

March 20, 2003

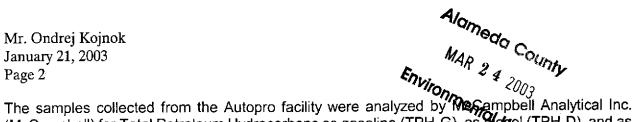
Mr. Ondrej Kojnok Tri Star Partnership 2980 Thomas Grade Morgan Hill, California 95037

SUBJECT:

FOURTH QUARTER 2002 GROUNDWATER MONITORING REPORT

AUTOPRO FACILITY

5200 TELEGRAPH AVENUE OAKLAND, CALIFORNIA


MACTEC E&C PROJECT NO. 51644.030

Mr. Kojnok:

MACTEC Engineering & Consulting (MACTEC, formerly Harding ESE, a MACTEC Company) is pleased to present the results of fourth quarter 2002 groundwater monitoring activities for the Autopro Facility (site) located at 5200 Telegraph Avenue in Oakland, California (Figure 1 - Location Map). These activities were mandated by the Alameda County Health Care Services Agency (ACHCSA) in a letter dated August 13, 2001. The following report describes the activities completed and the results.

FIELD ACTIVITIES

On January 6, 2003, MACTEC personnel performed groundwater monitoring activities at the site. Monitoring activities were not performed during the month of December due to holiday scheduling conflicts between the Autopro facility and MACTEC. At the Autopro facility, depths to groundwater were measured using an electronic water level meter in four on-site groundwater monitoring wells (Figure 2 - Site Map). The fifth off-site well was not gauged because the manhole had been removed causing the area above the well casing to fill with soil and debris. MACTEC personnel did not remove the debris for fear that the well casing might be damaged without a replacement manhole cover. The manhole cover will be replaced during the first quarterly monitoring event of 2003. No evidence of free-product was found in any of the four wells. A minimum of three volumes of groundwater was removed from each well using a properly cleaned reusable bailer and new nylon cord. Temperature, pH, and electrical conductivity parameters were not recorded during the well purging process due to a malfunctioning meter. Groundwater samples were collected from the well following the purge process using a pre-cleaned disposable bailer and new nylon cord. Groundwater sample collection logs are presented as an attachment. Groundwater was decanted from the disposable bailer into laboratory-supplied glassware. The samples were then labeled and placed in a cooler on ice, under proper chain-of-custody documentation, and transported to a State-certified analytical laboratory by MACTEC personnel.

(McCampbell) for Total Petroleum Hydrocarbons as gasoline (TPH-G), as desel (TPH-D), and as motor oil (TPH-MO); benzene, toluene, ethylbenzene, and total xylenes (BTEX); and methyl tertiary butyl ether (MTBE) by Environmental Protection Agency (EPA) methods 8015, 8015M, 8015M, 8020, and 8020, respectively. Laboratory reports and chain-of-custody documentation are included as an attachment.

Purge water and equipment rinseate were stored on-site in properly labeled Department of Transportation (DOT)-rated 55-gallon drums pending analysis and proper disposal/recycling.

RESULTS

Depth to groundwater in the four on-site wells (MW-1 through MW-4) from the most current sampling event, ranged from 9.25 feet to 10.81 feet below top of casing. Groundwater elevations were calculated and are presented in Table 1 - Historical Groundwater Data. Groundwater elevation contours were plotted on Figure 3 - Groundwater Elevation Contour Map, January 6, 2003. Groundwater onsite was found to flow generally towards the south at an approximate gradient of 0.008 feet per foot.

- TPH-G was detected in wells MW-1, MW-3, and MW-4 at concentrations of 540 $\mu g/L$, 6,300 $\mu g/L$, and 2,500 $\mu g/L$, respectively.
- TPH-D was detected in wells MW-1, MW-2, MW-3, and MW-4 at concentrations of 1,800 µg/L, 230 µg/L, 5,100 µg/L and 2,100 µg/L, respectively.
- TPH-MO was detected in wells MW-1, MW-2, and MW-4 at concentrations of 3,300 μg/L, 620 μg/L, and 370 μg/L, respectively.
- Benzene was detected in well MW-4 at a concentration of 0.69 µg/L.
- Toluene was detected in wells MW-1, MW-3 and MW-4 at concentrations of 2.20 μg/L, 7 μg/L and 2.4 μg/L, respectively.
- Ethybenzene was detected in wells MW-3 and MW-4 at concentrations of 8.5 μg/L and 1.7 µg/L, respectively.
- Total Xylenes was detected in wells MW-3 and MW-4 at concentrations of 15 µg/L and 1.4 µg/L, respectively.
- MTBE was not detected above reporting limits in any well.

Table 2 - Historical Groundwater Analytical Data is a tabular summary of the laboratory report for this quarter and previous quarters. Figures 4 through 7 graphically depict the estimated extent of TPH-G, TPH-D, Benzene, and MTBE in groundwater for the site during this quarter.

Mr. Ondrej Kojnok January 21, 2003 Page 3

CONCLUSIONS

Based on the results of the fourth quarter 2002 groundwater monitoring activities, MACTEC concludes the following:

- Groundwater flow direction is generally to the southwest at a gradient of 0.008 ft/ft, which compares with previously obtained data for the site.
- TPH-D concentrations decreased in well MW-3; and increased in wells MW-1, MW-2, MW-4.
- TPH-MO concentrations remained below laboratory detection limits in well MW-3;
 and increased in wells MW-1, MW-2, and MW-4.
- TPH-G concentrations decreased in well MW-3; remained below laboratory detection limits in well MW-2; remained the same in well MW-4; and increased in well MW-1.
- Benzene concentrations decreased to below laboratory detection limits in well MW-3; decreased in well MW-4; and remained below laboratory detection limits in wells MW-1 and MW-2.
- Toluene concentrations decreased in wells MW-3 and MW-4; remained below laboratory detection limits in well MW-2; and increased in well MW-1.
- Ethylbenzene concentrations decreased in wells MW-3 and MW-4; and remained below laboratory detection limits in wells MW-1 and MW-2.
- Total Xylene concentrations decreased in wells MW-3 and MW-4; and remained below laboratory detection limits in wells MW-1 and MW-2.
- All regulated analytes (benzene, toluene, ethylbenzene, xylene and MTBE) are below maximum concentration levels (MCLs) according to *Title 22*, *California Code* of Regulations, Division 4. Environmental Health, Chapter 15. Domestic Water Quality and Monitoring, Article 5.5. Primary Standards – Organic Chemicals, Section 64444. General Requirements, Table 64444-A (See last row of Table 2).

Mr. Ondrej Kojnok January 21, 2003 Page 4

CLOSURE

This report has been prepared by Harding ESE for the exclusive use by Mr. Ondrej M. Kojnok, Attorney at Law, and Mr. George Tuma of Autopro, as it pertains to their site located at 5200 Telegraph Avenue in Oakland, California. Our professional services have been performed using that degree of care and skill ordinarily exercised under similar circumstances by other geologists and engineers practicing in this field. No other warranty, expressed or implied, is made as to professional advice in this report.

Sincerely.

