              |
| ylenes             | 5.0           | N.D.              |

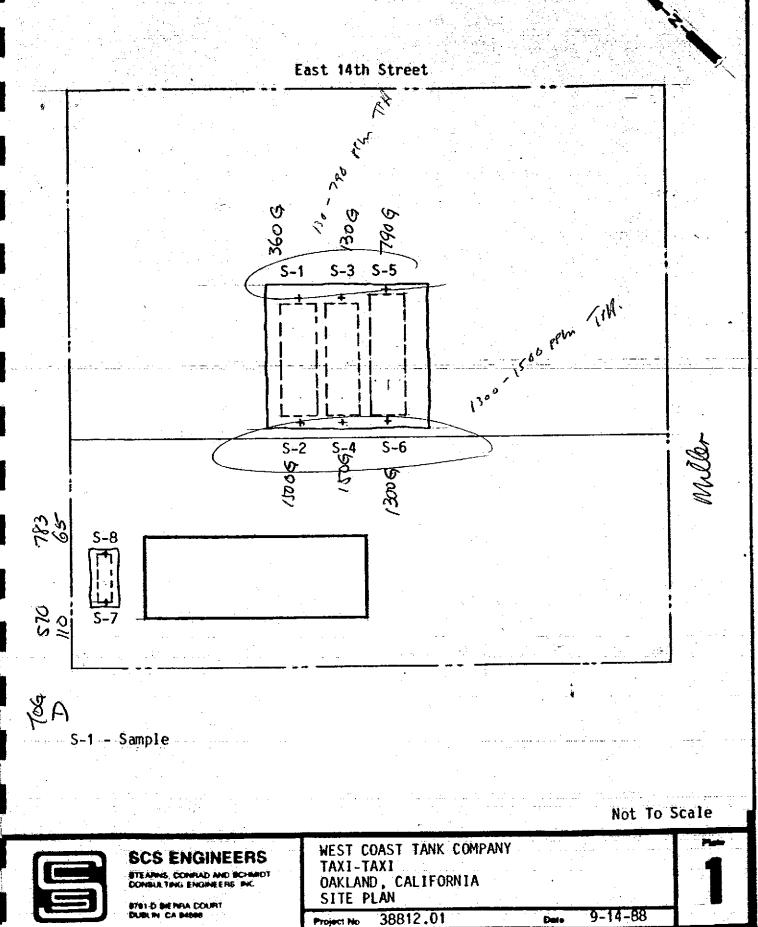
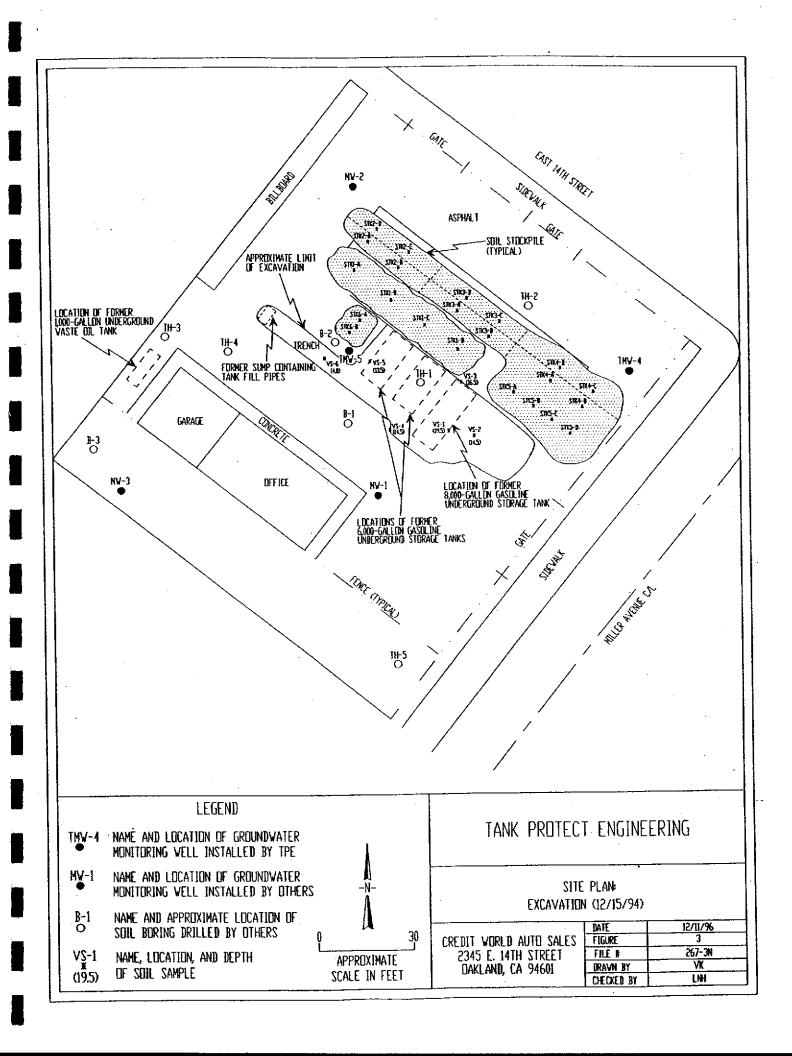
ethod of Analysis: EPA 5030/8020

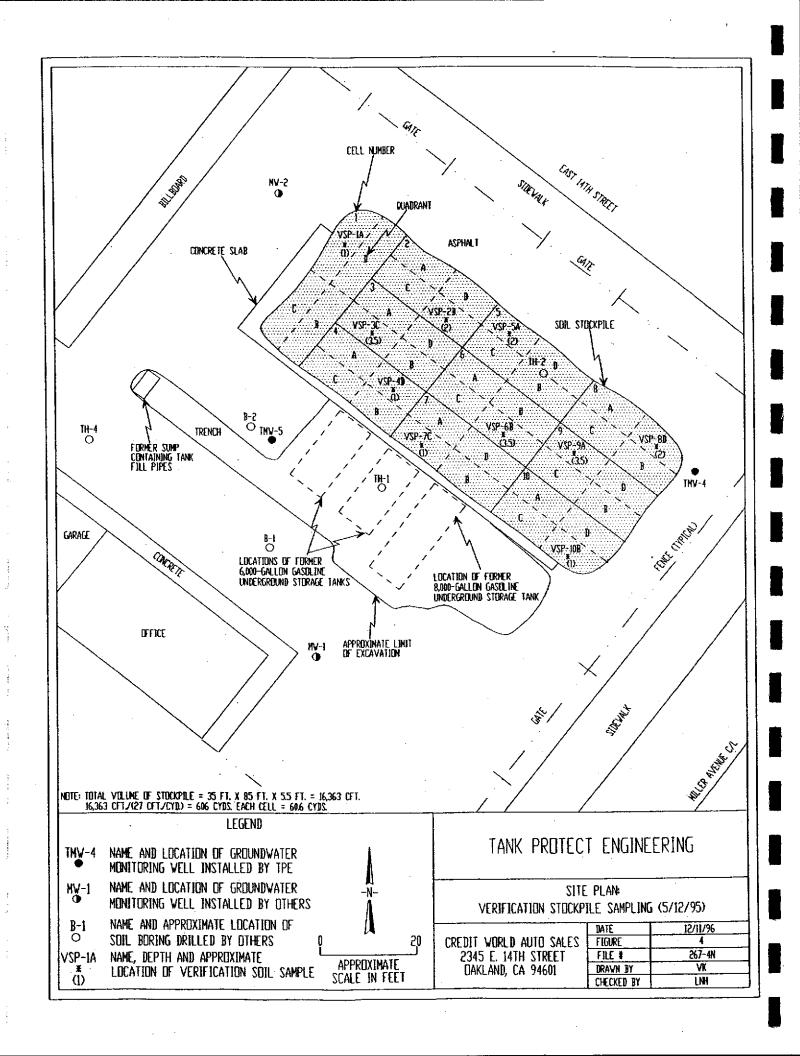
halytes reported as N.D. were not present above the stated limit of detection.

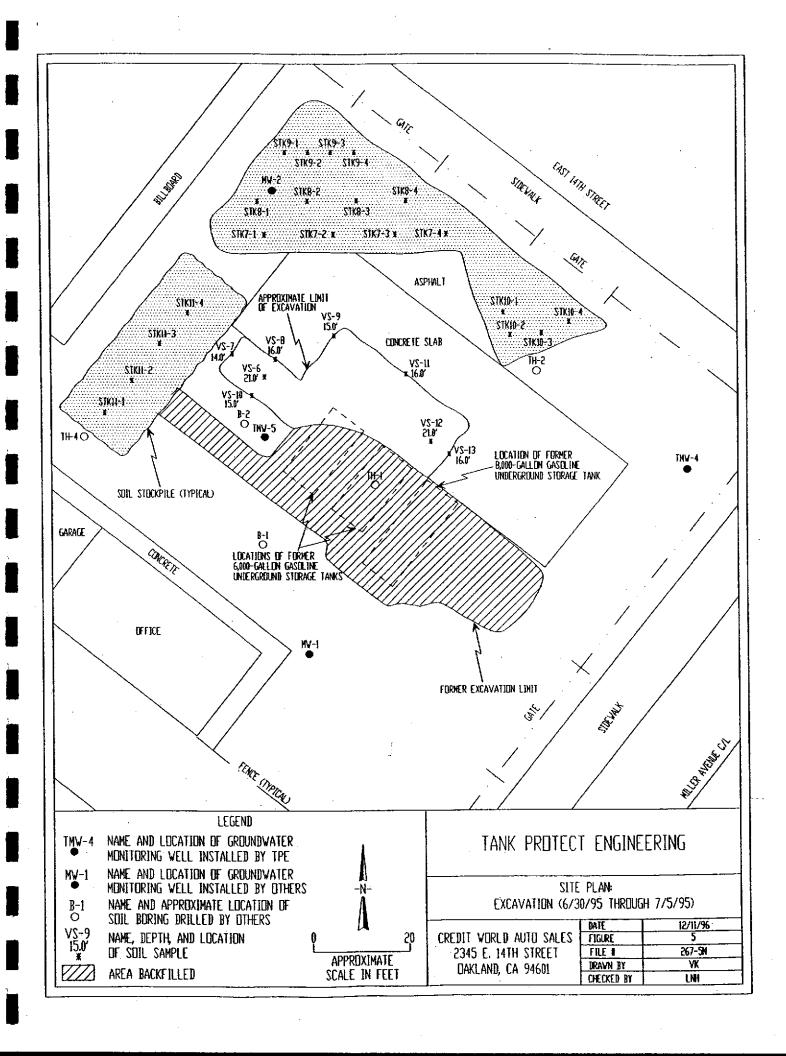
QUOIA ANALYTICAL LABORATORY

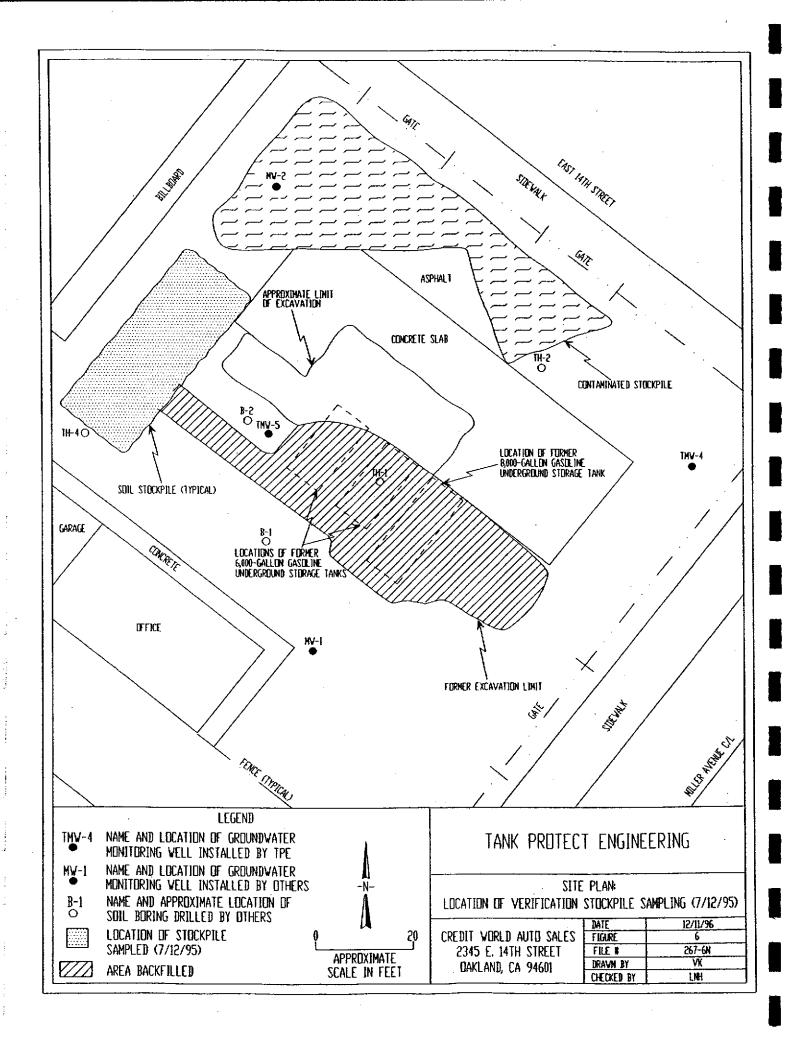
thur G. Burton

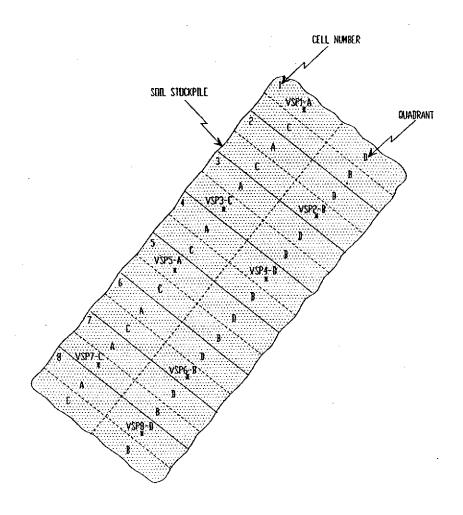
boratory Director



TABLE I Results of Analysis


| Sample | Benzene | Toluene | Ethylbenzene | Xylene | Gasoline | Total Lead |
|--------|---------|---------|--------------|--------|----------|------------|
| B-1    | 0.3     | 2.2     | 3.4          | 31     | 360      | 4.6        |
| B-2    | 3.0     | 6.4     | 2.5          | 160    | 1,500    | 316        |
| B-3    | 0.17    | 0.4     | 1.3          | 10     | 130      |            |
| B-4    | 0.8     | 1.9     | 8.7          | 86     | 150      | 255        |
| B-5    | 61      | 1.3     | 4.8          | 30     | 790      | 259        |
| B-6    | 1.5     | 4.7     | 9.6          | 75     | 1,300    | 197        |

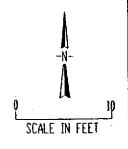

|     | Total Oil & (503E) | Grease | Total Extractable as Diesel (8015 | Hydrocarbons as Diesel) |
|-----|--------------------|--------|-----------------------------------|-------------------------|
| B-7 | 570                |        | 110                               |                         |
| B-8 | 783                |        | 65                                |                         |


- MIN STOCK PILES WED TO BE SAW PLED 4 CESS THOW LOOMEN THE







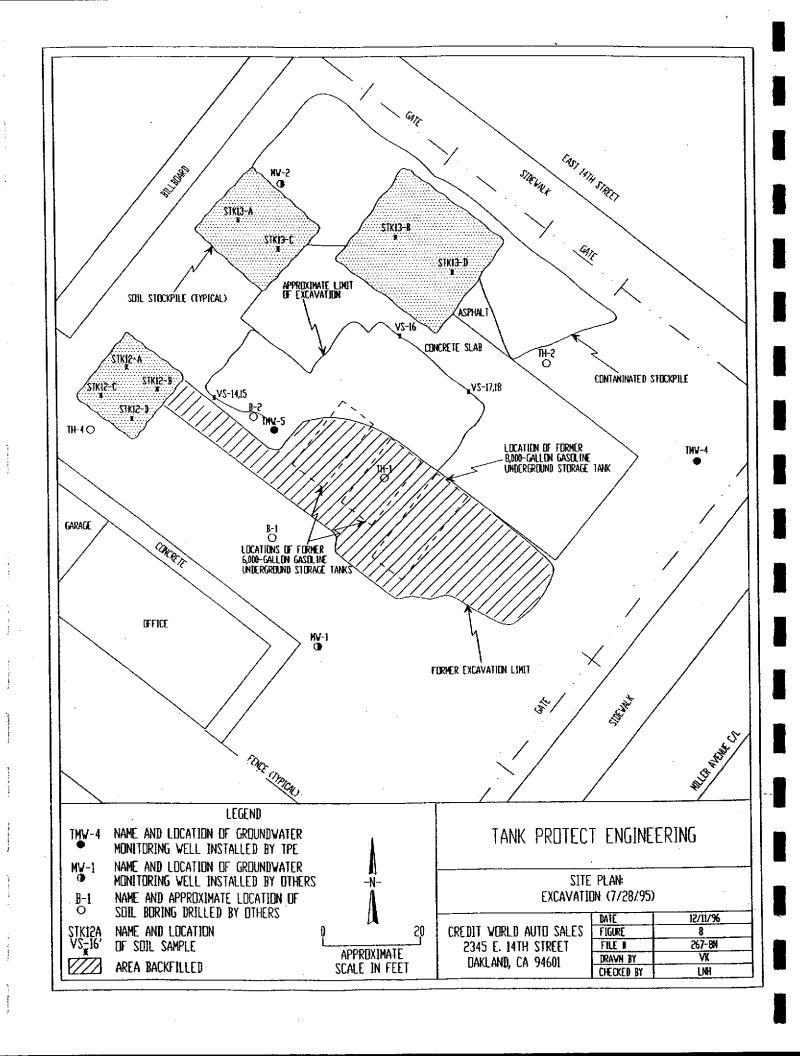


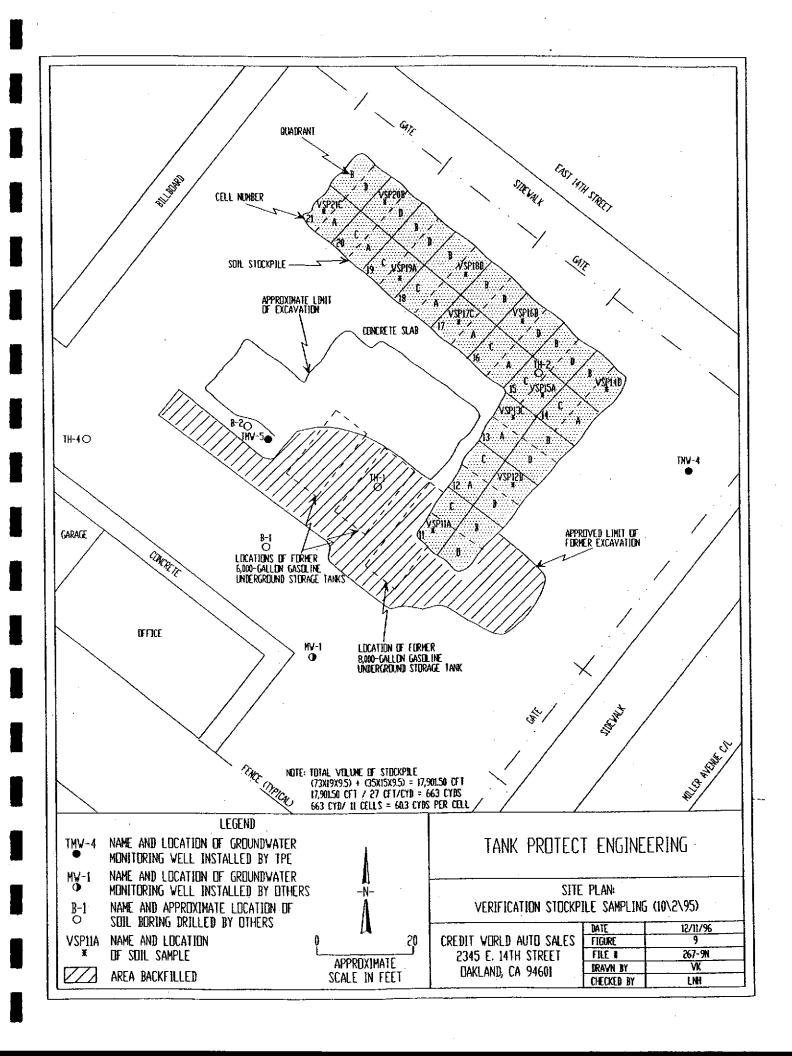


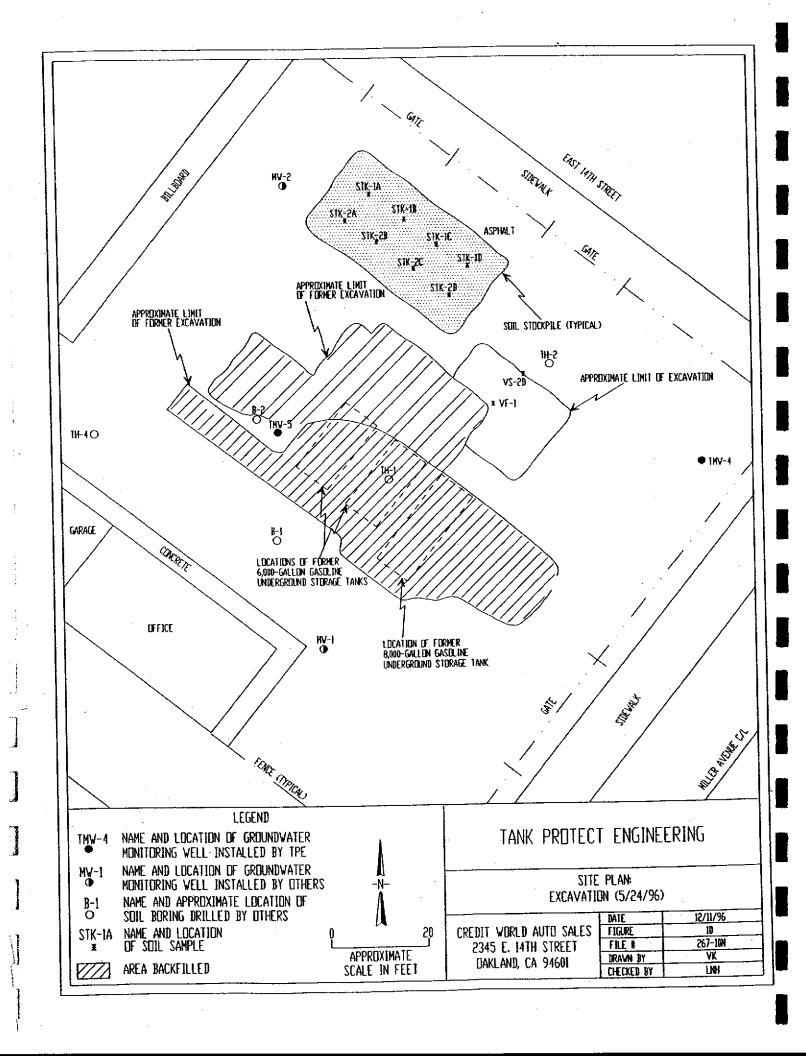

NDTE: TOTAL VOLUME OF STOCKPILE 42X17X6 = 4284 CFT 4284 CFT / 27 CFT/ CYD = 158.66 CYDS EACH CELL = 19.83 CYDS

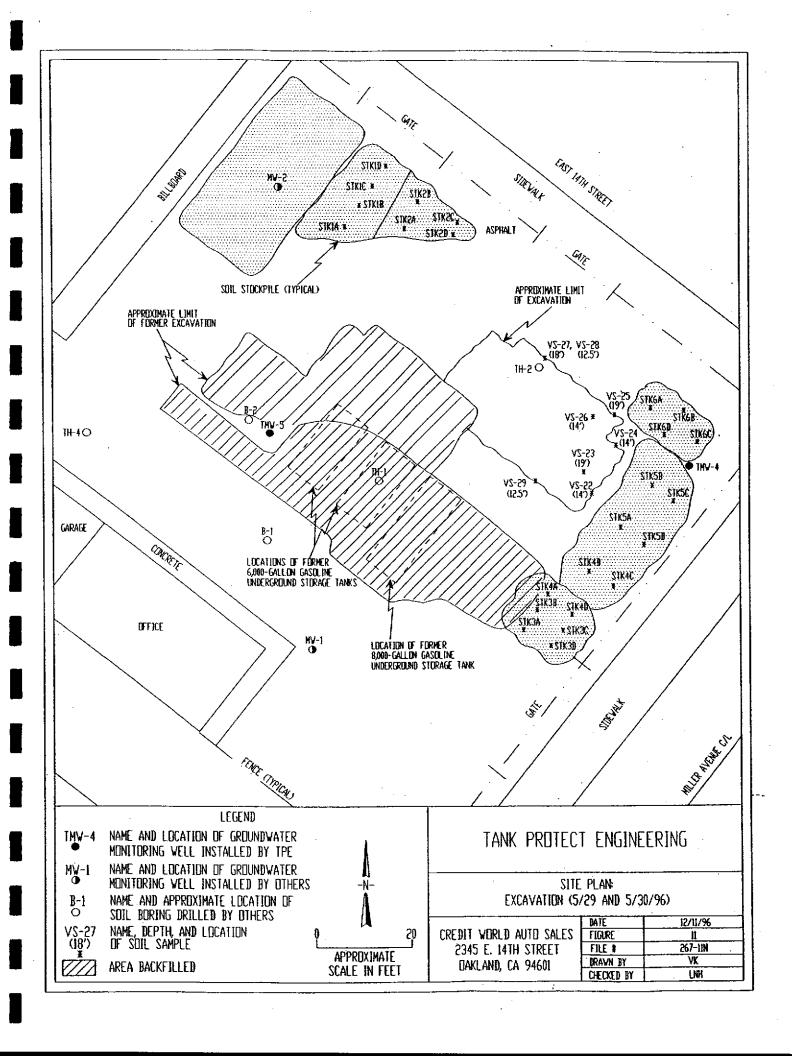
LEGEND

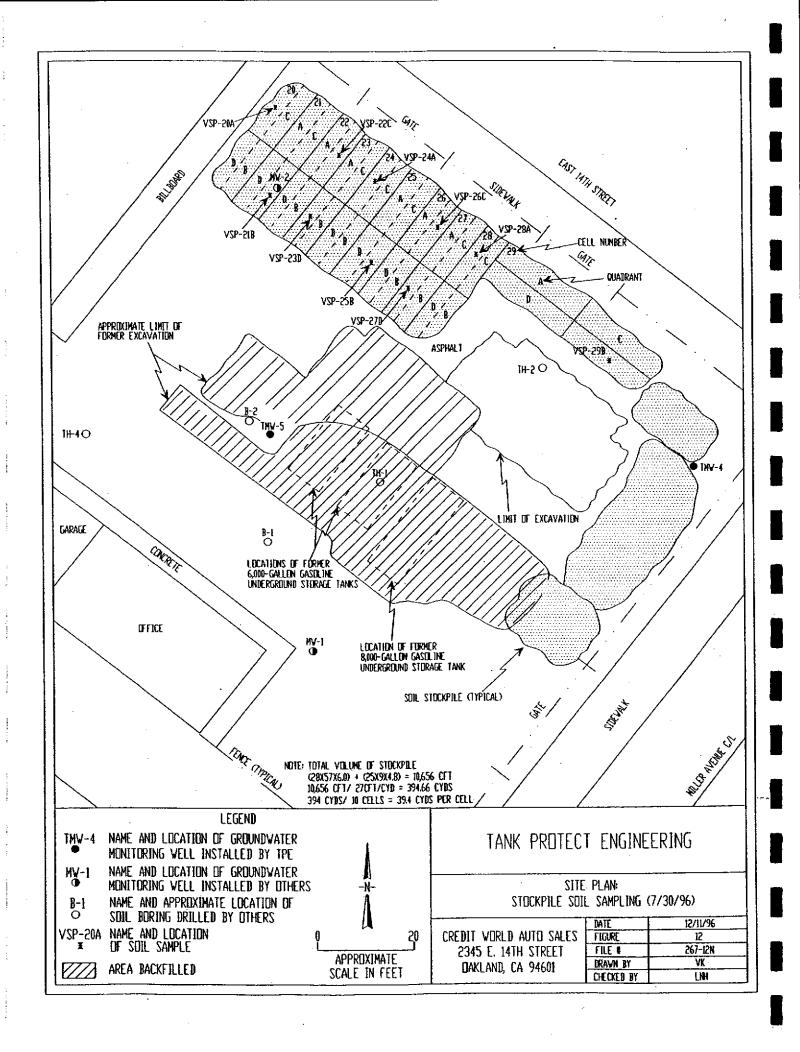
VSPI-A NAME AND APPROXIMATE LOCATION \* DF SOIL SAMPLE

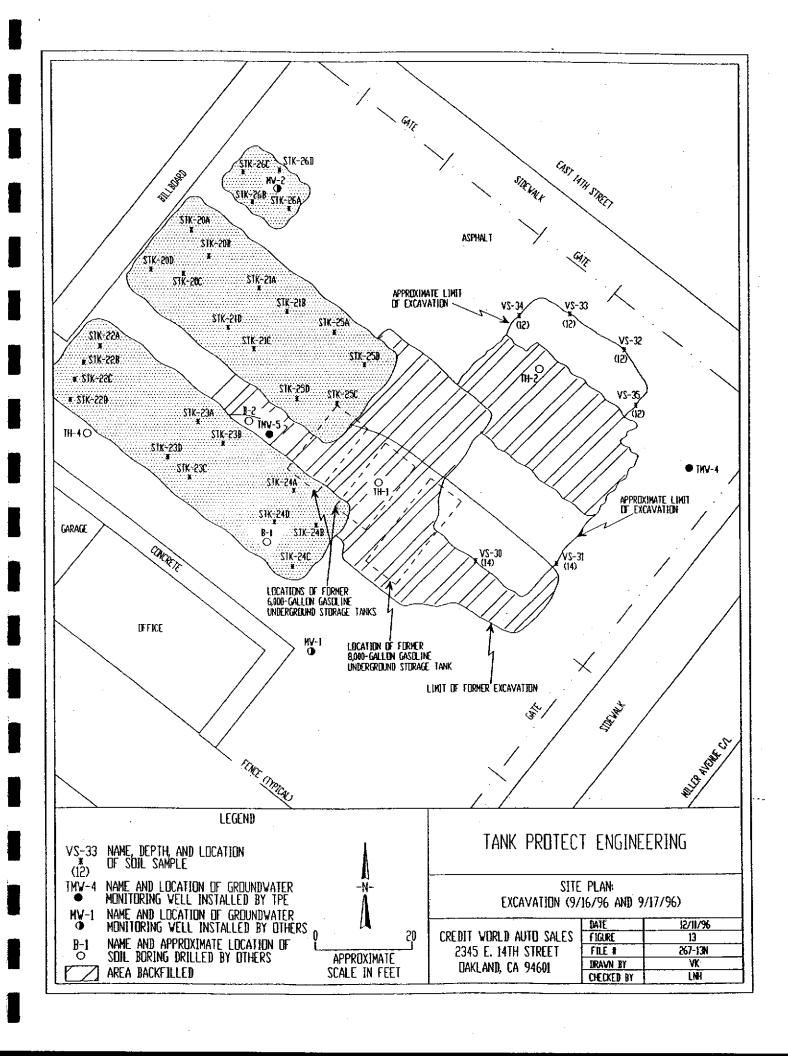


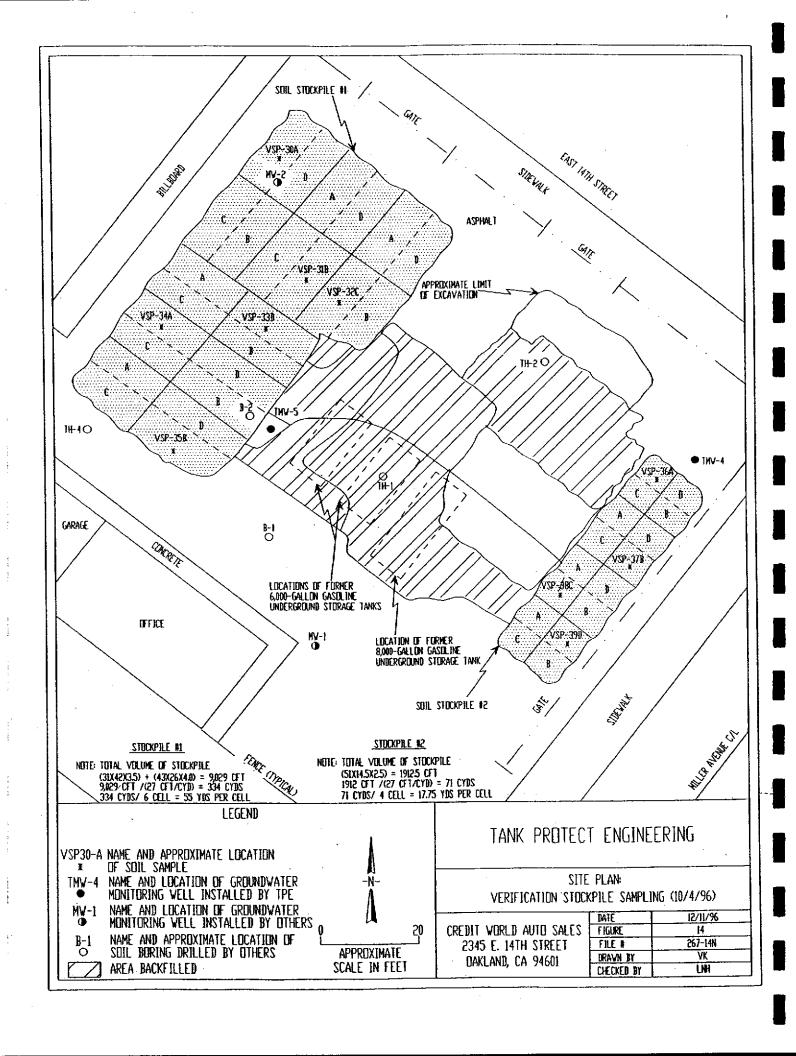


### TANK PROTECT ENGINEERING

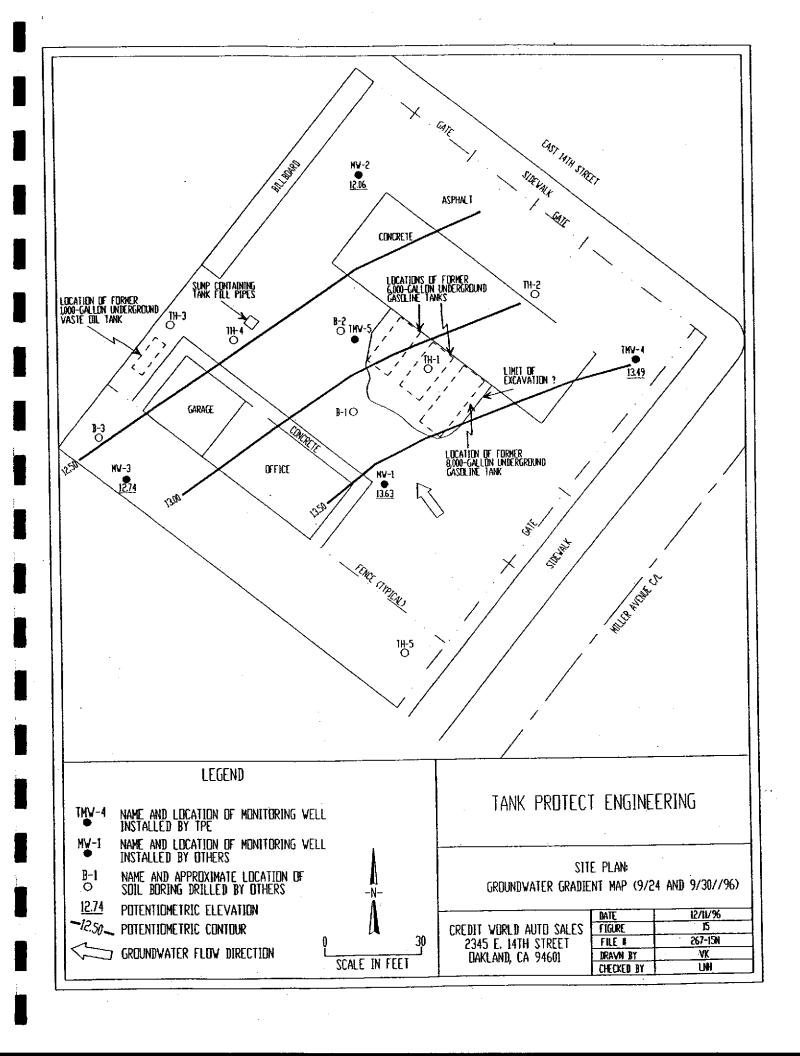

SITE PLAN: VERIFICATION STOCKPILE SAMPLING (7/12/95)


