

By Alameda County Environmental Health at 3:39 pm, Aug 06, 2013

July 27, 2013

Mr. Mark E. Detterman, PG, CEG Environmental Protection Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Subject: Fuel Leak Case No. R0000320, Former Paco Pumps, Inc., 9201 San Leandro Street, Oakland, CA

Dear Mr. Detterman:

Please find enclosed the Remedial Investigation Activities and Groundwater Monitoring Report (RI Report) for the Former Paco Pumps facility located at 9201 San Leandro in Oakland, California (the Site). The investigation activities performed were completed to fill data gaps in the site characterization, support the development of a comprehensive conceptual site model and human health risk assessment, and assess the appropriateness of requesting Site closure under the State Water Resource Control Board's (CRWQCB) Low-Threat Underground Storage Tank Case Closure Policy (LTCP).

Results from this investigation and groundwater monitoring event indicate that soil, groundwater, and soil vapor affected by petroleum hydrocarbons and related compounds remain on Site at concentrations that pose a very low threat to human health and the environment. As presented on the attached LTCP Checklist and summarized below, conditions at the Site meets the General Criteria and Media-specific Criteria as outlined in the LTCP.

General Criteria

- a. The unauthorized release is located within the service area of a public water system Yes. The Site is located within the service area of the East Bay Municipal Utility District.
- b. The unauthorized release consists only of petroleum Yes
- c. The unauthorized ("primary") release from the UST system has been stopped Yes. The two underground storage tanks responsible for the petroleum impacts to the Site were removed in 1954 and 1992.

- d. Free product has been removed to the maximum extent practicable Yes, no free product has been encountered
- e. A conceptual site model that assesses the nature, extent, and mobility of the release has been developed
- Yes. Per the LTCP, not all of the supporting data and analysis used to develop the Conceptual Site Model are necessarily presented in the RI Report; however, they may be found in historical reports submitted to ACEH and referenced in Section 5 of the RI Report.
- f. Secondary source has been removed to the extent practicable
 Yes. A high-vacuum dual phase extraction test was conducted in 2010. Approximately 1,600 pounds of hydrocarbons were removed from the subsurface.
- g. Soil or groundwater has been tested for methyl tert-butyl ether (MTBE) and results reported in accordance with Health and Safety Code section 25296.15

 Yes. Historically, MTBE has been detected above 5 micrograms per liter twice.
- h. Nuisance as defined by Water Code section 13050 does not exist at the site Yes, a nuisance does not exist at the Site.

Groundwater Criteria

As presented in the RI Report, the contaminant plume that exceeds water quality objectives is stable or decreasing in areal extent, and meets LTCP Criterion 2 for Groundwater. An evaluation of groundwater impacts at the Site is presented in Section 7.1.3 of the RI Report.

Petroleum Vapor Intrusion to Indoor Air Criteria

The site is considered low-threat for the vapor-intrusion-to-air pathway and meets LTCP Criterion B for Petroleum Vapor Intrusion to Indoor Air Criteria. Section 6 of the RI Report presents a site-specific risk assessment for the vapor intrusion pathway and demonstrates that human health is protected.

Direct Contact and Outdoor Air Exposure

The site is considered low-threat for direct contact and outdoor air exposure and meets LTCP Criterion 3a for Direct Contact and Outdoor Air Exposure. An evaluation of soil data is presented in Section 7.1.1 of the RI Report.

If you have any questions during your review of the RI Report, please feel free to contact Paul Parmentier at 562.597.1055 or pparmentier@thesourcegroup.net.

I certify under penalty of law that this document and all attachments are prepared under my direction or supervision in accordance with a system designed to ensure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who managed the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate

and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Sincerely,

Dave Murray, as designated agent for

PCC Flow Technologies, Inc.

Cc: Mr. Peter L. Serrurier, Stoel Rives LLP

Mr. Mark Zeppetello, Barg Coffin Lewis & Trapp, LLP

Mr. Paul Parmentier, The Source Group

Attachment:

Low-Threat Underground Storage Tank Case Closure Policy Checklist

Site Name: Paco Pumps Inc.

Site Address: 9201 San Leandro Street, Oakland, CA

Site meets the criteria of the Low-Threat Underground Storage Tank (UST) Case Closure Policy as described below.¹

General Criteria General criteria that must be satisfied by all candidate sites:	
Is the unauthorized release located within the service area of a public water system?	⊠ Yes □ No
Does the unauthorized release consist only of petroleum?	ĭ Yes □ No
Has the unauthorized ("primary") release from the UST system been stopped?	⊠ Yes □ No
Has free product been removed to the maximum extent practicable?	☑ Yes ☐ No ☐ NA
Has a conceptual site model that assesses the nature, extent, and mobility of the release been developed?	⊠ Yes □ No
Has secondary source been removed to the extent practicable?	
Has soil or groundwater been tested for MTBE and results reported in accordance with Health and Safety Code Section 25296.15?	⊠ Yes □ No
Does nuisance as defined by Water Code section 13050 exist at the site?	□ Yes ⊠ No
Are there unique site attributes or site-specific conditions that demonstrably increase the risk associated with residual petroleum constituents?	□ Yes 🏿 No
Media-Specific Criteria Candidate sites must satisfy all three of these media-specific criteria:	
1. Groundwater: To satisfy the media-specific criteria for groundwater, the contaminant plume that exceeds water quality objectives must be stable or decreasing in areal extent, and meet all of the additional characteristics of one of the five classes of sites:	
Is the contaminant plume that exceeds water quality objectives stable	
or decreasing in areal extent?	ĭ Yes □ No □ NA
or decreasing in areal extent? Does the contaminant plume that exceeds water quality objectives meet all of the additional characteristics of one of the five classes of sites?	X Yes □ No □ NAX Yes □ No □ NA
Does the contaminant plume that exceeds water quality objectives meet	

¹ Refer to the Low-Threat Underground Storage Tank Case Closure Policy for closure criteria for low-threat petroleum UST sites.

Site Name: Paco Pumps Inc.

Site Address: 9201 San Leandro Street, Oakland, CA

C	or sites with releases that have not affected groundwater, do mobile constituents (leachate, vapors, or light non-aqueous phase liquids) ontain sufficient mobile constituents to cause groundwater to exceed be groundwater criteria?	□ Yes □ No ☒ NA
The s	etroleum Vapor Intrusion to Indoor Air: ite is considered low-threat for vapor intrusion to indoor air if site-specific tions satisfy all of the characteristics of one of the three classes of sites ough c) or if the exception for active commercial fueling facilities applies.	
to indexcep	e site an active commercial petroleum fueling facility? otion: Satisfaction of the media-specific criteria for petroleum vapor intrusion oor air is not required at active commercial petroleum fueling facilities, ot in cases where release characteristics can be reasonably believed to an unacceptable health risk.	□ Yes ☒ No
a.	Do site-specific conditions at the release site satisfy all of the applicable characteristics and criteria of scenarios 1 through 3 or all of the applicable characteristics and criteria of scenario 4?	□Yes ⊠ No □ NA
b	If YES, check applicable scenarios: □ 1 □ 2 □ 3 □ 4 Has a site-specific risk assessment for the vapor intrusion pathway been conducted and demonstrates that human health is protected to the satisfaction of the regulatory agency?	☑ Yes ☐ No ☐ NA
C.	As a result of controlling exposure through the use of mitigation measures or through the use of institutional or engineering controls, has the regulatory agency determined that petroleum vapors migrating from soil or groundwater will have no significant risk of adversely affecting human health?	□ Yes □ No ☒ NA
3. Direct Contact and Outdoor Air Exposure: The site is considered low-threat for direct contact and outdoor air exposure if site-specific conditions satisfy one of the three classes of sites (a through c).		
a.	Are maximum concentrations of petroleum constituents in soil less than or equal to those listed in Table 1 for the specified depth below ground surface (bgs)?	⊠ Yes □ No □ NA
b	Are maximum concentrations of petroleum constituents in soil less than levels that a site specific risk assessment demonstrates will have no significant risk of adversely affecting human health?	□ Yes □ No 🛚 NA
c.	As a result of controlling exposure through the use of mitigation measures or through the use of institutional or engineering controls, has the regulatory agency determined that the concentrations of petroleum constituents in soil will have no significant risk of adversely affecting human health?	□ Yes □ No ☒ NA

REMEDIAL INVESTIGATION ACTIVITIES AND GROUNDWATER MONITORING REPORT

Former PACO Pumps Site 9201 San Leandro Street, Oakland, California

04-PFT-004

Prepared For:

PCC Flow Technologies Holdings, Inc. 4600 SE Harney Dr. Portland, OR 97206-0898

Prepared By:

1962 Freeman Avenue Signal Hill, California 90755

July 25, 2013

Prepared By:

Paisha Jorgensen, P.G.

Project Geologist

Reviewed By:

Paul Parmentier, P.G., C.HG.

CRED GEOLO

Parmentier

No. 3915

Principal Hydrogeologist

TABLE OF CONTENTS

					PAGE
LIST	OF A	PPENDIC	ES		iv
1.0	INTRO	ODUCTIO	N		1-1
	1.1	Report (Organizatio	n	1-1
2.0	SITE	BACKGR	OUND		2-1
	2.1	Site Loc	ation and H	listory	2-1
	2.2	Previou	s Site Inves	tigations and Remediation Activities	2-1
3.0	REME	EDIAL IN	/ESTIGATI	ON ACTIVITIES	3-1
	3.1	Pre-Fiel	d Activities		3-1
	3.2	Shallow	Groundwa	ter Monitoring Well Installation	3-1
	3.3	Soil Vap	or Probe Ir	nstallation	3-2
				r Sampling	
	3.4	Ground	water Monit	oring and Sampling Event	3-4
		3.4.1	Groundwa	ater Monitoring	3-4
		3.4.2	Groundwa	ater Sampling	3-5
	3.5			nt	
4.0	INVESTIGATION AND SAMPLING RESULTS				4-1
	4.1	Site Ge	ology and H	lydrogeology	4-1
	4.2				
	4.3				
	4.4	Ground	water Samp	oling Results	4-3
		4.4.1		ater Elevations	
		4.4.2	Groundwa	ater Analytical Results	4-4
5.0	CONCEPTUAL SITE MODEL				5-1
	5.1	Exposu	re Setting a	nd Land Use	5-1
	5.2	Source	and Attribut	tes of the Release	5-1
	5.3	Affected	d Media		5-1
	5.4	5.4 Local Geologic and Hydrogeologic Setting			
	5.5				
	5.6 Confirmed and Potential Exposure Points and Receptors			5-4	
6.0	HUMA	AN HEAL	TH RISK E	VALUATION	6-1
	6.1	Data Ev	aluation		6-1
	6.2	Exposu	re Assessm	ent	6-2
		6.2.1		of Chemicals of Potential Concern	
		6.2.2	Estimating	g Exposure Point Concentrations	6-2
			6.2.2.1	Vapor Migration from Shallow Soil Vapor to Ground	
				Surface	
			6.2.2.2	Mixing of Soil Vapor Emissions with Indoor Air	6-3

TABLE OF CONTENTS

				PAGE
		6.2.2.3	Model Input Parameters	6-3
		6.2.2.4	Source Concentrations and Site-Specific Physical	
			Parameters	6-4
		6.2.2.5	Chemical-Specific Properties	6-6
		6.2.2.6	Building Properties	
	6.3	Toxicity Assessmen	ıt	
	6.4	Risk Characterization	on	6-6
	6.5	Uncertainty Analysis	S	6-7
	6.6	Summary of Results	S	6-8
7.0	DATA	EVALUATION AND	RECOMMENDATIONS	7-1
	7.1			
			·	
			iter	
	7.2	Recommendations		7-3
8.0	RFFF	RENCES		8-1

LIST OF FIGURES

	LIST OF FIGURES	
Figure 1	Site Location Map	
Figure 2	Site Plan	
Figure 3	Groundwater Elevation and Potentiometric Surface Map – March 2013	
Figure 4	Benzene, Ethylbenzene, TPH-GRO, and TPH-DRO Concentrations in Soil – March 2013	
Figure 5	Benzene, Ethylbenzene, Naphthalene, and TPH-GRO and Concentrations in Soil Vapor – March 2013	
Figure 6	MTBE, Benzene, TPH-GRO, and TPHd Concentrations in Groundwater – April 2013	
	LIST OF TABLES	
Table 1	Current and Historical Groundwater Elevations	
Table 2	Summary of Soil Analytical Results	
Table 3	Summary of Soil Vapor Analytical Results	
Table 4	Summary of Analytical Results for Groundwater – Quarter 1, 2013	
Table 5	Summary of Historical Analytical Results for Groundwater	
Table 6	Risk Characterization for the Hypothetical Indoor Commercial/Industrial Worker Receptor	
	LIST OF APPENDICES	
Appendix A	Alameda County Environmental Health Drilling Permit	
Appendix B	Boring Logs	
Appendix C	Well Development Field Forms	
Appendix D	Surveyor's Report	
Appendix E	Groundwater Sampling Field Forms	
Appendix F	Laboratory Analytical Data – Soil	
Appendix G	Laboratory Analytical Data – Soil Vapor	
Appendix H	Laboratory Analytical Data – Groundwater	
Appendix I	Particle Size Distribution Analysis	
Appendix J	Johnson and Ettinger Model	

1.0 INTRODUCTION

The Source Group, Inc. (SGI), on behalf of PCC Flow Technologies, LLC, is submitting this Remedial Investigation Activities and Groundwater Monitoring Report (Report) for the former PACO Pumps facility located at 9201 San Leandro Street in Oakland, California (Site) (Figures 1 and 2). The investigation activities were initially presented in SGI's Sub-Slab Vapor Survey and Remedial Investigation Work Plan (RI Work Plan; SGI, 2012a), dated January 5, 2012. As discussed in Section 2.2, modifications to the RI Work Plan were presented in a letter to Alameda County Environmental Health (ACEH) dated June 20, 2012 (SGI, 2012b). Prior to implementation of the RI Work Plan, additional modifications were made to the investigation plan. These changes were made based on phone and email communications with ACEH.

SGI performed the investigation and monitoring and sampling activities presented in this Report in order to: 1) further characterize shallow groundwater conditions at the downgradient boundary of the Site; 2) characterize soil and soil vapor conditions in the vicinity of the former underground storage tank (UST) near Building 1 and suspected UST in Building 1; and 3) assess the Site-wide groundwater conditions beneath the Site. The activities performed were completed to fill data gaps in the site characterization, support the development of a comprehensive conceptual site model and human health risk assessment, and assess the appropriateness of requesting Site closure under the State Water Resource Control Board's (CRWQCB) Low-Threat Underground Storage Tank Case Closure Policy (LTCP [CRWQCB, 2012]).

All of the data collected during the above referenced characterization and groundwater monitoring activities are presented in subsequent sections of this report.

1.1 Report Organization

The remainder of this Report is organized into the following sections:

Section 2.0: Site Background

This section presents the background and history of the Site.

Section 3.0: Remedial Investigation Activities

This section presents the methodology of the soil, groundwater, soil vapor sampling performed at the Site.

Section 4.0: Investigation and Sampling Results

This section presents the investigation and sampling activities results and provides discussion of the results.

Section 5.0: Conceptual Site Model

This section presents a comprehensive conceptual site model.

Section 6.0: Human Health Risk Evaluation

This section presents the results of modeling to estimate potential indoor air concentrations and associated human health risks from benzene and ethylbenzene in soil vapor.

Section 7.0: Conclusions and Recommendations

This section draws conclusions and provides a summary of recommendations based on the results of the investigation and sampling event.

Section 8.0: References

This section presents a summary of referenced documents used in preparation of this report.

2.0 SITE BACKGROUND

2.1 Site Location and History

The former PACO Pumps facility is located at 9201 San Leandro Street in Oakland, California (the Site, Figures 1 and 2). The Site is an approximately 4.6-acre parcel that is generally bounded by: an access road and heavy industrial/manufacturing business to the north; San Leandro Street, Union Pacific Railroad tracks, and elevated Bay Area Rapid Transit (BART) tracks to the east; Union Pacific Railroad tracks and easements for petroleum pipelines to the west; and industrial/warehousing businesses to the south. The surrounding area is a mix of industrial and heavy industrial (manufacturing) use. Currently, the entire Site is covered with either asphalt, concrete, or buildings constructed on concrete slabs. Two large warehouse buildings occupy the western and eastern areas of the Site. The nearest surface water body is San Leandro Creek, which is located approximately 5,000 feet southwest of the Site. No drinking water wells have been identified within ½-mile of the Site (SGI, 2012a).

The Site was historically used as a manufacturing facility since 1945 for industrial pumps, tents, and as a foundry (Jonas & Associates, Inc. [Jonas], 1991) and has been used for warehousing and medicinal plant growing. Currently, the site is leased by a transportation, storage, and warehousing company. The Site is currently owned by 9201 San Leandro LLC. Four investigation areas (Areas 1, 2, 3, and 5) at the Site were addressed in early 2009, and closure of these areas has been requested from the ACEH. Remedial action activities completed since 2010 have focused on Area 4 only. Area 4 includes the former UST location southeast of Building 3 and the southern portion of Building 3. Semi-annual groundwater monitoring and sampling addresses groundwater conditions site-wide.

2.2 Previous Site Investigations and Remediation Activities

Subsurface soil and groundwater conditions have been investigated since the 1980's by various consultants including Jonas, ERAS Environmental Inc. (ERAS), Levine Fricke Recon Inc. (LFR), and most recently SGI. According to the ERAS Subsurface Investigation and Groundwater Monitoring Report (ERAS, 2008), the Jonas Site Characterization Report (Jonas, 1992) identified the location of a former 550-gallon underground storage tank (UST) located on the southeast side of Building 3. According to LFR, the former UST was used for gasoline storage. The UST was reportedly removed prior to a 1992 investigation of the assumed former tank pit area, where gasoline-impacted soil was discovered. This former UST location was over excavated in the 1992 investigation and soil was removed from the Site. These activities removed major sources of subsurface contamination, but impacted soil remained near the foundation of the building to the west of the former UST location. Several investigations were completed in the area, including drilling of soil borings inside the building located west of the former UST.

LFR conducted additional investigations and a remediation pilot test in 2009 and recommended site remediation by air sparging, soil vapor extraction, and ozone injection. LFR completed five soil

borings using membrane interface probe (MIP) technology to evaluate the distribution of contaminants in this part of the Site. LFR also collected two shallow groundwater samples (17 to 20 feet below ground surface [feet bgs]) and two deep groundwater samples (27 to 30 feet bgs), installed two new groundwater monitoring wells, one shallow and one deep air sparge wells, and three soil vapor extraction (SVE) test wells. The results of the investigation, as summarized by LFR (LFR, 2009), indicated that the deeper groundwater did not contain detectable concentrations of petroleum contaminants, and this finding has been confirmed during subsequent groundwater monitoring events.

After review of the previous site investigation data and LFR vapor extraction test data, SGI made alternative recommendations for remediation with the following approach (SGI, 2009):

- Focused, high- vacuum extraction of vadose zone hydrocarbons in the edges of the former UST excavation, including beneath Building 3; and
- Extraction of hydrocarbons from the shallow groundwater zone, followed by natural attenuation.

In October 2009, SGI submitted a *Remediation Work Plan* (SGI, 2009) that proposed episodes of high-vacuum dual-phase extraction (HVDPE) rather than construction and operation of a fixed remediation system. In April 2010, a 24-hour remedial action pilot test was conducted, and the results indicated that a longer-term remedial action was warranted. In June 2010, after installation of 12 extraction wells and an additional groundwater monitoring well (MW-8), SGI conducted a 10-day dual-phase extraction episode that resulted in the removal of significant hydrocarbon mass and the collection of reliable site contaminant distribution data.

Based on the limited air flow and groundwater extraction rates, low hydrocarbon concentrations present in soil, and a laterally and vertically delineated, limited benzene plume, any effort focused on in-situ remediation of hydrocarbons would be both lengthy and costly, and not substantially more effective than the apparent on-going natural attenuation of hydrocarbons. The *Post Remediation Sampling and First Semi-Annual Monitoring Report*, dated October 8, 2010, described the results of the investigation/remediation at Area 4, post-remediation sampling, and first semi-annual groundwater monitoring. The report also included a human health risk evaluation of soil vapor intrusion into Building 3 indoor air.

On January 5, 2012, at the request of ACEH, SGI submitted the RI Work Plan (SGI, 2012a) for sub-slab soil gas sampling to confirm the previous soil gas interpretations. The RI Work Plan included a preferential pathway study. Following ACEH comments, RI Work Plan modifications were submitted on June 20, 2012 (SGI, 2012b). ACEH's comments indicated that additional downgradient wells would be appropriate, and suggested that SGI conduct the investigation based on guidance presented in the CRWQCB's LTCP (CRWQCB, 2012). Additional modifications were made to the investigation plan and were discussed with ACEH via email prior to implementation.

3.0 REMEDIAL INVESTIGATION ACTIVITIES

The remedial investigations at the Site focused on shallow groundwater downgradient of the source area, and on soil vapor beneath Buildings 1 and 3 and in the vicinity of the former gasoline UST adjacent to Building 3. Soil samples were collected from all borings. The investigation placed an emphasis on collecting samples in accordance with the LTCP.

3.1 Pre-Field Activities

Prior to investigative activities at the Site, applications to advance borings and install groundwater monitoring wells were prepared and submitted along with appropriate fees to ACEH. A copy of the boring permit is included in Appendix A.

A site visit was performed to mark the locations of the proposed borings at the Site. Underground Services Alert (USA) was notified of the drilling activities as required. A private geophysical and utility survey was also conducted to identify underground structures within the footprints of the proposed investigative activities. Results of the private utility survey and utility locating by USA were reviewed and the final locations of the wells and vapor points were selected.

3.2 Shallow Groundwater Monitoring Well Installation

Three shallow groundwater monitoring wells (MW-9, MW-10, and MW-11) were constructed west of Building 3, between the building and the property boundary fence. The well locations are presented on Figure 2.

Prior to well installation, continuous soil borings was advanced at each well location using directpush technology. The soil borings were advanced to a total depth of 20 feet bgs. Soil cores from the boreholes were visually evaluated, and the description of soil cores included the following information with depth:

- Percentage of sample recovery;
- Depth to first encountered groundwater;
- Grain size classification (USCS; percentages of gravel, sand, silt, and clay);
- Color (Munsell color chart);
- Density;
- Odor; and
- Degree of moisture.

Soil samples were screened in the field for volatile organic compounds (VOCs) using an organic vapor monitor (OVM) equipped with a photo-ionization detector (PID). Approximately 20 grams of soil from various sections of soil core were placed in a self-sealing plastic bag to allow VOCs that may be present in the pore spaces to volatilize. The headspace in the plastic bag then was monitored for VOCs with the OVM. Based on field observations, select soil samples were collected

from the borings and were analyzed for total petroleum hydrocarbons-diesel range organics (TPH-DRO, [C10-C28]) and total petroleum hydrocarbons-motor oil range organics (TPH-MRO, [C24-C36]) by EPA Method 8015M, and for total petroleum hydrocarbons-gasoline range organics (TPH-GRO, [C5-C12]), BTEX (benzene, toluene, ethylbenzene, and xylenes), and fuel oxygenates by EPA Method 8260B. Soil samples collected for laboratory analysis by EPA Method 8260B were field preserved using Terra Core samplers, an approved sampling protocol for EPA Method 5035. Soil samples were labeled and placed in an ice-filled cooler, and a chain-of-custody record was initiated in the field to accompany the soil samples to the laboratory.

Following completion of the soil boring, the depths and lengths of the well screens were selected based on lithology of the soil core. Well MW-9 screen was selected to be constructed from 12 to 17 feet bgs, and wells MW-10 and MW-11 screens were selected to be constructed from 10 to 20 feet bgs. Wells MW-10 and MW-11 were constructed with longer screens due to lack of coarse-grained soil observed in the soil core. The bottom three feet of the soil boring MW-9 was then backfilled with bentonite. Prior to well construction, the soil boring was over-drilled with an 8-inch-diameter hollow stem auger.

Wells were constructed using 2-inch diameter schedule 40 polyvinyl chloride (PVC). The well screens were constructed using 2-inch diameter schedule 40 PVC with 0.020-inch slots. #2/12 Monterey sand was placed from total depth of well screen to two feet above the well screen. Two feet of bentonite chips were placed above the sand pack followed by neat cement grout to approximately 1-foot bgs. The wells were completed at grade with 12-inch, flush-mounted well boxes sealed with concrete. The boring logs and well construction details for well MW-9, MW-10, and MW-11 are included in Appendix B.

Following the required curing period, the new wells were developed by surging, bailing, and pumping, to produce representative water quality samples. Development continued until the water was clear and generally free of sediment and water quality parameters (pH, temperature, conductivity, and turbidity) stabilized to approximately 10 percent between successive measurements. Well development field data were documented on groundwater monitoring well development forms (included in Appendix C). Following development, the wells were surveyed to a common datum, referenced to mean sea level (msl) by a licensed surveyor. The surveyor's report is included in Appendix D.

3.3 Soil Vapor Probe Installation

Eight soil vapor probes (SV-1 through SV-8) were installed at the Site. Soil vapor probes were constructed in accordance with California Environmental Protection Agency's (CalEPA) Department of Toxic Substance Control's (DTSC) *Advisory – Active Soil Gas Investigations* (Advisory; DTSC, 2012). Three soil vapor probes each were installed in Buildings 1 and 3, and two soil vapor probes were installed outside Building 3, in the vicinity of the former UST excavation are. The vapor probe locations are presented on Figure 2. At each location, the concrete ground surface was cored to provide access to the soil. Prior to construction of the soil vapor probes, soil borings were advanced to approximately 10 feet bgs at each location. The first five feet of each

borehole was cleared/drilled using a hand auger and the bottom five feet was drilled using directpush technology. Soil samples from the boreholes were visually evaluated, and the description of soil samples included the following information with depth:

- · Percentage of sample recovery;
- Depth to first encountered groundwater;
- Grain size classification (USCS; percentages of gravel, sand, silt, and clay);
- Color (Munsell color chart);
- Density;
- · Odor; and
- Degree of moisture.

As described in Section 3.2 above, soil samples were screened in the field for VOCs using a PID. Based on field observations, select soil samples were collected from the borings and were analyzed for TPH-DRO and TPH-MRO by EPA Method 8015M, and TPH-GRO, BTEX, and fuel oxygenates by EPA Method 8260B. Soil samples collected for laboratory analysis by EPA Method 8260B were field preserved using Terra Core samplers. Soil samples were labeled and placed in an ice-filled cooler, and a chain-of-custody record was initiated in the field to accompany the soil samples to the laboratory.

Following completion of the soil borings and selecting the depth of the soil vapor probe intake, the bottom of each soil boring was backfilled with bentonite to seal the borehole to a depth 6-inches below the soil vapor probe tip. Vapor probe construction consisted of placing a 1-inch stainless steel vapor probe tip midway between the top and bottom of one foot of #2/12 Monterey sand. The vapor probe tip was attached to 0.25-inch Teflon[®] tubing. Approximately 1-foot of dry granular bentonite was placed on top of the sand pack to preclude the infiltration of neat grout into the sand pack. The borehole was grouted to approximately 6-inches bgs with neat cement. The soil vapor probe was completed at grade with a 6- or 8-inch, flush-mounted, traffic-rated well box sealed with concrete. All eight soil vapor probes were constructed in this manner.

Upon completion, the probes were properly secured, capped, and completed to prevent infiltration of water or ambient air into the subsurface and to prevent accidental damage. The soil vapor probe locations were surveyed to a common datum by a licensed surveyor. The surveyor's report is included in Appendix D.

3.3.1 Soil Vapor Sampling

Soil vapor sampling was conducted on March 26, 2013. TEG of Rancho Cordova, California conducted the soil vapor sampling and sample analysis. No precipitation was reported in area of the Site for the seven days prior to soil vapor sampling.

Prior to sampling, soil vapor sampling probes were purged to ensure that stagnant or ambient air was removed from the sampling system and to ensure that samples collected were representative

of subsurface conditions. TEG purged three tubing volumes, approximately (120 milliliters), prior to collecting each soil vapor sample. Per Advisory guidance, flow rates between 100 to 200 milliliters per minute (mL/min) and vacuums less than 100 inches of water were maintained during purging and sampling.

During sampling, a leak test was conducted in accordance with approved guidance to confirm the sampling assembly was properly constructed and free of leaks, and to assess potential sample dilution due to short circuiting of ambient air through the borehole annulus. The leak test consisted of covering the soil vapor probe with a shroud and injecting the leak test compound within the shroud. The leak test compound (1,1-difluoroethane) was included in the analyte list.

Samples were collected in gas-tight glass syringes with Teflon[®] seals and immediately transferred to the on-site mobile laboratory for analysis. The sample containers were labeled with sample-point identification, date, and time of collection and logged onto a chain-of-custody form and assigned a laboratory identification number. One duplicate soil gas sample was collected from location SV-2 to provide a measure of Quality Assurance/Quality Control (QA/QC). In addition, method blanks were run during the course of the sampling event to assure there was no carry-over on the analytical instrument.

The soil vapor samples were analyzed on-site by TEG's California state-certified mobile laboratory for the following compounds:

- TPH-GRO, BTEX compounds, naphthalene, methyl tert-butyl ether (MTBE), and 1,1-difluoroethane (1,1-DFA; the leak test compound) by EPA Method 8260B; and
- Methane, oxygen, carbon dioxide, and nitrogen by gas chromatograph/thermal conductivity detector.

3.4 Groundwater Monitoring and Sampling Event

Blaine Tech Services, Inc. of San Jose, California was contracted to conduct the Quarter 1, 2013 semi-annual groundwater monitoring and sampling event on April 5, 2013. This section details the monitoring and sampling activities completed.

3.4.1 Groundwater Monitoring

Groundwater levels were measured in 25 groundwater monitoring wells. Two wells were not accessible during the sampling event: MW-8 was located under a large puddle (due to a prior rain event), and E-10 could not be located and appears to have been paved over. Groundwater levels in all wells were gauged from the top of the well casing (TOC) using an electronic water level indicator graduated to 0.01-foot. The surveyed top of casing elevations are referenced to msl. Groundwater elevations are presented in Table 1 and represented as a potentiometric surface on Figure 3.

3.4.2 Groundwater Sampling

Groundwater samples were collected from 17 of the 25 wells that were used for monitoring. Groundwater wells were purged using standard three well casing purging methods with submersible pumps or disposable bailers. Groundwater samples were collected with disposable bailers. Water quality parameters were measured and recorded during the groundwater purging to ensure the groundwater samples were representative of aquifer conditions. Samples were transferred directly into laboratory-supplied containers and placed on ice for transport to Accutest, Inc. of San Jose, California under chain-of-custody control. The monitoring well field sampling forms are included in Appendix E. All groundwater samples collected during the sampling event were analyzed for TPH as diesel (TPHd) and TPH as motor oil (TPHmo) by USEPA Method 8015M, and TPH-GRO (C6-C10) and VOCs by USEPA Method 8260B. Results of the groundwater monitoring and sampling event are presented below.

3.5 Waste Management

Soil cuttings, well purge water, well development water, and decontamination water generated during drilling and sampling were stored on Site in properly labeled 55-gallon steel drums pending waste characterization. All waste will be disposed in accordance with applicable laws and regulations.

4.0 INVESTIGATION AND SAMPLING RESULTS

4.1 Site Geology and Hydrogeology

As discussed above, soil samples were collected continuously to the maximum depth of each boring during construction of the groundwater monitoring wells and soil vapor probes. Boring logs with well and vapor probe construction details are presented in Appendix B.

Ground surface cover consists of soil, asphalt, or concrete depending on the boring location. Asphalt and concrete ranged in thickness from 4 to 12 inches. Subsurface soils consist primarily of coarse-grained soil to a depth of 2 to 4 feet bgs, and fine-grained soil (clay) to a depth ranging from approximately nine to 11 feet bgs. Lean clay with an increase percentage of coarse grains was observed in groundwater monitoring well boreholes at depths ranging from 11 to 16 feet bgs.

Groundwater was observed at approximately 12.5 feet bgs in the three groundwater monitoring well boreholes during drilling. Following monitoring well development, groundwater was measured at 8.20 feet bgs in MW-9, 7.34 feet bgs in MW-10, and 7.53 feet bgs in MW-11. This variation between initial depth to groundwater observed during drilling and final depth to groundwater measured in completed wells was observed during drilling activities in the past. Based on lithology observed during drilling and previous investigations, it appears that the clay present to a depth of approximately nine to 11 feet bgs acts as a confining or semi-confining layer. Depth to groundwater and calculated groundwater elevations are presented in Table 1.

4.2 Soil Sample Results

A total of 33 soil samples were collected from the 11 soil borings drilled on Site (three samples from each boring). In accordance with the LTCP, two soil samples were collected within the first five feet of soil below the ground surface cover from each soil boring, and at approximately 9 to 12 feet bgs to evaluate for potential bioattenuation zone conditions at the site and to evaluate soil results against direct contact/outdoor air exposure scenarios presented in the LTCP (CRWQCB, 2012). Soil sample results are presented in Table 2 and on Figure 4, and summarized below:

- TPH-GRO concentrations were detected in 12 soil samples at concentrations ranging from 0.64 milligrams per kilogram (mg/kg) in sample SV-5-3 at 3 feet bgs to 920 mg/kg in sample SV-6-9 at 9 feet bgs. Only two locations contained detectable TPH-GOR concentrations in the shallow samples, with TPH-GRO detected in shallow (2.5 and 5 feet bgs) samples at MW-10 and MW-11, coincident with higher TPH-DRO and TPH-MRO. Typically, the highest TPH-GRO concentrations in soil were detected only in deeper samples, with highest concentrations reported in samples collected from borings SV-2, SV-3, SV-5, and SV-6 (see Figure 4).
- TPH-DRO concentrations were detected in 32 soil samples at concentrations ranging from 1.1 mg/kg in sample SV-7-5.5 at 5.5 feet bgs to 4,600 mg/kg in sample MW-10-2.5 at 2.5 feet bgs. The highest TPH-DRO concentrations in soil were detected in shallow (2.5

and 5 feet bgs) samples collected from borings MW-10 and MW-11, and shallow (5 feet bgs) and deep (9 feet bgs) samples collected from boring SV-1 (see Figure 4).

- TPH-MRO concentrations were detected in 11 soil samples at concentrations ranging from 56 mg/kg in sample SV-4-2.5 at 2.5 feet bgs to 8,800 mg/kg in sample SV-10-2.5 at 2.5 feet bgs. Higher TPH-MRO concentrations were coincident with elevated TPH-DRO concentrations.
- Benzene concentrations were detected in only seven soil samples, at concentrations ranging from 0.012 mg/kg in sample SV-3-3 at 3 feet bgs to 6.6 mg/kg in sample SV-5-9 at 9 feet bgs. Higher benzene concentrations were detected in samples collected from borings SV-3, SV-4, SV-5, and SV-6 (Figure 4). SV-4 and SV-5 are located in the vicinity of the former gasoline UST adjacent to Building 3, and SV-6 is located in the vicinity of a suspected UST in Building 1. All benzene concentrations detected in soil samples are below the LTCP Direct Contact and Outdoor Air Exposure levels for commercial/industrial and utility worker use scenario.
- Ethylbenzene concentrations were detected in only seven soil samples, at concentrations ranging from 0.061 mg/kg in sample SV-4-5.5 at 5.5 feet bgs to 20 mg/kg in sample SV-6-9 at 9 feet bgs. Similar to benzene, higher ethylbenzene concentrations were detected in samples collected from borings SV-3, SV-4, SV-5, and SV-6 (Figure 4). SV-4 and SV-5 are located in the vicinity of the former gasoline UST adjacent to Building 3, and SV-6 is located in the vicinity of a suspected UST in Building 1. All ethylbenzene concentrations detected in soil samples are below the LTCP Direct Contact and Outdoor Air Exposure levels for commercial/industrial and utility worker use scenario.
- Other petroleum hydrocarbon constituents/additives: toluene, xylenes, and tert-butyl alcohol (TBA) were also detected in soil samples. Elevated concentrations of these compounds were coincident with elevated benzene and ethylbenzene concentrations.

The shallow nature of the TPH impacts detected in soil samples from borings MW-9, MW-10 and MW-11 (along the downgradient boundary of the Site) appear to be indicative of a surface release rather than impacts from the former gasoline UST, which is located more than 100 feet to the east. Additionally, the absence of BTEX compounds indicate the impacts are not associated with the former gasoline UST. Similarly, soil samples from soil boring SV-1 (approximately 80 feet east of the former UST) show minor hydrocarbon impacts in the upper 5 feet with non-detect to trace BTEX compounds and higher TPH-DRO impact at 9 feet bgs.

Soil impacts in SV-4, SV-5 and SV-6 are primarily TPH-GRO and BTEX compounds. These borings are located in the vicinity of the former gasoline USTs. TPH-GRO, TPH-DRO, benzene, and ethylbenzene concentrations in soil are presented on Figure 4. A summary of soil analytical results are included in Table 2. Laboratory analytical reports for soil samples are presented in Appendix F.

4.3 Soil Vapor Sample Results

Soil vapor samples were collected from eight permanent soil vapor probes on March 26, 2013. As described in Section 3.3.1, TEG collected and analyzed the soil vapor samples under SGI's supervision. Samples were analyzed on Site in TEG's mobile laboratory. Samples were analyzed for TPH-GRO, BTEX, naphthalene, MTBE, methane, oxygen, carbon dioxide, nitrogen, and 1,1-DFA (the leak detection compound). Nine soil vapor samples were analyzed, including the duplicate sample from SV-2. Laboratory analytical results for soil vapor samples are summarized below:

- TPH-GRO was detected in seven samples at concentrations ranging from 57,000 micrograms per cubic meter (µg/m³) in SV-8 to 20,000,000 µg/m³ in SV-5. The highest concentrations of TPH-GRO in soil vapor were detected in samples from SV-3, SV-4 and SV-5, located in the vicinity of the former gasoline UST near Building 3.
- Benzene was detected in seven samples at concentrations ranging from 110 μ g/m³ in SV-8 to 560,000 μ g/m³ in SV-5. The highest concentrations of benzene in soil vapor were detected in samples from SV-3, SV-4, SV-5, and SV-6. SV-6 is located in the area of the suspected UST in Building 1.
- Toluene and methane were only detected in the sample collected from SV-5 at a concentrations of 4,500 µg/m³ and 10,000 parts per million by volume (ppmV), respectively.
- Ethylbenzene and xylenes were also detected in samples collected from SV-4, SV-5, and SV-6.
- Oxygen was detected above 4% in all soil vapor samples except SV-1. Oxygen concentrations above 4% are an indicator of a potential bioattenuation zone, as defined in the LTCP. However, due to the elevated TPH in soil matrix (>100 mg/kg for TPH-GRO + TPH-DRO) in this shallow upper 5-foot zone (and elevated dissolved benzene in groundwater >1,000 micrograms per liter (μg/L) as detailed in Section 4.4.2 below), the effectiveness of a bioattenuation zone is unclear.
- Naphthalene, MTBE, and 1,1-DFA were not detected in any soil vapor sample.

Benzene, ethylbenzene, naphthalene, and TPH-GRO concentrations in soil gas are presented on Figure 5. Sample results are presented in Table 3. The laboratory analytical report for soil vapor samples is presented in Appendix G.

4.4 Groundwater Sampling Results

The Quarter 1, 2013 semi-annual groundwater monitoring and sampling event was conducted on April 5, 2013. Groundwater levels were measured in all accessible wells, and groundwater samples were collected from a subset of the wells.

4.4.1 Groundwater Elevations

A potentiometric surface map was constructed from the shallow groundwater elevation data and is presented as Figure 3. Groundwater elevation measurements are included in Table 1.

The depth-to-water measurements ranged from 6.96 feet below top of casing (btoc) in MW-4 to 9.20 feet btoc in E-9. Groundwater elevations ranged from 10.03 feet msl in MW-1 to 12.41 feet msl in MW-4. A review of elevation data and the potentiometric surface map indicates shallow zone groundwater flows in a westerly direction at a gradient of approximately 0.006 feet/foot in Areas 4 and 5. The westerly gradient is consistent with historical groundwater flow patterns.

4.4.2 Groundwater Analytical Results

Laboratory analytical results for MTBE, benzene, TPH-GRO, and TPHd are presented on Figure 6. Quarter 1, 2013 laboratory analytical results and historical laboratory analytical results are summarized in Table 4 and 5, respectively. The laboratory analytical reports for groundwater samples are presented in Appendix H. Laboratory analytical results for samples collected from groundwater monitoring wells are summarized below:

- TPH-GRO concentrations were detected in nine wells: MW-2, MW-3, MW-4, MW-6, E-3, E-6, E-7, E-8 and E-12. Concentrations in these wells were generally within historic ranges with concentrations ranging from 42 μg/L in MW-2 to 14,200 μg/L in MW-3. TPH-GRO concentration trends have been stable in all wells with the highest concentrations in wells downgradient of the former UST adjacent to Building 3. TPH-GRO was not detected in perimeter wells MW-1, MW-5, MW-9, MW-10, and MW-11, indicating that groundwater containing TPH-GRO is delineated within the Site.
- TPHd concentrations were detected in five wells MW-3, MW-6, E-7, E-8 and E-12. Concentrations were generally within historic ranges with concentrations ranging from 62.4 μg/L in E-12 to 2,210 μg/L in MW-3. TPHd concentration trends have been stable or decreasing. Historically, the highest concentrations have occurred in well MW-3, adjacent to the former UST at Building 3. TPHd was not detected in boundary wells MW-1, MW-5, MW-9, MW-10, and MW-11, indicating that TPHd-containing groundwater is delineated within the Site.
- TPHmo concentrations were detected in nine wells MW-1, MW-2, MW-5, MW-10, MW-11, E-2, E-3, E-6, and E-8. TPHmo concentrations ranging from 323 μg/L in MW-1 to 357,000 μg/L in E-3. Concentration trends were generally stable and within historic ranges, with the exception of wells MW-5, E-2, E-3, E-6, and E-8, which reported increasing concentrations. Well E-3 exhibited the largest concentration increase, at an order of magnitude greater than the historical maximum. TPHmo concentrations were detected in downgradient wells MW-1, MW-5, MW-10, and MW-11.
- Benzene concentrations were detected in eight wells MW-3, MW-4, MW-6, E-3, E-6, E-7, E-8, and E-12. Concentrations were generally within historic ranges with concentrations ranging from 1.0 μg/L in E-3 to 1,030 μg/L in MW-3. Benzene concentration trends have

been stable or decreasing in all wells with the exception of E-8, which showed a slightly increasing trend. Benzene was not detected in boundary wells MW-1, MW-5, MW-9, MW-10, and MW-11, indicating that benzene-containing groundwater is delineated within the Site.

- MTBE concentrations were detected in only seven wells MW-2, MW-7, MW-9, MW-10, E-3, E-6, and E-7. Concentrations were generally within historic ranges with concentrations ranging from 0.2 μg/L in MW-10 to 3.3 μg/L in E-7. Where detected, MTBE concentration trends have been stable or decreasing. MTBE was detected in boundary wells MW-9 and MW-10 at concentrations of 1.1 and 0.2 μg/L, three orders of magnitude below the LTCP criteria of 1,000 μg/L.
- Fuel constituents/additives toluene, ethylbenzene, xylenes, and 1,2-dichloroethane (1,2-DCA) were also detected in groundwater samples. Concentration trends of these constituents appear to be stable or decreasing in all wells with the exception of E-8, which shows a slightly increasing trend for toluene, ethylbenzene, and xylenes.
- Concentrations of contaminants in the deep monitoring well in the former UST area (AS1D)
 were not detected, confirming previous findings that contamination is vertically defined and
 limited to the shallow groundwater zone.

Although the downgradient wells contain low concentrations of TPHmo (<1mg/L) the results of the Quarter 1, 2013 semi-annual groundwater sampling event including the three new downgradient wells indicate that the TPH-GRO, TPHd, and BTEX groundwater plume is stable and contained on Site.

5.0 CONCEPTUAL SITE MODEL

A conceptual site model (CSM) that assesses the nature, extent, and mobility of the release has been developed and is presented below. Per the LTCP, not all of the supporting data and analysis used to develop the CSM are necessarily presented in this report; however, they may be found in historical reports submitted to ACEH and referenced below.

5.1 Exposure Setting and Land Use

The former PACO Pumps facility is an approximately 4.6-acre parcel located at 9201 San Leandro Street in Oakland, California. The Site was historically used as a manufacturing facility since 1945, and as a foundry (Jonas, 1991) and is now used for warehousing. Currently, the entire Site is covered with either asphalt, concrete, or buildings constructed on concrete slabs. Two large warehouse buildings occupy the western and eastern areas of the Site. Both buildings have large, roll-up doors. An office has been constructed inside the northern corner of Building 3. The Site is generally bounded by a mix of industrial and heavy industrial use (manufacturing) and transportation right-of-ways (i.e., BART, active railroad tracks, and city streets). A Site Location Map and a Site Plan are presented as Figures 1 and 2, respectively.

5.2 Source and Attributes of the Release

The potential source(s) of constituents released into the environment are interpreted to be leaks associated with the operation of a UST at the Site in Area 4, and a suspected UST in Area 5 (Figure 2). The UST in Area 4 is reported to have been removed in 1992. Following UST removal, soil was over-excavated and removed under and in the vicinity of the former UST, but residual hydrocarbons remained due to limited access in the area. The location of the suspected UST in Area 5 has never been confirmed, and is assumed to have been removed during building construction. Additionally, shallow soil is impacted with TPH-DRO and TPH-MRO under the southern portion of Building 3, and between the building and the property boundary fence.

The migration of petroleum hydrocarbons and related constituents at the Site is interpreted to occur as a result of groundwater flow. However, natural attenuation via adsorption, dispersion, and natural degradation, and Site lithology has limited the horizontal and vertical distribution of constituents. The primary source of the constituents, leaks associated with discharges from the USTs, have been terminated. Therefore, the only potential sources remaining are interpreted to be the affected soil in the vicinity of the USTs, and shallow soil in the southwestern portion of the Site.

5.3 Affected Media

Elevated concentrations of hydrocarbon constituents/additives in soil is present in the vicinity of the former gasoline USTs at Building 1 and 3, and shallow soil in the southwestern area of the Site. Laboratory analytical data for soil samples collected at the Site are presented in:

Table 2 of this Report;

- Table 2 of the Investigation/Remediation (Area 4), Post-Remediation Sampling and First Semi-Annual Monitoring Report (SGI, 2010); and
- Table 1 of the Investigation and Remediation Activities Report (LFR, 2009).

Elevated concentrations of hydrocarbon constituents/additives in groundwater appear to be associated with a gravelly clay layer, observed in soil borings and by geophysical methods during the MIP investigation (LFR, 2009). All historical laboratory analytical data for groundwater samples collected at the Site are presented in Table 5 of this report.

Elevated concentrations of hydrocarbon constituents/additives in soil vapor are present in the vicinity of the former gasoline USTs at Buildings 1 and 3. Laboratory analytical data for soil vapor samples collected at the Site are presented in:

- Table 3 of this Report;
- Table 4 of the Investigation/Remediation (Area 4), Post-Remediation Sampling and First Semi-Annual Monitoring Report (SGI, 2010);
- Table 7 of the Investigation and Remediation Activities Report (LFR, 2009); and
- Table 4 of the Subsurface Investigation and Groundwater Monitoring Report, Quarter 2, 2008 (ERAS, 2008).

5.4 Local Geologic and Hydrogeologic Setting

In general, the site lithology appears to consist of clay to a depths ranging from approximately nine to 11 feet bgs, where clay with an increased percentage of coarse grains contains the first encountered groundwater. More clay extends to approximately 23 feet bgs, where a deeper groundwater zone has been observed. During Quarter 1, 2013, shallow zone groundwater flowed in a westerly direction at a gradient of approximately 0.006 foot/foot in Areas 4 and 5 (Figure 3). The westerly gradient is consistent with historical groundwater flow patterns. Discussions of the geologic and hydrogeologic setting are presented in:

- Section 4.1 of this Report;
- Section 2.2 of the Investigation and Remediation Activities Report (LFR, 2009); and
- Section 1.2 of the Subsurface Investigation and Groundwater Monitoring Report, Quarter 2, 2008 (ERAS, 2008).

Historical groundwater elevation data are presented in Table 1 of this Report. Geologic cross sections have been presented as Figures 3, 4A, and 4B in the *Remediation Workplan – Area 4* (SGI, 2009).

Well construction and soil boring logs showing geologic and hydrogeologic conditions beneath the Site are presented in:

Appendix B of this Report;

- Appendix C of the Investigation/Remediation (Area 4), Post-Remediation Sampling and First Semi-Annual Monitoring Report (SGI, 2010);
- Appendix C of the Investigation and Remediation Activities Report (LFR, 2009);
- Appendix E of the Subsurface Investigation and Groundwater Monitoring Report, Quarter 2, 2008 (ERAS, 2008);
- Completion of Monitoring Well 9MW5 (Jonas, 1994); and
- Appendix D of the First Quarterly Status Report (Jonas, 1993).

5.5 Contaminant Transport and Fate

Chemical properties of the detected constituents and the physical characteristics of the Site were reviewed to identify factors that might allow the release and transport of a chemical from soil, soil vapor, or groundwater. Currently, the entire Site is covered with either asphalt, concrete, or buildings constructed on concrete slabs. Two large warehouse buildings occupy the western and eastern areas of the Site. The former UST in Area 4 is located outside Building 3 (western portion of Site), and the suspected UST in Area 5 is located beneath Building 1 (eastern portion of Site).

Future conditions of Site cover are unknown. Therefore, future receptors may be directly exposed to soil on Site. Release of chemicals can potentially occur through volatilization, wind and/or mechanical erosion (i.e., during construction), or migration of chemicals into the groundwater or surface water. These potential release mechanisms are discussed in more detail below.

Based on previous investigations, some of the Site-related constituents include VOCs. These chemicals typically have a low organic carbon partition coefficient (Koc), a low molecular weight, and a high Henry's Law constant, indicating that these chemicals may volatilize. Therefore, volatilization of VOCs is considered a potential transport mechanism.

Some of the chemicals detected at the Site adsorb readily to dust particles. Chemicals adsorbed to soil particles can be blown into air. This is referred to as fugitive dust. Therefore, exposure to constituents in soil via fugitive dust emissions is considered a potential transport mechanism.

The potential for chemicals to leach from soil or migrate laterally in soil vapor depends on the physical and chemical properties of the chemicals, the chemical concentration, soil type, and other site-specific conditions. For example, chemicals with high water solubilities tend to leach more readily than chemicals with lower solubilities. In addition, a chemical's Koc is important for assessing the degree of chemical sorption to soil particles; chemicals with a high sorption potential do not tend to leach as readily. Site-specific conditions are also important for assessing whether leaching may occur, such as soil type (leaching occurs more readily in sandy soils than in clayey or silty soils), amount of rainfall, gradient, etc. In addition, other competing migration pathways can affect the tendency of a chemical to leach. Site-related constituents (e.g., gasoline-range petroleum hydrocarbons) may migrate downward from shallow soils to deeper soils and/or

groundwater through leaching. Therefore, potential leaching to groundwater is considered a transport mechanism.

Contaminant migration along preferential pathways (e.g., utility corridors) was evaluated in Section 3.1 of the RI Work Plan (SGI, 2012a). Utility corridors identified in Area 4 of the Site are shown on Figure 3 in the RI Work Plan.

5.6 Confirmed and Potential Exposure Points and Receptors

Under current Site conditions, the direct contact with soil is prevented by the asphalt/concrete cover. Under future Site conditions, where the condition of the cover is unknown, receptors at the Site may be directly exposed to soil. Therefore, under future Site conditions, the exposure point for soil is defined as the area within the Site.

As recommended by the DTSC (2011a,b), for the volatilization pathway into indoor air, exposure to subsurface contamination is best characterized through the collection of soil vapor samples. Therefore, soil vapor data are used in the evaluation of potential indoor air impacts. Currently, two buildings exist onsite. Under future Site conditions, the exposure point for soil vapor is defined as the entire area within the Site (assuming a future building may be located anywhere on the Site).

Although the exposure point for groundwater is defined as the groundwater within the Site, no point of direct contact with groundwater was identified for the Site. As indicated in the RI Work Plan (SGI, 2012a) there are no known active domestic water supply wells pumping from shallow aquifers for beneficial use within an approximate 1,300-foot radius of the Site. The shallow water-bearing zone is generally not considered a drinking water source due to inadequate yields and other water quality issues (e.g., bacteria, total dissolved solids). Therefore, no point of direct contact with groundwater as a beneficial water resource was identified for the hypothetical receptors. Based on the historic depth to groundwater of approximately 10 feet bgs, a hypothetical outdoor construction worker receptor could potentially contact groundwater during deep excavation, this contact is expected to be very infrequent and involve only minor contact, if any, with contaminated groundwater. In general, any hypothetical construction worker receptor will be performing activities consistent with a Site health and safety plan (HASP). This HASP and best management practices (BMPs) would likely require engineering controls (e.g., dewatering) to preclude any direct contact with groundwater for workers at the Site.

Volatile compounds can be released from the subsurface into indoor and outdoor air resulting in an indirect exposure to constituents in soil, soil vapor, and groundwater. Soil, soil vapor, and groundwater samples have been collected from the same general areas of the Site. As recommended by USEPA (1996 and 2002), soil concentrations are used for evaluating soil vapor emissions from soil to outdoor air. As recommended by the DTSC (2011a,b), for the vapor intrusion pathway into indoor air, exposure to subsurface contamination is best characterized through the collection of soil vapor samples. Therefore, concentrations detected in soil were used in evaluation of potential outdoor air impacts, as presented in the LTCP. Detected concentrations

of soil vapor were used in the evaluation of potential indoor air impacts. This evaluation is presented in Section 6.0, Human Health Risk Evaluation.

In addition to exposure points, potential hypothetical receptors are necessary for an exposure pathway to be complete. Hypothetical human receptors were identified on the basis of proximity to the Site, proposed activities that could possibly result in direct or indirect contact with Site-related constituents, and Site use. The Site is located in an industrial area, which is expected to remain industrial in the future. The following hypothetical human receptors were identified:

- Hypothetical On-Site Outdoor Commercial/Industrial Worker Receptor (current and future exposure scenario);
- Hypothetical On-Site Indoor Commercial/Industrial Worker Receptor (current and future exposure scenario); and
- Hypothetical On-Site Construction Worker Receptor (future exposure scenario).

The nearest surface water body is San Leandro Creek, which is located approximately 5,000 feet southwest of the Site (Figure 1). San Leandro Creek is channeled through urban areas including engineered underground conveyances and drains stormwater into San Leandro Bay (approximately 1 mile west of the Site). Due to the distance from the Site to the point of potential interception, interaction between constituents in surface water runoff or groundwater and regional surface water features is not expected.

6.0 HUMAN HEALTH RISK EVALUATION

This human health risk evaluation (HHRE) was prepared to quantify potential exposures associated with the on-Site warehouses in Areas 4 and 5 (the former underground storage tank locations) in order to identify the need for, and the possible extent of, remediation or engineering solutions to adequately protect human health. Under current site conditions, direct contact with soil is prevented by the asphalt/concrete ground cover and groundwater is unlikely to be used as a drinking water source or for other beneficial uses (Section 5.6). Currently, no point of direct contact with groundwater was identified for the Site. Therefore, this human health risk evaluation focuses on evaluating indirect exposure to contaminants in the subsurface via indoor air exposures.

The chemicals of potential concern (COPCs) include VOCs, which can be released from the subsurface (i.e., volatilize) into ambient air resulting in an indirect exposure to contaminants in the subsurface. The methods used to conduct this risk evaluation are consistent with DTSC *Guidance* for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (DTSC, 2011a). The DTSC modified version of the USEPA Johnson and Ettinger (J/E) model (DTSC, 2011c) was used to estimate potential indoor air concentrations and associated health risks from soil vapor intrusion into indoor air. A detailed description of the equations used in this model is provided in the *User's Guide for Evaluating Subsurface Vapor Intrusion into Buildings* (USEPA, 2004).

The remainder of this section focuses on evaluating indoor air exposures associated with the on-Site warehouses in Areas 4 and 5 (the former underground storage tank locations) and is presented as follows:

- Data Evaluation;
- Exposure Assessment;
- Modeling Input Parameters;
- · Toxicity Assessment;
- Risk Characterization;
- Uncertainty Analysis; and
- Summary of Results.

6.1 Data Evaluation

This human health risk evaluation focuses on the vapor intrusion of contaminants in the subsurface into indoor air. Consistent with DTSC (2011a,b) guidance, it was assumed that the soil vapor data would account for any potential contaminants volatilizing from the subsurface (i.e., vadose zone soil and groundwater). As discussed in Sections 3.0 and 4.0, soil vapor samples were collected at the Site during the recent remedial investigation.

On March 26, 2013, eight shallow soil vapor samples were collected at the Site. Three samples each were collected from soil vapor probes installed beneath Buildings 1 and 3. Two samples were collected from soil vapor probes installed outside Building 3, adjacent to the former gasoline

UST. At each location, the vapor probe intake was placed at an approximate depth of 5.5 feet bgs in accordance with agency directives and accepted protocol. Soil vapor samples were analyzed for TPHg, BTEX, naphthalene, and MTBE by EPA Method 8260B; and methane, oxygen, carbon dioxide, and nitrogen. The laboratory analytical results for shallow soil vapor are presented in Table 3 and on Figure 5.

6.2 Exposure Assessment

This section describes the methods used to estimate exposures for potential human receptors at the Site. The exposure assessment provides a scientifically defensible basis for the selection of potentially exposed hypothetical human receptors and the most likely ways they might be exposed to chemicals at the Site. As mentioned previously, this human health risk evaluation focuses on evaluating potential indoor air exposures associated with the on-Site warehouses.