HARDING ESE, A MACTEC COMPANY

Jason T. House

Senior Staff Environmental Scientist

Buck King

Senior Project Hydrogeologist

California R.G. No. 6353 California C.H.G No. 433

Bock ling

Attachments: Table 1 - Historical Groundwater Elevation Data

Table 2 – Historical Groundwater Analytical Data

Figure 1 - Location Map Figure 2 - Site Map

Figure 3 – Groundwater Elevation Contour Map, January 6, 2003

Figure 4 – Estimated Extent of TPH-G in Groundwater, January 6, 2003 Figure 5 – Estimated Extent of TPH-D in Groundwater, January 6, 2003 Figure 6 – Estimated Extent of TPH-MO in Groundwater, January 6, 2003 Figure 7 – Estimated Extent of Benzene in Groundwater, January 6, 2003

Groundwater Sample Collection Logs

Laboratory Reports and Chain-of-Custody Documentation

cc w/attachments:

Mr. George Tuma, Autopro

Mr. Don Huang, Alameda County Health Care Services

TABLE 1
HISTORICAL GROUNDWATER ELEVATION DATA

Autopro Facility 5200 Telegraph Avenue Oakland, California

Well I.D.	Date	Datum	Depth to Water	Ground Water Elevation
		_	(feet)	(ft AMSL)
MW-1	04/26/94	115.44	12.69	102.75
	07/20/94		12.39	103.05
	10/21/94		13.06	102.38
	01/18/95		10.14	105.30
	06/26/96		11.90	103.54
	09/24/96		12.53	102.91
	12/11/96		9.95	105.49
	12/12/97		10.28	105.16
	03/23/98		5.12	110.32
	06/16/98		10.15	105.29
	08/25/98		13.10	102.34
	09/30/98		13.33	102.11
	12/15/98		11.78	103.66
	03/22/02		11.45	103.99
	06/28/02		12.16	103.28
	09/06/02		13.05	102.39
	01/06/03		10.81	104.63
MW-2	04/26/94	114.62	1 1 .15	103.47
	07/20/94		11.44	103.18
	10/21/94		12.30	102.32
	01/18/95		9.21	105.41
	06/26/96		11.16	103.46
	09/24/96		11.81	102.81
	12/11/96		9.17	105.45
	12/12/97		9.39	105.23
	03/23/98	!	4.32	110.30
	06/16/98		9.23	105.39
	08/25/98		12.25	102.37
	09/30/98		12.42	102.20
	12/15/98		10.93	103.69
	03/22/02		10.32	104.30
	06/28/02	1	11.26	103.36
	09/06/02		12.10	102.52
	01/06/03		9.94	104.68
MW-3	04/26/94	113.90	10.97	102.93
,,,,,,	07/20/94	110.00	11.21	102.69
	10/21/94		11.92	101.98
	01/18/95		8.90	105.00
	06/26/96		10.88	103.02
1	09/24/96		12.53	101.37
	12/11/96		8.17	105.73
	12/12/97		8.81	105.09
	03/23/98		3.65	110.25
	06/16/98		8.90	105.00
	08/25/98		12.35	101.55
	09/30/98		12.11	101.79
	12/15/98		10.53	103.37
	03/22/02		9.93	103.97
	06/28/02		10.76	103.14
	09/06/02		11.60	102.30
	01/06/03		9.41	104.49

TABLE 1
HISTORICAL GROUNDWATER ELEVATION DATA

Autopro Facility 5200 Telegraph Avenue Oakland, California

Well I.D.	Date	Datum	Depth to Water	Ground Water Elevation
	- 4		(feet)	(ft AMSL)
MW-4	04/26/94	114.25	10.97	103.28
	07/20/94		11.16	103.09
	10/21/94		11.68	102.57
	01/18/95		9.02	105.23
· .	06/26/96		10.77	103.48
	09/24/96		11.51	102.74
1	12/11/96		8.85	105.40
	12/12/97		8.95	105.30
	03/23/98		3.49	110.76
l i	06/16/98		9.05	105.20
	08/25/98		12.05	102.20
	09/30/98		12.22	102.03
	12/15/98		10.68	103.57
	03/22/02		10.23	104.02
	06/28/02		10.99	103.26
	09/06/02		11.90	102.35
	01/06/03		9.25	105.00
MW-5	07/18/98	113.06	10.77	102.29
	08/25/98		11.20	101.86
	09/30/98		11.32	101.74
	12/15/98		9.92	103.14
	03/22/02		9.20	103.86
	06/28/02		10.12	102.94
	09/06/02	_	11.10	101.96
		CHEVRON WE	LLS	
C-3	03/22/02	115.70	13.40	102.30
MW-1	03/22/02	115.02	10.34	104.68
MW-2	03/22/02	112.03	9.89	102.14
MW-3	03/22/02	113.63	14.17	99.46
MW-5	03/22/02	116.70	14.71	101.99

Note:

ft AMSL = feet above mean sea level.

TABLE 2
HISTORICAL GROUNDWATER ANALYTICAL DATA

Autopro Facility 6200 Telegraph Avenue Oakland, California

Well I.D.	Date Sampled	TPH-D	TPH-MO	TPH-G	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	VOCs			vietals (mg/L)	
		(μg/L)	(μ g/ L)	(μg/L)	(µg/L)	(μg/L)	(μ g/L)	(μg/L)	(µg/L)	(µg/L)	cadmium	chromium	lead	nickel	zinc
MW-1	04/26/94	<50		1,400	<0.50	<0.50	4.5	2.1		<0.50	0.001	<0.05	<0.005	0.120	<0.10
	07/20/94	100	_	1,200	19	2.5	2.4	1.6	_	l -	<0.010	0.220	0.044	0.360	0.350
	10/21/94	130	_	560	8.4	1.1	0.90	1,8		-	<0.010	<0.010	<0.020	0,041	0.077
	01/18/95	240	_	620	8.5	2.1	1.3	2,3		1	<0.010	0.026	<0.020	0,024	0.067
	06/26/96	56	<250	180	<0.50	< 0.50	<0.50	<0.50	<5.0	-	-		~	-	
	09/24/96	150	<250	170	3.7	0.92	0.54	0.63	6.5	-				- 1	
	12/11/96	300	<250	520	<0.50	0.8	0.59	0.81	<5.0			-	_	-	
	12/12/97	280	<250	360	<0.50	0.8	0.82	0.9	<5.0	-	l –		_	l –	
	03/23/98	96	<250	<50	<0.50	<0.50	<0.50	<0.50	<5.0	-		-	_	_	
	08/25/98	110	<250	740	<0.50	<0.50	<0.50	2.40	ND<10	-			_	-	
	09/30/98	<50	<250	<50	<0.5	<0.5	<0.5	<0.5	-] –	-		_	_	
	12/15/98	380	<250	560	<0.5	1.80	0.66	1.50	-	-				-	- 1
	03/22/02	5,100	6,900	150	<0.5	0.90	<0.5	<0.5	<5.0	-	–	_	_	_	
	06/28/02	590	260	560	0.54	1.60	<0.5	1.30	<5.0	-		-	–	_	
	09/06/02	320	<250	330	<0.50	1.30	<0.5	<0.5	<5.0	-	–	_	l –	–	_ 1
	01/06/03	1,800	3,300	540	<0.50	2.20	<0.50	<0.50	<5.0						
MVV-2	04/26/94	<50	_	<50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.001	<0.05	<0.005	0.060	<0.10
	07 <i>1</i> 20/94	<50		<50	<0.50	<0.50	<0.50	<0.50	_		<0.010	0.022	<0.020	0.045	0.068
	10/21/94	<50	1	<50	<0.50	<0.50	<0.50	<0.50	-	-	<0.010	0.031	<0.020	0.027	0.044
	01/18/95	<50	-	<50	<0.50	<0.50	<0.50	<0.50	-	-	<0.010	0.014	<0.020	0.023	0.045
	06/26/96	<50	<250	<50	<0.50	<0.50	<0.50	<0.50	<5.0	-	-	-	-	l –	
	09/24/96	<50	<250	<50	<0.50	<0.50	<0.50	<0.50	9.6	-	-	-	-	-	
	12/11/96	<50	<250	<50	<0.50	<0.50	<0.50	<0.50	<5.0	-			- '		
	12/12/97	58	<250	<50	<0.50	<0.50	<0.50	<0.50	<5.0	i -	_	-	-	-	
(Dup)	12/12/97	<50	<250	<50	<0.50	<0.50	<0.50	<0.50	<5.0	_	–	_	-	1 -	1 <i></i>
]	03/23/98	200	<250	200	<0.50	0.09	<0.50	<0,50	<5.0				-	l –	–
	08/25/98	<50	<250	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-			-	–	-
	09/30/98	<50	<250	<50	<0.5	<0.5	<0,5	<0.5	_	-	_		-	-	
	12/15/98	<50	<250	<50	<0.5	<0.5	<0.5	<0.5	_	-	-	_	-	-	-
	03/22/02	110	270	<50	<0.5	<0.5	<0.5	<0.5	<5.0	_	-	-	-	-	-
	06/28/02	410	660	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-	-	-			-
	09/06/02	<50	<250	<50	<0.5	<0.5	<0.5	<0.5	<5.0	_	-	_	-	-	- 1
	01/06/03	230	620	<50	<0.5	<0,5	<0.5	<0.5	<5.0		<u> </u>				<u> </u>