CREDIT VORLD AUTO SALES 2345 E. 14TH STREET DAKLAND, CA 94601


| DATE       | 12/11/96 |  |
|------------|----------|--|
| FIGURE     | 7        |  |
| FILE 1     | 267-7N   |  |
| DRAVN BY   | VK       |  |
| CHECKED BY | LNH      |  |













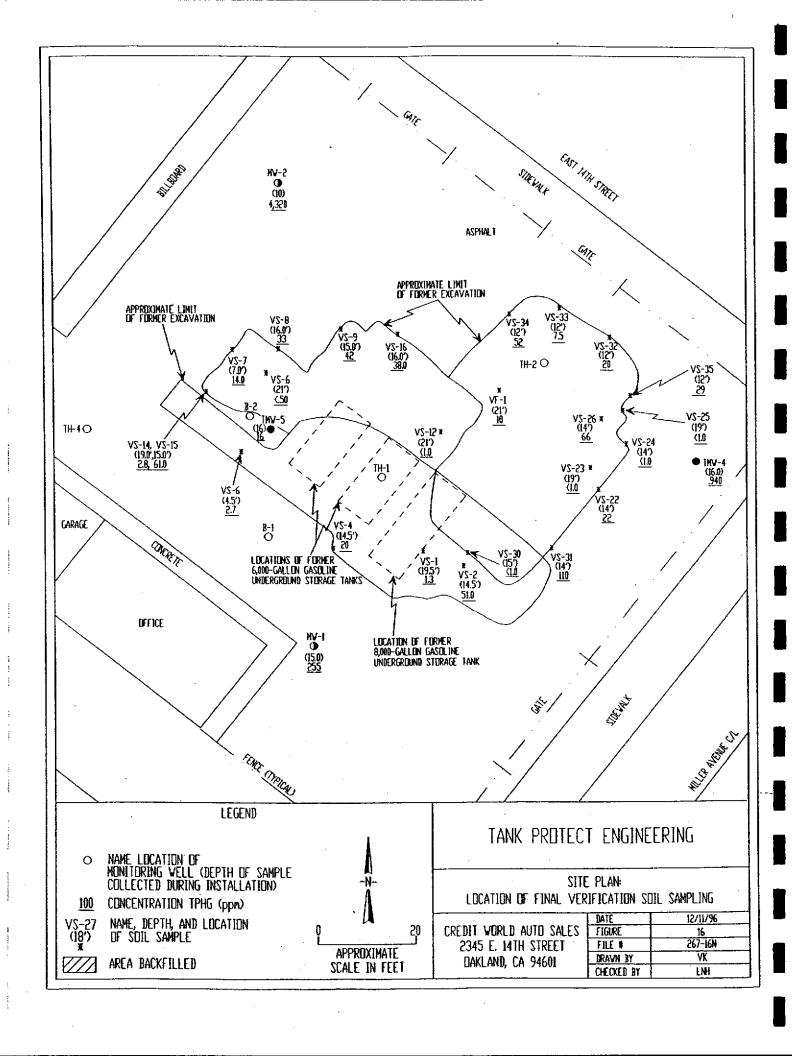




TABLE 1
SUMMARY OF SOIL SAMPLE ANALYTICAL RESULTS
(ppm¹)

| Sample ID<br>Name | Date     | Depth<br>(Feet) | ТРНС  | Methyl t-<br>Butyl Ether | Benzene | Toluene | Ethyl-<br>benzene | Xylenes |
|-------------------|----------|-----------------|-------|--------------------------|---------|---------|-------------------|---------|
| B-1               | 10/03/88 | 15.0            | 3.4   | NA <sup>4</sup>          | .310    | < 0.1   | < 0.1             | .140    |
| B-2               | 10/03/88 | 15.0            | 83    | NA                       | 1.6     | 1.1     | 1.8               | 9.6     |
| B-3               | 10/03/88 | 15.0            | NA    | NA                       | .360    | .650    | .470              | .850    |
| MW-1              | 05/22/91 | 10.0            | 150   | NA                       | .460    | .365    | .305              | .960    |
| MW-1              | 05/22/91 | 15.0            | 255   | NA                       | 1.505   | 4.255   | 4.015             | 4.270   |
| TH-1              | 08/21/91 | 15.0            | 2,775 | NA                       | 1.235   | 1.060   | 1.625             | 5.280   |
| TH-2              | 08/21/91 | 10.0            | 360   | NA                       | < 0.005 | < 0.005 | < 0.005           | 0.770   |
| TH-2              | 08/21/91 | 30.0            | 50    | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| MW-2              | 08/21/91 | 10.0            | 4,320 | NA                       | 7.275   | 6.620   | 3.470             | 13.815  |
| MW-2              | 08/21/91 | 15.0            | 160   | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| TH-3 <sup>2</sup> | 08/22/91 | 10.0            | 10    | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| TH-3 <sup>2</sup> | 08/22/91 | 19.0            | 10    | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| TH-4 <sup>2</sup> | 08/22/91 | 10.0            | 25    | NA                       | < 0.005 | < 0.005 | < 0.005           | 0.175   |
| TH-4 <sup>2</sup> | 08/22/91 | 20.0            | 450   | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| MW-3 <sup>2</sup> | 08/22/91 | 10.0            | 50    | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| MW-3 <sup>2</sup> | 08/22/91 | 15.0            | 25    | NA                       | < 0.005 | < 0.005 | <0.005            | < 0.005 |
| TH-5              | 08/22/91 | 10.0            | 10    | NA .                     | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| TH-5              | 08/22/91 | 18.0            | <5    | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| TMW-4             | 07/22/93 | 5.5-6.0         | <.500 | NA                       | < 0.005 | < 0.005 | < 0.005           | <.015   |
| TMW-4             | 07/22/93 | 10.5-11.0       | <.500 | NA                       | < 0.005 | < 0.005 | < 0.005           | <.015   |
| TMW-4             | 07/22/93 | 15.5-16.0       | .940  | NA                       | < 0.005 | < 0.005 | < 0.005           | < .015  |
| TMW-5             | 07/23/93 | 5.5-6.0         | 2.4   | NA                       | .026    | < 0.005 | < 0.005           | .053    |
| TMW-5             | 07/23/93 | 10.5-11.0       | 14    | NA                       | .900    | < 0.005 | 1.6               | <.140   |
| TMW-5             | 07/23/93 | 15.5-16.0       | 16    | NA                       | .840    | < 0.005 | .690              | 1.3     |
| VS-1              | 12/06/94 | 19.5            | 1.3   | NA                       | .010    | .061    | .027              | .190    |
| VS-2              | 12/06/94 | 14.5            | 51    | NA                       | .61     | .100    | 1.3               | .940    |
| VS-3              | 12/06/94 | 16.5            | 210   | NA                       | 1.1     | .300    | 4.5               | 140     |

# TABLE 1 SUMMARY OF SOIL SAMPLE ANALYTICAL RESULTS (ppm¹)

| Sample ID Name              | Date     | Depth<br>(Feet) | ТРНС  | Methyl t-<br>Butyl Ether | Benzene | Toluene | Ethyl-<br>benzene | Xylenes |
|-----------------------------|----------|-----------------|-------|--------------------------|---------|---------|-------------------|---------|
| VS-4                        | 12/06/94 | 14.5            | 20    | NA                       | 1.2     | .094    | .470              | 2.4     |
| VS-5                        | 12/06/94 | 13.5            | 100   | NA                       | .440    | <.150   | 2.2               | 8.5     |
| VS-6                        | 12/06/94 | 4.0             | 2.7   | NA                       | .046    | < 0.005 | < 0.005           | < 0.015 |
| STK1-A,B,C,D                | 12/06/94 | 2.0-2.5         | 5.3   | NA                       | <.014   | <.014   | .023              | .12     |
| STK2-A,B,C,D                | 12/06/94 | 2.0-2.5         | 9.2   | NA                       | .015    | <.014   | .084              | .300    |
| STK3-A,B,C,D                | 12/06/94 | 3.5-4.0         | 45    | NA                       | <.140   | .180    | .710              | 4.4     |
| STK4-A,B,C,D                | 12/06/94 | 3.0-3.5         | 40    | NA                       | .380    | .140    | .750              | 2.5     |
| STK5-A,B,C,D                | 12/06/94 | 4.0-4.5         | 78    | NA                       | .200    | .780    | 1.2               | 8.1     |
| STK6-A,B                    | 12/06/94 | 2.0-2.5         | 9.8   | NA                       | .052    | < 0.015 | .046              | .240    |
| VSP-1A                      | 05/12/95 | 1.0-1.5         | <1.0  | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VSP-2B                      | 05/12/95 | 2.0-2.5         | <1.0  | NA                       | <0.005  | < 0.005 | < 0.005           | < 0.005 |
| VSP-3C                      | 05/12/95 | 3.5-4.0         | <1.0  | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VSP-4D                      | 05/12/95 | 1.0-1.5         | <1.0  | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VSP-5A                      | 05/12/95 | 2.0-2.5         | < 1.0 | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VSP-6B                      | 05/12/95 | 3.5-4.0         | <1.0  | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VSP-7C                      | 05/12/95 | 1.0-1.5         | <1.0  | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VSP-8D                      | 05/12/95 | 2.0-2.5         | <1.0  | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VSP-9A                      | 05/12/95 | 3.5-4.0         | <1.0  | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VSP-10B                     | 05/12/95 | 1.0-1.5         | <1.0  | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VS-6                        | 06/30/95 | 21.0            | < 0.5 | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.015 |
| VS-7                        | 06/30/95 | 14.0            | 50    | NA                       | .370    | .070    | .990              | 3.3     |
| STK7(1-4)                   | 07/03/95 | 3.0-3.5         | 290   | NA                       | .560    | .970    | 3.0               | 11.0    |
| STK8(1-4)                   | 07/03/95 | 2.0-2.5         | 49    | NA                       | .100    | .100    | .550              | 1.8     |
| STK9(1-4)                   | 07/03/95 | 2.0-2.5         | 78    | NA                       | .052    | .036    | .520              | 1.6     |
| STK10(1,2,3,4)              | 07/03/95 | 3.0-3.5         | 22    | NA                       | .012    | .012    | .032              | .089    |
| STK11(1,2,3,4) <sup>3</sup> | 07/03/95 | 3.0-3.5         | <1.0  | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VS-8                        | 07/03/95 | 16.0            | 33    | NA                       | .036    | .022    | .066              | .099    |

# SUMMARY OF SOIL SAMPLE ANALYTICAL RESULTS ( $ppm^1$ )

| Sample ID<br>Name | Date     | Depth<br>(Feet) | TPHG | Methyl t-<br>Butyl Ether | Benzene | Toluene | Ethyl-<br>benzene | Xylenes |
|-------------------|----------|-----------------|------|--------------------------|---------|---------|-------------------|---------|
| VS-9              | 07/05/95 | 15.0            | 42   | NA                       | .060    | .036    | .089              | .120    |
| VS-10             | 07/05/95 | 15.0            | 130  | NA                       | .180    | .085    | .250              | .370    |
| VS-11             | 07/05/95 | 16.0            | 81   | NA                       | .073    | .086    | .160              | .210    |
| VS-12             | 07/05/95 | 21.0            | <1.0 | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VS-13             | 07/05/95 | 16.0            | 75   | NA                       | .048    | .040    | .078              | .180    |
| VSP 1A            | 07/12/95 | 1.0-1.5         | <1.0 | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VSP 2B            | 07/12/95 | 2.0-2.5         | 4.0  | NA                       | < 0.005 | .017    | .026              | .099    |
| VSP 3C            | 07/12/95 | 3.5-4.0         | <1.0 | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VSP 4D            | 07/12/95 | 1.0-1.5         | <1.0 | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VSP 5A            | 07/12/95 | 2.0-2.5         | <1.0 | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VSP 6B            | 07/12/95 | 3.5-4.0         | <1.0 | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VSP 7C            | 07/12/95 | 1.0-1.5         | <1.0 | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VSP 8D            | 07/12/95 | 2.0-2.5         | <1.0 | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VS-14             | 07/28/95 | 19.0            | 2.8  | NA                       | .300    | .016    | .094              | .140    |
| VS-15             | 07/28/95 | 15.0            | 61   | NA                       | .470    | .042    | 1.2               | .730    |
| VS-16             | 07/28/95 | 16.0            | 38   | NA                       | .400    | .043    | .420              | .590    |
| VS-17             | 07/28/95 | 19.0            | 14   | NA                       | .120    | .018    | .150              | .110    |
| VS-18             | 07/28/95 | 14.0            | 590  | NA                       | 3.1     | 2.4     | 10                | 52      |
| STK12(A-D)        | 07/28/95 | 2.0-2.5         | 87   | NA                       | .260    | .140    | 1.6               | 3       |
| STK13(A-D)        | 07/28/95 | 3.0-3.5         | 58   | NA                       | .210    | .097    | .630              | 2.3     |
| VSP 11A           | 10/03/95 | 1.5-2.0         | <1.0 | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VSP 12B           | 10/03/95 | 2.0-2.5         | <1.0 | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VSP 13C           | 10/03/95 | 3.0-3.5         | <1.0 | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VSP 14D           | 10/03/95 | 1.5-2.0         | <1.0 | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VSP 15A           | 10/03/95 | 2.0-2.5         | <1.0 | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VSP 16B           | 10/03/95 | 3.0-3.5         | 1    | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VSP 17C           | 10/03/95 | 1.5-2.0         | 1    | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |

TABLE 1
SUMMARY OF SOIL SAMPLE ANALYTICAL RESULTS (ppm¹)

| Sample ID Name | Date     | Depth<br>(Feet) | ТРНС | Methyl t-<br>Butyl Ether | Benzene | Toluene | Ethyl-<br>benzene | Xylenes |
|----------------|----------|-----------------|------|--------------------------|---------|---------|-------------------|---------|
| VSP 18D        | 10/03/95 | 2.0-2.5         | <1.0 | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VSP 19A        | 10/03/95 | 3.0-3.5         | <1.0 | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VSP 20B        | 10/03/95 | 1.5-2.0         | <1.0 | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VSP 21C        | 10/03/95 | 2.0-2.5         | <1.0 | NA                       | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| STK-1 A,B,C,D  | 05/24/96 | 2.0-3.0         | 170  | < 0.005                  | .110    | .160    | .710              | 2.6     |
| VS-2D          | 05/24/96 | 18.0            | 140  | < 0.005                  | .170    | .210    | .280              | 1.5     |
| VF-1           | 05/24/96 | 21.0            | 10   | < 0.005                  | < 0.005 | .0074   | .0095             | .037    |
| STK-2 A,B,C,D  | 05/24/96 | 2.0-3.0         | 320  | < 0.005                  | .100    | .095    | 1.2               | 2.1     |
| STK-1,A,B,C,D  | 05/29/96 | 2.5-3.0         | 1.7  | < 0.005                  | < 0.005 | < 0.005 | .005              | .017    |
| STK-2A,B,C,D   | 05/29/96 | 2.5-3.0         | 140  | < 0.005                  | .013    | .026    | .047              | .094    |
| VS-22          | 05/29/96 | 14.0            | 22   | < 0.005                  | .0065   | < 0.005 | .020              | .031    |
| VS-23          | 05/29/96 | 19.0            | <1.0 | < 0.005                  | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VS-24          | 05/29/96 | 14.0            | <1.0 | < 0.005                  | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VS-25          | 05/29/96 | 19.0            | <1.0 | < 0.005                  | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VS-26          | 05/29/96 | 14.0            | 66   | < 0.005                  | .0063   | .022    | .024              | .130    |
| VS-27          | 05/29/96 | 18.0            | 3.9  | < 0.005                  | < 0.005 | < 0.005 | < 0.005           | .033    |
| VS-28          | 05/29/96 | 12.5            | 450  | < 0.005                  | .170    | .120    | .280              | .390    |
| STK-3A,B,C,D   | 05/30/96 | 2.5-3.0         | <1.0 | < 0.005                  | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| STK-4A,B,C,D   | 05/30/96 | 2.5-3.0         | <1.0 | < 0.005                  | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| STK-5A,B,C,D   | 05/30/96 | 2.5-3.0         | <1.0 | < 0.005                  | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| STK-6A,B,C,D   | 05/30/96 | 2.5-3.0         | <1.0 | < 0.005                  | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VS-29          | 05/30/96 | 12.5            | 470  | < 0.005                  | .049    | .085    | .250              | .760    |
| VSP-20A        | 07/30/96 | 1.5-2.0         | <1.0 | < 0.005                  | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VSP-21B        | 07/30/96 | 2.5-3.0         | <1.0 | < 0.005                  | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VSP-22C        | 07/30/96 | 3.5-4.0         | <1.0 | < 0.005                  | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VSP-23D        | 07/30/96 | 1.5-2.0         | <1.0 | < 0.005                  | < 0.005 | < 0.005 | < 0.005           | < 0.005 |
| VSP-24A        | 07/30/96 | 2.5-3.0         | <1.0 | < 0.005                  | < 0.005 | < 0.005 | < 0.005           | < 0.005 |

TABLE 1
SUMMARY OF SOIL SAMPLE ANALYTICAL RESULTS (ppm¹)

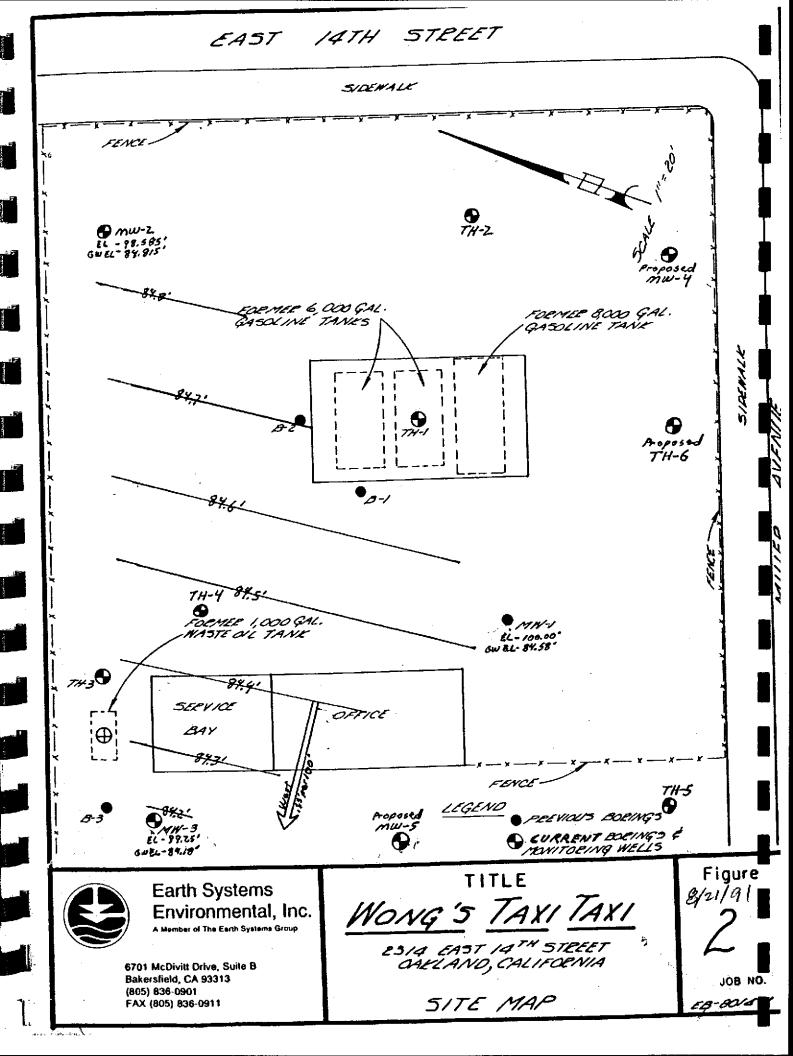
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · · · · · · · · · · · · · · · · · ·                                 |                                                                                                      |                                                                                                                         | ·                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date     | Depth<br>(Feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ТРНС                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Methyl t-<br>Butyl Ether                                              | Benzene                                                                                              | Toluene                                                                                                                 | Ethyl-<br>benzene                                                                                                                       | Xylenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 07/30/96 | 3.5-4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.005                                                               | < 0.005                                                                                              | < 0.005                                                                                                                 | < 0.005                                                                                                                                 | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 07/30/96 | 1.5-2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.005                                                               | < 0.005                                                                                              | < 0.005                                                                                                                 | < 0.005                                                                                                                                 | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 07/30/96 | 2.5-3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.005                                                               | < 0.005                                                                                              | < 0.005                                                                                                                 | < 0.005                                                                                                                                 | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 07/30/96 | 3.5-4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.005                                                               | < 0.005                                                                                              | < 0.005                                                                                                                 | < 0.005                                                                                                                                 | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 07/30/96 | 1.5-2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.005                                                               | < 0.005                                                                                              | < 0.005                                                                                                                 | < 0.005                                                                                                                                 | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 09/16/96 | 2.0-2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.005                                                               | .075                                                                                                 | .090                                                                                                                    | .110                                                                                                                                    | .170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 09/16/96 | 1.5-2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.005                                                               | < 0.005                                                                                              | < 0.005                                                                                                                 | < 0.005                                                                                                                                 | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 09/16/96 | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.005                                                               | < 0.005                                                                                              | < 0.005                                                                                                                 | < 0.005                                                                                                                                 | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 09/16/96 | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.005                                                               | .040                                                                                                 | .054                                                                                                                    | .250                                                                                                                                    | .210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 09/16/96 | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.005                                                               | .280                                                                                                 | .210                                                                                                                    | .460                                                                                                                                    | .490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 09/17/96 | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.005                                                               | .180                                                                                                 | .098                                                                                                                    | .120                                                                                                                                    | .240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 09/17/96 | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.005                                                               | .050                                                                                                 | .063                                                                                                                    | .084                                                                                                                                    | .250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 09/17/96 | ·12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.005                                                               | .120                                                                                                 | .120                                                                                                                    | .130                                                                                                                                    | .280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 09/17/96 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.005                                                               | .019                                                                                                 | .034                                                                                                                    | .060                                                                                                                                    | .200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 09/17/96 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.005                                                               | .190                                                                                                 | .140                                                                                                                    | .630                                                                                                                                    | .660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 09/17/96 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.005                                                               | .023                                                                                                 | .130                                                                                                                    | .072                                                                                                                                    | .500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 09/17/96 | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.005                                                               | .120                                                                                                 | .084                                                                                                                    | .190                                                                                                                                    | .320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 09/17/96 | 1.5-2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.005                                                               | < 0.005                                                                                              | < 0.005                                                                                                                 | < 0.005                                                                                                                                 | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10/04/96 | 1.0-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.005                                                               | < 0.005                                                                                              | < 0.005                                                                                                                 | < 0.005                                                                                                                                 | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10/04/96 | 1.5-2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.005                                                               | < 0.005                                                                                              | < 0.005                                                                                                                 | < 0.005                                                                                                                                 | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10/04/96 | 2.0-2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.005                                                               | < 0.005                                                                                              | < 0.005                                                                                                                 | < 0.005                                                                                                                                 | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10/04/96 | 1.0-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.005                                                               | < 0.005                                                                                              | < 0.005                                                                                                                 | < 0.005                                                                                                                                 | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10/04/96 | 1.5-2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.005                                                               | < 0.005                                                                                              | < 0.005                                                                                                                 | < 0.005                                                                                                                                 | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10/04/96 | 2.0-2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.005                                                               | < 0.005                                                                                              | < 0.005                                                                                                                 | < 0.005                                                                                                                                 | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10/04/96 | 1.5-2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.005                                                               | < 0.005                                                                                              | < 0.005                                                                                                                 | < 0.005                                                                                                                                 | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10/04/96 | 1.5-2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.005                                                               | < 0.005                                                                                              | < 0.005                                                                                                                 | < 0.005                                                                                                                                 | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10/04/96 | 1.5-2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.005                                                               | < 0.005                                                                                              | < 0.005                                                                                                                 | < 0.005                                                                                                                                 | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | 07/30/96           07/30/96           07/30/96           07/30/96           07/30/96           07/30/96           09/16/96           09/16/96           09/16/96           09/17/96           09/17/96           09/17/96           09/17/96           09/17/96           09/17/96           09/17/96           10/17/96           10/17/96           10/17/96           10/17/96           10/17/96           10/17/96           10/17/96           10/17/96           10/17/96           10/04/96           10/04/96           10/04/96           10/04/96           10/04/96           10/04/96           10/04/96           10/04/96           10/04/96           10/04/96 | O7/30/96         (Feet)           07/30/96         3.5-4.0           07/30/96         1.5-2.0           07/30/96         2.5-3.0           07/30/96         3.5-4.0           07/30/96         1.5-2.0           09/16/96         2.0-2.5           09/16/96         1.0           09/16/96         15           09/16/96         14           09/17/96         1.0           09/17/96         1.2           09/17/96         12           09/17/96         12           09/17/96         12           09/17/96         12           09/17/96         12           09/17/96         1.0           09/17/96         1.2           09/17/96         1.2           09/17/96         1.2           09/17/96         1.0           10/04/96         1.5-2.0           10/04/96         1.5-2.0           10/04/96         1.5-2.0           10/04/96         1.5-2.0           10/04/96         1.5-2.0           10/04/96         1.5-2.0           10/04/96         1.5-2.0           10/04/96         1.5-2.0 | (Feet)         (Feet)           07/30/96         3.5-4.0         <1.0 | 07/30/96         3.5-4.0         <1.0         <0.005           07/30/96         1.5-2.0         <1.0 | O7/30/96         3.5-4.0         < 1.0         < 0.005         < 0.005           07/30/96         1.5-2.0         < 1.0 | 07/30/96         3.5-4.0         < 1.0         < 0.005         < 0.005         < 0.005           07/30/96         1.5-2.0         < 1.0 | 07/30/96         3.5-4.0         < 1.0         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005         < 0.005 <th< td=""></th<> |

# TABLE 1 SUMMARY OF SOIL SAMPLE ANALYTICAL RESULTS (ppm<sup>1</sup>)

| Sample ID Name | Date     | Depth<br>(Feet) | ТРНС | Methyl t-<br>Butyl Ether | Benzene | Toluene | Ethyl-<br>benzene | Xylenes |
|----------------|----------|-----------------|------|--------------------------|---------|---------|-------------------|---------|
| VSP-39D        | 10/04/96 | 1.5-2.0         | <1.0 | < 0.005                  | < 0.005 | < 0.005 | < 0.005           | < 0.005 |

PARTS PER MILLION.

NOT ANALYZED.


ALSO ANALYZED FOR TOTAL RECOVERABLE HYDROCARBONS BY ESE; SEE ESE 12/23/91 REPORT FOR ANALYTICAL RESULTS.

<sup>3</sup> ALSO ANALYZED FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL: ALL ANALYTICAL RESULTS WERE NONDECTABLE.

TABLE 2
SUMMARY OF EXCAVATION GROUNDWATER SAMPLE ANALYTICAL RESULTS (ppb1)

| Sample ID<br>Name | Date     | ТРНС   | Benzene | Toluene | Ethyl-<br>benzene | Xylenes |
|-------------------|----------|--------|---------|---------|-------------------|---------|
| GB-1 <sup>2</sup> | 05/12/95 | < 50.0 | < 0.5   | < 0.5   | < 0.5             | < 0.5   |

PARTS PER BILLION.
EXCAVATION SAMPLE





APPENDIX A
BORING LOGS

| WELL<br>CONSTRUCTION | CHEMICAL ANA Laboratory  TPH  (pg/Kg) | PID<br>(gpm) | בסכואל    | DEPTH         | NUMBER 1878  | U. 5. C. S.<br>OESTON. | SOIL DESCRIPTION                                                                                             |
|----------------------|---------------------------------------|--------------|-----------|---------------|--------------|------------------------|--------------------------------------------------------------------------------------------------------------|
|                      | 177.90                                | -            |           |               |              | 1                      |                                                                                                              |
| 6                    |                                       | 120          | ¥<br>52   | 5             |              | mysm                   | Sand, Sitt to Silty Sand with minor cla<br>durk growish gray, loose, dry<br>as Itain, very slight ofor       |
|                      |                                       |              | 7         |               |              | <del> </del> -         |                                                                                                              |
|                      |                                       |              |           | 10            |              | MY/CL                  | Ground water in best filled pit @ ?<br>Chap. Sitt to Silty Chay, dart gras<br>gray, wet, lease, we stank, ro |
|                      |                                       | 00           |           |               |              | 1/66                   | gray, wet, loose, we stain, no                                                                               |
|                      |                                       |              |           |               | -            |                        |                                                                                                              |
|                      | 2775                                  | 20           |           | 15            | 20143        | Mycc                   | Same as above                                                                                                |
|                      |                                       |              |           |               | <del> </del> | }                      |                                                                                                              |
|                      |                                       |              |           |               |              |                        |                                                                                                              |
|                      |                                       |              |           |               | <u> </u>     |                        |                                                                                                              |
|                      |                                       |              |           |               | ļ<br>ļ       |                        |                                                                                                              |
|                      |                                       |              |           |               | <u> </u>     |                        |                                                                                                              |
|                      | ·                                     |              | <u>i</u>  | _             | <u>i</u>     |                        |                                                                                                              |
| · ·                  |                                       |              | İ         |               |              |                        |                                                                                                              |
|                      |                                       |              |           | _             | <del> </del> |                        |                                                                                                              |
|                      |                                       | ]            | !         | _             |              |                        |                                                                                                              |
|                      |                                       |              |           |               |              |                        |                                                                                                              |
|                      |                                       |              | i         |               |              | ·                      |                                                                                                              |
|                      |                                       |              |           |               |              |                        |                                                                                                              |
|                      |                                       |              | -         |               |              |                        |                                                                                                              |
|                      |                                       |              |           |               |              |                        |                                                                                                              |
|                      |                                       |              |           |               |              | •                      |                                                                                                              |
|                      |                                       |              | 1         |               |              |                        |                                                                                                              |
|                      | i                                     |              |           |               |              | Ì                      |                                                                                                              |
|                      |                                       |              | $\exists$ |               |              |                        |                                                                                                              |
| Geologisties E       |                                       |              | ee,       | <b>2</b> . 6. | Or           | ://er: 5               | 120                                                                                                          |
| Wong's               | Taxi                                  | -            |           |               |              |                        | of BORING                                                                                                    |
| Project Number: 60   |                                       |              | -         | 2/19          |              | -                      | TH-1 Page 1                                                                                                  |