6.2.1 Selection of Chemicals of Potential Concern

Typically only the most toxic, persistent, and prevalent site-related chemicals detected at a site are fully evaluated in a risk assessment. While laboratory analytical results indicated that BTEX, naphthalene, MTBE, and TPH-gasoline are present in soil vapor, the LTCP indicates that the chemicals of greatest concern to human inhalation in indoor air are benzene, ethylbenzene, and naphthalene. In this way, the HHRE can focus solely on those chemicals that are expected to account for the majority of the estimated health impacts.

Although TPH-GRO was detected in seven of the eight soil vapor samples, the evaluation of its components most likely to reflect risk (i.e., benzene, ethylbenzene, and naphthalene) is included in this risk evaluation. Since naphthalene was not detected in the soil vapor samples it is not included in this risk evaluation. It is unlikely that other less toxic components of the TPH mixtures will drive the overall risk at the Site; therefore, TPH mixtures were not evaluated further in this risk evaluation. As a result, benzene and ethylbenzene have been selected as chemicals of potential concern (COPCs) for this HHRE.

6.2.2 Estimating Exposure Point Concentrations

The exposure point concentration (EPC) represents the amount of a chemical to which a hypothetical receptor is assumed exposed. Based on the assumption that a building may be located anywhere onsite, it is assumed that the hypothetical indoor commercial/industrial receptor may be located anywhere on-Site. Therefore, the maximum detected concentration (March 2013 sampling event) was selected as the appropriate source EPC or starting concentration for modeling. For indirect exposure pathways (i.e., inhalation), measured concentrations of volatile chemicals in soil vapor were used as starting concentrations that were coupled with mathematical models to estimate COPC concentrations in indoor air. The Johnson and Ettinger model, recommended by the DTSC (2011c), was used for estimating vapor emissions from soil vapor to indoor air. The conceptual approach to modeling indoor air concentrations, the model inputs used,

and the model outputs are presented in the following sections. The EPCs for soil gas are presented in Table 6.

6.2.2.1 Vapor Migration from Shallow Soil Vapor to Ground Surface

Vertical migration of chemicals in soil vapor to the ground surface was assumed to occur by steady-state diffusion induced by a chemical concentration gradient between the soil-vapor source and the soil surface. The indoor air pathway analysis also accounted for the effects of steady-state advection induced by an assumed pressure differential between the exterior and interior of the building. Chemical diffusion of soil vapor through the vadose zone and building foundations (indoor only) was characterized by effective diffusion coefficients, D_s^{eff} (vadose zone) and D_f^{eff} (building foundations). Advection of chemicals dissolved in soil moisture was assumed to be negligible. This assumption is conservative because soil moisture tends to migrate downward, decreasing the overall flux of chemical toward the surface. Chemical and biological transformations were conservatively assumed not to occur during migration to the surface.

6.2.2.2 Mixing of Soil Vapor Emissions with Indoor Air

The analysis of indoor air simulated vapor-phase advection and diffusion of chemicals near the building foundation. Vapor diffusion of chemicals upward was assumed to occur across a solid foundation with a total area (A) and fraction of open area in the foundation (η) (i.e., through cracks in the foundation). Advective transport of soil vapor was assumed to occur as a result of a simulated pressure differential between inside (lower pressure) and outside (higher pressure) of the building. Such underpressurization is generally induced by temperature differentials, wind loading, and operation of devices such as furnaces and exhaust fans. Underpressurization is highly variable over time, but was conservatively assumed to be constant in the model. This approach is highly conservative for periods when structures are neutrally or positively pressurized, as these conditions will inhibit migration of soil vapor into the building. The simulation assumes that the advective flux occurs through an open area (A_{crack}) equal to the product total area (A) and fraction of open area in the foundation (η). The mixing of vapor-phase chemicals with ambient indoor air was simulated using a constant building ventilation rate ($Q_{building}$).

6.2.2.3 Model Input Parameters

Using the DTSC J/E model (DTSC, 2011c) and the concentrations of chemicals measured in soil vapor, the resultant chemical concentrations in indoor air and associated human health risks from soil vapor intrusion into indoor air were estimated for the hypothetical commercial/industrial worker receptor. The equations, variables, and assumptions used in the model are described below.

The DTSC J/E model (DTSC, 2011c) estimates vapor concentrations in indoor air directly from concentrations in soil vapor, accounting for advection and diffusion in the vadose zone and building foundation and mixing in the building interior. As presented by USEPA (2004), for vapor migration from soil vapor to indoor air, concentrations in indoor air were estimated based on the following equations:

$$C_{building} = C_{source} \times \alpha$$

where:

$$\alpha = \frac{\left[\left(\frac{D_{T}^{eff} \times A_{B}}{Q_{building} \times L_{T}} \right) \times \exp \left(\frac{Q_{soil} \times L_{crack}}{D_{crack} \times A_{crack}} \right) \right]}{\left[\exp \left(\frac{Q_{soil} \times L_{crack}}{D_{crack} \times A_{crack}} \right) + \left(\frac{D_{T}^{eff} \times A_{B}}{Q_{building} \times L_{T}} \right) + \left(\frac{D_{T}^{eff} \times A_{B}}{Q_{soil} \times L_{T}} \right) \times \left[\exp \left(\frac{Q_{soil} \times L_{crack}}{D_{crack} \times A_{crack}} \right) - 1 \right] \right]}$$

where:

 $C_{building}$ = Ambient concentration in indoor air (μ g/m³);

 C_{source} = Vapor concentration at source of contamination ($\mu g/m^3$);

 α = Steady-state attenuation coefficient (unitless);

 D_T^{eff} = Total overall effective diffusion coefficient (cm²/s);

 A_B = Area of enclosed space below grade (cm²);

 $Q_{building}$ = Building ventilation rate (cm³/s);

 L_T = Source-building separation (cm);

 Q_{soil} = Volumetric flow rate of soil vapor into the enclosed space (cm³/s);

 L_{crack} = Enclosed space foundation or slab thickness (cm);

 A_{crack} = Area of total cracks (cm²); and

 D_{crack} = Effective diffusion coefficient through the cracks (cm²/s)

(assumed equivalent to Di eff of soil layer (i) in contact with the floor).

A more detailed description of the equations and input parameters used in this model are provided in the *User's Guide for Evaluating Subsurface Vapor Intrusion into Buildings* (USEPA, 2004).

6.2.2.4 Source Concentrations and Site-Specific Physical Parameters

Using the equations and methodology presented above, vapor concentrations in indoor air were modeled assuming the concentrations of chemicals measured in soil vapor samples collected on March 26, 2013. During the recent remedial investigation, soil physical properties were not evaluated at the Site, except for a particle size distribution analysis (Appendix I). However, on January 31, 1997, a soil sample (B1) was collected at approximately 5.5 feet bgs and analyzed for bulk density, porosity, organic content, and moisture (Jonas, 1997). This soil sample was collected beneath Building 1 near the former gasoline UST excavation and was classified as clay. There has not been any re-development in this area; therefore, this soil sample should accurately reflect subsurface conditions. As stated in Section 6.2.1 above, benzene and ethylbenzene were selected as COPCs for this HHRE. The maximum benzene and ethylbenzene concentrations

detected in soil vapor samples were 23,000 and 5,200 $\mu g/m^3$, respectively, in SV-6 beneath Building 1; 2,400 and 140 $\mu g/m^3$, respectively, in SV-4 beneath Building 3, and 560,000 and 45,000 $\mu g/m^3$, respectively, in SV-5 located outside. While a building is not currently located above the location of SV-5, the soil vapor data was evaluated in this HHRE due to the elevated concentrations and the potential for a future building to be constructed over this location.

In addition to the chemical concentrations measured in soil vapor, the results of the soil physical properties analyses were used as input parameters for the vapor intrusion model. Based on the soil physical properties analyses (Appendix I), the appropriate United States Soil Conservation Service (SCS) soil textural classification within the Site was estimated. distribution analysis indicates that Site soils most closely fit with the "clay" SCS soil textural classification. A review of on-Site soil boring logs shows that this classification is consistent with the soils observed at 5.5 feet bgs during previous investigations. As a result, clay (C) was selected as the Vadose Zone SCS Soil Type input parameter for the vapor intrusion model. The soil dry bulk density for soil sample B-1 (collected in 1997 at 5.5 ft bgs) is 95.4 pounds per cubic foot or 1.53 grams per cubic centimeter (g/cm³). The total porosity for soil sample B-1 was 0.428. The water-filled porosity is the portion of the total porosity containing water. This value can be calculated as the product of the moisture content of a soil times the dry bulk density. The moisture content for soil sample B-1 25.3%; therefore, the water-filled was 0.387 cm³/cm³. The reported values for dry bulk density, total porosity, and water-filled porosity were used as model input parameters. In addition, in accordance with DTSC (2011c) default values, 24 degrees Celsius (°C) for average soil temperature and 15 cm for depth to the bottom of an enclosed space floor for slab-on-grade construction were used in the model. A summary of the vapor intrusion model input parameters derived from the soil physical properties analyses and DTSC default values is provided in the following table.

Model Variables – Vapor Migration from Shallow Soil Vapor to Indoor Air		
Properties	Symbol	Measured Value
Average Soil Temperature	T_s	24°C
Depth Below Grade to Bottom of Enclosed Space Floor	L_{F}	15 cm
Soil Gas Sampling Depth Below Grade	Ls	167.6 cm
Vadose Zone SCS Soil Type		Clay (C)
Soil Dry Bulk Density	$ ho_{b}$	1.53 g/cm ³
Soil Total Porosity	N	0.428 cm ³ /cm ³
Soil Water-Filled Porosity	$\theta_{\sf w}$	0.387 cm ³ /cm ³

Notes:

[°]C = degrees Celsius.

cm = centimeter.

g/cm³ = grams per cubic centimeter.

cm³/cm³ = cubic centimeter per cubic centimeter.

6.2.2.5 Chemical-Specific Properties

The values for the dimensionless Henry's Law constant, organic carbon-water partition coefficient (K_{oc}) , and molecular diffusion coefficients in air and water, D_i and D_w , for benzene and ethylbenzene was obtained from DTSC (2011c). The chemical-specific values for these input parameters are shown on the work sheets provided in Appendix J.

6.2.2.6 Building Properties

The DTSC J/E model assumes default values for a residential single-family dwelling, which is 1,000 centimeter (cm) by 1,000 cm (approximately 1090 ft²; DTSC, 2011c). The actual footprints of the Buildings 1 and 3 are much larger at approximately 55,000 ft² and 30,000 ft², respectively. Although the default building properties were based on a residential dwelling, conservatively, the default values in the model were not modified.

6.3 Toxicity Assessment

Toxicity values are combined with exposure factors to estimate adverse non-cancer health effects and excess cancer risks. Toxicity values include inhalation reference concentrations (RfCs) and inhalation unit risk factors (URFs). Non-cancer health effects are evaluated using an inhalation RfC, which is expressed in units of milligrams per cubic meter (mg/m³). An RfC represents an agency-developed, estimated daily exposure level (dose) to which humans may be exposed without expectation of adverse health effects. USEPA assumes the existence of a threshold concentration for non-cancer effects, below which toxic effects are not expected to occur (USEPA, 1989). USEPA has developed inhalation URFs for chemicals that are known or potential human carcinogens. USEPA (1989) defines an URF as a plausible upper-bound estimate of the probability of a carcinogenic response in human populations per unit intake of a chemical (averaged over an expected lifetime of 70 years). URFs are used to estimate excess cancer risks are expressed in units of risk per dose in micrograms per cubic meter (μg/m³)⁻¹ for inhalation URF. Toxicity values supplied by the model (DTSC, 2011c) were used.

6.4 Risk Characterization

The risk characterization process incorporates estimated chemical intakes, exposure assumptions, and toxicity values to estimate non-cancer adverse health effects and excess cancer risks from assumed exposure to chemical vapors in indoor air. Consistent with USEPA (1989; 1991) guidelines, the following general equations were used in the DTSC J/E model to estimate non-cancer adverse health effects (expressed as hazard quotient or hazard index) and carcinogenic effects (expressed as excess cancer risk):

$$\begin{aligned} Hazard\,Quotient &= \frac{C_{building} \times ET \times EF \times ED}{RfC \times ATn} \\ Excess\,Cancer\,Risk &= \frac{C_{building} \times ET \times EF \times ED \times URF}{ATc} \end{aligned}$$

Where: $C_{building}$ = Chemical concentration in indoor air (μ g/m³)

EF = Exposure frequency (250 days/year)

ED = Exposure duration (25 years) ET = Exposure time (8 hours/day)

ATn = Averaging time (hours) for non-carcinogenic effects

ATn = ED x 365 days/year x 24 hours/day

ATc = Averaging time (hours) for carcinogenic effects

ATc = Lifetime (70 years) x 365 days/year x 24 hours/day

RfC = Inhalation reference concentration

URF = Inhalation unit risk factor

The values shown in bold are standard default values used by USEPA, DTSC, and CRWQCB for commercial/industrial worker exposure scenarios.

The spreadsheets containing model input parameters and results of the DTSC J/E model, for subsurface vapor intrusion into buildings (DTSC, 2011c) are presented in Appendix J. The results of this risk characterization process for the hypothetical indoor commercial/industrial worker receptor are summarized in Table 6.

6.5 Uncertainty Analysis

Although many factors can contribute to the potential for over- or underestimating risk, a mixture of conservative and upper-bound input values were identified to estimate potential exposures. Compounding conservative and upper-bound input values in the risk assessment process is intended to yield maximum, health-conservative estimates. Quantifying uncertainty is an essential element of the risk assessment process. According to the USEPA *Guidance on Risk Characterization for Risk Managers and Risk Assessors*, point estimates of risk "do not fully convey the range of information considered and used in developing the assessment" (USEPA, 1992). This section presents the major sources of uncertainty associated with the risk assessment.

Specifically, the DTSC J/E model employs a series of simplified, analytical solutions to chemical transport, often resulting in overestimation of indoor air EPCs. The conservatism inherent to the formulation of these models is supplemented by additional conservatism associated with selection of model input data and conceptualization of site conditions used by model users. As a result of this multilevel conservatism, actual EPCs and corresponding health risks are likely to be significantly lower than were estimated for the inhalation exposure pathway.

Some of the conservative aspects of the DTSC J/E model include the following assumptions:

- Loss mechanisms The absence of loss mechanisms such as biodegradation and vaporphase adsorption result in overestimation of vapor emissions to indoor air, yielding higher EPCs.
- Depleting contaminant source The use of a non-depleting, constant source results in an unlimited supply of contaminated vapor and an overestimation of vapor emissions to indoor air, yielding higher EPCs.
- Water movement The assumed absence of water (and dissolved chemical) movement through unsaturated soil results in an overestimation of chemical mass in vapor-phase available for transport to indoor air, yielding higher EPCs.
- Neutral or positive pressurization The assumption of continuously under-pressurized buildings neglects significant periods where neutral or positive pressurized conditions exist, thereby over-estimating advective transport of contaminated vapors to indoor air, yielding higher EPCs.
- One-dimensional transport The assumption of vapor transport under a single (vertical)
 dimension ignores the potential for vapor migration in multiple directions away from the
 source area, resulting in an over-estimation of vapor emissions and higher EPCs.
- Indoor points of exposure (buildings) are assumed to directly overlie locations of sources in soil vapor.
- COPCs are assumed to be uniformly distributed in soil vapor, with no spatial and temporal changes in concentrations.
- Area of the buildings were assumed to be equivalent to a residential dwelling. However, actual areas of Buildings 1 and 3 are 50 and 27 times larger, respectively, than a typical residential dwelling. A larger building area would result in more dispersion in indoor air.
- Averaging times for estimation of EPCs are 25 years for commercial exposure scenarios.

As a result of these conservative assumptions, estimated emissions to indoor air are maximized, yielding EPCs and corresponding human health risks that are biased high.

6.6 Summary of Results

A human health risk evaluation was performed using the DTSC J/E model (2011c) to assess potential human health risks associated with soil vapor intrusion to indoor air. The results of this risk characterization process for the hypothetical indoor commercial/industrial worker receptor are summarized in Table 6 and presented below.

Sun	Summary of Results of Human Health Risk Evaluation for Shallow Soil Vapor											
Location	Sample ID	Sample Depth (feet bgs)	Chemical	Exposure Point Concentration (µg/m³)	Hazard Index	Excess Cancer Risk						
Duildin a 4	0)/ 0	5.5	benzene	23,000	7 x 10 ⁻⁴	2 x 10 ⁻⁷						
Building 1	SV-6	5.5	ethylbenzene	5,200	4 x 10 ⁻⁶	3 x 10 ⁻⁹						
Desilation of O	0)/ 4	5.5	benzene	2,400	8 x 10 ⁻⁵	2 x 10 ⁻⁸						
Building 3	SV-4	5.5	ethylbenzene	140	1 x 10 ⁻⁷	9 x 10 ⁻¹¹						
Outside (adjacent to	nt to		benzene	560,000	2 x 10 ⁻²	6 x 10 ⁻⁶						
UST excavation)	SV-5	5.5	ethylbenzene	45,000	3 x 10 ⁻⁵	3 x 10 ⁻⁸						

Notes:

μg/m³= micrograms per cubic meter feet bgs = feet below ground surface

USEPA guidance on risk and exposure levels considered protective of human health is presented to provide context for interpretation of the estimates of excess cancer risk and non-cancer hazards presented in this human health risk evaluation. Adverse non-cancer effects are compared to the USEPA recommended target HI of one (1; USEPA, 1989). Excess cancer risks are compared to the USEPA risk management range of one-in-one-million (1×10^{-6}) to one-in-ten thousand (1×10^{-4}) .

In both Buildings 1 and 3, the estimated HI does not exceed the USEPA recommended target hazard index (HI) of one (1; USEPA, 1989) and the excess cancer risk estimate is less than the most stringent end of the USEPA risk management range of one-in-one-million (1 x 10^{-6}) to one-inten thousand (1 x 10^{-4}). At the outside sample location (SV-5), the estimated HI does not exceed the USEPA recommended target HI of one, and the excess cancer risk estimate (6 x 10^{-6}) lies within the USEPA risk management range of one-in-one-million (1 x 10^{-6}) to one-in-ten thousand (1 x 10^{-4}).

Based on the results of this conservative evaluation, under current site conditions for the indoor commercial/industrial worker receptor, potential exposure to COPCs in soil vapor is not expected to pose an unacceptable human health risk to occupational receptors in Buildings 1 and 3.

7.0 DATA EVALUATION AND RECOMMENDATIONS

Remedial investigation activities were conducted at the Site in March 2013. Quarter 1, 2013 groundwater monitoring and sampling activities were performed at the Site on April 5, 2013. A discussion of SGI's conclusions and recommendations based on the results, are presented below.

7.1 Data Evaluation

The following sections discuss the results of the soil, soil vapor, and groundwater investigations at the Site. A discussion of how the results compare with the LTCP Criterion is included.

7.1.1 Soil

Soil sampling was conducted on March 21 and 22, 2013. A total of 33 soil samples were collected from the 11 soil borings drilled on Site (three samples from each boring).

Based on laboratory analytical results, TPH- and BTEX-containing soil remain in the subsurface. TPH-DRO and TPH-MRO impacts were detected in soil samples from borings MW-9, MW-10 and MW-11 (along the downgradient boundary of the Site); however, the shallow nature of the impacts are indicative of a surface release rather than impacts from the former UST, and the groundwater data at these locations indicate no significant impact from this shallow soil contamination to groundwater. Additionally, the absence of BTEX compounds indicate the impacts are not associated with the former UST, rather are indicative a historical surface release prior to building construction.

Soil impacts in SV-4, SV-5 and SV-6 are primarily TPH-GRO and BTEX compounds. These borings are located in the vicinity of the former and suspected gasoline USTs, and impacted soil is presumably associated with the former USTs.

All current and historical detected concentrations of benzene and ethylbenzene in soil samples are below the LTCP Criterion 3a (Direct Contact and Outdoor Air Exposure) levels for commercial/industrial and utility worker use scenario (CRWQCB, 2012; Table 1). There are limited historical soil sample results for naphthalene, all below the naphthalene threshold presented in the LTCP Table 1. However, the relative concentration of naphthalene in soil can be conservatively estimated using the published relative concentrations of naphthalene and benzene in gasoline. Taken from Potter and Simmons (1998), gasoline mixtures contain approximately 3% benzene and 0.25% naphthalene. Therefore, benzene can be directly substituted for naphthalene concentrations with a safety factor of ten. Benzene concentrations for the Site are below the naphthalene thresholds in Table 1 of the LTCP. Therefore, the estimated naphthalene concentrations meet the thresholds in Table 1 and the LTCP criteria for direct contact by a factor of ten. It is highly unlikely that naphthalene concentrations in the soil, if any, exceed the threshold.

7.1.2 Soil Vapor

Soil vapor samples were collected from eight permanent soil vapor probes on March 26, 2013. The highest concentrations of TPH-GRO in soil vapor were detected in samples from SV-3, SV-4 and SV-5, located in the vicinity of the former gasoline UST near Building 3. The highest concentrations of benzene in soil vapor were detected in samples from SV-3, SV-4, SV-5, and SV-6. SV-6 is located in the area of the suspected gasoline UST in Building 1.

Direct comparison with the LTCP indicates that soil gas criteria levels are exceeded (i.e., benzene >280 μ g/m³) in four of the nine soil vapor samples. Thus, further evaluation was made. A human health risk evaluation was conducted to estimate potential indoor air concentrations and associated human health risks from benzene and ethylbenzene in soil vapor.

The Site meets LTCP Criterion 2b (Petroleum Vapor Intrusion to Indoor Air). As presented in Section 6.0, a site-specific risk assessment for the vapor intrusion pathway was conducted.

In both Building 1 and 3, the estimated HI does not exceed the USEPA recommended target hazard index (HI) of one (1; USEPA, 1989) and the excess cancer risk estimate is less than the most stringent end of the USEPA acceptable risk range of one-in-one-million (1 x 10^{-6}) to one-inten thousand (1 x 10^{-4}). At the outside sample location (SV-5), the estimated HI does not exceed the USEPA recommended target HI of one and the excess cancer risk estimate (6 x 10^{-6}) lies within the USEPA acceptable risk range of one-in-one-million (1 x 10^{-6}) to one-in-ten thousand (1 x 10^{-4}).

Based on the results of this evaluation, under current site conditions for the indoor commercial/industrial worker receptor, potential exposure to COPCs in soil vapor is not expected to pose an unacceptable human health risk to occupational receptors in Buildings 1 and 3.

The results of this risk characterization process for the hypothetical indoor commercial/industrial worker receptor are summarized in Table 6.

7.1.3 Groundwater

The Quarter 1, 2013 semi-annual groundwater monitoring and sampling event was conducted on April 5, 2013. Groundwater elevation data indicates shallow zone groundwater flows in a southwesterly direction in Areas 4 and 5, which is consistent with historical groundwater flow patterns.

TPH-GRO concentration trends are stable in all wells with the highest concentrations in wells downgradient of the former gasoline UST at Building 3. TPH-GRO was not detected in boundary wells MW-1, MW-5, MW-9, MW-10, and MW-11, indicating that groundwater containing TPH-GRO is delineated within the Site.

TPHd concentration trends are stable or decreasing. Historically, the highest concentrations have occurred in well MW-3, adjacent of the former gasoline UST at Building 3. TPHd was not detected in boundary wells MW-1, MW-5, MW-9, MW-10, and MW-11, indicating that TPHd-containing groundwater is delineated within the Site.

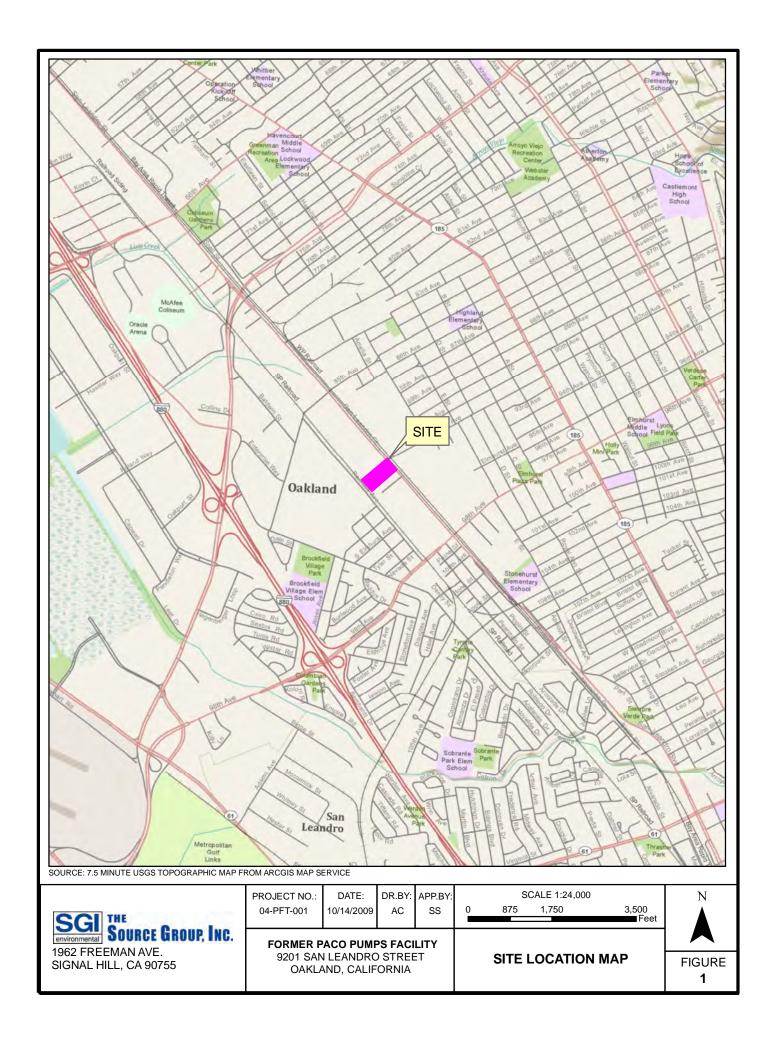
TPHmo concentration trends are generally stable and within historic ranges, with the exception of wells MW-5, E-2, E-3, E-6, and E-8, which were increasing. Well E-3 exhibited the largest concentration increase, at an order of magnitude greater than the historical maximum. TPHmo concentrations were detected in boundary wells MW-1, MW-5, MW-10, and MW-11.

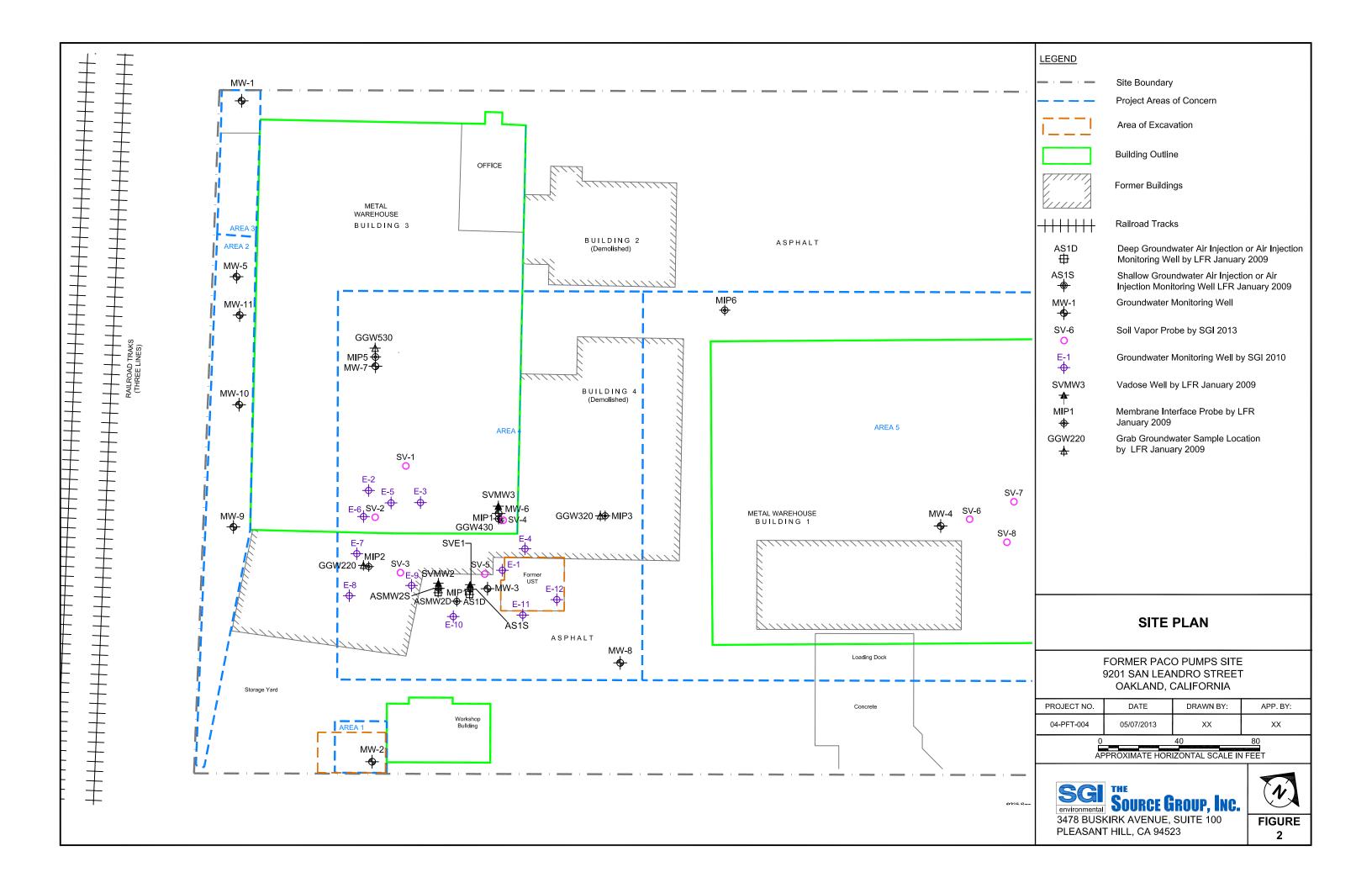
Benzene concentration trends are stable or decreasing in all wells with the exception of E-8, which shows a slightly increasing trend.

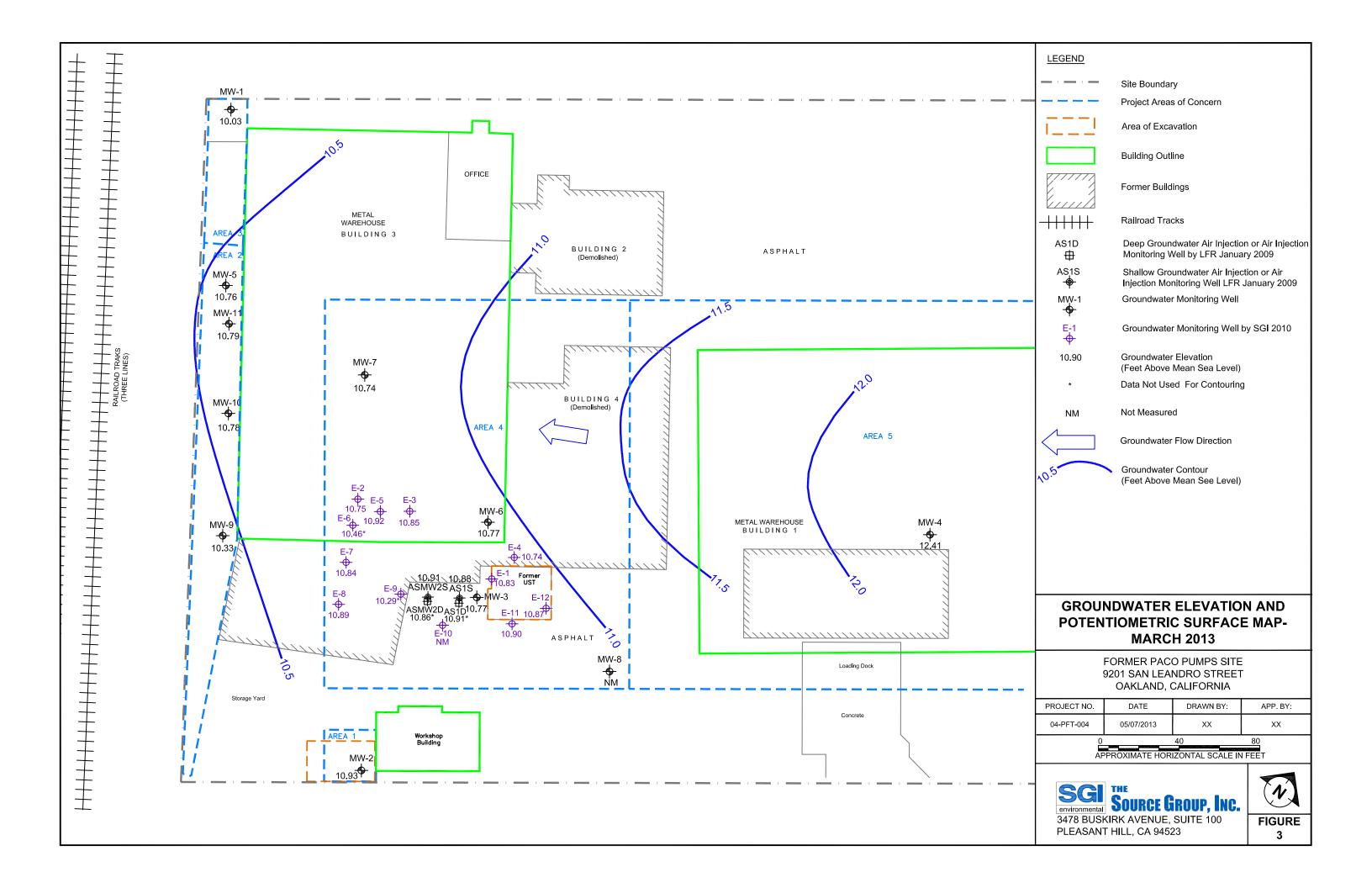
A comparison of groundwater-specific criteria to LTCP Criterion 2 for Groundwater is appropriate for this Site as follows:

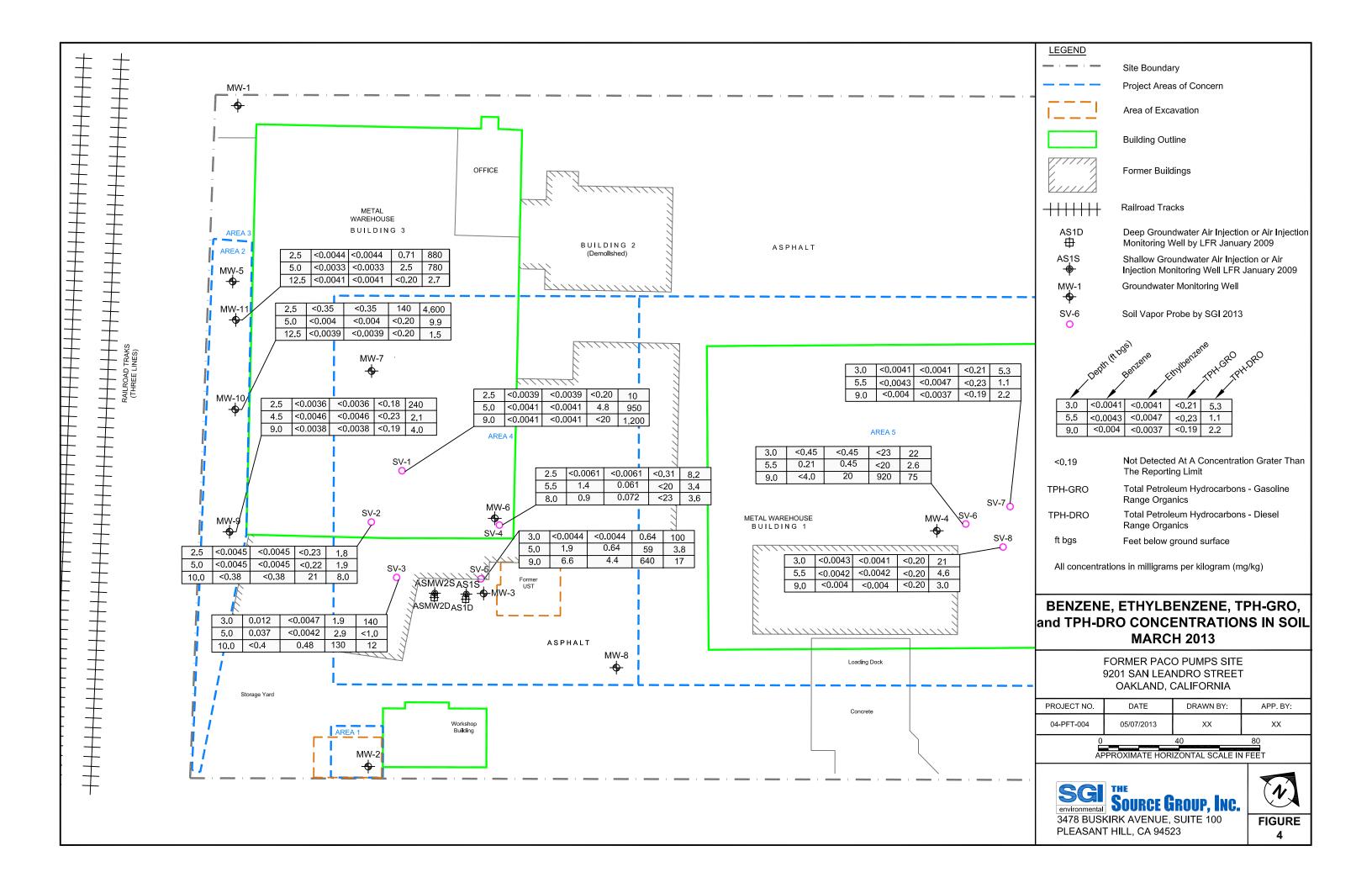
- a) The contaminant plume is less than 250 feet in length. While TPHmo was detected in boundary monitoring wells, the decrease in boundary well concentrations over the distance from the highest concentration well (E-3) indicates that the TPHmo plume is presumably less than 250 feet in length.
- b) No free product has been reported in Site groundwater monitoring wells.
- c) No water supply wells are located within ¼-mile of the Site, and the nearest downgradient surface water body is approximately 5,000 feet southwest of the Site.
- d) Quarter 1, 2013 groundwater analytical results indicate that benzene concentrations are less than 3,000 μ g/L and MTBE concentrations are less than 1,000 μ g/L, the thresholds presented in the LTCP Criterion 2 for Groundwater. Historical groundwater analytical results show that benzene has exceeded the 3,000 μ g/L threshold in certain wells located in the Site interior. However, benzene never not been detected above 3,000 μ g/L in downgradient wells.

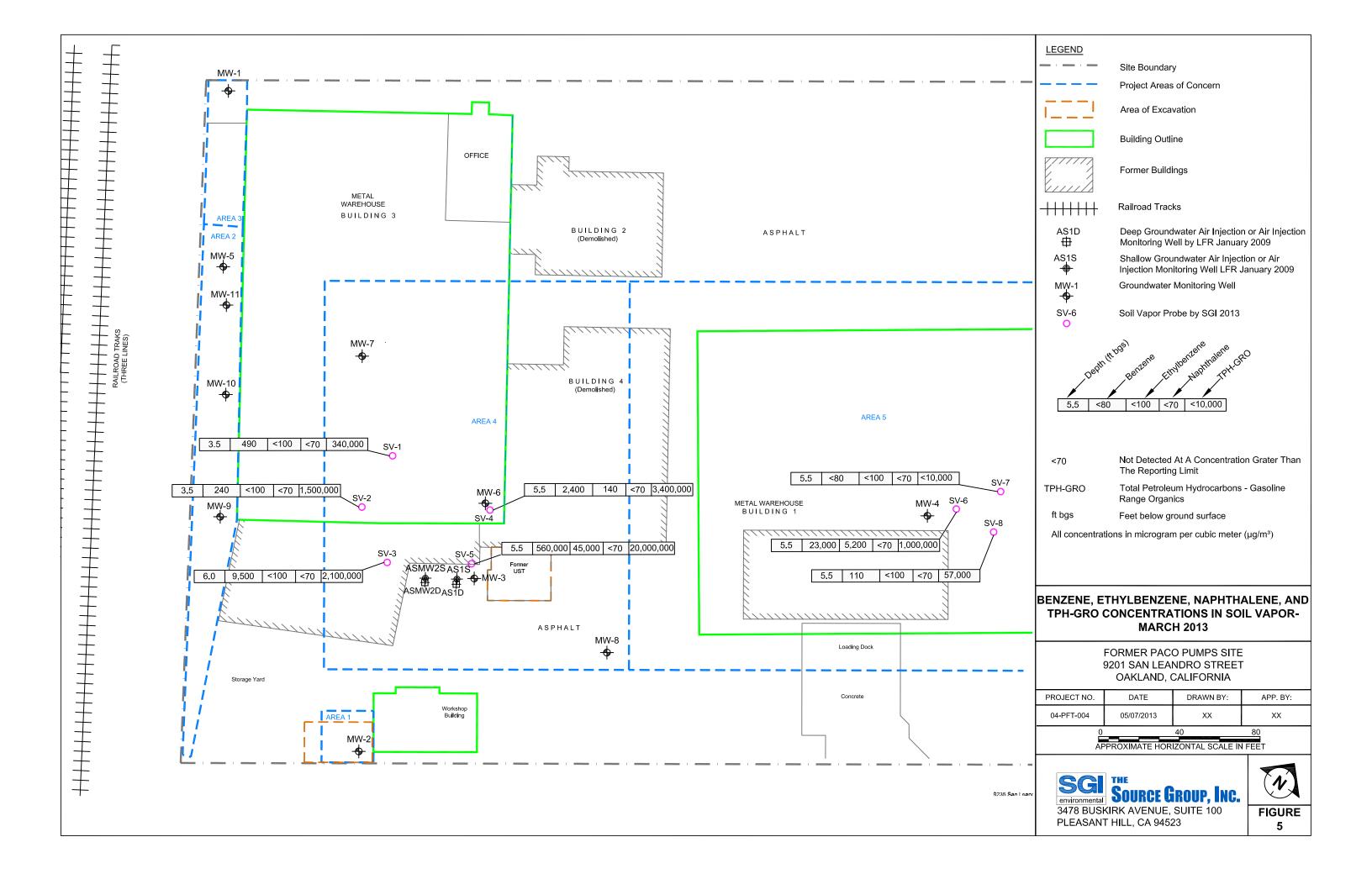
7.2 Recommendations

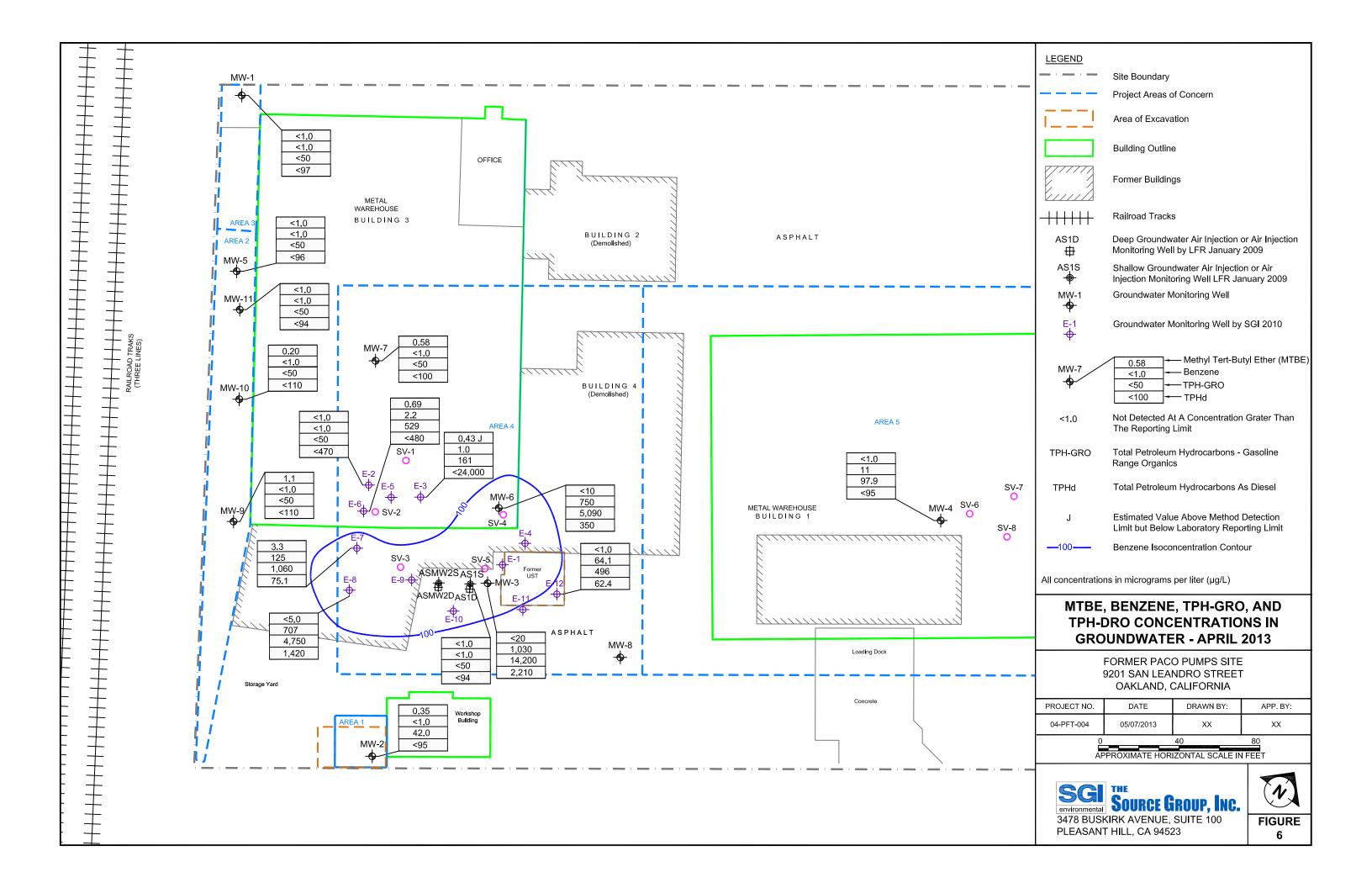

Based on the conclusions presented above, SGI recommends Site closure (ACEH Case# RO0000320) under the State Water Resource Control Board's Low-Threat Underground Storage Tank Case Closure Policy (CRWQCB, 2012).


8.0 REFERENCES


- California Environmental Protection Agency, Department of Toxic Substances Control (DTSC). 2011a. Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance). October.
- DTSC. 2011b. Human Health Risk Assessment Note Number: 4, Screening Level Human Health Risk Assessments. June 9.
- DTSC. 2011c. DTSC Screening-Level Model for Soil Gas Contamination. Department of Toxic Substances Control. Last Modified December 6.
- DTSC. 2012. Advisory Active Soil Gas Investigations. California Environmental Protection Agency, Department of Toxic Substances Control, Los Angeles Regional Water Quality Control Board, San Francisco Regional Water Quality Control Board. April.
- CRWQCB. 2012. Low-Threat Underground Storage Tank Case Closure Policy. May 1.
- ERAS Environmental Inc. (ERAS). 2008. Subsurface Investigation and Groundwater Monitoring Report, Quarter 2, 2008, Former PACO Pumps Facility, 9201 San Leandro Street, Oakland, California. July 31.
- Jonas and Associates Inc. (Jonas). 1991. Soil Characterization Report, Soil Excavation Area. October 30.
- Jonas. 1992. Site Characterization Report, PACO Pumps Facility, 9201 San Leandro Street in Oakland, California. October 16.
- Jonas. 1993. First Quarterly Status Report, PACO Pumps Facility, 9201 San Leandro Street in Oakland, California. February 24.
- Jonas. 1994. Completion of Monitoring Well 9MW5, PACO Pumps Facility, 9201 San Leandro Street in Oakland, California. August 18.
- Jonas. 1997. Soil and Groundwater Sampling and Analysis, Former PACO Pumps, 9201 San Leandro Street in Oakland, California. April 1.
- Levine Fricke Recon Inc. (LFR). 2009. Investigation and Remediation Activities Report. May 15.
- Potter and Simmons. 1998. Composition of Petroleum Mixtures. Total Petroleum Hydrocarbon Working Group Series, Volume 2, May.
- The Source Group, Inc. (SGI). 2009. Remediation Work Plan Area 4, Former PACO Pumps Site, 9201 San Leandro Street, Oakland, California. October 30.
- SGI. 2010. Investigation/Remediation (Area 4), Post-Remediation Sampling and First Semi-Annual Monitoring Report, Former PACO Pumps Site, 9201 San Leandro Street, Oakland, California. October.
- SGI. 2012a. Sub-Slab Vapor Survey and Remedial Investigation Work Plan. Former PACO Pumps Site, 9201 San Leandro Street, Oakland, California. January 5.
- SGI. 2012b. Revisions to Sub-Slab Vapor Survey and Remedial Investigation Work Plan. Former PACO Pumps Site, 9201 San Leandro Street, Oakland, California. June 20.


- U.S. Environmental Protection Agency (USEPA). 1989. Risk Assessment Guidance for Superfund, Human Health Evaluation Manual, Part A. Interim Final. Solid Waste and Emergency Response. December.
- USEPA. 1991. Risk Assessment Guidance for Superfund: Volume I Human Health Evaluation Manual (Part B, Development of Risk-based Preliminary Remediation Goals). Interim. Office of Emergency and Remedial Response, Washington D.C., Publication 9285.7-01B. December.
- USEPA. 1992. Guidance on Risk Characterization for Risk Managers and Risk Assessors. Office of Solid Waste and Emergency Response. February.
- USEPA. 1996. Soil Screening Guidance: User's Guide. Office of Solid Waste and Emergency Response. July.
- USEPA. 2002. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. Solid Waste and Emergency Response. December.
- USEPA. 2004. User's Guide for Evaluating Subsurface Vapor Intrusion into Buildings. February 22.





		Top-of-Casing	Depth to	Groundwater
Well Identification	Date Collected	Elevation (1)	Groundwater (2)	Elevation (1)
MW-1	15-Nov-92	18.05	9.34	8.71
	9-Mar-93		8.50	9.55
	21-Jul-93		9.00	9.05
	26-May-94		9.06	8.99
	24-Aug-94		8.40	9.65
	22-Nov-94		8.20	9.85
	8-Feb-95		8.30	9.75
	31-May-95		9.35	8.70
	8-Aug-95		9.16	8.89
	29-Nov-95		9.28	8.77
	29-Feb-96		7.62	10.43
	23-May-96		8.28	9.77
	4-Nov-96		9.20	8.85
	13-May-97		9.04	9.01
	14-Nov-07		8.50	9.55
	17-Jun-08		9.04	9.01
	13-Jan-09	17.76	8.65	9.11
	28-Apr-09		8.67	9.09
	6-Nov-09		8.79	8.97
	28-Jun-10		8.77	8.99
	30-Dec-10		7.20	10.56
	8-Jun-11		8.12	9.64
	15-Dec-11		8.76	9.00
	28-Mar-12		6.90	10.86
	13-Sep-12		8.92	8.84
	5-Apr-13		7.73	10.03
MW-2	15-Nov-92	19.40	10.05	9.35
	9-Mar-93		9.21	10.19
	21-Jul-93		9.72	9.68
	26-May-94		9.58	9.82
	24-Aug-94		9.98	9.42
	22-Nov-94		8.70	10.70
	8-Feb-95		8.68	10.72
	31-May-95		9.48	9.92
	8-Aug-95		9.64	9.76
	29-Nov-95		9.86	9.54
	29-Feb-96		8.12	11.28
	23-May-96		8.70	10.70
	4-Nov-96		9.50	9.90
	13-May-97		9.44	9.96
	14-Nov-07		8.94	10.46
	17-Jun-08		9.57	9.83
	13-Jan-09	19.12	9.21	9.91
	28-Apr-09		9.30	9.82
	6-Nov-09		8.91	10.21
	28-Jun-10		9.33	9.79
	30-Dec-10		7.52	11.60
	8-Jun-11		8.52	10.60
	15-Dec-11		9.25	9.87
	28-Mar-12		7.45	11.67
	13-Sep-12		9.50	9.62
	5-Apr-13		8.19	10.93

M. II I I	Data Callested	Top-of-Casing	Depth to	Groundwater	
Well Identification	Date Collected	Elevation (1)	Groundwater (2)	Elevation (1)	
MW-3	15-Nov-92	19.70	10.35	9.35	
	9-Mar-93		9.19	10.51	
	21-Jul-93		11.07	8.63	
	26-May-94		10.04	9.66	
	24-Aug-94		11.08	8.62	
	22-Nov-94		8.92	10.78	
	8-Feb-95		8.90	10.80	
	31-May-95		10.16	9.54	
	8-Aug-95		9.92	9.78	
	29-Nov-95		10.7	9.00	
	29-Feb-96		8.52	11.18	
	23-May-96		8.15	11.55	
	4-Nov-96		7.21	12.49	
	13-May-97		9.82	9.88	
	14-Nov-07		9.21	10.49	
	17-Jun-08		9.81	9.89	
	13-Jan-09	19.42	9.58	9.84	
	28-Apr-09		9.59	9.83	
	6-Nov-09		9.52	9.90	
	28-Jun-10		9.60	9.82	
	30-Dec-10		7.74	11.68	
	8-Jun-11		8.80	10.62	
	15-Dec-11		9.54	9.88	
	28-Mar-12		7.74	11.68	
	13-Sep-12		9.69	9.73	
	5-Apr-13	***************************************	8.65	10.77	
MW-4	15-Nov-92	19.65	8.87	10.78	
	9-Mar-93	10.00	7.96	11.69	
	21-Jul-93		8.06	11.59	
	26-May-94		8.57	11.08	
	24-Aug-94		8.75	10.90	
	22-Nov-94		7.41	12.24	
	8-Feb-95		7.20	12.45	
	31-May-95		8.32	11.33	
	8-Aug-95		8.66	10.99	
	29-Nov-95		8.93	10.72	
	29-Feb-96		6.54	13.11	
	23-May-96		7.24	12.41	
	4-Nov-96		8.58	11.07	
	13-May-97		8.42	11.23	
	14-Nov-07		7.61	12.04	
	17-Jun-08		8.31	11.34	
	13-Jan-09	19.37	NM	NM	
	28-Apr-09		NM	NM	
	6-Nov-09		8.00	11.37	
	28-Jun-10		8.05	11.32	
	30-Dec-10		5.70	13.67	
	8-Jun-11		6.88	12.49	
	15-Dec-11		8.88	10.49	
	28-Mar-12		5.77	13.60	
	13-Sep-12		8.29	11.08	
	5-Apr-13		6.96	12.41	

Well Identification	Date Collected	Top-of-Casing	Depth to	Groundwater	
		Elevation (1)	Groundwater (2)	Elevation (1)	
MW-5	24-Aug-94	18.49	8.22	10.27	
	22-Nov-94		7.90	10.59	
	8-Feb-95		7.92	10.57	
	31-May-95		8.74	9.75	
	8-Aug-95		8.93	9.56	
	29-Nov-95		9.11	9.38	
	29-Feb-96		7.36	11.13	
	23-May-96		7.92	10.57	
	4-Nov-96		8.78	9.71	
	13-May-97		8.82	9.67	
	14-Nov-07		8.16	10.33	
	17-Jun-08		8.75	9.74	
	13-Jan-09	18.21	8.46	9.75	
	28-Apr-09		8.50	9.71	
	6-Nov-09		9.93	8.28	
	28-Jun-10		8.42	9.79	
	30-Dec-10		6.68	11.53	
	8-Jun-11		7.64	10.57	
	15-Dec-11		8.45	9.76	
	28-Mar-12		6.77	11.44	
	13-Sep-12		8.63	9.58	
	5-Apr-13		7.45	10.76	
MW-6	13-Jan-09	19.46	9.59	9.87	
	28-Apr-09		9.65	9.81	
	6-Nov-09		9.60	9.86	
	28-Jun-10		9.54	9.92	
	30-Dec-10		7.80	11.66	
	8-Jun-11		8.74	10.72	
	15-Dec-11		9.64	9.82	
	28-Mar-12		7.77	11.69	
	13-Sep-12		9.82	9.64	
	5-Apr-13		8.69	10.77	
MW-7	13-Jan-09	19.44	9.66	9.78	
IVIVV-7	28-Apr-09	19.44	9.67	9.76	
***************************************	6-Nov-09	***************************************	9.64	9.80	
	28-Jun-10		NM 7.90	NM 11.55	
	30-Dec-10 8-Jun-11		7.89 8.79	11.55 10.65	
	15-Dec-11		9.64	9.80	
	28-Mar-12		7.81	11.63	
	13-Sep-12		9.80	9.64	
	5-Apr-13		8.70	10.74	
N 41 A 1 A		40.07			
MW-8	28-Jun-10	18.27	8.07	10.20	
	30-Dec-10		5.92	12.35	
	8-Jun-11		7.30	10.97	
	15-Dec-11		7.86	10.41	
	28-Mar-12		6.09	12.18	
	13-Sep-12		8.10	10.17	
	5-Apr-13		NA		
MW-9	5-Apr-13	18.53	8.20	10.33	
MW-10	5-Apr-13	18.12	7.34	10.78	
	5-Apr-13				
MW-11	5-Apr-13	18.32	7.53	10.79	

Mall Identificati	Data Octivita	Top-of-Casing	Depth to	Groundwater	
Well Identification	Date Collected	Elevation (1)	Groundwater (2)	Elevation (1)	
AS-1S	13-Jan-09	19.38	9.45	9.93	
	28-Apr-09		9.67	9.71	
	6-Nov-09		9.63	9.75	
	28-Jun-10		9.90	9.48	
	30-Dec-10		7.65	11.73	
	8-Jun-11		8.65	10.73	
	15-Dec-11		9.01	10.37	
	28-Mar-12		7.68	11.70	
	13-Sep-12		8.89	10.49	
	5-Apr-13		8.50	10.88	
ASMW2S		19.38	9.51	9.87	
AOWWZO	28-Apr-09	19.00	9.55	9.83	
	6-Nov-09		9.53	9.85	
	28-Jun-10		10.30	9.08	
	30-Dec-10		7.73	11.65	
	8-Jun-11		8.70	10.68	
	15-Dec-11		9.51	9.87	
	28-Mar-12		7.67	11.71	
	5-Apr-13		8.47	10.91	
10.15					
AS-1D	13-Jan-09	19.31	9.42	9.89	
	28-Apr-09		9.48	9.83	
	6-Nov-09		9.50	9.81	
	28-Jun-10		9.90	9.41	
	30-Dec-10		7.65	11.66	
	8-Jun-11		8.60	10.71	
	15-Dec-11		9.47	9.84	
	28-Mar-12		7.66	11.65	
	13-Sep-12		9.65	9.66	
	5-Apr-13		8.40	10.91	
ASMW-2D	13-Jan-09	19.52	9.65	9.87	
	28-Apr-09		9.69	9.83	
	6-Nov-09		9.70	9.82	
	28-Jun-10		9.70	9.82	
	30-Dec-10		7.88	11.64	
	8-Jun-11		8.85	10.67	
	15-Dec-11		9.65	9.87	
	28-Mar-12		7.86	11.66	
	5-Apr-13		8.66	10.86	
E-1	15-Dec-11	19.35	9.43	9.92	
······································	28-Mar-12		6.82	12.53	
	13-Sep-12		9.57	9.78	
	5-Apr-13		8.52	10.83	
E-2	30-Dec-10	19.56	7.95	11.61	
⊑-Z	8-Jun-11	18.30	8.91	10.65	
	15-Dec-11		9.70	9.86	
	28-Mar-12		7.93	9.86	
			1.93		
	30-Jun-10		0.00	19.56	
	13-Sep-12		9.90	9.66	
	5-Apr-13		8.81	10.75	

Former Paco Pumps Site 9201 San Leandro Street Oakland, California

Well Identification	Date Collected	Top-of-Casing	Depth to	Groundwater
		Elevation (1)	Groundwater (2)	Elevation (1)
E-3	15-Dec-11	19.52	9.72	9.80
	28-Mar-12		7.84	11.68
	13-Sep-12		10.10	9.42
	5-Apr-13		8.67	10.85
E-4	15-Dec-11	19.52	9.60	9.92
	28-Mar-12		7.80	11.72
	13-Sep-12		9.71	9.81
	5-Apr-13		8.78	10.74
E-5	15-Dec-11	19.53	9.69	9.84
	28-Mar-12		7.89	11.64
	13-Sep-12		9.90	9.63
	5-Apr-13		8.61	10.92
Г.С	15-Dec-11	10.46	9.61	9.85
E-6	28-Mar-12	19.46	· 	
	13-Sep-12		7.81	11.65
			9.20	10.26
	5-Apr-13		9.00	10.46
E-7	30-Dec-10	19.59	7.95	11.64
	8-Jun-11		8.89	10.70
	15-Dec-11		9.72	9.87
	28-Mar-12		7.94	11.65
	13-Sep-12		10.00	9.59
	5-Apr-13		8.75	10.84
E-8	30-Dec-10	19.59	7.96	11.63
	8-Jun-11		8.88	10.71
	15-Dec-11		9.73	9.86
	28-Mar-12		7.93	11.66
	13-Sep-12		9.90	9.69
	5-Apr-13		8.70	10.89
E-9	15-Dec-11	19.49	9.63	9.86
	28-Mar-12		7.84	11.65
	13-Sep-12		10.07	9.42
	5-Apr-13		9.20	10.29
E-10	15-Dec-11	19.3	9.44	9.86
	28-Mar-12		7.64	11.66
	13-Sep-12		N/A	
	5-Apr-13		N/A	
E-11	15-Dec-11	19.19	9.28	9.91
	28-Mar-12		7.45	11.74
	13-Sep-12		10.05	9.14
	5-Apr-13		8.29	10.90
E-12	15-Dec-11	18.89	8.89	10.00
L 12	28-Mar-12	10.00	7.05	11.84
	13-Sep-12		9.08	9.81
	5-Apr-13		8.02	10.87

Notes:

⁽¹⁾ Top-of-casing and groundwater elevation in North America Vertical Datum 1988; wells re-surveyed by Tronoff Assocaites Land Surveying on February 2, 2009.