TABLE 2
HISTORICAL GROUNDWATER ANALYTICAL DATA

Autopro Facility 6200 Telegraph Avenue Oakland, California

Well I.D.	Date Sampled	TPH-D	TPH-MO	TPH-G	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВЕ	VOCs			vietals (mg/l	Year Francis	
		(μ g/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(μ g/L)	(µg/L)	(μg/L)	(µg/L)	cadmium	chromium	lead	nickel	zinc
MW-3	04/26/94	<3,000	_	10,000	70	40	40	50	_	<30	<0.001	<0.05	0.043	0.100	0.100
ļ	07/20/94	1,400	_	7,500	120	38	36	39	l	_	<0.010	0.099	0.140	0.120	0.250
	10/21/94	1,200		6,300	69	37	29	38			<0.010	<0.010	<0.020	0.036	0.140
	01/18/95	1,600	_	8,000	84	16	48	49		_	<0.010	0.046	0.049	0.040	0.110
1	06/26/96	2,800	<250	6,600	15	17	23	40	53		_	-	_		
(Dup)	06/26/96	2,700	<250	6,600	14	16	21	37	49	_	_		_	_	
	09/24/96	2,600	290	4,800	12	11	18	43	42	_	-			l _	ļ <u></u>
	12/11/96	2,900	<250	6,700	20	19	32	44	70	_			_	_	
	12/12/97	3,300	<250	7,400	32	37	46	90	<160	_	_		_	l _	
	03/23/98	1,900	<250	2,500	<0.50	3.2	3,5	7.7	<20	_	_	-	_	_	- :
(Dup)	03/23/98	1,600	<250	2,400	<0.50	4.0	3.4	4.4	<18	_	_	-	_	_	
!	08/25/98	-	-	_	0.8	1.1	0.77	2.3	ND<10	_		_	<u></u> .		
	09/30/98	2,800	<250	4,000	6.8	7.3	6.9	19	-	_			_		
	12/15/98	2,100	<250	3,300	<0.5	8.3	6.2	15	-	_		_	_		
	03/22/02	7,700	270	8,300	11	10	13	24	ND <25	-		_	_		-
	06/28/02	6,900	<250	9,300	53	<5.0	11	23	ND <50	-		_	-		-
	09/06/02	5,800	<250	9,900	61	10	20	46	ND <25	-			_	_	_
	01/06/03	5,100	<250	6,300	<5.0	7	8.5	15	ND <50		<u> </u>		_		
MW-4	04/26/94	<300	-]	6,800	<3.0	<3.0	3.0	4.0	-	<3.0	<0.001	<0.05	0.007	0.060	<0.10
	07 <i>1</i> 20/94	1,500	_	5,600	35	11	12	17	-	_	<0.010	0.023	<0.020	0.048	0.060
	10/21/94	870		4,300	26	19	12	20	i –	_	<0.010	0.013	<0.020	<0.020	0.092
[01/18/95	1,300		5,700	19	15	13	16	-		<0.010	0.020	<0.020	0.021	0.036
	06/26/96	2,500	<250	4,700	<0.25	4.8	11	19	30	-	_		-	-	
	09/24/96	2,200	<250	5,300	<1.0	5.3	8.2	8.3	<35	-	-		_	_	
(Dup)	09/24/96	2,200	<250	5,500	<1.0	6.6	9.4	8.4	<35	-			-	_	
	12/11/96	2,400	<250	4,000	<0.25	4.0	7.6	9.2	22	_			-	_	
(Dup)	12/11/96	2,800	<250	7,000	18	20	34	49	73	-	-		-		
	12/12/97	2,700	<250	3,100	<0.5	3.3	7.6	8.9	<41	-	-		_	-	
	03/23/98	740	500	950	<0.50	2.7	1.0	1.3	<17	_	-	_	-	-	
	08/25/98	1,800	<250	2,700	<0.5	3.0	4.2	11	ND<30	_	-		-	-	
	09/30/98	1,700	<250 -050	3,300	2.1	7.0	5.9	<0.5	-	-			-		
	12/15/98	1,800	<250	3,300	<0.5	3.9	4.9	12		-	_	_	_	_	-
	03/22/02	2,200	290	3,500	ND <1.0	3.2	2.4	4.6	ND <10	-	-	_	_	 .	
	06/28/02	2,700	940	3,900	2.6	7.3	4.5	7.2	ND <10	-			_	-	-
	09/06/02	1,800	<250	2,500	2.7	4.2	3.2	5.7	ND <10	-	_	-		_	
L	01/06/03	2,100	370	2,500	0.69	2.4	1.7	1.4	ND <5.0						

TABLE 2

HISTORICAL GROUNDWATER ANALYTICAL DATA

Autopro Facility 5200 Telegraph Avenue Oakland, California

Well I.D.	Date Sampled	TPH-D	ТРН-МО	TPH-G	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	VOCs			/letals (mg/L		
VVOII 1.D.	Late Gampled	(μ g/L)	(μ g/L)	(μg/L)	(μg/L)	(µg/L)	(μ g/ L)	(μg/L)	(μg/L)	(μ g/L)	cadmium	chromium	lead	nickel	zinc
MW-5	07/18/98	3,800	ND	5,900	7.40	9.50	17.00	29.00	ND≺60				-	-	-
11.77	08/25/98	2,800	<250	5.800	6.1	7.9	16	33	ND<70	_	1 -	l 	_		, – P
	09/30/98	3,600	<250	6,300	13	10	14	4.4	_	- ا	_		_		_ "
	12/15/98	2,800	<250	5,900	9.3	11	13	23	_	-	-	**	-	-	, – P
	03/22/02	3,600	720	5,100	7.6	5	8.3	15	ND <10	-	-	-	-	_	i - I
	06/28/02	4,400	310	9,000	41	ND <5.0	8.2	19	ND <50	-	-	-	_		-
	09/06/02	4,500	<250	7,600	43	ND <5.0	5.8	12	ND <50			_			
TRIP	06/26/96	_		<50	<0.50	<0.50	<0.50	<0.50	<5.0	_	-	-	-	-	-
	09/24/96	-		<50	<0.50	<0.50	<0.50	<0.50	<5.0	i –		-	_	-	
	12/11/96	_	- 1	<50	<0.50	<0.50	<0.50	<0.50	<5.0	-	-	-	-	-	
	12/12/97	! –	_	<50	<0.50	<0.50	<0.50	<0.50	<5.0	! -		_	_	-	
	03/23/98	i –		<50	<0.50	<0.50	<0.50	<0.50	<5.0	<u> </u>					
FIELD	03/22/02			<50	<0.50	<0.50	<0.50	<0.50	<5.0		-	-	-	-	
	06/28/02	_	-	<50	<0.50	<0.50	<0.50	<0.50	<5.0	-	-	_		-	
	09/06/02	_	- '	<50	<0.50	<0.50	<0.50	<0.50	<5.0	_	-	-	-	-	! -
	01/06/03	_		<50	<0.50	0.69	<0.50	1.2	8.7	-					1
							CHEVRON	WELLS					rigina an each an an		
C-3	03/22/02	930	<250	3,600	<5.0	<5,0	6.1	<15	<2.5			-			
MW-1	03/22/02	330	560	100	<0.5	24	0.8	4.9	15					<u> </u>	
MW-2	03/22/02		_	<50	<0.5	<0.5	<0.5	<1.5	<2.5			_	_		=-
MW-3	03/22/02	_		7,600	<10	4.2	11	<25	<5.0				=		
MW-5	03/22/02	<50	<250	<50	<0.50	<0.50	<0.50	<1.5	<2.5						
MCL	I DE LA CHARLES			Lina.] 1	150	700	1,750	13	1	0.005	0.05	0	0.1	5

Notes:

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-MQ = Total Petroleum Hydrocarbons as Motor Oil.

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

MTBE = methyl tertiary butyl ether.

MCL = (Maximum Contaminant Level) - Title 22, CCR, Division 4, Environmental Health, Chapter 15. Domestic Water Quality and Monitoring, Article 5.5.

