

土

February 5, 2001

31

QUARTERLY GROUNDWATER MONITORING REPORT JANUARY 2001 GROUNDWATER SAMPLING ASE JOB NO. 3412

at
Former Chan's Shell Station
726 Harrison Street
Oakland, CA 94602

Prepared by:
AQUA SCIENCE ENGINEERS, INC.
208 W. El Pintado
Danville, CA 94526
(925) 820-9391

1.0 INTRODUCTION

Site Location (Site), See Figure 1
Former Chan's Shell Station
726 Harrison Street
Oakland, CA 94602
(510) 444-6583

Responsible Party
Kin Chan
4328 Edgewood Avenue
Oakland, CA 94602

Environmental Consulting Firm
Aqua Science Engineers, Inc. (ASE)
208 W. El Pintado
Danville, CA 94526
Contact: Robert Kitay, Senior Geologist × 203
(925) 820-9391

Agency Review
Contact: Mr. Barney Chan
Alameda County Health Care Services Agency (ACHCSA)
1131 Harbor Bay Pkwy., Suite 250
Alameda, CA 94502
(510) 567-6700

California Regional Water Quality Control Board (RWQCB)
San Francisco Bay Region
1515 Clay Street, Suite 1400
Oakland, CA 94612
Contact: Mr. Chuck Headlee
(510) 622-2433

The following is a report detailing the results of the January 2001, quarterly groundwater sampling at the former Chan's Shell Station. This sampling was conducted as required by the ACHCSA and RWQCB. ASE has prepared this report on behalf of Kin Chan, property owner. This report is intended to supplement the ASE report: "Report of Soil and Groundwater Assessment" dated January 8, 1999.

2.0 GROUNDWATER FLOW DIRECTION AND GRADIENT

On January 18, 2001, ASE associate geologist Erik Paddleford measured the depth to groundwater in all site monitoring wells using an electric water level sounder. The surface of the groundwater was also checked for the presence of free-floating hydrocarbons or sheen. No free-floating hydrocarbons or sheen were observed in any site monitoring well. Groundwater elevation data is presented in Table One.

TABLE ONE
Groundwater Elevation Data
Chan's Former Shell Station

Well	Date o f	Top of Casing Elevation	Depth to Water	Groundwater Elevation
I.D.	Measurement	(relative to project datum)	(feet)	(project data)
	10 15 00	21.05	17.22	14.63
MW-1	12-15-98	31.95	17.32	16.43
	03-04-99		15.52	
	06-17-99		16.90	15.05
	08-27-99		17.39	14.56
	12-09-99		18.03	13.92
	03-07-00		15.11	16.84
	06-07-00		16.66	15.29
	10-11-00		18.08	13.87
	01-18-01		17.96	13.99
MW-2	12-15-98	32.40	18.03	14.37
	03-04-99		16.11	16.29
	06-17-99		17.72	14.68
	08-27-99	Inaccessible		
	12-09-99	Inaccessible		
	03-07-00	Inaccessible		
	06-07-00		17.67	14.73
	10-11-00		18.91	13.49
	01-18-01		18.66	13.74
MW-3	12-15-98	31.61	17.26	14.35
1,11,	03-04-99	5 1.01	15.47	16.14
	06-17-99		16.92	14.69
	08-27-99		17.40	14.21
	12-09-99		18.01	13.60
	03-07-00		16.15	15.46
	06-07-00		16.85	14.76
	10-11-00		18.07	13.54
	01-18-01		17.89	13.72

Table One continued on next page

TABLE ONE (Continued)
Groundwater Elevation Data
Chan's Former Shell Station

Well I.D. Me	Date of asurement	of Casing vation project c	datum)	Depth to Water (feet)	Groundwater Elevation (project data)
	12-15-98 03-04-99 06-17-99 08-27-99 12-09-99 03-07-00 06-07-00 10-11-00	 2.53		17.59 15.88 17.14 17.65 18.28 15.41 17.09 18.33 18.23	14.94 16.65 15.39 14.88 14.25 17.12 15.44 14.20

A groundwater potentiometric surface map is presented as Figure 2. The groundwater flow direction is generally to the south with a gradient of approximately 0.013-feet/foot. The water table has risen an average of 0.16-feet this quarter.

3.0 GROUNDWATER SAMPLE COLLECTION AND ANALYSIS

Prior to sampling, all four monitoring wells were purged of four well casing volumes of groundwater using dedicated polyethylene bailers. Petroleum hydrocarbon odors were present during the purging sampling of monitoring wells MW-1, MW-2, and MW-3. The parameters pH, temperature and conductivity were monitored during purging, and samples were not collected until these parameters stabilized. Groundwater samples were collected from each well using dedicated polyethylene bailers. The samples were decanted from the bailers into 40ml volatile organic analysis (VOA) vials, pre-preserved with hydrochloric acid. The samples were capped without headspace, labeled and placed in coolers with wet ice for transport to Chromolab, Inc. of Pleasanton California (DHS #1644) under appropriate chain-of-custody documentation. Well sampling field logs are presented in Appendix A.

The well purge water was placed in a 55-gallon steel drum, labeled, and left on-site for temporary storage.