 $^{^{\}scriptscriptstyle{(2)}}$ Depth to water measured in feet below top of casing. N/A = Not Available

Table 2 Summary of Soil Analytical Results

Former Paco Pumps Site 9201 San Leandro Street Oakland, California

Sample ID	Location ID	Sample Depth	Sample Date	TPH- GRO	TPH- DRO	TPH- MRO	Benzene	Ethylbenzene	Toluene	Xylenes	ТВА	МТВЕ	DIPE	TAME	Ethyl t-butyl ether
		(feet bgs)	Duto	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
MW9-2.5	MW-9	2.5	21-Mar-13	<0.18	240	870	<0.0036	<0.0036	<0.0036	<0.0071	<0.0071	<0.0036	<0.0036	<0.0036	<0.0036
MW9-4.5	MW-9	4.5	21-Mar-13	<0.23	2.1	<49	<0.0046	<0.0046	<0.0046	<0.0091	<0.0091	<0.0046	<0.0046	<0.0046	<0.0046
MW9-9	MW-9	9.0	21-Mar-13	<0.19	4.0	<49	<0.0038	<0.0038	<0.0038	<0.0076	<0.0076	<0.0038	<0.0038	<0.0038	<0.0038
MW10-2.5	MW-10	2.5	21-Mar-13	140	4,600	8,800	<0.35	< 0.35	<0.35	<0.69	<0.69	< 0.35	< 0.35	< 0.35	<0.35
MW10-5	MW-10	5.0	21-Mar-13	<0.20	9.9	<50	<0.004	<0.004	<0.004	<0.0081	<0.0081	<0.004	<0.004	<0.004	<0.004
MW10-12.5	MW-10	12.5	21-Mar-13	<0.20	1.5	<50	<0.0039	<0.0039	<0.0039	<0.0078	<0.0078	<0.0039	<0.0039	<0.0039	<0.0039
MW11-2.5	MW-11	2.5	21-Mar-13	0.71	880	2,100	<0.0044	<0.0044	<0.0044	0.046	<0.0087	<0.0044	<0.0044	<0.0044	<0.0044
MW11-5	MW-11	5.0	21-Mar-13	2.5	780	1,000	<0.0033	<0.0033	<0.0033	<0.0065	<0.0065	<0.0033	<0.0033	<0.0033	<0.0033
MW11-12.5	MW-11	12.5	21-Mar-13	<0.20	2.7	<49	<0.0041	<0.0041	<0.0041	<0.0082	<0.0082	<0.0041	<0.0041	<0.0041	<0.0041
SV-1-2.5	SV-1	2.5	22-Mar-13	<0.20	10	<49	<0.0039	<0.0039	<0.0039	<0.0078	<0.0078	<0.0039	<0.0039	<0.0039	<0.0039
SV-1-5	SV-1	5.0	22-Mar-13	4.8	950	2,000	<0.0041	<0.0041	<0.0041	0.012	0.012	<0.0041	<0.0041	<0.0041	<0.0041
SV-1-9	SV-1	9.0	22-Mar-13	<20	1,200	2,300	<0.0041	<0.0041	<0.0041	<0.0081	<0.0081	<0.0041	<0.0041	<0.0041	<0.0041
SV-2-2.5	SV-2	2.5	22-Mar-13	<0.23	1.8	<50	<0.0045	<0.0045	<0.0045	<0.0091	<0.0091	<0.0045	<0.0045	<0.0045	<0.0045
SV-2-5	SV-2	5.0	22-Mar-13	<0.22	1.9	<49	<0.0045	<0.0045	<0.0045	<0.0089	<0.0089	<0.0045	<0.0045	<0.0045	<0.0045
SV-2-10	SV-2	10.0	22-Mar-13	21	8.0	<50	<0.38	<0.38	<0.38	<0.77	<0.77	<0.38	<0.38	<0.38	<0.38
SV-3-3	SV-3	3.0	22-Mar-13	1.9	140	280	0.012	<0.0047	<0.0047	<0.0094	<0.0094	<0.0047	<0.0047	<0.0047	<0.0047
SV-3-5	SV-3	5.0	22-Mar-13	2.9	<1.0	<50	0.037	<0.0042	<0.0042	<0.0084	<0.0084	<0.0042	<0.0042	<0.0042	<0.0042
SV-3-10	SV-3	10.0	22-Mar-13	130	12	<50	<0.4	0.48	<0.4	<0.79	<0.79	<0.4	<0.4	<0.4	<0.4
SV-4-2.5	SV-4	2.5	22-Mar-13	<0.31	8.2	56	<0.0061	<0.0061	<0.0061	<0.012	<0.012	<0.0061	<0.0061	<0.0061	<0.0061
SV-4-5.5	SV-4	5.5	22-Mar-13	<20	3.4	<50	1.4	0.061	0.011	0.077	<0.0085	< 0.0043	< 0.0043	<0.0043	< 0.0043
SV-4-8	SV-4	8.0	22-Mar-13	<23	3.6	<50	0.9	0.072	<0.0046	0.020	0.011	<0.0046	<0.0046	<0.0046	<0.0046
SV-5-3	SV-5	3.0	22-Mar-13	0.64	100	160	<0.0044	<0.0044	<0.0044	<0.0088	<0.0088	<0.0044	<0.0044	<0.0044	<0.0044
SV-5-5	SV-5	5.0	22-Mar-13	59	3.8	<50	1.9	0.64	0.012	<0.84	0.01	<0.0041	<0.0041	<0.0041	<0.0041
SV-5-9	SV-5	9.0	22-Mar-13	640	17	<50	6.6	4.4	2.4	8.4	<0.8	<0.4	<0.4	<0.4	<0.4
SV-6-3	SV-6	3.0	22-Mar-13	<23	22	110	<0.45	<0.45	<0.45	2.4	0.015	<0.0045	<0.0045	<0.0045	<0.0045
SV-6-5.5	SV-6	5.5	22-Mar-13	<20	2.6	<50	0.21	0.45	<0.0046	2.0	0.024	<0.0046	<0.0046	<0.0046	<0.0046
SV-6-9	SV-6	9.0	22-Mar-13	920	75	<50	<4.0	20	<4.0	84	<8.1	<4.0	<4.0	<4.0	<4.0
SV-7-3	SV-7	3.0	22-Mar-13	<0.21	5.3	<49	<0.0041	< 0.0041	<0.0041	<0.0083	<0.0083	<0.0041	<0.0041	<0.0041	<0.0041
SV-7-5.5	SV-7	5.5	22-Mar-13	<0.23	1.1	<50	<0.0043	<0.0047	<0.0043	<0.0094	<0.0086	<0.0043	<0.0043	<0.0043	<0.0043
SV-7-9	SV-7	9.0	22-Mar-13	<0.19	2.2	<49	<0.004	< 0.0037	<0.004	<0.0075	<0.0081	<0.004	<0.004	<0.004	<0.004
SV-8-3	SV-8	3.0	22-Mar-13	<0.20	21	84	< 0.0043	<0.0041	< 0.0043	<0.0082	<0.0086	<0.0043	<0.0043	<0.0043	<0.0043
SV-8-5.5	SV-8	5.5	22-Mar-13	<0.20	4.6	<50	<0.0042	<0.0042	<0.0042	<0.0082	<0.0084	<0.0042	<0.0042	<0.0042	<0.0042
SV-8-9	SV-8	9.0	22-Mar-13	<0.20	3.0	<50	<0.004	<0.004	<0.004	<0.0078	<0.0081	<0.004	<0.004	<0.004	<0.004

Notes:

bgs = below ground surface

TPH-GRO = Total petroleum hydrocabons-gasoline range organics (C5 - C12)

TPH-DRO = Total petroleum hydrocabons-diesel range organics (C10 - C28)

TPH-MRO = Total petroleum hydrocabons-motor oil range organics (C24 - C36)

TBA = Tert butyl alcohol

MTBE = Methyl tert-butyl ether

DIPE = Di-isopropyl ehter

TAME = Tert-amyl methyl ether

mg/kg = milligram per kilogram

<0.0036 = Not detected at a concentration greater than the reporting limit

Bold = Constituent was detected above laboratory reporting limit

Page 1 of 1 The Source Group, Inc.

Table 3 Summary of Soil Vapor Analytical Results

Former Paco Pumps Site 9201 San Leandro Street Oakland, California

Sample ID	Sample	Sample Depth	TPH-GRO	Benzene	Toluene	Ethyl- benzene	m,p- Xylenes	o-Xylene	Naphthalene	MTBE	1,1-DFA ¹	Methane	Oxygen	Carbon Dioxide	Nitrogen
Cumple 15		(feet bgs)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(ppmV)	(%)	(%)	(%)
Ana	lytical Meth	nod				EP	A Method	8260B					GC/	TCD	
SV-1	26-Mar-13	5.5	340,000	490	<200	<100	<200	<100	<70	<100	<10,000	<1,000	2.8	11	78
SV-2	26-Mar-13	5.5	1,500,000	200	<200	<100	<200	<100	<70	<100	<10,000	<1,000	12	3.5	79
SV-2 (dup)	26-Mar-13	5.5	1,500,000	240	<200	<100	<200	<100	<70	<100	<10,000	<1,000	11	3.6	79
SV-3	26-Mar-13	6.0	2,100,000	9,500	<200	<100	<200	<100	<70	<100	<10,000	<1,000	10	<1.0	70
SV-4	26-Mar-13	5.5	3,400,000	2,400	<200	140	640	130	<70	<100	<10,000	<1,000	8.1	5.4	63
SV-5	26-Mar-13	5.5	20,000,000	560,000	4,500	45,000	13,000	<100	<70	<100	<10,000	10,000	7.1	2.8	64
SV-6	26-Mar-13	5.5	1,000,000	23,000	<200	5,200	20,000	220	<70	<100	<10,000	<1,000	10	6.6	86
SV-7	26-Mar-13	5.5	<10,000	<80	<200	<100	<200	<100	<70	<100	<10,000	<1,000	20	<1.0	76
SV-8	26-Mar-13	5.5	57,000	110	<200	<100	<200	<100	<70	<100	<10,000	<1,000	19	1.3	77

Notes:

bgs = below ground surface

TPH-GRO = Total petroleum hydrocabons-gasoline range organics

MTBE = Methyl tert-butyl ether

 μ g/m³ = micrograms per cubic meter.

ppmV = parts per million by volume

% = percent by volume

GC/TCD = gas chromatography/thermal conductivity detector

dup = duplicate sample

<200 = Not detected at a concentration greater than the reporting limit

Bold = Constituent was detected above laboratory reporting limit.

¹ = 1,1-difluoroethane (1,1-DFA) was used as a leak detection compound

Table 4 Summary of Analytical Results for Groundwater - Quarter 1, 2013

Former Paco Pumps Site 9201 San Leandro Street Oakland, California

Sample Location	Date Collected	TPHd	TPHmo	TPH-GRO	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ
Location	Conected	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
MW-1	5-Apr-13	<97	323	<50	<1.0	<1.0	<1.0	<2.0	<1.0
MW-2	5-Apr-13	<95	434	42.0	<1.0	<1.0	<1.0	<2.0	0.35
MW-3	5-Apr-13	1,960	<950	14,200	1,030	547	152	374	<20
MW-3 (D)	5-Apr-13	2,210	<1,900	9,970	835	454	142	363	<10
MW-4	5-Apr-13	<95	<190	97.9	11	0.57 J	1.3	0.98 J	<1.0
MW-5	5-Apr-13	<96	1,220	<50	<1.0	<1.0	<1.0	<2.0	<1.0
MW-6	5-Apr-13	350	<190	5,090	750	67.1	57.3	127	<10
MW-7	5-Apr-13	<100	<200	<50	<1.0	<1.0	<1.0	<2.0	0.58
MW-9	5-Apr-13	<110	<220	<50	<1.0	<1.0	<1.0	<2.0	1.1
MW-10	5-Apr-13	<110	690	<50	<1.0	<1.0	<1.0	<2.0	0.20
MW-11	5-Apr-13	<94	718	<50	<1.0	<1.0	<1.0	<2.0	<1.0
AS-1D	5-Apr-13	<94	<190	<50	<1.0	<1.0	<1.0	<2.0	<1.0
E-2	5-Apr-13	<470	5,100	<50	<1.0	<1.0	<1.0	<2.0	<1.0
E-3	5-Apr-13	<24,000	357,000	161	1.0	<1.0	<1.0	<2.0	0.43 J
E-6	5-Apr-13	<480	3,210	529	2.2	<1.0	4.3	<2.0	0.69
E-7	5-Apr-13	75.1	<190	1,060	125	20.9	17.4	28.7	3.3
E-8	5-Apr-13	1,420	1,010	4,750	707	61	118	119	<5.0
E-12	5-Apr-13	62.4	<190	496	64.1	3.3	8.1	3.0	<1.0

Notes:

bgs = below ground surface

TPHd = total petroleum hydrocarbons as diesel

TPHmo = total petroleum hydrocarbons as motor oil

TPH-GRO = total petroleum hydrocarbons-gasoliine range organics

D = duplicate sample

<97 = Not detected at a concentration greater than the reporting limit

Bold = Constituent was detected above laboratory reporting limit

J = Estimated value above method detection limit but below laboratory reporting limit.

Sample Location	Date Collected	Depth	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Other Fuel Additives
		(feet bgs)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
FR Area 1 - So	outhwestern Co	rner of the Site	, west of the "	workshop buil	ding"						
MW-2	16-Nov-92	5.25-20.25	<50	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	9-Mar-93		430	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	21-Jul-93		<50	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	29-Jan-94		<50	NA	<50	<2.0	<2.0	<2.0	<2.0	NA	NA
	26-May-94		<50	NA	<50	2.3	0.8	<0.5	<0.5	NA	NA
	24-Aug-94		<50	NA	<50	3.1	1.4	0.5	0.6	NA	NA
	22-Nov-94		<50	NA	<50	3.4	1.8	<0.5	0.5	NA	NA
	8-Feb-95		<50	NA	<50	4.5	1.3	<0.5	0.5	NA	NA
	31-May-95		<50	NA	NA	NA	NA	NA	NA	NA	NA
	8-Aug-95		<50	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	29-Nov-95		<50	NA	NA	NA	NA	NA	NA	NA	NA
	29-Feb-96		<50	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	23-May-96		<50	NA	NA	NA	NA	NA	NA	NA	NA
	4-Nov-96		<50	NA	NA	NA	NA	NA	NA	NA	ND
	13-Nov-03		NA	NA	<50	<0.5	<0.5	<0.5	<2.0	NA	ND
	17-Jun-08		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	1.1	ND
	6-Nov-09		360	NA	<50	<0.5	<0.5	<0.5	<1.0	0.63	ND
	28-Jun-10		53.4J	NA	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
	30-Dec-10		<280	3,240	29.2 J ^a	<1.0	<1.0	<1.0	<2.0	<1.0	ND
	8-Jun-11		NA	NA NA	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
	15-Dec-11		95/<94*	422/311*	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
	13-Sep-12		301	<190	<50	<1.0	<1.0	<1.0	<2.0	0.20	ND
	5-Apr-13		<95	434	42	<1.0	<1.0	<1.0	<2.0	0.35	ND
ED Aroa 2 - Ar	rea South of the	Warohouso St	orago Aroa Bu	ilding Adiacor							
									114	I	N1A
MW-1	15-Nov-92	5.25-20.25	<50	NA NA	NA	NA	NA	NA	NA	NA	NA NA
	9-Mar-93		140	NA NA	NA	NA	NA	NA	NA	NA NA	NA NA
	21-Jul-93		<50	NA NA	NA	NA	NA	NA NA	NA	NA	NA NA
	29-Jan-94		<50	NA NA	NA To	NA -	NA	NA -	NA -	NA .	NA
	26-May-94		NA NA	NA NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NA NA
	24-Aug-94		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	22-Nov-94		NA	NA NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	8-Feb-95		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	31-May-95		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NA
	23-May-96		NA NA	NA NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NA NA
	27-Oct-00		NA	NA NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NA NA
	14-Nov-07		NA	NA NA	<50	<0.5	<0.5	<0.5	<0.5	<2.0	NA NA
	17-Jun-08		NA .	NA NA	<50	<0.5	<0.5	<0.5	<0.5	0.67	NA NA
	6-Nov-09		<51	NA NA	<50	<0.5	<0.5	<0.5	<1.0	<0.5	ND
	28-Jun-10		56.8J	NA	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
	30-Dec-10		<94	114 J	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
	16-Dec-11		<94*	522*	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
	28-Mar-12		<94*	<190*	NA	NA	NA	NA	NA	NA	NA
	13-Sep-12		187	<190	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
	5-Apr-13		<97	323	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
.FR Area 4 - Fo	ormer UST near	Groundwater I	Monitoring We	II MW-3							
B-1	3-Feb-97	15-20	NA	NA	31,000	7,100	4,100	520	1,400	NA	NA
B-2	3-Feb-97	15-20	NA	NA	41,000	14,000	2,600	740	1,700	NA	NA
B-3	3-Feb-97	15-20	NA	NA	1,400	310	9.9	27	56	NA	NA
B-4	3-Feb-97	15-20	NA	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
MW-3	16-Nov-92	5.25-20.25	<50	NA	40,000	2,900	6,100	550	1,700	NA	NA
			290	NA NA		1,000	300	110	170	NA NA	NA
	9-Mar-93	'	290	I INA	12,000	1.000	J 300	י יווי ן	170	י אוו ו	INA

Sample Location	Date Collected	Depth	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Other Fuel Additives
		(feet bgs)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
MW-3	29-Jan-94		<50	NA	5,600	910	220	47	36	NA	NA
continued	26-May-94		<50	NA	5,200	890	180	45	43	NA	NA
	24-Aug-94		<50	NA	5,200	580	76	29	22	NA	NA
	22-Nov-94		<50	NA	2,200	670	130	31	28	NA	NA
	8-Feb-95		<50	NA	2,900	780	120	31	33	NA	NA
	31-May-95		NA	NA	9,100	2,800	160	91	72	NA	NA
D	31-May-95		NA	NA	5,300	1,300	170	37	44	NA	NA
MW-3	28-Aug-95		NA	NA	1,400	<0.5	<0.5	1.7	8.9	NA	NA
D	28-Aug-95		NA	NA	4,800	2,500	150	53	44	NA	NA
	29-Nov-95		NA	NA	3,000	780	43	32	32	NA	NA
D	29-Nov-95		NA	NA	2,400	830	38	21	16	NA	NA
	29-Feb-96		NA	NA	3,800	1,200	130	36	35	NA	NA
D	29-Feb-96		NA	NA	8,000	3,400	430	100	99	NA	NA
	23-May-96		NA	NA	6,900	3,300	340	71	74	NA	NA
D	23-May-96		NA	NA	4,300	3,200	350	72	74	NA	NA
	4-Nov-96		NA	NA	4,900	2,100	110	70	44	NA	NA
D	4-Nov-96		NA	NA	4,500	2,100	130	61	39	NA	NA
	13-May-97		NA	NA	10,000	4,800	530	100	92	<100	NA
	26-Jan-98		NA	NA	12,000	5,000	250	91	100	NA	NA
	27-Oct-00		NA	NA	19,000	9,000	1,000	250	130	NA	NA
	3-Nov-03		NA	NA	13,000	3,900	370	300	130	<40	NA
	17-Jun-08		NA	NA	13,000	4,400	600	300	150	<100	NA
	6-Nov-09		710	NA	13,000	3,400	400	310	220	<2.5	4.1 (1,2-DCA)
	28-Jun-10		699	NA	22,200	1,740	2,100	318	1,060	<50	ND
D	28-Jun-10		722	NA	31,000	1,560	2,210	380	1,240	<50	ND
_	10-Aug-10		NA	NA	12,000	1,400	1,200	190	540	<13	ND
	30-Dec-10		36,500	3,900	22,200	1,730	2,030	406	1,530	<50	ND
	8-Jun-11		NA	NA	20,400	2,180	2,040	273	765	<25	ND
	16-Dec-11		1,710/832*	312 J/<190*	9,000	1,220	1,290	163	518	<25	ND
D	16-Dec-11		1,530/2,530*	<570/<750*	13,200	1,590	1,680	207	671	<50	ND
_	13-Sep-12		5,040	4,710	12,800	677	607	161	445	<25	ND
	5-Apr-13		1,960	<950	14,200	1,030	547	152	374	<20	ND
D	5-Apr-13		2,210	<1,900	9,970	835	454	142	363	<10	2.9 J (1,2-DCA)
	•	5.05.00.05	,	·	·						
MW-5	24-Aug-94	5.25-20.25	130	NA NA	<50	<0.5	<0.5	<0.5	<0.5	NA NA	NA NA
D	22-Nov-94		<50	NA NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA NA
	8-Feb-95		<50	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA NA
	31-May-95		NA NA	NA NA	<50	<0.5	<0.5	<0.5	<0.5	NA NA	NA NA
	8-Aug-95		NA NA	NA NA	<50	<0.5	<0.5	<0.5	<0.5	NA NA	NA NA
	29-Feb-96		NA NA	NA NA	<50	0.6	<0.5	<0.5	<0.5	NA	NA NA
	13-May-97		NA NA	NA NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA NA
	27-Oct-00		NA NA	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA NA
	13-Nov-03		NA 	NA	<50	<0.5	<0.5	<0.5	<0.5	<2.0	NA =
	17-Jun-08		NA	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	6-Nov-09		1,300	NA	<50	<0.5	<0.5	<0.5	<1.0	<0.5	ND
	28-Jun-10		289	NA	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
	30-Dec-10		<94	808	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
	16-Dec-11		<94/<95*	681/547*	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
	28-Mar-12		196*	212*	NA	NA	NA	NA	NA	NA	NA
	13-Sep-12		376	<190	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
	I = A 40	I	<96	1,220	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
	5-Apr-13										
MW-6	5-Apr-13 14-Jan-09	10-17		NA	740	66	48	6.3	23	1.2	17 (1,2-DCA)
MW-6		10-17	NA 1,200	NA NA	740 4,500	66 1,300	48 270	6.3 110	23 44	1.2 <2.5	17 (1,2-DCA) 39 (1,2-DCA)

Sample Location	Date Collected	Depth	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Other Fuel Additives
		(feet bgs)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
MW-6	10-Aug-10		NA	NA	4,600	800	160	160	210	<6.3	12 (1,2-DCA)
continued	30-Dec-10		2,470	<380	9,720	1,130	469	364	1,360	<20	20.7 (1,2-DCA)
	8-Jun-11		NA O OOO (OT 4#	NA NA	8,140	1,460	377	206	515	<20	15.4 (1,2-DCA)
	16-Dec-11		2,200/874*	2,350/1,670	5,920	1,500	74.9	135	254	<25	12.4 (1,2-DCA)
	28-Mar-12		380*	<190*	2,180	347	20.5	36	56	<5.0	6.8 (1,2-DCA)
	13-Sep-12		930 350	<190 <190	3,550 5,090	557 750	45 67.1	59.9 57.3	126 127	<10 <10	5.8 (1,2-DCA)
	5-Apr-13				·						6.4 (1,2-DCA)
MW-9	5-Apr-13	12-17	<110	<220	<50	<1.0	<1.0	<1.0	<2.0	1.1	0.67 (1,2-DCA)
MW-10	5-Apr-13	10-20	<110	690	<50	<1.0	<1.0	<1.0	<2.0	0.20	0.26 (1,2-DCA)
MW-11	5-Apr-13	10-20	<94	718	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
AS-1S	13-Jan-09	14-17	NA	NA	41,000	4,100	2,700	510	1,000	<25	ND
	6-Nov-09		1,300	NA	3,800	950	7.3	76	42	<0.5	3.1 (1,2-DCA)
	28-Jun-10		214	NA	1,630	202	26.2	9.1	25.4	2.1	3.1 (1,2-DCA)
	10-Aug-10		NA	NA	1,200	370	44	34		<2.5	2.6 (1,2 DCA)
	30-Dec-10		2,790	<570	30,000	4,530	4,040	538	1,100	<100	ND
	15-Dec-11		1,340*	582*	7,640	772	788	290	590	<20	ND
ASMW-2S	13-Jan-09	10-17	NA	NA	9,100	2,800	430	140	230	<10	25 (1,2-DCA)
	6-Nov-09		2,400	NA	18,000	4,700	540	330	530	<2.5	50 (1,2-DCA), 46 (TBA)
	28-Jun-10		479	NA	8,330	416	434	151	583	<33	ND
	10-Aug-10		NA NA	NA 10.000	3,200	420	69	61	130	<3.1	3.4 (1,2 DCA)
	30-Dec-10 15-Dec-11		3,440 998*	<2,000 148 *	5,300 2,250	447 253	80.1 19.8	95.0 49.9	181 77.4	ND<10 <10	5.7 (1,2 DCA) ND
A 4) A / ¬		20.00			·						
MW-7	14-Jan-09 6-Nov-09	20-28	NA <52	NA NA	<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <1.0	1.1 1.3	ND ND
	30-Dec-10		<96	<190	<50 <50	<1.0	<1.0	<1.0	<2.0	1.3	ND ND
	8-Jun-11		NA	NA NA	<50 <50	<1.0	<1.0	<1.0	<2.0	1.0	ND ND
	16-Dec-11		<94*	832*	<50	0.67	<1.0	0.35 J	<2.0	0.88 J	ND ND
D	16-Dec-11		<94*	1,730*	<50	0.62 J	<1.0	0.33 J	<2.0	0.91 J	ND
	28-Mar-12		<94*	<190*	NA	NA	NA	NA	NA	NA	NA
	13-Sep-12		<190	3,510	<50	<1.0	<1.0	<1.0	<2.0	0.41	ND
	5-Apr-13		<100	<200	<50	<1.0	<1.0	<1.0	<2.0	0.58	ND
MW-8	28-Jun-10	8-18	<100	NA	<50	0.81J	1.3	0.41J	1.6 J	0.62J	ND
	30-Dec-10		<95	<190	<50	<1.0	<1.0	<1.0	<2.0	0.53J	ND
	8-Jun-11		NA	NA	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
	16-Dec-11		<95*	155 J*	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
	13-Sep-12		304	<190	<50	0.37	0.28	<1.0	<2.0	0.29	ND
AS-1D	13-Jan-09	31-34	NA	NA	<50	0.69	0.54	<0.5	<0.5	<0.5	ND
	6-Nov-09		<53	NA	<50	<0.5	<0.5	<0.5	<1.0	<0.5	ND
	28-Jun-10		<94	NA	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
	30-Dec-10		<94	<190	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
	15-Dec-11		86.2 J*	<190*	27.6	1.7	3.1	0.54	2.3	<1.0	ND
	13-Sep-12		161	<190	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
	5-Apr-13		<94	<190	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
ASMW-2D	13-Jan-09	24-34	NA .54	NA NA	<50	0.80	0.78	<0.5	<0.5	0.56	ND
	6-Nov-09		<51 <04	NA NA	<50	<0.5	<0.5	<0.5	<1.0	0.58	ND
	28-Jun-10 30-Dec-10		<94 <100	NA <200	<50 <50	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0	<1.0 <1.0	ND ND
	15-Dec-10		96.1*	<200 <190*	<50 <50	0.76 J	0.99	<1.0	1.1	<1.0	ND ND
F4		0.40									
E1	16-Jun-10	8-18	NA NA	NA NA	36,000	3,200	2,300	750	2,170	<25	<25
	30-Jun-10 16-Dec-11		NA 323*	NA <190*	124 1,700	11.7 55.5	9.4 22.1	1.5 16.1	7.7 27.6	<1 <5.0	0.31 (1,2 DCA) ND
	10-060-11		323	<u> </u>	1,700	99.5	ZZ. I	10.1	21.0	\ \0.0	או

Sample	Date	Depth	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Other Fuel Additives
Location	Collected	(feet bgs)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
E2	16-Jun-10	8-18	NA	NA	72	5.3	5.9	0.89	4.9	2.1	0.68 (1,2 DCA)
	30-Jun-10		NA	NA	<50	<1.0	<1.0	<1.0	<2.0	2.0	0.5 (1,2 DCA)
	30-Dec-10		<190	3,740	<50	<1.0	<1.0	<1.0	<2.0	1.8	0.41 (1,2 DCA)
	8-Jun-11		NA	NA	<50	<1.0	<1.0	<1.0	<2.0	1.7	0.45 (1,2-DCA)
	15-Dec-11		<95/<96*	1,570/1,270*	<50	<1.0	<1.0	<1.0	<2.0	1.2	ND
	28-Mar-12		245*	387*	NA	NA	NA	NA	NA	NA	NA
	13-Sep-12		<190	2,990	<50	<1.0	<1.0	<1.0	<2.0	0.57 J	0.36 J (1,2-DCA)
	5-Apr-13		<470	5,100	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
E3	16-Dec-11		13,900*	15,600*	185	1.2	<1.0	<1.0	<2.0	0.74 J	1.0 (1,2-DCA)
	28-Mar-12		1,060*	1,860*	151	1.4	<1.0	<1.0	<2.0	0.53 J	0.76 J (1,2-DCA)
	13-Sep-12		62,500	93,700	46.8	0.56	<1.0	<1.0	<2.0	0.55 J	0.99 J (1,2-DCA)
	5-Apr-13		<24,000	357,000	161	1.0	<1.0	<1.0	<2.0	0.43 J	0.71 J (1,2-DCA)
E4	16-Dec-11		264*	447*	1,580	240	9.9	18.3	5.8 J	<5.0	2.7 (1,2-DCA)
E5	15-Dec-11		11,100*	11,500*	27.1 J	<1.0	<1.0	<1.0	<2.0	0.83 J	ND
E6	15-Dec-11		1,460*	931*	617	17.6	<2.0	3.3	<4.0	<2.0	ND
	28-Mar-12		93.9 J*	191*	273	4.4	<1.0	2.8	<2.0	0.78 J	ND
	13-Sep-12		<190	2,440	427	2.8	<1.0	2.3	<2.0	0.85	ND
	5-Apr-13		<480	3,210	529	2.2	<1.0	4.3	<2.0	0.69	ND
E7	16-Jun-10	8-18	NA	NA	780	100	73	20	80	5.2	1.9 (1,2 DCA)
Li	30-Jun-10	0-10	NA NA	NA NA	3,460	207	258	<25	360	3.8	2.5 (1,2 DCA)
	30-Dec-10		1,360	<190	3,380	339	20.0	83.3	23.9	5.4	3.5 (1,2 DCA)
	8-Jun-11		NA	NA NA	1,580	143	17.4	26.9	21.7	4.3	2.2 (1,2-DCA)
	15-Dec-11		373/287*	<190/<190*	1,070	144	29.5	16	27.2	4.4	3.1 (1,2-DCA)
	28-Mar-12		53.8 J*	<190*	806	97	11.9	12.9	18.4	3.2	1.6 J (1,2-DCA)
	13-Sep-12		214	<200	1,790	169	67.3	27.8	82.3	3.5	2.6 (1,2-DCA)
	5-Apr-13		75.1	<190	1,060	125	20.9	17.4	28.7	3.3	1.9 J (1,2-DCA)
E8	30-Dec-10		1,220	<190	8,930	480	19.1	164	51.8	<10	4.8 (1,2-DCA)
Lo	8-Jun-11		NA	NA NA	3,520	178	9.6	55.7	49.5	<5	2.7 (1,2-DCA)
	15-Dec-11		508*	<190*	2,000	208	4	42.9	14.0	<5.0	ND
	28-Mar-12		64 J*	<190*	1,380	92	4	20.3	26.5	<4.0	13 J (TBA)
	13-Sep-12		314	<200	2,450	2.0	<5.0	<5.0	<10	2.8	ND
	5-Apr-13		1,420	1,010	4,750	707	61	118	119	<5.0	3.6 (1,2-DCA)
F0	·		•		·						,
E9	15-Dec-11 28-Mar-12		7,950* 894*	<190* <190*	35,100 24,200	4,810 2,440	5,710 2,550	768 396	3,260 1,810	<100 <100	ND ND
E10	15-Dec-11		10,400*	<190*	32,800	4,350	6,450	667	2,880	<100	37 (1,2-DCA)
	28-Mar-12		1,630*	<190*	30,000	3,090	4,140	515	2,310	<100	20.6 J (1,2-DCA)
E11	16-Jun-10	8-18	NA	NA	25,000	1,800	1,500	480	980	<13	<13
	30-Jun-10		NA	NA	15,300	268	509	473	1,140	<40	<40
	16-Dec-11		3,920*	<970*	17,200	634	916	384	934	<50	ND
	28-Mar-12		960*	<190*	15,700	377	544	237	902	<50	ND
E12	16-Jun-10	8-18	NA	NA	4,300	190	15	43	49	<2	2.0 (1,2 DCA)
	30-Jun-10		NA	NA	1,570	130	6.6	<3	24.2	<3	<3
	16-Dec-11		69.9 J*	<190*	297	27.5	1.1 J	3.2	<4.0	<2.0	ND
	13-Sep-12		88.8	<190	633	50.8	2.6	7.2	2.7	<1.0	18.9 (TBA)
	5-Apr-13		62.4	<190	496	64.1	3.3	8.1	3.0	<1.0	ND

Table 5 Summary of Historical Analytical Results for Groundwater

Former Paco Pump Site 9201 San Leandro Street Oakland, California

Sample Location	Date Collected	Depth	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Other Fuel Additives
Location	Collected	(feet bgs)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
FR Area 5 - S	uspected Forme	r UST near Gro	oundwater Moi	nitoring Well N	1W-4						
MW-4	16-Nov-92	5.25-20.25	<50	NA	560	66	73	16	130	NA	NA
D	16-Nov-92		<50	NA	520	63	67	15	140	NA	NA
	9-Mar-93		<50	NA	750	67	12	29	62	NA	NA
	21-Jul-93		<50	NA	250	21	4.2	8.4	11	NA	NA
	29-Jan-94		<50	NA	180	28	2.2	6.2	10	NA	NA
	26-May-94		NA	NA	130	14	3.2	6.1	4.7	NA	NA
	24-Aug-94		NA	NA	70	6.7	0.9	2.8	2.6	NA	NA
	22-Nov-94		NA	NA	90	16	1.7	5.6	3.4	NA	NA
	8-Feb-95		NA	NA	90	17	1.3	5.5	3.0	NA	NA
	31-May-95		NA	NA	90	13	0.6	2.3	1.2	NA	NA
	8-Aug-95		NA	NA	80	3.6	<0.5	1.4	0.6	NA	NA
	29-Nov-95		NA	NA	<50	4.5	0.7	1.0	0.7	NA	NA
	29-Feb-96		NA	NA	<50	7.4	1.0	3.2	2.4	NA	NA
	23-May-96		NA	NA	80	11	2.0	2.3	1.0	NA	NA
	3-Nov-03		<50	NA	<50	6.3	0.56	3.4	1.0	<2.0	NA
	18-Jun-08		<50	NA	81	11	0.51	4.7	1.6	<0.5	ND
	6-Nov-09		<50	NA	<50	4.0	<0.5	1.3	<1.0	<0.5	ND
	28-Jun-10		<100	NA	186	12.3	0.9	5.9	2.3	<1.0	ND
	30-Dec-10		<94	<190	77.4	7.4	<1.0	2.6	0.98	<1.0	ND
	8-Jun-11		NA	NA	94.2	10.2	1	3.4	1.60	<1.0	ND
	16-Dec-11		<97*	130 J*	<50	2.6	<1.0	<1.0	<2.0	<1.0	ND
	13-Sep-12		83 J	<190	34.3 J	5.4	0.51 J	0.82 J	0.73 J	<1.0	ND
	5-Apr-13		<95	<190	97.9	11	0.57 J	1.3	0.98 J	<1.0	ND
SL's Groundvinking water	water <u>is</u> current o source	or potential	100	100	100	1.0	40	30	20	5.0	0.5 (1,2-DCA) 12 (TBA)

Notes:

bgs = below ground surface

 μ g/L = micrograms per liter

TPHd = total petroleum hydrocarbons as diesel

TPHmo = total petroleum hydrocarbons as motor oil

TPHg = total petroleum hydrocarbons as gasoline

MTBE = methyl tert butyl ether

NA = parameter not analyzed

ND = parameter not present above laboratory reporting limits

1,2-DCA = 1,2-dichloroethane

TBA = tertiary butyl alcohol

D = duplicate sample

J = Estimated value above method detection limit but below laboratory reporting limit.

* = TPH Extracable with Silica Gel Cleanup

ESL = San Francisco Bay Regional Water Quality Control Board (RWQCB) Environmental Screening Levels Table F-1a and Table F-1b RWQCB February 2013 **Bold Font** denotes concentration was greater than the ESL.

Table 6 Risk Characterization for the Hypothetical Indoor Commercial/Industrial Worker Receptor

Former Paco Pumps Site 9201 San Leandro Street Oakland, California

		Inhalation of Benze	ne and Ethylbenzene Ve	olatilizing from Shallow Soil Gas (5.	.5 feet bgs) into Ind	loor Air	
				Noncarcinogenic Effe	ects	Carcinogenic Effects	
Location & Sample ID	Constituent	Exposure Point Concentration (C _{soil vapor}) (µg/m³)	Exposure Point Concentration¹ (C _{buildling}) (µg/m³)	Inhalation Reference Concentration (RfC) (µg/m³)	Hazard Quotient (HQ)² (unitless)	Inhalation Unit Risk (IUR) (μg/m³)·1	Excess Cancer Risk ³ (unitless)
Building 1 SV-6	Benzene Ethylbenzene	2.30E+04 5.20E+03	9.76E-02 1.58E-02	3.00E+01 1.00E+03	7 E-04 4 E-06	2.90E-05 2.50E-06	2 E-07 3 E-09
				Total Hazard Index =	7 E-04	Total Excess Cancer Risk =	2 E-07
Building 3 SV-4	Benzene Ethylbenzene	2.40E+03 1.40E+02	1.02E-02 4.26E-04	3.00E+01 1.00E+03	8 E-05 1 E-07	2.90E-05 2.50E-06	2 E-08 9 E-11
				Total Hazard Index =	8 E-05	Total Excess Cancer Risk =	2 E-08
Outside SV-5	Benzene Ethylbenzene	5.60E+05 4.50E+04	2.38E+00 1.37E-01	3.00E+01 1.00E+03	2 E-02 3 E-05	2.90E-05 2.50E-06	6 E-06 3 E-08
				Total Hazard Index =	2 E-02	Total Excess Cancer Risk =	6 E-06

Notes:

feet bgs = feet below ground surface. μ g/m³ = micrograms per cubic meter.

¹ Exposure point concentration in indoor air was estimated from CalEPA DTSC J/E modeling as
$$C_{building}$$
 (Appendix J).

$$Hazard\ Quotient = \frac{C_{building} \times ET \times EF \times ED}{RfC \times ATn}$$

³
$$Excess Cancer Risk = \frac{C_{building} \times ET \times EF \times ED \times URF}{ATc}$$

 $C_{building}$ Chemical concentration in indoor air (µg/m³).

Exposure frequency (250 days/year).

ED Exposure duration (25 years).

Exposure time (8 hours/day) ΕT

ATn Averaging time (hours) for noncarcinogenic effects,

 $ATn = ED \times 365 \text{ days/year} \times 24 \text{ hours/day}.$

Averaging time (hours) for carcinogenic effects, ATc

ATc = Lifetime (70 years) x 365 days/year x 24 hours/day.

APPENDIX A ALAMEDA COUNTY ENVIRONMENTAL HEALTH DRILLING PERMIT

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 03/18/2013 By jamesy Permit Numbers: W2013-0206 to W2013-0209 Permits Valid from 03/21/2013 to 03/25/2013

City of Project Site:Oakland

Phone: 925-944-2856

\$1456.00

<u>\$1456.00</u>

Phone: --

Phone: --

Phone: --

Application Id: 1362689888303 **Site Location:** 9201 San Leandro St.

Oakland, CA 94603

Project Start Date: 03/21/2013 Completion Date:03/25/2013

Assigned Inspector: Contact Steve Miller at (510) 670-5517 or stevem@acpwa.org

Applicant: The Source Group, Inc. - Paisha Jorgensen

3478 Buskirk Avenue, Suite 100, Pleasant Hill, CA 94523

Property Owner: Harold Vignoles

9201 San Leandro Street, Oakland, CA 94603

Client: David Murray
4600 SE Harney Drive Porland OR 9720

4600 SE Harney Drive, Porland, OR 97206

Contact: Paisha Jorgensen

Cell: 510-847-9217

Total Due:
Receipt Number: WR2013-0100 Total Amount Paid:

Payer Name: The Source Group, Inc. Paid By: CHECK PAID IN FULL

Works Requesting Permits:

Well Construction-Monitoring-Monitoring - 3 Wells

Driller: Vironex - Lic #: 705927 - Method: hstem Work Total: \$1191.00

Specifications

Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2013- 0206	03/18/2013	06/19/2013	MW-10	8.00 in.	2.00 in.	10.00 ft	20.00 ft
W2013- 0207	03/18/2013	06/19/2013	MW-11	8.00 in.	2.00 in.	10.00 ft	20.00 ft
W2013- 0208	03/18/2013	06/19/2013	MW-9	8.00 in.	2.00 in.	10.00 ft	20.00 ft

Specific Work Permit Conditions

- 1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 2. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.
- 3. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the

Alameda County Public Works Agency - Water Resources Well Permit

permits and requirements have been approved or obtained.

- 4. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Include permit number and site map.
- 5. Applicant shall submit the copies of the approved encroachment permit to this office within 60 days.
- 6. Applicant shall contact Steve Miller for an inspection time at (510) 670-5517 or email to stevem@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 7. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.
- 8. Minimum surface seal thickness is two inches of cement grout placed by tremie.
- 9. Minimum seal (Neat Cement seal) depth for monitoring wells is 5 feet below ground surface(BGS) or the maximum depth practicable or 20 feet.
- 10. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

Well Construction-Vapor monitoring well-Vapor monitoring well - 7 Wells

Driller: Vironex - Lic #: 705927 - Method: DP Work Total: \$265.00

Specifications

Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2013- 0209	03/18/2013	06/19/2013	SV-1	1.00 in.	0.75 in.	1.00 ft	5.00 ft
W2013- 0209	03/18/2013	06/19/2013	SV-2	1.00 in.	0.75 in.	1.00 ft	5.00 ft
W2013- 0209	03/18/2013	06/19/2013	SV-3	1.00 in.	0.75 in.	1.00 ft	5.00 ft
W2013- 0209	03/18/2013	06/19/2013	SV-4	1.00 in.	0.75 in.	1.00 ft	5.00 ft
W2013- 0209	03/18/2013	06/19/2013	SV-5	1.00 in.	0.75 in.	1.00 ft	5.00 ft
W2013- 0209	03/18/2013	06/19/2013	SV-6	1.00 in.	0.75 in.	1.00 ft	5.00 ft
W2013- 0209	03/18/2013	06/19/2013	SV-7	1.00 in.	0.75 in.	1.00 ft	5.00 ft

Specific Work Permit Conditions

1. Drilling Permit(s) can be voided/ cancelled only in writing. It is the applicant's responsibility to notify Alameda County Public Works Agency, Water Resources Section in writing for an extension or to cancel the drilling permit application. No drilling permit application(s) shall be extended beyond ninety (90) days from the original start date. Applicants may not cancel a drilling permit application after the completion date of the permit issued has passed.

Alameda County Public Works Agency - Water Resources Well Permit

- 2. Compliance with the above well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate state reporting-requirements related to well destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days, including permit number and site map.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.
- 5. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 6. No changes in construction procedures or well type shall change, as described on this permit application. This permit may be voided if it contains incorrect information.
- 7. Applicant shall submit the copies of the approved encroachment permit to this office within 60 days.
- 8. Applicant shall contact Steve Miller for an inspection time at (510) 670-5517 or email to stevem@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 9. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.
- 10. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 11. Vapor monitoring wells above water level constructed with tubing maybe be backfilled with pancake-batter consistency bentonite. Minimum surface seal thickness is two inches of cement grout around well box.

Vapor monitoring wells above water level constructed with pvc pipe shall have a minimum seal depth (Neat Cement Seal) of 2 feet below ground surface (BGS). Minimum surface seal thickness is two inches of cement grout around well box. All other conditions for monitoring well construction shall apply.

APPENDIX B

BORING LOGS

			ГНЕ					BORING/WELL ID:	
envir	onmer	ntal	So	URC	E G	ROUP, INC.		MW-9	
PROJE	CT N	AME A	ND AD	DRESS	S:	Former Paco Pumps, 9201 S	San Leandro Street, Oakland, CA	Project No. 04-PFT-004	
BORIN	G LO	CATIO	N (AT S	SITE):		In alley between Building 3 a	and railroad tracks	Logged By: A. Tracy/P. Jorgensen	
CONT	RACTO	OR ANI	D EQU	IPMEN	T:	Vironex/Geoprobe 6610 DT		P.G. Approval: P. Jorgensen #7806	
SAMPI	ING N	/IETHO	D:			Hand auger/Macrocore	MONITORING DEVICE:	MiniRae 2000	
START	DATE	/TIME	:			3/21/13 8:00am	FINISH DATE/TIME:	3/21/13 12:20pm	
FIRST/	STATI	IC WAT	TER LE	VEL(B	GS):	12.5 feet	CASING DEPTH(S):	17 feet	
SURFA	CE/T	OC ELI	EVATIO	ON (MS	iL):	18.84 feet/18.53 feet	SCREEN INTERVAL(S) (BGS):	12 - 17 feet	
TOTAL	BOR	NG DI	AMETE	ER/DEP	TH:	8 inches/20 feet	SCREEN SLOT SIZE/TYPE:	0.020 inches/PVC	
8:00 Time	PID reading (ppm)	Samples Collected	Sample Recovery	Oepth (feet)	ω USCS ≷ Classification	ALL PERCENTAGES and P	greyish brown (10YR 3/2), 70%	1 5	
	0.0	MW9 -2.5 MW9		1 2 3	CL	0-5 feet bgs - hand auger	red, soil logged from cuttings. R 2/1), 100% fines, medium pla	asticity, moist, soft	
	0.0	-4.5 MW9		4 5 6 7		√ dark grayish brown (10	0YR 4/2)	neat cement grout 2-inch, Sch 40 PVC blank casing bentonite	
	0.0			9 10 11 12 13		√ dark grayish brown (1 √ wet	0YR 4/2), 80% fines, 10% silt,	10% fine sand #2/12 Monterey sand 2-inch, Sch 40 PVC, 0.020-inch slot screen	
8:40	0.0			15 16 17 18 19		√ 100% fines, moist, firm		bentonite	
				20			Bottom of Boring at 20 feet	bgs	
	Page 1 of 1								

			ГНЕ					BORING/WELL ID:				
envire	onmer	ntal	Sou	JRC	E G	ROUP, INC.		MW-10				
PROJE	CT N			DRESS			San Leandro Street, Oakland, CA	Project No. 04-PFT-004				
BORIN	G LO	CATION	I (AT S	ITE):		In alley between Building 3 a	and railroad tracks	Logged By: A. Tracy/P. Jorgensen	ì			
				PMENT	<u></u> Γ:	Vironex/Geoprobe 6610 DT		P.G. Approval: P. Jorgensen #7806				
SAMPL						Hand auger/Macrocore	MONITORING DEVICE:	MiniRae 2000				
START						3/21/13 8:40am	FINISH DATE/TIME:	3/21/13 10:00am				
				VEL(B	3S):	12.5 feet						
				N (MSI		18.64 feet/18.12 feet	SCREEN INTERVAL(S) (BGS):	10 - 20 feet				
				R/DEP	•	8 inches/20 feet	SCREEN SLOT SIZE/TYPE:	0.020 inches/PVC				
еш <u>і</u> 8:40	(mdd) BulD reading (http://www.nc.a.)	Samples 0 MW1 0	Sample Recovery	(teet) Update (feet)		ALL PERCENTAGES and P Asphalt 0 - 6" POORLY GRADED SAN sand, 40% fine to coarse Very strong odor	0-5 feet bgs - hand augered, D with GRAVEL: reddish brow gravel, moist, loose	size/plasticity, other) TE UNLESS OTHERWISE STATED				
	0.0			5 6 7 8 9	CL		/1) EL: very dark gray (5YR 3/1), 7	bentonite 75% fines, 25% fine gravel,				
10:00	0.0	MW1 0		11 12 13 14 15 16 17 18	CL	LEAN CLAY: dark grayisl medium plasticity, moist, ↓ wet ↓ 90% fines, 10% silt, m	noist, firm	#2/12 Monterey sand 2-inch, Sch 40 PVC, 0.020-inch slot screen	}			
				20			Bottom of Boring at 20 feet	bgs				
	Page 1 of 1											

		.						BORING/WELL ID:	
5	G		COL		- 0	DOUD INO			
enviro	onmer	ntal	DU	UKC	t U	ROUP, INC.		MW-11	
PROJE	CT N	AME A	ND AD	DRESS	:		San Leandro Street, Oakland, CA	Project No. 04-PFT-004	
BORING LOCATION (AT SITE):						In alley between Building 3 a	and railroad tracks	Logged By: A. Tracy/P. Jorgensen	
CONTR	RACTO	OR AND	EQU	IPMENT	T:	Vironex/Geoprobe 6610 DT		P.G. Approval: P. Jorgensen #7806	
SAMPL	ING N	/IETHO	D:			Hand auger/Macrocore	MONITORING DEVICE:	MiniRae 2000	
START						3/21/13 12:00	FINISH DATE/TIME:	3/21/13 13:50	
				VEL(B		12.5 feet	CASING DEPTH(S):	20 feet	
				ON (MSI		18.63 feet/18.32 feet	SCREEN INTERVAL(S) (BGS):	10 - 20 feet	
TOTAL	BORI	NG DIA	AMETE	ER/DEP	TH:	8 inches/20 feet	SCREEN SLOT SIZE/TYPE:	0.020 inches/PVC	
Time	PID reading (ppm)	Samples Collected	Sample Recovery	Depth (feet)	USCS Classification		LITHOLOGIC DESCRIPTIO on, color, moisture, density, grain s ERMEABILITY ARE APPROXIMA	I #	
12:00		0, 0	0, 1	0		Asphalt 0 - 6"	0-5 feet bgs - hand augered,		
					SP		D with GRAVEL: reddish brow	n (5YR 4/4), 60% fine to coarse	
		MW1		1		sand, 40% fine gravel, dr	у		
	1.7	1		2				neat cement grout	
	1.7			_		Very strong odor		2-inch, Sch 40 PVC blank casing	
				3					
	0.0	MW1				-			
		1		4	CL	LEAN CLAY: black (5YR	2.5/1), 95% fines, 5% silt, med	lium plasticity, moist, firm, odor	
				5					
	0.0		/						
			/	6		√ very dark gray (5YR 3	/1)		
			/					bentonite	
			/	7				711	
				8					
			/						
			/	9		_			
				10		$\sqrt{}$ 90% fines, 10% coars	e sand		
			l /	10		dark gravish brown (1)	0YR 4/2), 80% fines, 10% silt,	10% fine sand_soft	
		MW1	/	11	1	Ψ dank grayion brown (1	011(4/2), 00 /0 miles, 10 /0 one,	To /s line dana, son	
	0.0	1] /						
			/	12		√ wet		#2/12 Monterey sand	
				13	ł	$\sqrt{}$ 90% fines, 10% silt, n	noist firm	2-inch, Sch 40 PVC,	
			1/	10		Ψ 30 /0 IIIIe3, 10 /0 3iii, II	noist, iiiii	0.020-inch slot screen	
			/	14					
			/	15					
			/	16	ł				
				.					
				17	1				
				40	-				
			1/	18					
			l/	19	1				
13:50	0.0		<u>L</u>			$\sqrt{}$ 90% fines, 10% fine to	coarse sand		
	20 Bottom of Boring at 20 feet bgs								
						Pa	age 1 of 1		
	r age i oi i								

		THE					BORING/WELL ID:						
environm	ental	Soi	URC	E G	ROUP, INC.		SV-1						
PROJECT						San Leandro Street, Oakland, CA	Project No. 04-PFT-004						
BORING L	OCATIO	N (AT	SITE):		Inside Building 3, near rollur		Logged By: P. Jorgensen						
CONTRAC				T:	Vironex/Geoprobe 6600		P.G. Approval: P. Jorgensen #7806	3					
SAMPLING	METHO	DD:			Hand auger/Macrocore	MONITORING DEVICE:	MiniRae 2000						
START DA	TE/TIME	:			3/22/13 9:25	FINISH DATE/TIME:	3/22/13 10:20						
FIRST/STA	TIC WA	TER LE	EVEL(B	GS):	NA	TUBING LENGTH:	7 feet						
SURFACE	ELEVAT	ION (N	/ISL):		19.70 feet	INTAKE SCREEN DEPTH (BGS	5.5 feet						
TOTAL BO	RING DI	AMET	ER/DEF	PTH:	2 inches/10 feet	SCREEN LENGTH/TYPE:	1-inch/stainless steel						
Time	Samples Collected	Sample Recovery	Depth (feet)	USCS Classification	ALL PERCENTAGES a	LITHOLOGIC DESCRIPTION (classification, color, moisture, density, grain size/plasticity, other) ALL PERCENTAGES and PERMEABILITY ARE APPROXIMATE UNLESS OTHERWISE STATED							
9:25			0	0.0	Concrete 0 - 4"	0-5 feet bgs - hand augered,		***					
7.6			2	SP	sand, 30% fine gravel, m very dark grayish brov	oist vn (10YR 3/2)	7.5YR 3/4), 70% fine to coarse neat cement grout 0.25-inch Teflon tubing	<i>*</i>					
12.4 13.4 6.4	-5		4 5 6	CL	LEAN CLAY: black (2.5Y firm, odor	EAN CLAY: black (2.5YR 2.5/1), 90% fines, 10% fine sand, medium plasticity, moist,							
12.: 15.: 11.: 10:20	SV-1 -9		7 8 9		√ very dark gray (5YR 3		#2/12 Monterey sand hydrated bentonite	77					
			10			Bottom of Boring at 10 feet	bgs						
			11	-									
			''										
			12	1									
			13	-									
			14										
			15										
			16										
			17	1									
			18	1									
			19	1									
			20										
					Pa	age 1 of 1							