Primary Standards - Organic Chemicals, Section 64444. General Requirements, Table 64444-A


VQCs = Volatile Organic Compounds.

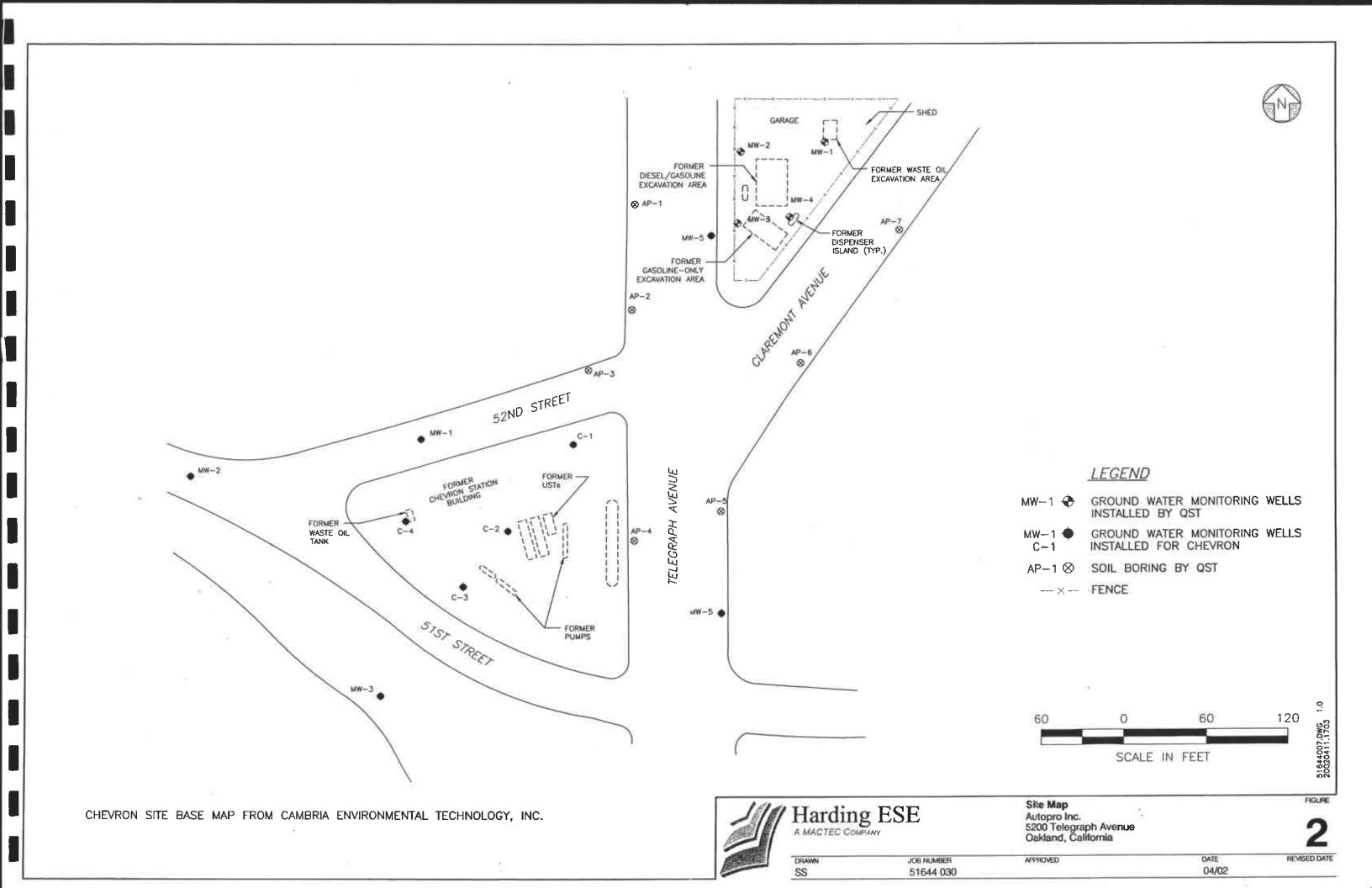
 $\mu g/L = micrograms per liter or parts per billion (ppb).$

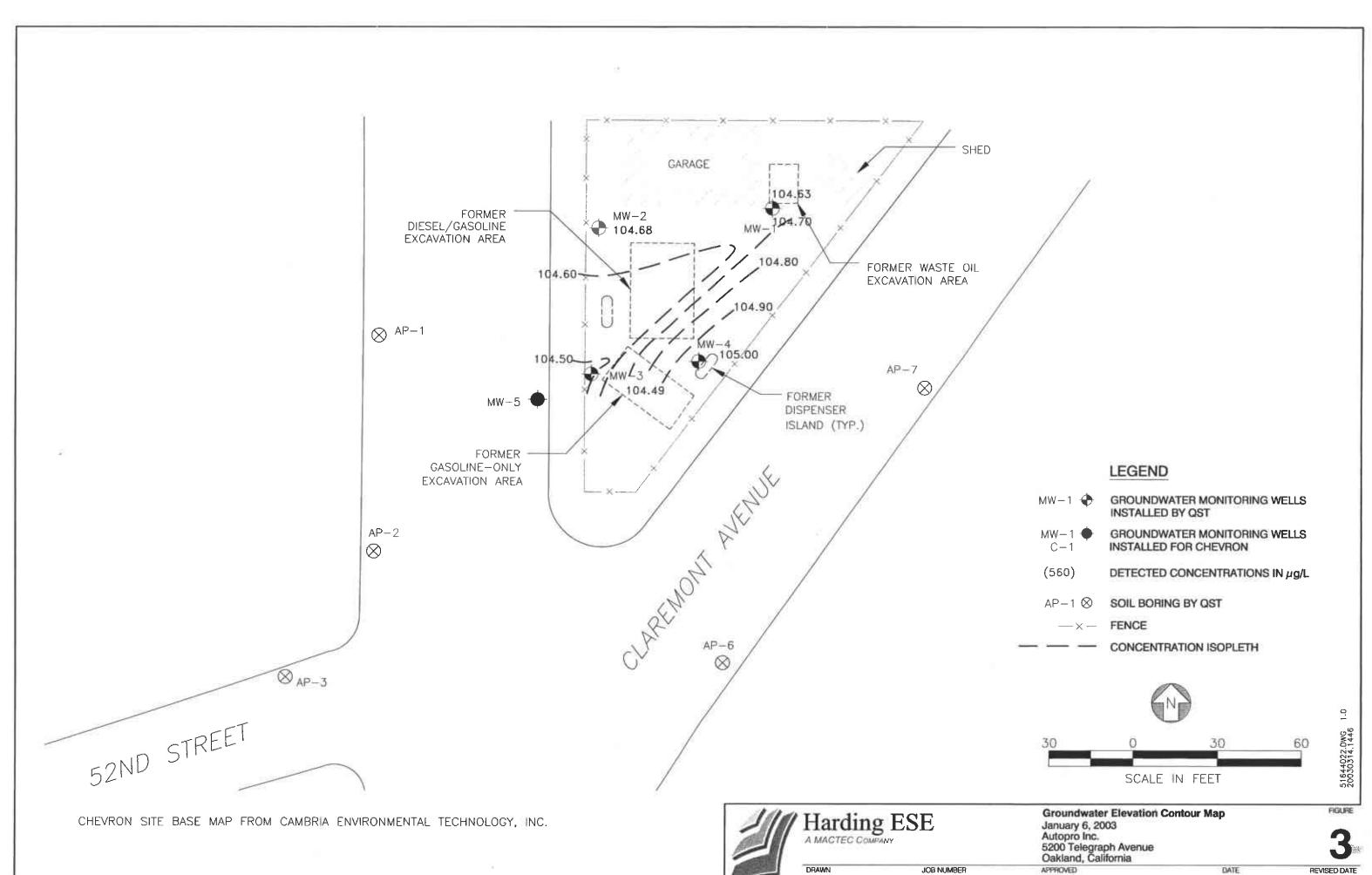
mg/L = milligrams per liter or parts per million (ppm).