The groundwater samples were analyzed by Chromolab, Inc. for total petroleum hydrocarbons as gasoline (TPH-G) by EPA Method

5030/8015M, benzene, toluene, ethylbenzene and total xylenes (collectively known as BTEX) by EPA Method 8020 and methyl tertiary butyl ether (MTBE) by EPA Method 8020. The analytical results for this and previous sampling periods are presented in Table Two. The certified analytical report and chain-of-custody documentation are included as Appendix B.

TABLE TWO

Certified Analytical Results for GROUNDWATER Samples

Chan's Former Shell Station

All results are in parts per billion (ppb)

Well ID		 	, , , , , , , , , , , , , , , , , , , 			
& Dates				Ethyl-	Total	
Sampled	TPH-G	Benzene	Toluene	benzene	Xylenes	MTBE
<u> </u>						
<u>MW-1</u>						
07/03/97	18,000	2,700	350	450	900	7,400
12/05/98	18,000	1,500	270	260	560	14,000
03/04/99	44,000	2,800	400	440	960	43,000
06/17/99	33,000	2,200	250	460	660	25,000
08/27/99	6,000	1,000	97	190	230	14,000/
						16,000*
12/09/99	15,000	1,500	160	220	420	17,000
03/07/00	9,300	1,500	210	66	530	12,000
06/07/00	26,000**	1,700	< 250	360	580	30,000
10/11/00	13,000**	1,600	< 100	140	160	19,000
01/18/01	14,000**	450	<100	110	230	9,600
MW-2						
12/05/98	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5
03/04/99	Inaccessible	due to car	parked over	well		
06/17/99	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5
08/27/99	Inaccessible	due to car	parked over	well		
12/09/99			parked over			
03/07/00			parked over			
06/07/00	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
10/11/00	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
01/18/01	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0

Table Two continued on next page

Chan's Former Shell Station - January 2001 Sampling

TABLE TWO (continued) Certified Analytical Results for GROUNDWATER Samples Chan's Former Shell Station All results are in parts per billion (ppb)

Well ID				TAL - 1	Tatal	
& Dates	mpii o	10		Ethyl-	Total	ATTOE
Sampled	TPH-G	Benzene	Toluene	benzene	Xylenes	MTBE
	-					
<u>MW-3</u>						
12/05/98	6,500	< 50	50	60	50	3,900
03/04/99	2,800	< 25	< 25	< 25	< 25	1,600
06/17/99	1,000	< 10	< 10	< 10	< 10	1,400
08/27/99	230	< 0.5	0.51	0.5	1.0	1,500/
						1,600*
12/09/99	870**	< 0.5	< 0.5	< 0.5	< 0.5	2,100
03/07/00	150**	4.0	< 0.5	< 0.5	< 0.5	830
06/07/00	140**	< 0.5	< 0.5	< 0.5	< 0.5	1,100
10/11/00	620**	< 5.0	< 5.0	< 5.0	< 5.0	1,500
01/18/01	1,200**	< 5.0	< 5.0	< 5.0	< 5.0	1,000
MW-4						
12/05/98	880	3	< 0.5	< 0.5	< 0.5	950
03/04/99	3,800	< 25	< 25	< 25	< 25	3,700
06/17/99	2,700	< 25	< 25	< 25	< 25	2,700
08/27/99	440	4.7	1.1	0.58	1.3	1,600/
						1,700*
12/09/99	1,100**	< 2.5	< 2.5	< 2.5	< 2.5	1,700
03/07/00	< 250	< 2.5	< 2.5	< 2.5	< 2.5	1,700
06/07/00	530**	8.8	< 2.5	< 2.5	< 2.5	440
10/11/00	700**	3.9	< 2.5	< 2.5	< 2.5	680
01/18/01	2,000**	<2.5	< 2.5	< 2.5	< 2.5	780
ester Control and Association Control	(31)(1,10) // 900 (1), (0000)(100)			NIN SELECTION OF THE SECOND OF		
DHSMCL	, NE	1.0	150	4.5% 7 00 %	1,750	13,

Notes:

Non-detectable concentrations noted by the less than sign (<) followed by the laboratory detection limit.

4.0 CONCLUSIONS

The groundwater samples collected from monitoring well MW-1 contained 14,000 parts per billion (ppb) TPH-G, 450 ppb benzene, 110 ppb ethyl

^{*} EPA Method 8020/EPA Method 8260 (MTBE confirmation)

^{**} Hydrocarbon reported in the gasoline range does not match the laboratory gasoline standard DHS MCL = California Department of Health Services maximum contaminant level for NE = DHS MCL not established

benzene, 230 ppb total xylenes, and 9,600 ppb MTBE. The groundwater samples collected from monitoring well MW-3 contained 1,200 ppb TPH-G and 1,000 ppb MTBE. The groundwater samples collected from monitoring well MW-4 contained 2,000 ppb TPH-G and 780 ppb MTBE. No hydrocarbons were detected above laboratory reporting limits in the groundwater sample collected from monitoring well MW-2.

In general, there appears to be a long term decreasing trend in hydrocarbon concentrations at the site. In particular, the benzene concentration in the groundwater sample collected from monitoring well MW-1 decreased significantly to a historic low this quarter.