CCI THE			BORING/WELL ID:						
SOURCE G	ROUP INC.		SV-2						
PROJECT NAME AND ADDRESS:		San Leandro Street, Oakland, CA	Project No. 04-PFT-004						
BORING LOCATION (AT SITE):	Inside Building 3, near rollur		Logged By: P. Jorgensen						
CONTRACTOR AND EQUIPMENT:	Vironex/Geoprobe 6600		P.G. Approval: P. Jorgensen #7806						
SAMPLING METHOD:	Hand auger/Macrocore	MONITORING DEVICE:	MiniRae 2000						
START DATE/TIME:	3/22/13 9:50	FINISH DATE/TIME:	3/22/13 10:50						
FIRST/STATIC WATER LEVEL(BGS):	NA	TUBING LENGTH:	7 feet						
SURFACE ELEVATION (MSL):	19.77 feet	INTAKE SCREEN DEPTH (BGS	5.5 feet						
TOTAL BORING DIAMETER/DEPTH:	2 inches/10 feet	SCREEN LENGTH/TYPE:	1-inch/stainless steel						
Firme PID reading (ppm) Samples Collected Sample Recovery O Depth (feet) USCS Classification	ALL PERCENTAGES as Concrete 0 - 4"	LITHOLOGIC DESCRIPTIOn, color, moisture, density, grain sond PERMEABILITY ARE APPROXISTATED 0-5 feet bgs - hand augered, son with GRAVEL: dark brown (2)	Size/plasticity, other) KIMATE UNLESS OTHERWISE Construction Details Details						
SV-2 -2.5	sand, 30% fine gravel, m	oist	neat cement grout % fine sand, medium plasticity,						
SV-2 -5 4	most, sort	oist, soft 0.25-inch Teflon tubing							
0.0 5 6 7	√ dark gray (7.5YR 4/1)		1-inch stainless steel vapor probe tip #2/12 Monterey sand						
10:50 SV-2 8 131 -10 9		Dattom of Paving at 10 fact	hydrated bentonite						
11		Bottom of Boring at 10 feet	bys						
12									
13									
15									
16									
18									
19									
1 1 1 20 1	I Pa	age 1 of 1	L						

CCI THE			BORING/WELL ID:		
	ROUP, INC.		SV-3		
		Care I are due Oterant Caldanal CA			
PROJECT NAME AND ADDRESS: BORING LOCATION (AT SITE):	Outside Building 3, near roll	San Leandro Street, Oakland, CA			
CONTRACTOR AND EQUIPMENT:	Vironex/Geoprobe 6600	up door at south end	P.G. Approval: P. Jorgensen #7806		
SAMPLING METHOD:	Hand auger/Macrocore	MONITORING DEVICE:	MiniRae 2000		
START DATE/TIME:	3/22/13 11:00	FINISH DATE/TIME:	3/22/13 12:10		
FIRST/STATIC WATER LEVEL(BGS):	NA	TUBING LENGTH:	7.5 feet		
SURFACE ELEVATION (MSL):	19.85 feet	INTAKE SCREEN DEPTH (BGS			
TOTAL BORING DIAMETER/DEPTH:	2 inches/10 feet	SCREEN LENGTH/TYPE:	1-inch/stainless steel		
Time PID reading (ppm) Samples Collected Sample Recovery O Depth (feet) USCS Classification	ALL PERCENTAGES an	LITHOLOGIC DESCRIPTIC on, color, moisture, density, grain s and PERMEABILITY ARE APPROX STATED	Size/plasticity, other) C Onstruction C Onstruction C Datails		
11:00	Concrete 0 - 12"	0-5 feet bgs - hand augered,	soil logged from cuttings.		
0.0 SV-3 2 CL	5% fine gravel, 5% fines, SANDY LEAN CLAY with	n GRAVEL: very dark brown (2	neat cement grout .5YR 3/1), 50% fines, 30% fine		
1.3 SV-3 4 CL		gravel, medium plasticity, moi	0.25-inch Teflon tubing sand, medium plasticity, moist,		
6.1 66.0 SV-3 8	√ dark gray (7.5YR 4/1)		1-inch stainless steel vapor probe tip #2/12 Monterey sand		
12:10 356.0			hydrated bentonite		
10		Bottom of Boring at 10 feet	bgs		
11					
12					
13					
14					
15					
16					
17					
18					
20	4				
	Pa	age 1 of 1	<u>'</u>		

C	C		ГНЕ			7 5		BORING/WELL ID:		
enviro	onmer	ntal	Sol	URC	E G	ROUP, INC.		SV-4		
PROJE	CT N	AME A	ND AD	DRES	S:	Former Paco Pumps, 9201	San Leandro Street, Oakland, CA	A Project No. 04-PFT-004		
BORIN	G LO	CATIO	N (AT	SITE):		Inside Building 3, at east co	rner	Logged By: P. Jorgensen		
CONT	RACTO	OR AN	D EQU	IIPMEN	IT:	Vironex/Hand auger		P.G. Approval: P. Jorgensen #7806	6	
SAMPLING METHOD:						Hand auger	MONITORING DEVICE:	MiniRae 2000		
START	DATI	E/TIME	:			3/22/13 7:50	FINISH DATE/TIME:	3/22/13 8:35		
FIRST/	STAT	IC WA	TER LE	EVEL(E	BGS):	NA	TUBING LENGTH:	7 feet		
SURFA					•	19.78 feet	INTAKE SCREEN DEPTH (BG	S 5.5 feet		
			•	ER/DEI	PTH:	2 inches/10 feet	SCREEN LENGTH/TYPE:	1-inch/stainless steel		
Time	PID reading (ppm	LITHOLOGIC DESCRIPTION (classification, color, moisture, density, grain size/plasticity, other) ALL PERCENTAGES and PERMEABILITY ARE APPROXIMATE UNLESS OTHERWISE STATED								
7:50				0		Concrete 0 - 6"	0-5 feet bgs - hand augered,		Vapor F Constru	
					SP		•	R 4/1), 75% fine to coarse sand,		
		SV-4		1		20% fine gravel, 5% fine	s, moist		-	
		-2.5	Ī	2	-			neat cement grout		
			1	~				0.25-inch Teflon tubing		
	1.1			3	CL	SANDY LEAN CLAY: bla	ack (2.5YR 2.5/1), 70% fines, 3	5		
						plasticity, moist	,,,	, , , , , , , , , , , , , , , , , , , ,		
		SV-4		4				dry bentonite		
	8.7	-5.5								
			/	5		odor		1-inch stainless steel	> •	
	24.3		/	6	CL	LEAN CLAV: block (2.5)	(D 2 E/1) 050/ fines E0/ fines	vapor probe tip sand, medium plasticity, moist	7	
		SV-4	/		CL	LEAN CLAT. DIACK (2.51	K 2.5/1), 95% lines, 5% lines	#2/12 Monterey sand		
		-8	/	7		$\sqrt{}$ 85% fines, 15% fine to	o coarse sand	#2/12 Monterey Sand	7	
	190		/			$\sqrt{}$ olive gray (5Y 4/2), st	rong odor	hydrated bentonite		
8:35			<u>/</u>	8			_	•		
							Bottom of Boring at 8.5 fee	et bgs		
				9						
				10						
				10						
				11	1					
				12	1					
				13	-					
				14	-					
				15						
				16						
				17	-					
				18						
				19						
				20						
						P	age 1 of 1			

			THE					BORING/WELL ID:		
enviro	nmer	ntal	So	URC	E G		SV-5			
PROJE	CT N						San Leandro Street, Oakland, CA	Project No. 04-PFT-004		
BORING	G LO	CATIO	N (AT	SITE):		Adjacent to west boundary	of UST excavation footprint	Logged By: P. Jorgensen		
CONTR	ACTO	OR ANI	D EQU	IPMEN	T:	Vironex/Geoprobe 6600		P.G. Approval: P. Jorgensen #7806	6	
SAMPL	ING N	/IETHO	D:			Hand auger/Macrocore	MONITORING DEVICE:	MiniRae 2000		
START	DATE	/TIME	:			3/22/13 12:30	FINISH DATE/TIME:	3/22/13 13:20		
FIRST/S	STATI	C WAT	TER LE	EVEL(B	GS):	NA	TUBING LENGTH:	7 feet		
SURFA	CE EI	LEVAT	ION (N	/ISL):		19.77 feet	INTAKE SCREEN DEPTH (BGS	5.5 feet		
TOTAL	BOR	ING DI	AMET	ER/DEF	PTH:	2 inches/10 feet	SCREEN LENGTH/TYPE:	1-inch/stainless steel		
Time	PID reading (ppm)	Samples Collected	Sample Recovery	Depth (feet)	USCS Classification	ALL PERCENTAGES at	LITHOLOGIC DESCRIPTION, color, moisture, density, grain on PERMEABILITY ARE APPROSTATED	size/plasticity, other) XIMATE UNLESS OTHERWISE	Vapor Probe Construction	
12:30				0		Concrete 0 - 4"	0-5 feet bgs - hand augered,			
				1	SP		,	7.5YR 3/4), 75% fine to coarse		
		SV-5 -3		2		sand, 25% fine gravel, m	oist, loose	neat cement grout		
	13.1	Ū		_				0.25-inch Teflon tubing		
				3	CL	LEAN CLAY: black (5YR	2.5/1), 90% fines, 10% fine sa	and, medium plasticity, moist, firm,	, odor	
	61.3	SV-5 -5		4				dry bentonite		
	84.5			5				4 in the state of a second		
	36.9			6	-	√ dark gray (5YR 4/1)		1-inch stainless steel vapor probe tip		
	30.9	SV-5 -9		7				#2/12 Monterey sand	7	
	526	-9		9	-			hydrated bentonite		
13:20				10			Bottom of Boring at 10 feet	has		
				11			Bottom of Boring at 10 leet	bys		
				12						
				13	_					
				14	-					
				15						
				16	-					
				17	1					
				18	1					
				19	-					
				20	<u> </u>					
				20		l				

		7	ГНЕ					BORING/WELL ID:		
envir	onmer			URC	E G	ROUP, INC.		SV-6		
				DRES			San Leandro Street, Oakland, CA	Project No. 04-PFT-004		
BORIN						Inside Building 1, east of M\		Logged By: P. Jorgensen		
				IPMEN	IT:	Vironex/Geoprobe 6600		P.G. Approval: P. Jorgensen #7806		
SAMPI						Hand auger/Macrocore	MONITORING DEVICE:	MiniRae 2000		
START	DATI	E/TIME	:			3/22/13 13:35	FINISH DATE/TIME:	3/22/13 15:00		
FIRST	STAT	IC WA	ΓER LI	EVEL(B	GS):	NA	TUBING LENGTH:	7 feet		
SURF						19.90 feet	INTAKE SCREEN DEPTH (BGS	5.5 feet		
				ER/DEF	PTH:	2 inches/10 feet	SCREEN LENGTH/TYPE:	1-inch/stainless steel		
13:35	PID reading (ppm)	Samples Collected	Sample Recovery	O Depth (feet)	USCS Classification		LITHOLOGIC DESCRIPTIOn, color, moisture, density, grain sond PERMEABILITY ARE APPROSTATED 0-5 feet bgs - hand augered,	Size/plasticity, other) KIMATE UNLESS OTHERWISE	Construction Details	
13.33				U	SP		with GRAVEL: dark reddish brown	(5VR 3/4) 80% fine to coarse		
		SV-6		1	35	sand, 20% fine gravel, mois		n (SYR 3/4), 80% fine to coarse		
	27.2	-3		2	CL	LEAN CLAY: very dark gray	(5Y 3/1), 85% fines, 15% fine sar	nd, medium plasticity, moist, firm, odor		
				3				0.25-inch Teflon tubing	77	
	14.7 42.9	SV-6 -5.5		5				dry bentonite		
			/	6	_	dork grov (7 EVP 4/1)		1-inch stainless steel, vapor probe tip	7	
	87.6 358			7		√ dark gray (7.5YR 4/1) strong odor		#2/12 Monterey sand		
	875	SV-6 -9		8				hydrated bentonite	7	
15:00	877		/	9				·		
				10			Bottom of Boring at 10 feet	bgs		
				11						
				12	1					
				13	1					
				14	1					
				15	1					
				16	1					
				17	1					
				18	-					
				19	1					
				20	-	1			ļ	
		•				Pa	age 1 of 1			

CCI THE			BORING/WELL ID:				
environmental SOURCE G	ROUP, INC.		SV-7				
PROJECT NAME AND ADDRESS:		San Leandro Street, Oakland, CA	Project No. 04-PFT-004				
BORING LOCATION (AT SITE):	Inside Building 1, east of MV		Logged By: P. Jorgensen				
CONTRACTOR AND EQUIPMENT:	Vironex/Geoprobe 6600		P.G. Approval: P. Jorgensen #7806				
SAMPLING METHOD:	Hand auger/Macrocore	MONITORING DEVICE:	MiniRae 2000				
START DATE/TIME:	3/22/13 14:00	FINISH DATE/TIME:	3/22/13 15:00				
FIRST/STATIC WATER LEVEL(BGS):	NA	TUBING LENGTH:	7 feet				
SURFACE ELEVATION (MSL):	19.89 feet	INTAKE SCREEN DEPTH (BGS	5.5 feet				
TOTAL BORING DIAMETER/DEPTH:	2 inches/10 feet	SCREEN LENGTH/TYPE:	1-inch/stainless steel				
Time Oi:PI Time PID reading (ppm) Samples Collected Sample Recovery O Depth (feet) USCS Classification		LITHOLOGIC DESCRIPTIOn, color, moisture, density, grain sond PERMEABILITY ARE APPROSTATED 0-5 feet bgs - hand augered,	Size/plasticity, other) KIMATE UNLESS OTHERWISE A DO THE CONSTRUCTION OF THE CONSTRU				
SP		with GRAVEL: dark brown (7.5YR					
1	20% fine gravel, moist						
SV-7 2 CI	LEAN OLAY	(EV 0/4) 0E0/ (" 4E0/ ("	neat cement grout				
-3 2 CL	LEAN CLAY: very dark gray	(5Y 3/1), 85% fines, 15% fine sar	nd, medium plasticity, moist, firm				
3		0.25-inch Teflon tubing					
SV-7 4 -5.5 5			dry bentonite				
			1-inch stainless steel				
0.7			vapor probe tip #2/12 Monterey sand				
SV-7 -9			hydrated bentonite				
15:00 1.0							
10		Bottom of Boring at 10 feet	bgs				
11							
12							
13							
14							
15							
16							
17							
18							
19							
20	-						
	Pa	age 1 of 1	L				

								BORING/WELL ID:		
S	G		CHE		- 0	noun Iuo				
enviro	onmer	ntal	DUI	UKC	Ł U	ROUP, INC.		SV-8		
PROJE	CT N	AME A	ND AD	DRES	S:		San Leandro Street, Oakland, Ca	A Project No. 04-PFT-004		
BORIN	G LO	CATIO	N (AT	SITE):		Inside Building 1, east of M\	V-4	Logged By: P. Jorgensen		
CONTRACTOR AND EQUIPMENT:						Vironex/Geoprobe 6600	T	P.G. Approval: P. Jorgensen #7806		
SAMPL	ING N	/IETHC	D:			Macrocore	MONITORING DEVICE:	MiniRae 2000		
START	DATE	/TIME	:			3/22/13 15:00	FINISH DATE/TIME:	3/22/13 15:40		
FIRST/	STATI	C WA	TER LE	EVEL(B	GS):	NA	TUBING LENGTH:	7 feet		
SURFA						19.91 feet	INTAKE SCREEN DEPTH (BG			
TOTAL	BOR	ING DI	AMET	ER/DEF	PTH:	2 inches/10 feet	SCREEN LENGTH/TYPE:	1-inch/stainless steel		
9 E 15:00	PID reading (ppm)	Samples Collected	Sample Recovery	O Depth (feet)	USCS Classification	ALL PERCENTAGES at Concrete 0 - 6"	STATED	size/plasticity, other) OXIMATE UNLESS OTHERWISE	Construction Details	
	0.0	SV-8		1	SP	sand, 20% fine gravel, m		(7.5YR 3/3), 80% fine to coarse neat cement grout		
		-3		2	CL	LEAN CLAY: very dark gray	(5Y 3/1), 85% fines, 15% fine sa	and, medium plasticity, moist, firm		
	0.0	SV-8		3				0.25-inch Teflon tubing	7	
		-5.5		5				dry bentonite		
	0.7	SV-8 -9		6 7 8				1-inch stainless steel vapor probe tip #2/12 Monterey sand hydrated bentonite	7	
15:40				10			Bottom of Boring at 10 fee	t bgs		
				11						
				12						
				13						
				14						
				15						
				16						
				17						
				18						
				19						
				20]	I Pa	age 1 of 1			

APPENDIX C WELL DEVELOPMENT FIELD FORMS

Groundwater Monitoring Well Development Form

DEVE	PROJECT NAME: PROJECT NO.: TASK NO.: WELL ID: ELOPMENT DATE: ELOPMENT TIME: PERSONNEL:	04-PFT-004 4 MW9 3/26/13 (000		RUH	16.7 -8.6 8.1 × 16		# o INITIA DEPTH TO BO WELL WELL VOLL	Orical rate: If volumes: L DTW (ft):
DTW	Time (24 hr)	No. Gallons	рН	EC (μS/cm)	Temp.	Color	Turbidity	Other Observations
8,6	1112	0	7.24	5.1	19.6	MILKY 3RH		
9.95	1116	2	7.03	1887	18.5	n		
10.4	1119	4	G.81	1450	18.3	Brann	-	
10.1	1124	6	6.81	1212	18,7	il		
9.60	1130	ğ	6.80	1274	1812	11		
9.60	1135	10	6.76	1284	18.2	U		
9.23	1140	12	6.79	1230	18.3	H	_	
						-		
							_	
	ļ <u></u>							
	<u> </u>							
	<u> </u>							
	<u> </u>							
		ons Purged:						
	Development Method		2" Submersible Pump	12 Volt Pump	Peristaltic Pump	Bailer	Surge Block	Air Lift Other
WELL DEVE	LOPMENT:					_		
C	DTW at Time of De	evelopment:		•				
COMMENTS	PURGERS	12	CANONS	DUIS	TO PA	RAMIETERS	STABIL	17INIG,
			·					
		isis — Alk	100 - 100 -				-363	

Groundwater Monitoring Well Development Form

DEVE	PROJECT NAME: PROJECT NO.: TASK NO.: WELL ID: ELOPMENT DATE: ELOPMENT TIME: PERSONNEL:	04-PFT-004 4 MW10 3/26/13		GAREI A	K	21,2 -8,4 12.8 x.16 2.048		DTW (ft): 3.4 TTOM (ft): 2.1.7 DIAM. (in): 2 ME (gals): 2.1.7 3°0064 (1 25°), h°3°0 16 (2°), h°3°0 26 (2.5°), h°3°0 38 "), h°3°0 65 (4°), h°3°1 5 (6°)
DTW	Time (24 hr)	No. Gallons	рН	EC (μS/cm)	Temp.	Color	Turbidity	Other Observations
8,4	1020	0	7,52	4.6	17.46	LT BRN		
10.6	1025	2	7,60	1771	18,3	IT BEM		
10.2	1024	4	7.44	1357	18.4	- 11		
9.08	1035	6	7,78	1076	18.5	- tı		100
9,10	1040	8	7.23	1023	18.5	VÍ		
9,40	1045	10	7.20	986	18,5	Le		=
8.60	1050	12	7.21	963 957	18.6	l (
9.40	1055	14	7.21	/3/	18,6	u		
							100	
	 				ļ			
	 							
					-			5.1ec
							10	
	Total Gall	ons Purged:	14					
	Development Method		2" Submersible Pump	12 Volt Pump	Peristaltic Pump	Bailer	Surge Block	Air Lift Other
WELL DEVE	I OPMENT							
ľ	DTW at Time of De	velopment:		•				
COMMENTS	:		•					
	PURGED	1400	Clonis	DUET	D PAR	PAMORR	- STABIO	UZATIOM.
							- 124 4 - 107 0	
							— precessor	

Groundwater Monitoring Well Development Form

	PROJECT NAME:	Paco Pump	S		Historical rate:					
	PROJECT NO.:	04-PFT-004			-			of volumes:		
	TASK NO.:	4			-					
	WELL ID:	MW11			-	10.70	INITIA	L DTW (ft): 8.55		
DEVE	ELOPMENT DATE:	3/26/13			-	19.82	DEPTH TO BO	OTTOM (ft): 19.2		
	ELOPMENT TIME:		-		-	8,37	WELL	DIAM. (in): 2		
521			Y/JOUR	CARLIA	-	10.65 * 10	6 WELL VOL			
	T ENGOINEE.	<u> </u>	1 / 3000	(1/100 O 1/F	1,00	- 19.2 - 8:55 10.65 * , 10 = 1.79 ~ () WELL VOL	UME (gals): 1.74 - 1 0 1.00 1.00 1.00 1.00 1.00 1.00 1.0		
DEVELOPM	ENT LOG:						•	3°), n°3°0 65 (4°), n°3°1 5 (6°)		
DTW	Time (24 hr)	No. Gallons	pН	EC (μS/cm)	Temp.	Color	Turbldity	Other Observations		
9	0913	0	6.00	1397	19.4	LT BRM.	_			
9.05	0927	2	7.83	16.0	16.6	1,				
4.05	0433	4	7.56	10.22	18.2	Ü	_			
9. 25	0441	6	7.46	(35)/844	183	<i>i/</i>				
8,90	0949	8	7.42	683	18,2	i/	_			
8.95	0454	10	7.42	668	18.3	91	·—			
8.80	0959	12	7,46	692	18,4	11	,			
010-		, –	77.0	0	<u>'</u>					
-										
	-									
		· · · · · · · · · · · · · · · · · · ·	-							
	1		10		<u> </u>	<u> </u>	77			
	Total Galle	ons Purged:	_12							
	Development Method		2" Submersible Pump	12 Volt Pump	Peristaltic Pump	Bailer	Surge Block	Air Lift Other		
WELL DEVE	I OPMENT:									
	OTW at Time of De	velopment:	···· ·	•						
COMMENTS	: D ~	11	. 0	DA 44		C .				
	FVEGEZ	<i>)</i> / C	gr ,	POHEIM	pross	STABIL	LIEUS.			
						47				

APPENDIX D SURVEYOR'S REPORT

Virgil Chavez Land Surveying

721 Tuolumne Street Vallejo, California 94590 (707) 553-2476 • Fax (707) 553-8698

May 3, 2013

Project No.: 2999-06

Paisha Jorgensen The Source Group, Inc. 3478 Buskirk Ave., Suite 100 Pleasant Hill, CA 94523

Subject:

Monitoring Well Survey 9201 San Leandro Street

Oakland, CA

Dear Paisha:

This is to confirm that we have proceeded at your request to survey the new wells at the above referenced location. The survey was completed on April 30, 2013. The benchmark for this survey was a PK nail and shiner in the median island on Hegenberger Ave., approximately 100 feet south of Coliseum Way. The latitude, longitude and coordinates are for top of casings and are based on the Calif. State Coordinate System, Zone III (NAD83). Benchmark Elev. =13.455 feet (NAVD 88).

<u>Latitude</u>	Longitude	Northing	Easting	Elev.	Desc.
		المستوال المستوال			
				18.84	RIM MW-9
37.7417721	-122.1858944	2096948.71	6074215.47	18.53	TOC MW-9
				18.64	RIM MW-10
37.7418981	-122.1860315	2096995.31	6074176.67	18.12	TOC MW-10
				18.63	RIM MW-11
37.7419871	-122.1861364	2097028.24	6074146.92	18.32	TOC MW-11
37.7419938	-122.1857519	2097028.70	6074258.14	19.70	SV-1
37.7419144	-122.1857296	2096999.68	6074264.07	19.77	SV-2
37.7418834	-122.1856328	2096987.88	6074291.84	19.85	SV-3
37.7420314	-122.1855667	2097041.42	6074311.91	19.78	SV-4
37.7419610	-122.1855264	2097015.57	6074323.12	19.77	SV-5
37.7424693	-122.1849880	2097197.81	6074482.10	19.90	SV-6
37.7425280	-122.1849534	2097219.02	6074492.49	19.89	SV-7
37.7424815	-122.1849144	2097201.86	6074503.45	19.91	SV-8

NO. 6323 EVA IR-31.14

Sincerely,

Virgil D. Chavez, PLS 6323

APPENDIX E GROUNDWATER SAMPLING FIELD FORMS

WELL GAUGING DATA

Project #	130405	-Cu1	Date4/\$	Date 4/5/13			source	GREET
Site	9201	SAN	LEASTRO	59.,	CAKLAND			

Well ID	Time	Well Size (in.)	Sheen / Odor		Thickness of Immiscible Liquid (ft.)		1	Depth to well bottom (ft.)	Po TOI	vey int: B or	Notes
Mu-1	0845						7.73	20.05			1.000
MW-Z	0900	Ч					9.19	20.14			
m -3	0910						8.65	19.98			
MW-4	0885	Ч					696	Zo.00			
MV-5	oeye	ч					7,45	20.03			
mw.c	0927	2					8.69	16.27			
MW-7	0930	2					8.70	27.05			
MW-8										-	*
MW-9	0056	2				,	6.20	16.67			
MW-10	०५६५	N				·	7.34	21.31		÷.	
MW -(1	oesi	2					7.53	19.40			
A5-15	0970	<u></u>	*****				B.50	16.50			
AS-ID	0924	l					8.40	32.93			
ASMU25	0939	2		···			8.47	16.90			
ASMW20	0943	2					9.66	33.71	ates and consideration of the constant of the		
E-1	0904	2					8.52	17.87			4
E-2	0915	2					0.61	18.24	<u> </u>	9	

WELL GAUGING DATA

Project #_	130405-Cur	_ Date	4/3/13	Client	THE	souret	Grore
		-					

Site 9201 SAN LEADORD ST, OAKLAND

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)		Immiscibles Removed	Depth to water	Depth to well bottom (ft.)	Surv Poir TOB (TO	nt: or	Notes
6-3	0923	2					8,67	(8.08		•	
E-4	0906	2					8.78	18.11			
6-5	0919	2					8.61	(8.0C		i i	
E-6	0910	2					Q .00	18.10			
E-7	0907	2					8.75	19,15			
E-0	caos	2					B,70	18.03			
E-9	0935	2					9.20	17.91		***	·
E-10											**
E-11	0934	L					8.29	17.89			
E-12	₀ 9७०	2			•		8.02	17.73	4).	
								·			
*	Not	acress	ible uni	der lar	e pool	of wate					•
* ×	Not	acees	evole,	pared	over						
								·			

WELLHEAD INSPECTION CHECKLIST

Page (of 2

Client Twe	Source	GROUP			Date	4151	3	***************************************
Site Address	9201 5	AN (6)	word	ST 8	AKLAN	0		
Job Number					~		K	TRICK SCHOOL STOCK
Well ID	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)	Repair Order Submitted
mw-l						*		
mw-2						4		
MW-3						4	·	
mw-4	à					x		
MW -5						4		
mv-6	. 4.			•				
Mr-7					***************************************	4		
MW-8								
MW-9	4				***			
MW-10	+				****			
MW-11	+							
AS-15	K							
AS-10						*	·	` ,
ASMW2S	4							
ASMW2D						+		
E-1						<i>t</i>		
NOTES:	1-4 Social	ittel	` > ,	6-1-2	12 30-	No Loca	ha	
AJ-10 -	In BOUTS	nu-l	-2/m	BOUTI	av.5	MISSING	UD -2/2	Bours
m-2-	12 Bouts	· mw	7 -212	- BOUTE	Asmi	120-1/2	BOLTS	BROKET IN TAG
Mw-3 No	D LID. W	en sox	BROKEN	NO LO	cu			<u>*************************************</u>
	~			·				2/19
		······································					· · · · · · · · · · · · · · · · · · ·	
								-

SEATTLE

WELLHEAD INSPECTION CHECKLIST

Page <u>4</u> of <u>7</u>

Client THE	Source	GNUR			Date	415	1,3	
Site Address	9201	SAN	LENGO	<u>ゆ</u> 5	1. 101	KLAND		
Site Address	130405	-ck1		Tech	nician	Cv-/:	S 1K	
Well ID	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)	Repair Order Submitted
6-2	4							
£-3	Į.		-					
٤-4						×.		
6-5	×							
E-6	+							
E-7	4							
E-B						+		
E-9						+	·	
E-10								
E-11	·					1		
€-12-						4		
			·					
,		·			ı			
					,			
NOTES:								
E-11 -1/2 0					_		IN WEL	1 CASING
e-0 men a	av bløver	<u> </u>	112 ()	4157 (1)) (Cero -)	Z BOCT J		
	~							

SEATTLE

		. 🔻	ELL MONIT	ORING DATA	SHEET	
Project #:	130405	5-014		Client: Sour	ce Group	
Sampler: '	SK			Date: 4-5		
Well I.D.:	MW-1			Well Diameter	: 2 3 4	6 8
Total Well	Depth (TD)): 20.	.v5	Depth to Wate	r (DTW): 7.	73
Depth to Fr	ee Produc	t:		Thickness of F	ree Product (fee	t):
Referenced	to:	€VC	Grade	D.O. Meter (if	req'd): (YSI HACH
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20)) + DTW]: (0,19
Purge Method:	Bailer Disposable B Positive Air I Electric Subr	Displaceme	ent Extrac Other	Waterra Peristaltic tion Pump	Sampling Method: Other:	Bailer Pisposable Bailer Extraction Port Dedicated Tubing
(1 Case Volume	Gals.) X Speci	3 fied Volum	$= \frac{24}{\text{Calculated Vo}}$	Gals. Gals. - Gals Gals.	er Multiplier Well Di 0.04 4" 0.16 6" 0.37 Other	0.65 1.47 radius ² * 0.163
Time	Temp	pН	Cond. (mS or (LS))	Turbidity (NTUs)	Gals. Removed	Observations
1050	18.1	6.87	843	874 :	8	
1052	18.0	7.10	838	~000K	16	:
1054	18.0	7.13	843	>1800	24	
				i i	e .	
Did well dev	water?	Yes (No)	Gallons actuall	y evacuated:	24
Sampling D	ate: 4-5-	13	Sampling Time	e: 110B	Depth to Water:	: 9.98
Sample I.D.				Laboratory:	Kiff CalScience	Other Accutest
Analyzed fo	r: TPH-G	BTEX	МТВЕ ТРН-D	Oxygenates (5)	Other: SEE	COC
EB I.D. (if a	pplicable)	4	@ Time	Duplicate I.D. ((if applicable):	
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	

mV

0.74

86

Pre-purge:

Pre-purge:

D.O. (if req'd):

O.R.P. (if req'd):

0.81

47

mV

Post-purge:

Post-purge:

V _LL MONITORING DATA SHL_T

Project #:	ckl	Client: SG1							
Sampler:	Cu			Date:	4/31,	3			
Well I.D.:	Mw-	2		Well D	iameter:	2 3	4	6 8	
Total Well I	Depth (TD): 2	0.14	Depth to Water (DTW): 8.19					
Depth to Fre	ee Product	•		Thickness of Free Product (feet):					
Referenced	to:	PVC	Grade	D.O. M	leter (if	req'd):	(YSI HACH	
DTW with 8	30% Recha	arge [(H	eight of Water	Column x 0.20) + DTW]: (0.58					
Purge Method:	Bailer Disposable B Positive Air I	Displaceme		Waterra Peristaltic tion Pump		Sampling M	Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubin	
		<u>~</u>			Well Diamete 1"	0.04	4"	Diameter Multiplier 0.65	
1 Case Volume	Gals.) X Speci:	3 fied Volum	$\frac{1}{1000} = \frac{23.4}{\text{Calculated Vo}}$	_ Gals.	2" 3"	0.16 0.37	6" Other	1.47 radius ² * 0.163	
	Temp		Cond.	1	oidity				
Time	(°F or C)	pН	(mS or (S)	(N)	rus)	Gals. Ren		Observations	·
1028	18.5	7.06	1084	(0)	<u> </u>	8.0			
1030	18.1	7,08	1100	9.	<u> </u>	16.0			
1032	18.2	7.06	1107	9.	3	24,	e e		
Did well de	water?	Yes ((NO)	Gallon	s actuall	y evacuate	ed:	24.0	
Sampling D	ate: 4(5)	1.3	Sampling Time	e: 🕮	£ 1040	Depth to	Wate	r: 8,45	
Sample I.D.	: MW-	2		Labora	tory:	Kiff Cals	Science	Other Accor	<u>'&\$7</u>
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other: 56	-6	Coc	
EB I.D. (if a	Duplicate I.D. (if applicable):								
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other:			
D.O. (if req'	d): Pj	e-purge:	0-71	Post-purge:			0.63	$^{ m mg}/_{ m L}$	
O.R.P. (if re	eq'd): (e	e-purge:	39	mV	P	ost-purge:		28	mV

W.L. MONITORING DATA SHE

Project #:	1304	105-6	iu	Client:	56	5 (
Sampler:	CK			Date:	415		***************************************	
Well I.D.:	Mv.	3		Well Dia	meter:	: 2 3	4	6 8
Total Well I	Depth (TD	r): \	19.98	Depth to	Water	(DTW):	8.	65
Depth to Fre	ee Product			Thickness of Free Product (feet):				
Referenced	to:	(VC)	Grade	D.O. Me	ter (if i	req'd):		(SI HACH
DTW with 8	30% Recha	arge [(H	leight of Water	Column :	x 0.20)	+ DTW]:	(().9~
	Bailer Disposable Ba Positive Air I Electric Subm	ailer Displaceme		Waterra Peristaltic tion Pump	ell Diameter	Sampling Me	ethod:	Bailer Disposable Bailer Extraction Port Dedicated Tubing
7. 4 (Case Volume	Gals.) XSpeci	3 fied Volum	$= \frac{27.7}{\text{Calculated Vo}}$	- Gals.	1" 2" · 3"	0.04 0.16 0.37	4" 6" Other	0.65 1.47 radius ² * 0.163
Time	Temp	pН	Cond. (mS or (1S)	Turbio (NTU	- 1	Gals. Remo	oved	Observations
1227	18.7	7.05	198	520	٩	7.5		
1229	18.7	7.03	643	468	3	15.0		
1231	(8,8)	7.01	689	260	3	22.5		
						ME		
Did well de	water?	Yes	No +	Gallons	actually	y evacuated	1: 2	22.5
Sampling D	ate: 4(5	13	Sampling Time	e: 1240	>	Depth to V	Vater	r:
Sample I.D.	: mu	3		Laborato	ory:	Kiff CalSc	ience	Other Accuses
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenate	es (5)	Other St	6 (Coc
EB I.D. (if a	ipplicable)):	@ Time	Duplicat	e I.D. (nw-3 oup @ 1245
Analyzed fo	or: TPH-G	втех	MTBE TPH-D	Oxygenate		Other:		
D.O. (if req'	d): Pa	re-purge:	E-10 0.8	Po mg/L	P	ost-purge:		0.63 mg/L
O.R.P. (if re	;q'd): (Pr	re-purge:	-106	mV	Po	ost-purge:		-102 mV

VILL MONITORING DATA SH. A

		,		OMING DATA	. ~				
Project #:	13040	15 - C	·k (Client: 56	<u>- (</u>				
Sampler:	Cu			Date: 4/51,3					
Well I.D.:	mw-4			Well Diameter:	: 2 3 🕸	6 8			
Total Well I	Depth (TD)): 7	Lo, 60	Depth to Water (DTW): 6.96					
Depth to Fro	ee Product	· producednos	and the second s	Thickness of F	ree Product (fee	et): —			
Referenced	to:	Pyc	Grade	D.O. Meter (if	req'd):	YSD HACH			
DTW with 8	80% Recha	arge [(H	leight of Water	Column x 0.20)		7.57			
Purge Method:	Bailer Disposable Ba Positive Air D Electric Subm	Displaceme		Waterra Peristaltic tion Pump	Sampling Method: Other:	Disposable Bailer Extraction Port Dedicated Tubing			
<u> </u>			MIN 5-77-11-11-11-11-11-11-11-11-11-11-11-11-	Well Diamete	er Multiplier Well I 0.04 4"	Diameter Multiplier 0.65			
8.5	Gals.) X	3	_ = 25.5	Gals. 2"	0.16 6"	1.47			
1 Case Volume		fied Volum	nes Calculated Vo	2"	0.37 Other	radius ² * 0.163			
Time	Temp	pН	Cond. (mS or uS)	Turbidity (NTUs)	Gals. Removed	Observations			
1054	17.8	7.13	857	506	8.5				
1056	m.3	7.11	957	240	(7.0				
1088	(7.2	7.10	270	296	25.5				
Did well de	water?	Yes ((j) ₀	Gallons actuall	y evacuated: 2	25.5			
Sampling D	ate: 4/51	13	Sampling Time	e: 1105	Depth to Water	r: 7.23			
Sample I.D.	: mw-1	4		Laboratory:	Kiff CalScience	e Other According			
Analyzed fo		BTEX	MTBE TPH-D	Oxygenates (5)	Other Ste (OC			
EB I.D. (if a	applicable)	-	@ Time	Duplicate I.D. (
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:				
D.O. (if req'	'd): Pr	re-purge;	0-53	$^{ m mg}/_{ m L}$ P	ost-purge:	0,56 mg/L			

100

mV

ost-purge.

mV

-9

O.R.P. (if req'd):

Pre-purge:

LL MONITORING DATA SH. T

Project #:	130405-CK	. \		Client:	The	Source	Gros	<u>up</u>	
Sampler:	SK		Ç.E.	Date:	9-5-13			¥	
Well I.D.:	MW-5		:	Well Di	ameter:	2 3	4	6 8	
Total Well I	Depth (TD)	: 28,0	3	Depth to	o Water	(DTW):	7.45	5	
Depth to Fre	ee Product:			Thickne	ess of Fr	ee Produc	ct (feet	t):	
Referenced	to:	PVC	Grade	D.O. Meter (if req'd): YSI HACH					
DTW with 8	80% Recha	rge [(He	eight of Water	Column	x 0.20)	+ DTW]:	9.	_97	
Purge Method:	Bailer Disposable Ba Positive Air D Mectric Subm	isplacemen		Waterra Peristaltic ion Pump	Well Diamete	Sampling N	Other:	Bailer Disposable Ba Extraction Po Dedicated Tub	rt
8.2 (c) 1 Case Volume	Gals.) XSpeci	Sied Volume	$= \frac{24.6}{\text{Calculated Vo}}$!!	1" 2" 3"	0.04 0.16 0.37	4" 6" Other	0.65 1.47 radius ² * 0.16	3
Time	Temp	pН	Cond. (mS or uS)	1 .	oidity TUs)	Gals. Ren	noved	Observation	ns [.]
11119	18.9	7.62	530	39	9	8.2	-		
1121	19.1	7.26	543	7/00) (c)	16.	4		
		Well	dewatered	10		16.5	⊙ ~	J	
	. A'								
1130	18.9	7.17	5 50	31	7	Grab)		
Did well de	water?	(Tes)	No 🗼 🚕	Gallons	s actuall	y evacuat	ed:	16.5	
Sampling D	Date: 4-5	-13	Sampling Tim	e: 1130	 	Depth to	Water	r: 9,60	
Sample I.D	: MWS).		Labora	tory:	Kiff Cal	Science	other Pocat	<u> </u>
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other:	50	EE COC	
EB I.D. (if	applicable)	:	@ Time	Duplica	ate I.D.	(if applica	ıble):		
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygena		Other:			
D.O. (if req	ı'd): P	re-purge:	0.69	mg/L	P	ost-purge:		0.53	$^{ m mg}/_{ m L}$
O.R.P. (if r	eq'd): P	re-purge:	35	mV	P	ost-purge:		[/	mV

W_L MONITORING DATA SHE.

Project #:	1304	105 -	cu!	Client: SG1						
Sampler:	cK			Date:	4/51,	3	,			
Well I.D.:	nw.	6.		Well I	Diameter:	: 2 3 4	6 8			
Total Well	Depth (TD): (₍	,,27	Depth to Water (DTW): 869						
Depth to Fro	ee Product			Thickness of Free Product (feet):						
Referenced	to:	rve	Grade	D.O. Meter (if req'd): ASI HACH						
DTW with 8	80% Rech	arge [(H	eight of Water	Colum	n x 0.20)) + DTW]: (0.21			
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme		Waterra Peristaltion tion Pump		Sampling Method: Other: Multiplier Well I 0.04 4"	Disposable Bailer Extraction Port Dedicated Tubing			
1 Case Volume		3 fied Volum	$= \frac{3. \text{G}}{\text{Calculated Vo}}$	_ Gals. olume	2" · 3"	0.16 6" 0.37 Other	1.47			
Time	Temp (°F or °C)) pH	Cond. (mS or ᡌ	ł	bidity TUs)	Gals. Removed	Observations			
1303	17.4	6.94	1556	φ	12	1.2				
1305	17.5	6.92	1880	8	54	2,4				
1307	7.5	6.92	1587	શું ૬	3	3.6				
Did well de	water?	Yes	No)	Gallor	s actuall	y evacuated:	3,6			
Sampling D	ate: 4/5	13	Sampling Time	e: 3	10	Depth to Wate	r: <i>2.</i> 73			
Sample I.D.	: mw-	ما	,	Labora	atory:	Kiff CalScience	e Other According			
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxyger	nates (5)	Other) SEE	COC			
EB I.D. (if a	applicable)) :	@ Time	Duplio	ate I.D.	(if applicable):				
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxyger	nates (5)	Other:				
D.O. (if req	'd): Pı	e purge.	0.93	mg/I	P	ost-purge:	0.97 mg/L			
O.R.P. (if re	ea'd): Pr	e-nurge	~123	mV	P	ost-nurge	-112 mV			

WELL MONITORING DATA SHEET

Project #:	130405-0	KI		Client: Source Group					
Sampler:	SK			Date: 4-5-13					
Well I.D.:	MW-7		1 (1 (4)) 1 (7)	Well Diameter: ② 3 4 6 8					
Total Well	Depth (TD)): Z	7.05	Depth to Wat	er (DTW): 🖇 🦪	70			
Depth to Fr	ee Product	•	→	Thickness of	Free Product (fee	et):			
Referenced	to:	PVC	Grade	D.O. Meter (i	f req'd):	YSI HACH			
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20)) + DTW]:	12.37			
•	Bailer Qisposable B Positive Air I Electric Subn	Displaceme		Waterra Peristaltic ction Pump Well Diame	0.04 4"	Extraction Port Dedicated Tubing Diameter Multiplier 0.65			
1 Case Volume	Gals.) X Speci	<u>ろ</u> fied Volum	_ = nes Calculated Vo	Gals. 2" olume 3"	0.16 6" 0.37 Other	1.47 radius ² * 0.163			
Time	Temp (°F or	pH	Cond. (mS or (LS))	Turbidity (NTUs)	Gals. Removed	Observations			
1020	18.2	7.19							
10 30	18.1	7.17	1129	>1000	G				
70 00	18.0	7 * * * * * * * * * * * * * * * * * * *	1000		1				
						w			
Did well dev	water?	Yes	[∕No)	Gallons actua	lly evacuated:	9.0			
Sampling D	ate: 45-13	>	Sampling Time	e: /033	Depth to Wate	r: 8,97			
Sample I.D.	: MV-7			Laboratory:	Kiff CalScience	e Other Arctest			
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: SEE	coc			
EB I.D. (if a	pplicable)		@ Time	Duplicate I.D. (if applicable):					
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	. 1 kg			
D.O. (if req'	d): Pr	e-purge:	0.63	mg/L	Post-purge:	0.49 ^{mg} /L			
Ö.R.P. (if re	q'd): Pr	e-purge:	4	mV	Post-purge:	-16 mV			

W.LL MONITORING DATA SHE

Project #:	1301	405-	ch i	Client:	56	-1		× ×	
Sampler:	CK			Date: 4	1151	13			
Well I.D.:	MWS	8		Well Diar	neter:	2 3	4	6 8	}
Total Well I	Depth (TD):		Depth to	Depth to Water (DTW):				
Depth to Fre	ee Product	://		Thickness	Thickness of Free Product (feet):				
Referenced	to:	PVC	Grade	D.O. Met	er (if i	req'd):		YSI	НАСН
DTW with 8	30% Recha	irge [(H	leight of Water	Column x	0.20)	+DTW]	•		
Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Disposable Bailer Positive Air Displacement Extraction Pump Extraction Port Electric Submersible Other N Dedicated Tubing Other: Well Diameter Multiplier Well Diameter Multiplier Multi									isposable Bailer Extraction Port edicated Tubing Multiplier
1 Case Volume	Gals.) X	fied Volum	nes Calculated Vo	_Gals.	2" · 3"	0.16 0.37	6" Other		1.47 radius ² * 0.163
Time	Temp (°F or °C)	pН	Cond. (mS or μS)	Turbidi (NTUs	- 1	Gals. Ren	noved	(Observations
*	UNAR	16 1	O LOCATE						
	COVE		BY MIETA		>1~ P				
	SUBI	rere	10 BY LA	264 F	DUND	<u> </u>			walder transfer out of the second sec
	No	SAN	Ple TAKE						
Did well dev	water?	Yes	No	Gallons a	ctuall	y evacuat	ed:		
Sampling D	ate:	W	Sampling Time	e:		Depth to	Water	r:	
Sample I.D.	: /			Laborator	y:	Kiff Cal	Science	Oth	ner
Analyzed fo	TPH-G	BTEX	мтве трн-d	Oxygenates	s (5)	Other:			
EB I.D. (if a	applicable)	l:	@ Time	Duplicate	I.D. ((if applica	ıble):		6
Analyzed fo	r: TPH-G	BTEX	мтве трн-d	Oxygenates	s (5)	Other:			
D.O. (if req'	'd): Pr	re-purge:		mg/L		ost-purge:			mg _{/L}
O.R.P. (if re	eq'd): Pr	re-purge:		mV	P	ost-purge:			mV

WELL MONITORING DATA SHEET

Project #:	130405-	CKI		Client: The Scource Group					
Sampler:	914			Date: 4-5-13					
Well I.D.:	MW -9			Well Diameter: 2 3 4 6 8					
Total Well	Depth (TD)): /C.	87	Depth to Wate	Depth to Water (DTW): 8.20				
Depth to Fr	ee Product	•		Thickness of I	Thickness of Free Product (feet):				
Referenced	to:	(EVD)	Grade	D.O. Meter (if	req'd):	VSP HACH			
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20) + DTW]:	9.92			
Purge Method: Bailer Waterra Sampling Method: Bailer Pisposable Bailer Peristaltic Positive Air Displacement Extraction Pump Extraction Port Electric Submersible Other Other: Well Diameter Multiplier Well Diameter Multiplier									
Time	Temp (°F or 🌑	pН	Cond. (mS or µS)	Turbidity (NTUs)	Gals. Removed	Observations			
1248	18.0	7.56	1809	2/000	1.4				
1249	18.0	7.47	1601	2/000	2.8				
1252	18,1	7.39	1478	>1000	4.2				
				V					
		-			·				
Did well dev	water?	Yes /		Gallons actual	ly evacuated:	4,2			
Sampling D	ate: 4-5-	13	Sampling Time	: 1255	Depth to Wate	r: 8,27			
Sample I.D.	: MW	-9		Laboratory:	Kiff CalScience	other Accutest			
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: SEE	Ecoc			
EB I.D. (if a	pplicable)	•	@ Time	Duplicate I.D.	(if applicable):				
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:				
D.O. (if req'	d): Pr	e-purge:	0.61	mg/L]	Post-purge:	0.55 mg/L			
O.R.P. (if re	q'd): Pr	e-purge:	39	mV I	Post-purge:	-9 mV			

parameter 1		. •	ELL MONIT	ORING	DATA	ShcET			
Project #:	130905-0	'K1		Client: The Source Group					
Sampler:	SIL			Client: The Source Group Date: 4-5-13					
Well I.D.:	pw-10			Well Diameter: 2 3 4 6 8					
Total Well	Depth (TD)): _{21.3}	31 .	Depth 1	to Wate:	r (DTW): 7.3	4		
Depth to Fr	ee Product	t:		Thickn	ess of F	ree Product (fee	et):		
Referenced	to:	PVC	Grade	D.O. M	leter (if	req'd):	YSP HACH		
DTW with	80% Rech	arge [(E	leight of Water	Column	x 0.20)) + DTW]: /(0,13		
Purge Method:	Bailer Disposable B Positive Air I Electric Subr	Displaceme	ent Extrac Other	Waterra Peristaltic ction Pump	Well Diamete		Diameter Multiplier		
2.2 (1 Case Volume	Gals.) X Speci	Sified Volum	= 6,6 nes Calculated Vo	_Gals. olume	1" 2" 3"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47 radius ² * 0.163		
Time	Temp (°F or ©	pН	Cond. (mS orus)	1	oidity Us)	Gals. Removed	Observations		
1212	19.4	7.67	1048	> /90	<u> </u>	2.7			
1215	19.2	7.54	1011	>/ & 0 c	>	4.4			
1218	19.3	7.48	996	>100	0	6.6			
	·					·			
Did well dev	water?	Yes (No	Gallons	actuall	y evacuated:	6.6		
Sampling D	ate: 4-5	5-13	Sampling Time	e: 12	25	Depth to Water	r: 7,43		
Sample I.D.	: MW-18	>		Laborat	tory:	Kiff CalScience	Other Accusest		
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	tes (5)	Other: SEE	CO C		
EB I.D. (if a	pplicable)	:	@ Time	Duplica	ite I.D. ((if applicable):	·		
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	tes (5)	Other:			
D.O. (if req'	d): Pr	e-purge:	0.54	$^{mg}/_{L}$	P	ost-purge:	0,50 ^{mg} /L		
O.R.P. (if re	q'd): Pr	e-purge:	65	mV	P	ost-purge:	37 mV		

ELL MONITORING DATA SHLET										
Project #:	/30\$05-	CK 1		Client: The Source Group						
Sampler:	SIL			Date: 4-5-13						
Well I.D.:	MW-11			Well Diameter	:: ② 3 4	6 8				
Total Well	Depth (TD): 19	-40	Depth to Wate	r (DTW): 7.5	3				
Depth to Fr	ee Product	:		Thickness of F	Free Product (fee	et):				
Referenced	to:	(VC)) Grade	D.O. Meter (if	req'd):	YSI) HACH				
DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: 9.90										
Purge Method: Bailer Waterra Sampling Method: Bailer Peristaltic Sisposable Bailer Peristaltic Submersible Other Dedicated Tubing Other: Positive Air Displacement Extraction Pump Electric Submersible Other Other:										
[I Case Volume	Speci	fied Volum	nes Calculated Vo	olume	0.37	1acres 0.105				
Time	Temp	pН	Cond. (mS or (uS)	Turbidity (NTUs)	Gals. Removed	Observations				
1145	18.5	7.36	687	>/600	2.0					
1146	18.8	7.38	690	>/000	4.0					
1149	18.9	7.41	697	>1000	5.7					
					,					
Did well dev	water?	Yes	6	Gallons actuall	y evacuated:	5.7				
Sampling Da	ate: 4-5-1	3	Sampling Time	e: 1155	Depth to Water	: 7.59				
Sample I.D.:	: MW-11			Laboratory:	Kiff CalScience	Other Reutest)				
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: SEE COC										
EB I.D. (if a	pplicable)	•	@ Time	Duplicate I.D. (if applicable):						
Analyzed fo	r. TDH C	BTEY	MTRE TRUD	Ovuganates (5)	Other					

mV

0.38

-58

mV

Post-purge:

Post-purge:

0.55

32

Pre-purge:

Pre-purge:

D.O. (if req'd):

O.R.P. (if req'd):

WELL MONITORING DATA SHEET										
Project #:	130405-0	l I		Client: SOUrce GROUP						
Sampler:	5 K			Date: 4-5-13						
Well I.D.:	E-7			Well I	Diameter	: D 3	4	6 8		
Total Well	Depth (TD):		Depth	to Wate	r (DTW):	8.8	1		
Depth to Fr	ee Product	: 18.	24	Thickr	ness of F	ree Produ	ct (feet)):		
Referenced	to:	, five	Grade	D.O. N	Meter (if	req'd):	Q	Sì HACH		
DTW with	80% Rech	arge [(F	leight of Water	Colum	n x 0.20)	+ DTW]:	10	.69		
Purge Method:	Bailer Kisposable B Positive Air I Electric Subn	Displaceme		Waterra Peristaltic tion Pump	;	Sampling M	Method: Other:	Bailer Desposable Bailer Extraction Port Dedicated Tubing		
1.5 (Gals.) X	3	4.5	_ Gals.	Well Diamete	0.04 0.16	Well Dia	0.65 1.47		
1 Case Volume	Speci	fied Volun	nes Calculated Vo	lume	3"	0.37	Other	radius² * 0.163		
Time	Temp) рН	Cond. (mS or aS)	1	bidity TUs)	Gals. Rem	noved	Observations		
0957	64.16	6.87	1119	>/©	00	1.5				
0959	64.48	6.91	1102	>10	00	3.0	2011 T			
1001	642500	6.94	1094	7101	90	4.5				
						res.				
				,		·				
Did well dev	water?	Yes (No	Gallon	s actuall	y evacuate	ed: 4	٠,5		
Sampling Da	ate: 4-5-	13	Sampling Time	e: /pc	5	Depth to	Water:	9.10		
Sample I.D.:	Er			Labora	itory:	Kiff Cals	Science	Other Accutest		
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other:	SEE	COC		
EB I.D. (if a	pplicable)	•	@ Time	Duplicate I.D. (if applicable):						
Ánalyzed fo	r: трн-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other:		<u>}</u>		

mV

Post-purge:

Post-purge:

mV

D.O. (if req'd):

O.R.P. (if req'd):

Pre-purge:

Pre-purge:

V_LL MONITORING DATA SHL_T

Project #:	130405-0	KI		Client: The Source Group					
Sampler:	SK			Date:	4-5-1			/	
Well I.D.:	E-3			Well D	iameter:	: ② 3	4	6 8	
Total Well I	Depth (TD)): 18.	08	Depth to Water (DTW): 8.67					
Depth to Fre	ee Product:			Thickness of Free Product (feet):					
Referenced	to:	PVC	Grade	D.O. M	leter (if	req'd):	(YSI HACH	
DTW with 8	30% Recha	ırge [(H	eight of Water	Column	x 0.20)	+ DTW]:	: 10).5S	
Purge Method:	Bailer Sisposable Ba Positive Air I Electric Subm	Displaceme		Waterra Peristaltic tion Pump		Sampling I	Method: Other:	Bailer Exisposable Bailer Extraction Port Dedicated Tubing	
T					Well Diamete	er Multiplier 0.04	Well D	iameter Multiplier 0.65	
1 Case Volume	Gals.) X Specif	3 fied Volum	$=\frac{4.5}{\text{Calculated Vo}}$	_ Gals. lume	2" 3"	0.16 0.37	6" Other	1.47 radius ² * 0.163	
Time	Temp (°F or ©	рН	Cond. (mS or (LS)	ŀ	oidity ΓUs)	Gals. Ren	noved	Observations	
1313	17.8	7.10	1241	>/08	%	1.5			
(315	17.8	7.02	1279	>/80)O	3.0			
1317	17.8	6.92	1285	>100	0	4.5			
			,						
Did well de	water?	Yes	No.	Gallons	s actuall	y evacuat	ed:	4.5	
Sampling D	ate: 4-5	-13	Sampling Time	e: 13	25	Depth to	Water	9.98	
Sample I.D.	: E-	3		Labora	tory:	Kiff Cal	Science	Othe (Accutes)	
Analyzed fo	or: TPH-G	BTEX	МТВЕ ТРН-D	Oxygena	ates (5)	Other:	SEC	E coc	
EB I.D. (if a	pplicable)	•	@ Time	Duplicate I.D. (if applicable):					
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	ates (5)	Other:		ī,		
D.O. (if req'	d): Pr	e-purge:	0.52	$^{ m mg}\!/_{ m L}$	P	ost-purge:		0.48 ^{mg} /L	
O.R.P. (if re	eq'd): Pr	e-purge:	-118	mV	P	ost-purge:		-134 mV	

V LLL MONITORING DATA SHLLT

Project #: j	130504-01	<u> </u>		Client:	The	Source G	royn
Sampler:	SK			Date:	4-5-13		
Well I.D.:	E-6			Well D	iameter:	2 3 4	6 8
Total Well I	Depth (TD)): 18	3.10	Depth 1	to Water	(DTW):	9-00
Depth to Fre	ee Product	•		Thickn	ess of Fi	ree Product (fe	eet):
Referenced 1	to:	PVO	Grade	D.O. M	leter (if	req'd):	(SD) HACH
DTW with 8	30% Recha	arge [(Ho	eight of Water	Column	1 x 0.20)	+ DTW]:	10.82
	Bailer Disposable Ba Positive Air D Electric Subm	Displacemer	nt Extract Other	Waterra Peristaltic tion Pump		Other Multiplier Well 0.04 4"	Extraction Port Dedicated Tubing
1 Case Volume	Gals.) X	fied Volum	$=\frac{4.5}{\text{Calculated Vo}}$	_Gals.	2" 3"	0.16 6" 0.37 Other	1.47 er radius² * 0.163
I Case volume	Oheen	Ted volum	es Calculated vo.	lume		T	
Time	Temp	рН	Cond. (mS or μ S)	i	bidity ΓUs)	Gals. Removed	l Observations
1339	18:7	6.94		١ / د	000	1.5	
134	18.7	7.00	1216	> (0		3,0	
1343	18.6	7.01	1190	7100	»O	4.5	
				ļ			
Did well dev	water?	Yes (N ₀	Gallon	s actuall	y evacuated:	4,5
Sampling D	ate: 4-5	-13	Sampling Time	e: 135	50	Depth to Wate	er: 9.53
Sample I.D.	: E-6			Labora	itory:	Kiff CalScience	ce Other Accutest
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other: SE	E coc
EB I.D. (if a	ipplicable)	:	@ Time	Duplic	ate I.D. ((if applicable):	
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	` '	Other:	
D.O. (if req'	d): Pr	re-purge:	0.51	$^{ m mg}\!/_{ m L}$	P	ost-purge:	0.44 mg/L
O.R.P. (if re	;q'd): Pr	re-purge:	-54	mV	P	ost-purge:	-/36 mV