-Politelbanc

· Characters

|                         | CHEMICAL ANA | LYSES                                             | 1               |              | SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •        |                                                                                                                                           |
|-------------------------|--------------|---------------------------------------------------|-----------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------|
| WELL                    | Laboratory   | 1 Field                                           | SCOUNT<br>COUNT | E.S          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N D H    |                                                                                                                                           |
| CONSTRUCTION            | TPH          | PID                                               | 복합              | S.           | 13.05<br>14.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05<br>18.05 | C. 8.    | SOIL DESCRIPTION                                                                                                                          |
|                         | (ng/Kg)      | (cen)                                             |                 |              | H 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20       | <u> </u>                                                                                                                                  |
|                         |              | !                                                 | !               | 10           | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | {        |                                                                                                                                           |
|                         |              | <del>                                     </del>  | <del> </del>    | <del>!</del> | <del>   </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1        |                                                                                                                                           |
|                         |              |                                                   |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1        |                                                                                                                                           |
|                         |              |                                                   | 4               | -5           | ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ce/m     | Silty Wax withtrace time sand,<br>dark greenish gray, slightly moist<br>medium denne good plasticity<br>no stain, trace hetrocarbonlike a |
|                         |              | 30                                                | 7,4             | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ////     | dark greenish gray, slightly moist                                                                                                        |
|                         |              | <del>                                      </del> | -               |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L        | mediumoleure good plasticity                                                                                                              |
|                         |              |                                                   |                 | <u> </u>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                                                                                                                                           |
|                         |              |                                                   | 6               | 10           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ا /مد ــ |                                                                                                                                           |
|                         | 360          | 1050                                              | 1'6             |              | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | > mymic  | Silly Sand with niver clay,                                                                                                               |
|                         | <u> </u>     | <del>                                     </del>  |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | light gray is b green, strong abor                                                                                                        |
| <del> </del>            |              |                                                   |                 | i            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                                                                                                                                           |
|                         |              |                                                   | 7               | 15           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ٥,       | For Eday moreilt granish brown, mist, good                                                                                                |
| !                       |              | 200                                               | /7              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SMEL     | plasticity, no stain, moderate a Dor                                                                                                      |
|                         | <u> </u>     |                                                   |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | Groveth Sand, significant clay and sift yellowish brown, slightly maist, we start                                                         |
|                         |              |                                                   |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 73 -     | very dight alow                                                                                                                           |
|                         |              |                                                   | 14<br>10<br>14  | أمرا         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _        |                                                                                                                                           |
|                         |              | 100                                               | 13              | 120          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 06       | prof cher minor sitt, grapish broad, moist,                                                                                               |
|                         |              |                                                   |                 |              | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | good plasticity, no string trace other                                                                                                    |
|                         | <del></del>  |                                                   |                 |              | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                                                                                                                           |
|                         |              |                                                   | 9               | 2.5          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                                                                                                                                           |
| <u> </u>                |              | 20                                                | 20              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C (      | Same as where meist no offer                                                                                                              |
|                         |              |                                                   | <u> </u>        |              | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                                                                                                                                           |
|                         |              |                                                   |                 |              | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                                                                                                                           |
|                         |              |                                                   | 7               | 70           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                                                                                                                                           |
|                         | 50           | ,50                                               | 10,7            | ~            | 8014-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - CC     | Jame as above                                                                                                                             |
|                         |              |                                                   | <del></del> ¦   | <u> </u>     | <del>!</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •        | 1831'                                                                                                                                     |
| <del></del> i           |              |                                                   |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                                                                                                                                           |
|                         |              |                                                   |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                                                                                                                                           |
|                         |              |                                                   |                 |              | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •        | :                                                                                                                                         |
|                         |              | <u> </u>                                          | !               |              | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | · · · · · · · · · · · · · · · · · · ·                                                                                                     |
|                         |              |                                                   |                 | - 1          | <del>i</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ł        |                                                                                                                                           |
|                         |              |                                                   | <del>i</del>    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - [      |                                                                                                                                           |
|                         |              |                                                   |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [        |                                                                                                                                           |
|                         |              | !                                                 | !               |              | <u>  </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1        |                                                                                                                                           |
|                         |              | -                                                 |                 |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -        |                                                                                                                                           |
| -                       |              |                                                   | Ţ               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ł        |                                                                                                                                           |
|                         |              |                                                   |                 |              | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ţ        |                                                                                                                                           |
|                         |              |                                                   |                 |              | <b>  </b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                                                                                                           |
| <del>-   </del>         |              |                                                   | !               |              | ╏                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ł        |                                                                                                                                           |
|                         |              |                                                   |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ŀ        |                                                                                                                                           |
|                         |              |                                                   | <u> </u>        |              | <u>i                                      </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                                                                                                                           |
|                         |              | $\Box$                                            |                 |              | $\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [        |                                                                                                                                           |
|                         |              |                                                   | !               |              | <b> </b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ŀ        |                                                                                                                                           |
| <del>-    </del>        |              |                                                   |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ŀ        |                                                                                                                                           |
|                         |              |                                                   | <u> </u>        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | i        |                                                                                                                                           |
| eologistiese            | -Marks Ma    | gar                                               | ee,             | R. 6.        | Or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ://er:5  | PLATE                                                                                                                                     |
| ١                       |              | :                                                 |                 |              | İ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Log      | of. BORING                                                                                                                                |
| Wong's                  | Tours        |                                                   |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                                                                                                                                           |
| oiect Number.           |              |                                                   | _               | 12/19        | , [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | TH-2 Post of                                                                                                                              |
| CLIPPE Norman Name of A |              |                                                   |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | F                                                                                                                                         |

| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | CHEMICAL ANA             | LYSES                                            | ]                      | Ī               | SAMPL    |                                       |                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------|--------------------------------------------------|------------------------|-----------------|----------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WELL<br>CONSTRUCTION | Laboratory  TPH  (ng/Kg) | PID<br>(ppm)                                     | BLOU<br>COUNT          | DEPTH<br>(feet) | HUMBER   | U.B.C.S                               | SOIL DESCRIPTION                                                                                                   |
| Table 1 and 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | 7, 7,                    | -                                                |                        | 1               |          | 1                                     |                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | •                        |                                                  |                        |                 |          | }                                     |                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                          | No                                               | 4                      | 5               |          | ce/me                                 | Clary, trace sandy silt, yellowish from west                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                          |                                                  |                        |                 |          | <del> </del>                          |                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 10                       | NO                                               | 9,4                    | 10              | 2014-8   | 04                                    | Argunic Clay Sark gracuish overy                                                                                   |
| - The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the |                      |                          |                                                  |                        |                 |          | ļ                                     | us ofor                                                                                                            |
| Marie Series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                          | 70                                               | 15<br>15 <sub>35</sub> | 15              |          | دد                                    | Fet clay, minor silt, lightgreen, min                                                                              |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                          |                                                  |                        |                 | <u> </u> |                                       | no stain, minor hitacerdon like after                                                                              |
| and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t |                      | 10                       | 70                                               | ,2<br>2,0<br>7,0       | 20              | 80/4- 9  | CC 27                                 | Same as above, light brownish youllow                                                                              |
| Service Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                          |                                                  |                        |                 |          | = '                                   | slight ofor                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                          | NO                                               | 7  <br>1/2             | 25              |          | دد                                    | same as above, very moist no abo                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                          | 1                                                |                        |                 |          |                                       |                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                    |                          | 1 1                                              | . 1                    | 20              |          | 2111                                  | 5: 1ty Gravely transignificant chery light                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                          | 20                                               | 1951                   |                 |          | 7/64                                  | 5:1ty Grapelly transfiguificant chequilight<br>yellowish brown, very moist, well we done so stair was all<br>TO31" |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                          |                                                  | !                      |                 |          | ,                                     |                                                                                                                    |
| ~ <u>}</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                          |                                                  |                        |                 |          |                                       |                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                          |                                                  |                        |                 |          |                                       |                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                          |                                                  |                        |                 |          |                                       |                                                                                                                    |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                          |                                                  | ·                      |                 |          | •                                     |                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                          | -                                                | -                      |                 |          | - }                                   |                                                                                                                    |
| <b>4</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                          |                                                  | <u> </u>               |                 |          |                                       |                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | İ                        |                                                  |                        |                 |          | F                                     |                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                          | <u> </u>                                         | i                      | İ               |          | ļ                                     |                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                          | _                                                | i                      |                 |          |                                       |                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                          | +                                                |                        | #               |          |                                       |                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                          | <del>-                                    </del> |                        | 1               |          |                                       |                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | seologisties B       | · Mark Hay               | panje                                            | 40,                    | 7.6.            | Or.      | ://er: 5                              |                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Wong's               | Taxi                     | •                                                |                        |                 |          |                                       | of. BORING                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | roiect Number.       |                          |                                                  | 8/                     | 2/19            | /        | · · · · · · · · · · · · · · · · · · · | TH-3 Propolat                                                                                                      |

|          | WELL<br>CONSTRUCTION | TPH          | PID<br>(12)  | BLOU<br>COUNT                                    | Creet)         | MARE A                                           | v.s.c.s.<br>oestan. | SOIL DESCRIPTION                           |
|----------|----------------------|--------------|--------------|--------------------------------------------------|----------------|--------------------------------------------------|---------------------|--------------------------------------------|
|          |                      |              |              |                                                  |                | <del> </del>                                     |                     |                                            |
|          |                      |              |              |                                                  | i              |                                                  |                     |                                            |
|          |                      |              |              |                                                  |                |                                                  |                     | Clay Sork processharay, slightly           |
| i        |                      | <u> </u>     | 80           | 6,0                                              | -5             |                                                  | دد                  | naist aslive danse, good plasticit         |
| İ        |                      |              |              |                                                  |                | Ī—                                               |                     | Nostain "                                  |
| Į        |                      | <u> </u>     | <u> </u>     |                                                  |                |                                                  |                     |                                            |
|          |                      | <u> </u>     |              | 4                                                | 10             |                                                  | SMILL               | Generally Charry Same, South graytoblack,  |
|          |                      | 25           | 150          | 79                                               | 10             | 80/4-10                                          | ,,,,                | strotthemist, elightly Sears, both stairs, |
|          |                      |              | <del> </del> |                                                  |                | <u> </u>                                         |                     |                                            |
|          |                      |              |              |                                                  |                | <u>}</u> -                                       |                     | Fat Chy, minar silt light green, moist,    |
|          |                      | <u>!</u>     | 120          | 129                                              | 15             |                                                  | ۷ ۷                 | mediumberse, good plansticity, we stand    |
|          |                      |              |              |                                                  |                | <u> </u>                                         |                     | slight odor                                |
|          |                      | <u> </u>     | <u>!</u>     | <del> </del>                                     | <u> </u>       | 1                                                | <b>7</b>            |                                            |
|          |                      |              |              | 6                                                | 20             |                                                  | 三                   | rediending in stain, moderate a dor        |
| ļ        |                      | 450          | 20           | 2                                                | -              | 8014-11                                          | -v-                 | 1021                                       |
| <u></u>  |                      | <u> </u>     | -            | 1                                                |                |                                                  | 1                   | 76-51                                      |
|          |                      |              |              | !                                                |                | <del> </del>                                     | ł                   |                                            |
|          |                      | <u> </u>     | <del></del>  | <del> </del>                                     |                |                                                  | j                   |                                            |
|          |                      | <u> </u>     | <u> </u>     | <u> </u>                                         | !              | -                                                |                     |                                            |
|          |                      | <u> </u>     | <del> </del> | <del> </del>                                     | 1              | ] ]                                              | }                   |                                            |
| <u>.</u> |                      |              | 1            |                                                  | !              |                                                  | }                   |                                            |
| F        |                      | <del></del>  | <del>!</del> | <del>! -</del> -                                 | <del> </del>   | -                                                | <b>أ</b>            |                                            |
|          |                      |              | <u> </u>     | !                                                | <u> </u>       | <u> </u>                                         | }                   |                                            |
| ,        |                      | <del></del>  |              | ┼-                                               | !              | <u> </u>                                         | 1                   |                                            |
|          |                      |              |              |                                                  |                |                                                  | ]                   |                                            |
| e i      |                      |              | <del>-</del> | ╂                                                | ├              | <del>                                     </del> | 1                   |                                            |
| -        |                      |              | 1-           |                                                  |                |                                                  | 1                   |                                            |
| L        | i                    |              | <u> </u>     | <del> </del>                                     | <u> </u>       | <del>  </del>                                    | <b>}</b>            |                                            |
|          |                      |              | 1—           | <del>                                     </del> | 1              | <u>                                     </u>     | j                   |                                            |
| Ī        |                      |              | 1            | 1_                                               | !              | <del>  </del>                                    | ┨ -                 |                                            |
| ł        |                      |              |              | 1-                                               | <del> </del>   | <del>                                     </del> | 1                   |                                            |
|          |                      |              |              |                                                  | <u> </u>       |                                                  | ]                   |                                            |
|          |                      |              |              |                                                  | <del>!</del> - | <del> </del>                                     | -                   |                                            |
|          |                      |              |              | 江                                                |                |                                                  | ]                   |                                            |
|          |                      |              | -            | +-                                               | -              | <u> </u>                                         | 1                   |                                            |
|          |                      | <u> </u>     | 1_           |                                                  | 匚              |                                                  | ]                   |                                            |
|          |                      |              | -            | +                                                | +-             | <del>                                     </del> | -{                  |                                            |
|          |                      | <del> </del> | 上            |                                                  |                | <u> </u>                                         | 1                   |                                            |
|          | (2) (2)              |              | 1            |                                                  | <u> </u>       |                                                  | miller:             | 5015 PLATE                                 |
|          | Geologisties         | 6 Mark M     | aga          | 7                                                | ·              |                                                  |                     |                                            |
| L.       |                      | ٠            |              |                                                  |                |                                                  | LO                  | G of BORING                                |
|          | Wong                 | 's Tax       |              |                                                  |                | 1                                                |                     |                                            |
| ١.       | Project Number:      |              |              | :                                                | 8/2/           | 191                                              | ·                   | H-4 Page/el/                               |

|                                                  | CHEMICAL ANA | 7675          | 1             | 1               | BAMPLE                                           |              |                                                                                                             |
|--------------------------------------------------|--------------|---------------|---------------|-----------------|--------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------|
| l l                                              | Laboratory   | I Field       | I             |                 |                                                  | ,            | 1                                                                                                           |
| WELL                                             |              | T             | שרטת<br>מסטיר | DEPTH<br>(feet) |                                                  | U. S. C. S.  |                                                                                                             |
| CONSTRUCTION                                     |              | PID           | ÄΫ            |                 |                                                  |              | SOIL DESCRIPTION                                                                                            |
|                                                  | TPH          |               | Į.            | 100             | 日子                                               | 50           |                                                                                                             |
|                                                  | (ng/Kg)      | (eeg)         | <u> </u>      | <del>!</del>    | <u>н</u>                                         |              | <u>                                     </u>                                                                |
|                                                  |              |               | <u> </u>      | !               | <u> </u>                                         | Į            |                                                                                                             |
|                                                  | ·            | <u> </u>      | <u> </u>      | !               | !!                                               | ł            |                                                                                                             |
|                                                  | ,            | <u> </u>      |               | <u> </u>        | <u> </u>                                         | į.           |                                                                                                             |
|                                                  |              | <u> </u>      | <u> </u>      | <u> </u>        | <u> </u>                                         | ŀ            |                                                                                                             |
| ¢                                                |              | F             |               | 15              |                                                  |              | Fat Clay miner fine sand dark weenst are                                                                    |
|                                                  |              | 20            | 57            |                 |                                                  | 66           | Fat Clay miner time sand depty ween's graph stightly moist, medium deuse, good plasticity, no Sain, we ador |
|                                                  |              |               |               |                 |                                                  |              | poodplasticity no Stein no ofor                                                                             |
|                                                  |              | Ì             |               |                 |                                                  | <b>→ −</b> − |                                                                                                             |
|                                                  |              | i             |               |                 |                                                  |              |                                                                                                             |
|                                                  |              | <b>-</b>      |               |                 |                                                  |              | Clar with i'lk our of last area wishame                                                                     |
| <u></u>                                          |              | 20            | 10            | 10              | 8014-14                                          | 2            | Clay with silly sand, fact greenish gray                                                                    |
|                                                  | 10           | 00            | 1 10          |                 | <i>P</i> // /                                    |              | Signify Mo. St. No 1/41- No addr                                                                            |
|                                                  |              |               |               |                 |                                                  |              |                                                                                                             |
|                                                  |              |               |               |                 |                                                  |              |                                                                                                             |
|                                                  |              | <u>!</u>      | <u> </u>      | لِسا            | <b>!</b>                                         |              |                                                                                                             |
|                                                  |              | <u> </u>      | /3            | 15              | <b></b>                                          | 64/          | true grained such clay light green,                                                                         |
|                                                  |              | 20            | 132           |                 |                                                  | 1511         | mist nedium deux, so stein, so ald                                                                          |
|                                                  |              |               |               |                 | 1                                                | ļ            | ,                                                                                                           |
|                                                  |              |               |               |                 | )                                                | 죠            |                                                                                                             |
|                                                  |              | i             |               | 1               |                                                  |              |                                                                                                             |
|                                                  |              |               | 7             |                 |                                                  |              | Silty Chang Sand, light yellowship reasy                                                                    |
|                                                  | 20           | 10            | 9,4           | 20              | 80/4-15                                          | 100          | sorvered, redivade use westain, moodor                                                                      |
|                                                  |              | ,,,           | 77            |                 | 34/1/2                                           |              | 7021'                                                                                                       |
|                                                  |              |               |               |                 | -                                                |              | 70 21                                                                                                       |
|                                                  |              | !             |               | 1               | <del></del>                                      |              |                                                                                                             |
| <u>                                     </u>     |              | !             |               | <u> </u>        | <del> </del>                                     |              |                                                                                                             |
| <u></u>                                          |              | !!            |               | <u> </u>        | <u> </u>                                         |              | ·                                                                                                           |
| <u> </u>                                         |              |               |               | · ·             | <u> </u>                                         |              |                                                                                                             |
|                                                  |              | 1             |               |                 | !                                                |              | · · · · · · · · · · · · · · · · · · ·                                                                       |
|                                                  |              | <u> </u>      |               |                 | !                                                |              |                                                                                                             |
| 1 1                                              |              | 1 1           |               | <u> </u>        | 1                                                |              |                                                                                                             |
|                                                  |              | 1 _1          | 1             |                 | 1                                                |              |                                                                                                             |
|                                                  |              |               |               |                 |                                                  |              |                                                                                                             |
|                                                  |              | i             | Ī             |                 |                                                  |              |                                                                                                             |
|                                                  |              |               |               | i               |                                                  |              |                                                                                                             |
|                                                  |              |               |               | 1               |                                                  |              |                                                                                                             |
| i                                                |              | i             |               |                 | i                                                |              |                                                                                                             |
|                                                  | <del></del>  |               |               |                 |                                                  |              |                                                                                                             |
| <del>                                     </del> |              | <del>  </del> |               |                 | <del></del>                                      |              |                                                                                                             |
| <b> </b>                                         |              | <del>  </del> |               |                 | 1                                                |              | ·                                                                                                           |
| <u></u>                                          |              |               |               |                 | <del> </del>                                     |              |                                                                                                             |
|                                                  |              |               | !             |                 | <del>                                     </del> | , 1          |                                                                                                             |
| <u>                                     </u>     |              |               |               |                 | <b> </b>                                         | ·            |                                                                                                             |
| <del> </del>                                     |              |               |               |                 | ļ                                                |              |                                                                                                             |
| <u> </u>                                         | <u></u>      |               | 1             |                 | <b></b>                                          |              |                                                                                                             |
|                                                  |              |               | !             |                 | <b></b>                                          | _ , !        |                                                                                                             |
|                                                  |              |               | 1             |                 | <u>!</u>                                         |              |                                                                                                             |
|                                                  |              |               | 1             |                 |                                                  |              |                                                                                                             |
|                                                  |              | i             |               |                 |                                                  |              |                                                                                                             |
|                                                  |              |               | <del></del> i |                 | 1                                                |              |                                                                                                             |
| <del>                                     </del> |              | · · · · · ·   | <del>i</del>  | <del>- i</del>  | $\vdash$                                         | l            |                                                                                                             |
| l <del>i</del>                                   |              | 1             | <del></del>   | <del>i</del>    | <del>                                     </del> | ì            |                                                                                                             |
| <del>                                     </del> |              |               | <del></del> ¦ |                 | <del> </del> -{                                  | ŀ            |                                                                                                             |
| <del>                                     </del> |              | <del></del>   | <del></del>   | <del></del> {   | <del>                                     </del> | ł            |                                                                                                             |
| <del></del>                                      |              |               | <del> </del>  |                 | <del>;</del>                                     | }            |                                                                                                             |
|                                                  |              |               | <del>!</del>  | <del></del> -}  | <del>                                     </del> | ł            |                                                                                                             |
| <u> </u>                                         |              | <del> </del>  | - !<br>}      |                 | ╂╼╼╾╉                                            | ł            |                                                                                                             |
| <del>  </del>                                    |              | !             | <del>!</del>  | <del>}</del>    |                                                  | 1            | <u> </u>                                                                                                    |
| <del></del>                                      |              |               |               | <u> </u>        | <del>!                                    </del> | }            |                                                                                                             |
|                                                  | <u></u>      |               |               | !               | <del></del>                                      |              |                                                                                                             |
| GeologistiesE                                    | · Mark Ma    | pan 7         | e ee,         | A. 6            | . Or                                             | ://er: s     | PLATE 1                                                                                                     |
| _                                                | •            |               | -             |                 | 1                                                |              |                                                                                                             |
|                                                  |              |               |               |                 | I                                                | 100          | of.BORING                                                                                                   |
| Wong                                             | 5 Tarxi      | •             |               |                 | ł                                                | - 0 6        | 2 01. D O K 1 N O                                                                                           |
|                                                  |              |               |               |                 |                                                  | · .          |                                                                                                             |
| Project M.                                       |              |               |               | 1 1.            | . , [                                            |              | TH-5                                                                                                        |
| Project Number: 60                               | 3-8014-1     |               | 8/            | 12/18           | / 1                                              |              |                                                                                                             |
|                                                  |              |               |               |                 |                                                  |              |                                                                                                             |

| WELL<br>CONSTRUCTION | Laboratory  TPH  (ng/Kg) | Field<br>PID | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | DEPTH<br>(feet) | NUMBER | U.S.C.S.<br>DESIGN. | SOIL DESCRIPTION                                                                                                         |
|----------------------|--------------------------|--------------|--------------------------------------------------------------------|-----------------|--------|---------------------|--------------------------------------------------------------------------------------------------------------------------|
| CAT COURT            | (eg/ng)                  |              |                                                                    |                 |        |                     |                                                                                                                          |
|                      | ,                        | 5            | 55                                                                 | 5               |        | 04                  | Organic Clay trace silt sail & grand,<br>Lark gray to black, van sightly maist,<br>malimbense, good dasticity, no shiin, |
| 1                    |                          |              | 5                                                                  | 10              |        | <i>0</i>            | 10000                                                                                                                    |
| Bestoute             | 150                      | 35           | 1                                                                  |                 | 8014-1 |                     | same as above, minor oilt, shellfregments, moderate hydrocarbon like abor                                                |
| 1                    | 2.55                     | 145          | 9<br>137<br>27                                                     | 15              | 8014-2 | 고<br>고<br>-         | Fat Chy trace sitt, gray it brown, Maist, we elium spesse, good pasticity, gray stains, strong other                     |
| a h                  |                          | 1/2          | 5<br>7g                                                            | 20              |        | 5M                  | 5: Hy Gravelly Fand gray saturated, losse, gray staring, moderate adox                                                   |
|                      |                          |              |                                                                    | 25              |        |                     |                                                                                                                          |
|                      |                          |              |                                                                    |                 |        | 5M<br>              | Jame es above, brown, no stain, no ador                                                                                  |
| 77                   |                          |              |                                                                    | 30              |        | c c<br>5 w          | Fast chery minor sand by our salersted,                                                                                  |
| CAZ                  |                          |              |                                                                    | 35              |        | ow                  | well graded Grave!  TD 35                                                                                                |
|                      |                          |              |                                                                    |                 |        |                     |                                                                                                                          |
|                      |                          |              |                                                                    |                 |        |                     |                                                                                                                          |
|                      |                          |              |                                                                    |                 |        |                     |                                                                                                                          |
|                      |                          |              |                                                                    |                 |        |                     | ·                                                                                                                        |
|                      |                          | 1            |                                                                    |                 |        |                     |                                                                                                                          |
| Geologisties.        | 5-Mark Me                | · Jan        | <b>9 6 6</b>                                                       | A. 6            | . 10.  |                     | Consolidated Testing PLATE                                                                                               |
|                      | 's Tax.                  | , <u>:</u>   | _                                                                  | <b>.</b>        |        |                     | G of BORING  MW-/  Popolar                                                                                               |
| Proiect Number.      | 3-8014-1                 |              |                                                                    | /2/             | 9/     |                     | 1.000                                                                                                                    |

|                                                  |                   | LIEMIUAL ANAI | Field                                        | 1.       |          |                                                  | , n <sub>i</sub>  |                                                             |
|--------------------------------------------------|-------------------|---------------|----------------------------------------------|----------|----------|--------------------------------------------------|-------------------|-------------------------------------------------------------|
| CON                                              | WELL<br>STRUCTION | TPH           | PID                                          | COUNT    | (feet)   |                                                  | U. B. C.<br>DESIG | SOIL DESCRIPTION                                            |
| 236                                              | ALC:              | (mg/Kg)       | (114)                                        | <u> </u> | 0        | <del>                                     </del> |                   |                                                             |
|                                                  | - 6               |               | <del> </del>                                 | -        |          |                                                  | j                 |                                                             |
|                                                  | 3.                |               |                                              | 1        |          | <u> </u>                                         |                   |                                                             |
|                                                  |                   |               |                                              | -        |          | <del>]</del> -                                   |                   | 5,11 Clay with niver granelly sand, Lank                    |
| 16/                                              | -6                |               | 90                                           | 136      | -        |                                                  | 1/3M              |                                                             |
| 1 1/2                                            | 5                 |               |                                              |          |          | <u>ļ</u>                                         |                   | danse good plasticity, no stair,                            |
| 77                                               |                   |               | <del> </del>                                 | ļ        |          | <del> </del>                                     |                   | very slight by proceeden like abor                          |
| 1-8-1                                            |                   | <u> </u>      |                                              | 7        | 10       |                                                  |                   |                                                             |
| 1-6-1                                            | Butorite !        | 4320          | 360                                          | 77.5     | 10       | 8014-6                                           | 5m                | silt Sand, slightly moist, dark gray,                       |
|                                                  |                   |               | <u>!</u> -                                   | <u> </u> | !        | <del> </del>                                     |                   | 10050, gray stain, strong ador                              |
| 12                                               |                   |               | -                                            | <u> </u> |          | -                                                |                   |                                                             |
| <b> </b>                                         | H                 | <del></del>   | <del></del>                                  | 7        | 15       |                                                  |                   | 5:14 Claves Sandwith minor growel, light                    |
|                                                  | ,N                | 160           | 250                                          | 20       | 73       | 80/4-7                                           | 3 M/cc            | premish gray, mist and un Lense, no stain, very 1/1944 alor |
| N                                                | 1                 |               | <u> </u>                                     | <u> </u> | <u> </u> | !                                                | 모                 | no stain very slight ofor                                   |
| 1                                                |                   |               | <u> </u>                                     |          | -        | -                                                | -                 |                                                             |
| 2                                                |                   |               |                                              |          | 20       | -                                                | SMICL             | seme as above, seturated, no abor                           |
| 3                                                | 7                 |               | i                                            |          |          |                                                  | <b>-</b> -        |                                                             |
| 1                                                | 6                 |               |                                              |          | !        | !                                                |                   |                                                             |
| 1                                                |                   |               | <u>                                     </u> |          |          | <del>!</del>                                     |                   | Fat Clay, recrish brown, saturated                          |
| 1 2 1                                            |                   |               | <u> </u>                                     |          | 25       | <del>                                     </del> | 64                | medium danse goodplasticity ac                              |
| -11-1                                            | <del></del>       |               |                                              |          |          | <u>i                                     </u>    |                   | staria, na odor                                             |
| 1                                                | <i>N</i>          |               |                                              |          |          | <u> </u>                                         |                   |                                                             |
| -6-4                                             | <u> </u>          |               | <u> </u>                                     |          |          | <del>!</del>                                     |                   |                                                             |
|                                                  | <del></del>       |               | <u> </u>                                     |          | 30       | <del></del>                                      | cL                | same as above                                               |
| 1-                                               |                   |               | i                                            |          |          | 1                                                |                   |                                                             |
|                                                  |                   |               | 1                                            |          | !        | <u> </u>                                         |                   |                                                             |
|                                                  |                   |               | <u> </u>                                     |          |          | !                                                | CL                | same as above                                               |
| 42                                               |                   |               |                                              |          | 35       | -                                                | \_\               | 70351                                                       |
| i                                                |                   |               |                                              |          |          |                                                  |                   |                                                             |
|                                                  |                   |               |                                              |          | !        | <del>!</del> -                                   |                   |                                                             |
| <u> </u>                                         |                   |               |                                              |          |          |                                                  |                   |                                                             |
| 1                                                |                   |               | <u> </u>                                     |          |          | -                                                |                   |                                                             |
|                                                  |                   |               |                                              |          |          |                                                  |                   |                                                             |
|                                                  |                   |               |                                              |          | !        | <del>                                     </del> | r                 |                                                             |
| <del>                                     </del> |                   |               |                                              |          |          | <del>  </del>                                    |                   |                                                             |
| <del>                                     </del> | <del></del>       |               |                                              |          |          | <del>  </del>                                    |                   |                                                             |
|                                                  |                   |               |                                              |          |          |                                                  |                   |                                                             |
|                                                  |                   |               |                                              |          | 1        | <del>                                     </del> |                   |                                                             |
| <del> </del>                                     |                   |               |                                              |          |          | <del> </del>                                     |                   |                                                             |
| 1-1                                              |                   |               | <b></b>                                      |          |          |                                                  |                   |                                                             |
|                                                  |                   |               |                                              |          |          |                                                  |                   |                                                             |
| !                                                |                   |               |                                              |          |          | <del>                                     </del> |                   |                                                             |
| 1-1                                              |                   |               |                                              |          |          | <del>                                     </del> |                   |                                                             |
|                                                  |                   |               |                                              |          |          |                                                  | ·                 |                                                             |
| 600                                              | logistiese        | 5 - Mark Ma   | man                                          | per,     | A. 6     | 0                                                | ://er: 9          |                                                             |
|                                                  | Wong              | s Taxi        | •. •                                         |          |          |                                                  | LOC               | of.BORING                                                   |
| 1                                                | t Number: Ca      |               |                                              | 8        | /2/K     | ,/                                               | . /               | nw-2 Page/d/                                                |
| ونت.                                             |                   |               |                                              |          |          | <u> </u>                                         |                   |                                                             |

| WELL                  | Laboratory      |                |                                                  | ĘŞ                                               | 5                                                | 0 0 E       |                                                                   |
|-----------------------|-----------------|----------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-------------|-------------------------------------------------------------------|
| CONSTRUCTION          | TPH             | PID<br>(ppm)   |                                                  | (feet)                                           | HUMBER                                           | U.S.C.S     | SOIL DESCRIPTION                                                  |
| and a                 | (ng/Kg)         | 1              | 1                                                |                                                  | 1                                                |             |                                                                   |
| - 4                   |                 |                |                                                  |                                                  | I                                                |             |                                                                   |
| 4 4                   |                 |                | !                                                | <u> </u>                                         | ļ                                                |             |                                                                   |
| 1                     |                 |                | !                                                | !!                                               | 1                                                |             | many to the state of lank                                         |
|                       |                 | _!             | =                                                | 5                                                | ļ                                                | 11.1        | tat Clay, trace grave by silt Sand, dank                          |
| 9                     |                 | 170            | 36                                               |                                                  |                                                  | 66/5m       | mediadesse, good destisity, no star                               |
| 7 3                   |                 | _              | <u> </u>                                         |                                                  | <del>!</del>                                     |             | no Delor                                                          |
| <del>\</del>          |                 | _!             | <u> </u>                                         | <del>!</del> !                                   |                                                  |             | C6 2/9/01                                                         |
| N 1                   |                 | _              | <u> </u>                                         | <del>!                                    </del> | <b>.</b>                                         |             | and the same of home and of                                       |
| 19                    |                 |                | 18                                               | 10                                               | 801412                                           | 06          | organic Chy, versish brown, wiet,                                 |
| Bentonite.            | 50              | w              | <u>!                                    </u>     |                                                  | 34/-1C                                           |             | rodor                                                             |
| 3                     | <u> </u>        |                | <b>!</b> -                                       | <del>!</del> !                                   |                                                  |             | 70 9007                                                           |
| <u> </u>              | <u> </u>        |                | <del>!</del> -                                   | !                                                | <del>                                     </del> |             |                                                                   |
|                       |                 | !              | <del>                                     </del> | <del>!</del>                                     | <del></del>                                      |             | silty sand, dark gray, moist, 10050, most                         |
| N N                   |                 |                | 1/30                                             | 15                                               | 1014-13                                          | מת צ        | an a flor                                                         |
| ν,                    | 2.5             | 170            | 1.29                                             | <del>-</del>                                     | 001/1/                                           |             |                                                                   |
| N                     | <b></b>         | !              | 1                                                | <del>                                     </del> | <del> </del>                                     | L           |                                                                   |
| N                     | <b></b>         |                | <del>                                     </del> | <del>'</del> —                                   | <del>                                     </del> | D<br>Jam/cc |                                                                   |
| <u> </u>              | ļ               | <del></del>    | <del> </del>                                     | -                                                | H                                                | 311         | 5: 1th Clarpy Sand year saturated.                                |
|                       | <del> </del>    |                | <del>!</del> -                                   | 20                                               | 1                                                | 166         | silty Charge Sand gray saturated, medium seuse, no stain, no ador |
| 9 - 1                 | <u> </u>        | <del></del> -  | <del> </del>                                     | <u>,                                     </u>    | ╂┈──                                             | 1           |                                                                   |
| 7                     | <u> </u>        |                | +                                                | <del></del>                                      | <del>                                     </del> | L           |                                                                   |
| 2                     | <u> </u>        | _!             | <del>!</del> -                                   |                                                  | <u> </u>                                         | <b>S</b>    |                                                                   |
| 7                     |                 |                | <del>!</del> -                                   | 1                                                | <del>                                     </del> | i           | Fat Clan greenish brown seturate                                  |
| 7                     |                 |                | <del>!</del>                                     | 125                                              | -                                                | 44          | rediumbuse pool planticity,                                       |
| 7 8                   |                 | _              | <del></del> -                                    | 1                                                | <del>                                     </del> | 1           | no starie un odor                                                 |
| 1/4                   | <u> </u>        |                | <del>!</del>                                     |                                                  | <del>                                     </del> | 1           |                                                                   |
| 0 ,                   |                 | <del></del>    | <del>`</del> —                                   | <del></del> -                                    | <del>                                     </del> | 1           |                                                                   |
| <u> </u>              | <del></del>     | !              | ┼                                                | 120                                              | <u>                                     </u>     | i           |                                                                   |
| <i>V</i> , <i>u</i> , | <del></del>     |                | <del></del>                                      | 130                                              | <del>                                     </del> | CL          | Same as above                                                     |
| <u> </u>              | . <del>  </del> |                |                                                  | 1                                                | 11                                               | 1           |                                                                   |
| - <del>\</del>        | <del>-</del>    | <del></del> -  | <del>                                     </del> | i                                                | i i                                              | ]           |                                                                   |
| <u> </u>              | <del> </del>    | <del></del> -  | 1                                                | 1                                                | i                                                | ]           |                                                                   |
|                       | <del></del>     |                | 1                                                | 120                                              | 11                                               | 50          | 5: 1ty Sand light grope, saturated tone, costing as               |
|                       |                 |                | i                                                | PO                                               | Π                                                | V           | 7035                                                              |
| 502                   |                 |                | 1                                                | 1                                                | 11                                               | ]           | ,                                                                 |
|                       |                 |                | 1                                                | T                                                |                                                  | ]           |                                                                   |
|                       | -               |                | 7                                                | 1                                                | TI                                               | 1           |                                                                   |
|                       |                 | <u> </u>       | 7                                                | 1                                                |                                                  | ]           |                                                                   |
|                       |                 | <del>-i-</del> | ·                                                | T                                                | Π                                                | ]           |                                                                   |
|                       |                 | <u> </u>       |                                                  |                                                  |                                                  | J           |                                                                   |
|                       | 1               |                | 1                                                | 1                                                |                                                  | 4 .         |                                                                   |
|                       | 1               |                |                                                  | 1                                                | <u> </u>                                         | 1           |                                                                   |
|                       | 1               |                | T                                                |                                                  | <u> </u>                                         | 1           |                                                                   |
|                       | 1               |                |                                                  |                                                  | !!                                               | 1           |                                                                   |
|                       |                 |                | 1                                                | I                                                | 11                                               | 1           |                                                                   |
|                       |                 | <u> </u>       | T                                                | I                                                | 11                                               | 1           |                                                                   |
| ·                     |                 |                |                                                  | 1                                                | 11                                               | 1           |                                                                   |
| i                     |                 |                |                                                  |                                                  | 11                                               | 1           |                                                                   |
|                       | 1               |                |                                                  | 1                                                | 11                                               | 4           |                                                                   |
|                       |                 |                |                                                  |                                                  | <b>↓</b>                                         | 4           |                                                                   |
|                       |                 | ı              | 1                                                | <u> </u>                                         | <del>   </del>                                   | 4           |                                                                   |
|                       |                 |                | 1                                                | .                                                | <del>  </del>                                    | -[          |                                                                   |
|                       |                 |                | <u> </u>                                         | <del>!</del>                                     | <del>!!</del>                                    | -{          |                                                                   |
|                       |                 |                |                                                  | <u> </u>                                         | <u> </u>                                         |             | -01-                                                              |
| Geologistics          | 55-Mark.        | Maga           | me                                               | e, A.                                            | 6. [ <i>e</i>                                    | r:110°      | 70/5 PLAT                                                         |
| e e                   |                 | -              | -                                                |                                                  |                                                  |             |                                                                   |
|                       |                 |                |                                                  |                                                  | l                                                | LΟ          | G of BORING                                                       |
| Wong                  | 's Ta           | 'د عد          |                                                  |                                                  | I.                                               |             | •                                                                 |
| 0                     |                 |                |                                                  | •                                                |                                                  |             | mw-3 Popolal                                                      |
| -                     |                 |                |                                                  | 8/2/                                             | _ =                                              | -           | 7,7 = 0                                                           |