The benzene and MTBE concentrations detected in groundwater samples collected from monitoring well MW-1 exceeded the California Department of Health Services (DHS) maximum contaminant level (MCL) for drinking water. The MTBE concentrations detected in groundwater samples collected from monitoring wells MW-3 and MW-4 also exceeded the DHS MCL for drinking water.

5.0 RECOMMENDATIONS

ASE recommends continued groundwater monitoring on a quarterly basis. The next groundwater sampling is scheduled for April 2001. ASE recommends that monitoring well MW-2 be removed from the groundwater sampling program since hydrocarbons have never been detected in previous sampling events. In addition, ASE will submit a workplan to complete additional work during the next quarter.

6.0 REPORT LIMITATIONS

The results presented in this report represent the conditions at the time of the groundwater sampling, at the specific locations where the groundwater samples were collected, and for the specific parameters analyzed by the laboratory. It does not fully characterize the site for contamination resulting from sources other than the former underground storage tanks and associated plumbing at the site, or for parameters not analyzed by the laboratory. All of the laboratory work cited in this report was prepared under the direction of independent CAL-EPA certified laboratory. The independent laboratory is solely responsible for the contents and conclusions of the chemical analysis data.

Aqua Science Engineers appreciates the opportunity to provide environmental consulting services for this project, and trust that this report meets your needs. Please feel free to call us at (925) 820-9391 if you have any questions or comments.

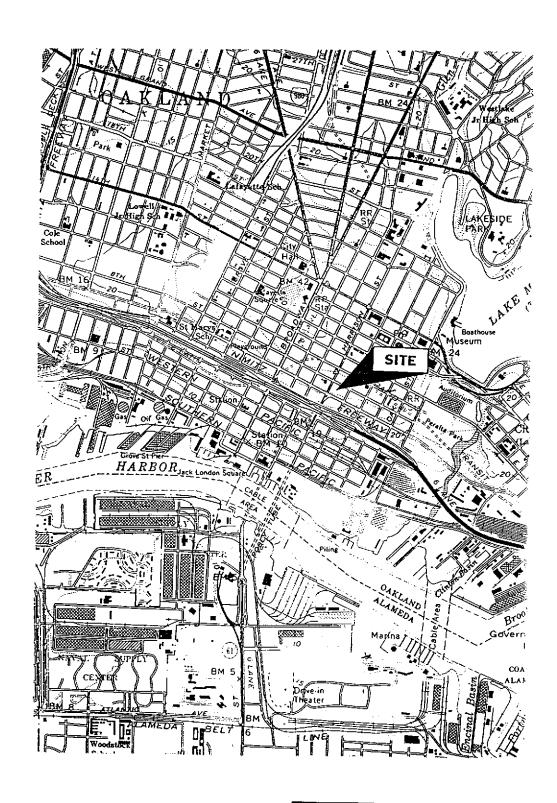
Respectfully submitted,

AQUA SCIENCE ENGINEERS, INC.

Erik H. Paddleford Associate Geologist

held Chilas

Robert E. Kitay, R.G., R.E.A.


Senior Geologist

Attachments: Figures 1 and 2

Appendices A and B

cc: Mr. Barney Chan, Alameda County Health Care Services

Mr. Chuck Headlee, RWQCB, San Francisco Bay Region

SITE LOCATION MAP

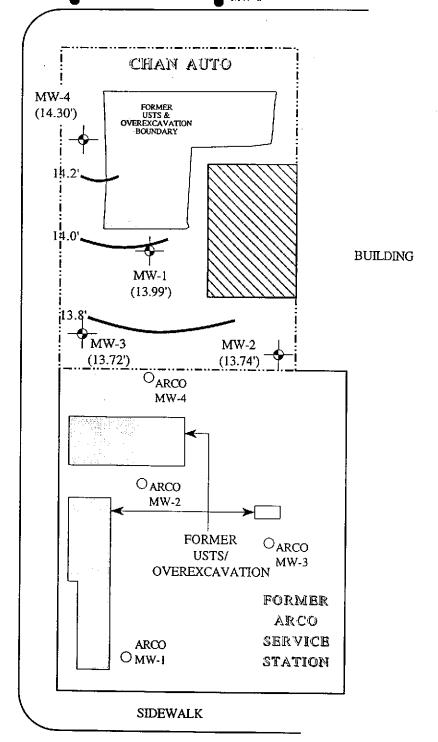
FORMER CHAN'S SHELL STATION 726 HARRISION STREET OAKLAND, CALIFORNIA

Aqua Science Engineers

Figure 1

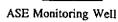
NORTH

<u>SCALE</u> 1" = 30'