V. LL MONITORING DATA SHLLT

Project #:	13040	>5 - C1	٠-(Client:	<u> 561</u>	<u> </u>				
Sampler:	Cu			Date: 4/5/13						
Well I.D.:	E-7			Well Diameter: (2) 3 4 6 8						
Total Well I	Depth (TD): (8.15	Depth to Water (DTW): とつら						
Depth to Fre	ee Product			Thickn	ess of Fi	ree Product (fee				
Referenced	to:	evc	Grade	D.O. M	leter (if	req'd):	YSI HACH			
DTW with 8	30% Recha	arge [(H	eight of Water	Column x 0.20) + DTW]: 10.63						
_	Bailer Disposable B Positive Air I Electric Subn	Displaceme		Waterra Peristaltic tion Pump		Sampling Method:	Disposable Bailer Extraction Port Dedicated Tubing			
Time	Temp (°F or C)	рН	Cond. (mS or(£S)		oidity (Us)	Gals. Removed	Observations			
1146	18.6	6.93	1649	47	9	1.5				
1148	18.8	691	1602	62	_3	3.0				
1150	18.8	6,91	1883	7	35	4.5				
٠							·			
Did well dev	water?	Yes (No	Gallons	s actuall;	y evacuated:	4.5			
Sampling D	ate: 415/	1,3	Sampling Time	e: 11 <i>5</i>	5	Depth to Wate	r: E. 65			
Sample I.D.	: e-	1		Labora	tory:	Kiff CalScience	e other Accuses 7			
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other Sec	coe			
EB I.D. (if a	ipplicable)	:	@ Time	Duplica	ate I.D. ((if applicable):	4:			
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5) Other:						
D.O. (if req'	d): P1	re-purge:) 0.70	mg/ _L	P	ost-purge:	0.59 mg/1			
O.R.P. (if re	eq'd): (Pi	re-purge:	-114	mV	þ	ost-purge:	-50 mV			

VLL MONITORING DATA SHLLT

Project #:	1304	65 -	Clel	Client: 561						
Sampler:	CK			Date:	4/5/	, 3				
Well I.D.:	6-8			Well D	iameter:	: ② 3	4	6 8		
Total Well I	Depth (TD): ([©]	2.03	Depth to Water (DTW): とって						
Depth to Fre	ee Product			Thickness of Free Product (feet):						
Referenced	to:	€VC)	Grade	D.O. M	leter (if	req'd):	·····	VSI)	HACH	
DTW with 8	30% Recha	arge [(H	eight of Water	Column	n x 0.20)	+ DTW]	: ,	0.57		
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme	nt Extrac	Waterra Peristaltic tion Pump		Sampling 1	Method: Other:	Dispo Extr	Bailer osable Bai raction Po- cated Tubi	rt
$\frac{1 \cdot 5}{1 \cdot 5} = \frac{4 \cdot 5}{1$										
Time	Temp (°F or °Ø)	pН	Cond. (mS or as)	1	oidity ΓUs)	Gals. Rer	noved	Obs	servation	ıs
1207	17.8	1.10	481	710) ذ	1.5				
1209	17.9	7.10	100	710	೦೦	3.0				
1211	17.9	7-08	725	710)ಕು	4.5			· · · · · · · · · · · · · · · · · · ·	
Did well de	water?	Yes (No	Gallon	s actuall	y evacuat	ed: ٤	1.5		
Sampling D	ate: 4/5/	13	Sampling Time	e: (21	5	Depth to	Water	r: 8.	18	
Sample I.D.	: E-	8		Labora	tory:	Kiff Cal	Science	Other	ACCUT	167
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other: Se	-6 C	, o-c		
EB I.D. (if a	npplicable)	•	@ Time	Duplica	ate I.D.	(if applica				
Analyzed fo	or: TPH-G	MTBE TPH-D	Oxygenates (5) Other:							
D.O. (if req'	d): P1	e-purge:	0-63	$^{\sf mg}\!/_{ m L}$	P	ost-purge:		0.	59	mg/L
O.R.P. (if re	eq'd): Pi	e-purge:	-126	mV	Ŕ	ost-purge:		-12	-1	mV

V. LLL MONITORING DATA SHLLT

	•						•				
Project #:	Project #: 130405 - cus					Client: 561					
Sampler:	CN			Date: 4/5/13							
Well I.D.:	E-12			Well Diameter: ② 3 4 6 8							
Total Well I			7.73	Depth	Depth to Water (DTW): 8.02						
Depth to Fro	ee Product			Thickt	ness of F	ree Product (fee	et):				
Referenced	to:	(PVC)	Grade	D.O. N	Meter (if	req'd):	(YSI) HACH				
DTW with 8	30% Recha	arge [(H	leight of Water	Colum	n x 0.20)	+ DTW]:	9.96				
Purge Method:	Bailer Disposable Ba Positive Air E Electric Subm	Displaceme	ent Extract	Waterra Peristaltic	c o	Sampling Method: Other:	Disposable Bailer Extraction Port Dedicated Tubing				
1 Case Volume	Gals.) X Specif	3 fied Volum	= 4.8 Calculated Vo	_ Gals.	1" 2" 3"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47				
Time	Temp	рН	Cond. (mS or (S)	1	rbidity (TUs)	Gals. Removed	Observations				
1005	19.3	6.77	987	71	000	1-6					
1007	18.9	6.78	967	71	000	3.2					
coog	(8,9	6.90	965	71	0 €/0.	4.8					
Did well de	water?	Yes	Mo)	 Gallor	ns actuall	y evacuated:	4.0				
Sampling D	a		Sampling Time			Depth to Water					
Sample I.D.				Labora		Kiff CalScience					
Analyzed fo		BTEX	MTBE TPH-D	Oxygen	nates (5)	Other. See C					
EB I.D. (if a	pplicable)):	@ Time	Duplic	cate I.D.	(if applicable):					
Analyzed fo		BTEX	MTBE TPH-D		nates (5)	Other:					
D.O. (if req'	d): Pr	re purge:	0.66	$^{ m mg}/_{ m L}$	P	ost-purge:	€.58 ^{mg} /L				
O.R.P. (if re	ea'd): Pr	re-purge:	A	mV	, k	ost-purge:	≈27 mV				

V. LL MONITORING DATA SHOT

Project #:	130405	5 - Cles		Client:	\$ 0	5		
Sampler:	cu		·	Date:	415	113		
Well I.D.:	KS-10			Well D	iameter:	② 3	4	6 8
Total Well I	Depth (TD): 3	2.97	Depth t	o Water	(DTW):	 B.	40
Depth to Fre	ee Product	•		Thickne	ess of Fr	ee Produ	ct (fee	et):
Referenced	to:	K VC	Grade	D.O. M	leter (if i	req'd):		(SI) HACH
DTW with 8	30% Recha	arge [(H	eight of Water	Column	x 0.20)	+ DTW]	: (3.31
C	Bailer Disposable B Positive Air I Electric Subn	Displaceme		Waterra Peristaltic tion Pump	Well Diamete	Sampling I	Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing Diameter Multiplier
3.91 (6		~	= l(.7		1" 2"	0.04 0.16	4" 6"	0.65 1.47
Case Volume		fied Volum		_ Gals. lume	3"	0.37	Other	radius ² * 0.163
Time	Temp (°F or °C)	рН	Cond. (mS or aS)	1	oidity 'Us)	Gals. Ren	noved	Observations
1120	18.6	7.25	727	\$3	~1	4.0		
1126	18.9	7.27	789	710	<i>vo</i>	8,0		
1132	(8,9)	7.27	784	711)VO	12-0	>	
Did well dev	water?	Yes (No	Gallons	actually	y evacuat	ed:	(2-0
Sampling D	ate: 415	113	Sampling Time	e: (13	5	Depth to	Wate	r: 6.C7
Sample I.D.	: AS-	(D		Laborat	tory:	Kiff Cal	Science	Other Accurts 7
Analyzed fo	r: TPH-G	BTEX	МТВЕ ТРН-D	Oxygena	ites (5)	Other: se	:	200
EB I.D. (if a	pplicable)):	@ Time	Duplica	ate I.D. ((if applica		
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ites (5)	Other:		
D.O. (if req'	d): Pi	rø-purge:	0.60	$^{ m mg}/_{ m L}$	P	øst-purge:		0.55 mg/1
O.R.P. (if re	q'd):	re-purge:	56	mV	(P	ost-purge:		34 mV

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	1E 5610	9201 SAN U	canor st.	PROJECT NUI	MBER ()0405-	cu	
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	ТЕМР.	INITIALS
My por	6210806	4/51.3	3900-5 CONDUCT	3903	465		CK
			7.60 (0.00 PH 7.00	1.03	4 <i>€</i> 5		Ch
	<u>.</u>		orp. 240	239	45	18°C	Cu
US1 550	08B100951	4/5/13	D/0 100 1.	96.9%	YES		Ch
Ultrameter My von C	6203098	4-5-13	and 3teoms	39 9 0 7.01 10.02 3.99	Yes	15.9 0	SIC
y st 550	06E1424A5	4-5-13 0615	D/0 100%	99.3	Yes	17.4	SK
	·		·				
			7				

APPENDIX F LABORATORY ANALYTICAL DATA – SOIL

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-48478-1 Client Project/Site: Paco Pumps

For:

The Source Group 3478 Buskirk Avenue, Suite 100 Pleasant Hill, California 94523

Attn: Mr. Paisha Jorgensen

Akanef Sal

Authorized for release by: 3/28/2013 4:15:32 PM

Afsaneh Salimpour Project Manager I

afsaneh.salimpour@testamericainc.com

·····LINKS ·······

Review your project results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48478-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
QC Sample Results	16
QC Association Summary	24
Lab Chronicle	27
Certification Summary	30
Method Summary	31
Sample Summary	32
Chain of Custody	33
Receipt Checklists	34

-5

4

Q

9

11

10

Definitions/Glossary

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48478-1

Qualifiers

GC Semi VOA

Qualifier	Qualifier Description
D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a
	dilution may be flagged with a D.
X	Surrogate is outside control limits

Glossary

TEQ

Toxicity Equivalent Quotient (Dioxin)

Abbreviation	These commonly used abbreviations may or may not be present in this report.
п	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

Case Narrative

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48478-1

Job ID: 720-48478-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-48478-1

Comments

No additional comments.

Receipt

The samples were received on 3/21/2013 5:30 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.6° C.

Except:

The container label for the following sample(s) did not match the information listed on the Chain-of-Custody (COC): The container labels list MW9-13. The COC listsMW9-9. Time matches. Labeled according to the coc.

GC/MS VOA

No analytical or quality issues were noted.

GC Semi VOA

 $Method(s)\ 8015B: Due\ to\ the\ level\ of\ dilution\ required\ for\ the\ following\ sample(s),\ surrogate\ recoveries\ are\ not\ reported:\ MW10-2.5\ (720-48478-4),\ MW11-2.5\ (720-48478-7),\ MW11-5\ (720-48478-8),\ MW9-2.5\ (720-48478-1).$

No other analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

-

5

6

q

10

4.0

13

Lab Sample ID: 720-48478-6

Lab Sample ID: 720-48478-7

Client: The Source Group Project/Site: Paco Pumps

Client Sample ID: MW9-2.5 Lab Sample ID: 720-48478-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Diesel Range Organics [C10-C28]	240		9.9		mg/Kg	10		8015B	Total/NA
Motor Oil Range Organics [C24-C36]	870		490		mg/Kg	10		8015B	Total/NA

Client Sample ID: MW9-4.5 Lab Sample ID: 720-48478-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type	
Diesel Range Organics [C10-C28]	2.1		0.98		mg/Kg	1	_	8015B	Total/NA	_

Client Sample ID: MW9-9 Lab Sample ID: 720-48478-3

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Diesel Range Organics [C10-C28]	4.0	0.99	mg/Kg	1	8015B	Total/NA

Client Sample ID: MW10-2.5 Lab Sample ID: 720-48478-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Gasoline Range Organics (GRO)	140000		17000		ug/Kg	100		8260B/CA_LUFT	Total/NA
-C5-C12								MS	
Diesel Range Organics [C10-C28]	4600		99		mg/Kg	100		8015B	Total/NA
Motor Oil Range Organics [C24-C36]	8800		4900		mg/Kg	100		8015B	Total/NA

Client Sample ID: MW10-5 Lab Sample ID: 720-48478-5

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Diesel Range Organics [C10-C28]	9.9	1.0	ma/Ka		8015B	Total/NA

Client Sample ID: MW10-12.5

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Diesel Range Organics [C10-C28]	1.5	0.99	mg/Kg	1	8015B	Total/NA

Client Sample ID: MW11-2.5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Xylenes, Total	46		8.7		ug/Kg	1	_	8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C5-C12	710		220		ug/Kg	1		8260B/CA_LUFT MS	Total/NA
Diesel Range Organics [C10-C28]	880		20		mg/Kg	20		8015B	Total/NA
Motor Oil Range Organics [C24-C36]	2100		990		mg/Kg	20		8015B	Total/NA

Client Sample ID: MW11-5 Lab Sample ID: 720-48478-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Gasoline Range Organics (GRO)	2500		160		ug/Kg	1	_	8260B/CA_LUFT	Total/NA
-C5-C12								MS	
Diesel Range Organics [C10-C28]	780		10		mg/Kg	10		8015B	Total/NA
Motor Oil Range Organics [C24-C36]	1000		500		mg/Kg	10		8015B	Total/NA

Client Sample ID: MW11-12.5 Lab Sample ID: 720-48478-9

This Detection Summary does not include radiochemical test results.

Detection Summary

Client: The Source Group Project/Site: Paco Pumps

Client Sample ID: MW11-12.5 (Continued)

TestAmerica Job ID: 720-48478-1

Lab Sample ID: 720-48478-9

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Diesel Range Organics [C10-C28]	2.7	0.98	mg/Kg	1	8015B	Total/NA

4

7

4.6

11

12

4 /

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48478-1

Lab Sample ID: 720-48478-1

Analyzed

Dil Fac

Matrix: Solid

Client Sample ID: MW9-2.5
Date Collected: 03/21/13 08:00
Date Received: 03/21/13 17:30

Analyte

Method: 8015B - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
MTBE	ND		3.6		ug/Kg		03/22/13 21:05	03/22/13 22:55	1
Benzene	ND		3.6		ug/Kg		03/22/13 21:05	03/22/13 22:55	1
Ethylbenzene	ND		3.6		ug/Kg		03/22/13 21:05	03/22/13 22:55	1
Toluene	ND		3.6		ug/Kg		03/22/13 21:05	03/22/13 22:55	1
Xylenes, Total	ND		7.1		ug/Kg		03/22/13 21:05	03/22/13 22:55	1
Gasoline Range Organics (GRO)	ND		180		ug/Kg		03/22/13 21:05	03/22/13 22:55	1
-C5-C12									
TBA	ND		7.1		ug/Kg		03/22/13 21:05	03/22/13 22:55	1
DIPE	ND		3.6		ug/Kg		03/22/13 21:05	03/22/13 22:55	1
TAME	ND		3.6		ug/Kg		03/22/13 21:05	03/22/13 22:55	1
Ethyl t-butyl ether	ND		3.6		ug/Kg		03/22/13 21:05	03/22/13 22:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	67		45 - 131				03/22/13 21:05	03/22/13 22:55	1
1,2-Dichloroethane-d4 (Surr)	115		60 - 140				03/22/13 21:05	03/22/13 22:55	1
Toluene-d8 (Surr)	87		58 - 140				03/22/13 21:05	03/22/13 22:55	1

Diesel Range Organics [C10-C28] Motor Oil Range Organics	240 870		9.9 490	mg/Kg mg/Kg	03/22/13 10:27 03/22/13 10:27	03/25/13 15:06 03/25/13 15:06	10 10
[C24-C36] Surrogate	%Recovery	Qualifier	Limits		Prepared	Analvzed	Dil Fac
p-Terphenyl		X D	40 - 130		03/22/13 10:27	03/25/13 15:06	10

RL

MDL Unit

Prepared

RL

4.6

4.6

4.6

4.6

9.1

230

9.1

4.6

4.6

MDL Unit

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48478-1

Lab Sample ID: 720-48478-2

Matrix: Solid

Client Sample ID: MW9-4.5 Date Collected: 03/21/13 08:05

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Result Qualifier

ND

ND

ND

ND

ND

ND

ND

ND

ND

Date Received: 03/21/13 17:30

Gasoline Range Organics (GRO)

Analyte

Benzene

Toluene

-C5-C12 TBA

DIPE

TAME

Ethylbenzene

Xylenes, Total

MTBE

D	Prepared	Analyzed	Dil Fac
	03/22/13 21:05	03/22/13 23:24	1
	03/22/13 21:05	03/22/13 23:24	1
	03/22/13 21:05	03/22/13 23:24	1
	03/22/13 21:05	03/22/13 23:24	1
	03/22/13 21:05	03/22/13 23:24	1
	03/22/13 21:05	03/22/13 23:24	1
	03/22/13 21:05	03/22/13 23:24	1
	03/22/13 21:05	03/22/13 23:24	1

03/22/13 23:24

03/22/13 21:05

Ethyl t-butyl ether	ND	4.6	ug/Kg	03/22/13 21:05	03/22/13 23:24	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	64	45 - 131		03/22/13 21:05	03/22/13 23:24	1
1,2-Dichloroethane-d4 (Surr)	114	60 - 140		03/22/13 21:05	03/22/13 23:24	1
Toluene-d8 (Surr)	88	58 - 140		03/22/13 21:05	03/22/13 23:24	1

Method: 8015B - Diesel Range O	rganics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	2.1		0.98		mg/Kg		03/22/13 10:27	03/25/13 13:05	1
Motor Oil Range Organics [C24-C36]	ND		49	1	mg/Kg		03/22/13 10:27	03/25/13 13:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenvl	94		40 - 130				03/22/13 10:27	03/25/13 13:05	

4.0

10

12

IR

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48478-1

Lab Sample ID: 720-48478-3

Matrix: Solid

Client Sample ID: MW9-9 Date Collected: 03/21/13 08:30 Date Received: 03/21/13 17:30

Method: 8260B/CA_LUFTMS - 8 Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
MTBE	ND		3.8		ug/Kg		03/22/13 21:05	03/22/13 23:53	1
Benzene	ND		3.8		ug/Kg		03/22/13 21:05	03/22/13 23:53	1
Ethylbenzene	ND		3.8		ug/Kg		03/22/13 21:05	03/22/13 23:53	1
Toluene	ND		3.8		ug/Kg		03/22/13 21:05	03/22/13 23:53	1
Xylenes, Total	ND		7.6		ug/Kg		03/22/13 21:05	03/22/13 23:53	1
Gasoline Range Organics (GRO)	ND		190		ug/Kg		03/22/13 21:05	03/22/13 23:53	1
-C5-C12									
TBA	ND		7.6		ug/Kg		03/22/13 21:05	03/22/13 23:53	1
DIPE	ND		3.8		ug/Kg		03/22/13 21:05	03/22/13 23:53	1
TAME	ND		3.8		ug/Kg		03/22/13 21:05	03/22/13 23:53	1
Ethyl t-butyl ether	ND		3.8		ug/Kg		03/22/13 21:05	03/22/13 23:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	79		45 - 131				03/22/13 21:05	03/22/13 23:53	1
1,2-Dichloroethane-d4 (Surr)	109		60 - 140				03/22/13 21:05	03/22/13 23:53	1
Toluene-d8 (Surr)	91		58 ₋ 140				03/22/13 21:05	03/22/13 23:53	1

Method: 8015B - Diesel Range O	rganics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	4.0		0.99		mg/Kg		03/22/13 10:27	03/25/13 13:29	1
Motor Oil Range Organics [C24-C36]	ND		49		mg/Kg		03/22/13 10:27	03/25/13 13:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	94	-	40 - 130				03/22/13 10:27	03/25/13 13:29	

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48478-1

Lab Sample ID: 720-48478-4

Matrix: Solid

Client Sample ID: MW10-2.5 Date Collected: 03/21/13 09:15

Method: 8015B - Diesel Range Organics (DRO) (GC)

Date Received: 03/21/13 17:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		350		ug/Kg		03/21/13 19:30	03/27/13 00:54	100
Gasoline Range Organics (GRO) -C5-C12	140000		17000		ug/Kg		03/21/13 19:30	03/27/13 00:54	100
Ethylbenzene	ND		350		ug/Kg		03/21/13 19:30	03/27/13 00:54	100
MTBE	ND		350		ug/Kg		03/21/13 19:30	03/27/13 00:54	100
TAME	ND		350		ug/Kg		03/21/13 19:30	03/27/13 00:54	100
Ethyl t-butyl ether	ND		350		ug/Kg		03/21/13 19:30	03/27/13 00:54	100
Toluene	ND		350		ug/Kg		03/21/13 19:30	03/27/13 00:54	100
EDB	ND		350		ug/Kg		03/21/13 19:30	03/27/13 00:54	100
Xylenes, Total	ND		690		ug/Kg		03/21/13 19:30	03/27/13 00:54	100
1,2-Dichloroethane	ND		350		ug/Kg		03/21/13 19:30	03/27/13 00:54	100
TBA	ND		690		ug/Kg		03/21/13 19:30	03/27/13 00:54	100
DIPE	ND		350		ug/Kg		03/21/13 19:30	03/27/13 00:54	100

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	4600		99	mg/k	(g	03/22/13 10:27	03/25/13 15:31	100
Motor Oil Range Organics [C24-C36]	8800		4900	mg/k	(g	03/22/13 10:27	03/25/13 15:31	100
Surrogate p-Terphenyl	%Recovery	Qualifier X D	Limits 40 - 130			Prepared 03/22/13 10:27	Analyzed 03/25/13 15:31	Dil Fac

6

9

11

Client: The Source Group Project/Site: Paco Pumps

Surrogate

p-Terphenyl

TestAmerica Job ID: 720-48478-1

Lab Sample ID: 720-48478-5

Prepared

Analyzed

Matrix: Solid

Client Sample ID: MW10-5
Date Collected: 03/21/13 09:35
Date Received: 03/21/13 17:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
MTBE	ND		4.0		ug/Kg		03/21/13 19:30	03/25/13 23:19	1
Benzene	ND		4.0		ug/Kg		03/21/13 19:30	03/25/13 23:19	1
Ethylbenzene	ND		4.0		ug/Kg		03/21/13 19:30	03/25/13 23:19	1
Toluene	ND		4.0		ug/Kg		03/21/13 19:30	03/25/13 23:19	1
Xylenes, Total	ND		8.1		ug/Kg		03/21/13 19:30	03/25/13 23:19	1
Gasoline Range Organics (GRO) -C5-C12	ND		200		ug/Kg		03/21/13 19:30	03/25/13 23:19	1
TBA	ND		8.1		ug/Kg		03/21/13 19:30	03/25/13 23:19	1
DIPE	ND		4.0		ug/Kg		03/21/13 19:30	03/25/13 23:19	1
TAME	ND		4.0		ug/Kg		03/21/13 19:30	03/25/13 23:19	1
Ethyl t-butyl ether	ND		4.0		ug/Kg		03/21/13 19:30	03/25/13 23:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene	102		45 - 131				03/21/13 19:30	03/25/13 23:19	
1,2-Dichloroethane-d4 (Surr)	111		60 - 140				03/21/13 19:30	03/25/13 23:19	1
Toluene-d8 (Surr)	105		58 - 140				03/21/13 19:30	03/25/13 23:19	1
- Method: 8015B - Diesel Range Or	ganics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	9.9		1.0		mg/Kg		03/22/13 10:27	03/25/13 13:53	1
Motor Oil Range Organics [C24-C36]	ND		50		mg/Kg		03/22/13 10:27	03/25/13 13:53	1

Limits

40 - 130

%Recovery Qualifier

103

3/28/2013

Dil Fac

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48478-1

Lab Sample ID: 720-48478-6

Matrix: Solid

Client Sample ID: MW10-12.5
Date Collected: 03/21/13 09:55
Date Received: 03/21/13 17:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
MTBE	ND		3.9		ug/Kg		03/21/13 19:30	03/26/13 17:38	1
Benzene	ND		3.9		ug/Kg		03/21/13 19:30	03/26/13 17:38	1
Ethylbenzene	ND		3.9		ug/Kg		03/21/13 19:30	03/26/13 17:38	1
Toluene	ND		3.9		ug/Kg		03/21/13 19:30	03/26/13 17:38	1
Xylenes, Total	ND		7.8		ug/Kg		03/21/13 19:30	03/26/13 17:38	1
Gasoline Range Organics (GRO) -C5-C12	ND		200		ug/Kg		03/21/13 19:30	03/26/13 17:38	1
TBA	ND		7.8		ug/Kg		03/21/13 19:30	03/26/13 17:38	1
DIPE	ND		3.9		ug/Kg		03/21/13 19:30	03/26/13 17:38	1
TAME	ND		3.9		ug/Kg		03/21/13 19:30	03/26/13 17:38	1
Ethyl t-butyl ether	ND		3.9		ug/Kg		03/21/13 19:30	03/26/13 17:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	100		45 - 131				03/21/13 19:30	03/26/13 17:38	1
1,2-Dichloroethane-d4 (Surr)	105		60 - 140				03/21/13 19:30	03/26/13 17:38	1
Toluene-d8 (Surr)	106		58 - 140				03/21/13 19:30	03/26/13 17:38	1
Method: 8015B - Diesel Range O	ganics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	1.5		0.99		mg/Kg		03/22/13 10:27	03/25/13 14:18	1
Motor Oil Range Organics [C24-C36]	ND		50		mg/Kg		03/22/13 10:27	03/25/13 14:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	93		40 - 130				03/22/13 10:27	03/25/13 14:18	1

3

6

8

10

11

12

Client: The Source Group Project/Site: Paco Pumps

Client Sample ID: MW11-2.5

Date Collected: 03/21/13 13:05

Date Received: 03/21/13 17:30

Surrogate

p-Terphenyl

TestAmerica Job ID: 720-48478-1

Lab Sample ID: 720-48478-7

Prepared

Analyzed

Dil Fac

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
MTBE	ND		4.4		ug/Kg		03/21/13 19:30	03/26/13 18:07	1
Benzene	ND		4.4		ug/Kg		03/21/13 19:30	03/26/13 18:07	1
Ethylbenzene	ND		4.4		ug/Kg		03/21/13 19:30	03/26/13 18:07	1
Toluene	ND		4.4		ug/Kg		03/21/13 19:30	03/26/13 18:07	1
Xylenes, Total	46		8.7		ug/Kg		03/21/13 19:30	03/26/13 18:07	1
Gasoline Range Organics (GRO) -C5-C12	710		220		ug/Kg		03/21/13 19:30	03/26/13 18:07	1
TBA	ND		8.7		ug/Kg		03/21/13 19:30	03/26/13 18:07	1
DIPE	ND		4.4		ug/Kg		03/21/13 19:30	03/26/13 18:07	1
TAME	ND		4.4		ug/Kg		03/21/13 19:30	03/26/13 18:07	1
Ethyl t-butyl ether	ND		4.4		ug/Kg		03/21/13 19:30	03/26/13 18:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	101		45 - 131				03/21/13 19:30	03/26/13 18:07	1
1,2-Dichloroethane-d4 (Surr)	105		60 - 140				03/21/13 19:30	03/26/13 18:07	1
Toluene-d8 (Surr)	107		58 - 140				03/21/13 19:30	03/26/13 18:07	1
- Method: 8015B - Diesel Range O	ganics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	880		20		mg/Kg		03/22/13 10:27	03/25/13 15:55	20
Motor Oil Range Organics [C24-C36]	2100		990		mg/Kg		03/22/13 10:27	03/25/13 15:55	20

Limits

40 - 130

%Recovery Qualifier

0 XD

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48478-1

Lab Sample ID: 720-48478-8 Matrix: Solid

Client Sample ID: MW11-5 Date Collected: 03/21/13 13:20 Date Received: 03/21/13 17:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
MTBE	ND		3.3		ug/Kg		03/21/13 19:30	03/26/13 00:46	1
Benzene	ND		3.3		ug/Kg		03/21/13 19:30	03/26/13 00:46	1
Ethylbenzene	ND		3.3		ug/Kg		03/21/13 19:30	03/26/13 00:46	1
Toluene	ND		3.3		ug/Kg		03/21/13 19:30	03/26/13 00:46	1
Xylenes, Total	ND		6.5		ug/Kg		03/21/13 19:30	03/26/13 00:46	1
Gasoline Range Organics (GRO) -C5-C12	2500		160		ug/Kg		03/21/13 19:30	03/26/13 00:46	1
TBA	ND		6.5		ug/Kg		03/21/13 19:30	03/26/13 00:46	1
DIPE	ND		3.3		ug/Kg		03/21/13 19:30	03/26/13 00:46	1
TAME	ND		3.3		ug/Kg		03/21/13 19:30	03/26/13 00:46	1
Ethyl t-butyl ether	ND		3.3		ug/Kg		03/21/13 19:30	03/26/13 00:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	119		45 - 131				03/21/13 19:30	03/26/13 00:46	1
1,2-Dichloroethane-d4 (Surr)	110		60 - 140				03/21/13 19:30	03/26/13 00:46	1
Toluene-d8 (Surr)	104		58 - 140				03/21/13 19:30	03/26/13 00:46	1
Method: 8015B - Diesel Range O	rganics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	780		10		mg/Kg		03/22/13 10:27	03/25/13 16:19	10
Motor Oil Range Organics [C24-C36]	1000		500		mg/Kg		03/22/13 10:27	03/25/13 16:19	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl		X D	40 - 130				03/22/13 10:27	03/25/13 16:19	10

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48478-1

Client Sample ID: MW11-12.5

Date Collected: 03/21/13 13:50 Date Received: 03/21/13 17:30 Lab Sample ID: 720-48478-9

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
MTBE	ND		4.1		ug/Kg		03/21/13 19:30	03/26/13 01:15	1
Benzene	ND		4.1		ug/Kg		03/21/13 19:30	03/26/13 01:15	1
Ethylbenzene	ND		4.1		ug/Kg		03/21/13 19:30	03/26/13 01:15	1
Toluene	ND		4.1		ug/Kg		03/21/13 19:30	03/26/13 01:15	1
Xylenes, Total	ND		8.2		ug/Kg		03/21/13 19:30	03/26/13 01:15	1
Gasoline Range Organics (GRO) -C5-C12	ND		200		ug/Kg		03/21/13 19:30	03/26/13 01:15	1
-05-012 TBA	ND		8.2		ug/Kg		03/21/13 19:30	03/26/13 01:15	1
DIPE	ND		4.1		ug/Kg		03/21/13 19:30	03/26/13 01:15	1
TAME	ND		4.1		ug/Kg		03/21/13 19:30	03/26/13 01:15	1
Ethyl t-butyl ether	ND		4.1		ug/Kg		03/21/13 19:30	03/26/13 01:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	107		45 - 131				03/21/13 19:30	03/26/13 01:15	1
1,2-Dichloroethane-d4 (Surr)	105		60 - 140				03/21/13 19:30	03/26/13 01:15	1
Toluene-d8 (Surr)	106		58 - 140				03/21/13 19:30	03/26/13 01:15	1
- Method: 8015B - Diesel Range O	rganics (DRO)	(GC)							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	2.7		0.98		mg/Kg		03/22/13 10:27	03/25/13 14:42	1
Motor Oil Range Organics [C24-C36]	ND		49		mg/Kg		03/22/13 10:27	03/25/13 14:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	96		40 - 130				03/22/13 10:27	03/25/13 14:42	

Client: The Source Group Project/Site: Paco Pumps

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Lab Sample ID: MB 720-132920/4

Matrix: Solid

Analysis Batch: 132920

Client Sample ID: Method Blank

Prep Type: Total/NA

		MB	MB							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Benzene	ND		5.0		ug/Kg			03/22/13 19:32	1
	Ethylbenzene	ND		5.0		ug/Kg			03/22/13 19:32	1
ı	MTBE	ND		5.0		ug/Kg			03/22/13 19:32	1
	Gasoline Range Organics (GRO)	ND		250		ug/Kg			03/22/13 19:32	1
	-C5-C12 Toluene	ND		5.0		ug/Kg			03/22/13 19:32	1
	Xylenes, Total	ND		10		ug/Kg			03/22/13 19:32	1
	TAME	ND		5.0		ug/Kg			03/22/13 19:32	1
ı	Ethyl t-butyl ether	ND		5.0		ug/Kg			03/22/13 19:32	1
	TBA	ND		10		ug/Kg			03/22/13 19:32	1
	DIPE	ND		5.0		ug/Kg			03/22/13 19:32	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene 90 45 - 131 03/22/13 19:32 1,2-Dichloroethane-d4 (Surr) 113 60 - 140 03/22/13 19:32 Toluene-d8 (Surr) 58 - 140 03/22/13 19:32 97

Lab Sample ID: LCS 720-132920/5

Matrix: Solid

Analysis Batch: 132920

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	50.0	48.6		ug/Kg		97	70 - 130	
Ethylbenzene	50.0	50.3		ug/Kg		101	80 - 137	
MTBE	50.0	57.5		ug/Kg		115	70 - 144	
Toluene	50.0	48.0		ug/Kg		96	80 - 128	
TAME	50.0	47.4		ug/Kg		95	70 - 140	
Ethyl t-butyl ether	50.0	51.3		ug/Kg		103	70 - 130	
TBA	1000	893		ug/Kg		89	63 - 130	
DIPE	50.0	56.9		ug/Kg		114	70 - 131	
I and the second								

	LCS LCS	
Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene	110	45 - 131
1,2-Dichloroethane-d4 (Surr)	104	60 - 140
Toluene-d8 (Surr)	106	58 - 140

Lab Sample ID: LCS 720-132920/7

Matrix: Solid

Analysis Batch: 132920

C	lient	Sample	ID:	Lab	Contro	ol Sample	
				D	T	T-4-1/NIA	

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)	1000	970		ug/Kg		97	61 - 128	
-C5-C12								

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	104		45 - 131
1,2-Dichloroethane-d4 (Surr)	106		60 - 140

Prep Type: Total/NA

Prep Type: Total/NA

Client: The Source Group Project/Site: Paco Pumps

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-132920/7

Matrix: Solid

Analysis Batch: 132920

LCS LCS

Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 58 - 140 110

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Lab Control Sample

Lab Sample ID: LCSD 720-132920/6 **Matrix: Solid**

Analysis Batch: 132920

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	50.0	47.8		ug/Kg		96	70 - 130	2	20
Ethylbenzene	50.0	49.6		ug/Kg		99	80 - 137	2	20
MTBE	50.0	54.5		ug/Kg		109	70 - 144	5	20
Toluene	50.0	47.5		ug/Kg		95	80 - 128	1	20
TAME	50.0	45.1		ug/Kg		90	70 - 140	5	20
Ethyl t-butyl ether	50.0	48.4		ug/Kg		97	70 - 130	6	20
TBA	1000	907		ug/Kg		91	63 - 130	2	20
DIPE	50.0	55.0		ug/Kg		110	70 - 131	3	20

LCSD LCSD %Recovery Qualifier Limits Surrogate 45 - 131 4-Bromofluorobenzene 108 1,2-Dichloroethane-d4 (Surr) 104 60 - 140 58 - 140 Toluene-d8 (Surr) 108

Lab Sample ID: LCSD 720-132920/8

Matrix: Solid

Analysis Batch: 132920

	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics (GRO)	1000	1000		ug/Kg		100	61 - 128	3	20	

-C5-C12

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	103		45 - 131
1,2-Dichloroethane-d4 (Surr)	106		60 - 140
Toluene-d8 (Surr)	110		58 - 140

Lab Sample ID: MB 720-133021/5

Matrix: Solid

Analysis Batch: 133021

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

мв мв

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND	5.0	ug/Kg			03/25/13 19:56	1
Ethylbenzene	ND	5.0	ug/Kg			03/25/13 19:56	1
MTBE	ND	5.0	ug/Kg			03/25/13 19:56	1
Gasoline Range Organics (GRO)	ND	250	ug/Kg			03/25/13 19:56	1
-C5-C12							
Toluene	ND	5.0	ug/Kg			03/25/13 19:56	1
Xylenes, Total	ND	10	ug/Kg			03/25/13 19:56	1
TAME	ND	5.0	ug/Kg			03/25/13 19:56	1
Ethyl t-butyl ether	ND	5.0	ug/Kg			03/25/13 19:56	1

TestAmerica Pleasanton

Page 17 of 34

3/28/2013

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48478-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-133021/5

Matrix: Solid

Analysis Batch: 133021

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
TBA	ND		10		ug/Kg			03/25/13 19:56	1
DIPE	ND		5.0		ug/Kg			03/25/13 19:56	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	116	45 - 131		03/25/13 19:56	1
1,2-Dichloroethane-d4 (Surr)	105	60 - 140		03/25/13 19:56	1
Toluene-d8 (Surr)	113	58 - 140		03/25/13 19:56	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Lab Sample ID: LCS 720-133021/6 **Matrix: Solid**

Analysis Batch: 133021

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	50.0	46.6		ug/Kg		93	70 - 130	
Ethylbenzene	50.0	47.0		ug/Kg		94	80 _ 137	
MTBE	50.0	62.7		ug/Kg		125	70 - 144	
Toluene	50.0	45.6		ug/Kg		91	80 - 128	
TAME	50.0	53.2		ug/Kg		106	70 - 140	
Ethyl t-butyl ether	50.0	51.1		ug/Kg		102	70 - 130	
TBA	1000	796		ug/Kg		80	63 - 130	
DIPE	50.0	48.4		ug/Kg		97	70 - 131	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene	110	45 - 131
1,2-Dichloroethane-d4 (Surr)	103	60 - 140
Toluene-d8 (Surr)	112	58 ₋ 140

Lab Sample ID: LCS 720-133021/8

Matrix: Solid

Analysis Batch: 133021

Client Sample ID:	Lab Control Sample
	Dren Triner Tetal/NA

Prep Type: Total/NA

		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)		1000	1010		ug/Kg		101	61 - 128	
-C5-C12									

LCS LCS

Surrogate	%Recovery Qua	alifier Limits
4-Bromofluorobenzene	115	45 - 131
1,2-Dichloroethane-d4 (Surr)	104	60 - 140
Toluene-d8 (Surr)	113	58 ₋ 140

Lab Sample ID: LCSD 720-133021/7

Matrix: Solid

Analyte

Benzene

MTBE

Ethylbenzene

Analysis Batch: 133021

Client Sample ID	Lab Control Sample Dup
	Prep Type: Total/NA

			%Rec.		RPD
Unit	D	%Rec	Limits	RPD	Limit
ug/Kg	_	94	70 - 130	0	20
ug/Kg		96	80 - 137	3	20

115

70 - 144

TestAmerica Pleasanton

Page 18 of 34

Spike

Added

50.0

50.0

50.0

LCSD LCSD

46.8

48.2

57.6

Result Qualifier

ug/Kg

Client: The Source Group Project/Site: Paco Pumps

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-133021/7

Matrix: Solid

Analysis Batch: 133021

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene	50.0	47.1		ug/Kg		94	80 - 128	3	20
TAME	50.0	49.7		ug/Kg		99	70 - 140	7	20
Ethyl t-butyl ether	50.0	48.5		ug/Kg		97	70 - 130	5	20
TBA	1000	887		ug/Kg		89	63 - 130	11	20
DIPE	50.0	47.1		ug/Kg		94	70 - 131	3	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	106		45 - 131
1,2-Dichloroethane-d4 (Surr)	97		60 - 140
Toluene-d8 (Surr)	112		58 - 140

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 133021

LCSD LCSD Spike %Rec. Analyte Added Result Qualifier Limits Unit %Rec RPD 1000 1000 ug/Kg 100 61 - 128 Gasoline Range Organics (GRO) -C5-C12

RPD Limit

Lab Sample ID: LCSD 720-133021/9

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene	113	45 - 131
1,2-Dichloroethane-d4 (Surr)	103	60 - 140
Toluene-d8 (Surr)	113	58 ₋ 140

Lab Sample ID: MB 720-133087/4 Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 133087

мв мв

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND	5.0	ug/Kg			03/26/13 15:14	1
Ethylbenzene	ND	5.0	ug/Kg			03/26/13 15:14	1
MTBE	ND	5.0	ug/Kg			03/26/13 15:14	1
Gasoline Range Organics (GRO) -C5-C12	ND	250	ug/Kg			03/26/13 15:14	1
Toluene	ND	5.0	ug/Kg			03/26/13 15:14	1
Xylenes, Total	ND	10	ug/Kg			03/26/13 15:14	1
TAME	ND	5.0	ug/Kg			03/26/13 15:14	1
Ethyl t-butyl ether	ND	5.0	ug/Kg			03/26/13 15:14	1
TBA	ND	10	ug/Kg			03/26/13 15:14	1
DIPE	ND	5.0	ug/Kg			03/26/13 15:14	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepai	red	Analyzed	Dil Fac
4-Bromofluorobenzene	105		45 - 131			03/26/13 15:14	1
1,2-Dichloroethane-d4 (Surr)	103		60 - 140		(03/26/13 15:14	1
Toluene-d8 (Surr)	107		58 - 140		(03/26/13 15:14	1

Client: The Source Group Project/Site: Paco Pumps

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-133087/5

Matrix: Solid

Analysis Batch: 133087

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	50.0	48.0		ug/Kg		96	70 - 130	
Ethylbenzene	50.0	48.5		ug/Kg		97	80 - 137	
MTBE	50.0	60.3		ug/Kg		121	70 - 144	
Toluene	50.0	46.9		ug/Kg		94	80 - 128	
TAME	50.0	50.2		ug/Kg		100	70 - 140	
Ethyl t-butyl ether	50.0	50.5		ug/Kg		101	70 - 130	
TBA	1000	873		ug/Kg		87	63 - 130	
DIPE	50.0	50.6		ug/Kg		101	70 - 131	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	109		45 - 131
1,2-Dichloroethane-d4 (Surr)	101		60 - 140
Toluene-d8 (Surr)	113		58 ₋ 140

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 133087

Lab Sample ID: LCS 720-133087/7

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)	1000	971		ug/Kg	_	97	61 - 128	

-C5-C12

LCS LCS

Surrogate	%Recovery Qualifie	er Limits
4-Bromofluorobenzene	110	45 _ 131
1,2-Dichloroethane-d4 (Surr)	109	60 - 140
Toluene-d8 (Surr)	113	58 ₋ 140

Lab Sample ID: LCSD 720-133087/6

Matrix: Solid

Analysis Batch: 133087

Client Sample	ID:	Lab (Control	Sample	• Dup
		F	rep Ty	/pe: Tot	al/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	50.0	47.3		ug/Kg		95	70 - 130	1	20
Ethylbenzene	50.0	48.1		ug/Kg		96	80 - 137	1	20
MTBE	50.0	61.2		ug/Kg		122	70 - 144	2	20
Toluene	50.0	45.8		ug/Kg		92	80 - 128	2	20
TAME	50.0	50.9		ug/Kg		102	70 - 140	1	20
Ethyl t-butyl ether	50.0	50.8		ug/Kg		102	70 - 130	1	20
TBA	1000	858		ug/Kg		86	63 - 130	2	20
DIPE	50.0	50.8		ug/Kg		102	70 - 131	0	20
DIPE	50.0	50.8		ug/Kg		102	70 - 131	0	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	108	-	45 - 131
1,2-Dichloroethane-d4 (Surr)	102		60 - 140
Toluene-d8 (Surr)	112		58 ₋ 140

Client: The Source Group Project/Site: Paco Pumps

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

ICED ICED

Lab Sample ID: LCSD 720-133087/8

Matrix: Solid

Analysis Batch: 133087

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Spike LCSD LCSD %Rec. RPD Added Result Qualifier %Rec Limits RPD Limit D Unit 1000 2 988 ug/Kg 99 61 - 128 20 Gasoline Range Organics (GRO)

-C5-C12

Analyte

Limits
Liiiit
45 _ 131
60 - 140
58 - 140

Lab Sample ID: MB 720-133108/12-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 133087

MB MB

Prep Type: Total/NA

Prep Batch: 133108

Result Qualifier MDL Unit D Dil Fac Analyte RL Prepared Analyzed Benzene ND 500 ug/Kg 03/26/13 15:41 03/26/13 22:29 100 Ethylbenzene ND 500 03/26/13 15:41 03/26/13 22:29 100 ug/Kg MTBE ND 03/26/13 15:41 03/26/13 22:29 500 ug/Kg 100 03/26/13 15:41 03/26/13 22:29 ND 25000 ug/Kg 100 Gasoline Range Organics (GRO) -C5-C12 ND 500 03/26/13 15:41 03/26/13 22:29 Toluene ug/Kg 100 EDB ND 500 03/26/13 15:41 03/26/13 22:29 100 ug/Kg Xylenes, Total ND 1000 03/26/13 15:41 03/26/13 22:29 100 ug/Kg 1,2-Dichloroethane ND 500 ug/Kg 03/26/13 15:41 03/26/13 22:29 100 TAME ND 500 ug/Kg 03/26/13 15:41 03/26/13 22:29 100 Ethyl t-butyl ether ND 500 03/26/13 15:41 03/26/13 22:29 100 ug/Kg TBA ND 1000 ug/Kg 03/26/13 15:41 03/26/13 22:29 100 DIPE ND 500 ug/Kg 03/26/13 15:41 03/26/13 22:29 100

Lab Sample ID: LCS 720-133108/13-A

Matrix: Solid

Analysis Batch: 133087

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 133108

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	5000	4560		ug/Kg		91	76 - 122	
Ethylbenzene	5000	4630		ug/Kg		93	76 - 137	
m-Xylene & p-Xylene	10000	10000		ug/Kg		100	71 - 142	
MTBE	5000	5770		ug/Kg		115	71 ₋ 146	
Toluene	5000	4480		ug/Kg		90	77 - 120	
EDB	5000	5030		ug/Kg		101	80 - 138	
1,2-Dichloroethane	5000	4720		ug/Kg		94	67 - 126	
TAME	5000	4750		ug/Kg		95	70 - 130	
Ethyl t-butyl ether	5000	4990		ug/Kg		100	70 - 130	
TBA	100000	82900		ug/Kg		83	70 - 130	
DIPE	5000	4970		ug/Kg		99	70 _ 130	

Project/Site: Paco Pumps

Client: The Source Group

Method: 8260B/CA LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-133108/15-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 133087 Prep Batch: 133108 Spike LCS LCS

Added Result Qualifier Limits Analyte Unit D %Rec 100000 88700 ug/Kg 89 70 - 130 Gasoline Range Organics (GRO)

-C5-C12

Lab Sample ID: LCSD 720-133108/14-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Prep Type: Total/NA Analysis Batch: 133087

Prep Batch: 133108

Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Benzene 5000 4700 ug/Kg 94 76 - 122 3 20 Ethylbenzene 5000 4780 ug/Kg 96 76 - 137 3 20 m-Xylene & p-Xylene 10000 10300 ug/Kg 103 71 - 142 20 3 MTBE 5000 5760 ug/Kg 115 71 - 146 n 20 Toluene 5000 4650 93 77 - 120 20 ug/Kg EDB 100 5000 5010 80 - 138 20 ug/Kg 1,2-Dichloroethane 5000 4760 ug/Kg 95 67 - 126 20 TAME 5000 4790 96 20 ug/Kg 70 - 130Ethyl t-butyl ether 5000 5060 ug/Kg 101 70 - 130 20 TRA 20 100000 85600 ug/Kg 86 70 - 1303 DIPE 5000 5090 ug/Kg 102 70 - 130

Lab Sample ID: LCSD 720-133108/16-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 133087

Prep Type: Total/NA

03/22/13 23:26

Prep Batch: 133108

LCSD LCSD Spike %Rec. RPD Added Result Qualifier Unit D %Rec Limits RPD Limit 100000 91700 ug/Kg 70 - 130 Gasoline Range Organics (GRO) -C5-C12

Method: 8015B - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 720-132874/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 132853

Motor Oil Range Organics [C24-C36]

Prep Batch: 132874 MB MB RL Analyte Result Qualifier MDL Unit D Prepared Dil Fac Analyzed 0.99 Diesel Range Organics [C10-C28] ND mg/Kg 03/22/13 10:27 03/22/13 23:26

49

mg/Kg

03/22/13 10:27

MB MB

Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed p-Terphenyl 96 40 - 130 03/22/13 10:27 03/22/13 23:26

Lab Sample ID: LCS 720-132874/2-A Client Sample ID: Lab Control Sample

ND

Matrix: Solid Prep Type: Total/NA

Analysis Batch: 132853 Prep Batch: 132874 LCS LCS Spike %Rec.

Analyte Added Result Qualifier Unit %Rec Limits 83.0 Diesel Range Organics 83.1 mg/Kg 100 50 - 150

[C10-C28]

QC Sample Results

Client: The Source Group TestAmerica Job ID: 720-48478-1 Project/Site: Paco Pumps

Method: 8015B - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 720-132874/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA Analysis Batch: 132853 Prep Batch: 132874

LCS LCS Surrogate %Recovery Qualifier Limits p-Terphenyl 40 - 130 110

Lab Sample ID: LCSD 720-132874/3-A **Client Sample ID: Lab Control Sample Dup Matrix: Solid** Prep Type: Total/NA Analysis Batch: 132853 Prep Batch: 132874 Spike LCSD LCSD %Rec. RPD

Analyte Added Result Qualifier %Rec Limits RPD Limit Unit 82.7 80.4 mg/Kg 97 50 - 150 3 35 Diesel Range Organics [C10-C28]

LCSD LCSD %Recovery Qualifier Surrogate Limits 40 - 130 p-Terphenyl 109

Client: The Source Group Project/Site: Paco Pumps

GC/MS VOA

Analysis Batch: 132920

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-48478-1	MW9-2.5	Total/NA	Solid	8260B/CA_LUFT	132945
				MS	
720-48478-2	MW9-4.5	Total/NA	Solid	8260B/CA_LUFT	132945
				MS	
720-48478-3	MW9-9	Total/NA	Solid	8260B/CA_LUFT	132945
				MS	
LCS 720-132920/5	Lab Control Sample	Total/NA	Solid	8260B/CA_LUFT	
				MS	
LCS 720-132920/7	Lab Control Sample	Total/NA	Solid	8260B/CA_LUFT	
				MS	
LCSD 720-132920/6	Lab Control Sample Dup	Total/NA	Solid	8260B/CA_LUFT	
				MS	
LCSD 720-132920/8	Lab Control Sample Dup	Total/NA	Solid	8260B/CA_LUFT	
				MS	
MB 720-132920/4	Method Blank	Total/NA	Solid	8260B/CA_LUFT	
L				MS	

Prep Batch: 132945

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-48478-1	MW9-2.5	Total/NA	Solid	5035	
720-48478-2	MW9-4.5	Total/NA	Solid	5035	
720-48478-3	MW9-9	Total/NA	Solid	5035	

Analysis Batch: 133021

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-48478-5	MW10-5	Total/NA	Solid	8260B/CA_LUFT	133033
				MS	
720-48478-8	MW11-5	Total/NA	Solid	8260B/CA_LUFT	133033
				MS	
720-48478-9	MW11-12.5	Total/NA	Solid	8260B/CA_LUFT	133033
				MS	
LCS 720-133021/6	Lab Control Sample	Total/NA	Solid	8260B/CA_LUFT	
				MS	
LCS 720-133021/8	Lab Control Sample	Total/NA	Solid	8260B/CA_LUFT	
				MS	
LCSD 720-133021/7	Lab Control Sample Dup	Total/NA	Solid	8260B/CA_LUFT	
				MS	
LCSD 720-133021/9	Lab Control Sample Dup	Total/NA	Solid	8260B/CA_LUFT	
				MS	
MB 720-133021/5	Method Blank	Total/NA	Solid	8260B/CA_LUFT	
				MS	

Prep Batch: 133033

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-48478-5	MW10-5	Total/NA	Solid	5035	
720-48478-8	MW11-5	Total/NA	Solid	5035	
720-48478-9	MW11-12.5	Total/NA	Solid	5035	

Analysis Batch: 133087

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-48478-4	MW10-2.5	Total/NA	Solid	8260B/CA_LUFT MS	133108
720-48478-6	MW10-12.5	Total/NA	Solid	8260B/CA_LUFT MS	133107

TestAmerica Pleasanton

Page 24 of 34

Client: The Source Group Project/Site: Paco Pumps

GC/MS VOA (Continued)

Analysis Batch: 133087 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-48478-7	MW11-2.5	Total/NA	Solid	8260B/CA_LUFT MS	133107
LCS 720-133087/5	Lab Control Sample	Total/NA	Solid	8260B/CA_LUFT	
LCS 720-133087/7	Lab Control Sample	Total/NA	Solid	MS 8260B/CA_LUFT	
LCS 720-133108/13-A	Lab Control Sample	Total/NA	Solid	MS 8260B/CA_LUFT MS	133108
LCS 720-133108/15-A	Lab Control Sample	Total/NA	Solid	8260B/CA_LUFT MS	133108
LCSD 720-133087/6	Lab Control Sample Dup	Total/NA	Solid	8260B/CA_LUFT MS	
LCSD 720-133087/8	Lab Control Sample Dup	Total/NA	Solid	8260B/CA_LUFT MS	
LCSD 720-133108/14-A	Lab Control Sample Dup	Total/NA	Solid	8260B/CA_LUFT MS	133108
LCSD 720-133108/16-A	Lab Control Sample Dup	Total/NA	Solid	8260B/CA_LUFT MS	133108
MB 720-133087/4	Method Blank	Total/NA	Solid	8260B/CA_LUFT MS	
MB 720-133108/12-A	Method Blank	Total/NA	Solid	8260B/CA_LUFT MS	133108

Prep Batch: 133107

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-48478-6	MW10-12.5	Total/NA	Solid	5035	
720-48478-7	MW11-2.5	Total/NA	Solid	5035	

Prep Batch: 133108

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-48478-4	MW10-2.5	Total/NA	Solid	5035	<u> </u>
LCS 720-133108/13-A	Lab Control Sample	Total/NA	Solid	5035	
LCS 720-133108/15-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 720-133108/14-A	Lab Control Sample Dup	Total/NA	Solid	5035	
LCSD 720-133108/16-A	Lab Control Sample Dup	Total/NA	Solid	5035	
MB 720-133108/12-A	Method Blank	Total/NA	Solid	5035	

GC Semi VOA

Analysis Batch: 132853

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 720-132874/2-A	Lab Control Sample	Total/NA	Solid	8015B	132874
LCSD 720-132874/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B	132874
MB 720-132874/1-A	Method Blank	Total/NA	Solid	8015B	132874

Prep Batch: 132874

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-48478-1	MW9-2.5	Total/NA	Solid	3546	
720-48478-2	MW9-4.5	Total/NA	Solid	3546	
720-48478-3	MW9-9	Total/NA	Solid	3546	
720-48478-4	MW10-2.5	Total/NA	Solid	3546	
720-48478-5	MW10-5	Total/NA	Solid	3546	
720-48478-6	MW10-12.5	Total/NA	Solid	3546	

TestAmerica Pleasanton

Page 25 of 34

3

0

8

9

12

13

QC Association Summary

Client: The Source Group Project/Site: Paco Pumps TestAmerica Job ID: 720-48478-1

GC Semi VOA (Continued)

Prep Batch: 132874 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-48478-7	MW11-2.5	Total/NA	Solid	3546	
720-48478-8	MW11-5	Total/NA	Solid	3546	
720-48478-9	MW11-12.5	Total/NA	Solid	3546	
LCS 720-132874/2-A	Lab Control Sample	Total/NA	Solid	3546	
LCSD 720-132874/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	
MB 720-132874/1-A	Method Blank	Total/NA	Solid	3546	

Analysis Batch: 132984

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-48478-1	MW9-2.5	Total/NA	Solid	8015B	132874
720-48478-2	MW9-4.5	Total/NA	Solid	8015B	132874
720-48478-3	MW9-9	Total/NA	Solid	8015B	132874
720-48478-4	MW10-2.5	Total/NA	Solid	8015B	132874
720-48478-5	MW10-5	Total/NA	Solid	8015B	132874
720-48478-6	MW10-12.5	Total/NA	Solid	8015B	132874
720-48478-7	MW11-2.5	Total/NA	Solid	8015B	132874
720-48478-8	MW11-5	Total/NA	Solid	8015B	132874
720-48478-9	MW11-12.5	Total/NA	Solid	8015B	132874

3

5

7

8

9

10

13

1/

Client: The Source Group Project/Site: Paco Pumps

Client Sample ID: MW9-2.5

Lab Sample ID: 720-48478-1

Matrix: Solid

Date Collected: 03/21/13 08:00 Date Received: 03/21/13 17:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			132945	03/22/13 21:05	LL	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		1	132920	03/22/13 22:55	AC	TAL SF
Total/NA	Prep	3546			132874	03/22/13 10:27	DT	TAL SF
Total/NA	Analysis	8015B		10	132984	03/25/13 15:06	DH	TAL SF

Lab Sample ID: 720-48478-2

Matrix: Solid

Date Collected: 03/21/13 08:05 Date Received: 03/21/13 17:30

Client Sample ID: MW9-4.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			132945	03/22/13 21:05	LL	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		1	132920	03/22/13 23:24	AC	TAL SF
Total/NA	Prep	3546			132874	03/22/13 10:27	DT	TAL SF
Total/NA	Analysis	8015B		1	132984	03/25/13 13:05	DH	TAL SF

Client Sample ID: MW9-9

Date Collected: 03/21/13 08:30 Date Received: 03/21/13 17:30 Lab Sample ID: 720-48478-3