< = less than listed detection limits.

- = not applicable.

1

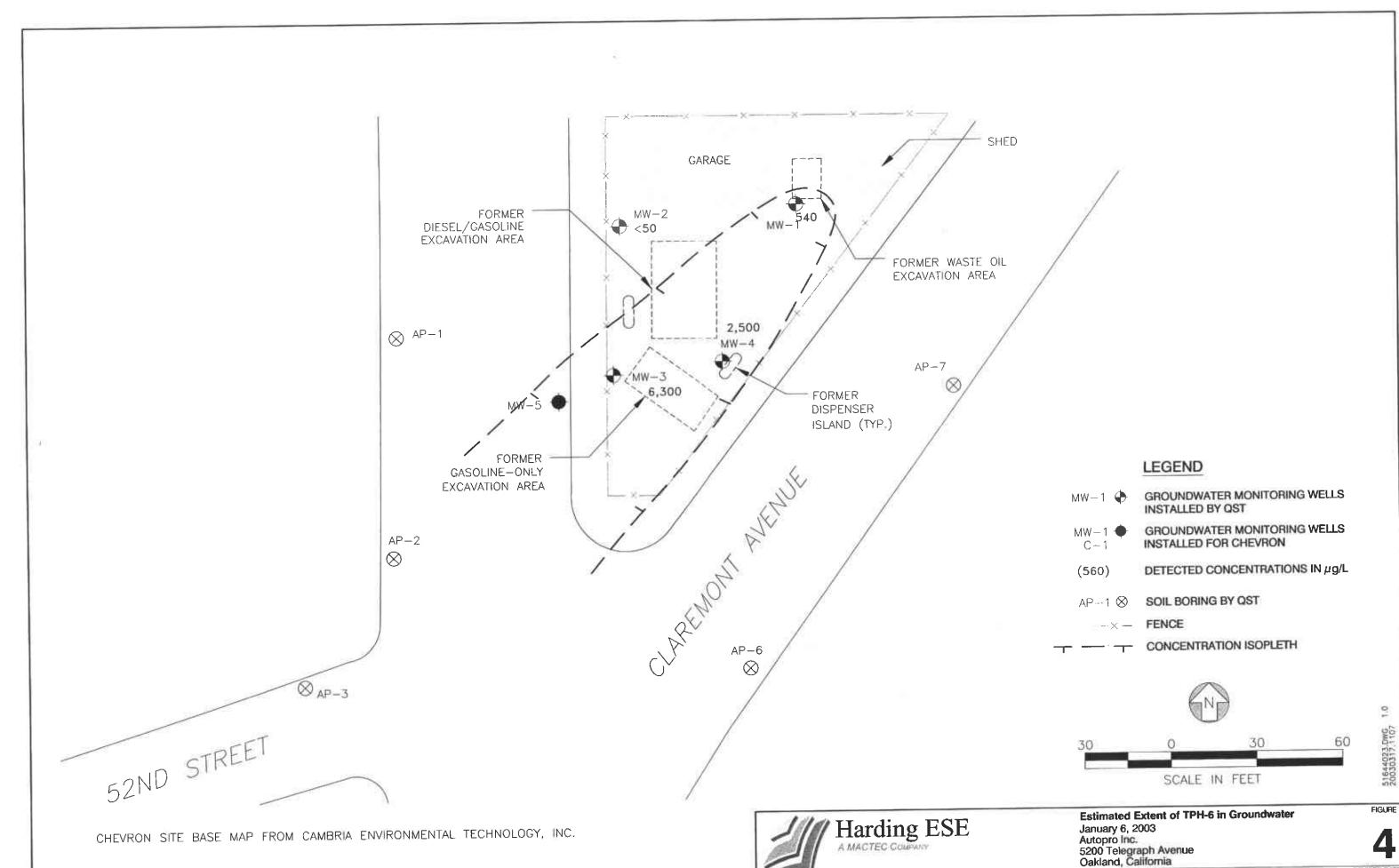

Harding ESE


Vicinity Map Aoutpro Inc. 5200 Telegraph Avenue Oakland, California FIGURE

ISED DATE

DRAWN JOB NUMBER SS 51644 030 APPROVED

DATE 04/02 REVISED DATE



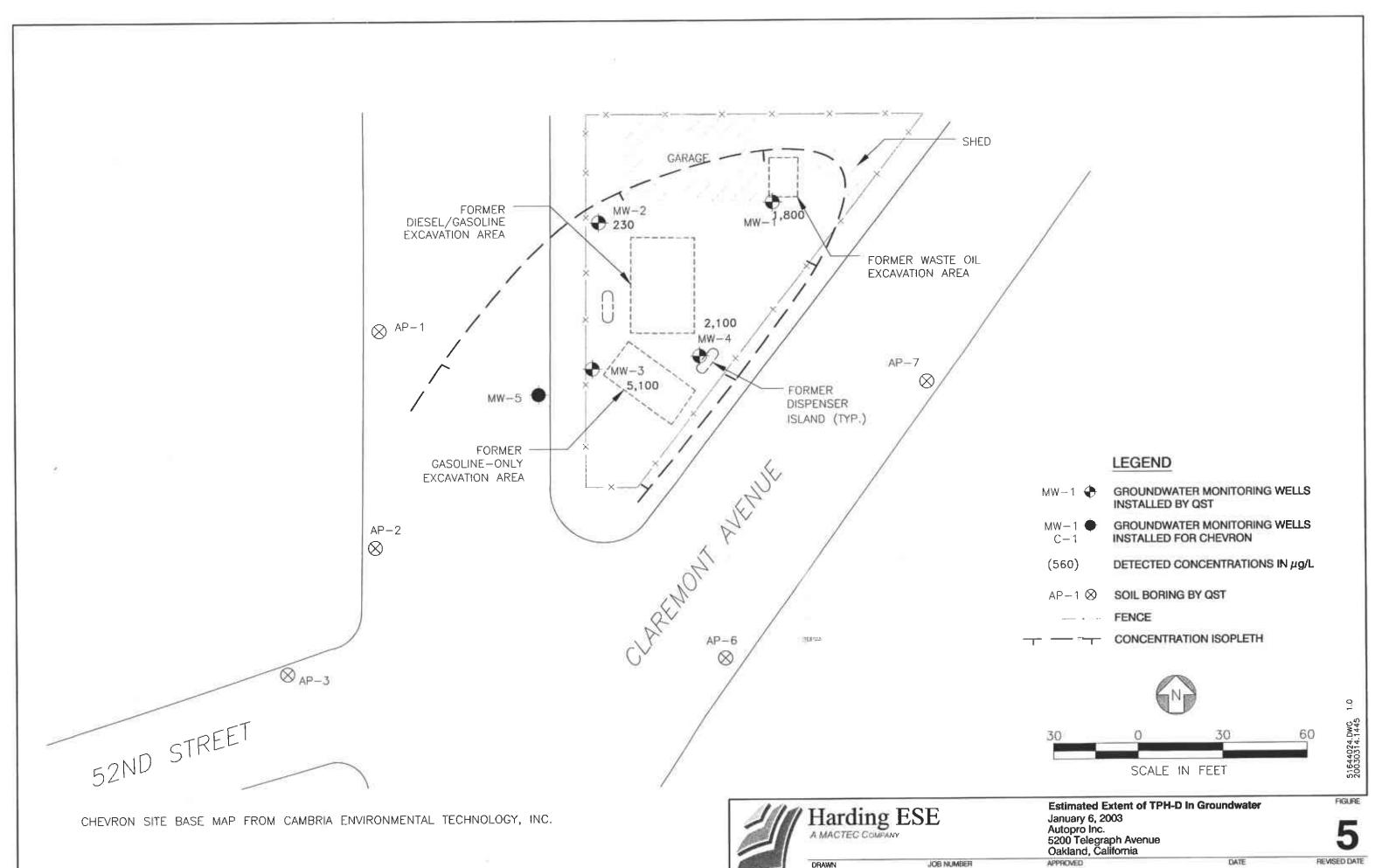
BJV

51644 030

12/02

REVISED DATE

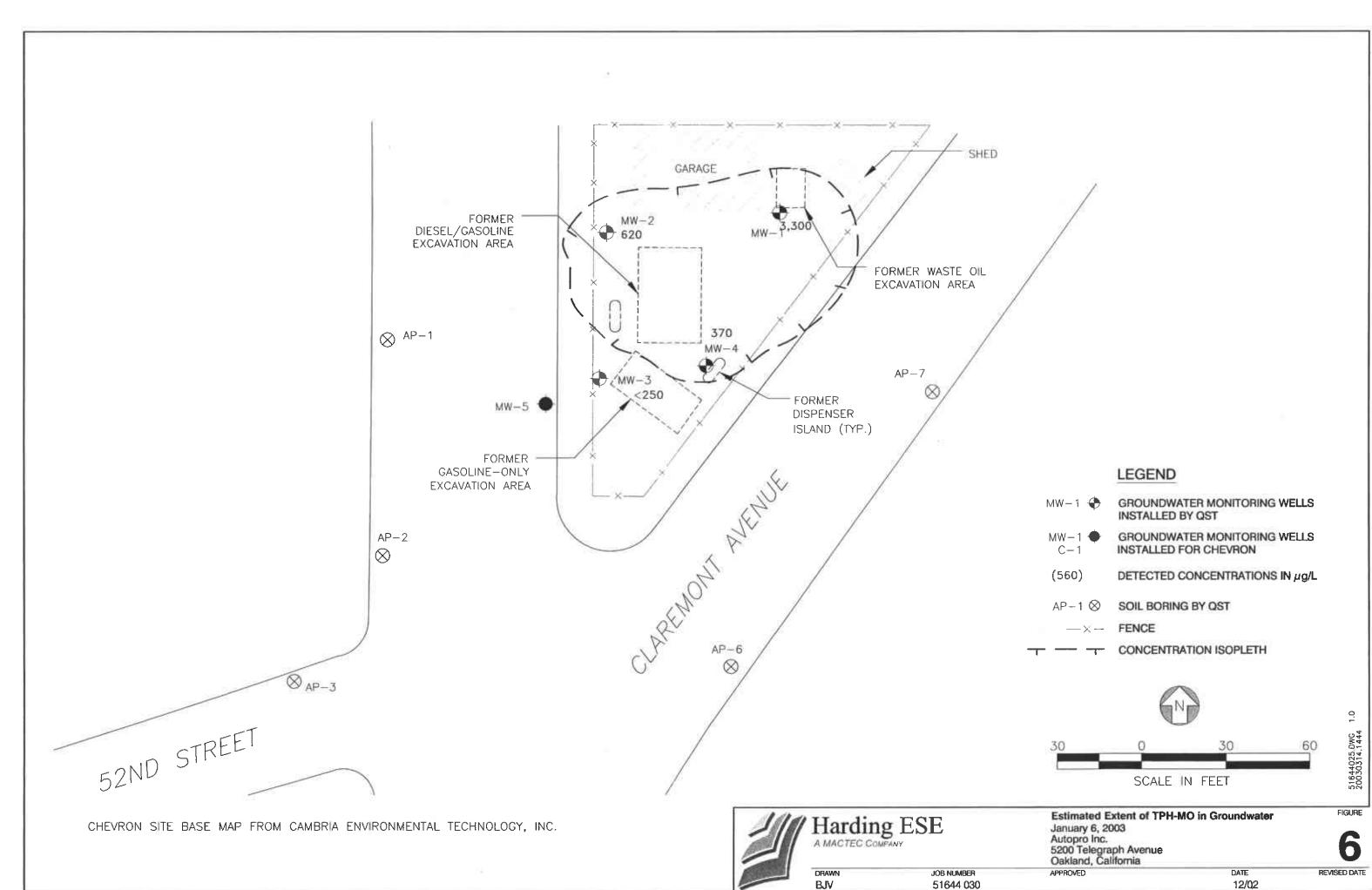
DATE

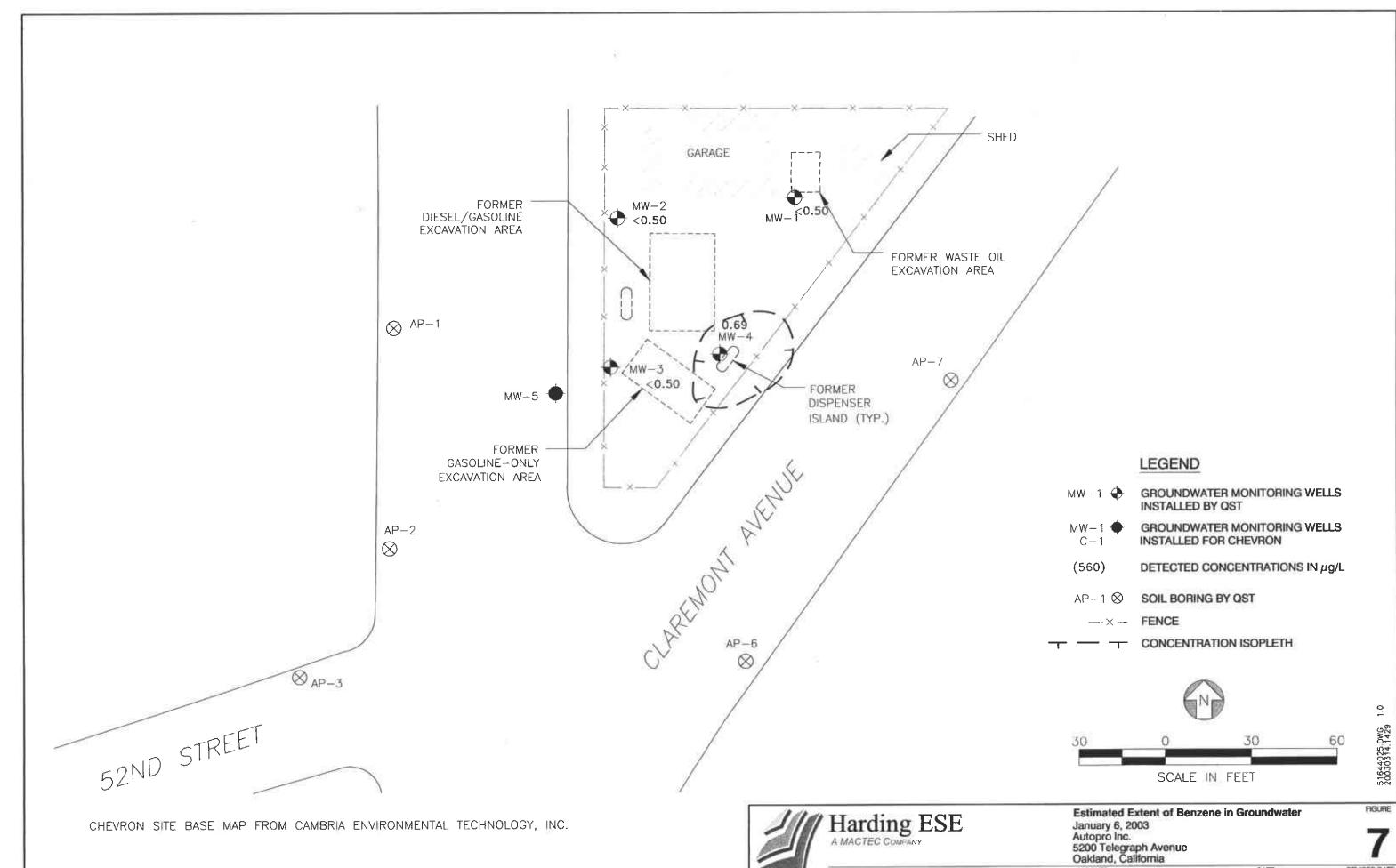

12/02

APPROVED

JOB NUMBER

BJV


51644 030



BJV

51644 030

12/02

REVISED DATE

DATE

12/02

JOB NUMBER

51644 030

GROUNDWATER SAMPLE COLLECTION LOGS

PROJECT NAME: PROJECT NO.: DATE:	Autopro 51644.00	30 SAMF	PLE LOCATION PLER: JECT MANAGER	MW-1 JTH+CS Botch Ray		
CASING DIAMETER	₹	SAMPLE TYPE	WELL	VOLUMES PER UN	IT .	
2" <u>×</u> 4" Other	Surfa Treat	nd Water ce Water Influent Effluent		Casing inches) Gal/F 0.163: 0.6526 1.4696	<u>.</u> 3	
	10, (7)	AND THE COLUMN IN	16.1() 1 (17)	MINIMUM PURGE VO (3 OR 4 WCV): ACTUAL VOLUME PU	1 CJ Y 1 MY	
TIME	VOLUME (gal)	pH (Units)	E.C. (Micromhos)	Temperature (f°)	Turbidity (NTU)	Other:
OVM READING	NA RGE METHOD		SA	MPLE METHOD		
	on@VC/SS)	Other Submersible Pump	X Baile	r (Teflon/PVC/SS) _ r (Disposable) _	Dedicated Other	
NUMBER OF CON	TAINERS <u>5</u>	TYPES OF CON	TAINERS: (3))VOA (2) 1L	.Amber	
SAMPLES COLLECTED	ID	TIME	DATE	LAB	ANALYSES	3
SAMPLES COLLECTEL	010603-1	14:00	01/06/03	Micampbell	TPH-gld/me, 8	50.ZO
DUPLICATE						
SPLIT				<u> </u>	 	
FIELD BLANK COMMENTS:	Hydac	inspecable				
SAMPLER (sign):		2 An		DATE: O	1/06/03	

PROJECT NAME: PROJECT NO.: DATE: CASING DIAMETER	Autopro 51644, 030 01/06/03 R SAM	SAMPLE SAMPLEI PROJECT	LOCATION _ R: _ I MANAGER _ WELL Y	MW-2 JTH+C Boten E VOLUMES PER	<u>Zeynold</u>	<u> </u>	
2"	Treat. Efflu Other	zater	1.D. (i 2.0 4.0 6.0	0 0 1	Gal/Ft. .1632 .6528 .4690		