HARRISON STREET

ARCO O MW-7

8TH STREET


Unocal MW-7

Unocal MW-8

MW-I

LEGEND

(14.20') Groundwater elevation, relative to MSL

Groundwater elevation contour

7TH STREET

GROUNDWATER ELEVATION CONTOUR MAP - 01/18/01

726 HARRISON STREET OAKLAND, CALIFORNIA

AQUA SCIENCE ENGINEERS

Figure 2

APPENDIX A

Well Sampling Field Logs

Project Name and Add	ress: <u>Chan Auto</u>	
Job #: 3412	Date of sampling: 1/18/01	
Well Name: <u>Mw-1</u>	Sampled by: <u>EP</u>	
	et): 27.21 Well diameter (inches): 2"	
	sampling (feet): 17.96	
Thickness of floating p	product if any:	
Depth of well casing in	n water (feet): 9.25	
Number of gallons per	well casing volume (gallons): 1,57	
Number of well casing	volumes to be removed: Y	
Req'd volume of groun	dwater to be purged before sampling (gallons): 6.3	•
Equipment used to pur	ge the well: Bailer	
Time Evacuation Began	n: 805 Time Evacuation Finished: 830	
Approximate volume of	of groundwater purged: 6	
Did the well go dry?:_	No After how many gallons:	
Time samples were co		
Depth to water at time		
Percent recovery at tir	ne of sampling: 90%	
Samples collected with	1: Bailer	
Sample color: green	gray Odor: moderate	
Description of sedimen	t in sample: siH	
CHEMICAL DATA		
Volume Purged	Temp pH Conductivity	
!	16.0 7.19 10	
<u>Z</u>	15.8 7.20 11	
	15.9 7.15 12	
4	16.0 7.20 12	
		
SAMPLES COLLECTE	D	
Sample # of containers \\ MW4 3	Volume & type container Pres Iced? Analysis YO ✓ ✓	

Project Name and Address:	(han Auto
Ioh #: 1W-2	Date of sampling:
Well Name: 3412	Sampled by: EP
Total depth of well (feet):	Well diameter (inches): 2
Doubt to water before sam	pling (feet): 18.66
misles of floating produ	act if any:
Depth of well casing in wa	ster (feet): 8:34
Depth of well casing in we	l casing volume (gallons): 1.42
Number of gallons per well	lumes to be removed: 4
Number of well casing voi	ter to be purged before sampling (gallons): 5.7
Req'd volume of groundwa	the well, heiter
Equipment used to purge	the well: bailer Time Evacuation Finished: 1020
Time Evacuation Began: 100	Inne Evacuation Timisned.
Approximate volume of g	roundwater purged:
Did the well go dry?:	After how many gallons:
Time samples were collect	ted:
Depth to water at time of	sampling:
Percent recovery at time	of sampling: 80%
Samples collected with:	Odor: none for slight
Sample color: [/// bivw	Odor: none for slight
Description of sediment in	sample: sitt sized
•	
CHEMICAL DATA	
Volume Purged Ten	np pH <u>Conductivity</u>
1 18	<u>7.18</u> <u>11</u>
	2 7.22 11
3 /8	.2 7.13 12
	7.06 /3
	<u> </u>
SAMPLES COLLECTED	
SAMPLES COLLECTED	
Comple # of Malus	ne & type container Pres Iced? Analysis
7	VOA _ X X
MW-2 3 40m	7 7 7

Project Name and Address:
Job #: Date of sampling:
Well Name: NW-3 Sampled by: EP
Total depth of well (feet): 29.66 Well diameter (inches): 2"
Depth to water before sampling (feet): 17.89
Thickness of floating product if any:
Depth of well casing in water (feet): 11.77
Number of gallons per well casing volume (gallons): 2.0
Number of well casing volumes to be removed:
Req'd volume of groundwater to be purged before sampling (gallons): 8.0
Equipment used to purge the well: boiler
Time Evacuation Began: 845 Time Evacuation Finished: 916
Approximate volume of groundwater purged:
Did the well go dry?: After how many gallons:
Time samples were collected: 9/5
Depth to water at time of sampling:
Percent recovery at time of sampling: 70%
Samples collected with: Bailer
Sample color: clear tan Odor: None
Description of sediment in sample: 5ilf
CHEMICAL DATA
Volume Purged Temp pH Conductivity
<u>15.4</u> 6.93 12
2 16.2 7.14 12
3 18.1 7.17 13
<u> </u>
SAMPLES COLLECTED
Sample # of containers Volume & type container Pres Iced? Analysis MW-3 3 YOM VOA X X

Project Name and Address: than Auto
Job #: 3412 Date of sampling: 1/18/01
Well Name: MW-Y Sampled by: EP
Total depth of well (feet): 29.97 Well diameter (inches): 2"
Depth to water before sampling (feet):
Thickness of floating product if any:
Depth of well casing in water (feet): 11.74
Number of gallons per well casing volume (gallons): 2.0
Number of well casing volumes to be removed: 4.0
Req'd volume of groundwater to be purged before sampling (gallons): 5.0
Equipment used to purge the well: Bailer
Time Evacuation Began: 920 Time Evacuation Finished: 945
Approximate volume of groundwater purged: 8
Did the well go dry?: After how many gallons:
Time samples were collected: 950
Depth to water at time of sampling:
Percent recovery at time of sampling: 90%
Samples collected with: Baiker
Sample color: gray Odor: Slight
Description of sediment in sample: silf
CHEMICAL DATA
Volume Purged Temp pH Conductivity
19.4 6.96 13
2 18.6 6.98 13
<u> </u>
7.2 7.10 13
SAMPLES COLLECTED
Sample # of containers Volume & type container Pres Iced? Analysis
1181-4 3 40ml VOA X X

APPENDIX B

Certified Analytical Report and Chain of Custody Documentation

Submission #: 2001-01-0361

Date: January 29, 2001

Aqua Science Engineers, Inc. 208 West El Pintado Road Danville, CA 94526

Attn.: Mr. Robert Kitay

Project: 3412

Chan

Site:

726 Harrison St.

Oakland

Dear Mr. Kitay,

Attached is our report for your samples received on Friday January 19, 2001 This report has been reviewed and approved for release. Reproduction of this report is permitted only in its entirety.