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			132945	03/22/13 21:05	LL	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		1	132920	03/22/13 23:53	AC	TAL SF
Total/NA	Prep	3546			132874	03/22/13 10:27	DT	TAL SF
Total/NA	Analysis	8015B		1	132984	03/25/13 13:29	DH	TAL SF

Client Sample ID: MW10-2.5

Date Collected: 03/21/13 09:15

Date Received: 03/21/13 17:30

Lab Sample ID: 720-4847	8-4
Matrix: So	olid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			133108	03/21/13 19:30	LL	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		100	133087	03/27/13 00:54	AC	TAL SF
Total/NA	Prep	3546			132874	03/22/13 10:27	DT	TAL SF
Total/NA	Analysis	8015B		100	132984	03/25/13 15:31	DH	TAL SF

Client Sample ID: MW10-5 Lab Sample ID: 720-48478-5

Date Collected: 03/21/13 09:35 Date Received: 03/21/13 17:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			133033	03/21/13 19:30	LL	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		1	133021	03/25/13 23:19	AC	TAL SF
Total/NA	Prep	3546			132874	03/22/13 10:27	DT	TAL SF

TestAmerica Pleasanton

Page 27 of 34

2

3

5

7

9

10

12

14

Matrix: Solid

3/28/2013

Client: The Source Group Project/Site: Paco Pumps

Lab Sample ID: 720-48478-5

Client Sample ID: MW10-5 Date Collected: 03/21/13 09:35 Date Received: 03/21/13 17:30

Matrix: Solid

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8015B 132984 03/25/13 13:53 DH TAL SF

Lab Sample ID: 720-48478-6

Matrix: Solid

Date Collected: 03/21/13 09:55 Date Received: 03/21/13 17:30

Client Sample ID: MW10-12.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			133107	03/21/13 19:30	LL	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		1	133087	03/26/13 17:38	AC	TAL SF
Total/NA	Prep	3546			132874	03/22/13 10:27	DT	TAL SF
Total/NA	Analysis	8015B		1	132984	03/25/13 14:18	DH	TAL SF

Client Sample ID: MW11-2.5 Lab Sample ID: 720-48478-7 Date Collected: 03/21/13 13:05

Date Received: 03/21/13 17:30

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			133107	03/21/13 19:30	LL	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		1	133087	03/26/13 18:07	AC	TAL SF
Total/NA	Prep	3546			132874	03/22/13 10:27	DT	TAL SF
Total/NA	Analysis	8015B		20	132984	03/25/13 15:55	DH	TAL SF

Client Sample ID: MW11-5 Lab Sample ID: 720-48478-8

Date Collected: 03/21/13 13:20 Date Received: 03/21/13 17:30

Matrix: Solid

Batch Batch Dilution Batch Prepared Method Number Prep Type Type Run Factor or Analyzed Analyst Lab Total/NA Prep 5035 133033 03/21/13 19:30 LL TAL SF Total/NA Analysis 8260B/CA_LUFTMS 133021 03/26/13 00:46 AC TAL SF 1 Total/NA Prep 3546 132874 03/22/13 10:27 DT TAL SF

Client Sample ID: MW11-12.5 Lab Sample ID: 720-48478-9

10

Date Collected: 03/21/13 13:50 Date Received: 03/21/13 17:30

Analysis

8015B

Total/NA

Matrix: Solid

03/25/13 16:19

DH

TAL SF

132984

Batch Batch Dilution Batch Prepared Prep Type Method Type Run Factor Number or Analyzed Analyst Lab Total/NA Prep 133033 03/21/13 19:30 TAL SF Total/NA Analysis 8260B/CA_LUFTMS 1 133021 03/26/13 01:15 AC TAL SF Total/NA Prep 3546 132874 03/22/13 10:27 DT TAL SF Total/NA Analysis 8015B 132984 03/25/13 14:42 DH TAL SF 1

Lab Chronicle

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48478-1

Laboratory References:

TAL SF = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

3

4

5

0

10

11

13

Certification Summary

Client: The Source Group Project/Site: Paco Pumps TestAmerica Job ID: 720-48478-1

Laboratory: TestAmerica Pleasanton

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
California	State Program	9	2496	01-31-14

4

_

6

8

10

12

13

Method Summary

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48478-1

Method	Method Description	Protocol	Laboratory
8260B/CA_LUFTM	8260B / CA LUFT MS	SW846	TAL SF
S 8015B	Diesel Range Organics (DRO) (GC)	SW846	TAL SF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SF = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

4

9

44

45

13

Sample Summary

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48478-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received 03/21/13 17:30		
720-48478-1	MW9-2.5	Solid	03/21/13 08:00			
720-48478-2	MW9-4.5	Solid	03/21/13 08:05	03/21/13 17:30		
720-48478-3	MW9-9	Solid	03/21/13 08:30	03/21/13 17:30		
720-48478-4	MW10-2.5	Solid	03/21/13 09:15	03/21/13 17:30		
720-48478-5	MW10-5	Solid	03/21/13 09:35	03/21/13 17:30		
720-48478-6	MW10-12.5	Solid	03/21/13 09:55	03/21/13 17:30		
720-48478-7	MW11-2.5	Solid	03/21/13 13:05	03/21/13 17:30		
720-48478-8	MW11-5	Solid	03/21/13 13:20	03/21/13 17:30		
720-48478-9	MW11-12.5	Solid	03/21/13 13:50	03/21/13 17:30		

3

4

5

7

ŏ

9

12

13

- 7 m 4 m	9	► ∞	တ 🤅		Ξ	7	13	4																			
ALS) Enull on mental	1217 Sout	-plea	5+2~	morena	Ch	IAI	N (OF	C	US	TC)D	Y 0614	16	U	7	0		į	0 E		#		<u> </u>	<u>1475</u>	<u> طِح</u>	- (
PROJECT NUMBER OU-PFT PROJECT MANAGER PAU PO COMPANY NAME TO SERVICE PROJECT MANAGER PAU PO COMPANY NAME TO SERVICE PAU P COMPANY NAME TO SERVICE PAU P COMPANY NAME TO SERVICE PAU P COMP		4	200000011000000000000000000000000000000	30020		$\frac{1}{\sqrt{S_H^2}}$, /		SIM PAHO	Own BTEXCO			7	B1510		/ F	PO F.		}	OF [1905 [1000]	7		Net I Ethere 7	#			- Incomposition and the second
ADDRESS 3 (78 B) SI CITYISTATE ZIP E-MAIL ADDRESS BIDGE Mentice 2 PHONE # SAMPLER'S SIGNATURE SAMPLER'S SIGNATURE	hirk He He	7 945	55.42,		NUMBES	ST OF CONTAINERS	Semiroletije C	tile Ora	1 82971/cs 11/1	Greac See below	POBS TEMPT 10	fors [7]	Choropher 8141	als, Total C 8151M	Cyanido Cyanid	Hex-Chio	(circle) NH2, CI, SQ4, PQ2, F	7,NO3-N, COD, TKN,	9020[] AQX 16;	Dioxins/Firm	Dissolved C	175 Jasses CO21	LEGA OF THE PARTY	The American School of the Sch	//	,	
SAMPLE I.D.	DATE	TIME	LAB I.D M.	ATRIX	<u> </u>		\#\		1 26		10 4			S West		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\]/ ĝ	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	100 5			77	<u>}_</u>	1	//ARKS	
	3/21/13	0800		5	4													ļ		<u> </u>		X	1				-
MW9-4.5		0805		5_	4													-				X	X				-
MW9-9		0830		5	4													<u> </u>			<u> </u>	X	1				-
MW10-2.5	1	0915		<u> </u>	4													<u> </u>					X				-
MW10-5		0935		5_	4												ļ	ļ				X	X		<u> </u>		_
MW10-175	<i>V</i>	0955		<u> </u>	Ч													ļ				$ \Delta $	<u> </u>				7
	3/21/17	-		5	4													ļ			ļ	X	X				-
			<u> </u>	<u> </u>	4													ļ					X				-
Mull-12.5	3/2/19	1350pp		<u>S</u>	4													<u> </u>				X	X				-
REPORT REQUIREMENTS I. Routine Report: Method Blank, Surrogate, as required		INVOIC P.O. # <u>29</u> Bill To: <u>5</u>	Circle which metals are to be analyzed: Total Metals: Al As Sb Ba Be B Ca Cd Co Cr Cu Fe Pb Mg Mn Mo Ni K Ag Na Se Sr Ti Sn V Zn Hg Dissolved Metals: Al As Sb Ba Be B Ca Cd Co Cr Cu Fe Pb Mg Mn Mo Ni K Ag Na Se Sr Ti Sn V Zn Hg														1										
II. Report Dup., MS, MSD as		TURNARO	ENTS	*INDICATE STATE HYDROCARBON PROCEDURE: AK CA WI NORTHWEST OTHER: (CIRCLE ONE S SPECIAL INSTRUCTIONS/COMMENTS:															LE ONE)	1							
required III. CLP Like Summary		24 hr. 5 day		CC results to progression resourcegroup-net																							
(no raw data) IV. Data Validation Report V. EDD		Stand	720-48478 Chain of Custody																								
V. W. V.	Requ	ested Report		□ Sa	ample	e Ship	men	t cont	ains l	JSDA	regu	lated	soil s	6	r ∠U-4.	8478	Chai	n of C	ustod	ły							
				RELINQUISHED BY: 1736 3-21-13 1024 Signature Firm RECEIVED BY: BECEIVED BY: BECEIVED BY: 3-21-13 1730 Signature Firm Date/Time Firm Printed Name Firm RECEIVED BY: BECEIVED BY: 3-21-13 1730 Signature Date/Time Printed Name Firm Printed Name Firm												T											

Job Number: 720-48478-1

Client: The Source Group

Login Number: 48478 List Source: TestAmerica Pleasanton

List Number: 1 Creator: Mullen, Joan

Creator. Mulleri, Joan		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Pleasanton

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-48500-1 Client Project/Site: Paco Pumps

For:

The Source Group 3478 Buskirk Avenue, Suite 100 Pleasant Hill, California 94523

Attn: Mr. Paisha Jorgensen

Authorized for release by: 3/29/2013 3:33:06 PM

Afsaneh Salimpour Project Manager I

afsaneh.salimpour@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48500-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	9
QC Sample Results	33
QC Association Summary	43
Lab Chronicle	49
Certification Summary	56
Method Summary	57
Sample Summary	58
Chain of Custody	59
Receipt Chacklists	62

4

5

9

11

13

Definitions/Glossary

Client: The Source Group Project/Site: Paco Pumps TestAmerica Job ID: 720-48500-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description

 $\overline{\mathsf{X}}$ Surrogate is outside control limits

GC Semi VOA

D Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a

> dilution may be flagged with a D. Surrogate is outside control limits

Glossary

Χ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration MDA Minimum detectable activity **EDL Estimated Detection Limit** MDC Minimum detectable concentration

MDL Method Detection Limit Minimum Level (Dioxin) ML

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC **Quality Control** RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: The Source Group Project/Site: Paco Pumps TestAmerica Job ID: 720-48500-1

Job ID: 720-48500-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-48500-1

Comments

No additional comments.

Receipt

The samples were received on 3/22/2013 4:45 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.6° C.

GC/MS VOA

Method(s) 8260B: Internal standard response for the following sample 48500-22 exceeded the lower control limit and confirmed by reanalysis. As such, the sample results may be biased high.

Method(s) 8260B: There was GRO out of range in the sample 48500-8 at low level and mid-level was below reporting limits.

No other analytical or quality issues were noted.

GC Semi VOA

Method(s) 8015B: Due to the level of dilution required for the following sample(s), surrogate recoveries are not reported: SV-1-9 (720-48500-8).

No other analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

-

4

5

6

10

111

46

2

TestAmerica Job ID: 720-48500-1

Client: The Source Group Project/Site: Paco Pumps

2

Client Sample ID: SV-4-2.5	Lab Sample ID: 720-48500-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Diesel Range Organics [C10-C28]	8.2		0.99		mg/Kg	1	_	8015B	Total/NA
Motor Oil Range Organics [C24-C36]	56		49		mg/Kg	1		8015B	Total/NA

Client Sample ID: SV-4-5.5 Lab Sample ID: 720-48500-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	1400		400		ug/Kg	100	_	8260B/CA_LUFT MS	Total/NA
Ethylbenzene	61		4.3		ug/Kg	1		8260B/CA_LUFT MS	Total/NA
Toluene	11		4.3		ug/Kg	1		8260B/CA_LUFT MS	Total/NA
Xylenes, Total	77		8.5		ug/Kg	1		8260B/CA_LUFT MS	Total/NA
Diesel Range Organics [C10-C28]	3.4		0.99		mg/Kg	1		8015B	Total/NA

Client Sample ID: SV-4-8 Lab Sample ID: 720-48500-3

Analyte	Result C	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	910		460		ug/Kg	100	_	8260B/CA_LUFT MS	Total/NA
Ethylbenzene	72		4.6		ug/Kg	1		8260B/CA_LUFT MS	Total/NA
Xylenes, Total	20		9.1		ug/Kg	1		8260B/CA_LUFT MS	Total/NA
ТВА	11		9.1		ug/Kg	1		8260B/CA_LUFT MS	Total/NA
Diesel Range Organics [C10-C28]	3.6		0.99		mg/Kg	1		8015B	Total/NA

Client Sample ID: SV-1-2.5 Lab Sample ID: 720-48500-4

Analyte	Result Quali	ifier RL	MDL Unit	Dil Fac	D Method	Prep Type
Diesel Range Organics [C10-C28]	10	0.99	mg/Kg	1	8015B	Total/NA

Client Sample ID: SV-1-5 Lab Sample ID: 720-48500-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Xylenes, Total	12		8.2		ug/Kg	1	_	8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C5-C12	4800		210		ug/Kg	1		8260B/CA_LUFT MS	Total/NA
TBA	12		8.2		ug/Kg	1		8260B/CA_LUFT MS	Total/NA
Diesel Range Organics [C10-C28]	950		20		mg/Kg	20		8015B	Total/NA
Motor Oil Range Organics [C24-C36]	2000		990		mg/Kg	20		8015B	Total/NA

Client Sample ID: SV-2-2.5 Lab Sample ID: 720-48500-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type	
Diesel Range Organics [C10-C28]	1.8		0.99		mg/Kg	1	_	8015B	 Total/NA	•

Client Sample ID: SV-2-5 Lab Sample ID: 720-48500-7

This Detection Summary does not include radiochemical test results.

TestAmerica Pleasanton

3/29/2013

Client: The Source Group Project/Site: Paco Pumps

Client Sample ID: SV-2-5 (Cont	inued)					La	ab	Sample ID: 7	20-48500-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Diesel Range Organics [C10-C28]	1.9		0.99		mg/Kg	1	_	8015B	Total/NA
Client Sample ID: SV-1-9						La	ab	Sample ID: 7	20-48500-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Diesel Range Organics [C10-C28]	1200		20		mg/Kg	20	_	8015B	Total/NA
Motor Oil Range Organics [C24-C36]	2300		990		mg/Kg	20		8015B	Total/NA
Client Sample ID: SV-2-10						Lá	ab	Sample ID: 7	20-48500-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Gasoline Range Organics (GRO) -C5-C12	21000		19000		ug/Kg	100	_	8260B/CA_LUFT MS	Total/NA
Diesel Range Organics [C10-C28]	8.0		1.0		mg/Kg	1		8015B	Total/NA
Client Sample ID: SV-3-3						Lal	o S	Sample ID: 72	0-48500-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	12		4.7		ug/Kg	1	_	8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C5-C12	1900		210		ug/Kg	1		8260B/CA_LUFT MS	Total/NA
Diesel Range Organics [C10-C28]	140		3.0		mg/Kg	3		8015B	Total/NA
Motor Oil Range Organics [C24-C36]	280		150		mg/Kg	3		8015B	Total/NA
Client Sample ID: SV-3-5						Lal	b S	Sample ID: 72	0-48500-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	37		4.2		ug/Kg	1	_	8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C5-C12	2900		210		ug/Kg	1		8260B/CA_LUFT MS	Total/NA
Client Sample ID: SV-3-10						Lal	o S	Sample ID: 72	0-48500-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Gasoline Range Organics (GRO) -C5-C12	130000		20000		ug/Kg	100	_	8260B/CA_LUFT MS	Total/NA
Ethylbenzene	480		400		ug/Kg	100		8260B/CA_LUFT MS	Total/NA
Diesel Range Organics [C10-C28]	12		0.99		mg/Kg	1		8015B	Total/NA
Client Sample ID: SV-5-3						l al) S	Sample ID: 72	0-48500-1

This Detection Summary does not include radiochemical test results.

Analyte

Gasoline Range Organics (GRO) -C5-C12 Diesel Range Organics [C10-C28]

Motor Oil Range Organics [C24-C36]

Client Sample ID: SV-5-5

TestAmerica Pleasanton

RL

240

3.0

150

MDL Unit

ug/Kg

mg/Kg

mg/Kg

Dil Fac D

3

3

Method

8015B

8015B

8260B/CA_LUFT

Lab Sample ID: 720-48500-14

Result Qualifier

640

100

160

Prep Type

Total/NA

Total/NA

Total/NA

TestAmerica Job ID: 720-48500-1

Client: The Source Group Project/Site: Paco Pumps

Client Sample ID: SV-5-5 (Continued)

Lab Sample ID: 720-48500-14

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	1900	420		ug/Kg	100	_	8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C5-C12	59000	21000		ug/Kg	100		8260B/CA_LUFT MS	Total/NA
Ethylbenzene	640	420		ug/Kg	100		8260B/CA_LUFT MS	Total/NA
Toluene	12	4.1		ug/Kg	1		8260B/CA_LUFT MS	Total/NA
TBA	10	8.2		ug/Kg	1		8260B/CA_LUFT MS	Total/NA
Diesel Range Organics [C10-C28]	3.8	0.99		mg/Kg	1		8015B	Total/NA

Client Sample ID: SV-5-9 Lab Sample ID: 720-48500-15

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	6600	400		ug/Kg	100	_	8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C5-C12	640000	20000		ug/Kg	100		8260B/CA_LUFT MS	Total/NA
Ethylbenzene	4400	400		ug/Kg	100		8260B/CA_LUFT MS	Total/NA
Toluene	2400	400		ug/Kg	100		8260B/CA_LUFT MS	Total/NA
Xylenes, Total	8400	800		ug/Kg	100		8260B/CA_LUFT MS	Total/NA
Diesel Range Organics [C10-C28]	17	0.99		mg/Kg	1		8015B	Total/NA

Client Sample ID: SV-6-3 Lab Sample ID: 720-48500-16

Analyte	Result Qualif	ier RL	MDL Unit	Dil Fac	D Method	Prep Type
TBA	15	9.0	ug/Kg	1	8260B/CA_LUFT	Total/NA
					MS	
Xylenes, Total	2400	910	ug/Kg	100	8260B/CA_LUFT	Total/NA
					MS	
Diesel Range Organics [C10-C28]	22	0.99	mg/Kg	1	8015B	Total/NA
Motor Oil Range Organics [C24-C36]	110	50	mg/Kg	1	8015B	Total/NA

Client Sample ID: SV-6-5.5 Lab Sample ID: 720-48500-17

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	210	4.6		ug/Kg	1	_	8260B/CA_LUFT MS	Total/NA
Ethylbenzene	450	400		ug/Kg	100		8260B/CA_LUFT MS	Total/NA
TBA	24	9.2		ug/Kg	1		8260B/CA_LUFT MS	Total/NA
Xylenes, Total	2000	790		ug/Kg	100		8260B/CA_LUFT MS	Total/NA
Diesel Range Organics [C10-C28]	2.6	0.99		mg/Kg	1		8015B	Total/NA

Client Sample ID: SV-6-9 Lab Sample ID: 720-48500-18

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Gasoline Range Organics (GRO)	920000	200000	ug/Kg	1000	8260B/CA_LUFT	Total/NA
-C5-C12					MS	

This Detection Summary does not include radiochemical test results.

TestAmerica Pleasanton

3/29/2013

Page 7 of 62

5

-

A 6

11

13

TestAmerica Job ID: 720-48500-1

Client: The Source Group Project/Site: Paco Pumps

Analyte

Diesel Range Organics [C10-C28]

Client Sample ID: SV-6-9 (Cont	inacaj							Sample ID: 72	0 40000 1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Ethylbenzene	20000		4000		ug/Kg	1000	_	8260B/CA_LUFT MS	Total/NA
Xylenes, Total	84000		8100		ug/Kg	1000		8260B/CA_LUFT MS	Total/NA
Diesel Range Organics [C10-C28]	75		0.99		mg/Kg	1		8015B	Total/NA
Client Sample ID: SV-7-3						Lak	S	sample ID: 72	0-48500-1
– Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Diesel Range Organics [C10-C28]	5.3		0.98		mg/Kg	1	_	8015B	Total/NA
Client Sample ID: SV-7-5.5						Lak	s S	ample ID: 72	0-48500-2
– Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Diesel Range Organics [C10-C28]	1.1		1.0		mg/Kg	1	_	8015B	Total/NA
Client Sample ID: SV-7-9						Lak	S	ample ID: 72	0-48500-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Diesel Range Organics [C10-C28]	2.2		0.98		mg/Kg	1	_	8015B	Total/NA
Client Sample ID: SV-8-3						Lak	S	sample ID: 72	0-48500-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Diesel Range Organics [C10-C28]	21		0.99		mg/Kg	1	_	8015B	Total/NA
Motor Oil Range Organics [C24-C36]	84		49		mg/Kg	1		8015B	Total/NA
Client Sample ID: SV-8-5.5						Lak	S	ample ID: 72	0-48500-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Diesel Range Organics [C10-C28]	4.6		1.0		mg/Kg	1	_	8015B	Total/NA
Client Sample ID: SV-8-9						l ah) S	Sample ID: 72	0-48500-2

RL

1.0

MDL Unit

mg/Kg

Dil Fac D Method

8015B

Result Qualifier

3.0

This Detection Summary does not include radiochemical test results.

Prep Type

Total/NA

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48500-1

Lab Sample ID: 720-48500-1

Matrix: Solid

Client Sample ID: SV-4-2.5 Date Collected: 03/22/13 07:55 Date Received: 03/22/13 16:45

Method: 8015B - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
MTBE	ND		6.1		ug/Kg		03/22/13 18:15	03/23/13 14:16	1
Benzene	ND		6.1		ug/Kg		03/22/13 18:15	03/23/13 14:16	1
Ethylbenzene	ND		6.1		ug/Kg		03/22/13 18:15	03/23/13 14:16	1
Toluene	ND		6.1		ug/Kg		03/22/13 18:15	03/23/13 14:16	1
Xylenes, Total	ND		12		ug/Kg		03/22/13 18:15	03/23/13 14:16	1
Gasoline Range Organics (GRO)	ND		310		ug/Kg		03/22/13 18:15	03/23/13 14:16	1
-C5-C12									
TBA	ND		12		ug/Kg		03/22/13 18:15	03/23/13 14:16	1
DIPE	ND		6.1		ug/Kg		03/22/13 18:15	03/23/13 14:16	1
TAME	ND		6.1		ug/Kg		03/22/13 18:15	03/23/13 14:16	1
Ethyl t-butyl ether	ND		6.1		ug/Kg		03/22/13 18:15	03/23/13 14:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	99		45 - 131				03/22/13 18:15	03/23/13 14:16	1
1,2-Dichloroethane-d4 (Surr)	108		60 - 140				03/22/13 18:15	03/23/13 14:16	1
Toluene-d8 (Surr)	99		58 - 140				03/22/13 18:15	03/23/13 14:16	1

Analyte	Resuit	Qualifier	KL	MIDL	UIIIL	U	Frepareu	Allalyzeu	DII Fac
Diesel Range Organics [C10-C28]	8.2		0.99		mg/Kg	_	03/25/13 11:18	03/26/13 10:09	1
Motor Oil Range Organics [C24-C36]	56		49		mg/Kg		03/25/13 11:18	03/26/13 10:09	1
Surrogate		Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	53		40 - 130				03/25/13 11:18	03/26/13 10:09	1

Client: The Source Group Project/Site: Paco Pumps

Toluene-d8 (Surr)

Toluene-d8 (Surr)

TestAmerica Job ID: 720-48500-1

Lab Sample ID: 720-48500-2

Matrix: Solid

Client Sample ID: SV-4-5.5 Date Collected: 03/22/13 08:05 Date Received: 03/22/13 16:45

Method: 8260B/CA_LUFTMS - 8	260B / CA LUFT	MS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1400		400		ug/Kg		03/22/13 18:15	03/27/13 01:23	100
MTBE	ND		4.3		ug/Kg		03/22/13 18:15	03/23/13 14:44	1
Gasoline Range Organics (GRO) -C5-C12	ND		20000		ug/Kg		03/22/13 18:15	03/27/13 01:23	100
Ethylbenzene	61		4.3		ug/Kg		03/22/13 18:15	03/23/13 14:44	1
Toluene	11		4.3		ug/Kg		03/22/13 18:15	03/23/13 14:44	1
Xylenes, Total	77		8.5		ug/Kg		03/22/13 18:15	03/23/13 14:44	1
TBA	ND		8.5		ug/Kg		03/22/13 18:15	03/23/13 14:44	1
DIPE	ND		4.3		ug/Kg		03/22/13 18:15	03/23/13 14:44	1
TAME	ND		4.3		ug/Kg		03/22/13 18:15	03/23/13 14:44	1
Ethyl t-butyl ether	ND		4.3		ug/Kg		03/22/13 18:15	03/23/13 14:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	109		66 - 148				03/22/13 18:15	03/27/13 01:23	100
1,2-Dichloroethane-d4 (Surr)	103		62 - 137				03/22/13 18:15	03/27/13 01:23	100
4-Bromofluorobenzene	134	X	45 - 131				03/22/13 18:15	03/23/13 14:44	1
1,2-Dichloroethane-d4 (Surr)	123		60 - 140				03/22/13 18:15	03/23/13 14:44	1

Method: 8015B - Diesel Ran	ge Organics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	3.4		0.99		mg/Kg		03/25/13 11:18	03/26/13 12:43	1
Motor Oil Range Organics [C24-C36] ND		50		mg/Kg		03/25/13 11:18	03/26/13 12:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	95	-	40 - 130				03/25/13 11:18	03/26/13 12:43	1

58 - 140

65 - 141

96

112

2

6

8

10

11

13

Client: The Source Group Project/Site: Paco Pumps

Toluene-d8 (Surr)

Toluene-d8 (Surr)

TestAmerica Job ID: 720-48500-1

Lab Sample ID: 720-48500-3

03/22/13 18:15 03/27/13 01:51

Matrix: Solid

Client Sample ID: SV-4-8
Date Collected: 03/22/13 08:30
Date Received: 03/22/13 16:45

910 ND ND	Qualifier	460 4.6	MDL	Unit ug/Kg	D	Prepared 03/22/13 18:15	Analyzed 03/27/13 01:51	Dil Fac
ND				ug/Kg		03/22/13 18:15	03/27/13 01:51	
		4.6				33,22, 3 10.10	03/21/13 01.31	100
ND				ug/Kg		03/22/13 18:15	03/23/13 15:11	1
		23000		ug/Kg		03/22/13 18:15	03/27/13 01:51	100
72		4.6		ug/Kg		03/22/13 18:15	03/23/13 15:11	1
ND		4.6		ug/Kg		03/22/13 18:15	03/23/13 15:11	1
20		9.1		ug/Kg		03/22/13 18:15	03/23/13 15:11	1
11		9.1		ug/Kg		03/22/13 18:15	03/23/13 15:11	1
ND		4.6		ug/Kg		03/22/13 18:15	03/23/13 15:11	1
ND		4.6		ug/Kg		03/22/13 18:15	03/23/13 15:11	1
ND		4.6		ug/Kg		03/22/13 18:15	03/23/13 15:11	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
111		66 - 148				03/22/13 18:15	03/27/13 01:51	100
104		62 - 137				03/22/13 18:15	03/27/13 01:51	100
187	X	45 - 131				03/22/13 18:15	03/23/13 15:11	1
115		60 - 140				03/22/13 18:15	03/23/13 15:11	1
	ND 20 11 ND ND ND 11 111 104 187	ND 20 11 ND ND ND ND ND 111 104 187 X	ND 4.6 20 9.1 11 9.1 ND 4.6 ND 4.6 ND 4.6 ND 4.6 ND 4.6 **Recovery Qualifier Limits** 111 66 - 148 104 62 - 137 187 X 45 - 131	ND 4.6 20 9.1 11 9.1 ND 4.6 ND 4.6 ND 4.6 ND 4.6 ND 4.6 111 66 - 148 104 62 - 137 187 X 45 - 131	ND 4.6 ug/Kg 20 9.1 ug/Kg 11 9.1 ug/Kg ND 4.6 ug/Kg 111 66 - 148 104 62 - 137 187 X 45 - 131	ND 4.6 ug/Kg 20 9.1 ug/Kg 11 9.1 ug/Kg ND 4.6 ug/Kg 7 111 66 - 148 104 62 - 137 187 X 45 - 131	ND 4.6 ug/Kg 03/22/13 18:15 20 9.1 ug/Kg 03/22/13 18:15 11 9.1 ug/Kg 03/22/13 18:15 ND 4.6 ug/Kg 03/22/13 18:15 ND 4.6 ug/Kg 03/22/13 18:15 ND 4.6 ug/Kg 03/22/13 18:15 WRecovery Qualifier Limits Prepared 111 66 - 148 03/22/13 18:15 104 62 - 137 03/22/13 18:15 187 X 45 - 131 03/22/13 18:15	ND 4.6 ug/Kg 03/22/13 18:15 03/23/13 15:11 20 9.1 ug/Kg 03/22/13 18:15 03/23/13 15:11 11 9.1 ug/Kg 03/22/13 18:15 03/23/13 15:11 ND 4.6 ug/Kg 03/22/13 18:15 03/23/13 15:11 ND 4.6 ug/Kg 03/22/13 18:15 03/23/13 15:11 ND 4.6 ug/Kg 03/22/13 18:15 03/23/13 15:11 WRecovery Qualifier Limits Prepared Analyzed 111 66 - 148 03/22/13 18:15 03/27/13 01:51 104 62 - 137 03/22/13 18:15 03/27/13 01:51 187 X 45 - 131 03/22/13 18:15 03/22/13 18:15 03/23/13 15:11

Method: 8015B - Diesel Range O	rganics (DRO) (0	GC)							
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	3.6		0.99		mg/Kg		03/25/13 11:18	03/26/13 13:08	1
Motor Oil Range Organics [C24-C36]	ND		50		mg/Kg		03/25/13 11:18	03/26/13 13:08	1
Surrogate	%Recovery G	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	97		40 - 130				03/25/13 11:18	03/26/13 13:08	1

58 - 140

65 - 141

101

113

TestAmerica Pleasanton

2

6

8

10

11

13

Client: The Source Group Project/Site: Paco Pumps

Surrogate

p-Terphenyl

TestAmerica Job ID: 720-48500-1

Lab Sample ID: 720-48500-4

Prepared

Analyzed

Matrix: Solid

Client Sample ID: SV-1-2.5 Date Collected: 03/22/13 09:30 Date Received: 03/22/13 16:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
MTBE	ND		3.9		ug/Kg		03/22/13 18:15	03/23/13 15:39	1
Benzene	ND		3.9		ug/Kg		03/22/13 18:15	03/23/13 15:39	1
Ethylbenzene	ND		3.9		ug/Kg		03/22/13 18:15	03/23/13 15:39	1
Toluene	ND		3.9		ug/Kg		03/22/13 18:15	03/23/13 15:39	1
Xylenes, Total	ND		7.8		ug/Kg		03/22/13 18:15	03/23/13 15:39	1
Gasoline Range Organics (GRO) -C5-C12	ND		200		ug/Kg		03/22/13 18:15	03/23/13 15:39	1
TBA	ND		7.8		ug/Kg		03/22/13 18:15	03/23/13 15:39	1
DIPE	ND		3.9		ug/Kg		03/22/13 18:15	03/23/13 15:39	1
TAME	ND		3.9		ug/Kg		03/22/13 18:15	03/23/13 15:39	1
Ethyl t-butyl ether	ND		3.9		ug/Kg		03/22/13 18:15	03/23/13 15:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	96		45 - 131				03/22/13 18:15	03/23/13 15:39	1
1,2-Dichloroethane-d4 (Surr)	114		60 - 140				03/22/13 18:15	03/23/13 15:39	1
Toluene-d8 (Surr)	98		58 - 140				03/22/13 18:15	03/23/13 15:39	1
- Method: 8015B - Diesel Range Or	ganics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	10		0.99		mg/Kg		03/25/13 11:18	03/26/13 13:32	1
Motor Oil Range Organics [C24-C36]	ND		49		mg/Kg		03/25/13 11:18	03/26/13 13:32	1

Limits

40 - 130

%Recovery Qualifier

108

3/29/2013

2

5

Q

9

10

12

13

14

Dil Fac

Client: The Source Group Project/Site: Paco Pumps

Client Sample ID: SV-1-5

Date Collected: 03/22/13 09:40

Date Received: 03/22/13 16:45

Surrogate

p-Terphenyl

TestAmerica Job ID: 720-48500-1

Prepared

Analyzed

Lab Sample ID: 720-48500-5

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
MTBE	ND		4.1		ug/Kg		03/22/13 18:15	03/23/13 16:07	1
Benzene	ND		4.1		ug/Kg		03/22/13 18:15	03/23/13 16:07	1
Ethylbenzene	ND		4.1		ug/Kg		03/22/13 18:15	03/23/13 16:07	1
Toluene	ND		4.1		ug/Kg		03/22/13 18:15	03/23/13 16:07	1
Xylenes, Total	12		8.2		ug/Kg		03/22/13 18:15	03/23/13 16:07	1
Gasoline Range Organics (GRO) -C5-C12	4800		210		ug/Kg		03/22/13 18:15	03/23/13 16:07	1
TBA	12		8.2		ug/Kg		03/22/13 18:15	03/23/13 16:07	1
DIPE	ND		4.1		ug/Kg		03/22/13 18:15	03/23/13 16:07	1
TAME	ND		4.1		ug/Kg		03/22/13 18:15	03/23/13 16:07	1
Ethyl t-butyl ether	ND		4.1		ug/Kg		03/22/13 18:15	03/23/13 16:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	106		45 - 131				03/22/13 18:15	03/23/13 16:07	1
1,2-Dichloroethane-d4 (Surr)	115		60 - 140				03/22/13 18:15	03/23/13 16:07	1
Toluene-d8 (Surr)	93		58 - 140				03/22/13 18:15	03/23/13 16:07	1
- Method: 8015B - Diesel Range O	rganics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	950		20		mg/Kg		03/25/13 11:18	03/26/13 15:16	20
Motor Oil Range Organics [C24-C36]	2000		990		mg/Kg		03/25/13 11:18	03/26/13 15:16	20

Limits

40 - 130

%Recovery Qualifier

0 XD

3/29/2013

Dil Fac

Client: The Source Group Project/Site: Paco Pumps

Client Sample ID: SV-2-2.5 Date Collected: 03/22/13 10:00 Date Received: 03/22/13 16:45

TestAmerica Job ID: 720-48500-1

Lab Sample ID: 720-48500-6

Matrix: Solid	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
MTBE	ND		4.5		ug/Kg		03/22/13 18:15	03/23/13 16:35	1
Benzene	ND		4.5		ug/Kg		03/22/13 18:15	03/23/13 16:35	1
Ethylbenzene	ND		4.5		ug/Kg		03/22/13 18:15	03/23/13 16:35	1
Toluene	ND		4.5		ug/Kg		03/22/13 18:15	03/23/13 16:35	1
Xylenes, Total	ND		9.1		ug/Kg		03/22/13 18:15	03/23/13 16:35	1
Gasoline Range Organics (GRO)	ND		230		ug/Kg		03/22/13 18:15	03/23/13 16:35	1
-C5-C12									
TBA	ND		9.1		ug/Kg		03/22/13 18:15	03/23/13 16:35	1
DIPE	ND		4.5		ug/Kg		03/22/13 18:15	03/23/13 16:35	1
TAME	ND		4.5		ug/Kg		03/22/13 18:15	03/23/13 16:35	1
Ethyl t-butyl ether	ND		4.5		ug/Kg		03/22/13 18:15	03/23/13 16:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	71		45 - 131				03/22/13 18:15	03/23/13 16:35	1
1,2-Dichloroethane-d4 (Surr)	121		60 - 140				03/22/13 18:15	03/23/13 16:35	1
Toluene-d8 (Surr)	91		58 - 140				03/22/13 18:15	03/23/13 16:35	1
- Method: 8015B - Diesel Range O	rganics (DRO)	(GC)							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	1.8		0.99		mg/Kg		03/25/13 11:18	03/28/13 12:14	1
Motor Oil Range Organics [C24-C36]	ND		50		mg/Kg		03/25/13 11:18	03/28/13 12:14	1
	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate	76Kecovery	Qualifier	LIIIIIG				rrepareu	Allalyzeu	Diriac

Client: The Source Group Project/Site: Paco Pumps

Client Sample ID: SV-2-5

Date Collected: 03/22/13 10:05

Date Received: 03/22/13 16:45

TestAmerica Job ID: 720-48500-1

Lab Sample ID: 720-48500-7

Matrix: Solid

Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
MTBE	ND ND	4.5		ug/Kg		03/22/13 18:15	03/23/13 17:03	1
Benzene	ND	4.5		ug/Kg		03/22/13 18:15	03/23/13 17:03	1
Ethylbenzene	ND	4.5		ug/Kg		03/22/13 18:15	03/23/13 17:03	1
Toluene	ND	4.5		ug/Kg		03/22/13 18:15	03/23/13 17:03	1
Xylenes, Total	ND	8.9		ug/Kg		03/22/13 18:15	03/23/13 17:03	1
Gasoline Range Organics (GRO)	ND	220		ug/Kg		03/22/13 18:15	03/23/13 17:03	1
-C5-C12 TBA	ND	8.9		ug/Kg		03/22/13 18:15	03/23/13 17:03	1
DIPE	ND	4.5		ug/Kg		03/22/13 18:15	03/23/13 17:03	1
TAME	ND	4.5		ug/Kg		03/22/13 18:15	03/23/13 17:03	1
Ethyl t-butyl ether	ND	4.5		ug/Kg		03/22/13 18:15	03/23/13 17:03	1
0	0/ D	-1181				D	A t	D# 5

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	82	45 - 131	03/22/13 18:15	03/23/13 17:03	1
1,2-Dichloroethane-d4 (Surr)	123	60 - 140	03/22/13 18:15	03/23/13 17:03	1
Toluene-d8 (Surr)	91	58 - 140	03/22/13 18:15	03/23/13 17:03	1

Method: 8015B - Diesel Range Or	ganics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	1.9		0.99		mg/Kg		03/25/13 11:18	03/26/13 16:04	1
Motor Oil Range Organics [C24-C36]	ND		49		mg/Kg		03/25/13 11:18	03/26/13 16:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenvl	101		40 - 130				03/25/13 11:18	03/26/13 16:04	

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48500-1

Lab Sample ID: 720-48500-8

Matrix: Solid

Client Sample ID: SV-1-9
Date Collected: 03/22/13 10:30
Date Received: 03/22/13 16:45

Method: 8260B/CA_LUFTMS - 8	3260B / CA LUFT	MS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
MTBE	ND		4.1		ug/Kg		03/22/13 18:15	03/23/13 17:31	1
Benzene	ND		4.1		ug/Kg		03/22/13 18:15	03/23/13 17:31	1
Gasoline Range Organics (GRO)	ND		20000		ug/Kg		03/22/13 18:15	03/27/13 21:29	100
-C5-C12									
Ethylbenzene	ND		4.1		ug/Kg		03/22/13 18:15	03/23/13 17:31	1
Toluene	ND		4.1		ug/Kg		03/22/13 18:15	03/23/13 17:31	1
Xylenes, Total	ND		8.1		ug/Kg		03/22/13 18:15	03/23/13 17:31	1
TBA	ND		8.1		ug/Kg		03/22/13 18:15	03/23/13 17:31	1
DIPE	ND		4.1		ug/Kg		03/22/13 18:15	03/23/13 17:31	1
TAME	ND		4.1		ug/Kg		03/22/13 18:15	03/23/13 17:31	1
Ethyl t-butyl ether	ND		4.1		ug/Kg		03/22/13 18:15	03/23/13 17:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene			66 - 148				03/22/13 18:15	03/27/13 21:29	100

Surrogate	%Recovery 0	Qualifier Lin	nits	Prepare	ea	Analyzea	DII Fac
4-Bromofluorobenzene	115	66	_ 148	03/22/13	18:15	03/27/13 21:29	100
1,2-Dichloroethane-d4 (Surr)	113	62	- 137	03/22/13	18:15	03/27/13 21:29	100
4-Bromofluorobenzene	133)	X 45	- 131	03/22/13	18:15	03/23/13 17:31	1
1,2-Dichloroethane-d4 (Surr)	110	60	- 140	03/22/13	18:15	03/23/13 17:31	1
Toluene-d8 (Surr)	97	58	- 140	03/22/13	18:15	03/23/13 17:31	1
Toluene-d8 (Surr)	110	65	- 141	03/22/13	18:15	03/27/13 21:29	100
_							

Method: 8015B - Diesel Range Org	ganics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	1200		20		mg/Kg		03/25/13 11:18	03/28/13 14:00	20
Motor Oil Range Organics [C24-C36]	2300		990		mg/Kg		03/25/13 11:18	03/28/13 14:00	20

Surrogate	%Recovery	Qualifier	Limits	Prepared	Anaiyzea	DII Fac
p-Terphenyl	0	DX	40 - 130	03/25/13 11:18	03/28/13 14:00	20

6

8

46

1 1

12

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48500-1

Lab Sample ID: 720-48500-9

Matrix: Solid

Client Sample ID: SV-2-10
Date Collected: 03/22/13 10:50
Date Received: 03/22/13 16:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		380		ug/Kg		03/22/13 18:15	03/27/13 11:27	100
Gasoline Range Organics (GRO) -C5-C12	21000		19000		ug/Kg		03/22/13 18:15	03/27/13 11:27	100
Ethylbenzene	ND		380		ug/Kg		03/22/13 18:15	03/27/13 11:27	100
MTBE	ND		380		ug/Kg		03/22/13 18:15	03/27/13 11:27	100
TAME	ND		380		ug/Kg		03/22/13 18:15	03/27/13 11:27	100
Ethyl t-butyl ether	ND		380		ug/Kg		03/22/13 18:15	03/27/13 11:27	100
Toluene	ND		380		ug/Kg		03/22/13 18:15	03/27/13 11:27	100
EDB	ND		380		ug/Kg		03/22/13 18:15	03/27/13 11:27	100
Xylenes, Total	ND		770		ug/Kg		03/22/13 18:15	03/27/13 11:27	100
1,2-Dichloroethane	ND		380		ug/Kg		03/22/13 18:15	03/27/13 11:27	100
TBA	ND		770		ug/Kg		03/22/13 18:15	03/27/13 11:27	100
DIPE	ND		380		ug/Kg		03/22/13 18:15	03/27/13 11:27	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	105		66 - 148				03/22/13 18:15	03/27/13 11:27	100
1,2-Dichloroethane-d4 (Surr)	101		62 - 137				03/22/13 18:15	03/27/13 11:27	100
Toluene-d8 (Surr)	102		65 - 141				03/22/13 18:15	03/27/13 11:27	100

Method: 8015B - Diesei Range Of	rganics (DRO) ((GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	8.0		1.0		mg/Kg		03/25/13 11:18	03/28/13 10:37	1
Motor Oil Range Organics [C24-C36]	ND		50		mg/Kg		03/25/13 11:18	03/28/13 10:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	83		40 - 130				03/25/13 11:18	03/28/13 10:37	1

TestAmerica Pleasanton

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48500-1

Lab Sample ID: 720-48500-10

Matrix: Solid

Client Sample ID: SV-3-3
Date Collected: 03/22/13 11:45
Date Received: 03/22/13 16:45
_

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
MTBE	ND		4.7		ug/Kg		03/22/13 18:15	03/23/13 18:27	1
Benzene	12		4.7		ug/Kg		03/22/13 18:15	03/23/13 18:27	1
Ethylbenzene	ND		4.7		ug/Kg		03/22/13 18:15	03/23/13 18:27	1
Toluene	ND		4.7		ug/Kg		03/22/13 18:15	03/23/13 18:27	1
Xylenes, Total	ND		9.4		ug/Kg		03/22/13 18:15	03/23/13 18:27	1
Gasoline Range Organics (GRO) -C5-C12	1900		210		ug/Kg		03/22/13 18:15	03/26/13 22:00	1
TBA	ND		9.4		ug/Kg		03/22/13 18:15	03/23/13 18:27	1
DIPE	ND		4.7		ug/Kg		03/22/13 18:15	03/23/13 18:27	1
TAME	ND		4.7		ug/Kg		03/22/13 18:15	03/23/13 18:27	1
Ethyl t-butyl ether	ND		4.7		ug/Kg		03/22/13 18:15	03/23/13 18:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	90		45 - 131				03/22/13 18:15	03/23/13 18:27	1
4-Bromofluorobenzene	91		45 - 131				03/22/13 18:15	03/26/13 22:00	1
1,2-Dichloroethane-d4 (Surr)	115		60 - 140				03/22/13 18:15	03/23/13 18:27	1
1,2-Dichloroethane-d4 (Surr)	113		60 - 140				03/22/13 18:15	03/26/13 22:00	1
Toluene-d8 (Surr)	95		58 - 140				03/22/13 18:15	03/23/13 18:27	1
Toluene-d8 (Surr)	109		58 - 140				03/22/13 18:15	03/26/13 22:00	1
Method: 8015B - Diesel Range O	rganics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	140		3.0		mg/Kg		03/25/13 11:18	03/28/13 13:13	3
Motor Oil Range Organics [C24-C36]	280		150		mg/Kg		03/25/13 11:18	03/28/13 13:13	3
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	54		40 - 130				03/25/13 11:18	03/28/13 13:13	3

2

5

6

8

10

11

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48500-1

Lab Sample ID: 720-48500-11

Matrix: Solid

Date Collected: 03/22/13 11:55 Date Received: 03/22/13 16:45

Client Sample ID: SV-3-5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
MTBE	ND		4.2		ug/Kg		03/22/13 18:15	03/23/13 18:55	1
Benzene	37		4.2		ug/Kg		03/22/13 18:15	03/23/13 18:55	1
Ethylbenzene	ND		4.2		ug/Kg		03/22/13 18:15	03/23/13 18:55	1
Toluene	ND		4.2		ug/Kg		03/22/13 18:15	03/23/13 18:55	1
Xylenes, Total	ND		8.4		ug/Kg		03/22/13 18:15	03/23/13 18:55	1
Gasoline Range Organics (GRO)	2900		210		ug/Kg		03/22/13 18:15	03/23/13 18:55	1
-C5-C12									
TBA	ND		8.4		ug/Kg		03/22/13 18:15	03/23/13 18:55	1
DIPE	ND		4.2		ug/Kg		03/22/13 18:15	03/23/13 18:55	1
TAME	ND		4.2		ug/Kg		03/22/13 18:15	03/23/13 18:55	1
Ethyl t-butyl ether	ND		4.2		ug/Kg		03/22/13 18:15	03/23/13 18:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	126		45 - 131				03/22/13 18:15	03/23/13 18:55	1
1,2-Dichloroethane-d4 (Surr)	116		60 - 140				03/22/13 18:15	03/23/13 18:55	1
Toluene-d8 (Surr)	92		58 ₋ 140				03/22/13 18:15	03/23/13 18:55	1

Method: 8015B - Diesel Range O	rganics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		1.0		mg/Kg		03/25/13 11:18	03/26/13 17:42	1
Motor Oil Range Organics [C24-C36]	ND		50		mg/Kg		03/25/13 11:18	03/26/13 17:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	104		40 - 130				03/25/13 11:18	03/26/13 17:42	1

3

5

7

0

10

11

Client: The Source Group Project/Site: Paco Pumps

Client Sample ID: SV-3-10

TestAmerica Job ID: 720-48500-1

Lab Sample ID: 720-48500-12

Matrix: Solid

Date Collected: 03/22/13 12:05		
Date Received: 03/22/13 16:45		
Method: 8260B/CA_LUFTMS - 8260	B / CA LUFT	M
Analyte	Result	Qı
D	ND	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		400		ug/Kg		03/22/13 18:15	03/27/13 11:56	100
Gasoline Range Organics (GRO) -C5-C12	130000		20000		ug/Kg		03/22/13 18:15	03/27/13 11:56	100
Ethylbenzene	480		400		ug/Kg		03/22/13 18:15	03/27/13 11:56	100
MTBE	ND		400		ug/Kg		03/22/13 18:15	03/27/13 11:56	100
TAME	ND		400		ug/Kg		03/22/13 18:15	03/27/13 11:56	100
Ethyl t-butyl ether	ND		400		ug/Kg		03/22/13 18:15	03/27/13 11:56	100
Toluene	ND		400		ug/Kg		03/22/13 18:15	03/27/13 11:56	100
EDB	ND		400		ug/Kg		03/22/13 18:15	03/27/13 11:56	100
Xylenes, Total	ND		790		ug/Kg		03/22/13 18:15	03/27/13 11:56	100
1,2-Dichloroethane	ND		400		ug/Kg		03/22/13 18:15	03/27/13 11:56	100
TBA	ND		790		ug/Kg		03/22/13 18:15	03/27/13 11:56	100
DIPE	ND		400		ug/Kg		03/22/13 18:15	03/27/13 11:56	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	108		66 - 148				03/22/13 18:15	03/27/13 11:56	100
1,2-Dichloroethane-d4 (Surr)	99		62 - 137				03/22/13 18:15	03/27/13 11:56	100
Toluene-d8 (Surr)	101		65 ₋ 141				03/22/13 18:15	03/27/13 11:56	100

Method: 8015B - Diesel Range Of Analyte	• ,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	12		0.99		mg/Kg		03/25/13 11:18	03/26/13 18:06	1
Motor Oil Range Organics [C24-C36]	ND		50		mg/Kg		03/25/13 11:18	03/26/13 18:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	101		40 - 130				03/25/13 11:18	03/26/13 18:06	1

4

6

8

3

11

12

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48500-1

Client Sample ID: SV-5-3 Lab Sample ID: 720-48500-13

Date Collected: 03/22/13 12:50

Date Received: 03/22/13 16:45

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
MTBE	ND		4.4		ug/Kg		03/22/13 18:15	03/23/13 19:51	1
Benzene	ND		4.4		ug/Kg		03/22/13 18:15	03/23/13 19:51	1
Ethylbenzene	ND		4.4		ug/Kg		03/22/13 18:15	03/23/13 19:51	1
Toluene	ND		4.4		ug/Kg		03/22/13 18:15	03/23/13 19:51	1
Xylenes, Total	ND		8.8		ug/Kg		03/22/13 18:15	03/23/13 19:51	1
Gasoline Range Organics (GRO) -C5-C12	640		240		ug/Kg		03/22/13 18:15	03/26/13 21:31	1
TBA	ND		8.8		ug/Kg		03/22/13 18:15	03/23/13 19:51	1
DIPE	ND		4.4		ug/Kg		03/22/13 18:15	03/23/13 19:51	1
TAME	ND		4.4		ug/Kg		03/22/13 18:15	03/23/13 19:51	1
Ethyl t-butyl ether	ND		4.4		ug/Kg		03/22/13 18:15	03/23/13 19:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	124		45 - 131				03/22/13 18:15	03/23/13 19:51	1
4-Bromofluorobenzene	105		45 - 131				03/22/13 18:15	03/26/13 21:31	1
1,2-Dichloroethane-d4 (Surr)	110		60 - 140				03/22/13 18:15	03/23/13 19:51	1
1,2-Dichloroethane-d4 (Surr)	120		60 - 140				03/22/13 18:15	03/26/13 21:31	1
Toluene-d8 (Surr)	93		58 - 140				03/22/13 18:15	03/23/13 19:51	1
Toluene-d8 (Surr)	111		58 - 140				03/22/13 18:15	03/26/13 21:31	1
Method: 8015B - Diesel Range O	rganics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	100		3.0		mg/Kg		03/25/13 11:18	03/28/13 12:44	3
Motor Oil Range Organics [C24-C36]	160		150		mg/Kg		03/25/13 11:18	03/28/13 12:44	3
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl			40 - 130				03/25/13 11:18	03/28/13 12:44	

3/29/2013

_

3

5

46

11

12

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48500-1

Client Sample ID: SV-5-5 Lab Sample ID: 720-48500-14

Date Collected: 03/22/13 13:10

Date Received: 03/22/13 16:45

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1900		420		ug/Kg		03/22/13 18:15	03/27/13 21:58	100
MTBE	ND		4.1		ug/Kg		03/22/13 18:15	03/23/13 20:19	1
Gasoline Range Organics (GRO)	59000		21000		ug/Kg		03/22/13 18:15	03/27/13 21:58	100
-C5-C12									
Ethylbenzene	640		420		ug/Kg		03/22/13 18:15	03/27/13 21:58	100
Toluene	12		4.1		ug/Kg		03/22/13 18:15	03/23/13 20:19	1
ТВА	10		8.2		ug/Kg		03/22/13 18:15	03/23/13 20:19	1
DIPE	ND		4.1		ug/Kg		03/22/13 18:15	03/23/13 20:19	1
Xylenes, Total	ND		840		ug/Kg		03/22/13 18:15	03/27/13 21:58	100
TAME	ND		4.1		ug/Kg		03/22/13 18:15	03/23/13 20:19	1
Ethyl t-butyl ether	ND		4.1		ug/Kg		03/22/13 18:15	03/23/13 20:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	159	X	45 - 131				03/22/13 18:15	03/23/13 20:19	1
1,2-Dichloroethane-d4 (Surr)	112		60 - 140				03/22/13 18:15	03/23/13 20:19	1
4-Bromofluorobenzene	111		66 - 148				03/22/13 18:15	03/27/13 21:58	100
Toluene-d8 (Surr)	100		58 - 140				03/22/13 18:15	03/23/13 20:19	1
1,2-Dichloroethane-d4 (Surr)	116		62 - 137				03/22/13 18:15	03/27/13 21:58	100
Toluene-d8 (Surr)	113		65 - 141				03/22/13 18:15	03/27/13 21:58	100
- Method: 8015B - Diesel Range O	rganics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	3.8		0.99		mg/Kg		03/25/13 11:18	03/28/13 11:07	1
Motor Oil Range Organics [C24-C36]	ND		50		mg/Kg		03/25/13 11:18	03/28/13 11:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	91		40 - 130				03/25/13 11:18	03/28/13 11:07	

3/29/2013

Client: The Source Group Project/Site: Paco Pumps

Client Sample ID: SV-5-9

Date Collected: 03/22/13 13:20

Date Received: 03/22/13 16:45

TestAmerica Job ID: 720-48500-1

Lab Sample ID: 720-48500-15

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	6600		400		ug/Kg		03/22/13 18:15	03/27/13 23:25	100
Gasoline Range Organics (GRO) -C5-C12	640000		20000		ug/Kg		03/22/13 18:15	03/27/13 23:25	100
Ethylbenzene	4400		400		ug/Kg		03/22/13 18:15	03/27/13 23:25	100
MTBE	ND		400		ug/Kg		03/22/13 18:15	03/27/13 23:25	100
TAME	ND		400		ug/Kg		03/22/13 18:15	03/27/13 23:25	100
Ethyl t-butyl ether	ND		400		ug/Kg		03/22/13 18:15	03/27/13 23:25	100
Toluene	2400		400		ug/Kg		03/22/13 18:15	03/27/13 23:25	100
EDB	ND		400		ug/Kg		03/22/13 18:15	03/27/13 23:25	100
Xylenes, Total	8400		800		ug/Kg		03/22/13 18:15	03/27/13 23:25	100
1,2-Dichloroethane	ND		400		ug/Kg		03/22/13 18:15	03/27/13 23:25	100
TBA	ND		800		ug/Kg		03/22/13 18:15	03/27/13 23:25	100
DIPE	ND		400		ug/Kg		03/22/13 18:15	03/27/13 23:25	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	119		66 - 148				03/22/13 18:15	03/27/13 23:25	100
1,2-Dichloroethane-d4 (Surr)	113		62 - 137				03/22/13 18:15	03/27/13 23:25	100
Toluene-d8 (Surr)	116		65 - 141				03/22/13 18:15	03/27/13 23:25	100

	Method: 8015B - Diesel Range Or	rganics (DRO)	(GC)							
ı	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Diesel Range Organics [C10-C28]	17		0.99		mg/Kg		03/25/13 11:18	03/26/13 15:40	1
	Motor Oil Range Organics [C24-C36]	ND		50		mg/Kg		03/25/13 11:18	03/26/13 15:40	1
	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	p-Terphenyl	86		40 - 130				03/25/13 11:18	03/26/13 15:40	1

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48500-1

Lab Sample ID: 720-48500-16

Matrix: Solid

Client Sample ID: SV-6-3

Date Collected: 03/22/13 14:35 Date Received: 03/22/13 16:45

p-Terphenyl

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		450		ug/Kg		03/22/13 18:15	03/27/13 22:27	100
MTBE	ND		4.5		ug/Kg		03/22/13 18:15	03/25/13 13:25	1
Gasoline Range Organics (GRO) -C5-C12	ND		23000		ug/Kg		03/22/13 18:15	03/27/13 22:27	100
Ethylbenzene	ND		450		ug/Kg		03/22/13 18:15	03/27/13 22:27	100
Toluene	ND		450		ug/Kg		03/22/13 18:15	03/27/13 22:27	100
ТВА	15		9.0		ug/Kg		03/22/13 18:15	03/25/13 13:25	1
DIPE	ND		4.5		ug/Kg		03/22/13 18:15	03/25/13 13:25	1
Xylenes, Total	2400		910		ug/Kg		03/22/13 18:15	03/27/13 22:27	100
TAME	ND		4.5		ug/Kg		03/22/13 18:15	03/25/13 13:25	1
Ethyl t-butyl ether	ND		4.5		ug/Kg		03/22/13 18:15	03/25/13 13:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	76		45 - 131				03/22/13 18:15	03/25/13 13:25	1
1,2-Dichloroethane-d4 (Surr)	114		60 - 140				03/22/13 18:15	03/25/13 13:25	1
4-Bromofluorobenzene	104		66 - 148				03/22/13 18:15	03/27/13 22:27	100
1,2-Dichloroethane-d4 (Surr)	112		62 - 137				03/22/13 18:15	03/27/13 22:27	100
Toluene-d8 (Surr)	111		58 - 140				03/22/13 18:15	03/25/13 13:25	1
Toluene-d8 (Surr)	113		65 - 141				03/22/13 18:15	03/27/13 22:27	100
- Method: 8015B - Diesel Range O	rganics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	22		0.99		mg/Kg		03/25/13 11:18	03/26/13 16:04	1
Motor Oil Range Organics [C24-C36]	110		50		mg/Kg		03/25/13 11:18	03/26/13 16:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