•



### APPENDIX B

ANALYTICAL REPORTS AND CHAIN OF CUSTODY

### Mobile Labs Inc.

5327 Wingfoot Drive Bakersfield, CA 93306 (805) 872-4750

Laboratory Results For : Wong's Taxi Taxi 2345 East 14th Street Oakland, CA

Date Received: 5/24/91 Date Analyzed: 5/27/91 Analyst : J.S. Johnson

Lab No. 910069

Sample Matrix ; Soils

|                            | Benzene<br>mg/kg | Toluene<br>mg/kg | Ethylbenzene<br>mg/kg | xylenes<br>mg/kg | Tot Pet Hyds<br>mg/kg |
|----------------------------|------------------|------------------|-----------------------|------------------|-----------------------|
| MW-1@10'                   | .460             | .365             | . 305                 | .960             | 150                   |
| MW-1@15'                   | 1.505            | 4.255            | 4.015                 | 4.270            | 255                   |
| QA/QC Sample<br>% Recovery | 86               | 79               | 97                    | 102              | 86 Gasoline           |

All Results Reported in Milligrams per Kilogram ND = Non Detectable; EPA 8020 (.005 mg/kg) EPA 8015 Modified for Gasoline (5 mg/kg)

Analysis of Volatile Aromatics ; EPA 8020

\*Analysis of Total Petroleum Hydrocarbons ; EPA 8015 Modified for Gasoline

\*The TPH Method for Gasoline is the Calif DOHS Recommended Procedure

Certificate Number: E739

# Mobile Labs Inc.

5327 WINGFOOT DRIVE BAKERSFIELD, CALIFORNIA 93306

#### CALIFORNIA ● NEVADA ● ARIZONA

(805) 872-4750 CERTIFIED FULL SERVICE ON SITE ANALYTICAL LABORATORIES PROJECT NO .: SITE NAME: REMARKS RMagniago 2345 Bast COMP GRAB ID. NO. 5-22-91 11:45AM 80/4-2 5-22-91 12:00AM RELINQUISHED BY: (SIGNATURE) RECEIVED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) RECEIVED BY (SIGNATURE) DATE TIME DATE TIME RECEIVED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) RECEIVED BY (SIGNATURE) RELINQUISHED BY: (SIGNATURE) DATE TIME DATE TIME TIME REMARKS: RECEIVED FOR LABORATORY BY RELINQUISHED BY: (SIGNATURE) TIME DATE

### Mobile Labs Inc.

5327 Wingfoot Drive Bakersfield, CA 93306 (805) 872-4750

Laboratory Results For : Wong's Taxi Taxi 2345 East 14th Street Oakland, CA

Date Received: 8/23/91
Date Analyzed: 8/24/91
Analyst: J.S. Johnson

Lab No. 910124

Sample Matrix ; Soils

| ,        | Benzene<br>mg/kg | Toluene<br>mg/kg | Ethylbenzene<br>mg/kg | Xylenes<br>mg/kg | Tot Pet Hyds<br>mg/kg |
|----------|------------------|------------------|-----------------------|------------------|-----------------------|
| TH-1@15' | 1.235            | 1.060            | 1.625                 | 5.280            | 2775                  |
| TH-2@10' | ND               | ND               | ND                    | .770             | 360                   |
| TH-2@30' | ND               | ND               | ND                    | ND               | 50                    |
| MW-2@10' | 7.275            | 6.620            | 3.470                 | 13.815           | 4320                  |
| MW-2@15' | ND               | ND               | N D                   | ND               | 160                   |
| TH-3@10' | ND               | ND               | N D                   | ND               | 10                    |
| TH-3@19' | ND               | ND               | N D                   | ND               | 10                    |
| TH-4@10' | ND               | ND               | N D                   | .175             | 25                    |
| TH-4@20' | ND               | ND               | N D                   | ND               | 450                   |
| MW-3@10' | ND               | ND               | ND                    | ND               | 50                    |
| MW-3@15' | ND               | ND               | ND                    | ND               | 25                    |
| TH-5@10' | ND               | ND               | ND                    | ND               | 10                    |
| TH-5@18' | ND               | · ND             | ND                    | ND               | ND                    |

All Results Reported in Milligrams per Kilogram ND = Non Detectable ; EPA 8020 (.005 mg/kg)

EPA 8015 Modified for Gasoline (5 mg/kg)

Analysis of Volatile Aromatics ; EPA 8020

\*Analysis of Total Petroleum Hydrocarbons ; EPA 8015 Modified for Gasoline

\*The TPH Method for Gasoline is the Calif DOHS Recommended Procedure

Certificate Number : E739

Jeff Golfnson, Chemist

#### 5327 Wingfoot Drive Bakersfield, CA 93306 (805) 872-4750

Laboratory Results For : .
Wong's Taxi Taxi
2345 East 14th Street
Oakland, CA

Date Received: 8/23/91
Date Analyzed: 8/24/91
Analyst: J.S. Johnson

Lab No. 910124

Sample Matrix Soil and Water

| •            | ·               |                 |                      |                 | <b>\</b>     |
|--------------|-----------------|-----------------|----------------------|-----------------|--------------|
| ·            | Benzene<br>ug/L | Toluene<br>ug/L | Ethylbenzene<br>ug/L | Xylenes<br>ug/L | Tot Pet Hyds |
| MW-1 (Water) | 2150            | 9345            | 2145                 | 23,150          | 2,090,000    |
| MW-2 (Water) | <b>ND</b>       | ND              | ND                   | ND              | 10,000 = %   |
| MW-3 (Water) | N D             | ND              | ND                   | ND              | ND           |

| Sample I.D. | Total Recoverable Hydrocarbons | mg/kg |
|-------------|--------------------------------|-------|
| TH-3@10'    | 60                             |       |
| TH-3@19'    | 20                             |       |
| TH-4@10'    | 40                             |       |
| TH-4@20'    | 1600                           |       |
| MW~3@10'    | 90                             |       |
| MW-3@15'    | 40                             |       |

All Results Reported in Milligrams per Kilogram or Micrograms per Liter ND = Non Detectable ; EPA 602 (5 ug/L)

EPA 8015 Modified for Gasoline (5000 ug/L)

EPA 418.1 (10 mg/kg)

Analysis of Volatile Aromatics ; EPA 602

Analysis of Total Recoverable Hydrocarbons; EPA 418.1

\*Analysis of Total Petroleum Hydrocarbons ; EPA 8015 Modified for Gasoline

\*The TPH Method for Gasoline is the Calif DOHS Recommended Procedure

Certificate Number: E739

Jeffkjohnson, Chemist

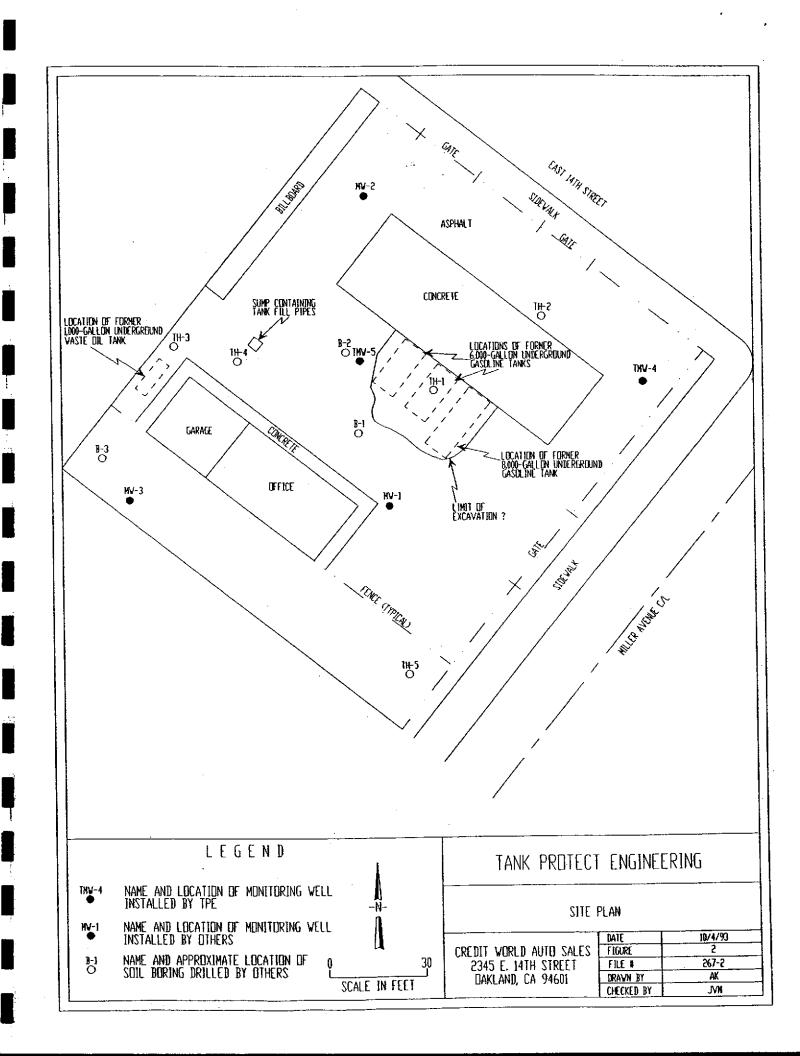
Certified Full Service On-Site Analytical Laboratories

# Mobile Labs Inc.

5327 WINGFOOT DRIVE BAKERSFIELD, CALIFORNIA 93306

(805) 872-4750

#### CALIFORNIA • NEVADA • ARIZONA ...


CERTIFIED FULL SERVICE ON SITE ANALYTICAL LABORATORIES

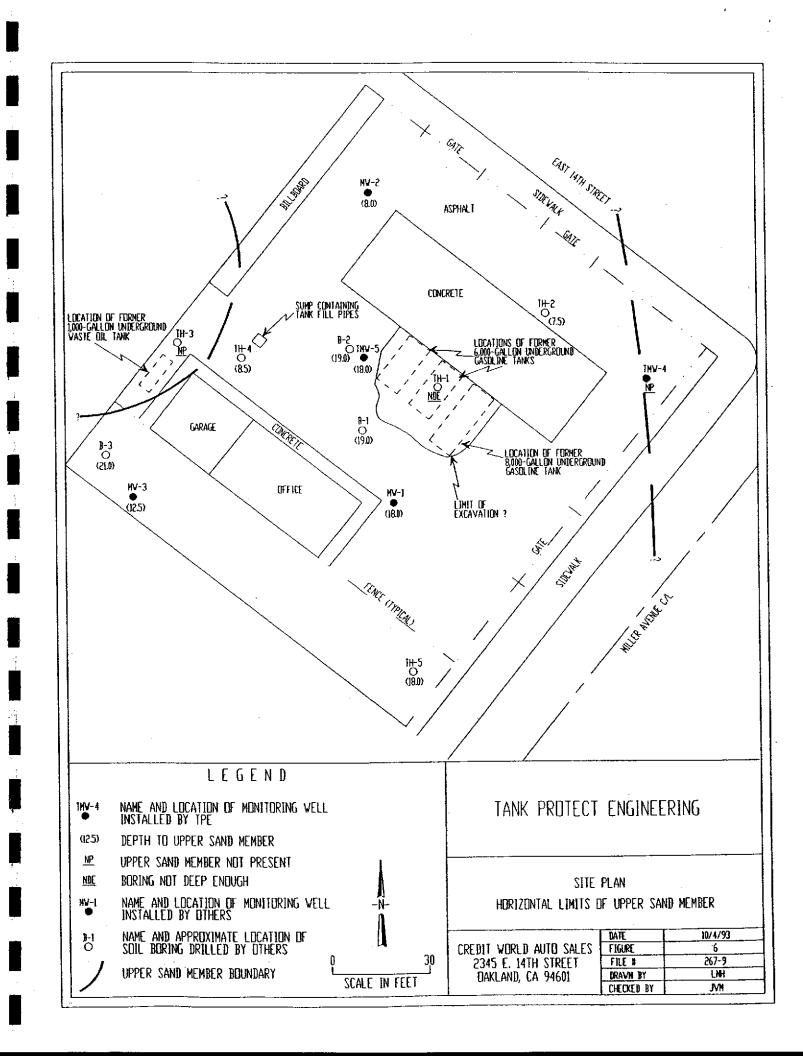
| SAMPLE ID. NO. | S (SIGNA<br>DATE | TIME      | COMP     | SITE A |          | SAMPLE LOCATION      | SHOOM    | 21       | 0)<br>0)<br>2)<br>1 |           |           | ///    |     |                                       | REMARKS Tank ONly       |
|----------------|------------------|-----------|----------|--------|----------|----------------------|----------|----------|---------------------|-----------|-----------|--------|-----|---------------------------------------|-------------------------|
| 24.4           |                  | 11: (5AA) |          |        | 1        | THIZ P.              | 10'      |          | 11                  | 3         | 4         |        |     |                                       | Tank ONLY               |
| 8014-5         |                  | 12:3094   |          |        |          | THER                 | 2300     |          | 1/                  | 1         | 1         |        |     |                                       | Tank only               |
| 8846           |                  | Z:007/17  |          |        |          | muiz 6               |          |          | 1/2                 | / Jan.    |           |        |     | Gars                                  | Tank only               |
| 30147          | <u> </u>         | 2:0911    |          |        |          | murs                 | 7/5/     | -1/-1    | 2/1                 | N.        |           |        |     | 6915                                  | Tank ONLY               |
| BN4-83         | 1/22/4/          | 7:30 AM   | <b>)</b> |        | <u> </u> | TH-30                | 10-      |          | 1/1                 |           |           |        | Ga  | e e                                   | I worse oil tanks       |
| 8049           |                  | 2 xow     |          |        |          | 741V3 @              | 19       |          | 2/2                 | 1         |           |        | سه  | <u> 44</u>                            | I waste siltantis       |
| 8014-10        | 1                | 9:55AM    |          |        | <u> </u> | 7H-4 D               | 10'      |          | z/]2                | 4/        |           |        |     | 1 am                                  | Dwarte oil tanks        |
| 80/4-1         |                  | 10:15M    |          |        |          | TH-4 @               | 20'      |          | <u> </u>            | ///       | 1         |        | 4   | 5 11-                                 | I waste oil panks       |
| 8014-12        | <u> </u>         | 11:15,00  |          |        | <u> </u> | 11623                | 101      |          | 1/2                 |           |           |        | 64  | ve an                                 | I waste oil mucks       |
| 80/4/3         |                  | LESORM    |          |        |          | MW-3 (8)             | 15       | _ {}_    | 1                   |           |           |        | 64  | s der                                 | I maste ail tunks       |
| 8014-14        |                  | 2:00 pm   |          |        |          | THUS CO              | 10'      |          | 1/2                 |           |           |        |     | San 7                                 | ank only                |
| 8014-15        | 1                | 2:25 PM   |          |        |          | 745 D/               | 181      | 13       | 1/2                 | <b>AN</b> |           |        |     | 243                                   | Tank Only               |
|                |                  |           |          |        |          |                      |          |          |                     |           |           |        |     | _                                     |                         |
|                |                  | (CICNIATI | ines I   |        |          | DEGENUTE OV (010)141 | f(IDE)   | DEL INGL | 10000               | 2.07./01  | ICNATIV   |        |     | · · · · · · · · · · · · · · · · · · · | DECEMENT OF CONTACTORS  |
| RELINQUIS      | ouen BA:         | (ANDIC)   | ן (באל   | ATE    | TIME     | RECEIVED BY (SIGNAT  | יטאב)    | RELINGL  | NOUE                | ) D1 (SI  | IGNA I UI | RE) DA | TE. | TIME                                  | RECEIVED BY (SIGNATURE) |
| RELINQUIS      | SHED BY:         | (SIGNATI  | JRE) [   | DATE   |          | RECEIVED BY (SIGNAT  |          | RELINOL  | JISHEC              | D BY (SI  | GNATU     | RE) DA | TE  | TIME                                  | RECEIVED BY (SIGNATURE) |
| RELINQUIS      |                  |           |          | DATE   | TIME     | RECEIVED FOR LABOR   | ATORY BY | DATE     | TIN                 | Æ RE      | MARKS:    |        |     |                                       |                         |
| Mark           | 6 R 1            | Magae     | go 3     | 23/7/5 | 5:30PM   | Je Johns             |          | 8/23/7   | 17-7                | 15        |           |        | ,   |                                       |                         |
|                |                  |           |          | - / •  |          | ון שט נן             |          |          | _                   |           | _         |        |     | •                                     | ·                       |

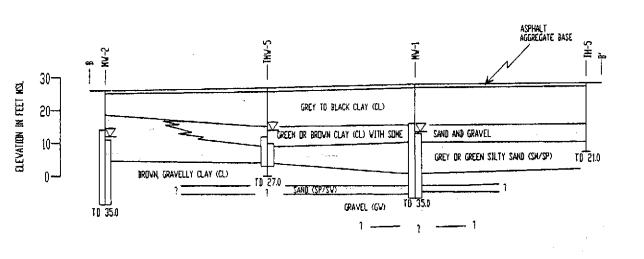
# Mobile Labs Inc.

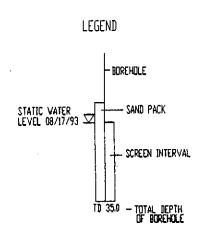
5327 WINGFOOT DRIVE BAKERSFIELD, CALIFORNIA 93306 CALIFORNIA ● NEVADA ● ARIZONA

(805) 872-4750 CERTIFIED FULL SERVICE ON SITE ANALYTICAL LABORATORIES PROJECT NO .: SITE NAME: REMARKS COMP GRAB ID. NO. //AT(P) RELINQUISHED BY: (SIGNATURE) DATE TIME RECEIVED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) RECEIVED BY (SIGNATURE) DATE TIME RELINQUISHED BY: (SIGNATURE) DATE TIME RECEIVED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) RECEIVED BY (SIGNATURE) DATE TIME RELINQUISHED BY: (SIGNATURE) DATE TIME RECEIVED FOR LABORATORY BY TIME REMARKS: DATE




#### APPENDIX F


CERTIFIED ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION


ე <u>გე</u> 00000 FI TMW-4 0 ASPHAL I ~ DRILLED HOLE AGGREGATE RASE (GW) brown dry no odor CLAY (CL): black, scattered sand, dry. CEMENT no odor. VAULT BOX 5 CLAY (CL): brown, scattered sand, stiff to very stiff, dry, no odor. LOCKING CAP CEMENT BLANK CASING 10 BENTONITE CLAY (CL): mottled green/blue, scattered sand, gravelly at 14.5°, very stiff, dry, slight odor. 15 CLAY (CL): brown, very stiff, moist to wet. ne odor. CLAY (Ct.): brown, gravelly, sandy, very stiff to hard, moist, no odor. 50 \_\_ GRAVEL PACK \_ SLOTTED SCREEN 0.01 25 30 SAND (SP): brown, scattered grave). medium dense, wet, no odor. CLAY (CL): brown, gravelly, very stiff, dry, no odor. BENTONITE 35 Boring terminated @ 34.5'. Sampled to 35.0'. SLIP CAP LEGEND Static Water Level 2345 EAST 14TH STREET, DAKLAND, CA WELL ID : TMW-4 TANK PROTECT ENGINEERING Figure :

### APPENDIX E

LOGS OF EXPLORATORY BORINGS AND WELL COMPLETION DETAILS









NO VERTICAL EXAGGERATION
NOTE: SEE FIGURE 5 FOR LOCATION OF CROSS SECTION

### TANK PROTECT ENGINEERING

GEOLOGIC CROSS SECTION B-B'

CREDIT WORLD AUTO SALES 2345 E. 14TH STREET DAKLAND, CA 94601

| DATE       | 10/4/93 |
|------------|---------|
| FIGURE     | 4       |
| FILE #     | 267-7   |
| DRAVN BY   | LMH     |
| CHECKED BY | JVH     |



August 2, 1993

Mr. Marc Zomorodi Tank Protect Engineering 2821 Whipple Road Union City, California 94587

Dear Mr. Zomorodi:

Trace Analysis Laboratory received six soil samples on July 26, 1993 for your Project No. 267C072393, Credit Auto World (our custody log number 3465).

These samples were analyzed for Total Petroleum Hydrocarbons as Gasoline and Benzene, Toluene, Ethylbenzene, and Xylenes. Our analytical report and the completed chain of custody form are enclosed for your review.

Trace Analysis Laboratory is certified under the California Environmental Laboratory Accreditation Program. Our certification number is 1199.

If you should have any questions or require additional information, please call me.

Sincerely yours,

Scott T. Ferriman

Project Specialist

**Enclosures** 

LOG NUMBER: DATE SAMPLED: 3465 07/22/93

DATE RECEIVED:

07/26/93

DATE EXTRACTED:

07/26/93

DATE ANALYZED:

07/27/93

DATE REPORTED:

08/02/93

**CUSTOMER:** 

Tank Protect Engineering

REQUESTER:

Marc Zomorodi

PROJECT:

No. 267C072393, Credit Auto World, 2345 E. 14th Street

| •                                                            | Sample Type: Soil |                           |                         |                            |                              |                            |                               |  |  |
|--------------------------------------------------------------|-------------------|---------------------------|-------------------------|----------------------------|------------------------------|----------------------------|-------------------------------|--|--|
| Method and <pre>Constituent:</pre>                           | <u>Units</u>      | TMW<br>Concen-<br>tration | -4, 4.5 Reporting Limit | TMW-<br>Concen-<br>tration | 4, 9.5<br>Reporting<br>Limit | TMW-<br>Concen-<br>tration | 4, 14.5<br>Reporting<br>Limit |  |  |
| DHS Method:<br>Total Petroleum Hydro-<br>carbons as Gasoline | ug/kg             | ND                        | 500                     | ND                         | 500                          | 940                        | 500                           |  |  |
| Modified EPA Method 8020                                     | for:              |                           |                         |                            |                              |                            |                               |  |  |
| Benzene                                                      | ug/kg             | ND                        | 5.0                     | ND                         | 5.0                          | ND                         | 5.0                           |  |  |
| Toluene                                                      | ug/kg             | ND                        | 5.0                     | ND                         | 5.0                          | ND                         | 5.0                           |  |  |
| Ethylbenzene                                                 | ug/kg             | ND                        | 5.0                     | ND                         | 5.0                          | ND                         | 5.0                           |  |  |
| Xylenes                                                      | ug/kg             | ND                        | 15                      | ND                         | 15                           | ND                         | 15                            |  |  |

Concentrations reported as ND were not detected at or above the reporting limit.



# PRIORITY ENVIRONMENTAL LABS

Precision Environmental Analytical Laboratory

August 23, 1993

PEL # 9308082

TANK PROTECT ENGINEERING, INC.

Attn: Jeff

Re: Six water samples for Gasoline/BTEX analysis.

Project name: Credit World Auto Sales

Project location: 2345 E. 14th St.

Project number: 267081793

Date sampled: Aug 17, 1993

Date extracted: Aug 20-21, 1993

Date submitted: Aug 20, 1993 Date analyzed: Aug 20-21, 1993

#### RESULTS:

| SAMPLE I.D.           | Gasoline       | Benzene |        | Ethyl<br>Benzene | Total<br>Xylenes |
|-----------------------|----------------|---------|--------|------------------|------------------|
| 1.0.                  | (ug/L)         | (ug/L)  | (ug/L) | (ug/L)           | (ug/L)           |
|                       | 4.40000        |         |        | 720              | 3100             |
| MW-1                  | 110000         | 270     | 690    | 730              |                  |
| MW-2                  | 49000          | 94      | 240    | 250              | 980              |
| MW-3                  | 9600           | 4.1     | 17     | 28               | 54               |
| TMW-4                 | 150            | N.D.    | 0.8    | 1.4              | 3.7              |
| TMW-5                 | 120000         | 340     | 730    | 790              | 3600             |
| TMW-6                 | N.D.           | N.D.    | N.D.   | N.D.             | N.D.             |
| Blank                 | N.D.           | N.D.    | N.D.   | N.D.             | N.D.             |
| Spiked<br>Recovery    | 93.1%          | 84.2%   | 89.5%  | 92.0%            | 94.1%            |
| Duplicate<br>Spiked   |                |         |        |                  |                  |
| Recovery              | 87.8%          | 80.2%   | 81.6%  | 88.5%            | 93.0%            |
| Detection<br>limit    | 50             | 0.5     | 0.5    | 0.5              | 0.5              |
| Method of<br>Analysis | 5030 /<br>8015 | 602     | 602    | 602              | 6.02             |

David Duong Laboratory Director

1764 Houret Court Milpitas, CA. 95035

Tel: 408-946-9636

Fax: 408-946-9663

## TANK PROJECT ENGINEERING

**Environmental Menagement** 

TANK PROTECT ENGINEERING

2821 WHIPPLE ROAD UNION CITY, CA 94587 (415)429-8088 (800)523-8088 FAX(415)429-8089

**PEL** # 9308082

INV # 23922

| LAB: | Yrior!  | Jy En | <u> </u> |
|------|---------|-------|----------|
| TURN | AROUND: | Norma |          |

P.O. #: 684

CHAIN OF CUSTODY

| PROJECT NO. SITE  267 081793 7345 Y  SAMPLER NAME, ADDRESS AND TE  LOE HUCKINS  2821 WHIPPLE ROAD, UNION CITY,  ID NO. DATE TIME SOIL |                 |       |  | ETELHONE<br>FILE | NUMBER          | ?9-8088               | (1) TYPE OF CON- TAINER | TO PHET     |                 | B   4   2   3   5   5   5   5   5   5   5   5   5 |          |          |          |                                                                | REMARKS |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|--|------------------|-----------------|-----------------------|-------------------------|-------------|-----------------|---------------------------------------------------|----------|----------|----------|----------------------------------------------------------------|---------|
| MW-1                                                                                                                                  | 8)17            | 1530  |  | 4                |                 |                       | 271615                  | X           | ×               |                                                   |          |          |          |                                                                |         |
|                                                                                                                                       | 8]7             | 1230  |  | y.               |                 |                       | 2.40 m                  | \ <u>``</u> | ר               | $\dashv$                                          | _        | 4        | 4        | 4                                                              |         |
| mw-3                                                                                                                                  | g m             | 1640  |  | بر               |                 |                       | ZHOME                   | $ \leq $    | 8               |                                                   |          | _        | _        | <i>!</i><br>\                                                  |         |
|                                                                                                                                       | 8)17            | 11,70 |  | メ                |                 |                       | zuma                    | ×           | ×               |                                                   | _        | 4        | _        |                                                                |         |
| Tmw-5                                                                                                                                 | 8),7            |       |  | <i>y</i>         |                 |                       | Z-40me                  | 4           | *               |                                                   |          | ┙        |          |                                                                |         |
|                                                                                                                                       | 8) <sup>U</sup> |       |  | 7                |                 |                       | z 40md                  | ×           | ¥               |                                                   | $\dashv$ | 4        | -        |                                                                |         |
|                                                                                                                                       |                 |       |  |                  |                 |                       |                         | ┡           | -               | Н                                                 | $\dashv$ | $\dashv$ | $\dashv$ | _                                                              |         |
|                                                                                                                                       |                 |       |  |                  |                 |                       |                         | -           | -               | Н                                                 |          | +        | ┪        | $\dashv$                                                       |         |
| Relinquished by : (Signature)  Relinquished by : (Signature)                                                                          |                 |       |  | 8 20             | ad 9.00<br>Time | V   Cly : (Signature) |                         |             | Relinquished by |                                                   |          |          | 1        | S ZOGS: 20 : (Signature) Date / Time Received by : (Signature) |         |
| Relinquished by : (Signature)                                                                                                         |                 |       |  | 8 Dat /20/       | 13 9 250        | aboratory by:         |                         |             | Date / Time     |                                                   |          |          |          | Remarks                                                        |         |

DATE: 8-20-93

Drilling will continue inside the conductor casing, with a drill bit of smaller diameter than the conductor casing. If additional known aquifers are to be fully penetrated, the procedure will be repeated with successively smaller diameter conductor casings.

The bottom of the well screen in a confined aquifer will be determined by presence or lack of a clay layer or aquitard as described above. The screened interval in a confined zone shall extend across the entire saturated zone of the aquifer or up to a length of 20 feet, which ever is less. The screened zone and filter pack will not cross-connect to another aquifer.

#### CONSTRUCTION MATERIALS

<u>Casing and Screen Materials</u>: Well casing and screen will be constructed of clean materials that have the least potential for affecting the quality of the sample. The most suitable material for a particular installation will depend upon the parameters to be monitored. Acceptable materials include PVC, stainless steel, or low carbon steel.

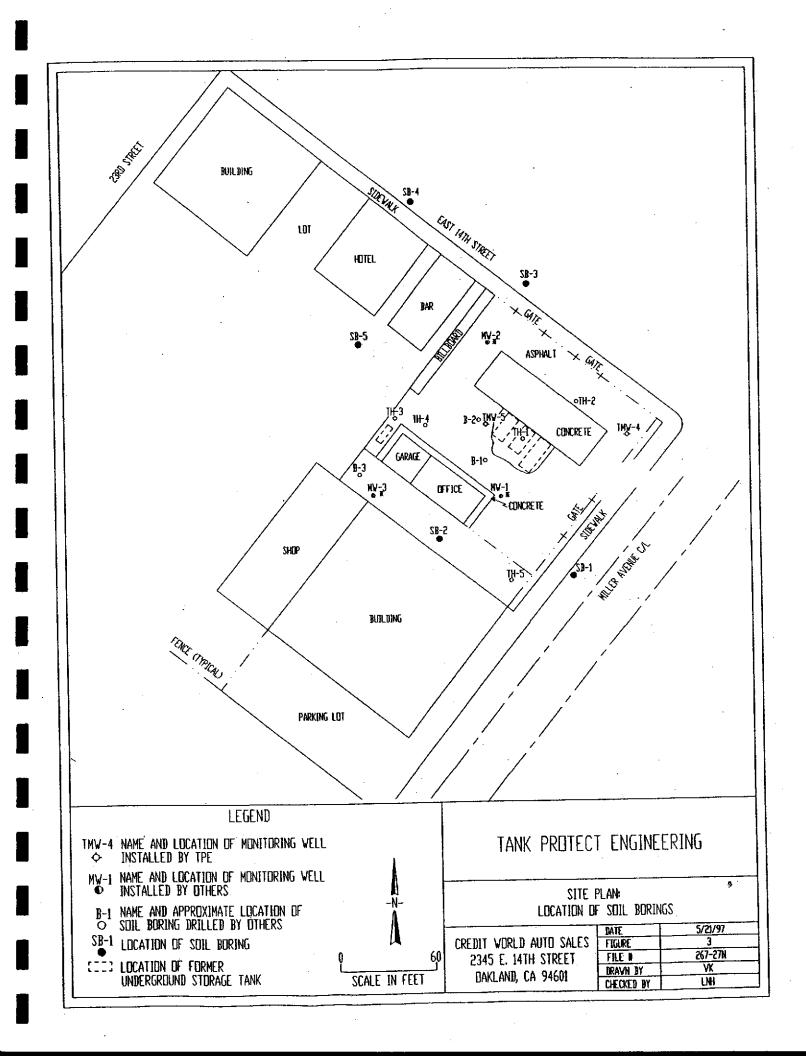
Casing Joints: Joints will be connected by flush threaded couplers. Organic bonding compounds and solvents will not be used on joints.

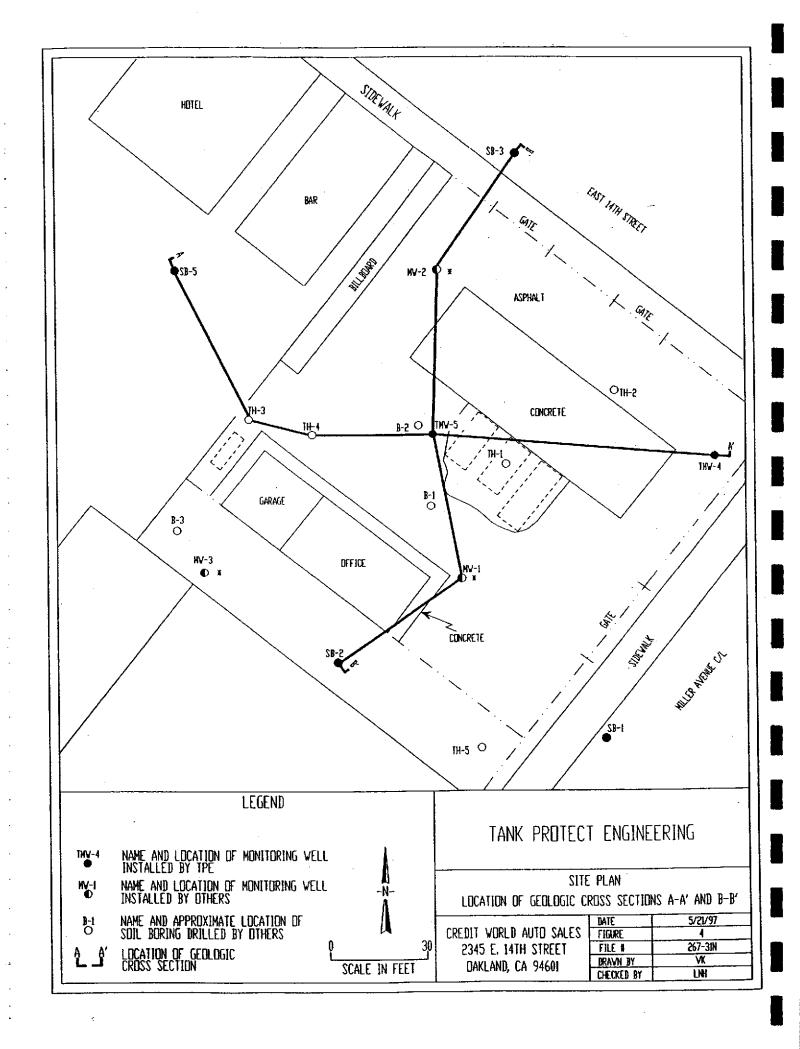
Well Screen Slots: Well screen will be factory slotted. The size of the slots will be selected to allow sufficient groundwater flow to the well for sampling, minimize the passage of formation materials into the well, and ensure sufficient structural integrity to prevent the collapse of the intake structure.

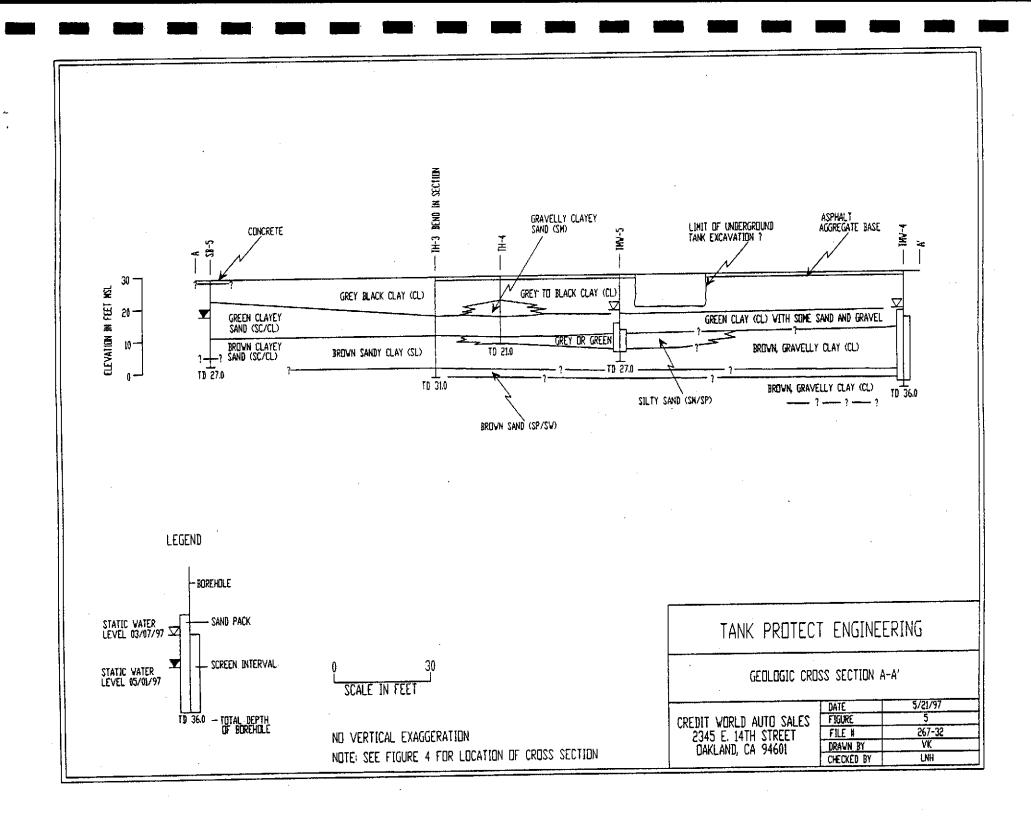
Casing Bottom Plug: The bottom of the well casing will be permanently plugged, either by flush threaded screw-on or friction cap. Friction caps will be secured with stainless steel set screws. No organic solvents or cements will be applied.