Please note that any unused portion of the samples will be discarded after March 5, 2001 unless you have requested otherwise. We appreciate the opportunity to be of service to you. If you have any questions, please call me at (925) 484-1919. You can also contact me via email. My email address is: vvancil@chromalab.com

Sincerely,

Vincent Vancil

A DOWN AND PROPERTY OF THE PRO

Submission #: 2001-01-0361

STL ChromaLab

Environmental Services (CA 1094)

Gas/BTEX and MTBE

Aqua Science Engineers, Inc.

208 West El Pintado Road

Danville, CA 94526

Attn: Robert Kitay

Phone: (925) 820-9391 Fax: (925) 837-4853

Project #: 3412

Project: Chan

Site:

726 Harrison St.

Oakland

Samples Reported

Sample ID	Matrix	Date Sampled	Lab#
MW-1	Water	01/18/2001 08:35	1
MW-2	Water	01/18/2001 10:30	2
MW-3	Water	01/18/2001 09:15	3
MW-4	Water	01/18/2001 09:50	4

Submission #: 2001-01-0361

To: Aqua Science Engineers, Inc. Test Method:

8020 8015M

Attn.: Robert Kitay

Prep Method:

5030

Gas/BTEX and MTBE

Sample ID:

MW-1

Lab Sample ID: 2001-01-0361-001

Project:

3412

Received:

01/19/2001 17:15

Site:

Chan

726 Harrison St. Oakland

Extracted:

01/24/2001 14:03

Sampled:

01/18/2001 08:35

QC-Batch:

2001/01/24-01.01

Matrix:

Water

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Gasoline	14000	10000	ug/L	200.00	01/24/2001 14:03	g
Benzene	450	100	ug/L	200.00	01/24/2001 14:03	Ū
Toluene	ND	100	ug/L	200.00	01/24/2001 14:03	
Ethyl benzene	110	100	ug/L	200.00	01/24/2001 14:03	
Xylene(s)	230	100	ug/L	200.00	01/24/2001 14:03	
MTBE	9600	1000	ug/L	200.00	01/24/2001 14:03	
Surrogate(s)						
Trifluorotoluene	102.1	58-124	%	1.00	01/24/2001 14:03	
4-Bromofluorobenzene-FID	105.0	50-150	%	1.00	01/24/2001 14:03	

Printed on: 01/26/2001 17:47

Submission #: 2001-01-0361

Test Method:

8020

Attn.: Robert Kitay

Prep Method:

8015M 5030

Gas/BTEX and MTBE

Sample ID:

MW-2

Aqua Science Engineers, Inc.

Lab Sample ID: 2001-01-0361-002

Project:

3412

Received:

01/19/2001 17:15

Chan

Site:

To:

726 Harrison St.

Extracted:

01/24/2001 14:36

Sampled:

Oakland 01/18/2001 10:30

QC-Batch:

2001/01/24-01.01

Matrix:

Water

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Gasoline	ND	50	ug/L	1.00	01/24/2001 14:36	
Benzene	ND	0.50	ug/L	1.00	01/24/2001 14:36	
Toluene	ND	0.50	ug/L	1.00	01/24/2001 14:36	
Ethyl benzene	ND	0.50	ug/L	1.00	01/24/2001 14:36	
Xylene(s)	ND	0.50	ug/L	1.00	01/24/2001 14:36	
MTBE	ND	5.0	ug/L	1.00	01/24/2001 14:36	
Surrogate(s)						
Trifluorotoluene	99.6	58-124	%	1.00	01/24/2001 14:36	
4-Bromofluorobenzene-FiD	96.2	50-150	%	1.00	01/24/2001 14:36	

Submission #: 2001-01-0361

Environmental Services (CA 1094)

To: Aqua Science Engineers, Inc.

Test Method:

8020 8015M

Attn.: Robert Kitay

Prep Method:

5030

Gas/BTEX and MTBE

Sample ID:

MW-3

Lab Sample ID: 2001-01-0361-003

Project:

3412

Received:

01/19/2001 17:15

Chan

Site:

726 Harrison St.

Extracted:

01/24/2001 15:09

Sampled:

Oakland 01/18/2001 09:15

QC-Batch:

2001/01/24-01.01

Matrix:

Water

Sample/Analysis Flag o (See Legend & Note section)

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Gasoline	1200	500	ug/L	10.00	01/24/2001 15:09	g
Benzene	ND	5.0	ug/L	10.00	01/24/2001 15:09	3
Toluene	ND	5.0	ug/L	10.00	01/24/2001 15:09	
Ethyl benzene	ND	5.0	ug/L	10.00	01/24/2001 15:09	
Xylene(s)	ND	5.0	ug/L	10.00	01/24/2001 15:09	
MTBE	1000	50	ug/L	10.00	01/24/2001 15:09	
Surrogate(s)		*				
Trifluorotoluene	97.4	58-124	%	1.00	01/24/2001 15:09	
4-Bromofluorobenzene-FID	99.2	50-150	%	1.00	01/24/2001 15:09	