DEPTH TO PRODUC DEPTH TO WATER: _ DEPTH OF WELL:	T: Ø (ft.) PROI 9,94 (ft.) WATI 24,47 (ft.) WELI	DUCT THICKNESS: ER COLUMN:\cup\cup\cup\cup\cup\cup\cup\cup\cup\cup	4.53 m	(3 OR 4 WCV):	7, 11	7.5	(gal) (gal)
TIME	VOLUME (gal)	pH (Units) (E.C. Micromhos)	Temperature	(f ⁰) Turbi	dity (NTU)	Other:
OVM READING	NA RGE METHOD		SA	MPLE METHOI	D		
	on/PVC/SS)Subn	er	Bailer		<u> </u>	edicated ther	
SAMPLES COLLECTED SAMPLE DUPLICATE SPLIT FIELD BLANK	TAINERS 5 TYP	TIME	DATE 01/04/03	LAB McCampb		ANALYS -5/dhr	
COMMENTS:	Hydac In	aprecable.					
SAMPLER (sign):	1	<u></u>		DATE:	01/06	03	

PROJECT NAME: PROJECT NO.: DATE:	Autopro 51644,030	SAMF		MW-3 JTH+CS Butch Ray	uclds_	
CASING DIAMETER	.	SAMPLE TYPE	WELL '	VOLUMES PER UN	IT	
2"	Surfac Treat.	d Water ce Water Influent Effluent	Well I.D. (i 2.0 4.0 6.0	Casing nches) Gal/F0 0.1632 0.6528 1.4690	<u>.</u> 3	
DEPTH TO PRODUCT DEPTH TO WATER: _ DEPTH OF WELL:	9,41 (ft.)	WATER COLUMN:	44.44 (ft.)	MINIMUM PURGE VO (3 OR 4 WCV): ACTUAL VOLUME PU	∠.l	(gal) (gal)
TIME	VOLUME (gal)	pH (Units)	E.C. (Micromhos)	Temperature (f ^o)	Turbidity (NTU)	Other:
OVM READING	NA		<u> </u>	MPLE METHOD		
Displaceme	on(PVC/SS)	Other Submersible Pump	Baile	r (Teflon/PVC/SS) _ r (Disposable) _	Dedicated Other	
NUMBER OF CON	TAINERS <u>5</u>	TYPES OF CON	TAINERS: (3)) VCA (2) 1	L Amber	
SAMPLES COLLECTED SAMPLE DUPLICATE SPLIT FIELD BLANK	ID 010603-3	TIME (3:15	DATE OLIGNICS	McCampbell	ANALYS TPH-g/d/mc	
COMMENTS:	Hydac	inaperable	•			
SAMPLER (sign):		An		DATE: Oi	106/03	

PROJECT NAME: PROJECT NO.: DATE:	Autopro 51644,030	SAME	PLE LOCATION PLER: JECT MANAGER	MW-4 JTH +CS Butch Reyo	iolds	
CASING DIAMETER	२	SAMPLE TYPE	WELL	VOLUMES PER UN	т	
2" 4" Other	Surfa Treat	nd Water ce Water Influent Effluent		Casing (nches) Gal/Ft (0.1632 0.6528 1.4690	3	