40 - 130

Client: The Source Group Project/Site: Paco Pumps

Toluene-d8 (Surr)

TestAmerica Job ID: 720-48500-1

03/22/13 18:15 03/27/13 22:56

Lab Sample ID: 720-48500-17

Matrix: Solid

Client Sample ID: SV-6-5.5 Date Collected: 03/22/13 14:50 Date Received: 03/22/13 16:45

Method: 8260B/CA_LUFTMS - 8	260B / CA LUFT	MS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
MTBE	ND		4.6		ug/Kg		03/22/13 18:15	03/25/13 13:54	1
Benzene	210		4.6		ug/Kg		03/22/13 18:15	03/25/13 13:54	1
Gasoline Range Organics (GRO)	ND		20000		ug/Kg		03/22/13 18:15	03/27/13 22:56	100
-C5-C12									
Ethylbenzene	450		400		ug/Kg		03/22/13 18:15	03/27/13 22:56	100
Toluene	ND		4.6		ug/Kg		03/22/13 18:15	03/25/13 13:54	1
ТВА	24		9.2		ug/Kg		03/22/13 18:15	03/25/13 13:54	1
DIPE	ND		4.6		ug/Kg		03/22/13 18:15	03/25/13 13:54	1
Xylenes, Total	2000		790		ug/Kg		03/22/13 18:15	03/27/13 22:56	100
TAME	ND		4.6		ug/Kg		03/22/13 18:15	03/25/13 13:54	1
Ethyl t-butyl ether	ND		4.6		ug/Kg		03/22/13 18:15	03/25/13 13:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	106		45 - 131				03/22/13 18:15	03/25/13 13:54	1
1,2-Dichloroethane-d4 (Surr)	100		60 - 140				03/22/13 18:15	03/25/13 13:54	1
Toluene-d8 (Surr)	113		58 - 140				03/22/13 18:15	03/25/13 13:54	1
4-Bromofluorobenzene	105		66 - 148				03/22/13 18:15	03/27/13 22:56	100
1,2-Dichloroethane-d4 (Surr)	112		62 - 137				03/22/13 18:15	03/27/13 22:56	100

Method: 8015B - Diesel Range O	rganics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	2.6		0.99		mg/Kg		03/25/13 11:18	03/28/13 11:45	1
Motor Oil Range Organics [C24-C36]	ND		50		mg/Kg		03/25/13 11:18	03/28/13 11:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	106	-	40 - 130				03/25/13 11:18	03/28/13 11:45	1

65 - 141

113

3

5

6

8

3

10

12

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48500-1

Lab Sample ID: 720-48500-18

Matrix: Solid

Client Sample ID: SV-6-9
Date Collected: 03/22/13 15:10
Date Received: 03/22/13 16:45

Diesel Range Organics [C10-C28]

Motor Oil Range Organics [C24-C36]

Surrogate

p-Terphenyl

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		4000		ug/Kg		03/22/13 18:15	03/27/13 12:53	1000
Gasoline Range Organics (GRO) -C5-C12	920000		200000		ug/Kg		03/22/13 18:15	03/27/13 12:53	1000
Ethylbenzene	20000		4000		ug/Kg		03/22/13 18:15	03/27/13 12:53	1000
MTBE	ND		4000		ug/Kg		03/22/13 18:15	03/27/13 12:53	1000
TAME	ND		4000		ug/Kg		03/22/13 18:15	03/27/13 12:53	1000
Ethyl t-butyl ether	ND		4000		ug/Kg		03/22/13 18:15	03/27/13 12:53	1000
Toluene	ND		4000		ug/Kg		03/22/13 18:15	03/27/13 12:53	1000
EDB	ND		4000		ug/Kg		03/22/13 18:15	03/27/13 12:53	1000
Xylenes, Total	84000		8100		ug/Kg		03/22/13 18:15	03/27/13 12:53	1000
1,2-Dichloroethane	ND		4000		ug/Kg		03/22/13 18:15	03/27/13 12:53	1000
TBA	ND		8100		ug/Kg		03/22/13 18:15	03/27/13 12:53	1000
DIPE	ND		4000		ug/Kg		03/22/13 18:15	03/27/13 12:53	1000
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	104		66 - 148				03/22/13 18:15	03/27/13 12:53	1000
1,2-Dichloroethane-d4 (Surr)	99		62 - 137				03/22/13 18:15	03/27/13 12:53	1000
Toluene-d8 (Surr)	102		65 - 141				03/22/13 18:15	03/27/13 12:53	1000
- Method: 8015B - Diesel Range C	rganics (DRO)	(GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.99

Limits

40 - 130

50

75

ND

%Recovery Qualifier

69

mg/Kg

mg/Kg

03/25/13 11:18

03/25/13 11:18

Prepared

03/25/13 11:18

03/26/13 16:53

03/26/13 16:53

Analyzed

03/26/13 16:53

1

12

4 4

14

Dil Fac

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48500-1

Lab Sample ID: 720-48500-19

Matrix: Solid

Client Sample ID: SV-7-3
Date Collected: 03/22/13 14:45
Date Received: 03/22/13 16:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
MTBE	ND		4.1		ug/Kg		03/22/13 18:15	03/26/13 21:02	1
Benzene	ND		4.1		ug/Kg		03/22/13 18:15	03/26/13 21:02	1
Ethylbenzene	ND		4.1		ug/Kg		03/22/13 18:15	03/26/13 21:02	1
Toluene	ND		4.1		ug/Kg		03/22/13 18:15	03/26/13 21:02	1
Xylenes, Total	ND		8.3		ug/Kg		03/22/13 18:15	03/26/13 21:02	1
Gasoline Range Organics (GRO) -C5-C12	ND		210		ug/Kg		03/22/13 18:15	03/26/13 21:02	1
TBA	ND		8.3		ug/Kg		03/22/13 18:15	03/26/13 21:02	1
DIPE	ND		4.1		ug/Kg		03/22/13 18:15	03/26/13 21:02	1
TAME	ND		4.1		ug/Kg		03/22/13 18:15	03/26/13 21:02	1
Ethyl t-butyl ether	ND		4.1		ug/Kg		03/22/13 18:15	03/26/13 21:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	89		45 - 131				03/22/13 18:15	03/26/13 21:02	1
1,2-Dichloroethane-d4 (Surr)	128		60 - 140				03/22/13 18:15	03/26/13 21:02	1
Toluene-d8 (Surr)	103		58 - 140				03/22/13 18:15	03/26/13 21:02	1
Method: 8015B - Diesel Range O	ganics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	5.3		0.98		mg/Kg		03/25/13 11:18	03/26/13 17:17	1
Motor Oil Range Organics [C24-C36]	ND		49		mg/Kg		03/25/13 11:18	03/26/13 17:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	65		40 - 130				03/25/13 11:18	03/26/13 17:17	1

3

5

7

9

10

11

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48500-1

Lab Sample ID: 720-48500-20

Matrix: Solid

Client Sample ID: SV-7-5.5 Date Collected: 03/22/13 15:00 Date Received: 03/22/13 16:45

Motor Oil Range Organics [C24-C36]

Surrogate

p-Terphenyl

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
MTBE	ND		4.3		ug/Kg		03/22/13 18:15	03/25/13 15:21	1
Benzene	ND		4.3		ug/Kg		03/22/13 18:15	03/25/13 15:21	1
Ethylbenzene	ND		4.7		ug/Kg		03/22/13 18:15	03/26/13 20:32	1
Toluene	ND		4.3		ug/Kg		03/22/13 18:15	03/25/13 15:21	1
Xylenes, Total	ND		9.4		ug/Kg		03/22/13 18:15	03/26/13 20:32	1
Gasoline Range Organics (GRO)	ND		230		ug/Kg		03/22/13 18:15	03/26/13 20:32	1
-C5-C12									
TBA	ND		8.6		ug/Kg		03/22/13 18:15	03/25/13 15:21	1
DIPE	ND		4.3		ug/Kg		03/22/13 18:15	03/25/13 15:21	1
TAME	ND		4.3		ug/Kg		03/22/13 18:15	03/25/13 15:21	1
Ethyl t-butyl ether	ND		4.3		ug/Kg		03/22/13 18:15	03/25/13 15:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	86		45 - 131				03/22/13 18:15	03/25/13 15:21	1
4-Bromofluorobenzene	80		45 - 131				03/22/13 18:15	03/26/13 20:32	1
1,2-Dichloroethane-d4 (Surr)	109		60 - 140				03/22/13 18:15	03/25/13 15:21	1
1,2-Dichloroethane-d4 (Surr)	108		60 - 140				03/22/13 18:15	03/26/13 20:32	1
Toluene-d8 (Surr)	105		58 - 140				03/22/13 18:15	03/25/13 15:21	1
Toluene-d8 (Surr)	106		58 - 140				03/22/13 18:15	03/26/13 20:32	1
- Method: 8015B - Diesel Range Oi	ganics (DRO)	(GC)							
Analyte	• , ,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	1.1		1.0		mg/Kg		03/25/13 11:18	03/26/13 18:06	

50

Limits

40 - 130

mg/Kg

03/25/13 11:18

Prepared

03/26/13 18:06

Analyzed

ND

%Recovery Qualifier

90

TestAmerica Pleasanton

3

5

7

9

10

12

13

Dil Fac

Client: The Source Group Project/Site: Paco Pumps

1,2-Dichloroethane-d4 (Surr)

Toluene-d8 (Surr)

Toluene-d8 (Surr)

TestAmerica Job ID: 720-48500-1

Lab Sample ID: 720-48500-21

03/22/13 18:15 03/26/13 20:03

03/22/13 18:15 03/26/13 20:03

Matrix: Solid

Client Sample ID: SV-7-9
Date Collected: 03/22/13 15:25
Date Received: 03/22/13 16:45

Method: 8260B/CA_LUFTMS - 8	3260B / CA LUFT	MS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
MTBE	ND		4.0		ug/Kg		03/22/13 18:15	03/25/13 15:50	1
Benzene	ND		4.0		ug/Kg		03/22/13 18:15	03/25/13 15:50	1
Ethylbenzene	ND		3.7		ug/Kg		03/22/13 18:15	03/26/13 20:03	1
Toluene	ND		4.0		ug/Kg		03/22/13 18:15	03/25/13 15:50	1
Xylenes, Total	ND		7.5		ug/Kg		03/22/13 18:15	03/26/13 20:03	1
Gasoline Range Organics (GRO)	ND		190		ug/Kg		03/22/13 18:15	03/26/13 20:03	1
-C5-C12									
TBA	ND		8.1		ug/Kg		03/22/13 18:15	03/25/13 15:50	1
DIPE	ND		4.0		ug/Kg		03/22/13 18:15	03/25/13 15:50	1
TAME	ND		4.0		ug/Kg		03/22/13 18:15	03/25/13 15:50	1
Ethyl t-butyl ether	ND		4.0		ug/Kg		03/22/13 18:15	03/25/13 15:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	105		45 - 131				03/22/13 18:15	03/25/13 15:50	1
4-Bromofluorobenzene	91		45 - 131				03/22/13 18:15	03/26/13 20:03	1
1.2-Dichloroethane-d4 (Surr)	99		60 - 140				03/22/13 18:15	03/25/13 15:50	1

 Method: 8015B - Diesel Range O	rganics (DPO)	(GC)							
Analyte	• ,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	2.2		0.98		mg/Kg		03/27/13 14:40	03/28/13 09:45	1
Motor Oil Range Organics [C24-C36]	ND		49		mg/Kg		03/27/13 14:40	03/28/13 09:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	86		40 - 130				03/27/13 14:40	03/28/13 09:45	

60 - 140

58 - 140

58 - 140

104

110

Client: The Source Group Project/Site: Paco Pumps

Client Sample ID: SV-8-3

Date Collected: 03/22/13 15:30

Date Received: 03/22/13 16:45

Toluene-d8 (Surr)

Toluene-d8 (Surr)

TestAmerica Job ID: 720-48500-1

Lab Sample ID: 720-48500-22

Matrix: Solid

03/22/13 18:15 03/25/13 16:18

03/22/13 18:15 03/26/13 19:34

Method: 8260B/CA_LUFTMS - 8	3260B / CA LUFT	MS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
MTBE	ND		4.3		ug/Kg		03/22/13 18:15	03/25/13 16:18	1
Benzene	ND		4.3		ug/Kg		03/22/13 18:15	03/25/13 16:18	1
Ethylbenzene	ND		4.1		ug/Kg		03/22/13 18:15	03/26/13 19:34	1
Toluene	ND		4.3		ug/Kg		03/22/13 18:15	03/25/13 16:18	1
Xylenes, Total	ND		8.2		ug/Kg		03/22/13 18:15	03/26/13 19:34	1
Gasoline Range Organics (GRO) -C5-C12	ND		200		ug/Kg		03/22/13 18:15	03/26/13 19:34	1
TBA	ND		8.6		ug/Kg		03/22/13 18:15	03/25/13 16:18	1
DIPE	ND		4.3		ug/Kg		03/22/13 18:15	03/25/13 16:18	1
TAME	ND		4.3		ug/Kg		03/22/13 18:15	03/25/13 16:18	1
Ethyl t-butyl ether	ND		4.3		ug/Kg		03/22/13 18:15	03/25/13 16:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	63		45 - 131				03/22/13 18:15	03/25/13 16:18	1
4-Bromofluorobenzene	63		45 - 131				03/22/13 18:15	03/26/13 19:34	1
1,2-Dichloroethane-d4 (Surr)	117		60 - 140				03/22/13 18:15	03/25/13 16:18	1
1,2-Dichloroethane-d4 (Surr)	121		60 - 140				03/22/13 18:15	03/26/13 19:34	1

ì	

Method: 8015B - Diesel Range Org	anics (DRO) (GC)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	21	0.99	mg/Kg		03/25/13 17:34	03/26/13 12:47	1
Motor Oil Range Organics [C24-C36]	84	49	mg/Kg		03/25/13 17:34	03/26/13 12:47	1

58 - 140

58 - 140

96

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
p-Terphenyl	64	40 - 130	03/25/13 17:34	03/26/13 12:47	1

Client: The Source Group Project/Site: Paco Pumps

p-Terphenyl

TestAmerica Job ID: 720-48500-1

Lab Sample ID: 720-48500-23

03/25/13 17:34 03/26/13 13:16

Matrix: Solid

Client Sample ID: SV-8-5.5 Date Collected: 03/22/13 15:35 Date Received: 03/22/13 16:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
MTBE	ND		4.2		ug/Kg		03/22/13 18:15	03/25/13 16:47	1
Benzene	ND		4.2		ug/Kg		03/22/13 18:15	03/25/13 16:47	1
Ethylbenzene	ND		4.2		ug/Kg		03/22/13 18:15	03/25/13 16:47	1
Toluene	ND		4.2		ug/Kg		03/22/13 18:15	03/25/13 16:47	1
Xylenes, Total	ND		8.2		ug/Kg		03/22/13 18:15	03/26/13 19:06	1
Gasoline Range Organics (GRO) -C5-C12	ND		200		ug/Kg		03/22/13 18:15	03/26/13 19:06	1
TBA	ND		8.4		ug/Kg		03/22/13 18:15	03/25/13 16:47	1
DIPE	ND		4.2		ug/Kg		03/22/13 18:15	03/25/13 16:47	1
TAME	ND		4.2		ug/Kg		03/22/13 18:15	03/25/13 16:47	1
Ethyl t-butyl ether	ND		4.2		ug/Kg		03/22/13 18:15	03/25/13 16:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	96		45 - 131				03/22/13 18:15	03/25/13 16:47	1
4-Bromofluorobenzene	93		45 - 131				03/22/13 18:15	03/26/13 19:06	1
1,2-Dichloroethane-d4 (Surr)	113		60 - 140				03/22/13 18:15	03/25/13 16:47	1
1,2-Dichloroethane-d4 (Surr)	118		60 - 140				03/22/13 18:15	03/26/13 19:06	1
Toluene-d8 (Surr)	106		58 - 140				03/22/13 18:15	03/25/13 16:47	1
Toluene-d8 (Surr)	105		58 - 140				03/22/13 18:15	03/26/13 19:06	1
_		(00)							
Method: 8015B - Diesel Range O	rganics (DRO)	(GC)							
Method: 8015B - Diesel Range O Analyte	• ,	(GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	• ,	• /		MDL	Unit mg/Kg	<u>D</u>	Prepared 03/25/13 17:34	Analyzed 03/26/13 13:16	Dil Fac
•	Result	• /		MDL		D	<u> </u>		Dil Fac

40 - 130

89

3

6

8

40

1 4

12

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48500-1

Lab Sample ID: 720-48500-24

Matrix: Solid

Client Sample ID: SV-8-9
Date Collected: 03/22/13 15:40
Date Received: 03/22/13 16:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
MTBE	ND		4.0		ug/Kg		03/22/13 18:15	03/25/13 17:16	1
Benzene	ND		4.0		ug/Kg		03/22/13 18:15	03/25/13 17:16	1
Ethylbenzene	ND		4.0		ug/Kg		03/22/13 18:15	03/25/13 17:16	1
Toluene	ND		4.0		ug/Kg		03/22/13 18:15	03/25/13 17:16	1
Xylenes, Total	ND		7.8		ug/Kg		03/22/13 18:15	03/26/13 18:37	1
Gasoline Range Organics (GRO) -C5-C12	ND		200		ug/Kg		03/22/13 18:15	03/25/13 17:16	1
TBA	ND		8.1		ug/Kg		03/22/13 18:15	03/25/13 17:16	1
DIPE	ND		4.0		ug/Kg		03/22/13 18:15	03/25/13 17:16	1
TAME	ND		4.0		ug/Kg		03/22/13 18:15	03/25/13 17:16	1
Ethyl t-butyl ether	ND		4.0		ug/Kg		03/22/13 18:15	03/25/13 17:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	101		45 - 131				03/22/13 18:15	03/25/13 17:16	1
4-Bromofluorobenzene	99		45 - 131				03/22/13 18:15	03/26/13 18:37	1
1,2-Dichloroethane-d4 (Surr)	101		60 - 140				03/22/13 18:15	03/25/13 17:16	1
1,2-Dichloroethane-d4 (Surr)	111		60 - 140				03/22/13 18:15	03/26/13 18:37	1
Toluene-d8 (Surr)	105		58 - 140				03/22/13 18:15	03/25/13 17:16	1
Toluene-d8 (Surr)	108		58 - 140				03/22/13 18:15	03/26/13 18:37	1
Method: 8015B - Diesel Range O	rganics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	3.0		1.0		mg/Kg		03/25/13 17:34	03/26/13 13:45	1
Motor Oil Range Organics [C24-C36]	ND		50		mg/Kg		03/25/13 17:34	03/26/13 13:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	94		40 - 130				03/25/13 17:34	03/26/13 13:45	

TestAmerica Job ID: 720-48500-1

Client: The Source Group Project/Site: Paco Pumps

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Lab Sample ID: MB 720-132954/4

Matrix: Solid

Analysis Batch: 132954

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		5.0		ug/Kg			03/23/13 11:27	1
Ethylbenzene	ND		5.0		ug/Kg			03/23/13 11:27	1
MTBE	ND		5.0		ug/Kg			03/23/13 11:27	1
Gasoline Range Organics (GRO)	ND		250		ug/Kg			03/23/13 11:27	1
-C5-C12									
Toluene	ND		5.0		ug/Kg			03/23/13 11:27	1
Xylenes, Total	ND		10		ug/Kg			03/23/13 11:27	1
TAME	ND		5.0		ug/Kg			03/23/13 11:27	1
Ethyl t-butyl ether	ND		5.0		ug/Kg			03/23/13 11:27	1
TBA	ND		10		ug/Kg			03/23/13 11:27	1
DIPE	ND		5.0		ug/Kg			03/23/13 11:27	1

MB MB %Recovery Qualifier Limits Prepared Analyzed 104 45 - 131 03/23/13 11:27

4-Bromofluorobenzene 1,2-Dichloroethane-d4 (Surr) 121 60 - 140 03/23/13 11:27 03/23/13 11:27 Toluene-d8 (Surr) 100 58 - 140

Lab Sample ID: LCS 720-132954/5

Matrix: Solid

Surrogate

Analysis Batch: 132954

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Dil Fac

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	50.0	46.6	-	ug/Kg		93	70 - 130	
Ethylbenzene	50.0	45.5		ug/Kg		91	80 - 137	
MTBE	50.0	57.4		ug/Kg		115	70 - 144	
m-Xylene & p-Xylene	100	94.6		ug/Kg		95	70 - 146	
o-Xylene	50.0	52.2		ug/Kg		104	70 - 140	
Toluene	50.0	44.9		ug/Kg		90	80 - 128	
TAME	50.0	59.5		ug/Kg		119	70 - 140	
Ethyl t-butyl ether	50.0	58.0		ug/Kg		116	70 - 130	
TBA	1000	991		ug/Kg		99	63 _ 130	
DIPE	50.0	52.6		ug/Kg		105	70 - 131	

LCS LCS %Recovery Qualifier Limits Surrogate 45 - 131 4-Bromofluorobenzene 107 115 60 - 140 1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) 102 58 - 140

Lab Sample ID: LCS 720-132954/7

Matrix: Solid

Analysis Batch: 132954								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)	 1000	905		ug/Kg		91	61 - 128	

-C5-C12

TestAmerica Pleasanton

Prep Type: Total/NA

Client: The Source Group Project/Site: Paco Pumps

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-132954/7

Matrix: Solid

Analysis Batch: 132954

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	107		45 _ 131
1,2-Dichloroethane-d4 (Surr)	118		60 - 140
Toluene-d8 (Surr)	101		58 ₋ 140

Lab Sample ID: LCSD 720-132954/6

Matrix: Solid

Analysis Batch: 132954

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	50.0	46.9		ug/Kg		94	70 - 130	1	20
Ethylbenzene	50.0	45.3		ug/Kg		91	80 - 137	1	20
MTBE	50.0	58.3		ug/Kg		117	70 - 144	2	20
m-Xylene & p-Xylene	100	94.3		ug/Kg		94	70 - 146	0	20
o-Xylene	50.0	52.5		ug/Kg		105	70 - 140	1	20
Toluene	50.0	45.1		ug/Kg		90	80 - 128	1	20
TAME	50.0	60.4		ug/Kg		121	70 - 140	2	20
Ethyl t-butyl ether	50.0	59.3		ug/Kg		119	70 - 130	2	20
TBA	1000	1030		ug/Kg		103	63 - 130	4	20
DIPE	50.0	53.7		ug/Kg		107	70 - 131	2	20

LCSD LCSD

Surrogate	%Recovery Q	ualifier	Limits
4-Bromofluorobenzene	104		45 _ 131
1,2-Dichloroethane-d4 (Surr)	113		60 - 140
Toluene-d8 (Surr)	101		58 - 140

Lab Sample ID: LCSD 720-132954/8

Matrix: Solid

Analyte

-C5-C12

Analysis Batch: 132954

Gasoline Range Organics (GRO)

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Spike LCSD LCSD %Rec. RPD Added Result Qualifier Limit Unit %Rec Limits RPD 1000 905 90 61 - 128 0 20 ug/Kg

 Surrogate
 %Recovery
 Qualifier
 Limits

 4-Bromofluorobenzene
 107
 45 - 131

 1,2-Dichloroethane-d4 (Surr)
 119
 60 - 140

 Toluene-d8 (Surr)
 102
 58 - 140

Lab Sample ID: MB 720-132972/5

Matrix: Solid

Analysis Batch: 132972

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		5.0		ug/Kg			03/25/13 09:30	1
Ethylbenzene	ND		5.0		ug/Kg			03/25/13 09:30	1
MTBE	ND		5.0		ug/Kg			03/25/13 09:30	1
Gasoline Range Organics (GRO)	ND		250		ug/Kg			03/25/13 09:30	1

TestAmerica Pleasanton

Page 34 of 62

TestAmerica Job ID: 720-48500-1

Client: The Source Group Project/Site: Paco Pumps

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-132972/5

Matrix: Solid

Analysis Batch: 132972

Client Sample ID: Method Blank
Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	ND		5.0		ug/Kg			03/25/13 09:30	1
Xylenes, Total	ND		10		ug/Kg			03/25/13 09:30	1
TAME	ND		5.0		ug/Kg			03/25/13 09:30	1
Ethyl t-butyl ether	ND		5.0		ug/Kg			03/25/13 09:30	1
TBA	ND		10		ug/Kg			03/25/13 09:30	1
DIPE	ND		5.0		ug/Kg			03/25/13 09:30	1

MB MB %Recovery Qualifier Limits Dil Fac Surrogate Prepared Analyzed 4-Bromofluorobenzene 95 45 - 131 03/25/13 09:30 1,2-Dichloroethane-d4 (Surr) 100 60 - 140 03/25/13 09:30 Toluene-d8 (Surr) 102 58 - 140 03/25/13 09:30

Lab Sample ID: LCS 720-132972/6

Matrix: Solid

Analysis Batch: 132972

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	50.0	52.6		ug/Kg		105	70 - 130	
Ethylbenzene	50.0	53.1		ug/Kg		106	80 - 137	
MTBE	50.0	63.3		ug/Kg		127	70 - 144	
m-Xylene & p-Xylene	100	115		ug/Kg		115	70 - 146	
o-Xylene	50.0	59.0		ug/Kg		118	70 - 140	
Toluene	50.0	50.9		ug/Kg		102	80 - 128	
TAME	50.0	52.1		ug/Kg		104	70 - 140	
Ethyl t-butyl ether	50.0	54.4		ug/Kg		109	70 - 130	
TBA	1000	984		ug/Kg		98	63 - 130	
DIPE	50.0	57.8		ug/Kg		116	70 - 131	

	LCS L	.cs			
Surrogate	%Recovery C	Qualifier	Limits		
4-Bromofluorobenzene	107		45 - 131		
1,2-Dichloroethane-d4 (Surr)	103		60 - 140		
Toluene-d8 (Surr)	109		58 ₋ 140		

Lab Sample ID: LCS 720-132972/8

Matrix: Solid

-C5-C12

Analysis Batch: 132972

Gasoline Range Organics (GRO)

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

LCS LCS %Rec. Result Qualifier Unit Limits 106 61 - 128 ug/Kg

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	108		45 - 131
1,2-Dichloroethane-d4 (Surr)	103		60 - 140
Toluene-d8 (Surr)	111		58 ₋ 140

TestAmerica Pleasanton

Spike

Added

1000

Client: The Source Group Project/Site: Paco Pumps

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-132972/7

Matrix: Solid

Analysis Batch: 132972

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Spike LCSD LCSD %Rec. RPD Added Result Qualifier RPD Limit Analyte Unit %Rec Limits 50.0 2 Benzene 51.7 ug/Kg 103 70 - 130 20 50.0 52.3 Ethylbenzene ug/Kg 105 80 - 137 2 20 MTBE 50.0 65.2 ug/Kg 130 70 - 144 3 20 m-Xylene & p-Xylene 100 20 113 ug/Kg 113 70 - 146 o-Xylene 50.0 58.0 ug/Kg 116 70 - 140 2 20 Toluene 50.0 50.6 ug/Kg 101 80 - 128 20 TAME 50.0 52.9 ug/Kg 106 70 - 140 20 Ethyl t-butyl ether 50.0 ug/Kg 108 70 - 130 20 54.2 TBA 1000 985 20 ug/Kg 98 63 - 130 0 DIPE 50.0 57.0 ug/Kg 70 - 131

LCSD LCSD

Surrogate	%Recovery Qu	alifier Limits
4-Bromofluorobenzene	106	45 - 131
1,2-Dichloroethane-d4 (Surr)	100	60 - 140
Toluene-d8 (Surr)	109	58 - 140

Lab Sample ID: LCSD 720-132972/9

Matrix: Solid

Analysis Batch: 132972

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)	1000	1010		ug/Kg		101	61 - 128	5	20

-C5-C12

	LCSD LCS	ס
Surrogate	%Recovery Qual	ifier Limits
4-Bromofluorobenzene	105	45 - 131
1,2-Dichloroethane-d4 (Surr)	102	60 - 140
Toluene-d8 (Surr)	111	58 - 140

Lab Sample ID: MB 720-133087/4 Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 133087

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		5.0		ug/Kg			03/26/13 15:14	1
Ethylbenzene	ND		5.0		ug/Kg			03/26/13 15:14	1
MTBE	ND		5.0		ug/Kg			03/26/13 15:14	1
Gasoline Range Organics (GRO)	ND		250		ug/Kg			03/26/13 15:14	1
-C5-C12									
Toluene	ND		5.0		ug/Kg			03/26/13 15:14	1
Xylenes, Total	ND		10		ug/Kg			03/26/13 15:14	1
TAME	ND		5.0		ug/Kg			03/26/13 15:14	1
Ethyl t-butyl ether	ND		5.0		ug/Kg			03/26/13 15:14	1
TBA	ND		10		ug/Kg			03/26/13 15:14	1
DIPE	ND		5.0		ug/Kg			03/26/13 15:14	1

TestAmerica Pleasanton

Page 36 of 62

Client: The Source Group Project/Site: Paco Pumps TestAmerica Job ID: 720-48500-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-133087/4

Matrix: Solid

Analysis Batch: 133087

Client Sample ID: Method Blank Prep Type: Total/NA

	IVID	IVID				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	105		45 - 131		03/26/13 15:14	1
1,2-Dichloroethane-d4 (Surr)	103		60 - 140		03/26/13 15:14	1
Toluene-d8 (Surr)	107		58 - 140		03/26/13 15:14	1

Lab Sample ID: LCS 720-133087/5 **Client Sample ID: Lab Control Sample** Matrix: Solid Prep Type: Total/NA

Analysis Batch: 133087

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	50.0	48.0		ug/Kg		96	70 - 130	
Ethylbenzene	50.0	48.5		ug/Kg		97	80 _ 137	
MTBE	50.0	60.3		ug/Kg		121	70 - 144	
m-Xylene & p-Xylene	100	105		ug/Kg		105	70 - 146	
o-Xylene	50.0	53.0		ug/Kg		106	70 - 140	
Toluene	50.0	46.9		ug/Kg		94	80 - 128	
TAME	50.0	50.2		ug/Kg		100	70 - 140	
Ethyl t-butyl ether	50.0	50.5		ug/Kg		101	70 - 130	
TBA	1000	873		ug/Kg		87	63 - 130	
DIPE	50.0	50.6		ug/Kg		101	70 - 131	

LCS LCS %Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene 109 45 - 131 1,2-Dichloroethane-d4 (Surr) 101 60 - 140 Toluene-d8 (Surr) 58 - 140 113

Lab Sample ID: LCS 720-133087/7

Ma

Ana

ab Sample ID: LCS 720-133087/7	Client Sample ID: Lab Control Sample
latrix: Solid	Prep Type: Total/NA
nalysis Batch: 133087	

LCS LCS

Added Result Qualifier Analyte Unit Limits %Rec 1000 971 97 61 - 128 Gasoline Range Organics (GRO) ug/Kg

Spike

-C5-C12

	LCS LC	S
Surrogate	%Recovery Qu	alifier Limits
4-Bromofluorobenzene	110	45 - 131
1,2-Dichloroethane-d4 (Surr)	109	60 - 140
Toluene-d8 (Surr)	113	58 - 140

Lab Sample ID: LCSD 720-133087/6

Matrix: Solid

Analysis Batch: 133087

Alialysis Batch. 133007									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	50.0	47.3		ug/Kg		95	70 - 130	1	20
Ethylbenzene	50.0	48.1		ug/Kg		96	80 - 137	1	20
MTBE	50.0	61.2		ug/Kg		122	70 - 144	2	20
m-Xylene & p-Xylene	100	104		ug/Kg		104	70 - 146	1	20
o-Xylene	50.0	52.9		ug/Kg		106	70 - 140	0	20

TestAmerica Pleasanton

Prep Type: Total/NA

%Rec.

Client Sample ID: Lab Control Sample Dup

Page 37 of 62

3/29/2013

D: 720_48500_1

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48500-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-133087/6

Matrix: Solid

Ethyl t-butyl ether

Analyte

Toluene

TAME

TBA

DIPE

Analysis Batch: 133087

Client Sample II	D: Lab	Contr	ol S	San	iple [Oup
		Prep	Туј	pe:	Total	/NA

LCSD LCSD RPD Spike %Rec. Added Result Qualifier %Rec Limits RPD Limit Unit 50.0 45.8 92 80 - 128 20 ug/Kg 2 50.0 50.9 ug/Kg 102 70 - 140 20 50.0 50.8 102 70 - 130 20 ug/Kg 1000 858 ug/Kg 86 63 - 130 20 50.0 50.8 ug/Kg 102 70 - 131 20

 Surrogate
 %Recovery
 Qualifier
 Limits

 4-Bromofluorobenzene
 108
 45 - 131

 1,2-Dichloroethane-d4 (Surr)
 102
 60 - 140

 Toluene-d8 (Surr)
 112
 58 - 140

Lab Sample ID: LCSD 720-133087/8

Matrix: Solid

Analysis Batch: 133087

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Бріке	LCSD	LCSD				%Rec.		KPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)	1000	988		ug/Kg		99	61 - 128	2	20
CE C12									

-C5-C12

	LCSD L	CSD	
Surrogate	%Recovery C	Qualifier	Limits
4-Bromofluorobenzene	110		45 - 131
1,2-Dichloroethane-d4 (Surr)	105		60 - 140
Toluene-d8 (Surr)	115		58 ₋ 140

Lab Sample ID: MB 720-133108/12-A

Matrix: Solid

Analysis Batch: 133087

Client	Sample	iD:	Method	Blank

Prep Type: Total/NA Prep Batch: 133108

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		500		ug/Kg		03/26/13 15:41	03/26/13 22:29	100
Gasoline Range Organics (GRO)	ND		25000		ug/Kg		03/26/13 15:41	03/26/13 22:29	100
-C5-C12									

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	98		66 - 148	03/26/13 15:41	03/26/13 22:29	100
1,2-Dichloroethane-d4 (Surr)	105		62 - 137	03/26/13 15:41	03/26/13 22:29	100
Toluene-d8 (Surr)	106		65 - 141	03/26/13 15:41	03/26/13 22:29	100

Lab Sample ID: LCS 720-133108/13-A

Matrix: Solid

Analysis Batch: 133087

Client Sample ID: Lab	Control Sample
-----------------------	----------------

Prep Type: Total/NA Prep Batch: 133108

 Analyte
 Added
 Result Benzene
 Qualifier
 Unit ug/Kg
 D
 %Rec MRec.

 4560
 4560
 4560
 ug/Kg
 91
 76 - 122

LCS LCS

Surrogate	%Recovery Qu	ualifier Limits
4-Bromofluorobenzene	108	66 - 148

TestAmerica Pleasanton

_

4

6

7

9

11

4 4

Client: The Source Group Project/Site: Paco Pumps

Analysis Batch: 133087

Analysis Batch: 133087

Matrix: Solid

Matrix: Solid

Lab Sample ID: LCS 720-133108/13-A

Lab Sample ID: LCS 720-133108/15-A

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 133108

LCS LCS Surrogate Limits %Recovery Qualifier 1,2-Dichloroethane-d4 (Surr) 107 62 - 137 Toluene-d8 (Surr) 111 65 - 141

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 133108

LCS LCS Spike %Rec. Added Result Qualifier Analyte Unit D %Rec Limits 100000 88700 89 70 - 130 ug/Kg Gasoline Range Organics (GRO)

-C5-C12

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene 106 66 - 148 1,2-Dichloroethane-d4 (Surr) 104 62 - 137 Toluene-d8 (Surr) 113 65 - 141

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 720-133108/14-A **Matrix: Solid** Analysis Batch: 133087

Prep Type: Total/NA Prep Batch: 133108 RPD %Rec.

Spike LCSD LCSD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Benzene 94 76 - 122 5000 4700 ug/Kg 3 20

LCSD LCSD Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene 107 66 - 148 1,2-Dichloroethane-d4 (Surr) 105 62 - 137 Toluene-d8 (Surr) 112 65 - 141

Lab Sample ID: LCSD 720-133108/16-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 133087

Prep Type: Total/NA **Prep Batch: 133108**

LCSD LCSD RPD Spike %Rec. Added Result Qualifier Unit %Rec Limits **RPD** Limit 100000 91700 ug/Kg 70 - 130 20 Gasoline Range Organics (GRO)

-C5-C12

	LCSD LCS	ט
Surrogate	%Recovery Qual	ifier Limits
4-Bromofluorobenzene	106	66 - 148
1,2-Dichloroethane-d4 (Surr)	106	62 - 137
Toluene-d8 (Surr)	113	65 - 141

Client: The Source Group Project/Site: Paco Pumps TestAmerica Job ID: 720-48500-1

Method: 8015B - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 720-132996/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 133046 Prep Batch: 132996

мв мв Result Qualifier RL MDL Unit Dil Fac Analyte D Prepared Analyzed 0.99 Diesel Range Organics [C10-C28] ND mg/Kg 03/25/13 11:18 03/26/13 11:22 Motor Oil Range Organics [C24-C36] ND 50 mg/Kg 03/25/13 11:18 03/26/13 11:22

MB MB %Recovery Surrogate Qualifier I imits Prepared Analyzed Dil Fac p-Terphenyl 97 40 - 130 03/25/13 11:18 03/26/13 11:22

Lab Sample ID: LCS 720-132996/2-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 133046 Prep Batch: 132996 LCS LCS Spike %Rec.

Analyte Added Result Qualifier Unit D %Rec Limits 82.2 74.9 Diesel Range Organics mg/Kg 50 - 150 [C10-C28]

LCS LCS

Surrogate %Recovery Qualifier Limits p-Terphenyl 96 40 - 130

Lab Sample ID: LCSD 720-132996/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 133046 Prep Batch: 132996 Spike LCSD LCSD %Rec. RPD

Added Result Qualifier Unit D %Rec Limits RPD Limit 82.6 71.4 mg/Kg 50 - 150 5 Diesel Range Organics [C10-C28]

Surrogate %Recovery Qualifier Limits 91 40 - 130 p-Terphenyl

LCSD LCSD

Lab Sample ID: 720-48500-2 MS Client Sample ID: SV-4-5.5

Matrix: Solid Prep Type: Total/NA Analysis Batch: 133046 Prep Batch: 132996

MS MS %Rec. Spike Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Diesel Range Organics 3.4 82.1 83.3 mg/Kg 97 50 - 150

MS MS Surrogate %Recovery Qualifier Limits

p-Terphenyl 78 40 - 130

Lab Sample ID: 720-48500-2 MSD Client Sample ID: SV-4-5.5 **Matrix: Solid** Prep Type: Total/NA

Prep Batch: 132996 Analysis Batch: 133046 MSD MSD Spike RPD Sample Sample %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit 3.4 82.8 84.9 98 50 - 150 30 mg/Kg Diesel Range Organics

[C10-C28]

[C10-C28]

RL

1.0

50

Limits

40 - 130

MDL Unit

LCS LCS

LCSD LCSD

74.7

Result Qualifier

Unit

mg/Kg

Result

75.6

mg/Kg

mg/Kg

Client: The Source Group Project/Site: Paco Pumps TestAmerica Job ID: 720-48500-1

Client Sample ID: SV-4-5.5

Client Sample ID: Method Blank

Analyzed

Analyzed

Prep Type: Total/NA

Prep Batch: 132996

Method: 8015B - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 720-48500-2 MSD

Matrix: Solid

Analysis Batch: 133046

MSD MSD

ND

ND

98

%Recovery

LCS LCS

LCSD LCSD

110

Qualifier

MB MB Result

ND

ND

Qualifier

%Recovery

114

Qualifier

%Recovery

MB MB

Qualifier

%Recovery Limits Surrogate Qualifier p-Terphenyl 80 40 - 130

Lab Sample ID: MB 720-133030/1-A **Matrix: Solid**

Analysis Batch: 133052

Analyte	Result	Qualifier

Diesel Range Organics [C10-C28] Motor Oil Range Organics [C24-C36]

Surrogate

p-Terphenyl

Lab Sample ID: LCS 720-133030/2-A **Matrix: Solid**

Analysis Batch: 133052

Analyte

Diesel Range Organics [C10-C28]

Surrogate

p-Terphenyl

Lab Sample ID: LCSD 720-133030/3-A **Matrix: Solid**

Analysis Batch: 133052

Analyte

Diesel Range Organics

[C10-C28]

Surrogate

p-Terphenyl Lab Sample ID: MB 720-133201/1-A

Matrix: Solid Analysis Batch: 133236

Diesel Range Organics [C10-C28]

Motor Oil Range Organics [C24-C36]

Surrogate %Recovery p-Terphenyl

Qualifier 91

MB MB

40 - 130

RL

49

0.98

Limits

MDL Unit

mg/Kg

mg/Kg

Prepared 03/27/13 14:40

Prepared

03/27/13 14:40

03/27/13 14:40

Analyzed

03/28/13 11:05

Analyzed

03/28/13 11:05

03/28/13 11:05

Dil Fac 03/26/13 11:19

Dil Fac

03/26/13 11:19

Prep Type: Total/NA

Prep Batch: 133030

03/25/13 17:34 03/26/13 11:19

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 133030

%Rec.

D %Rec Limits Unit

Qualifier 92 50 - 150 mg/Kg

D

Prepared

03/25/13 17:34

03/25/13 17:34

Prepared

Limits 40 - 130

Spike

Added

Limits

40 - 130

82.9

Spike

Added

82.0

Client Sample ID: Lab Control Sample Dup

90

Prep Type: Total/NA Prep Batch: 133030

%Rec. RPD

Limits Limit 35 50 - 150

Client Sample ID: Method Blank

Prep Type: Total/NA **Prep Batch: 133201**

Dil Fac

Dil Fac

Client: The Source Group Project/Site: Paco Pumps TestAmerica Job ID: 720-48500-1

Method: 8015B - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 720-133201/2-A			Client Sample ID: Lab Control Sample
Matrix: Solid			Prep Type: Total/NA
Analysis Batch: 133236			Prep Batch: 133201
	Spike	LCS LCS	%Rec.

Added %Rec Analyte Result Qualifier Unit Limits 82.7 74.7 mg/Kg 90 50 - 150 Diesel Range Organics

[C10-C28]

LCS LCS %Recovery Qualifier Surrogate Limits 40 - 130 p-Terphenyl 95

Lab Sample ID: LCSD 720-133201/3-A Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 133236 Prep Batch: 133201 LCSD LCSD Spike %Rec. **RPD**

Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Diesel Range Organics 82.4 71.4 mg/Kg 87 50 - 150 35

[C10-C28]

Surrogate %Recovery Qualifier I imits 40 - 130 p-Terphenyl 94

Lab Sample ID: 720-48500-21 MS Client Sample ID: SV-7-9

Matrix: Solid Prep Type: Total/NA **Prep Batch: 133201** Analysis Batch: 133237

MS MS Sample Sample Spike %Rec.

Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits 2.2 83.2 50 - 150 71.1 mg/Kg Diesel Range Organics

[C10-C28]

MS MS Surrogate %Recovery Qualifier Limits p-Terphenyl 67 40 - 130

LCSD LCSD

Lab Sample ID: 720-48500-21 MSD Client Sample ID: SV-7-9

Matrix: Solid

Prep Type: Total/NA Analysis Batch: 133237 Prep Batch: 133201

Sample Sample Spike MSD MSD %Rec. RPD Result Qualifier Added Result Qualifier Unit %Rec RPD Limit 2.2 82.2 77.2 mg/Kg 91 50 - 150 8 Diesel Range Organics

[C10-C28]

MSD MSD

Surrogate %Recovery Qualifier Limits 75 40 - 130 p-Terphenyl

Client: The Source Group Project/Site: Paco Pumps

GC/MS VOA

Analysis Batch: 132954

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-48500-1	SV-4-2.5	Total/NA	Solid	8260B/CA_LUFT MS	132967
720-48500-2	SV-4-5.5	Total/NA	Solid	8260B/CA_LUFT MS	132967
720-48500-3	SV-4-8	Total/NA	Solid	8260B/CA_LUFT MS	132967
720-48500-4	SV-1-2.5	Total/NA	Solid	8260B/CA_LUFT MS	132967
720-48500-5	SV-1-5	Total/NA	Solid	8260B/CA_LUFT MS	132967
720-48500-6	SV-2-2.5	Total/NA	Solid	8260B/CA_LUFT MS	132967
720-48500-7	SV-2-5	Total/NA	Solid	8260B/CA_LUFT MS	132967
720-48500-8	SV-1-9	Total/NA	Solid	8260B/CA_LUFT MS	132967
720-48500-10	SV-3-3	Total/NA	Solid	8260B/CA_LUFT MS	132967
720-48500-11	SV-3-5	Total/NA	Solid	8260B/CA_LUFT MS	132967
720-48500-13	SV-5-3	Total/NA	Solid	8260B/CA_LUFT MS	132967
720-48500-14	SV-5-5	Total/NA	Solid	8260B/CA_LUFT MS	132967
LCS 720-132954/5	Lab Control Sample	Total/NA	Solid	8260B/CA_LUFT MS	
LCS 720-132954/7	Lab Control Sample	Total/NA	Solid	8260B/CA_LUFT MS	
LCSD 720-132954/6	Lab Control Sample Dup	Total/NA	Solid	8260B/CA_LUFT MS	
LCSD 720-132954/8	Lab Control Sample Dup	Total/NA	Solid	8260B/CA_LUFT MS	
MB 720-132954/4	Method Blank	Total/NA	Solid	8260B/CA_LUFT MS	

Prep Batch: 132967

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-48500-1	SV-4-2.5	Total/NA	Solid	5035	
720-48500-2	SV-4-5.5	Total/NA	Solid	5035	
720-48500-3	SV-4-8	Total/NA	Solid	5035	
720-48500-4	SV-1-2.5	Total/NA	Solid	5035	
720-48500-5	SV-1-5	Total/NA	Solid	5035	
720-48500-6	SV-2-2.5	Total/NA	Solid	5035	
720-48500-7	SV-2-5	Total/NA	Solid	5035	
720-48500-8	SV-1-9	Total/NA	Solid	5035	
720-48500-10	SV-3-3	Total/NA	Solid	5035	
720-48500-11	SV-3-5	Total/NA	Solid	5035	
720-48500-13	SV-5-3	Total/NA	Solid	5035	
720-48500-14	SV-5-5	Total/NA	Solid	5035	

Analysis Batch: 132972

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-48500-16	SV-6-3	Total/NA	Solid	8260B/CA_LUFT	132992
				MS	

TestAmerica Pleasanton

Page 43 of 62

3

7

Q

10

12

13

Client: The Source Group Project/Site: Paco Pumps TestAmerica Job ID: 720-48500-1

GC/MS VOA (Continued)

Analysis Batch: 132972 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-48500-17	SV-6-5.5	Total/NA	Solid	8260B/CA_LUFT	132992
720-48500-20	SV-7-5.5	Total/NA	Solid	MS 8260B/CA_LUFT MS	132992
720-48500-21	SV-7-9	Total/NA	Solid	8260B/CA_LUFT MS	132992
720-48500-22	SV-8-3	Total/NA	Solid	8260B/CA_LUFT MS	132992
720-48500-23	SV-8-5.5	Total/NA	Solid	8260B/CA_LUFT MS	132992
720-48500-24	SV-8-9	Total/NA	Solid	8260B/CA_LUFT MS	132992
LCS 720-132972/6	Lab Control Sample	Total/NA	Solid	8260B/CA_LUFT MS	
LCS 720-132972/8	Lab Control Sample	Total/NA	Solid	8260B/CA_LUFT MS	
LCSD 720-132972/7	Lab Control Sample Dup	Total/NA	Solid	8260B/CA_LUFT MS	
LCSD 720-132972/9	Lab Control Sample Dup	Total/NA	Solid	8260B/CA_LUFT MS	
MB 720-132972/5	Method Blank	Total/NA	Solid	8260B/CA_LUFT MS	

Prep Batch: 132992

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-48500-16	SV-6-3	Total/NA	Solid	5035	
720-48500-17	SV-6-5.5	Total/NA	Solid	5035	
720-48500-20	SV-7-5.5	Total/NA	Solid	5035	
720-48500-21	SV-7-9	Total/NA	Solid	5035	
720-48500-22	SV-8-3	Total/NA	Solid	5035	
720-48500-23	SV-8-5.5	Total/NA	Solid	5035	
720-48500-24	SV-8-9	Total/NA	Solid	5035	

Analysis Batch: 133087

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-48500-2	SV-4-5.5	Total/NA	Solid	8260B/CA_LUFT	133108
720-48500-3	SV-4-8	Total/NA	Solid	MS 8260B/CA_LUFT MS	133108
720-48500-10	SV-3-3	Total/NA	Solid	8260B/CA_LUFT MS	133107
720-48500-13	SV-5-3	Total/NA	Solid	8260B/CA_LUFT MS	133107
720-48500-19	SV-7-3	Total/NA	Solid	8260B/CA_LUFT MS	133107
720-48500-20	SV-7-5.5	Total/NA	Solid	8260B/CA_LUFT MS	133107
720-48500-21	SV-7-9	Total/NA	Solid	8260B/CA_LUFT MS	133107
720-48500-22	SV-8-3	Total/NA	Solid	8260B/CA_LUFT MS	133107
720-48500-23	SV-8-5.5	Total/NA	Solid	8260B/CA_LUFT MS	133107
720-48500-24	SV-8-9	Total/NA	Solid	8260B/CA_LUFT MS	133107

Page 44 of 62

Client: The Source Group Project/Site: Paco Pumps TestAmerica Job ID: 720-48500-1

GC/MS VOA (Continued)

Analysis Batch: 133087 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 720-133087/5	Lab Control Sample	Total/NA	Solid	8260B/CA_LUFT	
				MS	
LCS 720-133087/7	Lab Control Sample	Total/NA	Solid	8260B/CA_LUFT	
				MS	
LCS 720-133108/13-A	Lab Control Sample	Total/NA	Solid	8260B/CA_LUFT	133108
				MS	
LCS 720-133108/15-A	Lab Control Sample	Total/NA	Solid	8260B/CA_LUFT	133108
				MS	
LCSD 720-133087/6	Lab Control Sample Dup	Total/NA	Solid	8260B/CA_LUFT	
				MS	
LCSD 720-133087/8	Lab Control Sample Dup	Total/NA	Solid	8260B/CA_LUFT	
				MS	
LCSD 720-133108/14-A	Lab Control Sample Dup	Total/NA	Solid	8260B/CA_LUFT	133108
				MS	
LCSD 720-133108/16-A	Lab Control Sample Dup	Total/NA	Solid	8260B/CA_LUFT	133108
				MS	
MB 720-133087/4	Method Blank	Total/NA	Solid	8260B/CA_LUFT	
				MS	
MB 720-133108/12-A	Method Blank	Total/NA	Solid	8260B/CA_LUFT	133108
L				MS	

Prep Batch: 133107

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-48500-10	SV-3-3	Total/NA	Solid	5035	
720-48500-13	SV-5-3	Total/NA	Solid	5035	
720-48500-19	SV-7-3	Total/NA	Solid	5035	
720-48500-20	SV-7-5.5	Total/NA	Solid	5035	
720-48500-21	SV-7-9	Total/NA	Solid	5035	
720-48500-22	SV-8-3	Total/NA	Solid	5035	
720-48500-23	SV-8-5.5	Total/NA	Solid	5035	
720-48500-24	SV-8-9	Total/NA	Solid	5035	

Prep Batch: 133108

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-48500-2	SV-4-5.5	Total/NA	Solid	5035	
720-48500-3	SV-4-8	Total/NA	Solid	5035	
720-48500-8	SV-1-9	Total/NA	Solid	5035	
720-48500-9	SV-2-10	Total/NA	Solid	5035	
720-48500-12	SV-3-10	Total/NA	Solid	5035	
720-48500-14	SV-5-5	Total/NA	Solid	5035	
720-48500-15	SV-5-9	Total/NA	Solid	5035	
720-48500-16	SV-6-3	Total/NA	Solid	5035	
720-48500-17	SV-6-5.5	Total/NA	Solid	5035	
720-48500-18	SV-6-9	Total/NA	Solid	5035	
LCS 720-133108/13-A	Lab Control Sample	Total/NA	Solid	5035	
LCS 720-133108/15-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 720-133108/14-A	Lab Control Sample Dup	Total/NA	Solid	5035	
LCSD 720-133108/16-A	Lab Control Sample Dup	Total/NA	Solid	5035	
MB 720-133108/12-A	Method Blank	Total/NA	Solid	5035	

Page 45 of 62

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48500-1

GC/MS VOA (Continued)

Analysis Batch: 133143

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-48500-9	SV-2-10	Total/NA	Solid	8260B/CA_LUFT	133108
				MS	
720-48500-12	SV-3-10	Total/NA	Solid	8260B/CA_LUFT	133108
				MS	
720-48500-18	SV-6-9	Total/NA	Solid	8260B/CA_LUFT	133108
				MS	

Analysis Batch: 133213

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-48500-8	SV-1-9	Total/NA	Solid	8260B/CA_LUFT MS	133108
720-48500-14	SV-5-5	Total/NA	Solid	8260B/CA_LUFT MS	133108
720-48500-15	SV-5-9	Total/NA	Solid	8260B/CA_LUFT MS	133108
720-48500-16	SV-6-3	Total/NA	Solid	8260B/CA_LUFT MS	133108
720-48500-17	SV-6-5.5	Total/NA	Solid	8260B/CA_LUFT MS	133108

GC Semi VOA

Prep Batch: 132996

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
720-48500-1	SV-4-2.5	Total/NA	Solid	3546	
720-48500-2	SV-4-5.5	Total/NA	Solid	3546	
720-48500-2 MS	SV-4-5.5	Total/NA	Solid	3546	
720-48500-2 MSD	SV-4-5.5	Total/NA	Solid	3546	
720-48500-3	SV-4-8	Total/NA	Solid	3546	
720-48500-4	SV-1-2.5	Total/NA	Solid	3546	
720-48500-5	SV-1-5	Total/NA	Solid	3546	
720-48500-6	SV-2-2.5	Total/NA	Solid	3546	
720-48500-7	SV-2-5	Total/NA	Solid	3546	
720-48500-8	SV-1-9	Total/NA	Solid	3546	
720-48500-9	SV-2-10	Total/NA	Solid	3546	
720-48500-10	SV-3-3	Total/NA	Solid	3546	
720-48500-11	SV-3-5	Total/NA	Solid	3546	
720-48500-12	SV-3-10	Total/NA	Solid	3546	
720-48500-13	SV-5-3	Total/NA	Solid	3546	
720-48500-14	SV-5-5	Total/NA	Solid	3546	
720-48500-15	SV-5-9	Total/NA	Solid	3546	
720-48500-16	SV-6-3	Total/NA	Solid	3546	
720-48500-17	SV-6-5.5	Total/NA	Solid	3546	
720-48500-18	SV-6-9	Total/NA	Solid	3546	
720-48500-19	SV-7-3	Total/NA	Solid	3546	
720-48500-20	SV-7-5.5	Total/NA	Solid	3546	
_CS 720-132996/2-A	Lab Control Sample	Total/NA	Solid	3546	
_CSD 720-132996/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	
MB 720-132996/1-A	Method Blank	Total/NA	Solid	3546	

TestAmerica Pleasanton

Page 46 of 62

Client: The Source Group Project/Site: Paco Pumps

GC Semi VOA (Continued)

Prep Batch: 133030

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-48500-22	SV-8-3	Total/NA	Solid	3546	
720-48500-23	SV-8-5.5	Total/NA	Solid	3546	
720-48500-24	SV-8-9	Total/NA	Solid	3546	
LCS 720-133030/2-A	Lab Control Sample	Total/NA	Solid	3546	
LCSD 720-133030/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	
MB 720-133030/1-A	Method Blank	Total/NA	Solid	3546	

Analysis Batch: 133046

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-48500-1	SV-4-2.5	Total/NA	Solid	8015B	132996
720-48500-2	SV-4-5.5	Total/NA	Solid	8015B	132996
720-48500-2 MS	SV-4-5.5	Total/NA	Solid	8015B	132996
720-48500-2 MSD	SV-4-5.5	Total/NA	Solid	8015B	132996
720-48500-3	SV-4-8	Total/NA	Solid	8015B	132996
720-48500-4	SV-1-2.5	Total/NA	Solid	8015B	132996
720-48500-5	SV-1-5	Total/NA	Solid	8015B	132996
720-48500-7	SV-2-5	Total/NA	Solid	8015B	132996
720-48500-11	SV-3-5	Total/NA	Solid	8015B	132996
720-48500-12	SV-3-10	Total/NA	Solid	8015B	132996
LCS 720-132996/2-A	Lab Control Sample	Total/NA	Solid	8015B	132996
LCSD 720-132996/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B	132996
MB 720-132996/1-A	Method Blank	Total/NA	Solid	8015B	132996

Analysis Batch: 133047

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-48500-15	SV-5-9	Total/NA	Solid	8015B	132996
720-48500-16	SV-6-3	Total/NA	Solid	8015B	132996
720-48500-18	SV-6-9	Total/NA	Solid	8015B	132996
720-48500-19	SV-7-3	Total/NA	Solid	8015B	132996
720-48500-20	SV-7-5.5	Total/NA	Solid	8015B	132996