Submission #: 2001-01-0361

Environmental Services (CA 1094)

To: Aqua Science Engineers, Inc. Test Method:

8020 8015M

Attn.: Robert Kitay

Prep Method:

5030

Gas/BTEX and MTBE

Sample ID:

MW-4

Lab Sample ID: 2001-01-0361-004

Project:

3412

Received:

01/19/2001 17:15

Chan

Extracted:

01/25/2001 12:15

Site:

726 Harrison St. Oakland

Sampled:

01/18/2001 09:50

QC-Batch:

2001/01/25-01.01

Matrix:

Water

Sample/Analysis Flag o (See Legend & Note section)

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Gasoline	2000	250	ug/L	5.00	01/25/2001 12:15	g
Benzene	ND	2.5	ug/L	5.00	01/25/2001 12:15	J
Toluene	ND	2.5	ug/L	5.00	01/25/2001 12:15	
Ethyl benzene	ND	2.5	ug/L	5.00	01/25/2001 12:15	
Xylene(s)	ND	2.5	ug/L	5.00	01/25/2001 12:15	
MTBE	780	25	ug/L	5.00	01/25/2001 12:15	
Surrogate(s)						
Trifluorotoluene	92.0	58-124	%	1.00	01/25/2001 12:15	
4-Bromofluorobenzene-FID	98.5	50-150	%	1.00	01/25/2001 12:15	

Printed on: 01/26/2001 17:47

Submission #: 2001-01-0361

Environmental Services (CA 1094)

To: Aqua Science Engineers, Inc. Test Method:

8015M

Attn.: Robert Kitay

Prep Method:

8020 5030

Batch QC Report Gas/BTEX and MTBE

Method Blank Water

QC Batch # 2001/01/24-01.01

MB:

2001/01/24-01.01-001

Date Extracted: 01/24/2001 10:08

Compound	Result	Rep.Limit	Units	Analyzed	Flag
Gasoline	ND	50	ug/L	01/24/2001 10:08	
Benzene	ND	0.5	ug/L	01/24/2001 10:08	
Toluene	ND	0.5	ug/L	01/24/2001 10:08	
Ethyl benzene	ND	0.5	ug/L	01/24/2001 10:08	
Xylene(s)	ND	0.5	ug/L	01/24/2001 10:08	
MTBE	ND	5.0	ug/L	01/24/2001 10:08	
Surrogate(s)					
Trifluorotoluene	107.0	58-124	%	01/24/2001 10:08	
4-Bromofluorobenzene-FID	106.8	50-150	%	01/24/2001 10:08	

Aqua Science Engineers, Inc.

Environmental Services (CA 1094)

Test Method:

8015M

Submission #: 2001-01-0361

8020

Attn.: Robert Kitay

To:

Prep Method:

5030

Batch QC Report Gas/BTEX and MTBE

Method Blank Water QC Batch # 2001/01/25-01.01

MB: 2001/01/25-01.01-003 Date Extracted: 01/25/2001 06:46

Rep.Limit Flag Compound Result Units Analyzed Gasoline ND 50 ug/L 01/25/2001 06:46 0.5 Benzene ND ug/L 01/25/2001 06:46 ND 0.5 ug/L Toluene 01/25/2001 06:46 0.5 ug/L Ethyl benzene ND 01/25/2001 06:46 Xylene(s) ND 0.5 ug/L 01/25/2001 06:46 5.0 MTBE ND ug/L 01/25/2001 06:46 Surrogate(s) Trifluorotoluene 101.0 58-124 % 01/25/2001 06:46 4-Bromofluorobenzene-FID 99.0 50-150 % 01/25/2001 06:46

Printed on: 01/26/2001 17:47

Page 7 of 12

Submission #: 2001-01-0361

Aqua Science Engineers, Inc.

Environmental Services (CA 1094)

Test Method:

8015M

8020

Attn: Robert Kitay

To:

Prep Method:

5030

Batch QC Report

Gas/BTEX and MTBE

Laboratory Control Spike (LCS/LCSD)

Water

QC Batch # 2001/01/24-01.01

LCS: LCSD: 2001/01/24-01.01-002 2001/01/24-01.01-003 Extracted: 01/24/2001 10:41 Extracted: 01/24/2001 11:14 Analyzed Analyzed 01/24/2001 10:41 01/24/2001 11:14

Compound	Conc.	[ug/L]	Exp.Conc.	[ug/L]	Recov	Recovery [%]		Ctrl. Limi	its [%]	Flag	js
	LCS	LCSD	LCS	LCSD	LCS	LCSD	[%]	Recovery	RPD	LCS	LCSD
Gasoline	540	554	500	500	108.0	110.8	2.6	75-125	20		
Benzene	99.0	98.3	100.0	100.0	99.0	98.3	0.7	77-123	20		
Toluene	88.8	88.3	100.0	100.0	88.8	88.3	0.6	78-122	20		
Ethyl benzene	95.6	94.4	100.0	100.0	95.6	94.4	1.3	70-130	20		
Xylene(s)	285	284	300	300	95.0	94.7	0.3	75-125	20		
Surrogate(s)											
Trifluorotoluene	491	484	500	500	98.2	96.8		58-124			
4-Bromofluorobenzene-FI	464	466	500	500	92.8	93.2		50-150			

Environmental Services (CA 1094)

Aqua Science Engineers, Inc.