DEPTH TO PRODUCT DEPTH TO WATER: _ DEPTH OF WELL:	9.25 (ft.)	WATER COLUMN:	しょろフ (ft.)	MINIMUM PURGE VO (3 OR 4 WCV):S ACTUAL VOLUME PU	3.12	(gal) (gal)
TIME	VOLUME (gal)	pH (Units)	E.C. (Micromhos)	Temperature (f°)	Turbidity (NTU)	Other:
OVM READING	NA			MDI E METHOD		
Displaceme	on/PVC/SS)		Baile	MPLE METHOD r (Teflon/PVC/SS) r (Disposable)) VOAs (Z)		
SAMPLES COLLECTED SAMPLE DUPLICATE SPLIT	010603-4	TIME [4:20	DATE 01/01/03	Mc Campbell	TPH-g/d/mo	
FIELD BLANK COMMENTS:	1010603-6 Hydac	Maperable	01 04 03	McCambell	TDH-g / 8	
SAMPLER (sign):	1	An		DATE: <u>()</u>	106/03	

PROJECT NAME:	Autopro	SAM	PLE LOCATION	MW-5		
PROJECT NO.:	51644.03		PLER:	JH+65		
DATE:	01/06/0	<u>⊅ 3 </u>	JECT MANAGER	Botch Rei	fucides	
CASING DIAMETER		SAMPLE TYPE	WELL	VOLUMES PER L	INIT	
2"	Groui	nd Water ce Water Influent Effluent	Well	Casing		
4"		ce Water	I.D. (inches) Gal		
Other		Influent	2.0	0.16		
		Effluent	4.0 6.0	0.65 1.46		
	Other		-	1.40		
DEPTH TO PRODUCT	(ft.)	PRODUCT THICKN	NESS: (ft.)	MINIMUM PURGE	/OLUME	
DEPTH TO WATER	(ft.)	WATER COLUMN:	(ft.)	(3 OR 4 WCV):		(gal)
DEPTH OF WELL:	(ft.)	WELL CASING VO	L.: (gal)	ACTUAL VOLUME	PURGED:	(gal)
		<u></u>	T	<u> </u>	- 	Other:
:		pН	E.C.			
TIME	VOLUME (gal)	(Units)	(Micromhos)	Temperature (f	Turbidity (NTU)	
			<u> </u>			
			1			
OVM READING		·				
PUF	GE METHOD		SA	MPLE METHOD		
Di1	of Dissess	Othor	Raile	r (Teflon/PVC/SS)	Dedicated	
Displacemer Bailer (Teflor		Other Submersible Pump		r (Disposable)	Other	
Daller (Tellor		·				<u> </u>
NUMBER OF CONT	AINERS	TYPES OF CON	ITAINERS:	<u> </u>		
SAMPLES COLLECTED	ID	TIME	DATE	LAB	ANALY	SES
SAMPLE						
DUPLICATE						
SPLIT		<u> </u>				
FIELD BLANK			<u> </u>	<u> </u>		
COMMENTS: has lilled a		sample usell to grad		to be clear	ned out a	oil not maged by
taffic.		\rightarrow) ,	·
		/ /////////////////////////////////////	n			,