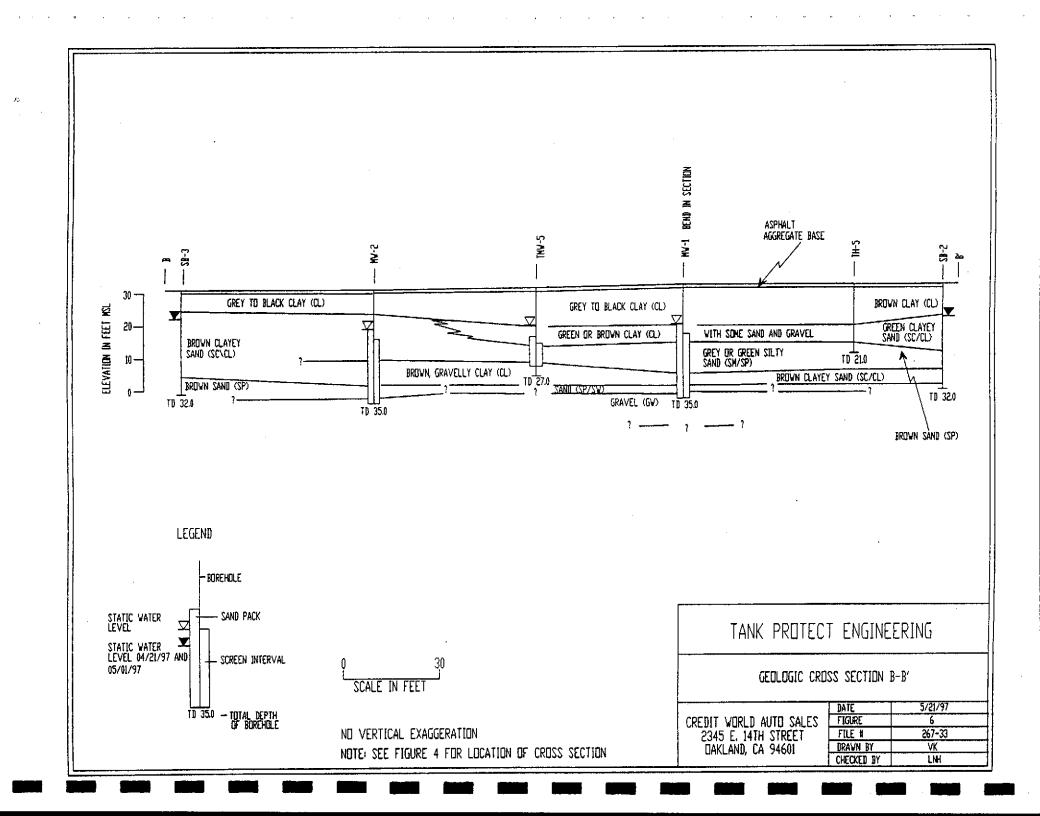
<u>Filter Pack Material</u>: Filter envelope materials will be durable, water worn, and washed clean of silt, dirt, and foreign matter. Sand size particles will be screened silica sand. Particles will be well rounded and graded to an appropriate size for retention of aquifer materials.

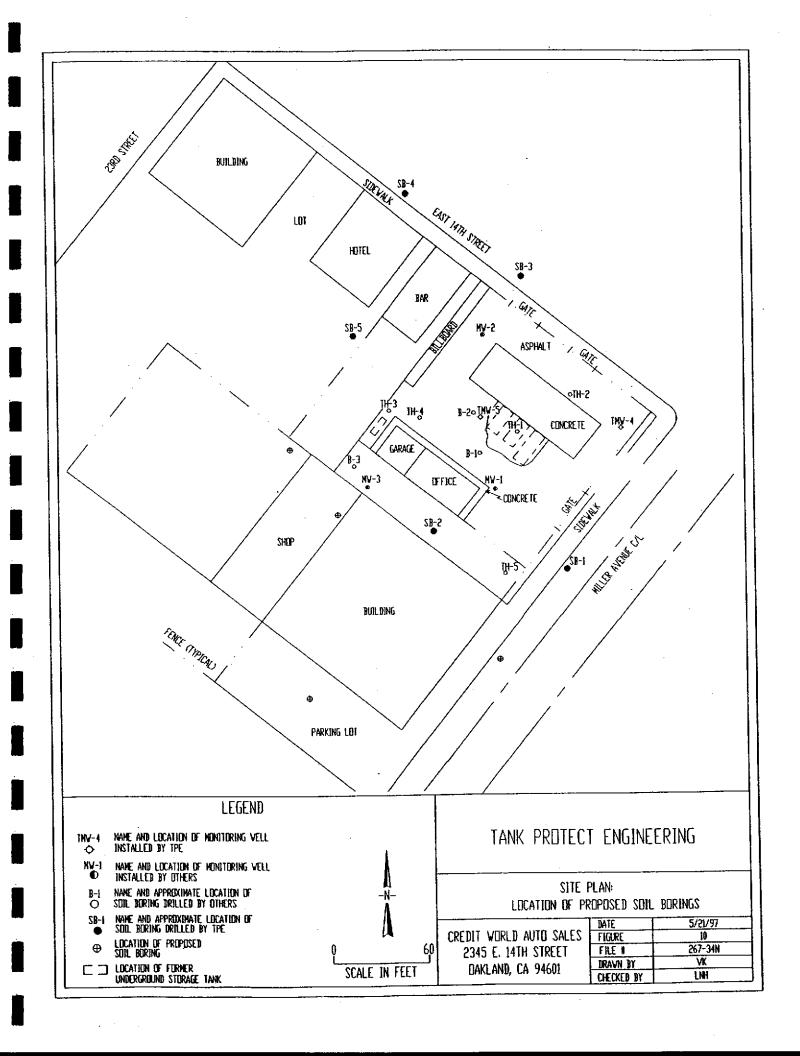
conditions or local regulations require. Drilling mud, when used, will be thinned prior to packplacement. The sand pack shall cover the entire screened interval and rise a minimum of 2 feet above the highest perforation.


Bentonite Seal Placement: A bentonite seal will be placed above the sand pack by a method that prevents bridging. Bentonite pellets can be placed by free fall if proper sinking through annular water can be assured. Bentonite slurry will be placed by the tremie pipe method from the bottom upward. The bentonite seal will not be less than 1 foot in thickness.


Grout Seal Placement: The cement grout mixture will be hydrated with clean water and thoroughly mixed prior to placement. If substantial groundwater exists in the bore hole, the grout shall be placed by tremie pipe method from the bottom upward. In a dry borehole, the grout may be surface poured to a depth of 30 feet. Below a depth of 30 feet grout will be placed by tremie pipe. Grout will be placed in 1 continuous lift and will extend to the surface or to the well vault if the well head is completed below grade. A minimum of 5 feet of grout seal will be installed, unless impractical due to the shallow nature of the well.


<u>Surface Completion</u>: The well head will be protected from fluid entry, accidental damage, unauthorized access, and vandalism. A watertight, locking cap will be installed on the well casing. Access to the casing will be controlled by a keyed lock.


Well heads completed below grade will be completed in a concrete and/or steel vault, installed to drain surface runoff away from the vault.


Well Identification: Each well will be labeled to show well number, depth, hole and casing diameter, and screened interval.











PROJECT NUMBER 267

BORING NO. SB-1

PROJECT NAME 2345 E. 14th Street, Oakland CA

PAGE 1

BY LNH

DATE 4/21/97

SURFACE ELEV. 27 FT

| RECOVERY<br>(FT/PT) | OVA<br>(PPM) | PENETRA-<br>TION<br>(BLOWS/FT | GROUND<br>WATER<br>LEVELS | DEPTH<br>IN PT. | SAMPLES | LITHO-<br>GRAPHIC<br>COLUMN | DESCRIPTION                                                                                                              |
|---------------------|--------------|-------------------------------|---------------------------|-----------------|---------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------|
|                     |              |                               |                           |                 |         |                             | ASPHALT  AGGREGATE BASE (GW): Brown, dry, no odor.  CLAY (CL): Black mottled green, scattered sand, silty, dry, no odor. |
| 1.3/2.0             | 10           | -                             |                           | 5               |         |                             | SAND (SP): Brown, fine-grained, moist to very moist, no odor.                                                            |
| .5072.0             |              | -                             |                           | 10              |         |                             |                                                                                                                          |
| 1.5/2.0             | 10           |                               |                           | 15              |         | 7777                        | CLAYEY SAND (SC/SP): Brown, medium-grained, dry to                                                                       |
| 2.0/2.0             | 8            |                               |                           | 20              |         |                             | moist, no odor.                                                                                                          |
| 1.5/2.0             | <b></b>      |                               |                           | 25              |         |                             |                                                                                                                          |
| 2.0/2.0             | 2 .          |                               |                           | 30              |         |                             | Boring terminated at 32 feet. Boring sampled to 32 feet. No water level was obtained due to caving.                      |
|                     |              |                               |                           | 35              |         | -                           |                                                                                                                          |

REMARKS:

Drilled using the "GeoProbe method", 2.0 inch

diameter boreholes. Samples collected in 1.0-inch

of 1 by 6.0-inch acetate tubes.

PROJECT NUMBER 267

BORING NO. SB-2

PROJECT NAME 2345 E. 14th Street, Oakland CA

PAGE 1

BY LNH

DATE 4/21/97

SURFACE ELEV. 27 FT

| RECOVERY<br>(FT/FT) | OVA<br>(PPM) | PENETRA-<br>TION<br>(BLOWS/FT | GROUND<br>WATER<br>LEVELS | DEPTH<br>IN FT. | SAMPLES | LITHO-<br>GRAPHIC<br>COLUMN | DESCRIPTION                                                                                  |
|---------------------|--------------|-------------------------------|---------------------------|-----------------|---------|-----------------------------|----------------------------------------------------------------------------------------------|
|                     |              |                               |                           | <u> </u>        |         |                             | ASPHALT                                                                                      |
|                     |              |                               |                           |                 |         |                             | AGGREGRATE BASE (GW): Brown, dry, no odor.                                                   |
|                     |              |                               |                           | 5               |         |                             | CLAY (CL): Brown, green at 11.5 feet, silty, stiff, dry to moist, hydrocarbon ordor at 11.5. |
| 1.3/2.0             | 8            | _                             |                           |                 |         |                             |                                                                                              |
| 2.0/2.0             | 46           |                               | <b>☑</b>                  | 10              |         |                             |                                                                                              |
| 2.0/2.0             | 40           |                               |                           |                 |         |                             | CLAYEY SAND (SC/CL): Green, fine to medium-grained,                                          |
| 2.0/2.0             | 340          |                               |                           | 15              |         |                             | moist, hydrocarbon odor.                                                                     |
|                     |              |                               |                           |                 |         |                             |                                                                                              |
| 2.0/2.0             | 8            | _                             |                           | 20              | - Ki    |                             |                                                                                              |
|                     |              |                               |                           |                 |         | 7.7.7.                      | SAND (SP): Brown, clayey, fine-grained, moist, no odor.                                      |
| 1.0/2.0             | 8            |                               |                           | 25              |         |                             |                                                                                              |
|                     |              |                               |                           |                 |         |                             | CLAYEY SAND (SC/SP): Brown, fine-grained, wet, no odor.                                      |
| 2.0/2.0             | 21           | -                             |                           | 30              |         |                             | Boring terminated at 32.0 feet. Boring sampled to 32.0 feet.                                 |
| ¦<br>               |              |                               |                           |                 |         |                             |                                                                                              |

diameter boreholes. Samples collected in 1.0-inch

by 6.0-inch acetate tubes.

PROJECT NUMBER 267

BORING NO. SB-3

PROJECT NAME 2345 E. 14th Street, Oakland CA

PAGE 1

BY LNH

DATE 5/1/97

SURFACE ELEV. 27 FT

| RECOVERY<br>(FI/FT) | OVA<br>(PPM) | PENETRA-<br>TION<br>(BLOWS/FT | GROUND<br>WATER<br>LEVELS | DEPTH<br>IN PT. | SAMPLES | LITHO-<br>GRAPHIC<br>COLUMN | DESCRIPTION                                                                                                                            |
|---------------------|--------------|-------------------------------|---------------------------|-----------------|---------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
|                     |              |                               |                           | <b>₩</b> F.www. |         | 77 <b>7</b> 77              | ASPHALT                                                                                                                                |
|                     |              |                               |                           |                 |         |                             | COBBLESTONE: Light brown, hard                                                                                                         |
|                     | -            |                               |                           |                 |         |                             | CONCRETE                                                                                                                               |
| 1.0/2.0             | 39           |                               |                           | 5               |         |                             | CLAY (CL): Grey to black, sandy, stiff to very stiff, moist, no odor.                                                                  |
|                     |              |                               | SZ                        | 10              |         |                             | CLAYEY SAND (SC/CL): Brown, scattered gravel, medium-grained, dry to moist, no odor.                                                   |
| 1.0/2.0             | <b>40</b>    | -                             |                           | , -             |         |                             |                                                                                                                                        |
| 1.5/2.0             | 16           | _                             |                           | 15              |         |                             |                                                                                                                                        |
| 1.5/2.0             | 56           | -                             |                           | 20              |         |                             |                                                                                                                                        |
| 1.5/2.0             | .29          | -                             |                           | 25              |         |                             |                                                                                                                                        |
| 2.0/2.0             | 18           |                               |                           | 30              |         |                             | SAND (SP): Brown, scattered gravel, fine-grained, moist to wet, no odor.  Boring terminated at 32.0 feet. Boring sampled to 32.0 feet. |
|                     |              |                               |                           | _35             |         |                             |                                                                                                                                        |

REMARKS:

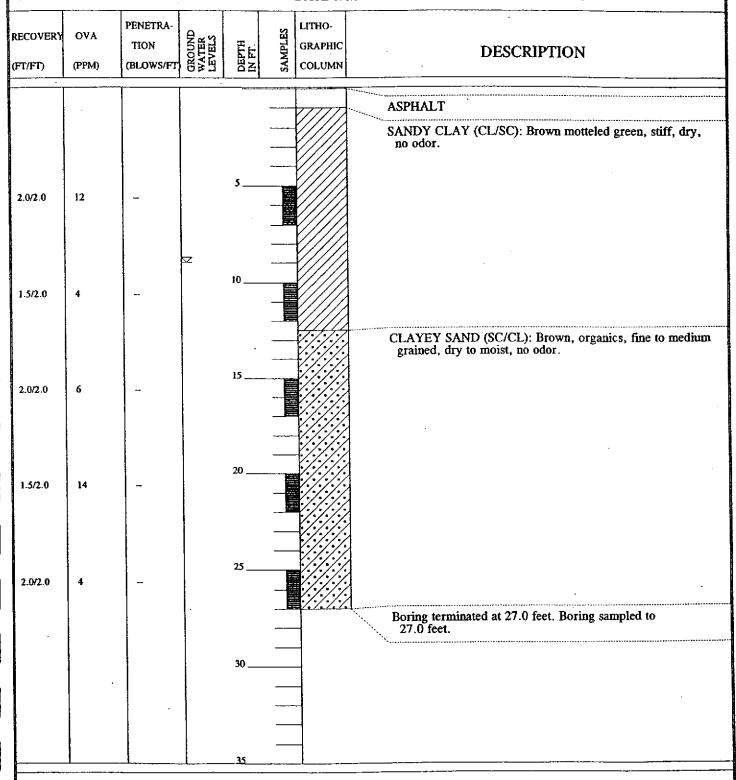
Drilled using the "GeoProbe method", 2.0 inch

diameter boreholes. Samples collected in 1.0-inch

by 6.0-inch acetate tubes.

PROJECT NUMBER 267

BORING NO. SB-4


PROJECT NAME 2345 E. 14th Street, Oakland CA

PAGE 1

BY LNH

DATE 5/1/97

SURFACE ELEV. 27 FT



REMARKS:

Drilled using the "GeoProbe method", 2.0 inch

diameter boreholes. Samples collected in 1.0-inch

by 6.0-inch acetate tubes.

## LOG OF EXPLORATORY BORING PROJECT NUMBER 267 LOG OF EXPLORATORY BORING NO. SB-5

PROJECT NAME 2345 E. 14th Street, Oakland CA

PAGE 1

| RECOVERY<br>(FT/FT) | OVA<br>(PPM) | PENETRA-<br>TION<br>(BLOWS/FT | GROUND<br>WATER<br>LEVELS | DEPTH<br>IN PT. | MPLES | LITHO-<br>GRAPHIC<br>COLUMN | DESCRIPTION                                                                                                       |
|---------------------|--------------|-------------------------------|---------------------------|-----------------|-------|-----------------------------|-------------------------------------------------------------------------------------------------------------------|
| 1.0/2.0             | 12           | -                             |                           | 5               |       |                             | CONCRETE  AGGREGATE BASE (GW): Brown, dry, no odor.  CLAY (CL): Grey to black, sandy, soft, no odor.              |
| 2.0/2.0             | 67           |                               | ⊽                         | 10              |       |                             | CLAYEY SAND (SC/CL): Green, fine-grained, dry, hydrocarbon odor.                                                  |
| 2.0/2.0             | 6            | -                             |                           | 15              |       |                             | CLAYEY SAND (SC/CL): Brown, fine-grained, moist, no odor.                                                         |
| 2.0/2.0             | 11           | _                             |                           | 20              |       |                             | SANDY CLAY (CL/SC): Brown, organics, stiff, dry no odor.                                                          |
| 2.0/2.0             | 6            |                               |                           | 25              |       |                             | CLAYEY SAND (SC/CL): Brown, fine-grained, wet at 27.0 feet, no odor.                                              |
|                     |              |                               |                           | 30              |       |                             | Boring terminated at 27.0 feet. Boring sampled to 27.0 feet. A hydrocarbon sheen on the groundwater was observed. |

REMARKS:

Drilled using the "GeoProbe method", 2.0 inch

diameter boreholes. Samples collected in 1.0-inch

of 1 by 6.0-inch acetate tubes.

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Tank Protect Engineering 2821 Whipple Road Union City, CA 94587 Attn: Lee Huckins

| Date:          | 5/1/97    |
|----------------|-----------|
| Date Received: | 4/24/97   |
| Date Analyzed: | 4/25/97   |
| Project #:     | 267042197 |
| P.O. #:        | 1399      |
| Sampled By:    | Client    |

#### **Certified Analytical Report**

#### Soil Sample Analysis:

| Test          | SB-1<br>26.5-27.0 | SB-2<br>16.5-17.0 | Units | PQL         | EPA<br>Method# |
|---------------|-------------------|-------------------|-------|-------------|----------------|
| Sample Matrix | Soil              | Soil              |       |             |                |
| Sample Date   | 4/21/97           | 4/21/97           |       |             |                |
| Sample Time   | 1345              | 1000              |       |             |                |
| Lab#          | D7160             | ··D7161           |       |             |                |
| DF-Gas/BTEX   | 1                 | 1                 |       |             |                |
| TPH-Gas       | ND                | 3.7               | mg/kg | 1.0 mg/kg   | 8015M          |
| MTBE          | ND                | ND                | mg/kg | 0.05 mg/kg  | 8020           |
| Benzene       | ND                | 0.012             | mg/kg | 0.005 mg/kg | 8020           |
| Toluene       | ND                | 0.0071            | mg/kg | 0.005 mg/kg | 8020           |
| Ethyl Benzene | ND                | 0.042             | mg/kg | 0.005 mg/kg | 8020           |
| Xylenes       | ND                | ND                | mg/kg | 0.005 mg/kg | 8020           |

- 1. DLR=DF x PQL
- 2. Analysis performed by Entech Analytical Labs, Inc. (CAELAP #2224)

Michael N. Golden, Lab Director

DF=Dilution Factor
DLR=Detection Reporting Limit

PQL=Practical Quantitation Limit ND=None Detected at or above DLR 525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Tank Protect Engineering 2821 Whipple Road Union City, CA 94587 Attn: Lee Huckins

| Date:          | 5/1/97       |
|----------------|--------------|
| Date Received: | 4/24/97      |
| Date Analyzed: | 4/25-4/28/97 |
| Project #:     | 267042197    |
| P.O. #:        | 1399         |
| Sampled By:    | Client       |

#### **Certified Analytical Report**

#### Water Sample Analysis:

| Test          | SB-1W   | SB-2W   | Units            | PQL       | EPA<br>Method # |
|---------------|---------|---------|------------------|-----------|-----------------|
| Sample Matrix | Water   | Water   |                  |           |                 |
| Sample Date   | 4/21/97 | 4/21/97 |                  |           |                 |
| Sample Time   | 1540    | 1103    |                  |           | _               |
| Lab#          | D7162   | D7163   |                  |           |                 |
| DF-Gas/BTEX   | 1       | 20      |                  |           |                 |
| TPH-Gas       | ND      | 6,100   | μg/liter         | 50.0 μg/l | 8015M           |
| MTBE          | ND      | ND      | μ <b>g/liter</b> | 5.0 μg/l  | 8020            |
| Benzene       | ND      | 870     | μg/liter         | 0.5 μg/l  | 8020            |
| Toluene       | ND      | 35      | μg/liter         | 0.5 μg/l  | 8020            |
| Ethyl Benzene | ND      | 17      | μg/liter         | 0.5 μg/l  | 8020            |
| Xylenes       | ND      | 28      | μ <b>g/liter</b> | 0.5 μg/l  | 8020            |

- 1. DLR=DF x PQL
- 2. Analysis performed by Entech Analytical Labs, Inc. (CAELAP #2224)

Michael N. Golden, Lab Director

DF=Dilution Factor DLR=Detection Reporting Limit PQL=Practical Quantitation Limit
ND=None Detected at or above DLR

Environmental Analysis Since 1983

METHOD: Gas Chromatography

QC Batch #: GBG4970425

Matrix: Soil

Units: ug/kg

Date Analyzed: 04/25/97 Quality Control Sample: Blank Spike

| Оша           | ug/Ag    |             |             | _           |             |           |              |           |     |    |                         |
|---------------|----------|-------------|-------------|-------------|-------------|-----------|--------------|-----------|-----|----|-------------------------|
| PARAMETER     | Method # | MB<br>ug/kg | SA<br>ug/kg | SR<br>ug/kg | SP<br>ug/kg | SP<br>% R | SPD<br>ug/kg | SPD<br>%R | RPD |    | LIMITS<br>VISORY)<br>%R |
| Benzene       | 8020     | <5.0        | 80          | ND          | 104         | 130       | 98           | 123       | 5.9 | 25 | 50-150                  |
| Toluene       | 8020     | <5.0        | 80          | ND          | 103         | -129      | 95           | 119       | 8.1 | 25 | 50-150                  |
| Ethyl Benzene | 8020     | <5.0        | 80          | ND          | 105         | 131       | 97           | 121       | 7.9 | 25 | 50-150                  |
| Xylenes       | 8020     | <5.0        | 240         | ND          | 313         | 130       | 289          | 120       | 8.0 | 25 | 50-150                  |
| Gasoline*     | 8015     | <1000.00    | 1000        | 0.0         | 940         | 94        | 890          | 89        | 5.5 | 25 | 50-150                  |

\*LCS and LCSD were analyzed for this parameter

#### Definition of Terms:

na: Not Analyzed in QC batch

MB: Method Blank SA: Spike Added SR: Sample Result

RPD(%): Duplicate Analysis - Relative Percent Difference

SP: Spike Result

SP (%R): Spike % Recovery

SPD: Spike Duplicate Result

SPD (%R): Spike % Recovery

METHOD: Gas Chromatography

QC Batch #: GBG2970425

Matrix: Soil Units: ug/kg Date Analyzed: 04/25/97

Quality Control Sample: Blank Spike

| PARAMETER     | Method # | MB<br>ug/kg | SA<br>ug/kg | SR<br>ug/kg | SP<br>ug/kg | SP<br>% R | SPD<br>ug/kg | SPD<br>%R | RPD | _      | LIMITS<br>VISORY)<br>%R |
|---------------|----------|-------------|-------------|-------------|-------------|-----------|--------------|-----------|-----|--------|-------------------------|
| Benzene       | 8020     | <5.0 : i    | 80          | 0.0         | 79          | 99        | 76           | 95        | 3.9 | i 25 i | 50-150                  |
| Toluene       | 8020     | <5.0        | 80          | 0.0         | 77          | 96        | 74           | 93        | 4.0 | 25     | 50-150                  |
| Ethyl Benzene | 8020     | <5.0        | 80          | 0.0         | 77          | 96        | 75           | 94        | 2.6 | 25     | 50-150                  |
| Xylenes       | 8020     | <5.0 ∶      | 240         | 0.0         | 232         | 97        | 223          | 93        | 4.0 | 25     | 50-150                  |
| Gasoline*     | 8015     | <1000.00    | 1000        | 0.0         | 990         | 99        | 1020         | 102       | 3.0 | 25     | 50-150                  |

<sup>\*</sup>LCS and LCSD were analyzed for this parameter.

#### Definition of Terms:

na: Not Analyzed in QC batch

MB: Method Blank SA: Spike Added SR: Sample Result

RPD(%): Duplicate Analysis - Relative Percent Difference

SP: Spike Result

SP (%R): Spike % Recovery

SPD: Spike Duplicate Result

SPD (%R): Spike % Recovery

METHOD: Gas Chromatography

QC Batch #: GBG2970428

Matrix: Soil

Date Analyzed: 04/28/97 Quality Control Sample: D7377

Units: ug/kg

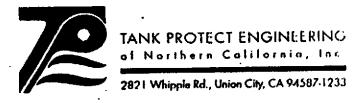
| PARAMETER     | Method # | MB<br>ug/kg | SA<br>ug/kg | SR<br>ug/kg | SP<br>ug/kg | SP<br>% R | SPD<br>ug/kg | SPD<br>%R | RPD |    | LIMITS<br>VISORY)<br>%R |
|---------------|----------|-------------|-------------|-------------|-------------|-----------|--------------|-----------|-----|----|-------------------------|
| Benzene       | i 8020   | i <5.0 - i  | 80          | ND          | 78          | 98        | 76           | 95        | 2.6 | 25 | 50-150                  |
| Toluene       | 8020     | <5.0        | 80          | ND          | 77          | 96        | 75           | 94        | 2.6 | 25 | 50-150                  |
| Ethyl Benzene | 8020     | <5.0        | 80          | ND          | 76          | 95        | 74 %         | 93        | 2.7 | 25 | 50-150                  |
| Xylenes       | 8020     | · <5.0 ·    | 240         | ND          | 228         | 95        | 225          | 94        | 1.3 | 25 | 50-150                  |
| Gasoline*     | 8015     | <1000.00    | 1000        | 0.0         | 960         | 96        | 1000         | 100       | 4.1 | 25 | 50-150                  |

#### Definition of Terms:

na: Not Analyzed in QC batch

MB: Method Blank SA: Spike Added SR: Sample Result

RPD(%): Duplicate Analysis - Relative Percent Difference


SP: Spike Result

SP (%R): Spike % Recovery

SPD: Spike Duplicate Result

SPD (%R): Spike % Recovery

<sup>\*</sup>LCS and LCSD were analyzed for this parameter.



(510) 429.8088 = (800) 523.8088 = Fox (510) 429.8089

| LAB: | Enve | يل  | <br> |
|------|------|-----|------|
|      |      | \ I |      |

TURNAROUND: 15 day

P.O. #: 1399

PAGE / OF /

### CHAIN OF CUSTODY

|                 | HAME.    | 100000<br>ee /<br>o, uni | 2345<br>2345<br>3 MD 1                           | S<br>アンド<br>PELEPHONI<br>カム<br>CA 945 | ADDRESS   | 29-8088<br>.OCATION                    | (1)<br>TYPE<br>OF<br>CON-<br>TAINER              | 13 / A |                                       |      |       |      |      |               |      | REI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MARKS                     |
|-----------------|----------|--------------------------|--------------------------------------------------|---------------------------------------|-----------|----------------------------------------|--------------------------------------------------|--------|---------------------------------------|------|-------|------|------|---------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| 33-1<br>268-21  | 4/21     | str-                     | ×                                                |                                       | 26.5-27   | . <b>5</b>                             | 1tube                                            | ų.     | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |      |       |      |      |               | 7162 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
| 53-Z<br>168-174 | 4/2,     | /60C                     | 1                                                |                                       | 145-17    | , 0                                    | Hube                                             | ~      | 1                                     |      |       |      |      |               | 7161 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
| 35-/W           | 4/21     |                          | T                                                | 8'                                    | 1         |                                        | 34sml                                            | 7      | ~                                     | :    |       |      |      |               | 7162 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
|                 | HILI     |                          |                                                  | 8                                     | <b>V</b>  |                                        | Z.40me                                           | ×      | V                                     | 4    |       |      |      | 0             | 7163 | )<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |
|                 |          | ╂                        | 1                                                | 1                                     | 1         | ·                                      |                                                  |        | Γ                                     |      |       |      | T    |               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
| <u> </u>        | -        |                          | +                                                |                                       |           |                                        |                                                  | T      | T                                     | T    |       |      |      |               |      | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |
|                 |          | $\vdash$                 | ╁─                                               |                                       |           | ······································ |                                                  | 1      | t                                     | †    | 11    | 丁    | 1    |               |      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |
|                 | ┼        | ╂                        | -                                                | <del> </del>                          |           | ·                                      | <del>                                     </del> | t      | ┢                                     | 十    | H     | 1    | †    |               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
|                 | ļ        |                          | <del>                                     </del> | <u> </u>                              |           |                                        |                                                  | ╁╌     | H                                     | 十    | H     | 十    | 十    |               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
|                 | <u> </u> | 76.5                     |                                                  |                                       | to / Time | Received b                             | y : (Signa                                       | LUF    |                                       | Rel  | inqu  | ahas | l by | : (Signature) | Date | / Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Received by : (Signature) |
| Relinquie       | 1 1      |                          | BBENTA)                                          |                                       | PD820     | arll                                   | inga                                             |        | 1                                     |      |       |      |      |               | ·    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Received by : (Signature) |
| Relinquish      |          |                          | nature)                                          |                                       | e / Time  | Received b                             | y //(Signa                                       | tur    | "                                     | Rol. | lupal | shod | by   | : (Signature) | Date | / Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Keceraed ph : (arabutate) |
| Rolinquish      | ed by    | ; (Sign                  | naturo)                                          | Da                                    | to / Time | Received for [Signature]               | Laboratory by                                    | :      |                                       | D    | ate / | Tim  | 0    | Rozarks       |      | a de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra del la contra del la contra del la contra de la contra del la contra de la contra de la contra del la contra del la contra del la contra del la contra del la contra del la contra del la contra del la contra del la contra del la contra del la contra del la contra del la contra del la contra del la contra del la contra del la contra del la contra del la contra del la contra del la contra del la contra del la contra del la contra del la contra |                           |

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Tank Protect Engineering 2821 Whipple Road Union City, CA 94587 Attn: Lee Huckins

| Date:          | 5/6/97    |
|----------------|-----------|
| Date Received: | 5/2/97    |
| Date Analyzed: | 5/5/97    |
| Project #:     | 267050297 |
| P.O. #:        | 1404      |
| Sampled By:    | Client    |

#### **Certified Analytical Report**

#### Soil Sample Analysis:

| Test          | SB-3    | SB-4    | SB-5            | Units | PQL         | EPA     |
|---------------|---------|---------|-----------------|-------|-------------|---------|
|               | 21.5-22 | 21.5-22 | 11.5-12.0       |       |             | Method# |
| Sample Matrix | Soil    | Soil    | Soil            |       |             |         |
| Sample Date   | 5/1/97  | 5/1/97  | 5/1/97          |       |             |         |
| Sample Time   | 11:23   | 13:52   | 9:10            |       |             |         |
| Lab#          | D7700   | D7701   | D7702           |       |             |         |
| DF-Gas/BTEX   | 1       | 1       | 62              |       |             |         |
| TPH-Gas       | ND      | ND      | 91 <sup>2</sup> | mg/kg | 1.0 mg/kg   | 8015M   |
| MTBE          | ND      | ND      | ND              | mg/kg | 0.05 mg/kg  | 8020    |
| Benzene       | ND      | ND      | ND              | mg/kg | 0.005 mg/kg | 8020    |
| Toluene       | ND      | ND      | ND              | mg/kg | 0.005 mg/kg | 8020    |
| Ethyl Benzene | ND      | ND      | ND              | mg/kg | 0.005 mg/kg | 8020    |
| Xylenes       | ND      | ND      | ND              | mg/kg | 0.005 mg/kg | 8020    |

- 1. DLR=DF x PQL
- 2. TPH-Gas chromatogram for Lab #D7702, although within the reporting range, does not match the typical Gas pattern
- 3. Analysis performed by Entech Analytical Labs, Inc. (CAELAP #2224)

Michael N. Golden, Lab Director

DF=Dilution Factor DLR=Detection Reporting Limit PQL=Practical Quantitation Limit ND=None Detected at or above DLR

Environmental Analysis Since 1983

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Tank Protect Engineering 2821 Whipple Road Union City, CA 94587 Attn: Lee Huckins

| Date:          | 5/6/97    |
|----------------|-----------|
| Date Received: | 5/2/97    |
| Date Analyzed: | 5/5/97    |
| Project #:     | 267050297 |
| P.O. #:        | 1404      |
| Sampled By:    | Client    |

#### **Certified Analytical Report**

#### Water Sample Analysis:

| Test          | SB-3W  | SB-4W  | SB-5W  | Units             | PQL       | EPA<br>Method # |
|---------------|--------|--------|--------|-------------------|-----------|-----------------|
| Sample Matrix | Water  | Water  | Water  |                   |           |                 |
| Sample Date   | 5/1/97 | 5/1/97 | 5/1/97 |                   |           |                 |
| Sample Time   | 12:20  | 14:00  | 10:25  |                   |           |                 |
| Lab#          | D7703  | D7704  | D7705  |                   |           |                 |
| DF-Gas/BTEX   | 1      | . 1    | 2      |                   |           |                 |
| TPH-Gas       | ND     | ND     | 890    | μg/liter          | 50.0 µg/l | 8015M           |
| MTBE          | ND     | ND     | 12     | μ <b>g/liter</b>  | 5.0 μg/l  | 8020            |
| Benzene       | ND     | ND     | 5.4    | μg/liter          | 0.5 µg/I  | 8020            |
| Toluene       | ND     | ND     | ND     | μg/liter          | 0.5 μg/l  | 8020            |
| Ethyl Benzene | ND     | ND     | 1.4    | μα/liter          | 0.5 μg/l  | 8020            |
| Xylenes       | ND     | ND     | ND     | μ <b>g</b> /liter | 0.5 μg/l  | 8020            |