Test Method:

8020

Attn: Robert Kitay

To:

Prep Method:

5030

Batch QC Report

Gas/BTEX and MTBE

Laboratory Control Spike (LCS/LCSD)

Water

QC Batch # 2001/01/25-01.01

LCS:

2001/01/25-01.01-004

Extracted: 01/25/2001 07:19

Analyzed

01/25/2001 07:19

Submission #: 2001-01-0361

LCSD:

2001/01/25-01.01-005

Extracted: 01/25/2001 07:52

Analyzed

01/25/2001 07:52

Compound	Conc.	[ug/L]	Exp.Conc.	[ug/L]	Recov	⁄егу [%]	RPD	Ctrl. Limits [%]		Flag	gs
	LCS	LCSD	LCS	LCSD	LCS	LCSD	[%]	Recovery	RPD	LCS	LCSD
Benzene	94.2	96.3	100.0	100.0	94.2	96.3	2.2	77-123	20		
Toluene	85.1	86.1	100.0	100.0	85.1	86.1	1.2	78-122	20		
Ethyl benzene	91.2	93.3	100.0	100.0	91.2	93.3	2.3	70-130	20		
Xylene(s)	271	278	300	300	90.3	92.7	2.6	75-125	20		
Surrogate(s) Trifluorotoluene	478	479	500	500	95.6	95.8		58-124			

Printed on: 01/26/2001 17:47

Page 9 of 12

Environmental Services (CA 1094)

Aqua Science Engineers, Inc.

Test Method:

8015M

Submission #: 2001-01-0361

8020

Attn: Robert Kitay

To:

Prep Method: 5030

Batch QC Report

Gas/BTEX and MTBE

Laboratory Control Spike (LCS/LCSD)

Water

QC Batch # 2001/01/25-01.01

LCS:

2001/01/25-01.01-016

Extracted: 01/25/2001 16:06

Analyzed

01/25/2001 16:06

LCSD:

2001/01/25-01.01-001

Extracted: 01/25/2001 16:06

Analyzed

01/25/2001 16:06

Compound	Conc.	[ug/L]	Exp.Conc.	[ug/L]	Recovery (%)		RPD	Ctrl. Limi	ts [%]	Flags		
	LCS	LCSD	LCS	LCSD	LCS	LCSD	[%]	Recovery	RPD	LCS	LCSD	
Gasoline	558		500		111.6			75-125	20			
Surrogate(s) 4-Bromofluorobenzene-Fl	432		500		86.4			50-150				

Printed on: 01/26/2001 17:47

Page 10 of 12

Aqua Science Engineers, Inc.

Test Method: 8015M

8020

Submission #: 2001-01-0361

Prep Method: 5030

Attn.: Robert Kitay

Batch QC Report

Gas/BTEX and MTBE

Matrix Spike (MS/MSD)

Water

QC Batch # 2001/01/24-01.01

Sample ID: MW-2

Lab Sample ID: 2001-01-0361-002

MS:

2001/01/24-01.01-004 Extracted: 01/24/2001 20:37 Analyzed: 01/24/2001 20:37 Dilution: 1.0

MSD:

2001/01/24-01.01-005Extracted: 01/24/2001 21:10 Analyzed: 01/24/2001 21:10 Dilution: 1.0

Compound	Conc.	[ug/L]	Exp.Conc.	[ug/L]	Recov	егу [%]	RPD	Ctrl. Limi	Flags		
	мѕ	MSD	Sample	MS	MSD	MS	MSD	[%]	Recovery	RPD	M\$	MSD
Gasoline	494	464	ND	500	500	98.8	92.8	6.3	65-135	20		
Benzene	96.6	97.3	ND	100.0	100,0	96.6	97.3	0.7	65-135	20		
Toluene	85.8	85.8	ND	100.0	100.0	85.8	85.8	0.0	65-135	20		
Ethyl benzene	90.8	93.6	ND	100.0	100.0	90.8	93.6	3.0	65-135	20		
Xylene(s)	268	263	ND	300	300	89.3	87.7	1.8	65-135	20		
Surrogate(s)												
Trifluorotoluene	478	483		500	500	95.6	96.6		58-124	Ī		
4-Bromofluorobenzene-F	431	431		500	500	86.2	86.2		50-150			

STL ChromaLab
Environmental Services (CA 1094)

Submission #: 2001-01-0361

To: Aqua Science Engineers, Inc.

Test Method: 8015M

8020

Attn: Robert Kitay

Prep Method: 5030

Legend & Notes

Gas/BTEX and MTBE

Analysis Flags

0

Reporting limits were raised due to high level of analyte present in the sample.

Analyte Flags

g

Hydrocarbon reported in the gasoline range does not match our gasoline standard.