LABORATORY REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

McCampbell Analytical Inc.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Harding ESE	Client Project ID: #51644.030; Autopro	Date Sampled: 01/06/03
600 Grand Avenue, 3rd Floor		Date Received: 01/07/03
0.11 1.63 04610	Client Contact: Jason House	Date Reported: 01/10/03
Oakland, CA 94610	Client P.O.:	Date Completed: 01/10/03

WorkOrder: 0301047

January 10, 2003

Dear Jason:

Enclosed are:

- 5 analyzed samples from your #51644.030; Autopro project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4), a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Angela Rydelius, Lab Manager

	McCampbell	Analytical	Inc.
--	------------	------------	------

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Harding ESE	Client Project ID: #51644.030; Autopro	Date Sampled: 01/06/03
600 Grand Avenue, 3rd Floor		Date Received: 01/07/03
0.11 1.01.01/10	Client Contact: Jason House	Date Extracted: 01/08/03-01/09/03
Oakland, CA 94610	Client P.O.:	Date Analyzed: 01/08/03-01/09/03

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction method: SW5030B Analytical methods: SW8021B/8015Cm									Work Order: 03		
Lab ID	Client ID	Matrix	TPH(g)	МТВЕ	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	
001A	010603-1	w	540,m	ND	ND ND 2.2 ND ND		ND	1	#		
002A	010603-2	w	ND	ND	ND	ND	ND	ND	1	109	
003A	010603-3	w	6300,a	ND<50	ND<5.0	6.7	8.5	15	10	#	
004A	010603-4	w	2500,a	ND	0.69	2.4	1.7	1.4	11	#	
005A	010603-6	w	ND	8.7	ND	0.69	ND	1.2	1	109	
		1 - 1	-								
			A Politica VV								
	g Limit for DF =1; is not detected at or	w	50	5.0	0.5	0.5	0.5	0.5	1	μg/L	
	is not detected at or the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/K	

*water and vapor samples are reported in µg/L, soil and sludge samples in mg/kg, wipe samples in µg/wipe, and TCLP extracts in µg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

McCampbell Analytical In

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

Harding ESE	Client Project ID: #51644.030; Autopro	Date Sampled: 01/06/03
600 Grand Avenue, 3rd Floor		Date Received: 01/07/03
	Client Contact: Jason House	Date Extracted: 01/07/03
Oakland, CA 94610	Client P.O.:	Date Analyzed: 01/07/03-01/08/03

Extraction method: S'	•		Analytical methods: SW8015C							
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS				
0301047-001B	010603-1	w	1800,g,n	3300	1	108				
0301047-002B	010603-2	w	230,b,g	620	· l	104				
0301047-003B	010603-3	w	5100,d	ND	1	106				
0301047-00 4 B	010603-4	w	2100, d	370	1	106				
			-							
				_						
	Limit for DF =1;	W	50	250		ıg/L				
	reporting limit	S	NA	NA	m	g/Kg				

^{*} water and vapor samples are reported in $\mu g/L$, wipe samples in ug/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all TCLP / STLC / SPLP extracts in $\mu g/L$

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent / mineral spirit.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622

http://www.mccampbell.com E-mail: main@mccampbell.com

OC SUMMARY REPORT FOR SW8015C

Matrix: W

WorkOrder: 0301047

EPA Method: SW8015C	E	Extraction: SW3510C			BatchID:	55 46	Spiked Sample ID: N/A				
0	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
Compound	μg/L	µg/L	% Rec. % Rec		% RPD	% Rec.	% Rec.	% RPD	Low	High	
TPH(d)	N/A	7500	N/A	N/A	N/A	97.3	118	2.77	70	130	
%SS:	N/A	100	N/A	N/A	N/A	101	97.3	2.66	70	130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622

http://www.mccampbell.com_E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: W

WorkOrder: 0301047

EPA Method: SW80	21B/8015Cm E	extraction:	SW5030E	3	BatchID:	5558	Spiked Sample ID: 0301042-002A				
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
Compound	μg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High	
TPH(gas)	N/A	60	N/A	N/A	N/A	99	99.5	0.491	80	120	
MTBE	N/A	10	N/A	N/A	N/A	85.8	86.4	0.683	80	120	
Benzene	N/A	10	N/A	N/A	N/A	99.4	98.3	1.06	80	120	
Toluene	N/A	10	N/A	N/A	N/A	101	100	1.14	80	120	
Ethylbenzene	N/A	10	N/A	N/A	N/A	97.1	96.1	0.998	80	120	
Xylenes	N/A	30	N/A	N/A	N/A	99.7	99.3	0.335	80	120	
%SS:	N/A	100	N/A	N/A	N/A	95.9	93.9	2.12	80	120	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or landyte content.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

CHAIN OF CUSTODY RECORD

Page I of I

X650	050	21047					_		····		
Project Name: /	Tutopro	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Analy	rses To	Be l	erforr	ned		100	
Address: 520	oco telego	aph Ave.		<u>1</u> 1		ļ		ł			Harding ESE
Project #: 516	,44,03ö			MTB			1	1			A MACTEC COMPANY
Canadad Due	Tagana Nila	واله مين	Signature:	4			ļ	Ì	:		600 Grand Avenue, Suite 300
Lab Name: MC	(Campbul)	Arabytical	Telephone: (5(0) 128-3223	3	(t)	5	3	Į		Obene: (Oakland, CA 94610 510) 451-1001 Fax: (510) 451-3165
Requested Turn	Around Time	•	1.1	Ċ	۱ ۱	1	1	1			
10 Day 5 D	ay 3 Da	y 2 Day	Other Standard	0.20	PH	1FH	A		Matrix	# Of Containers	Remarks (container, size, etc.)
Sample #	Date	Time	Location	40			1				
010603-1	01/04/03	14:00	MW-1	\geq	M	\geq	×		Water	5	
010603-2		13:40	MW-2	\geq	\bowtie	\geq	\succeq				
010603-3		13:15	MW-3	X	X	\geq	\geq				
010603-4		14:20	MW-4	X		\geq	\geq			<u> </u>	,
010603-6	V	15:00	Field Blank	\geq	\geq					3	
				ļ							
				<u> </u>							
								l			
Relinguished By	: (signature)	<u> </u>	Received By: (signature)	Dat		Tim					Total Number Of Containters: 23
1. 1000	2/2		11 Won Venz	11	7/02	(1)	50				Special Shipment Requirements:
2.			2.			ļ					In cooler, on ice.
3.			3.					_	1 Dark	h- T	
Instructions To	Laboratory (h	andling, ana	lyses, storage, etc.) :					┿	ort Restu		
		James and all	PERSONATION TOAS ORG INSTALL	8] 01					ison Ho	105R	
}	((13) 1/2	The second se	A CONTRACTOR		-						Sample Receipt
	i 101	A POSENT.	CONTAINERS								Chain Of Custody Seals
	فتهدي دياد افعا	CONTRACT ACCUMANTOR WITH THE	Elementario de distribuir de la como desta mas, en elementario de la como d					1			Received Good Condition/Cold
											Conforms To Record

McCampbell Analytical Inc.

Page 1 of 1

d

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

WorkOrder: 0301047

Client:

Harding ESE

600 Grand Avenue, 3rd Floor

Oakland, CA 94610

TEL:

PO:

(510) 451-1001

FAX:

(510) 451-3165

ProjectNo:

#51644.030; Autopro

Date Received:

1/7/03

Date Printed:

1/7/03

						Requested Tests							
Sample ID	ClientSampID	Matrix	Collection Date	Hold	SW8015C	8021B/8015							
	0400004	Water	4 (6/03 2:00-00 PM		l B	Ι Δ							
0301047-001	010603-1	Water	1/6/03 2:00:00 PM	<u> </u>		 							
0301047-002	010603-2	Water	1/6/03 1:40:00 PM		В	A		•					
0301047-003	010603-3	Water	1/6/03 1:15:00 PM		В	Α							
0301047-004	010603-4	Water	1/6/03 2:20:00 PM		В	Α '							
0301047-005	010603-6	Water	1/6/03 3:00:00 PM			A							

Prepared by: Elisa Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.