1. DLR=DF x PQL

2. Analysis performed by Entech Analytical Labs, Inc. (CAELAP #2224)

Michael N. Golden, Lab Director

DF=Dilution Factor
DLR=Detection Reporting Limit

PQL=Practical Quantitation Limit
ND=None Detected at or above DLR

Environmental Analysis Since 1983

METHOD: Gas Chromatography

QC Batch #: GBG4970505

Date Analyzed: 05/05/97

Matrix: Soil

Quality Control Sample: D7720

Units: ug/kg

| PARAMETER     | Method # | MB<br>ug/kg | SA<br>ug/kg | SR<br>ug/kg | SP<br>ug/kg | SP<br>% R | SPD<br>ug/kg | SPD<br>%R | RPD |    | LIMITS<br>VISORY)<br>%R |
|---------------|----------|-------------|-------------|-------------|-------------|-----------|--------------|-----------|-----|----|-------------------------|
| Benzene       | 8020     | <5.0        | 80          | ND          | 102         | 128       | 98           | 123       | 4.0 | 25 | 50-150                  |
| Toluene       | 8020     | <5.0        | 80          | ND          | 100         | 125       | 96           | 120       | 4.1 | 25 | 50-150                  |
| Ethyl Benzene | 8020     | <5.0        | 80          | ND          | 101         | 126       | 97           | 121       | 4.0 | 25 | 50-150                  |
| Xylenes       | 8020     | i <5.0 i    | 240         | ND          | 302         | 126       | 292          | 122       | 3.4 | 25 | 50-150                  |
| Gasoline*     | 8015     | <1000.00    | 1000        | 0.0         | 1000        | 100       | 980          | 98        | 2.0 | 25 | 50-150                  |

\*LCS and LCSD were analyzed for this parameter

#### Definition of Terms:

na: Not Analyzed in QC batch

MB: Method Blank SA: Spike Added SR: Sample Result

RPD(%): Duplicate Analysis - Relative Percent Difference

SP: Spike Result
SP (%R): Spike % Recovery
SPD: Spike Duplicate Result

SPD (%R): Spike % Recovery NC: Not Calculated

METHOD: Gas Chromatography

QC Batch #: GBG5970505

Matrix: Water

Date Analyzed: 05/05/97

Quality Control Sample: Blank Spike

| TOOL INT. | ** 1450 |
|-----------|---------|
| Units:    | μg/L    |

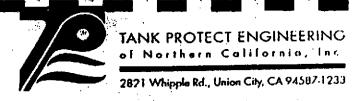
| PARAMETER     | Method # | MB<br>μg/L | SA<br>µg/L | SR<br>μg/L | SP<br>μg/L | SP<br>% R | SPD<br>µg/L | SPD<br>%R | RPD |      | LIMITS<br>VISORY)<br>%R |
|---------------|----------|------------|------------|------------|------------|-----------|-------------|-----------|-----|------|-------------------------|
| Benzene       | 8020     | <0.5       | 25         | 0.0        | 22         | 88        | 23          | 92        | 4.4 | 25 i | 50-150                  |
| Toluene       | 8020     | <0.5       | 25         | 0.0        | 24         | 96        | 24          | 96        | 0.0 | 25   | 50-150                  |
| Ethyl Benzene | 8020     | <0.5       | 25         | 0.0        | 25         | 100       | 25          | 100       | 0.0 | 25   | 50-150                  |
| Xylenes       | 8020     | <0.5       | 75         | 0.0        | 69         | 92        | 69          | 92        | 0.0 | 25   | 50-150                  |
| Gasoline      | 8015     | <50.0      | 625        | 0          | 636        | 102       | 656         | 105       | 3.1 | 25   | 50-150                  |

#### Definition of Terms:

na: Not Analyzed in QC batch

MB: Method Blank SA: Spike Added

SR: Sample Result


RPD(%): Duplicate Analysis - Relative Percent Difference

SP: Spike Result

SP (%R): Spike % Recovery

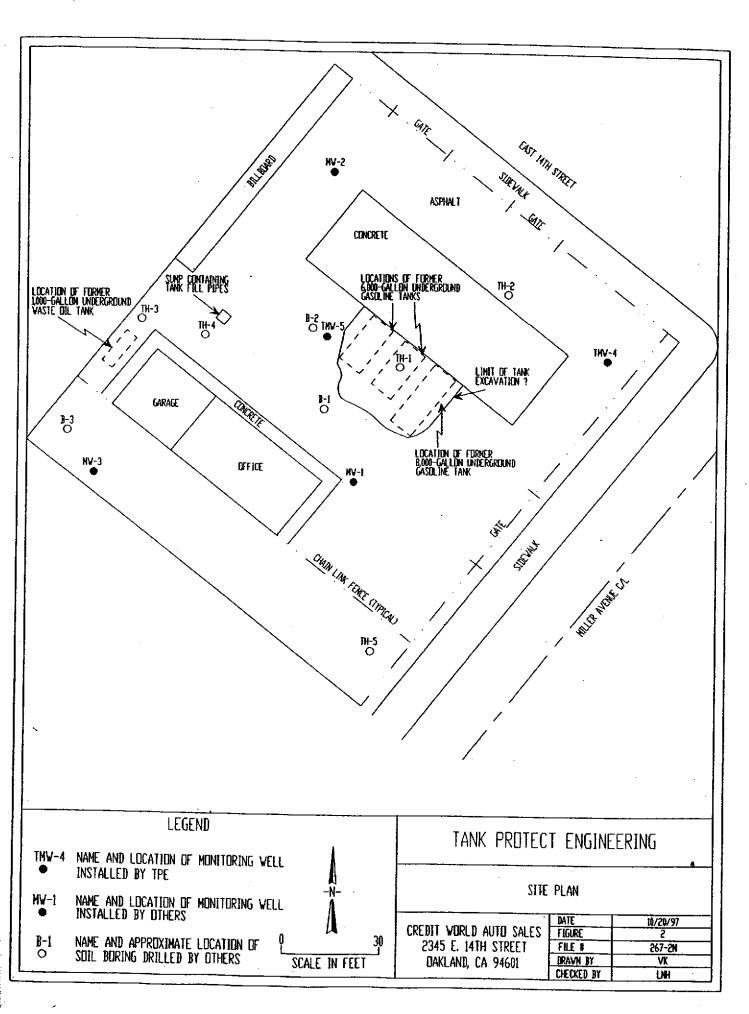
SPD: Spike Duplicate Result

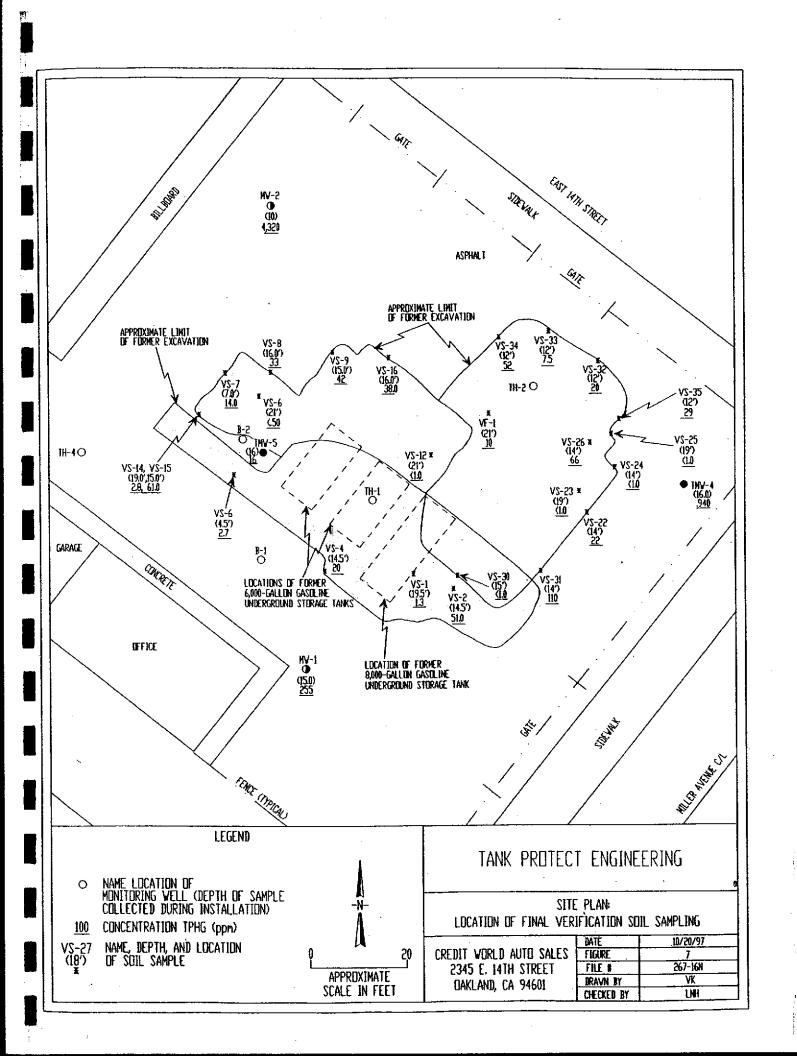
SPD (%R): Spike % Recovery

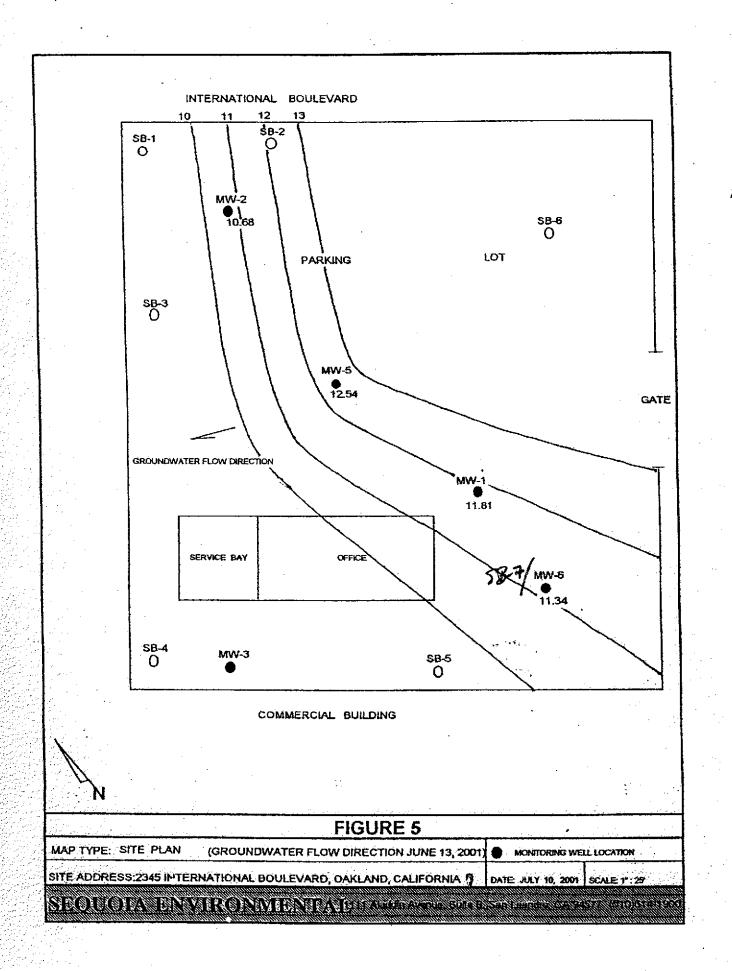


TURNAROUND: 48 hr

DATE


P.O. #: 1404


[510] 429 8088 = [800] 523 8088 = Fox [510] 429 8089


CHAIN OF CUSTODY

PAGE \_\_\_\_\_\_ OF \_\_\_\_\_\_

| CIVOTO               | CANAS  ZSUF E ) 4 <sup>th</sup> Stree Colclus  SAMPLER MANE, ADDRESS AND THERPHONE NUMBER  100 LICLAINS  121 UNIPPLE ROAD, UNION CITY, CA 94587 (415) 429-8088  1D NO. DATE TIME SOIL WATER SAMPLING LOCATION |       |       |          |                 |              | 174 de 180 |          |      |          |              |      |            |     | RE           | MARKS                                                |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|----------|-----------------|--------------|------------|----------|------|----------|--------------|------|------------|-----|--------------|------------------------------------------------------|
| B-3<br>Z15-30        | 5),                                                                                                                                                                                                           | IIZS  | ×     |          | 21.5-27.        | 1 tube       | ×          | メ        |      |          |              |      | need       | MTB | ٤            | D7700                                                |
| B-4<br>15-22         | 5),                                                                                                                                                                                                           | /35Z  | ×     | ·        | ZL5-ZZ          | 1 tabe       | ×          | <b>V</b> |      |          | $\perp$      |      | ),         | 1)  |              | D7701                                                |
| B-5<br>15#720        |                                                                                                                                                                                                               | 910   | ¥     |          | 11.5-12.0       | 1 tube       | ٤          | ×        |      |          | 1            | _    | )2         |     | <del></del>  | 07702                                                |
| B-34                 | 5/1                                                                                                                                                                                                           | 1220  | *     | 1        |                 | z-40me       | ×          | _        |      |          | $\downarrow$ | 1    |            |     | <del>-</del> | 07703                                                |
| 3-4W                 | 5/,                                                                                                                                                                                                           | 7400  | *     | <b>√</b> |                 | z-40ml       | Ľ          | X        |      | $\sqcup$ | 1            | _    | <u> </u>   | 41  |              | 07704                                                |
| B-54                 |                                                                                                                                                                                                               | 1025  | *     | 5        |                 | 3-4ane       | ×          | ¥        | -    | dash     | +            | +    | - 11       | le: |              | 07705                                                |
|                      |                                                                                                                                                                                                               |       |       |          |                 |              |            |          |      |          | 1            |      |            |     |              |                                                      |
| plaquish<br>linquish | ur b                                                                                                                                                                                                          | (Sign | ture) | Sals     | 7/1:20 Resulted | Signa (Signa | ture       |          | Roli |          | hod          | by : | : (Signatu |     | Date / Time  | Received by : (Signature)  Received by : (Signature) |







## BORING\*&#MONKTORING#WEEE#SEA

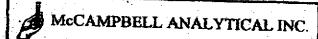
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |        | _                                      | 14 •    |          |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|--------|----------------------------------------|---------|----------|---------------|
| CLEINT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | - PROJ     | ECT N  | AME:                                   | Dakland |          |               |
| PROJECT ADDRESS: 2345 International Boulevard, California                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | D          | ATE D  | ************************************** |         | , 2001   |               |
| DRILLING METHOD: Hollow Stem Auger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SAMPL   | ER TYP     | E:     | CA Split S                             |         | ampier   |               |
| TOTAL DEPTH OF BORING: W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IDTH OF | BORIN      | IG:    | 6 3/4 - incl                           | ies     |          |               |
| DEPTH TO GROUNDWATER AT THE TIME OF DRILLING: N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S       | TATIC \    | WATE   | R LEVEL:                               | N/A     |          |               |
| CASING DIAMETER: N/A CASING LENGTH: N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | - SCRE     | EN DI  | AMETER:                                | N/A     |          |               |
| SCREEN LENGTH: N/A SLOT SIZE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | N/A        |        |                                        |         |          |               |
| ORILLING COMPANY: Bay Area Exploration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | DR         | ULLING | 3 LIC.:                                | C57-5   | 22125    |               |
| Drawing John Att.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |            |        |                                        |         |          | <del></del> ) |
| CORE SAMPLE CONDITION LEGEND: Undisturbed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dist    | urbed      |        |                                        | o Reco  | very     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |        |                                        |         |          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |        |                                        | CON     | ISTRUC   | TION          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |        |                                        |         |          |               |
| LOGGED BY Chris Wahiroh REVIEWED BY: Ola Balogun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | SOIL       |        | RECOVERY                               |         |          |               |
| Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Contro | DEPTH   | HIFE       | (ppm)  |                                        | SEAL    | CASING   | SCREEN        |
| ASPHALT covering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |            |        |                                        |         |          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |        |                                        | :       |          | ·             |
| SANDY CLAY: Brown; about 40% coarse, coarse to fine, hard angular to rounded sand; about 60% clay, moderate plasticity; dry to moist; no hydrocarbon odor; no reaction with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | CL.        | 0      | 2,3,5                                  |         |          |               |
| hydrochloric acid (HCL).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5       | CL.        |        |                                        |         |          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |        |                                        |         | <u> </u> |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | <b>.</b> . |        |                                        |         |          |               |
| SANDY CLAY: Greenish; about 40% coarse to fine, hard subangular to rounded sand; about 60% clay, moderate to high plasticity, molst; has hydrocarbon odor; no reaction with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | CL         | 264    | ļ                                      |         |          |               |
| HCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10      |            |        | 5,11,17                                |         |          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |        |                                        |         |          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | ٠          |        |                                        |         |          |               |
| CLAYEY SAND: Brown; about 40% clay, moderate to high plasticity, about 50% coasre to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , F     | CL         | 4      |                                        |         |          |               |
| fine, hard rounded sand; about 10% gravel size about 1/4 inch; moist to saturated; no hydrocarbon odor; Groundwater water encountered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15      | 1          |        | 5,11,13                                |         |          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 1          |        | 3,11,13                                |         |          |               |
| 1 <b>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1       |            |        |                                        |         |          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -       |            |        |                                        |         |          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 1          |        |                                        |         |          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20      | -          |        |                                        |         |          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |        |                                        |         |          |               |
| (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |            |        |                                        |         | 1        |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7       |            |        |                                        |         |          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25      |            |        |                                        |         |          | <u> </u>      |

## BORING SAMONITORING WELLE COMMENS.

|                                                                                            |                                               |                                                    |                                       |        |        |             |         | ÷           |        |
|--------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------|---------------------------------------|--------|--------|-------------|---------|-------------|--------|
| CLEINT: Stanley Wong                                                                       | <del></del>                                   |                                                    |                                       | PRO    | JECT N | IAME:       | Oakland | <u> </u>    |        |
| PROJECT ADDRESS: 2345 International Bo                                                     | xulevard, Oakland,                            | California                                         |                                       | I      | DATE I | ORILLED:    | May 2   | 2, 2001     | ····   |
| DRILLING METHOD: Hollow Stem Auger                                                         |                                               |                                                    | SAMPL                                 | ER TY  | PE:    | CA Split S  | Spoon S | ampler      |        |
| 20 Feet TOTAL DEPTH OF BORING:                                                             |                                               |                                                    | WIDTH O                               | BORI   | NG:    | 6 3/4 - inc | hes     |             |        |
| DEPTH TO GROUNDWATER AT THE TIME OF                                                        | F DRILLING: N/A                               |                                                    | S                                     | TATIC  | WATE   | R LEVEL:    | N/A     | <del></del> |        |
| CASING DIAMETER: N/A                                                                       | CASING LENG                                   | TH: N/A                                            |                                       | - SCRI | EÉN DI | AMETER:     | N/A     |             |        |
| SCREEN LENGTH; N/A                                                                         |                                               |                                                    |                                       | N/A    |        | ·           |         |             |        |
| DRILLING COMPANY: Bay Area Exploration                                                     |                                               |                                                    |                                       | DI     | SILLIN | G LIC.:     | C57-5   | 22125       |        |
| Section 1997                                                                               |                                               | •                                                  | · · · · · · · · · · · · · · · · · · · |        |        |             |         |             |        |
| CORE SAMPLE CONDITION LEGEND:                                                              |                                               | Undisturbed                                        | Dist                                  | urbed  |        | <b></b>     | lo Reco | very        |        |
|                                                                                            |                                               |                                                    |                                       |        |        |             |         |             |        |
|                                                                                            |                                               |                                                    |                                       |        |        | ·           | COI     | ISTRUC      | CTION  |
|                                                                                            |                                               |                                                    |                                       |        |        |             |         |             |        |
| LOGGED BY Chris Wabuzoh REVIEV                                                             | VED RY Ofa Balo                               | ai m                                               |                                       | SOIL   | PID    | RECOVERY    |         |             |        |
| ASPHALT covering                                                                           |                                               | <del></del>                                        | DEPTH                                 | ITPE   | (ppm)  |             | SEAL    | CASING      | SCREEN |
|                                                                                            |                                               |                                                    |                                       |        |        |             |         |             |        |
| Miller<br>Miller and Miller and American State (1988)                                      |                                               |                                                    | <b>—</b>                              |        |        |             |         |             |        |
| SANDY CLAY: Brown; about 40% coarse to f<br>about 60% clay, moderate plasticity; dry to mo |                                               |                                                    |                                       |        | 0      | 4,6,9       |         |             |        |
| hydrochloric acid (HCL).                                                                   | ·                                             |                                                    | 5                                     | CL     |        |             |         |             |        |
|                                                                                            |                                               |                                                    |                                       |        |        |             |         |             |        |
| SANDY CLAY: Gray with Iron staining; about                                                 | 40% coarse to fine                            | hard subangular to                                 | -                                     |        | 270    |             | ]       |             |        |
| rounded sand; about 60% clay, moderate to h                                                | nigh plasticity, mois                         | t; has hydrocarbon odol                            | r;                                    | CL     |        |             |         |             |        |
|                                                                                            |                                               |                                                    | 10                                    |        |        | 4,10,12     |         |             |        |
|                                                                                            |                                               |                                                    |                                       | ,, ,   |        |             |         |             |        |
|                                                                                            |                                               |                                                    |                                       |        | ŀ      | ·           |         |             |        |
| CLAYEY SAND: Brown; about 30% clay, mod<br>fine, hard rounded sand; about 10% gravel si    | derate to high plasti<br>ze about 1/4 inch: r | icity; about 60% coasre                            | to                                    | sc     | 1      |             |         |             | 1 2    |
| odor, no reaction with HCL.                                                                | •                                             |                                                    | 15                                    |        |        | 8,11,15     |         |             |        |
|                                                                                            |                                               |                                                    |                                       |        |        |             |         |             |        |
| SANDY CLAY: Brown; about 30% coarse to                                                     | was fire band and                             | Galanda aramada arkanasa Terreti is                |                                       |        |        |             |         |             |        |
| moderate to high plasticity, moist to saturated                                            | very rine, nard rour<br>I; no hydrocarbon o   | ided sand; about 70% o<br>idor; no reaction with H | CL.                                   | sc     | 0      |             |         |             |        |
|                                                                                            |                                               |                                                    | 20                                    |        |        | 5,10,15     |         | }           |        |
|                                                                                            |                                               |                                                    |                                       |        |        |             | 1       |             |        |
|                                                                                            |                                               |                                                    |                                       |        |        | 1           |         | 1           |        |
|                                                                                            |                                               |                                                    |                                       |        |        |             |         | 1           |        |
|                                                                                            | <u> </u>                                      | <u> </u>                                           | 25                                    |        |        |             |         |             |        |

## SORUNGER MONISCORING WELLINGER SERVE

|                                                                                                                                                                              |             |               |              |              |         |              | 1      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|--------------|--------------|---------|--------------|--------|
| CLEINT: Stanley Wong                                                                                                                                                         |             | – PRO         | JECT N       | AME:         | Oato    | end          |        |
| PROJECT ADDRESS: 2345 International Boulevard, Oakland, California                                                                                                           | <del></del> |               | DÀTE I       | WILLED: •    | May     | 22, 2001     |        |
| DRILLING METHOD: Hotlow Stem Auger                                                                                                                                           | SAMPL       | ER TY         | PE:          | CA Spi       | k Speci | Sampler      |        |
| TOTAL DEPTR OF BORING: W                                                                                                                                                     | NDTH O      | F BORE        | NG:          | 63/4-1       | nches   |              |        |
| DEPTH TO GROUNDWATER AT THE TIME OF DRILLING: N/A                                                                                                                            | s           | TATIC         | WATE         | R LEVEL:     | N/A     | <del></del>  |        |
| CASING DIAMETER: N/A CASING LENGTH: N/A                                                                                                                                      | ·           | - SCR         | EEN DI       | AMETER:      | NVA     | `            |        |
| SCREEN LENGTH: N/A SLOT SIZE: —                                                                                                                                              | <u>.</u>    | N/A           | <del></del>  | <del>,</del> | ·       |              |        |
| ORE LING COMPANY: Bay Area Embration                                                                                                                                         |             | DI            | RELLEN       | 3 LJC.:      | C5      | -522125      |        |
| CORE SAMPLE CONDITION LEGEND: Undisturbed                                                                                                                                    | Z Die       | turtsed       |              |              | No Re   | сочегу       |        |
|                                                                                                                                                                              |             |               |              |              | T       | <del> </del> |        |
|                                                                                                                                                                              |             |               | •            |              | l c     | ONSTRU       | CTION  |
|                                                                                                                                                                              |             |               |              |              | -       | <u> </u>     | T      |
| LOGGED BY:Chris Wabuzoh REVIEWED SY: Ola Balogun                                                                                                                             | DEPTH       | SOIL          | PID<br>(ppm) | RECOVE       | 1       | k<br>I       |        |
| ASPHALT covering                                                                                                                                                             |             |               | (19211)      | ,            | SEA     | CASING       | SCREEN |
|                                                                                                                                                                              | , :         |               |              |              |         |              |        |
| NO RECOVERY                                                                                                                                                                  | <b>-</b>    |               |              |              |         |              |        |
|                                                                                                                                                                              |             |               | Ö            | 4,8,11       |         |              | '      |
|                                                                                                                                                                              | 5           |               |              |              |         |              |        |
|                                                                                                                                                                              |             |               |              | اسا          |         |              |        |
| SANDY CLAY: Gray; about 30% coarse to fine, hard subangular to rounded sand; about 60% clay, moderate to high plasticity, moist; has hydrocarbon odor; no reaction with HCL. | -           | CL            | 348          |              |         |              |        |
|                                                                                                                                                                              | 10          |               |              | 4,8,11       |         |              |        |
|                                                                                                                                                                              |             | <del></del> . |              |              |         |              |        |
|                                                                                                                                                                              |             |               |              |              |         |              | •      |
| CLAYEY SAND: Gray, about 30% clay, moderate to high pleaticity, about 50% coeare to fine, hard rounded sand; about 10% gravel size about 1/4 inch; moist; has hydrocarbon    | ·           | sc            | 400          |              |         |              |        |
| odor, no reaction with HCL.                                                                                                                                                  | 15          | 1             |              | 7,11,18      |         |              |        |
|                                                                                                                                                                              |             |               |              |              |         |              |        |
| CANDY OF AV. Brazinia should SERF                                                                                                                                            |             |               |              |              |         |              |        |
| SANDY CLAY: Brown, about 35% coerse to very fine, hard rounded sand, about 60% clay moderate to high plasticity, about 5% gravel size about 1/4 inch; moist to saturated, no | 1           | SC.           | 5            |              |         |              |        |
| hydrocarbon edor, no reaction with HCL.                                                                                                                                      | 20          |               |              | 4,18,14      | .       |              |        |
|                                                                                                                                                                              |             | -             |              |              |         |              |        |
|                                                                                                                                                                              |             |               |              |              |         |              |        |
|                                                                                                                                                                              | ?           |               |              |              |         |              |        |
|                                                                                                                                                                              | 25          |               |              |              |         |              |        |


#### Excitaine (et violvitio) et lucule et la come Stanley Wong Oakland CLEINT: PROJECT NAME: 2345 International Boulevard, Oaldand, California May 22, 2001 PROJECT ADDRESS: DAYE DRILLED: -CA Split Spoon Sampler Hollow Stem Auger DRILLING METHOD: -20 Feet 6 3/4 - Inches TOTAL DEPTH OF BORING: ... WIDTH OF BORING: NA NA DEPTH TO GROUNDWATER AT THE TIME OF DRILLING: STATIC WATER LEVEL: N/A CASING DIAMETER: N/A NA ----- CASING LENGTH: -**SCREEN DIAMETER:** NA N/A SCREEN LENGTH:-SLOT SIZE: --DRIELING COMPANY: \_Bay Area Exploration C57-522125 - DRILLING LIC.:-Distirbed CORE SAMPLE CONDITION LEGEND: Undisturbed Na Recovery CONSTRUCTION SOIL PID RECOVERY OGGED BY:Chrie Wabuzoh REVIEWED BY: Ola Balogun DEPTHTYPĖ (ppm) CASING SCREEN SEAL ASPHALT covering SANDY CLAY: Dark brown; about 40% coarse to fine, hard, angular to subrounded sand; CL about 60% clay, moderate plasticity; moist; no hydrocarbon odor, no reaction with HCL. 2,2,3 5 100 SANDY CLAY: Dark gray, about 30% coarse to fine, hard subangular to rounded sand; about 70% clay, moderate to high pleeticity, melet; has slight hydrocarbon odor; no CL no reaction with HCL. 4,8,10 10 169 CLAYEY SAND: Greenish gray, about 40% coarse to fine, hard subangular to rounded SC sand, about 60% clay, moderate to high plasticity, moist, has hydrocarbon odor, no reaction WITH HOLE 15 8,12,15 CLAYEY SAND: Light brown; about 40% coarse to very fine, hard rounded sand; about 0 SC 60% clay, moderate to high pleaticity; some gravel size about 1/4 inch; moist to saturated; proundwater encountered; no hydrocarbon odor; no reaction with HCL. 3,6,8 20 7

# BORING BEMONITORING WEELSE GERMANS

|                                                                                                                                                                                                                                   |             |          | ٠        |             |         | •           | 1      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|----------|-------------|---------|-------------|--------|
| Stanley Wong                                                                                                                                                                                                                      |             | – PRO.   | ÆCT N    | IAME:       | Ozdani  | <u> </u>    |        |
| ROJECT ADDRESS: 2345 Informational Boulevard, Ouldand, California                                                                                                                                                                 |             | 1        | DATE I   | ORULLED:    | May 2   | 2, 2001     |        |
| Mallour Chara Assess                                                                                                                                                                                                              | - SAMPL     | EN TV    | p#       | CA Split    | Spoon 8 | ampler      |        |
| 20 Feet                                                                                                                                                                                                                           |             |          |          | 6 3/4 - inc | hes     |             | į      |
|                                                                                                                                                                                                                                   | -,          |          |          |             | N/A     |             |        |
| PTH TO GROUNDWATER AT THE TIME OF DRILLING: N/A                                                                                                                                                                                   | S           | TATIC    | WATE     | ir Level:   | N/A     |             |        |
| ASING DIAMETER: N/A CASING LENGTH: N/A                                                                                                                                                                                            | <del></del> | - SCR    | EEN DI   | AMETER:-    | · · ·   | <del></del> |        |
| REEN LENGTH: N/A SLOT SIZE: —                                                                                                                                                                                                     |             | N/A      |          |             |         |             |        |
| LUNG COMPANY: Bay Area Exploration                                                                                                                                                                                                |             | Di       | PULL DA  | G LIC.:     | C57-5   | 22125       |        |
|                                                                                                                                                                                                                                   |             |          |          |             |         |             |        |
| DRE SAMPLE CONDITION LEGEND: Undisturbed                                                                                                                                                                                          | ∐ Dis       | turbed   |          | الا         | No Reco | yesy        |        |
|                                                                                                                                                                                                                                   |             |          |          |             | ļ       |             |        |
|                                                                                                                                                                                                                                   |             |          |          |             | CO      | NSTRU       | CTION  |
|                                                                                                                                                                                                                                   |             |          |          | <u> </u>    |         |             |        |
| en de la companya de la companya de la companya de la companya de la companya de la companya de la companya de<br>■ La companya de la companya de la companya de la companya de la companya de la companya de la companya de la c |             | SOIL     | PiD      | RECOVERY    |         |             |        |
|                                                                                                                                                                                                                                   | DEPTH       | TYPE     | (ppm)    |             |         | CASING      | SCREEN |
| ASPHALT covering                                                                                                                                                                                                                  |             |          |          |             |         | ]           |        |
|                                                                                                                                                                                                                                   |             |          |          |             |         |             |        |
| SANDY CLAY: Dark brown; about 40% coarse to fine, hard, argular to subrounded sand;                                                                                                                                               |             |          | o        |             |         |             |        |
| about 60% clay, moderate plasticity; moist; no hydrocarbon ador; no reaction with HCL.                                                                                                                                            | 5           | CL       |          | 2,3,5       | Ì       |             | 1      |
|                                                                                                                                                                                                                                   | -           |          |          |             |         | ł           |        |
|                                                                                                                                                                                                                                   | 1           | <b>.</b> |          |             |         |             |        |
| ANDY CLAY: Dark brown; about 30% coarse to fine, hard subangular to rounded sand;                                                                                                                                                 | <b>-</b>    |          | 0        |             |         |             |        |
| bout 70% clay, moderate to high plasticity, molet; no hydrocarbon odor; no reaction with                                                                                                                                          |             | CL       |          |             |         |             |        |
|                                                                                                                                                                                                                                   | 10          | }        | <u>.</u> | 4,5,10      |         |             |        |
|                                                                                                                                                                                                                                   |             |          | ·        |             | 1       |             |        |
|                                                                                                                                                                                                                                   |             |          |          |             |         |             |        |
| AYEY SAND: Greentsh; about 30% coarse to time, hard subangular to rounded sand; 2% clay; moderate to high plasticity; some gravel; moist; has hydrocarbon odor; no                                                                |             | ъc       | 40       |             |         |             |        |
| Paction with HCL.                                                                                                                                                                                                                 | 15          |          |          | 5,13,16     |         |             |        |
|                                                                                                                                                                                                                                   |             | 1        |          |             |         |             |        |
|                                                                                                                                                                                                                                   |             |          |          |             |         |             |        |
| GRAVELLY SANDY CLAY: Brown; about 30% coarse to very fine; hard rounded sand; 50% clay, moderate to high plasticity; about 20% gravet size about 1/4 inch; moist to                                                               |             | CL       | 7        | <b>!</b>    |         |             |        |
| Murated; groundwater encountered; no hydrocarbon odor, no reaction with HCL.                                                                                                                                                      |             | 1        |          | 4,9,11      |         |             |        |
|                                                                                                                                                                                                                                   | 20          | 1        |          | 7,3,11      |         |             |        |
|                                                                                                                                                                                                                                   | 1           |          |          |             |         |             |        |
|                                                                                                                                                                                                                                   | + :         |          |          |             |         |             |        |
|                                                                                                                                                                                                                                   | 1           |          |          |             |         |             | 1 .    |
|                                                                                                                                                                                                                                   | 25          |          |          |             |         | <u> </u>    | 1      |

#### Bordnews we we we well a comme Stanley Wong PROJECT NAME: 2345 International Boulevard, Oaldand, California May 22, 2001 DATE DRILLED: -Hollow Stem Auger DRILLING METHOD: CA Spitt Spoon Sampler 10 F401 TOTAL DEPTH OF BORING. 6 3/4 - inches DEPTH TO GROUNDWATER AT THE TIME OF DRILLING:-N/A STATIC WATER LEVEL: -CASING DIAMETER: N/A N/A - CASING LENGTH. SCREEN LENGTH: N/A DRILLING COMPANY: Bay Area Exploration C57-522125 - DRULLING LIC.:.. Disturbed CORE SAMPLE CONDITION LEGEND: Undisturbed No Recovery CONSTRUCTION LOGGED BY:Chris 'Wabuzoh PID REVIEWED BY: Ota Balogun RECOVERY DEPTHTYPE (ppm) BEAL CASING SCREEN ASPHALT covering SANDY CLAY: Dark brown; about 40% course to fine, hard, angular to subrounded sand; about 80% clay, moderate plasticity; moist; no hydrocarbon edor; no reaction with HCL. 0 CL 222 5 SANDY CLAY: Dark brown; about 30% course to fine, hard subsingular to rounded sand; Đ about 70% ctay, moderate to high plasticity, moist; no hydrocarbon odor; no reaction with CL 10 1,2,2 15 20 9