1220 Quarry Lane * Pleasanton, CA 94566-4756 Telephone: (925) 484-1919 * Facsimile: (925) 484-1096

Printed on: 01/26/2001 17:47

2001-01-0361

57010 57010

Aqua Science Engineers, Inc. 208 W. El Pintado Road Danville, CA 94526 (925) 820-9391 FAX (925) 837-4853

Chain of Custody

																		PAG	E	0	F	—	
SAMPLER (SIGN	ATURE))		(PH	IONE NO.	.)	PRO	JECT N	1AME		Char	~~~~						J0B I	NO.	34/2	<u>. </u>		
Sillidel	ept						ADDI	RESS	72	6 1	Harris	Son	st.	<u> </u>	Klan	<u> </u>						_	
			QUES	<u>,T</u>				2									9						
SPECIAL INSTRL	ICTIONS	ž:			BTEX 3020		NR O⊪	ARBOI	260)	Y ANIC			1	8	ORUS 814C	N.	SOLVE	(7.9	χ 2) χ		, !		
5	- daj	y Ta	4T		1 TPH-GAS / MTBE & BTEX (EPA 5030/8015-8020)	8015)	TPH-DIESEL & MOTOR OIL (EPA 3510/8015)	PURGEABLE HALOCARBONS (EPA 601/8010)	VOLATILE ORGANICS (EPA 624/8240/8260)	SEMI-VOLATILE ORGANICS (EPA 625/8270)	망	LUFT METALS (5) (EPA 6010+7000)	CAM 17 METALS (EPA 6010+7000)	PCB ₃ & PESTICIDES (EPA 608/8080)	1057H 5 (EPA 8080)	FUEL OXYGENATES (EPA 8260)	Pb (TOTAL or DISSOLVED) (EPA 6010)	TPH-G/BTEX/5 0XY'S (EPA 8260)	TPH-G/BTEX/7 0XY'S HVOCS (EPA 8260)			<u>m</u>	
	τ			1 110 0=	AS / N	ESEL 510/	ESEL 5107,	ABLE 01/8	LE 08	70LAT	520)	ETAL 010+	, MET 010+	3 PE	NOP CIDE COS	326C	¥8	78TE	/BTE		1	7091	
SAMPLE ID.	DATE		MATRIX		TPH-G	1PH-DIESEL (EPA 3510/8015)	TPH-DII (EPA 3	PURGE (EPA 6	YOLATI	SEMI-V (EPA 6	OIL & GREASE (EPA 5520)	LUFT M (EPA 6	CAM 17 (EPA 6	PCBs ((EPA (ORGANOPHOSPHORUS PESTICIDES (EPA 8140 EPA 608/8080)	FUEL C	Pb (TC (EPA 6	TPH-G	TPH-G HVOCE			COMPOSITE	
	1/18	835	Unter	3	\boxtimes																		
MU-Z MU-3 MU-Y	1 1	1030			\geq			<u> </u>		ļ													
MV-3	1/18	915			<u> X</u>			<u> </u>		<u> </u> '		<u> </u>											
MV-Y	1/18	950	1	₩	\boxtimes	<u> </u>		<u> </u>	<u> </u>	<u> </u>		Ĺ'											
	!	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>	ļ				'						
	<u> </u>	<u> </u>		 		ļ	<u> </u>	<u> </u> '	<u> </u>	<u> </u>		 	ļ	<u> </u>	ļ	<u> </u>	<u> </u>	<u> </u>		<u> </u>			
	<u> </u>	<u> </u>	<u></u>	·	<u> </u>		<u> </u>		<u> </u>	<u> </u> '		<u> </u>	ļ'		!		<u> </u> '			<u> </u> '		<u> </u>	
			<u> </u>	<u> </u> '	<u> </u> '		<u> </u>					<u> </u>	<u> </u>	<u> </u>			<u> </u>						
			ļ	<u> </u>	<u> </u>		<u> </u> '		<u> </u>	<u> </u> '		L'	<u> </u> '			'							
			 '	ļ	<u> </u> '	ļ'	<u> </u>	ļļ	<u> </u>				<u> </u>			ļ!							
			<u></u> '		<u> </u>	<u> </u> '	<u> </u>			<u> </u>	<u> </u>		<u> </u>	<u>'</u>	<u> </u>	<u> </u> !		<u> </u>					
RELINQUISHED BY SLPHIN (bignature)	1		RECEIVI	ED BY:		7	ر ا	NQUISHE	ED BY:		> [6 40.	RECE	IVED B	Y LAPC , VL	DRATOR	Y: 715		COMMENTS:					
(elgnature)	(time	10)	(sl gnati	ure) C	(time)	1005		ature)		(tlme),	<u>1640</u>	, (sighi	ature)		(time)				_	3.0			
E.K Rodal	Phy d	1	1	Home	nu 1	-19-01	, ,	J/	Torro	L		0	Ro	19/1	a/ 0	1/19/	\sim						
(printed name)	(dat	te)	(printed	d name)	(date)	1	(print	ted nami	e)	(date)	1790	// (print	ied nam	<u>e)</u>	(date)	11110	TURN AROUND TIME STANDARD 24Hr 48Hr 72Hr						
Company-			Compan				Comp	pany-			٠	Comp	pany-		<i>7</i> 1 :	1		HER:	.U 124	+Hr ++c)Hr /,	ZHr	
73/				wols			16	1/2/	Derte			1 STZ-CL 1											