#### Emprince Children Chile Well Encry PROJECT NAME: --Startley World CLEINT:-May 22, 2001 2345 International Boulevard, Caldand, California DATE DRULED: ROJECT ADDRESS: CA Spill Spoon Sempler Hollow Stem Auger SAMPLER TYPE: WILLING METHOD: 6 3/4 - inches 20 Feet - WIDTH OF BORING: DTAL DEPTH OF BORING: STATIC WATER LEVEL: DEPTH TO GROUNDWATER AT THE TIME OF DRILLING:-4 inchee 15 feet SCREEN DIAMETER: 4 inches CASING LENGTH: --ASING DIAMETER: 0.02 Inch 5 feet - SLOT SIZE: -CREEN LENGTH: C57-522125 DRILLING LIC :-PAILLING COMPANY: BRY Area Exploration Disturbed No Recovery CORE SAMPLE CONDITION LEGEND: Undistarbed CONSTRUCTION SOIL PID RECOVERY DEPTHTYPE RÉVIEWED BY: Ola Balogiun (ppm) CASING SCREEN OGGED BYIChris Wabuzoh SEAL ASPHALT covering SANDY CLAY: Dark brown; about 40% course to fine; hard angular to subrounded sand; 3 CŁ about 60% ctay, moderate plasticity; moist; no hydrocarbon odor; no reaction with HCL. 2.2.3 CEMENT 5 GROUT 36 SANDY CLAY: Gray, about 30% coarse to fine, hard subangular to rounded sand, about 60% clay, moderate to high plasticity; motel; has hydrocarbon odor; no reaction with HCL CŁ 4,5,8 10 370 CLAYEX SAND: Gray, about 30% city, moderate to high plasticity, about 80% coasts to SC fine: hard rounded eand; about 10% gravel size about 1/4 inch; moist; has hydrocarbon odor; no reaction with HCL. 15 6,10,12 SANDY CLAY: Brown, about 35% course to very fine, hird rounded sand; about 60% clay 2 moderate to high placticity; about 5% gravel size about 1/4 inch; moist to saturated; no CL hydrocarbon odor, no reaction with HCL. 5,7,8 20



110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

|                            | ·                                  |                                |
|----------------------------|------------------------------------|--------------------------------|
| Sequoia Environmental      | Client Project ID: #SW-02; Oakland | Date Sampled: 05/22/01         |
| 1111 Aladdin Ave., Suite B |                                    | Date Received: 05/23/01        |
| San Leandro, CA 94577      | Client Contact: Chris 'Wabuzoh     | Date Extracted: 05/23-05/25/01 |
|                            | Client P.O:                        | Date Analyzed: 05/23-05/25/01  |
| Casalina Panas (C4 C13) V  |                                    |                                |

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline\*, with Methyl tert-Butyl Ether\* & BTEX\* EPA methods 5030, modified 8015, and 8020 or 602; Californ

| Lab ID    | Client ID                      | Matrix | TPH(g)*   | MTBE    | Benzene | Tolucne | Ethyl-<br>benzene | Xylenes | % Recovery Surrogate |
|-----------|--------------------------------|--------|-----------|---------|---------|---------|-------------------|---------|----------------------|
| 68163     | SB1-10"                        | S      | 240,bj    | ND<0.20 | ND<0.04 | 0.19    | 0.19              | 0.45    | "                    |
| 68164     | SB1-15'                        | S      | 3.0,b,j   | ND      | ND      | 0.005   | 0.009             | 0.013   | 113                  |
| 68165     | SB2-10*                        | S      | 89,b,j    | ND<0.10 | ND:     | ND .    | 0.033             | 0.25    |                      |
| 68166     | SB2-15                         | s      | ND        | ND      | ND      | ND      | ND                | ND      | 108                  |
| 68167     | SB2-20*                        | s      | ND        | ND      | ND      | ND      | ND                | ND      | 107                  |
| 68168     | SB3-10'                        | s      | 300,b,j   | ND<0.20 | ND<0.01 | ND<0.01 | 0.76              | 1.2     |                      |
| 68169     | SB3-15'                        | S      | 1800,s    | ND<2.0  | 3.3     | 5.5     | 48                | 53      |                      |
| 68170     | SB3-20'                        | S      | 8.5,a     | ND      | 0,009   | 0.023   | 0.10              | 0.12    |                      |
| 68171     | SB4-10'                        | S      | ND        | ND      | ND      | ND      | ND                | ND      | 103                  |
| 68172     | SB4-15'                        | S      | 230,6,    | ND<0.10 | 0.23    | ND      | 1.5               | 1.1     |                      |
| 68173     | SB4-20                         | S      | ND .      | ND      | ND      | ND      | ND                | ND      | 99                   |
| 68174     | SB5-15'                        | S      | 25,a      | ND      | 0.035   | ND      | 0.10              | 0.11    |                      |
| 68175     | SB5-20'                        | S      | 1.9,c     | ND      | 0.62    | ND      | ND                | ND      | 102                  |
| 68176     | SB6-10'                        | S      | ND        | ND      | ND      | ND      | ND                | ND      | 96                   |
| 68177     | SB7-10                         | S      | 18.j      | ND      | ND      | ND      | 0.056             | 0.11    | 100                  |
| 68178     | SB7-15'                        | S      | 68,2      | ND<0.10 | 0.28    | 0.25    | 0,36              | 0.35    |                      |
| 68179     | SB7-20*                        | s      | ND        | ND      | ND      | ND      | ND                | ND      | 104                  |
| Reporting | Limit unless<br>s since; ND    | w      | 50 ug/L   | 5.0     | 0.5     | 0.5     | 0.5               | 0.5     |                      |
| loa zneem | detected above<br>osting limit | s      | 1.0 mg/kg | 0.05    | 0.005   | 0.005   | 0.005             | 0.005   |                      |

<sup>\*</sup> water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP and SPLP extracts in ug/L.

Edward Hamilton, Lab Director

cluttered chromatogram; sample peak coclutes with surrogate peak

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation; a) unmodified or weakly modified gasoline is significant; b) heavist gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad cliromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; 2) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5 vol. % sediment; i) so cognizable pattern.

DHS Certification No. 1644

AA Edward Hamilton, Lab Director

110 2nd Ave. South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622

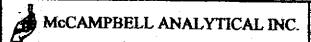
http://www.mccampbell.com E-mail: main@mccampbell.com

#### **QC REPORT**

Date:

05/23/01

Sof


Extraction: TTLC

|                 |        | Concent | ration: n | ng/kg            | %Rec  | covery |            |  |  |
|-----------------|--------|---------|-----------|------------------|-------|--------|------------|--|--|
| Compound        | Sample | MS      | MSD       | Amount<br>Spiked | MS    | MSD    | RPD        |  |  |
| SampleIO: 52201 |        |         |           | lnstr            | ument | GC     | <b>-12</b> |  |  |
| Surrogate 1     | 0.000  | 95.000  | 102.000   | 100.00           | 95    | 102    | 7.1        |  |  |
| Xylenes         | 0.000  | 0.306   | 0.316     | 0.30             | 102   | 105    | 3.2        |  |  |
| Ethyl Benzene   | 0.000  | 0.100   | 0.104     | 0.10             | 100   | 104    | 3.9        |  |  |
| Toluene         | 0.000  | 0.100   | 0.107     | 0.10             | 100   | 107    | 6.8        |  |  |
| Benzene         | 0.000  | 0.099   | 0.106     | 0.10             | 99    | 106    | 6.8        |  |  |
| MTBE            | 0.000  | 0.107   | 0.115     | 0.10             | 107   | 115    | 7.2        |  |  |
| GAS             | 0.000  | 0.746   | 0.748     | 1.00             | 75    | 75     | 0.3        |  |  |
| SampleiD: 51701 |        |         |           | Inst             | ument | GC-1   | 1 A        |  |  |
| Surrogate1      | 0.000  | 106.000 | 104.000   | 100.00           | 106   | 104    | 1.9        |  |  |
| TPH (diesel)    | 0.000  | 316.000 | 293.000   | 300.00           | 105   | 98     | 7.6        |  |  |

2577275011.200

| Telephon                           | e: (925) 798                          | PACHEC          | /enue sc  |            |          |          |      |             |       |             |          |              |              |              |                       |                            |                |                            | ΑI                                          |                       |                |                                        |              |               |                            |                                                  |                                                  |      |         | parties.     | -               |
|------------------------------------|---------------------------------------|-----------------|-----------|------------|----------|----------|------|-------------|-------|-------------|----------|--------------|--------------|--------------|-----------------------|----------------------------|----------------|----------------------------|---------------------------------------------|-----------------------|----------------|----------------------------------------|--------------|---------------|----------------------------|--------------------------------------------------|--------------------------------------------------|------|---------|--------------|-----------------|
|                                    |                                       |                 | :O, CA 94 | 553-55     | 68       |          |      |             |       |             |          |              | 7            | U            | N                     | AR                         | OU             | NI                         | TI                                          | ME                    |                | <b>1</b> 0.7                           | Ö.           |               | ب<br>24 I                  |                                                  |                                                  | ₽ 8) |         | 72 BR        | S DAY           |
| port To: 🗥 🕆                       | rie 21a a                             | فيستثر فيستحب   |           |            | F        | AZ:      | (925 |             |       |             |          |              | L.           |              |                       |                            | <del></del> ;  |                            | i<br>Line Sie                               |                       |                |                                        | USH          |               | 44 1                       | 14                                               | . (                                              |      |         |              | ments           |
|                                    |                                       |                 |           | HU To      | );       |          |      | 77          | E     |             | <b>/</b> |              | <u> </u>     | 1            |                       | 1                          | A              | Ma                         | lysis                                       | Keg                   | uesi           | ;<br>                                  | -            | _             | -                          |                                                  |                                                  | Ot   | ret.    | (,011        | Merra           |
| mpany: Sequ                        | Hadd                                  | UITON           |           |            | 7        |          | Te   | 3           |       |             |          |              |              |              | (4.5)                 |                            |                |                            |                                             |                       |                |                                        |              |               |                            |                                                  |                                                  |      |         |              |                 |
| San                                |                                       |                 |           | Α .        | 94       | 5        | 77   |             |       |             |          |              | Ë            |              | # F/A                 |                            |                |                            |                                             |                       |                | 310                                    |              |               |                            |                                                  |                                                  |      |         | 1 .          |                 |
| le: (500-6/                        | 4-190                                 |                 | ľ         | ax: (      | 577      | 2 .      | . G  | 14          | - 2   | 92          | 3        |              | BOLSY ACTIBE |              | Greene (5520 EAF/BAF) | 18.1                       |                |                            |                                             |                       |                | 70 / 8                                 |              |               |                            |                                                  |                                                  |      |         | 6            | 8163            |
| oject #: 5 %)                      | - 02<br>- 02                          | 4 4 4           |           | 10 60      | t Nar    | De!      |      |             |       |             |          | , <u></u>    | \$           |              | ()                    | 7                          | į              | 8                          | 2                                           |                       |                | 7.8 / 5                                |              |               | 8                          |                                                  |                                                  |      |         | -            |                 |
| oject Location:<br>mpler Signature | Lake I                                | wille           | ala       | 120        | L        |          |      | <del></del> |       | <del></del> |          |              | 902          |              | Gree                  | Cauring                    |                | 2/2                        | ð                                           |                       |                | 1 625                                  |              |               | 198                        |                                                  |                                                  |      | *       | ŧ            | 8164            |
|                                    |                                       | SAMP            |           |            | E        | Π        | MA'  | RU          | ζ,    | MI<br>PRE   | TRO      | OD<br>VED    | 3            | (2108)       | 4 10                  | Hydro                      |                | 8                          | 9                                           | 3280                  |                | y EP                                   |              | }             | 73397                      |                                                  |                                                  |      | À       | 6            | 8165            |
|                                    |                                       |                 | ·         | Containers | 1        |          |      |             | ,     |             | T        | T            | *            | I N          | Total Peroleum Oil    | oleum Hydrocarbons (418.1) | EPA 601 / 8010 | BTEX ONLY (EPA 602 / BUZO) | EPA 608 / 8080<br>EPA 608 / 8080 PCB's ONLY | NPA 624 / 5240 / 8260 | EPA 625 / 8270 | PAH's / PNA's by EPA 625 / E270 / E316 | CAM-17 Memis | 1             | Load (72407451/239,246010) |                                                  | '                                                |      |         | E            | 8166            |
| SAMPLE ID                          | LOCATION                              | Date            | Time      |            | 3        | 1        |      | 2           |       |             | 4        | in.          | 4 77         | 2            | Į                     | F                          | 3              | 8                          | 3 3                                         | /+29                  | 133            | 1/F                                    | 5            | LUFT 5 Metals | Ē                          | ·                                                |                                                  |      | J.      |              |                 |
|                                    |                                       |                 |           | 2          | T. J.    | Water    |      |             | Other | 3 2         | HNO.     | 9            | DTEX & TPH   | TFH as Da    | Topal                 | Tous Per                   | EPA            |                            | H H                                         | Y AR                  | ¥              | PAH                                    | 3            | 3             | 3                          | 2                                                | 灵                                                | 2    | Ž.      |              | 8167            |
| 81-10                              |                                       | 5.230           | Don       | F          |          |          | V    | İ           |       | 2           |          |              | Y            |              |                       |                            |                |                            |                                             |                       |                |                                        |              |               |                            |                                                  |                                                  |      |         | 6            | 8168            |
| B1-15'                             |                                       | 个               | بمدل      | 1          |          | _        | 4    | Ŀ           | _     | 8           | _        | 1            | 1            | ļ            |                       |                            |                | $\dashv$                   |                                             | ļ                     | _              | ļ.,                                    |              | _             |                            |                                                  |                                                  |      |         |              |                 |
| B2- /0'                            | · · · · · · · · · · · · · · · · · · · |                 | ma        | 1          |          | _        | 1    |             | 4     | Y           |          | <del> </del> | X            | _            |                       |                            |                | -                          | _                                           | ļ.                    | -              |                                        |              |               |                            |                                                  |                                                  | _    |         | D            | 8169            |
| 82-15'                             |                                       |                 | pm        |            |          | -        | 4    |             |       | 4           |          | -            | $\vdash$     | <del></del>  |                       |                            | -              |                            |                                             | +-                    | +-             | -                                      |              |               |                            | <u> </u>                                         | -                                                |      |         | 6            | 8170            |
| B2-20'                             |                                       |                 | m         |            | _        | ╀        | 1    |             | -     | 1           | -        | +            | ×            | ****         |                       |                            |                | -                          |                                             | +                     | +              |                                        |              |               |                            |                                                  | -                                                |      | -       |              |                 |
| 133-10<br>133-15                   |                                       |                 | Am        | -          | -        | ╁        | 1    | -           | -     | 13          | +        | +            | Ļ            | <del> </del> |                       |                            |                | $\dashv$                   | -                                           | +                     | +              | -                                      |              |               |                            | -                                                |                                                  |      |         |              | 6817            |
| B3- 20'                            | · · · · · · · · · · · · · · · · · · · |                 | Am        | + +        |          | +        | V    |             | +     | V           | +        | +            | t            | <del> </del> | -                     |                            |                |                            |                                             | 1                     | +              |                                        |              |               |                            | <del>                                     </del> | <del>                                     </del> |      |         | .6           | 8172            |
| 84-10                              |                                       |                 | Au        |            |          |          | J    |             |       | N           |          |              | 1            | •            |                       |                            |                |                            |                                             |                       |                |                                        |              |               |                            |                                                  |                                                  |      |         | 1            |                 |
| B4-15                              | <u></u>                               |                 | 1         | 1          |          |          | V    |             |       | И           |          |              | V            |              |                       |                            |                |                            |                                             |                       |                |                                        |              |               |                            |                                                  |                                                  | 1    |         |              | 18173           |
| 04-20                              |                                       |                 | Ann       |            |          |          | 14   |             |       | N           |          |              | Jy           | ,            |                       |                            |                |                            |                                             |                       |                |                                        |              |               |                            |                                                  |                                                  |      |         | <br>         | 58174           |
| B5 - 15                            |                                       |                 | in        | $\coprod$  |          |          | V    |             |       | V           |          |              | L            | /            |                       |                            |                |                            |                                             | <u> </u>              |                |                                        |              |               |                            | ļ                                                |                                                  |      |         | <br> -       | 9 <b>9</b> 17 5 |
| B5-20                              |                                       |                 | Am        |            |          | 1.       | V    |             | 1     | 14          |          |              | 1            | 4            | 1                     |                            |                |                            |                                             | -                     | 1              | _                                      | 1            | _             | -                          | -                                                | <b> </b> _                                       | _    | -       | <del>-</del> | 6817            |
| 186-10                             |                                       | 14              | Am        |            | 1        | _        | Y    |             | 1     | 14          | -        |              | 1            |              | igspace               | _                          |                |                            |                                             | -                     | 4              | ╀-                                     | _            | _             | <u> </u>                   | 1                                                | _                                                | 1    | $\perp$ |              |                 |
| BT-10                              |                                       |                 | well      | 1          |          |          | V    | Д,          |       | И           |          |              | 1 V          |              | 亅                     | <u>l:</u>                  |                |                            |                                             |                       |                | 1                                      | L            |               |                            |                                                  | <u></u>                                          |      |         | Ī            | 6817            |
| elinquished By:                    | Lough                                 | Date:<br>5-23-6 | 7 (040)   |            | as       | <u> </u> | 1    | In          | 140   | n           | مهد      | <u> </u>     | ] "          | terru        | re <b>ks</b>          |                            | V              | 577                        | na                                          | _                     | 7              | A                                      | 7            |               |                            |                                                  | ·                                                | •    | -       |              | 6817            |
| elinguished By:                    |                                       | Date:           | Time      | Re         | zelved l | By:      | ,    |             | -/-7  | ÆTAL        |          | HER          |              |              |                       |                            |                |                            |                                             | •                     |                |                                        |              |               |                            |                                                  |                                                  |      |         | •            |                 |
| elinquished By:                    | ICEN'                                 | Date            | Time:     | TH         | ELEK.    | W.       | OK_  | 1           | 士     |             | 土        |              | 1            |              |                       |                            |                |                            |                                             |                       |                |                                        |              |               | -1                         | <b>ر</b> ا                                       | ٦.                                               | . k  |         |              |                 |

| <u> </u>                 | McCAM         |         |                      |                 |                                                  | LI           | NC                                               | •                |             |             |          |             | Π            |              |                               |                        | 1              | CH                         | [A]            | N                          | OF                    | C                  | US           | TC            | D.                          | ΥI           | Œ          | CC   | RI                    | )    |                                   |
|--------------------------|---------------|---------|----------------------|-----------------|--------------------------------------------------|--------------|--------------------------------------------------|------------------|-------------|-------------|----------|-------------|--------------|--------------|-------------------------------|------------------------|----------------|----------------------------|----------------|----------------------------|-----------------------|--------------------|--------------|---------------|-----------------------------|--------------|------------|------|-----------------------|------|-----------------------------------|
|                          | . 1           | 10 2MAY | /ENUE SC<br>O, CA 94 | )UTH,<br>853-55 | #207<br>60                                       |              |                                                  |                  |             |             |          |             | 1            | TU.          | RN                            | Al                     | 10             | UN                         | ר מ            | IM                         | E                     |                    |              |               | Ç                           |              |            | Q    |                       |      |                                   |
|                          | ne: (925) 798 | -1620   |                      |                 | F                                                | ar           | (925                                             |                  |             |             |          |             | 1            |              |                               |                        | _,             |                            |                |                            |                       |                    | RUS          | H             | 24                          | HR           | ·          | 48 H |                       |      | HR 5 DA                           |
| Report To:               | as this or    | GUZDI   |                      | M Te            |                                                  |              | $\Sigma_{\mathcal{D}}$                           | נינין            | E           | <u></u>     |          |             | <del> </del> | <del></del>  | <del></del>                   | ,                      |                | An                         | dys            | ı Re                       | que                   | at .               |              | <del>.</del>  | Ţ                           | <del></del>  |            | Otl  | 1êr                   | _    | Comments                          |
| Company: Se              | 4010 C        | FILVIY  | onm                  | en?             | $\frac{ac}{c}$                                   |              | <u>با</u>                                        |                  |             |             |          |             | 4            |              | 5                             |                        |                |                            |                |                            |                       |                    |              |               |                             |              | <b>!</b> ' |      |                       | -    |                                   |
|                          | MARIA         | 1000    | y son                |                 |                                                  | _            | 2                                                | <u>U_</u>        | *********** | <del></del> |          |             | ᅥᇸ           |              | E                             |                        |                |                            | - {            |                            |                       | و                  |              |               |                             |              | ł          |      |                       | -    |                                   |
| S Gn<br>Tela: (5), 0 - 6 | Leon          | 100     | <u>. C.</u>          | -               | 57/                                              |              | _                                                |                  |             | 0           | 01       |             | notsy wither |              | 1                             | =                      |                |                            |                |                            | 1                     | OF A COS I SON     |              | İ             |                             |              |            |      |                       | ١    |                                   |
| Project #:               | enterior.     |         |                      |                 |                                                  |              |                                                  |                  | <del></del> |             | Z        | <u> </u>    | 흙            |              | 552                           | =                      |                |                            | Ì              | Ì                          |                       | 18                 |              |               |                             | 1            |            |      |                       | -    |                                   |
| Project Location:        |               | /anc    |                      |                 |                                                  |              | <del></del>                                      | <del></del>      |             | ·           |          | <del></del> | 1:           |              | N N                           | 1                      |                | 8                          | 1              | <u></u>                    |                       | 15                 |              | 1             | 9                           |              | •          |      |                       |      |                                   |
| Sampler Signatur         | e: CA         | red Ye  | rest                 | n7              | -04                                              | `            |                                                  |                  |             |             |          |             |              |              | 8                             |                        |                | 27/1                       | ŀ              | 5                          |                       | 3                  |              |               | 3                           |              |            |      |                       |      |                                   |
|                          |               | SAMP    |                      |                 | E                                                | _            | MA'                                              | TRL              | X           | N           | ie fi    | OD<br>RVE   |              | 55           | n Oil & Gresse (5520 E&F/B&F) | n Hydrocarbons (418.1) |                | ¥.                         | •              | 9                          | 107                   |                    |              |               | 2                           | ] ;          |            |      | *                     |      | •                                 |
|                          |               |         |                      | E               |                                                  | -            |                                                  |                  |             | +-          | -        | 1           |              | d (80) 5)    |                               | F                      | 2              | 8                          | 8              | 8                          | 9 8                   | 2   3              | 1            | -             | Ì                           |              | . '        |      |                       |      | 100                               |
| SAMPLE ID                | LOCATION      | Date    | Time                 | # Coetain       | Type Conta                                       | Water        | TES.                                             | Series<br>Series | 30          | Ice         | HC       | ENO.        | BLOCK TER    | TPH as Diese | 1.2                           | Total Petrolo          | EPA 601 / 2010 | BTEX ONLY (EPA 602 / 8020) | EPA 608 / 8080 | EPA 608 / 60m0 PCB's CNILY | EFA 644 / 6240 / 6400 | PAR's / PNA's hu   | CAM-17 Manda | LUFT 5 Motels | Lead (7240/7421/239.2/6010) | RCI          | 歼          | 135  | Specific Conductivity |      |                                   |
| SB7-15'                  |               | 50201   | ריינוק               | 1               |                                                  |              | v                                                |                  |             | V           |          |             | J            |              |                               |                        |                |                            |                |                            |                       |                    |              |               |                             |              |            |      | ,                     | •    | 68178                             |
| SB7-20                   |               | C:23.01 |                      | 1               |                                                  |              | 1                                                |                  |             | 1           |          |             | 1            | 1_           |                               | <u> </u>               |                |                            |                |                            | $\perp$               | $oldsymbol{\perp}$ |              |               | <u> </u>                    |              |            |      | ,<br>,                |      | 00170                             |
|                          |               |         |                      |                 |                                                  |              |                                                  |                  |             |             | Ţ        |             |              |              |                               |                        |                |                            |                |                            |                       |                    |              | L             |                             |              |            |      | <u>ا</u><br>د         |      | 68179                             |
|                          |               |         |                      |                 |                                                  |              |                                                  |                  | T           |             |          |             | Τ            |              |                               |                        |                |                            |                |                            |                       |                    |              |               |                             |              |            |      |                       | _    |                                   |
|                          |               |         |                      |                 |                                                  |              |                                                  |                  |             |             |          |             | T            |              |                               |                        |                | ·                          |                | $\top$                     | Т                     |                    | 1            |               |                             |              |            |      |                       | T    |                                   |
|                          |               |         |                      | <b></b>         |                                                  |              |                                                  |                  |             |             |          | -           | 1            |              | 1                             |                        |                |                            |                | _                          | T                     | $\top$             | 1            |               | 1                           |              |            |      |                       | 十    |                                   |
|                          |               |         |                      | <b> </b>        | <del>                                     </del> | 1            |                                                  | _                | _           | †-          |          |             | 1-           | 1            | -                             | 1                      |                |                            |                | _                          | 7                     | 1                  | 1            |               | 1-                          | -            |            |      |                       | 7    | <del></del>                       |
|                          |               |         |                      | <del> </del> -  | <b>†</b>                                         | 1-           |                                                  |                  | 1           | 1           |          | _           | +-           |              | -                             | <del> </del> -         |                |                            | ~~             | -                          | +                     |                    | +            | -             | ╁┈                          |              | <b></b>    |      |                       | 十    | <del></del>                       |
|                          |               |         | <del></del>          | -               | ┢                                                | ╂╌           | <del>                                     </del> |                  | +-          | ┼           |          |             | +-           | -            |                               |                        |                | <b></b>                    |                |                            |                       | -                  | +            | +-            | <del></del>                 | <del> </del> |            |      | <del>-  </del> -      | 十    | <u> </u>                          |
|                          |               |         |                      |                 | ļ                                                | <del> </del> |                                                  |                  |             | ╂─          |          |             | ┨            | +            | +                             | <del> </del>           |                |                            |                |                            | +                     |                    | +-           | +             | ┼┈                          | -            |            |      |                       | ╌┼   |                                   |
| <del></del>              |               |         |                      | <b> </b>        | <del> </del>                                     | ╁            | ┝┉┝                                              |                  |             | ┼           | $\vdash$ |             | -            | -            | +                             | -                      |                | <b></b>                    |                | -                          |                       | -                  | +            |               | ┥                           |              | <u></u>    |      | <del>.  </del>        | +    |                                   |
|                          |               |         |                      | <b>!</b>        |                                                  | ╀-           | $\vdash$                                         |                  |             | <b>-</b>    |          |             | - -          | +-           | -                             | <del> </del>           | ļ              |                            | _              |                            | _                     | _                  | _            |               | pis                         | O.C          | W          | ALS  | or a                  | 3    | · ·                               |
|                          | ·             |         |                      | <u> </u>        | <u> </u>                                         | <b>!</b>     |                                                  | _                |             | <b> </b>    |          |             |              |              | C A                           |                        |                |                            |                | -                          |                       | \$ i               | _            | _             | -                           | ļ            | لبا        |      | <b>└</b> ┼            | 4    |                                   |
|                          |               |         |                      | <u> </u>        | <u> </u>                                         | 1_           |                                                  |                  | ٠.,         | <u> </u>    |          |             | 1_           | + -          | )<br>(001                     | 14.47                  | RE 1           | 14.4                       |                |                            | <b>1</b> 50           | NO!                | 14           | 18            | <u> </u>                    | -            | أبسا       |      |                       | 4    |                                   |
|                          |               |         |                      | <u>L</u>        |                                                  | 1_           |                                                  |                  |             | L           |          |             | 1.           |              | JEAN                          | יים                    | LE /           | 1000                       | וא             |                            | w                     | HAR                | NER          | 2             |                             |              |            |      |                       |      |                                   |
|                          |               |         |                      |                 |                                                  |              |                                                  |                  |             | <u></u>     |          |             |              |              |                               |                        |                |                            |                |                            |                       |                    |              |               |                             |              |            |      | 1                     |      |                                   |
| Relinquished By:         | n 20h         | Dute:   | Time:                | W               | an                                               | y.           | 2                                                | len              | Ko          | <b>/</b> -  |          |             | R            | cm:          | arks:                         |                        | ٨              | 10                         | 7 197          | ch                         | -                     | 7                  | A            | 7             |                             |              |            |      | * 10%                 |      |                                   |
| Reimquished By:          |               | Date:   | Time:                | Roce            | ived E                                           | y:           |                                                  |                  |             |             |          |             | 1            |              |                               |                        |                |                            |                |                            |                       |                    |              |               |                             |              |            |      | 7                     | <br> |                                   |
| Relinquished By:         |               | Date:   | Time:                | Rece            | ived D                                           | ij.          |                                                  |                  |             |             |          |             | ١.           |              |                               |                        |                |                            |                | ; ; ;                      | •                     |                    |              |               |                             |              |            |      |                       | : .  | i di Kalendari<br>Kalendari di Li |



110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

| Sequoia Environmental      | Client Project ID: #SW-02; Oakland | Date Sampled: 05/22/01         |
|----------------------------|------------------------------------|--------------------------------|
| 1111 Aladdin Ave., Suite B |                                    | Date Received: 05/23/01        |
| San Leandro, CA 94577      | Client Contact: Chris 'Wabuzoh     | Date Extracted: 05/23-05/30/01 |
|                            | Client P.O:                        | Date Analyzed: 05/23-05/30/01  |

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline\*, with Methyl tert-Butyl Ether\* & BTEX\*

| Lab ID      | Client ID                                   | Matrix | TPH(g)*     | мтве   | Benzene  | Toluene | Ethyl-<br>benzene | Xylenes | % Recovery Surrogate |
|-------------|---------------------------------------------|--------|-------------|--------|----------|---------|-------------------|---------|----------------------|
| 68157       | SB-1                                        | w      | 11,000,a    | ND<20  | 8.1      | 23      | 81                | 7.1     | "                    |
| 68158       | SB-2                                        | w      | 1200,b.j    | ΝD     | ND       | 3.5     | 5.5               | ND      | 114                  |
| 68159       | SB-3                                        | w      | 53,000,a,h  | ND<200 | 790      | 110     | 2000              | 2000    | 102                  |
| 68160       | SB-4                                        | w      | 170,000,a,h | ND<200 | 420      | ND<45   | 1500              | 800     | 109                  |
| 68161       | SB-5                                        | W      | 27,000,a    | ND<500 | 8400     | 99      | 230               | 120     | 106                  |
| 68162       | SB-6                                        | w      | ND          | ND     | סוא      | ND      | ND                | ND      | 104                  |
|             |                                             |        |             |        |          |         | ····              |         |                      |
|             |                                             |        |             |        |          |         |                   |         |                      |
|             |                                             |        |             |        |          |         |                   |         |                      |
|             | ······································      |        |             |        |          |         | <del></del>       |         |                      |
|             |                                             |        |             |        | <u> </u> |         |                   |         |                      |
|             |                                             |        |             |        |          |         |                   | i       |                      |
|             | <u> </u>                                    |        |             |        |          |         |                   |         | i                    |
|             | · · · · · · · · · · · · · · · · · · ·       |        |             | _ ,,   |          |         | <del></del>       |         |                      |
| Reporting   | Limit unless<br>stated; ND                  | w      | 50 ug/L     | 5.0    | 0.5      | 0.5     | 0.5               | 0.5     |                      |
| means not d | tiones; No<br>elected above<br>tiling limit | S      | 1.0 mg/kg   | 0.05   | 0.005    | 0.005   | 0.005             | 0.005   |                      |

<sup>\*</sup> water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP and SPLP extracts in ug/L

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant (aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5 vol. % sediment; j) no recognizable pattern.



cluitered chromatogram; sample peak coclutes with annogate peak

110 2nd Ave. South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com B-mail: main@mccampbell.com

## **QC REPORT**

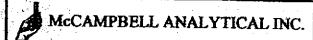
Date:

05/23/01

Matrix:

Water

Extraction: TTLC


|                 | ·      | Concent | ration: ( | ug/L.            | %Rec   | overy |     |
|-----------------|--------|---------|-----------|------------------|--------|-------|-----|
| Compound        | Sample | MS      | MSD       | Amount<br>Spiked | MS     | MSD   | RPD |
| SampleID: 52201 |        |         |           | knstn            | iment  | GO    | -12 |
| Surrogate1      | 0.000  | 92.0    | 93.0      | 100.00           | 92     | 93    | 1.1 |
| Xylenes         | 0.000  | 28.2    | 28.1      | 30.00            | 84     | 94    | 0.4 |
| Ethyl Benzene   | 0.000  | 9.3     | 9.3       | 10.00            | 93     | 93    | 0.0 |
| Toluene         | 0.000  | 9.3     | 9.2       | 10.00            | 93     | 92    | 1.1 |
| Benzene         | 0.000  | 9.2     | 9.1       | 10.00            | 92     | 91    | 1.1 |
| MTBE            | 0.000  | 10.5    | 10.4      | 10.00            | 105    | 104   | 1.0 |
| GAS             | 0.000  | 92.2    | 90.9      | 100.00           | 92     | 91    | 1.5 |
| SampleID: 52101 |        |         |           | Instr            | iment: | GC-1  | 1 A |
| Surrogate1      | 0.000  | 114.0   | 114.0     | 100.00           | 114    | 114   | 0.0 |
| TPH (diesel)    | 0.000  | 7875.0  | 7800.0    | 7500,00          | 105    | 104   | 1.0 |

2597125010.da McCAMPBELL ANALYTICAL INC. CHAIN OF CUSTODY RECORD 118 24 AVENUE SOUTH, #D7 TURN AROUND TIME PACHECO, CA 94553-5560 Telephone: (925) 798-1620 Fax: (925) 798-1622 RUSH 24 RR 48 HR 71 HR 5 DAY Report To: Bill To: Some Analysis Request Other Comments Companys E (5520 EAFFBAF) EPA 625 / 1270 / 12310 Tele: (47) 0 -Fax: (5770 Project #: Project Name: Project Location: BTEX ONLY (BPA, 602 / 8020) Lond (77407421/239.2/6010) Sampler Signature: METHOD SAMPLING EPA 624 / 8240 / 8260 TPH as Diesel (2015) MATRIX PRESERVED EPA 601 / 8010 EPA 608 / \$080 EPA 508 / 8080 EPA 625 / 8270 CAM-17 Month LAIFT S Montels SAMPLE ID LOCATION BIEK & 1PH Date Time HC: 2 Ł 3B-68157 Dim 2 SB-3 2, ושני () W 58158 لمرن 68159 68160 68161 68162 GOOD CONTITION A HEAU SPACE ABSEN APPROPRIATE islinguished By: Date Time: Received By: Remarks: Nomal TAT 5.1301040 Lettinguished By: Received By:

Received By:

Firme:

lelinquished By:



110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

| Sequoia Environmental      | Client Project ID: #SW-02     | Date Sampled: 06/13/01   |
|----------------------------|-------------------------------|--------------------------|
| 1111 Aladdin Ave., Suite B |                               | Date Received: 06/14/01  |
| San Leandro, CA 94577      | Client Contact: Chris Wabuzoh | Date Extracted: 06/15/01 |
|                            | Client P.O:                   | Date Analyzed: 06/15/01  |
| Catalia Day 101 Cto 11     |                               |                          |

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline\*, with Methyl tert-Butyl Ether\* & BTEX\*

| Lab ID     | dr 5030, modifie<br>Client ID         | Matrix | TPH(g) <sup>*</sup>                   | MTBE  | Benzene  | Toluene | Ethyl-<br>benzene                     | Xylenes | % Recovery<br>Surrogate |
|------------|---------------------------------------|--------|---------------------------------------|-------|----------|---------|---------------------------------------|---------|-------------------------|
| 69777      | MW-3                                  | ₩      | 8400,a                                | ND<20 | 1300     | 25      | 64                                    | 32      | 110                     |
| 69778      | MW-6                                  | w      | 7600,a                                | ND<10 | . 1400   | 42      | . 19                                  | 14      | *                       |
|            |                                       |        |                                       |       |          | - :     |                                       |         |                         |
|            | <del></del>                           |        |                                       |       | <u> </u> |         |                                       |         |                         |
|            |                                       |        | · · · · · · · · · · · · · · · · · · · |       |          |         | <del></del>                           |         |                         |
|            |                                       |        |                                       |       |          |         | · · · · · · · · · · · · · · · · · · · |         |                         |
|            |                                       |        |                                       |       |          |         |                                       |         |                         |
|            |                                       |        |                                       |       |          |         |                                       |         |                         |
|            |                                       |        |                                       |       |          |         |                                       |         |                         |
|            |                                       |        |                                       |       |          |         |                                       |         |                         |
|            | · · · · · · · · · · · · · · · · · · · |        |                                       |       |          |         |                                       |         |                         |
|            |                                       |        | ·                                     |       |          |         | · · · · · · · · · · · · · · · · · · · |         |                         |
|            |                                       |        |                                       | 7.7   |          |         | -                                     |         |                         |
|            |                                       |        |                                       | · .   |          |         |                                       |         |                         |
| Otherwis   | Limit unless<br>stated; ND            | w      | 50 ug/L                               | 5.0   | 0.5      | 0.5     | 0.5                                   | 0.5     |                         |
| incans not | detected above pring firmit           | s      | 1.0 mg/kg                             | 0.05  | 0.005    | 0.005   | 0.005                                 | 0.005   |                         |

water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and studge samples in mg/kg, and all TCLP and SPLP extracts in ug/L

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that glocs not appear to be derived from gasoline (?); f) one to a few isolated peaks are significant; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible shern is present; i) liquid sample that contains greater than -5 vol. % sediment; j) no recognizable pattern.



cluttered chromatogram; sample peak coelules with surrogate peak

26307 250 p CHAIN OF CUSTODY RECORD THE 2<sup>th</sup> AVENUE SOUTH, ADT PACHECO, CA 94553-5560 TURN AROUND TIME 48 HR 72 HR RUSH **14 HR** Fax: (925) 798-1622 Telephone: (925) 798-1620 Report Tox Lins / Nabijzoh Bill To: Analysis Request Other Comments Company: Seguala Environmental TO CASTO BAFARAT) addin avenue Suta 625 / 8270 / 8310 Leamoro, Ca 94577 Total Petroleum Hydrocarbons (418.1) Ide: (5)10 - 614 - 1900 Par (510-614-2723 SW-02 Project#: Project Name: Cateland Project Location: EPA 608 / 1080 PCS's ONLY Load (7240/7421/235.2/6010) Sampler Signature: CAMO MADOUZIS Total Petroleum Oil & Ore BTEX & TPH & Qee (602/10 EPA 624 / 8240 / 8260 METHOD Conductivity 1PH as Dicaed (8015) MATRIX SAMPLING PRESERVED PAHPs / PNA's by PPA 608 / 8080 CAM-17 Mobils EPA 601 / R010 EPA 625/ \$270 LIFT S Meth SAMPLE ID LOCATION Sladge Specific Date Time Water HNO, Other HC Fog 7 3 Q 2 Ŧ MW-3 643-0 69777 61301 MW- 6 2 DM 69778 ulinquished By: Date: Received By: Remarks: Wino montonarl disquished By: Received By: Maquishes By: Dates

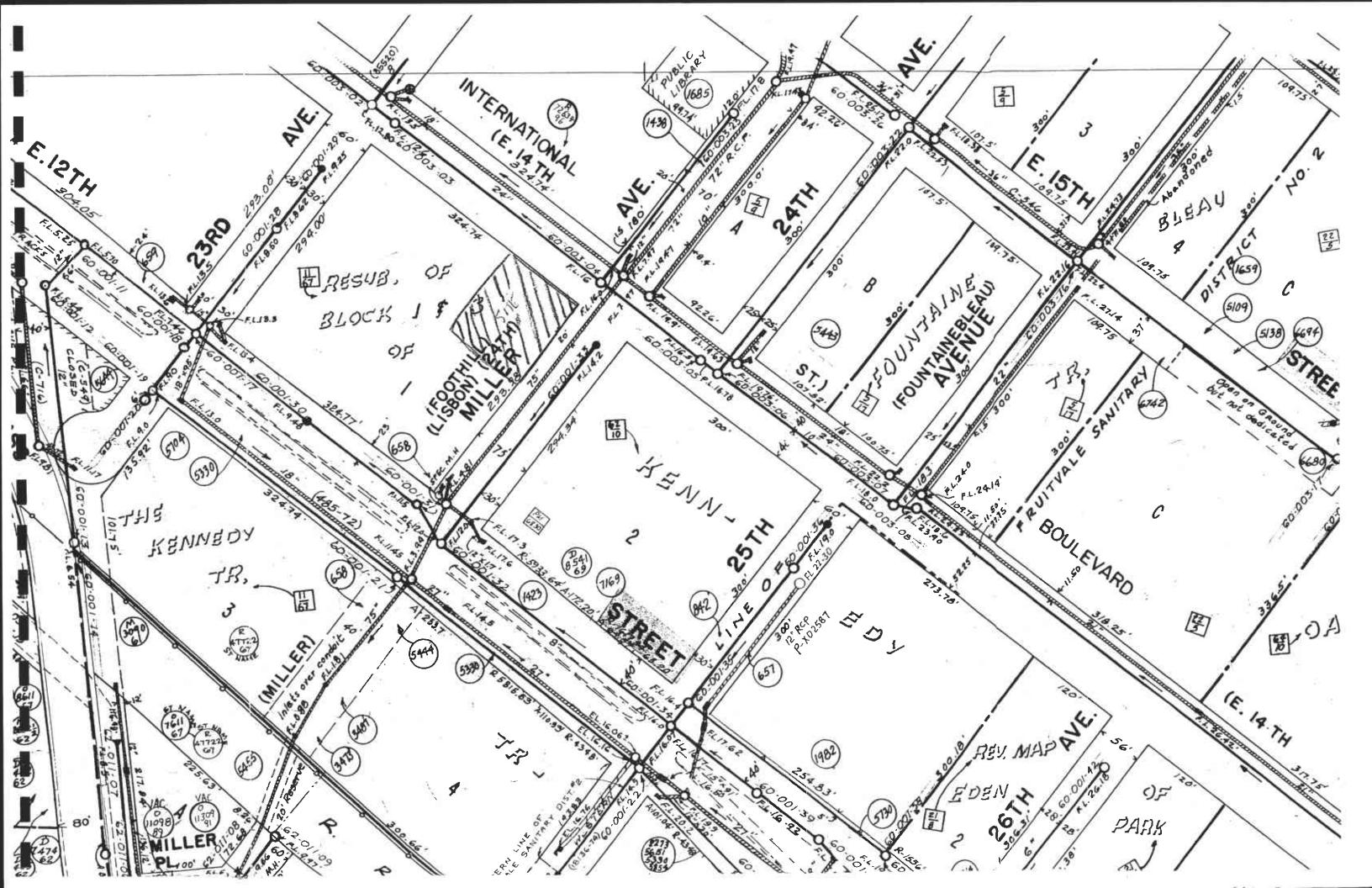
25772 zsall. doc

| <del>,</del>                     | McCAM         |                                                  |                 |                                                  |                | LI       | NC.  |     |                                         |                                              |         |             | T            |               |                       |                      |                |                |                |                                         | -              | CI                | •            | O             | D'                                    | ΥĪ   | Œ            |      | RI     |            |               |
|----------------------------------|---------------|--------------------------------------------------|-----------------|--------------------------------------------------|----------------|----------|------|-----|-----------------------------------------|----------------------------------------------|---------|-------------|--------------|---------------|-----------------------|----------------------|----------------|----------------|----------------|-----------------------------------------|----------------|-------------------|--------------|---------------|---------------------------------------|------|--------------|------|--------|------------|---------------|
|                                  | ı             | 10 2" AV<br>PACHEC                               |                 |                                                  |                |          |      |     | -                                       |                                              |         |             | 7            | CUI           | W                     | AR                   | JOL            | INI            | D T            | M                                       | E              | _                 | Q            |               | ֚֚֚֚֚֚֚֚֚֚֟֞֞֞֟֟֟֟֟֟֟֟֟֟ <del>֚</del> |      |              | Q    |        | 73.8       |               |
|                                  | iet (925) 798 | -1620                                            |                 |                                                  | F              | az:      | (925 |     |                                         |                                              | -,,,,,, |             | <del> </del> |               |                       |                      |                |                | مارستان        | D.                                      |                |                   | USH          | l<br>         | 24]                                   | HAK. | ·            | 48 H |        |            | mments        |
| port To: Ch                      |               |                                                  |                 | MI To                                            | <u>);</u>      |          |      | m   | n E                                     | <u> </u>                                     |         |             | ╄            | 7             | -                     | 1                    | 1              | 111            | lysis          | K                                       | ques           | <u> </u>          | ·            |               | -                                     |      | -            | 00   | N-dat. |            | ) lutineri (2 |
| mpany: Sequ                      | Hadd          | LUITON                                           | N STATE         | 10                                               | S              | ندر      | Ta   | B   |                                         |                                              | -,      |             | 1            |               | 34.5                  |                      |                |                |                |                                         |                |                   |              |               |                                       |      |              |      |        |            |               |
| Sar                              |               | oro,                                             | ال ا            | Δ,                                               | <del>9 4</del> | 5        | 77.  |     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                              |         |             |              |               | Greene (5520 E&F/B&F) |                      |                |                |                |                                         |                | 316               |              |               |                                       |      |              |      |        | 1          | •             |
| le: (500-6                       |               | סכ                                               |                 | ax: (                                            |                |          | 6    | 14  | - 2                                     | 22                                           | 23      |             | BOLSY ACTRE  |               | 2201                  | 118.1                |                |                |                |                                         |                | 625 / 8270 / 8310 |              |               |                                       |      |              |      |        |            | 68163         |
| oject #: 5 %)<br>oject Location: |               | ANA                                              |                 | 10 60                                            | TIVE           | ne!      |      |     |                                         |                                              |         |             | 1            | 1             | 5                     | į                    |                | 8              | 2              | ֓֞֞֝֟֝֟֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓ |                | 5/82              |              |               | 9                                     |      |              |      |        |            | 0016          |
| mpler Signatur                   | e CFV         | wille                                            | ntr             | (20                                              | L              |          |      |     | <del></del>                             |                                              |         |             |              |               | Ö                     | į                    |                | 602 / 8020)    | 1              | 5                                       |                | A GZ              |              |               | 760                                   |      |              |      |        |            | 68164         |
|                                  |               | SAMP                                             |                 |                                                  | E              | Τ        | MA'  | rri | X,                                      | PR                                           |         | IOD<br>RVIO | 3            | (\$1015)      | BO14                  | Hydrocarbons (418.1) |                | 4              | .   8          |                                         |                | y EPA             |              |               | 627                                   |      |              |      | \$     | · .        | 68165         |
|                                  |               |                                                  |                 | Ę                                                |                | -        |      |     | 1                                       |                                              | Ī       | T           |              | וס ו          |                       |                      | 010            | 8              | 8              |                                         | 2 2            | ۱۲.<br>الا        | anale        | 7             | 121                                   | •    |              |      |        | •          | 2010          |
| Sample ID                        | LOCATION      | Date                                             | Time            | 1                                                | 3              | ,,       |      | ,   |                                         |                                              | . ]     |             | E            | 200           | F                     | 8                    | 1/10           | 8              | 7              |                                         | 3 3            | Z.                | Z C          | 574           | 240                                   | -    |              |      | 3      |            | 6816          |
|                                  | , ,<br>       | Wate                                             | 2 1446 <b>2</b> | # Contain                                        | TypeC          | Water    | 3    |     | 2 2 2                                   | 3                                            | 2       | O E         | DTEX A TPH   | No seri       | Total Perroles        | Total Petrole        | EPA 601 / 8010 | BTEX ONLY (EPA | EPA 608 / 8080 | בני מישי שמשה ברים ב                    | EPA 625 / 8270 | PAH's / PNA's by  | CAM-17 Memis | LUPT 5 Metals | Cond (72407421/239,246010)            | Q    | 灵            | 138  |        |            | 68162         |
| B1-10'                           |               | eier .                                           |                 | ř                                                | -              | ╀        | v    | -   | +                                       | N                                            | -       |             | +-           | ┿             | -                     |                      |                | -              | _              | +                                       | +              | -                 | -            |               | _                                     |      | -            |      | 1      |            | 68168         |
| B1-15'                           |               | 5.270                                            | 1000            | <del>                                     </del> | -              | ╁╌       | J    | +   | +                                       | 1                                            |         |             | ╎            | 1             | -                     |                      |                |                | 1              |                                         | +              | +                 |              |               |                                       |      |              | -    |        |            | 00 100        |
| B2-10'                           |               |                                                  | וינע            | 17                                               |                | 1        | न    |     |                                         | V                                            |         |             | <b>y</b>     | 1             |                       |                      |                |                |                |                                         |                | :                 |              |               |                                       |      |              |      |        | • .        | 68169         |
| 82- 15                           |               |                                                  | pon             |                                                  |                |          | V    |     |                                         |                                              |         |             | ~            | 1             |                       |                      |                |                |                |                                         |                |                   |              |               |                                       |      |              |      |        | v .        | 60470         |
| B2-20'                           |               |                                                  | und             | t                                                |                |          | 4    |     |                                         |                                              |         |             | ×            | <del>-}</del> | -                     |                      |                |                |                | _                                       |                | <u> </u>          |              |               | ļ                                     |      | _            |      | -      |            | 68170         |
| 133-10                           |               |                                                  | Ans             | 11                                               | <u> </u>       | _        | 4    |     |                                         | 12                                           |         | 1           | 1            | 4             |                       |                      |                |                |                | $\downarrow$                            |                | +-                | -            |               | _                                     | -    | _            | -    | -      | i<br>      | 6817          |
| B3-15                            |               |                                                  | Ams             |                                                  | -              | ╁        | 14   | -   | 10                                      | $\perp$                                      |         | +           | <u> </u> ×   | +             | ļ.<br>                | -                    |                |                |                |                                         | +              | +-                | -            | -             | _                                     | -    | -            | -    | -      |            |               |
| B3-20                            |               | -                                                | Am              | 1 !                                              | <u> </u>       | +        | 1    | +   |                                         | <u>                                     </u> |         | +           | +-           | +             |                       | -                    |                |                |                | +                                       | -              | +-                | ┼-           | -             | -                                     | -    | -            | -    | 1      |            | 68172         |
| 84-10'                           |               | -                                                | Avi             | +-                                               | -              | ╫        | 1    | -   | -                                       | X                                            |         | +           | +;           | ~~~           | -                     | -                    |                |                |                | -                                       | $\dashv$       | -                 | -            | ├             | -                                     | +    | <del> </del> | +    | +      | <u>ا</u> ا | 6817          |
| B4-15                            | <b></b>       | <del>                                     </del> | Am              | ++                                               | ╅┈             | +        | TX   | +   | -                                       | 1                                            | _       |             | -            |               | $\dagger$             | +-                   | <b> </b>       | -              |                | -                                       | +              | +                 | +-           | 1             | 1                                     | +    | †            | 1    | 1-1    | ħÌ         |               |
| B5 - 15                          |               | +                                                | kun             | + ;                                              | +-             | 十        | ť    |     |                                         | T.                                           |         |             |              |               | $\dagger$             | +                    |                |                |                |                                         |                |                   | $\top$       | 1             | +                                     |      | 1            | †    |        | ř          | 6817          |
| R5 - 20                          | .,            | 1-1-                                             | Am              | 17                                               | 1              | 1        | V    |     |                                         | 1                                            |         |             |              | 人             | 1                     |                      |                |                |                |                                         |                |                   |              |               |                                       |      |              | I    |        |            | 6817          |
| 186-10                           |               | 14                                               | Ann             |                                                  |                |          | V    |     |                                         |                                              |         |             |              | /             |                       |                      |                |                |                |                                         |                |                   |              |               |                                       |      |              |      |        | با         | 0417          |
| BT- 10                           |               | 5.20                                             | الدوا           | F                                                |                |          | V    |     |                                         | الم                                          | 1       |             | _            | /             |                       |                      |                |                |                |                                         |                |                   |              |               |                                       |      |              |      | ╙      |            | 6812          |
| clinquisted By:<br>Chys V/2      | stouch        | Date:<br>5-23-0                                  | 1040            |                                                  | a f            | <u> </u> | 1    |     | Y S                                     | M                                            | أسند    |             |              | tem           | arks                  | •                    | V              | 577            | n a            | 1                                       | 7              | A                 | 7            |               |                                       |      | •            |      |        | 1          | 681           |
| telinguished By:                 |               | Date:                                            | Time            | Re                                               | elved          | By:      | ,    | •   | •                                       |                                              |         | YUZD        |              |               |                       |                      |                |                |                |                                         |                |                   | :            |               |                                       |      |              |      |        | ì          |               |
| telinquished By:                 | ICE/V         | Date                                             | Time:           |                                                  | ESER           |          | V.   | 100 | USU                                     | MCI/                                         | 13      | THER        | 4            |               |                       |                      |                |                |                |                                         |                |                   |              |               | سر                                    | ٠,   | n.           | ·    | ند     |            | ÷             |

| McCAMPBELL ANALYTICAL INC. 110 2"AVENUE SQUTE, #D7 |               |         |                       |                 |                                                  |              |                                                  |                  | Т           |             |          |            |             | CE            | [A]                           | IN                     | OI              | r C                        | U              | ST                         | [O]                   | Y              | R                     | EC           | <b>.</b> (0)  | RD                          |     |              |                              |          |          |                                       |
|----------------------------------------------------|---------------|---------|-----------------------|-----------------|--------------------------------------------------|--------------|--------------------------------------------------|------------------|-------------|-------------|----------|------------|-------------|---------------|-------------------------------|------------------------|-----------------|----------------------------|----------------|----------------------------|-----------------------|----------------|-----------------------|--------------|---------------|-----------------------------|-----|--------------|------------------------------|----------|----------|---------------------------------------|
|                                                    | . 1           | 10 2 AV | venue so<br>to, ca sa | )UTH,<br>853-55 | #207<br>60                                       |              |                                                  |                  |             |             |          |            | 1'          | TU            | RN                            | A                      | RO              | UN                         | ן מ            | MI                         | Œ                     |                |                       | 9            | _             | Q                           | _   |              | Q                            |          | Q        |                                       |
|                                                    | ne: (925) 798 | -1620   |                       |                 | F                                                | ar:          | (925                                             |                  |             |             |          |            | 1           |               |                               |                        |                 |                            |                |                            |                       | ٠              | Rt                    | ish          | 2             | 4 H                         | K.  |              | HR                           |          | 72 HR    | 5 DA                                  |
| Report To:                                         | as this or    | GUZDI   |                       | M Te            |                                                  |              | $\Sigma_{\mathcal{D}}$                           | נינין            | E           | ·           |          |            | 4_          | <del></del>   |                               | ,                      |                 | An                         | tlys           | is R                       | equ                   | est            | <del></del> -         |              | <del>-</del>  | _                           | -   | <del></del>  | Othe                         | <u>-</u> | Com      | ments                                 |
| Company: Se                                        | 4000          | FILVIY  | onme                  | en?             | $\frac{ac}{c}$                                   |              | <u>با</u>                                        |                  |             |             |          | <u> </u>   | 4           |               | 5                             |                        |                 |                            |                |                            |                       |                |                       |              |               | -                           | - { |              |                              |          | 1        |                                       |
|                                                    | Azada         | 1000    | JN 63.                |                 |                                                  | _            | 2                                                | <u>U_</u>        | *********** | <del></del> |          |            | ᆛᇕ          |               | 18                            |                        |                 |                            |                | 1                          | - [                   |                | ٥                     |              |               |                             | 1   |              |                              |          |          |                                       |
| S Gn<br>Tela: (5), 0 - 6                           | 6200          | 100     | <u>, A</u>            | -               | 57/                                              |              |                                                  |                  |             | 0           | 01       |            | EOLSY METRE |               | 4                             | =                      |                 |                            |                |                            | - 1                   | }              | EPA 625 / 8270 / 8310 |              |               |                             | 1   |              | -                            |          |          |                                       |
| Project #:                                         | e Je Jago     |         |                       |                 |                                                  |              |                                                  |                  | <del></del> |             | 7        | 2_         | ၂활          |               | 5520                          | 鼍                      |                 |                            |                | 1                          |                       |                | 20                    |              |               |                             |     |              |                              |          |          |                                       |
| Project Location:                                  |               | /anc    |                       |                 |                                                  |              | <del></del>                                      | <del></del>      |             |             | *****    |            | 1:          |               | 1                             | 1                      |                 | 8                          |                |                            | - [                   |                | 2.8                   |              |               | 9                           | 1   |              |                              |          |          |                                       |
| Sampler Signatur                                   | e: CA         | red Ye  | rest                  | n7              | -04                                              | `            |                                                  |                  |             |             |          |            | - S         |               | 8                             |                        |                 | 2                          |                | 5                          | .                     |                | 3                     | -            |               | 3                           | -   | -            |                              |          |          |                                       |
|                                                    |               |         | LING                  |                 | E                                                | _            | MA'                                              | TRL              | X           | , N         | ATT.     | tod<br>RVE |             | <u> </u>      | n Oil & Greace (5520 E&F/B&F) | m Hydrocarbons (418.1) |                 | 4                          | ,              | 9                          | 126                   |                |                       |              |               | 23                          |     | -            | 3                            |          |          | •                                     |
|                                                    |               |         |                       | E               |                                                  | -            |                                                  |                  |             | +-          |          | 1          | - 1         | c (80) 5)     |                               | -                      | 2               | 8                          | 8              | 8                          | 9                     | ا ع            | •                     | 큪            | <b>.</b>      | <b>3</b>                    |     | .            |                              |          |          |                                       |
| SAMPLE ID                                          | LOCATION      | Date    | Time                  | # Coetain       | Type Conta                                       | Water        | TES.                                             | Series<br>Series | 7 6 F       | 52          | HC.      | ENC)       | STECK TON   | Į             | 1 .                           | Total Petroles         | EPA 601 / \$010 | BTEX ONLY (EPA 602 / 8020) | EPA 608 / 8080 | 22'A 608 / 8080 PCB's ONLY | EPA 624 / 8240 / 8260 | EPA 625 / 8270 | PAIT'S / PNA'S by     | CAK-17 Kenta | LUFT 5 Motels | Land (7240/7421/239/2/6010) | 1 1 | E S          | 135<br>Specific Conductivity |          |          |                                       |
| SB7-15'                                            |               | 50201   | רימנון                | 1               |                                                  |              | v                                                |                  |             | V           |          |            | 1.          | 工             |                               |                        |                 |                            |                |                            |                       |                |                       |              |               |                             | 1   | <u> </u>     | 丰                            | ,        | ,<br>68  | 178                                   |
| SB7-20                                             |               | C:23.01 | _ · .                 | 1               |                                                  |              | 1                                                |                  |             | 1           |          |            | 1           | 1             |                               | <u> </u>               | <u> </u>        |                            |                |                            |                       |                |                       |              |               |                             |     | $\perp$      | ;                            |          | UU       | 170                                   |
|                                                    |               |         |                       |                 |                                                  |              |                                                  |                  |             |             | -        |            |             |               |                               |                        |                 |                            |                |                            |                       |                |                       |              |               |                             |     |              | 1                            |          | 68       | 179                                   |
|                                                    |               |         |                       |                 |                                                  |              |                                                  |                  | T           |             |          |            | T           |               |                               |                        |                 |                            |                |                            |                       |                |                       |              |               |                             |     | T            | $\top$                       |          | -        |                                       |
|                                                    |               |         |                       |                 |                                                  |              |                                                  |                  |             |             |          |            | Τ           |               |                               | Π                      |                 |                            |                | T                          |                       | T              |                       |              | $\top$        |                             | T   | T            | Т                            |          |          | -                                     |
|                                                    |               |         |                       | <b></b>         |                                                  |              |                                                  |                  |             | 1           |          |            | 1           | 1             | 1                             |                        |                 |                            |                | _                          |                       | $\neg$         | $\exists$             |              | $\dashv$      |                             | 7   | 1            |                              |          |          | <del></del>                           |
|                                                    | <del> </del>  |         |                       | <b> </b>        | <del>                                     </del> | 1            |                                                  | _                | _           | †           | 1        |            | 7           | -             | _                             | 1                      | 1               |                            |                | _                          | -1                    | _              | 寸                     |              | 7             | 十                           | 1   | 7            | +                            | -        |          | <del></del>                           |
|                                                    |               |         |                       | <del> </del> -  | <b>†</b>                                         | 1-           |                                                  |                  | 1           | +           |          | -          | +-          | -             | -                             | +                      | <del> </del>    |                            |                | -                          | _                     | -              | 7                     |              | ┰             |                             |     | +            | +                            | +        |          | <del></del>                           |
|                                                    |               |         |                       | -               | ┢                                                | ╂╌           | <del>                                     </del> |                  | +-          | ┼           |          | -+-        | +-          | +-            |                               | <del>  -</del>         | <del> </del>    | -                          |                |                            | -                     | -              | -                     | -            | 1             | -                           |     | +            | +                            | +        | -        | <del></del>                           |
|                                                    |               |         |                       |                 | ļ                                                | <del> </del> |                                                  |                  |             | ╂─          |          |            |             |               |                               | ┿                      |                 |                            |                |                            | -+                    |                | +                     | -            | $\dashv$      | 十                           | +   | <del>-</del> |                              |          | <b> </b> |                                       |
| <del></del>                                        |               |         | <b> </b>              | <b> </b>        | <del> </del>                                     | ╁            | ┝┉┝                                              |                  |             | ┼           | $\vdash$ |            |             | -             |                               | -                      | ┼               |                            |                | -                          |                       | -              |                       |              | -             | -                           |     | +            | +                            |          | <b> </b> | <del></del>                           |
|                                                    |               |         |                       | <b>!</b>        |                                                  | ╀-           | $\vdash$                                         |                  |             | <b>-</b>    |          |            | - -         | +             | -                             | <del> </del>           | ├               |                            |                |                            | _                     | _              | _                     | _            |               | asic                        | щ   | H            | ग्रद्या                      | HER      | <u> </u> |                                       |
|                                                    | ·             |         |                       | <u> </u>        | <u> </u>                                         | <b>!</b>     |                                                  | _                |             | <b>-</b>    |          |            | 4           |               | CE#                           |                        | _               |                            | _              | -                          | _                     | ES             | _                     | _            | N             | 4                           | 4   | 4            | 4                            | +-       | <b> </b> | · · · · · · · · · · · · · · · · · · · |
|                                                    |               |         |                       | <u> </u>        | <u> </u>                                         | 1_           |                                                  |                  | ٠.,         | <u> </u>    |          |            | 4_          | <del></del> - | 3001                          | 19.47                  | ALC:            | 13.5                       | 4 Per 1        |                            | -/5                   | PR             | PN                    | ALE          |               | -                           | 4.  |              |                              |          | ļ        |                                       |
|                                                    |               |         |                       | <u>L</u>        |                                                  | 1_           |                                                  |                  |             | L           |          |            |             |               | 124                           | יים                    | CE I            | 1000                       | נאנ            |                            | ч                     | 1717           | INE                   | ГЭ           |               |                             | I   | 1            |                              |          |          |                                       |
|                                                    |               |         |                       |                 |                                                  |              |                                                  |                  |             |             |          |            |             |               |                               |                        |                 |                            |                |                            |                       |                |                       |              |               |                             |     |              |                              | 4 1      | L        |                                       |
| Relinquished By:                                   | n 20h         | Dute:   | Time:                 | W               | an                                               | y.           | 1                                                | len              | Ko          | <b>/</b> -  | <b>-</b> |            | F           | lem           | arks                          | ;                      | ٨               | 10                         | 7.4            | ہے و                       | ۷.                    | 7              | F                     | + 7          |               |                             |     |              |                              | i Ti     |          |                                       |
| Reimquished By:                                    |               | Date:   | Time                  | Roce            | ived E                                           | y:           |                                                  |                  |             |             |          |            |             |               |                               | ÷                      |                 |                            | ,              |                            |                       |                |                       |              |               |                             |     |              |                              |          |          |                                       |
| Relinquished By:                                   |               | Date:   | Time:                 | Rece            | ived P                                           | ij.          |                                                  |                  |             |             |          |            | +           |               |                               | :                      |                 |                            |                | 4                          | •                     |                | :                     | 44.0         | . )           |                             |     |              |                              |          | i gerier | iare<br>Gran                          |

2597125010.da McCAMPBELL ANALYTICAL INC. CHAIN OF CUSTODY RECORD 118 24 AVENUE SOUTH, #D7 TURN AROUND TIME PACHECO, CA 94553-5560 Telephone: (925) 798-1620 Fax: (925) 798-1622 RUSH 24 RR 48 HR 71 HR 5 DAY Report To: Bill To: Some Analysis Request Other Comments Companys E (5520 EAFFBAF) EPA 625 / 1270 / 12310 Tele: (47) 0 -Fax: (5770 Project #: Project Name: Project Location: BTEX ONLY (BPA, 602 / 8020) Lond (77407421/239.2/6010) Sampler Signature: METHOD SAMPLING EPA 624 / 8240 / 8260 TPH as Diesel (2015) MATRIX PRESERVED EPA 601 / 8010 EPA 608 / \$080 EPA 508 / 8080 EPA 625 / 8270 CAM-17 Month LAIFT S Montels SAMPLE ID LOCATION BIEK & 1PH Date Time HC: 2 Ł 3B-68157 Dim 2 SB-3 2, ושני () W 58158 لمرن 68159 68160 68161 68162 GOOD CONTITION A HEAU SPACE ABSEN APPROPRIATE islinguished By: Date Time: Received By: Remarks: Nomal TAT 5.1301040 Lettinguished By: Received By:

Received By:


Firme:

lelinquished By:

26307 250 p CHAIN OF CUSTODY RECORD THE 2<sup>th</sup> AVENUE SOUTH, ADT PACHECO, CA 94553-5560 TURN AROUND TIME 48 HR 72 HR RUSH **14 HR** Fax: (925) 798-1622 Telephone: (925) 798-1620 Report Tox Lins / Nabijzoh Bill To: Analysis Request Other Comments Company: Seguala Environmental TO CASTO BAFARAT) addin avenue Suta 625 / 8270 / 8310 Leamoro, Ca 94577 Total Petroleum Hydrocarbons (418.1) Ide: (5)10 - 614 - 1900 Par (510-614-2723 SW-02 Project#: Project Name: Cateland Project Location: EPA 608 / 1080 PCS's ONLY Load (7240/7421/235.2/6010) Sampler Signature: CAMO MADOUZIS Total Petroleum Oil & Ore BTEX & TPH & Qee (602/10 EPA 624 / 8240 / 8260 METHOD Conductivity 1PH as Dicaed (8015) MATRIX SAMPLING PRESERVED PAHPs / PNA's by PPA 608 / 8080 CAM-17 Mobils EPA 601 / R010 EPA 625/ \$270 LIFT S Meth SAMPLE ID LOCATION Sladge Specific Date Time Water HNO, Other HC Fog 7 3 Q 2 Ŧ MW-3 643-0 69777 61301 MW- 6 2 DM 69778 ulinquished By: Date: Received By: Remarks: Wino montonarl disquished By: Received By: Maquishes By: Dates

# Appendix B

City of Oakland Subsurface Utility Map



# Appendix C

City of Oakland Bench Mark Data from Renner Surveying & Engineering

To:

### RENNER SURVEYING & ENGINEERING

3270 MENDOCINO AVENUE, SUITE E-2 SANTA ROSA CA, 95403 PHONE 707-569-9757 FAX 707-569-9762 renengl@pacbell.net (Home Office)

AND 228 LORTON AVENUE, SUITE 4 BURLINGAME, CA 94010 PHONE 650-685-8131 FAX 650-685-8313 (Survey Headquarters)

## FAX TRANSMITTAL BOB CLARK

Date:

| Company: |                                                                                                        | FAX No:    | 1-510-420-9170                       |
|----------|--------------------------------------------------------------------------------------------------------|------------|--------------------------------------|
| From:    | Ernie Renner                                                                                           | Re:        | DANY                                 |
| Subject: | City OF CAKEAN                                                                                         | <b>(2)</b> |                                      |
| numbe:   | R OF PAGES TRANSMITTED INC<br>IF YOU DO NOT RECEIVE ALL<br>RESPECTIVE HOME OR SURVE<br>ADDITIONAL COMM | THE PAGE   | S, PLEASE CALL US @ TELEPHONE NUMBER |
|          | GVD 1929 is 3                                                                                          | o'hu       | gher - cold                          |
| Three    | GVD 1929 is 3<br>feet to our ele                                                                       | vatio      | us.                                  |
|          |                                                                                                        | Mark       | You                                  |
|          |                                                                                                        | Man        | le .                                 |

#### RENNER SURVEYING & ENGINEERING

3270 MENDOCINO AVENUE, SUITE E-2 SANTA ROSA CA, 95403 PHONE 707-569-9757 FAX 707-569-9762 renengl@pacbell.net (Home Office)

### AND

228 LORTON AVENUE, SUITE 4 BURLINGAME, CA 94010 PHONE 650-685-8131 FAX 650-685-8313 (Survey Headquarters)

#### FAX TRANSMITTAL

To: Ernie

Date: 3/17/03

Company: N/A

FAX No: 510-525-1011

From:

Robert Shellman

Re: 1093-01

Subject: Datum

NUMBER OF PAGES TRANSMITTED INCLUDING TRANSMITTAL SHEET: 2 Ernie: The current datum that the topo is on is a local Oakland city datum. To convert to NGVD29' add 3ft to each elevation.

Robert

707-569-9762

DATUM

|                                         |                                         |                      | المار معاد المعتمدين إلى الماري |                                    | , <i>P</i>          |
|-----------------------------------------|-----------------------------------------|----------------------|---------------------------------|------------------------------------|---------------------|
| 562-17 (8/62)                           | BENCH                                   | Y OF OAKLAND<br>MARK | DATA                            | Openans                            |                     |
| andord Disc in gged Pin in conument Pin |                                         | Elevati              | on33.7<br>BookBL 43             | 05                                 |                     |
| LOCATION:  Square cut in East 14th Str  | cons. curb center<br>cet and 27th Avenu |                      |                                 | 3                                  | 3<br><sub>b</sub> C |
| To Coment.<br>ACID'29<br>ADD3' CO       | ·                                       |                      | ARY FAUG<br>615-55°<br>ATER# NE | HT 200029 01<br>77 467<br>BAR HEGG |                     |
| ·                                       | LUNGGRAM                                | O NED GEW            | Engineer's Offic                | e, Oakland Ca                      | He.                 |