Analysis Batch: 133051

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-48500-22	SV-8-3	Total/NA	Solid	8015B	133030
720-48500-23	SV-8-5.5	Total/NA	Solid	8015B	133030
720-48500-24	SV-8-9	Total/NA	Solid	8015B	133030

Analysis Batch: 133052

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 720-133030/2-A	Lab Control Sample	Total/NA	Solid	8015B	133030
LCSD 720-133030/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B	133030
MB 720-133030/1-A	Method Blank	Total/NA	Solid	8015B	133030

Prep Batch: 133201

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-48500-21	SV-7-9	Total/NA	Solid	3546	
720-48500-21 MS	SV-7-9	Total/NA	Solid	3546	
720-48500-21 MSD	SV-7-9	Total/NA	Solid	3546	
LCS 720-133201/2-A	Lab Control Sample	Total/NA	Solid	3546	
LCSD 720-133201/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	
MB 720-133201/1-A	Method Blank	Total/NA	Solid	3546	

TestAmerica Pleasanton

Page 47 of 62

6

R

_

12

13

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48500-1

GC Semi VOA (Continued)

Analysis Batch: 133236

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-48500-21	SV-7-9	Total/NA	Solid	8015B	133201
LCS 720-133201/2-A	Lab Control Sample	Total/NA	Solid	8015B	133201
LCSD 720-133201/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B	133201
MB 720-133201/1-A	Method Blank	Total/NA	Solid	8015B	133201

Analysis Batch: 133237

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-48500-21 MS	SV-7-9	Total/NA	Solid	8015B	133201
720-48500-21 MSD	SV-7-9	Total/NA	Solid	8015B	133201

Analysis Batch: 133238

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-48500-6	SV-2-2.5	Total/NA	Solid	8015B	132996
720-48500-8	SV-1-9	Total/NA	Solid	8015B	132996
720-48500-9	SV-2-10	Total/NA	Solid	8015B	132996
720-48500-10	SV-3-3	Total/NA	Solid	8015B	132996
720-48500-13	SV-5-3	Total/NA	Solid	8015B	132996
720-48500-14	SV-5-5	Total/NA	Solid	8015B	132996
720-48500-17	SV-6-5.5	Total/NA	Solid	8015B	132996

3

J

8

9

10

Client: The Source Group Project/Site: Paco Pumps

Lab Sample ID: 720-48500-1

Matrix: Solid

Client Sample ID: SV-4-2.5 Date Collected: 03/22/13 07:55

Date Received: 03/22/13 16:45

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			132967	03/22/13 18:15	JRM	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		1	132954	03/23/13 14:16	AC	TAL SF
Total/NA	Prep	3546			132996	03/25/13 11:18	DT	TAL SF
Total/NA	Analysis	8015B		1	133046	03/26/13 10:09	DH	TAL SF

Lab Sample ID: 720-48500-2

Matrix: Solid

Date Collected: 03/22/13 08:05 Date Received: 03/22/13 16:45

Client Sample ID: SV-4-5.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			132967	03/22/13 18:15	JRM	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		1	132954	03/23/13 14:44	AC	TAL SF
Total/NA	Prep	5035			133108	03/22/13 18:15	LL	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		100	133087	03/27/13 01:23	AC	TAL SF
Total/NA	Prep	3546			132996	03/25/13 11:18	DT	TAL SF
Total/NA	Analysis	8015B		1	133046	03/26/13 12:43	DH	TAL SF

Lab Sample ID: 720-48500-3 Client Sample ID: SV-4-8

Matrix: Solid

Matrix: Solid

Date Collected: 03/22/13 08:30 Date Received: 03/22/13 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			132967	03/22/13 18:15	JRM	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		1	132954	03/23/13 15:11	AC	TAL SF
Total/NA	Prep	5035			133108	03/22/13 18:15	LL	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		100	133087	03/27/13 01:51	AC	TAL SF
Total/NA	Prep	3546			132996	03/25/13 11:18	DT	TAL SF
Total/NA	Analysis	8015B		1	133046	03/26/13 13:08	DH	TAL SF

Client Sample ID: SV-1-2.5 Lab Sample ID: 720-48500-4

Date Collected: 03/22/13 09:30 Date Received: 03/22/13 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			132967	03/22/13 18:15	JRM	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		1	132954	03/23/13 15:39	AC	TAL SF
Total/NA	Prep	3546			132996	03/25/13 11:18	DT	TAL SF
Total/NA	Analysis	8015B		1	133046	03/26/13 13:32	DH	TAL SF

Client: The Source Group Project/Site: Paco Pumps

Client Sample ID: SV-1-5

Lab Sample ID: 720-48500-5

Matrix: Solid

Date Collected: 03/22/13 09:40 Date Received: 03/22/13 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035	_		132967	03/22/13 18:15	JRM	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		1	132954	03/23/13 16:07	AC	TAL SF
Total/NA	Prep	3546			132996	03/25/13 11:18	DT	TAL SF
Total/NA	Analysis	8015B		20	133046	03/26/13 15:16	DH	TAL SF

Client Sample ID: SV-2-2.5 Lab Sample ID: 720-48500-6

Date Collected: 03/22/13 10:00 Matrix: Solid Date Received: 03/22/13 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			132967	03/22/13 18:15	JRM	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		1	132954	03/23/13 16:35	AC	TAL SF
Total/NA	Prep	3546			132996	03/25/13 11:18	DT	TAL SF
Total/NA	Analysis	8015B		1	133238	03/28/13 12:14	DH	TAL SF

Client Sample ID: SV-2-5 Lab Sample ID: 720-48500-7

Date Collected: 03/22/13 10:05 **Matrix: Solid**

Date Received: 03/22/13 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			132967	03/22/13 18:15	JRM	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		1	132954	03/23/13 17:03	AC	TAL SF
Total/NA	Prep	3546			132996	03/25/13 11:18	DT	TAL SF
Total/NA	Analysis	8015B		1	133046	03/26/13 16:04	DH	TAL SF

Client Sample ID: SV-1-9 Lab Sample ID: 720-48500-8

Date Collected: 03/22/13 10:30 **Matrix: Solid**

Date Received: 03/22/13 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035	_		132967	03/22/13 18:15	JRM	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		1	132954	03/23/13 17:31	AC	TAL SF
Total/NA	Prep	5035			133108	03/22/13 18:15	LL	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		100	133213	03/27/13 21:29	AC	TAL SF
Total/NA	Prep	3546			132996	03/25/13 11:18	DT	TAL SF
Total/NA	Analysis	8015B		20	133238	03/28/13 14:00	DH	TAL SF

Client Sample ID: SV-2-10 Lab Sample ID: 720-48500-9 Date Collected: 03/22/13 10:50

Date Received: 03/22/13 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			133108	03/22/13 18:15	LL	TAL SF

TestAmerica Pleasanton

Page 50 of 62

Matrix: Solid

Client: The Source Group Project/Site: Paco Pumps

Client Sample ID: SV-2-10

Date Collected: 03/22/13 10:50 Date Received: 03/22/13 16:45 Lab Sample ID: 720-48500-9

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS	_	100	133143	03/27/13 11:27	AC	TAL SF
Total/NA	Prep	3546			132996	03/25/13 11:18	DT	TAL SF
Total/NA	Analysis	8015B		1	133238	03/28/13 10:37	DH	TAL SF

Client Sample ID: SV-3-3 Lab Sample ID: 720-48500-10

Matrix: Solid Date Collected: 03/22/13 11:45

Date Received: 03/22/13 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			132967	03/22/13 18:15	JRM	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		1	132954	03/23/13 18:27	AC	TAL SF
Total/NA	Prep	5035			133107	03/22/13 18:15	LL	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		1	133087	03/26/13 22:00	AC	TAL SF
Total/NA	Prep	3546			132996	03/25/13 11:18	DT	TAL SF
Total/NA	Analysis	8015B		3	133238	03/28/13 13:13	DH	TAL SF

Client Sample ID: SV-3-5 Lab Sample ID: 720-48500-11

Date Collected: 03/22/13 11:55 Date Received: 03/22/13 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			132967	03/22/13 18:15	JRM	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		1	132954	03/23/13 18:55	AC	TAL SF
Total/NA	Prep	3546			132996	03/25/13 11:18	DT	TAL SF
Total/NA	Analysis	8015B		1	133046	03/26/13 17:42	DH	TAL SF

Client Sample ID: SV-3-10 Lab Sample ID: 720-48500-12

Date Collected: 03/22/13 12:05 Matrix: Solid Date Received: 03/22/13 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			133108	03/22/13 18:15	LL	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		100	133143	03/27/13 11:56	AC	TAL SF
Total/NA	Prep	3546			132996	03/25/13 11:18	DT	TAL SF
Total/NA	Analysis	8015B		1	133046	03/26/13 18:06	DH	TAL SF

Client Sample ID: SV-5-3 Lab Sample ID: 720-48500-13

Date Collected: 03/22/13 12:50 **Matrix: Solid** Date Received: 03/22/13 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			132967	03/22/13 18:15	JRM	TAL SF
Total/NA	Analysis	8260B/CA LUFTMS		1	132954	03/23/13 19:51	AC	TAL SF

TestAmerica Pleasanton

Page 51 of 62

Matrix: Solid

Client: The Source Group Project/Site: Paco Pumps

Client Sample ID: SV-5-3

Lab Sample ID: 720-48500-13

Matrix: Solid

Date Collected: 03/22/13 12:50 Date Received: 03/22/13 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			133107	03/22/13 18:15	LL	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		1	133087	03/26/13 21:31	AC	TAL SF
Total/NA	Prep	3546			132996	03/25/13 11:18	DT	TAL SF
Total/NA	Analysis	8015B		3	133238	03/28/13 12:44	DH	TAL SF

Lab Sample ID: 720-48500-14 Client Sample ID: SV-5-5

Date Collected: 03/22/13 13:10 Matrix: Solid

Date Received: 03/22/13 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			132967	03/22/13 18:15	JRM	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		1	132954	03/23/13 20:19	AC	TAL SF
Total/NA	Prep	5035			133108	03/22/13 18:15	LL	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		100	133213	03/27/13 21:58	AC	TAL SF
Total/NA	Prep	3546			132996	03/25/13 11:18	DT	TAL SF
Total/NA	Analysis	8015B		1	133238	03/28/13 11:07	DH	TAL SF

Client Sample ID: SV-5-9 Lab Sample ID: 720-48500-15 Date Collected: 03/22/13 13:20 Matrix: Solid

Date Received: 03/22/13 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			133108	03/22/13 18:15	LL	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		100	133213	03/27/13 23:25	AC	TAL SF
Total/NA	Prep	3546			132996	03/25/13 11:18	DT	TAL SF
Total/NA	Analysis	8015B		1	133047	03/26/13 15:40	DH	TAL SF

Client Sample ID: SV-6-3 Lab Sample ID: 720-48500-16 Date Collected: 03/22/13 14:35 Matrix: Solid

Date Received: 03/22/13 16:45

	Batch	Batch		Dilution	Batch Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			132992	03/22/13 18:15	PD	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		1	132972	03/25/13 13:25	AC	TAL SF
Total/NA	Prep	5035			133108	03/22/13 18:15	LL	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		100	133213	03/27/13 22:27	AC	TAL SF
Total/NA	Prep	3546			132996	03/25/13 11:18	DT	TAL SF
Total/NA	Analysis	8015B		1	133047	03/26/13 16:04	DH	TAL SF

TestAmerica Pleasanton

Page 52 of 62

Client: The Source Group Project/Site: Paco Pumps

Lab Sample ID: 720-48500-17

Matrix: Solid

Client Sample ID: SV-6-5.5 Date Collected: 03/22/13 14:50 Date Received: 03/22/13 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			132992	03/22/13 18:15	PD	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		1	132972	03/25/13 13:54	AC	TAL SF
Total/NA	Prep	5035			133108	03/22/13 18:15	LL	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		100	133213	03/27/13 22:56	AC	TAL SF
Total/NA	Prep	3546			132996	03/25/13 11:18	DT	TAL SF
Total/NA	Analysis	8015B		1	133238	03/28/13 11:45	DH	TAL SF

Lab Sample ID: 720-48500-18

Matrix: Solid

Client Sample ID: SV-6-9 Date Collected: 03/22/13 15:10 Date Received: 03/22/13 16:45

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035	_		133108	03/22/13 18:15	LL	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		1000	133143	03/27/13 12:53	AC	TAL SF
Total/NA	Prep	3546			132996	03/25/13 11:18	DT	TAL SF
Total/NA	Analysis	8015B		1	133047	03/26/13 16:53	DH	TAL SF

Client Sample ID: SV-7-3 Lab Sample ID: 720-48500-19 Matrix: Solid

Date Collected: 03/22/13 14:45 Date Received: 03/22/13 16:45

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035	_		133107	03/22/13 18:15	LL	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		1	133087	03/26/13 21:02	AC	TAL SF
Total/NA	Prep	3546			132996	03/25/13 11:18	DT	TAL SF
Total/NA	Analysis	8015B		1	133047	03/26/13 17:17	DH	TAL SF

Client Sample ID: SV-7-5.5 Lab Sample ID: 720-48500-20

Date Collected: 03/22/13 15:00 **Matrix: Solid** Date Received: 03/22/13 16:45

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			132992	03/22/13 18:15	PD	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		1	132972	03/25/13 15:21	AC	TAL SF
Total/NA	Prep	5035			133107	03/22/13 18:15	LL	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		1	133087	03/26/13 20:32	AC	TAL SF
Total/NA	Prep	3546			132996	03/25/13 11:18	DT	TAL SF
Total/NA	Analysis	8015B		1	133047	03/26/13 18:06	DH	TAL SF

1

133236

03/28/13 09:45

DH

Client: The Source Group Project/Site: Paco Pumps

Client Sample ID: SV-7-9

Date Collected: 03/22/13 15:25

Date Received: 03/22/13 16:45

Lab Sample ID: 720-48500-21

Matrix: Solid

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA Prep 5035 132992 03/22/13 18:15 PD TAL SF 8260B/CA_LUFTMS Total/NA 132972 03/25/13 15:50 AC TAL SF Analysis 1 Total/NA Prep 5035 133107 03/22/13 18:15 LL TAL SF 8260B/CA_LUFTMS Total/NA 133087 03/26/13 20:03 AC TAL SF Analysis 1 Total/NA Prep 3546 133201 03/27/13 14:40 DFR TAL SF

Lab Sample ID: 720-48500-22

TAL SF

Matrix: Solid

Date Collected: 03/22/13 15:30 Date Received: 03/22/13 16:45

Client Sample ID: SV-8-3

Analysis

8015B

Total/NA

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			132992	03/22/13 18:15	PD	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		1	132972	03/25/13 16:18	AC	TAL SF
Total/NA	Prep	5035			133107	03/22/13 18:15	LL	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		1	133087	03/26/13 19:34	AC	TAL SF
Total/NA	Prep	3546			133030	03/25/13 17:34	DFR	TAL SF
Total/NA	Analysis	8015B		1	133051	03/26/13 12:47	JZ	TAL SF

Client Sample ID: SV-8-5.5 Lab Sample ID: 720-48500-23

Matrix: Solid

Date Collected: 03/22/13 15:35 Date Received: 03/22/13 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			132992	03/22/13 18:15	PD	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		1	132972	03/25/13 16:47	AC	TAL SF
Total/NA	Prep	5035			133107	03/22/13 18:15	LL	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		1	133087	03/26/13 19:06	AC	TAL SF
Total/NA	Prep	3546			133030	03/25/13 17:34	DFR	TAL SF
Total/NA	Analysis	8015B		1	133051	03/26/13 13:16	JZ	TAL SF

Client Sample ID: SV-8-9 Lab Sample ID: 720-48500-24 Date Collected: 03/22/13 15:40

Matrix: Solid Date Received: 03/22/13 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			132992	03/22/13 18:15	PD	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		1	132972	03/25/13 17:16	AC	TAL SF
Total/NA	Prep	5035			133107	03/22/13 18:15	LL	TAL SF
Total/NA	Analysis	8260B/CA_LUFTMS		1	133087	03/26/13 18:37	AC	TAL SF
Total/NA	Prep	3546			133030	03/25/13 17:34	DFR	TAL SF
Total/NA	Analysis	8015B		1	133051	03/26/13 13:45	JZ	TAL SF

Lab Chronicle

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48500-1

Laboratory References:

TAL SF = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

2

4

5

6

8

9

10

13

Certification Summary

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48500-1

Laboratory: TestAmerica Pleasanton

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
California	State Program	9	2496	01-31-14

.

4

_

9

10

12

13

Method Summary

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48500-1

Method	Method Description	Protocol	Laboratory
8260B/CA_LUFTM	8260B / CA LUFT MS	SW846	TAL SF
S 8015B	Diesel Range Organics (DRO) (GC)	SW846	TAL SF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SF = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

4

5

6

0

9

11

4.0

13

Sample Summary

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48500-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-48500-1	SV-4-2.5	Solid	03/22/13 07:55	03/22/13 16:45
720-48500-2	SV-4-5.5	Solid	03/22/13 08:05	03/22/13 16:45
720-48500-3	SV-4-8	Solid	03/22/13 08:30	03/22/13 16:45
720-48500-4	SV-1-2.5	Solid	03/22/13 09:30	03/22/13 16:45
720-48500-5	SV-1-5	Solid	03/22/13 09:40	03/22/13 16:45
720-48500-6	SV-2-2.5	Solid	03/22/13 10:00	03/22/13 16:45
720-48500-7	SV-2-5	Solid	03/22/13 10:05	03/22/13 16:45
720-48500-8	SV-1-9	Solid	03/22/13 10:30	03/22/13 16:45
720-48500-9	SV-2-10	Solid	03/22/13 10:50	03/22/13 16:45
720-48500-10	SV-3-3	Solid	03/22/13 11:45	03/22/13 16:45
720-48500-11	SV-3-5	Solid	03/22/13 11:55	03/22/13 16:45
720-48500-12	SV-3-10	Solid	03/22/13 12:05	03/22/13 16:45
720-48500-13	SV-5-3	Solid	03/22/13 12:50	03/22/13 16:45
720-48500-14	SV-5-5	Solid	03/22/13 13:10	03/22/13 16:45
720-48500-15	SV-5-9	Solid	03/22/13 13:20	03/22/13 16:45
720-48500-16	SV-6-3	Solid	03/22/13 14:35	03/22/13 16:45
720-48500-17	SV-6-5.5	Solid	03/22/13 14:50	03/22/13 16:45
720-48500-18	SV-6-9	Solid	03/22/13 15:10	03/22/13 16:45
720-48500-19	SV-7-3	Solid	03/22/13 14:45	03/22/13 16:45
720-48500-20	SV-7-5.5	Solid	03/22/13 15:00	03/22/13 16:45
720-48500-21	SV-7-9	Solid	03/22/13 15:25	03/22/13 16:45
720-48500-22	SV-8-3	Solid	03/22/13 15:30	03/22/13 16:45
720-48500-23	SV-8-5.5	Solid	03/22/13 15:35	03/22/13 16:45
720-48500-24	SV-8-9	Solid	03/22/13 15:40	03/22/13 16:45

-

4

6

9

10

11

TESTAMERICA Pleasanton Chain of Custody 1220 Quarry Lane Pleasanton CA 94566-4756 Phone: (925) 484-1919 Fax: (925) 600-3002

Reference #: 144767

Report To											An	aliysis it	egire	śi								
Alth Parl Parner	Her.		· ·		lo <u>s</u>	_ '		Anna Anna Anna Anna Anna Anna Anna Anna	E									ഥ		D D		
Attn Parl Parner Company The Source	e Coor		(vocs)) Etha	a Ge	MS	SIM	trolet tal			0		_	36 7.199		SS.	0°0	0	15220		1
Address 3478 1305	Kirle Alie ?	5 ste 100	MS (3260E	757 1908 1908	S C	, G	8270C 8270C SIM	☐ Petroleum ☐ Total	081		200.7 CCRA	6,8	TCLP	EPA 7196 or EPA 7199	_	kalinit	D 0 0	EPA 314 0	NS D		ers
Email: pparae + 1e-D	Thesorre	500 met	00	PA 8	Z S		aníc	D 82	1	PA8 PA8	7471	35	50	Q I	를 P	4500	7	SON		0.4		tain
Address 7478 Bus Bill To	Sampled By:		Volatite Organics GC/MS	HVOCs by □ EPA 8260B	EPA 82608: IZ Gas IZ BTEX IZ 5 Oxygenates □ DCA, EDB□ Ethanol	TEPH EPA 8015B ☐ Silica Gel	SemiVolatile Organics GC/MS D EPA 8270C	λą	Oil and Grease (EPA 1664/9071)	☐ EPA 8081 ☐ EPA 8082	CAM17 Metals (EPA 5010/7470/7471)	Metals: 🗆 6010B 🗅 200.7 Li Lead 🗆 LUFT 🗘 DRCRA Other.	Metals: ☐ 6020 ☐ 200,8 (ICP-MS):	WE.T (STLC) WE.T (DI)	. Chrom by []	D 9040	Cond. 🗆 Alkalinity 🗀 SS 🗀 TDS	OCIOSO, ONO, OBrono, OPO,	☐ Perchlorate by	COD II EPA 410 4 II SMS220D II Turbidity		Number of Containers
Attn	Phone: 975-9	<u>~~~~~~</u>	e Org	Cs by	2608°,	EPA Sel 12	folatii A 827	PNA/PAH's by	d Gre	Pesticides PCBs	7 Mei 5010/		(S).	N E.T	hrom		ပိုက	00	chiora	II E		er of
Sample (D)	7 Home. (7 C) = 7	74-7836 Navadani	/otatil	HVO	5.00 kg	EPH S	semi)	NAVE	Jil an	estic	SAM1	Aetals 3 Lea other.	netals ICP-N		Нех. С	HG.	O Spec. (O TSS	nions) Pen	COD 1 Turt		lumb
CHILDRED TO THE PROPERTY OF THE PARTY OF THE			70		<u> </u>	X	V) LJ	11.		U. II.	0 =	500	20		,E		- U U	<	Ш.			
SV - 4 - 75	3/27/12 0755				 -	 	······································							-	······							4
5V-4-5.5 SV-4-8	0805				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	X								1								
50-1-25	0830 0930				X	X								ļ	_		_					1
5V-1-5	0940				义	^ X.							-									
50-2-2.5	1000		<u> </u>		X	1							-									
50-2-5	1005				X	X V					<u> </u>		 - -							***************************************		
50-1-9	1030		 		×	χ		-					- '2	10-400(00 Chai	n of C	ustody	y'				
50-2-10	1050		ļ		X	X						}				ļ		 	l			
50-3-3	-1/1145	4	 		×	X			 			M.		 								
Projektinio	Semple R			1) Re	Jinquish (1					L 2) Relin	quished b	l v:I	<u> </u>		California de la calcania	 3) F	: Relinoui	shed by	×) To the supplement
	# of Containe	STREET, CARLEST HANGE STREET,			0/	?		15	45		/	1410	H	١	KUS	-			01100 57			
Project Name/#: Paco Dumps				Signa	ature			Ti	45 me	- ;	Signatu	ire.		<u>`</u>	645 ime		Sig	nature			Till	ne
	Head Space			Pais	ho Joed Name	ver	een	2/	 		Jan Printed		Joth	2 (3/27/1 Date	3						
PO#: 04-PFT-004	Temp ⁻	600							ate		Printed		() -	`	Date		Prir	nled Na	me	,	Da	ate
Credit Card		D		Com	<u>50-</u>					- ;	Compa	TKS	<u>~</u>				-	mpany	····			
7	lease call with payme	nt information ASA Other:	\P		ceived t						•	. //							um jakan kantana			
A Day Day Day Day	3 2 1 ay Day Day			1) 146	ceive i	y: M		}	THE		2) Rece	eived by		16	45	-	3) F	Receive	d by.			
				Signa	ature		Э	l	<u>545</u> me	- -	Signatu	ine)	***************************************		/ne ,	_	Sia	nature			Tin	ne
Report: Ø Routine Ci Level	eport: 1 Routine 🗆 Level 3 🗇 Level 4 🗇 EDD 11 EDF			- !!	avio	/	Joth	a l	34/22 ate	12	1.	Sello	CH	7	45 Me	3	0					•
Report: A Routine				Print	ed Name		1 1 3	<u> </u>	ate	Printed Name Date					_	Prir	nted Na	me		Da	ale	
				TASP					A						***************************************							
See Terms and Conditions on reverse	See Terms and Conditions on reverse			Com	pany						Compa	ny					Cor	npany				
Annual and annual projections								··													Rev	.10/2012

TestAmerica

TESTAMERICA Pleasanton Chain of Custody

1220 Quarry Lane @ Pleasanton CA 94566-4756 Phone: (925) 484-1919 • Fax: (925) 600-3002 Reference #: 144767

3/29/2013

THE LEADER IN ENVIRONMENTAL TESTING Analysis Requesi Attn: Paul Parmentie COD II EPA 410 4 II SM5226D II Turbidity Company The Source Group Inc 8270C 8270C SIM SemiVolatile Organics GC/MS CI EPA 8270C SO, [] NO, I Address 3478 Buskirk Are See 100 Plansmillill, CASS Cond D Alkalinity EPA 3140 Metals; ☐ 6010B ☐200.7 ☐ Lead ☐ LUFT ☐RCRA Other. Metafs: ☐ 6020 ☐ 200.8 (ICP-MS): Number of Containers CAM17 Metals (EPA 5010/7470/7471) Email porment, and The surce group, met WET (STLC) WET (DI) [] Ö □ Perchlorate by Sampled By: Bill To 0 0 0 0 Attn: öo! 511-3-5 3/20/13 120. 1750 X 1310 1500 1435 1450 1510 1500 e Projectimo 1) Relinquished by: 2) Relinquished by: SampleReceio 3) Relinguished by: Project Name/#. # of Containers: Signature Tyre Paro Pumps Head Space: Printed Name Printed Name Date PO#. Temp: 04-PFT-004 Credit Card Company Company Company Y/N If yes, please call with payment information ASAP 1) Received by Other: 2) Received by: -3) Received by Day Day Day Day Dav Signature Time Report: KRoutine | Level 3 | Level 4 | EDD KEDF Special instructions / Comments. Printed Name Printed Name Printed Name Date Company Company See Terms and Conditions on reverse Rev.10/2012

THE LEADER IN ENVIRONMENTAL TESTING

TESTAMERICA Pleasanton Chain of Custody

1220 Quarry Lane Pleasanton CA 94566-4756 Phone: (925) 484-1919 Fax: (925) 600-3002

Reference #: 14476 7

Date 5/24/3 Page 3 of 3

Report Tro										-An	allysis IR	egire	Sie								
Attn. Paul Parmentier				102	.			m									LL.		۵		A TANK AND THE REAL PROPERTY OF THE PARTY OF
Company. The Source	e aroup	VOCs) Etha	a Ge	MS	SIM	roleu tal		Anna Artista				36 7199		S	င် င်	0	5220		
Address 3478 Bushiva	the She 100 . Pleasantifill 1	AS O	260E		Sile	ਹੁੰ	8270C 8270C SIM	Pel 3 To	081 082		00.7 CRA	3.8	TCLP	EPA 7196 or EPA 7199		alinit	žā !	314	SEW	,	2
Email: Promentica;	Mison mayor p. get	000	× 8	MA S	_ □ ≘	anics	827		2A 86	7471	88	120(00	EP/ or E	500	Ak I	SO, NO,	EPA	040		aine
Bill To	Sampled By:	nics B		EPA 8260B- TACas DA BTEX DAS Oxygenates CI DCA, EDBCI Ethanol	TEPH EPA 8015B ☐ Silica Gel K Diesel S Motor Oll ☐ Other	SemiVolatile Organics GC/MS II EPA 8270C	PNA/PAH's by 🛚 1	Oil and Grease Cl Petroleum (EPA 1664/9071) Dl Total	Pesticides 🏻 EPA 8081 PCBs 🗀 EPA 8082	CAM17 Metals (EPA 6010/7470/7471)	Metals: CI 6010B CI200.7 CI Lead CI LUFT CIRCRA Other:	Metals: ☐ 6020 ☐ 200.8 (ICP-MS)	WE.T (STLC) W.E.T (DI)	Chrom by D	□ 9040 □ SM4500	Cond. D Alkalinity	CC C C SO, C NO, C C Br C NO, C PO,	□ Perchlorate by EPA 314 0	COD IJ EPA 410 4 IJ SM5220D IJ Turbidity		Number of Containers
	P. Jargess	Orga 826(by by	OB- of	PA 8	latile 8270	H's t	Grea 354/9	l sa	Meta 110/7	000	0 0 00	ПШ	rom		S C		lorat	7 E		rof
Attn:	Phone: 985-944-2856	EPA	/QC	7A 826 5 Oxyg	PH E	mîVo EPA	ΑγΡΑ	and 2A 16	sticid Bs	M17	tals: Lead ler.	tals; P-MS	N N	ర్	- Annual Control	□ Spec. □ TSS	Anions	Perch	Curbic		mbe
Sampa in	e Group The Ste 100 fleosonthill of This way or prosect Sampled By: P. Jorges Phone: 975 - 944 - 255 Spata - 1505 1530 1530 1530	80	Í	81/8	Ľ×.	% D	D.	で世	Pe PC	8 🖺	\$ D \$. G Me		E	pHq	ĎΩ	Ani	Ö	85		1 2
5U-7-9 SU-8-3 SU-8-5.5 SV-8-9	3/24/13/525 5			X	X																1
50-8-3	1 1530 1			X	4														,		
50-8-5.5	1535	Table to the same of the same		X	A																
SV-8-9	1540			K	1																5
												ļ									64 0169
																					Č
				ļ						<u> </u>							-				
	**************************************									<u> </u>		<u> </u>									a
				<u> </u>						 											
				 						 	 		<u> </u>								
Projectinio	Sample Receipt		1) Re	elineurshe 200 ature	d by:		<u> </u>	<u></u>	1	l 2) Relin	V µui\$hed b	<u>'</u>			1	i 3) F	Relinquis	shed by	,		
Project Name/#.	# of Containers:		d		//e			545 ne 3/24 ate	-	0/	Laur	The second		کرلما ا	-	1					ĺ
Par Pine	Head Space:		Signa	ature			Tir	ne	- 3	slghali	ue!	 8 n	T	1 645 ime	_	Sign	nature		***************************************	Tım	,e
raco wir	nead Space.		10	186 ha	1	د ب		3/221	13	Jav	v V	othe		85 22 Date	13						
90# OU - Det - 6504	Temp: \160°		Printe	ed Name حسر	. سر	_	D	ate	1	Printed				Date '		Prir	ited Nar	ne		Da	te
Paco Rmp PO# OUT- FOTT- COY Credit Cerd	WARTHAIN.		Com	pany					_ ,	Compa	TK	<u>r</u>		··						·····	
Y/N: If yes, p	olease call with payment information AS	\P								-							npany				ļ
	3 2 1 Other:			ceived		M	١.	2	2	2) Rece	ived by.		,	11/2		(3) F	(eceive	d by		. —	
T Cay Day Day D	ay Day Day		Sign	گرا <u>ک</u> عقبراه	runo	+0	<u> </u>	745	- /	Signati	100		/ <u>[</u>	04	<i>-</i>	1	n o i				
			oigili	ature Avri ed Name	, sa	1.4	111	2 00	12	Signatu	15ul/01	r t	3	104°	₹	519	nature			Tim	E .
Special Instructions / Commer	3 □ Level 4 □ EDD XLEDF		Print	ed Name	<u>0 </u>	10Th	<u>z., (</u>	17 120 ate	17	/ ⊃rinted				Date	_	Prin	ited Nar	ne		Da	ile
•					ASP		_	. ••			TA			- 310		, .,,				20	
See Terms and Conditions on reverse			Com		1178				- ;	Compa	ny					Cor	npany				Ì
																				Rev	10/2012
																				1,01	

Client: The Source Group

Job Number: 720-48500-1

Login Number: 48500 List Source: TestAmerica Pleasanton

List Number: 1 Creator: Bullock, Tracy

Creator: Bullock, Iracy		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

APPENDIX G LABORATORY ANALYTICAL DATA – SOIL VAPOR

TEG Northern California Inc.

9 April 2013

Mr. Paisha Jorgensen The Source Group, Inc. 3478 Buskirk Avenue, Suite 100 Pleasant Hill, CA 94523

SUBJECT: DATA REPORT - The Source Group, Inc. Project # 04-PFT-004 Former PACO Pumps Site 9201 San Leandro Street, Oakland, California

TEG Project # 30326F

Mr. Jorgensen:

Please find enclosed a data report for the samples analyzed from the above referenced project for The Source Group. The samples were analyzed on site in TEG's mobile laboratory. TEG conducted a total of 27 analyses on 9 soil vapor samples.

- -- 9 analyses on soil vapors for aromatic volatile hydrocarbons (BTEX and naphthalene), fuel oxygenate MtBE, and total petroleum hydrocarbons-gasoline by EPA method 8260B.
- -- 9 analyses on soil vapors for methane by GC/TCD.
- -- 9 analyses on soil vapors for oxygen, carbon dioxide, and nitrogen by GC/TCD.

The results of the analyses are summarized in the enclosed tables. Applicable detection limits and calibration data are included in the tables.

TEG appreciates the opportunity to have provided analytical services to The Source Group on this project. If you have any further questions relating to these data or report, please do not hesitate to contact us.

Sincerely.

Mark Jerpbak

Director, TEG-Northern California

The Source Group, Inc. Project # 04-PFT-004 Former PACO Pumps Site 9201 San Leandro Street, Oakland, California

TEG Project #30326F

Analyses of SOIL VAPOR

BTEX, Naphthalene, MtBE & TPH-gasoline (EPA method 8260B) in micrograms per cubic meter of Vapor

Methane in ppmV; Oxygen, Nitrogen and Carbon Dioxide in percent by Volume

SAMPLE NUMBER	₹:	Blank	SV-1	SV-2	SV-2 dup	SV-3
SAMPLE DEPTH (feet	n:			5.5	6.0	
PURGE VOLUM	•		3	3	3	3
COLLECTION DATE		03/26/12	03/26/12	03/26/12	03/26/12	03/26/12
COLLECTION TIME		08:43		13:39	13:39	11:26
DILUTION FACTOR (VOCs	 :):	1	1	1	1	10
	RL		·		·	
Benzene	80	nd	490	200	240	9500
Toluene	200	nd	nd	nd	nd	nd
Ethylbenzene	100	nd	nd	nd	nd	nd
m,p-Xylene	200	nd	nd	nd	nd	nd
o-Xylene	100	nd	nd	nd	nd	nd
Naphthalene	70	nd	nd	nd	nd	nd
Methyl-t-butyl ether (MtBE)	100	nd	nd	nd	nd	nd
TPH (gasoline range)	10000	nd	340000	1500000	1500000	2100000
Methane	1000	nd	nd	nd	nd	nd
Oxygen	1.0	20	2.8	12	11	10
Carbon Dioxide	1.0	nd	11	3.5	3.6	nd
Nitrogen	10	79	78	79	79	70
1,1-Difluoroethane (leak check)	10000	nd	nd	nd	nd	nd
Surrogate Recovery (DBFM) Surrogate Recovery (Toluene-d8) Surrogate Recovery (1,4-BFB)		85% 90% 83%	71% 79% 84%	78% 89% 85%	71% 77% 70%	69% 76% 76%

^{&#}x27;RL' Indicates reporting limit at a dilution factor of 1 'nd' Indicates not detected at listed reporting limits

Analyses performed in TEG-Northern California's lab Analyses performed by: Mr. Leif Jonsson

page 1

The Source Group, Inc. Project # 04-PFT-004 Former PACO Pumps Site 9201 San Leandro Street, Oakland, California

TEG Project #30326F

Analyses of SOIL VAPOR

BTEX, Naphthalene, MtBE & TPH-gasoline (EPA method 8260B) in micrograms per cubic meter of Vapor

Methane in ppmV; Oxygen, Nitrogen and Carbon Dioxide in percent by Volume

SAMPLE NUMBER	R:	SV-4	SV-5	SV-6	SV-7	SV-8
SAMPLE DEPTH (feet,) :	5.5	5.5	5.5	5.5	5.5
PURGE VOLUME	: :	3	3	3	3	3
COLLECTION DATE	Ē:	03/26/12	03/26/12 11:04	03/26/12 14:55	03/26/12	03/26/12 15:44
COLLECTION TIME	<u>:</u> :	12:21			15:20	
DILUTION FACTOR (VOCs,		1	10	1	1	1
	RL					
Benzene	80	2400	560000	23000	nd	110
Toluene	200	nd	4500	nd	nd	nd
Ethylbenzene	100	140	45000	5200	nd	nd
m,p-Xylene	200	640	13000	20000	nd	nd
o-Xylene	100	130	nd	220	nd	nd
Naphthalene	70	nd	nd	nd	nd	nd
Methyl-t-butyl ether (MtBE)	100	nd	nd	nd	nd	nd
TPH (gasoline range)	10000	3400000	20000000	1000000	nd	57000
Methane	1000	nd	10000	nd	nd	nd
Oxygen	1.0	8.1	7.1	10	20	19
Carbon Dioxide	1.0	5.4	2.8	6.6	nd	1.3
Nitrogen	10	63	64	86	76	77
1,1-Difluoroethane (leak check)	10000	nd	nd	nd	nd	nd
Surrogate Recovery (DBFM) Surrogate Recovery (Toluene-d8) Surrogate Recovery (1,4-BFB)		70% 96% 76%	71% 78% 71%	70% 76% 79%	67% 62% 64%	81% 87% 87%

^{&#}x27;RL' Indicates reporting limit at a dilution factor of 1 'nd' Indicates not detected at listed reporting limits

Analyses performed in TEG-Northern California's lab Analyses performed by: Mr. Leif Jonsson

page 2

The Source Group, Inc. Project # 04-PFT-004 Former PACO Pumps Site 9201 San Leandro Street, Oakland, California

TEG Project #30326F

CALIBRATION DATA - Calibration Check Compounds

	Vinyl Chloride	1,1 DCE	Chloroform	1,2 DCP	Toluene	Ethylbenzene
Midpoint	50.0	50.0	50.0	50.0	50.0	50.0
Continuing Cali	bration - Midpoint					
3/26/13	41.1	42.1	44.5	46.9	46.6	49.1
0.20.10	82.2%	84.2%	89.0%	93.8%	93.2%	98.2%

APPENDIX H LABORATORY ANALYTICAL DATA – GROUNDWATER

04/13/13

Technical Report for

The Source Group

T0600101592-9201 San Leandro Street, Oakland CA

PACO PUMPS

Accutest Job Number: C27055

Sampling Date: 04/05/13

Report to:

The Source Group 3478 Buskirk Ave Suite 100 Pleasant Hill, CA 94523

pparmentier@thesourcegroup.net; sdaro@thesourcegroup.net;

gmciver@thesourcegroup.net ATTN: Paul Parmentier

Total number of pages in report: 128

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

James J. Rhudy Lab Director

Jumy. Mush

Client Service contact: Nutan Kabir 408-588-0200

Certifications: CA (08258CA) AZ (AZ0762) DoD/ISO/IEC 17025:2005 (L2242)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Sections:

W

4

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Summary of Hits	5
Section 3: Sample Results	10
3.1: C27055-1: MW-1	11
3.2: C27055-2: MW-2	15
3.3: C27055-3: MW-3	19
3.4: C27055-4: MW-4	23
3.5: C27055-5: MW-5	27
3.6: C27055-6: MW-6	31
3.7: C27055-7: MW-7	35
3.8: C27055-8: MW-9	39
3.9: C27055-9: MW-10	43
3.10: C27055-10: MW-11	47
3.11: C27055-11: E-2	51
3.12: C27055-12: E-3	55
3.13: C27055-13: E-6	59
3.14: C27055-14: E-7	63
3.15: C27055-15: E-8	67
3.16: C27055-16: E-12	71
3.17: C27055-17: AS-1D	75
3.18: C27055-18: MW-3DUP	79
3.19: C27055-19: TB-1	83
Section 4: Misc. Forms	86
4.1: Chain of Custody	87
Section 5: GC/MS Volatiles - QC Data Summaries	91
5.1: Method Blank Summary	92
5.2: Blank Spike/Blank Spike Duplicate Summary	102
5.3: Laboratory Control Sample Summary	112
5.4: Matrix Spike/Matrix Spike Duplicate Summary	116
Section 6: GC Semi-volatiles - QC Data Summaries	126
6.1: Method Blank Summary	
6.2: Blank Spike/Blank Spike Duplicate Summary	128

Sample Summary

Job No:

C27055

The Source Group

T0600101592-9201 San Leandro Street, Oakland CA Project No: PACO PUMPS

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
C27055-1	04/05/13	11:08 CK	04/05/13	AQ	Ground Water	MW-1
C27055-2	04/05/13	10:40 CK	04/05/13	AQ	Ground Water	MW-2
C27055-3	04/05/13	12:40 CK	04/05/13	AQ	Ground Water	MW-3
C27055-4	04/05/13	11:05 CK	04/05/13	AQ	Ground Water	MW-4
C27055-5	04/05/13	11:30 CK	04/05/13	AQ	Ground Water	MW-5
C27055-6	04/05/13	13:10 CK	04/05/13	AQ	Ground Water	MW-6
C27055-7	04/05/13	10:33 CK	04/05/13	AQ	Ground Water	MW-7
C27055-8	04/05/13	12:55 CK	04/05/13	AQ	Ground Water	MW-9
C27055-9	04/05/13	12:25 CK	04/05/13	AQ	Ground Water	MW-10
C27055-10	04/05/13	11:55 CK	04/05/13	AQ	Ground Water	MW-11
C27055-11	04/05/13	10:05 CK	04/05/13	AQ	Ground Water	E-2
C27055-12	04/05/13	13:25 CK	04/05/13	AQ	Ground Water	E-3
C27055-13	04/05/13	13:50 CK	04/05/13	AQ	Ground Water	E-6

Sample Summary (continued)

Job No:

C27055

The Source Group

T0600101592-9201 San Leandro Street, Oakland CA Project No: PACO PUMPS

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
C27055-14	04/05/13	11:55 CK	04/05/13	AQ	Ground Water	E-7
C27055-15	04/05/13	12:15 CK	04/05/13	AQ	Ground Water	E-8
C27055-16	04/05/13	10:15 CK	04/05/13	AQ	Ground Water	E-12
C27055-17	04/05/13	11:35 CK	04/05/13	AQ	Ground Water	AS-1D
C27055-18	04/05/13	12:45 CK	04/05/13	AQ	Ground Water	MW-3DUP
C27055-19	04/05/13	09:00 CK	04/05/13	AQ	Trip Blank Water	TB-1

Summary of Hits
Job Number: C27055
Account: The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Collected: 04/05/13

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
C27055-1	MW-1					
TPH (Motor Oil))	0.323	0.19	0.097	mg/l	SW846 8015B M
C27055-2	MW-2					
Methyl Tert Buty TPH-GRO (C6-C TPH (Motor Oil)	C10)	0.35 J 42.0 J 0.434	1.0 50 0.19	0.20 25 0.095	ug/l ug/l mg/l	SW846 8260B SW846 8260B SW846 8015B M
C27055-3	MW-3					
Benzene n-Butylbenzene sec-Butylbenzene Ethylbenzene Isopropylbenzene p-Isopropyltoluer Naphthalene n-Propylbenzene 1,2,4-Trimethylb 1,3,5-Trimethylb Toluene Xylene (total) TPH-GRO (C6-C TPH (Diesel) a	e ne penzene penzene	1030 51.8 11.5 J 152 39.8 6.1 J 90.4 J 97.7 760 186 547 374 14200 1.96	20 40 40 20 20 40 100 40 40 40 20 40 1000 0.48	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	SW846 8260B SW846 8260B
C27055-4	MW-4					
Benzene n-Butylbenzene Ethylbenzene Isopropylbenzene n-Propylbenzene Toluene Xylene (total) TPH-GRO (C6-C		11.0 0.27 J 1.3 0.59 J 1.5 J 0.57 J 0.98 J 97.9	1.0 2.0 1.0 1.0 2.0 1.0 2.0 50	0.20 0.20 0.20 0.20 0.20 0.20 0.46 25	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B
C27055-5	MW-5					
TPH (Motor Oil))	1.22	0.19	0.096	mg/l	SW846 8015B M
C27055-6	MW-6					
Benzene		750	10	2.0	ug/l	SW846 8260B

Summary of Hits
Job Number: C27055
Account: The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Collected: 04/05/13

Lab Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
n-Butylbenzene	32.8	20	2.0	ug/l	SW846 8260B
sec-Butylbenzene	7.4 J	20	2.0	ug/l	SW846 8260B
1,2-Dichloroethane	6.4 J	10	2.0	ug/l	SW846 8260B
Ethylbenzene	57.3	10	2.0	ug/l	SW846 8260B
Isopropylbenzene	17.8	10	2.0	ug/l	SW846 8260B
p-Isopropyltoluene	5.0 J	20	2.0	ug/l	SW846 8260B
Naphthalene	41.5 J	50	5.0	ug/l	SW846 8260B
n-Propylbenzene	48.5	20	2.0	ug/l	SW846 8260B
1,2,4-Trimethylbenzene	447	20	2.0	ug/l	SW846 8260B
1,3,5-Trimethylbenzene	112	20	2.0	ug/l	SW846 8260B
Toluene	67.1	10	2.0	ug/l	SW846 8260B
Xylene (total)	127	20	4.6	ug/l	SW846 8260B
TPH-GRO (C6-C10)	5090	500	250	ug/l	SW846 8260B
TPH (Diesel) ^a	0.305	0.094	0.047	mg/l	SW846 8015B M
C27055-7 MW-7					
Methyl Tert Butyl Ether	0.58 J	1.0	0.20	ug/l	SW846 8260B
C27055-8 MW-9					
1,2-Dichloroethane ^b	0.67 J	1.0	0.20	ug/l	SW846 8260B
Methyl Tert Butyl Ether b	1.1	1.0	0.20	ug/l	SW846 8260B
C27055-9 MW-10					
1,2-Dichloroethane	0.26 J	1.0	0.20	ug/l	SW846 8260B
Methyl Tert Butyl Ether	0.20 J	1.0	0.20	ug/l	SW846 8260B
TPH (Motor Oil)	0.690	0.21	0.11	mg/l	SW846 8015B M
C27055-10 MW-11					
TPH (Motor Oil)	0.718	0.19	0.094	mg/l	SW846 8015B M
C27055-11 E-2					
TPH (Motor Oil)	5.10	0.94	0.47	mg/l	SW846 8015B M
C27055-12 E-3					
Acetone	5.5 J	20	4.0	ug/l	SW846 8260B
Benzene	1.0	1.0	0.20	ug/l	SW846 8260B
1,2-Dichloroethane	0.71 J	1.0	0.20	ug/l	SW846 8260B
Methyl Tert Butyl Ether	0.43 J	1.0	0.20	ug/l	SW846 8260B
n-Propylbenzene	0.27 J	2.0	0.20	ug/l	SW846 8260B

Summary of Hits
Job Number: C27055
Account: The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Collected: 04/05/13

C27055-13 E-6 Acetone Benzene n-Butylbenzene sec-Butylbenzene		161 357	50 49	25 24	ug/l	SW846 8260B
TPH (Motor Oil) C27055-13 E-6 Acetone Benzene n-Butylbenzene sec-Butylbenzene		357			-	
Acetone Benzene n-Butylbenzene sec-Butylbenzene		0.0.1			mg/l	SW846 8015B M
Benzene n-Butylbenzene sec-Butylbenzene		0.0.7				
n-Butylbenzene sec-Butylbenzene		8.2 J	20	4.0	ug/l	SW846 8260B
n-Butylbenzene sec-Butylbenzene		2.2	1.0	0.20	ug/l	SW846 8260B
•		1.1 J	2.0	0.20	ug/l	SW846 8260B
tout Distrille au mon a		0.62 J	2.0	0.20	ug/l	SW846 8260B
tert-Butylbenzene		2.1	2.0	0.28	ug/l	SW846 8260B
Ethylbenzene		4.3	1.0	0.20	ug/l	SW846 8260B
Isopropylbenzene		2.0	1.0	0.20	ug/l	SW846 8260B
Methyl Tert Butyl Eth	er	0.69 J	1.0	0.20	ug/l	SW846 8260B
n-Propylbenzene		4.8	2.0	0.20	ug/l	SW846 8260B
1,2,4-Trimethylbenzer	ne	0.43 J	2.0	0.20	ug/l	SW846 8260B
TPH-GRO (C6-C10)		529	50	25	ug/l	SW846 8260B
TPH (Motor Oil)		3.21	0.96	0.48	mg/l	SW846 8015B M
C27055-14 E-7						
Acetone		15.2 J	40	8.0	ug/l	SW846 8260B
Benzene		125	2.0	0.40	ug/l	SW846 8260B
n-Butylbenzene		1.0 J	4.0	0.40	ug/l	SW846 8260B
sec-Butylbenzene		0.49 J	4.0	0.40	ug/l	SW846 8260B
1,2-Dichloroethane		1.9 J	2.0	0.40	ug/l	SW846 8260B
Ethylbenzene		17.4	2.0	0.40	ug/l	SW846 8260B
Isopropylbenzene		2.5	2.0	0.40	ug/l	SW846 8260B
Methyl Tert Butyl Eth	er	3.3	2.0	0.40	ug/l	SW846 8260B
Naphthalene		6.3 J	10	1.0	ug/l	SW846 8260B
n-Propylbenzene		6.1	4.0	0.40	ug/l	SW846 8260B
1,2,4-Trimethylbenzer	ne	13.0	4.0	0.40	ug/l	SW846 8260B
Toluene		20.9	2.0	0.40	ug/l	SW846 8260B
Xylene (total)		28.7	4.0	0.40	ug/l	SW846 8260B
TPH-GRO (C6-C10)		1060	100	50	ug/l	SW846 8260B
TPH (Diesel) ^a		0.0751 J	0.095	0.048	mg/l	SW846 8015B M
C27055-15 E-8						
Acetone		32.2 J	100	20	ug/l	SW846 8260B
Benzene		707	100	2.0	ug/l	SW846 8260B
n-Butylbenzene		2.7 J	10	1.0	ug/l	SW846 8260B
sec-Butylbenzene		1.3 J	10	1.0	ug/l	SW846 8260B
tert-Butylbenzene		9.1 J	10	1.0	ug/l ug/l	SW846 8260B
1,2-Dichloroethane		3.6 J	5.0	1.4	ug/l ug/l	SW846 8260B
Ethylbenzene		118	5.0	1.0	ug/1 ug/l	SW846 8260B
Euryroenzene		110	5.0	1.0	ug/I	3 W 040 0200 D

Summary of Hits Job Number: C27055

The Source Group Account:

Project: T0600101592-9201 San Leandro Street, Oakland CA

Collected: 04/05/13

Lab Sample ID Client Sample II Analyte	Qual	RL	MDL	Units	Method
Isopropylbenzene	9.4	5.0	1.0	ug/l	SW846 8260B
Naphthalene	18.2 J	25	2.5	ug/l	SW846 8260B
n-Propylbenzene	22.2	10	1.0	ug/l	SW846 8260B
1,2,4-Trimethylbenzene	58.9	10	1.0	ug/l	SW846 8260B
1,3,5-Trimethylbenzene	7.8 J	10	1.0	ug/l	SW846 8260B
Toluene	61.1	5.0	1.0	ug/l	SW846 8260B
Xylene (total)	119	10	2.3	ug/l	SW846 8260B
TPH-GRO (C6-C10)	4750	250	130	ug/l	SW846 8260B
TPH (Diesel) ^c	1.42	0.094	0.047	mg/l	SW846 8015B M
TPH (Motor Oil)	1.01	0.19	0.094	mg/l	SW846 8015B M
C27055-16 E-12					
Acetone	9.9 J	20	4.0	ug/l	SW846 8260B
Benzene	64.1	1.0	0.20	ug/l	SW846 8260B
n-Butylbenzene	0.84 J	2.0	0.20	ug/l	SW846 8260B
sec-Butylbenzene	0.52 J	2.0	0.20	ug/l	SW846 8260B
tert-Butylbenzene	0.63 J	2.0	0.28	ug/l	SW846 8260B
Ethylbenzene	8.1	1.0	0.20	ug/l	SW846 8260B
Isopropylbenzene	2.3	1.0	0.20	ug/l	SW846 8260B
Naphthalene	2.8 J	5.0	0.50	ug/l	SW846 8260B
n-Propylbenzene	5.7	2.0	0.20	ug/l	SW846 8260B
1,2,4-Trimethylbenzene	2.2	2.0	0.20	ug/l	SW846 8260B
1,3,5-Trimethylbenzene	0.34 J	2.0	0.20	ug/l	SW846 8260B
Toluene	3.3	1.0	0.20	ug/l	SW846 8260B
Xylene (total)	3.0	2.0	0.46	ug/l	SW846 8260B
TPH-GRO (C6-C10)	496	50	25	ug/l	SW846 8260B
TPH (Diesel) ^a	0.0624 J	0.096	0.048	mg/l	SW846 8015B M
C27055-17 AS-1D					
No hits reported in this sample.					
C27055-18 MW-3DUP					
Benzene	835	10	2.0	ug/l	SW846 8260B
sec-Butylbenzene	16.7 J	20	2.0	ug/l	SW846 8260B
1,2-Dichloroethane	2.9 J	10	2.0	ug/l	SW846 8260B
Ethylbenzene	142	10	2.0	ug/l	SW846 8260B
Isopropylbenzene	43.3	10	2.0	ug/l	SW846 8260B
p-Isopropyltoluene	9.7 J	20	2.0	ug/l	SW846 8260B
Naphthalene	121	50	5.0	ug/l	SW846 8260B
n-Propylbenzene	119	20	2.0	ug/l	SW846 8260B
Styrene	6.5 J	10	2.0	ug/l	SW846 8260B
Styrene	0.00				

Summary of Hits

Job Number: C27055

Account: The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Collected: 04/05/13

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
1,3,5-Trimethylbenzene	223	20	2.0	ug/l	SW846 8260B
Toluene	454	10	2.0	ug/l	SW846 8260B
Xylene (total)	363	20	4.6	ug/l	SW846 8260B
TPH-GRO (C6-C10)	9970	500	250	ug/l	SW846 8260B
TPH (Diesel) ^a	2.21	0.94	0.47	mg/l	SW846 8015B M
C27055-19 TB-1					
Acetone	6.0 J	20	4.0	ug/l	SW846 8260B

- (a) Diesel pattern is not present; higher boiling gasoline compounds in Diesel range.
- (b) Sample vial contained more than 0.5cm of sediment.
- (c) Atypical Diesel pattern (C12-C28); heavier hydrocarbons contributing to quantitation.

Sample Results	
Report of Analysis	
1	

Client Sample ID: MW-1 Lab Sample ID: C27055-1

 Lab Sample ID:
 C27055-1
 Date Sampled:
 04/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 04/05/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 V12203.D 1 04/10/13 TN n/a n/a VV497

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	20	4.0	ug/l	
71-43-2	Benzene	ND	1.0	0.20	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.20	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.20	ug/l	
75-25-2	Bromoform	ND	1.0	0.22	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.20	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.20	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.28	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	1.0	0.20	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.20	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.26	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.20	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.40	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.20	ug/l	
142-28-9	1,3-Dichloropropane	ND	1.0	0.20	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.22	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.20	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-71-8	Dichlorodifluoromethane	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l	
541-73-1	m-Dichlorobenzene	ND	1.0	0.20	ug/l	
95-50-1	o-Dichlorobenzene	ND	1.0	0.20	ug/l	
106-46-7	p-Dichlorobenzene	ND	1.0	0.20	ug/l	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Client Sample ID: MW-1 Lab Sample ID: C27055-1

Date Sampled: 04/05/13 Matrix: AQ - Ground Water **Date Received:** 04/05/13 Method: **Percent Solids:** SW846 8260B n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.20	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.20	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l	
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l	
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l	
75-09-2	Methylene chloride	ND	10	2.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
91-20-3	Naphthalene	ND	5.0	0.50	ug/l	
103-65-1	n-Propylbenzene	ND	2.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.20	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	10	2.4	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.20	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.20	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l	
	TPH-GRO (C6-C10)	ND	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1070 52 7	D'1	0.50/		70.1	200/	

ND = Not detected MDL - Method Detection Limit

95%

RL = Reporting Limit

1868-53-7

E = Indicates value exceeds calibration range

Dibromofluoromethane

J = Indicates an estimated value

70-130%

Client Sample ID: MW-1

Lab Sample ID: C27055-1 **Date Sampled:** 04/05/13 **Date Received:** 04/05/13 Matrix: AQ - Ground Water Method: SW846 8260B **Percent Solids:** n/a

T0600101592-9201 San Leandro Street, Oakland CA **Project:**

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	104%		70-130%
460-00-4	4-Bromofluorobenzene	100%		70-130%

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Report of Analysis

Client Sample ID: MW-1 Lab Sample ID: C27055-1

 Lab Sample ID:
 C27055-1
 Date Sampled:
 04/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 04/05/13

 Method:
 SW846 8015B M SW846 3510C
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 GG42184.D 1 04/08/13 MT 04/08/13 OP7779 GGG1125

Run #2

Initial Volume Final Volume
Run #1 1030 ml 1.0 ml

Run #2

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	ND 0.323	0.097 0.19	0.049 0.097	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	67%		32-1	24%	

ND = Not detected MDL - Method Detection Limit J = Indicate

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Client Sample ID: MW-2 Lab Sample ID: C27055-2

 Lab Sample ID:
 C27055-2
 Date Sampled:
 04/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 04/05/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1V12204.D104/10/13TNn/an/aVV497

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	20	4.0	ug/l	
71-43-2	Benzene	ND	1.0	0.20	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.20	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.20	ug/l	
75-25-2	Bromoform	ND	1.0	0.22	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.20	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.20	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.28	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	1.0	0.20	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.20	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.26	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.20	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.40	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.20	ug/l	
142-28-9	1,3-Dichloropropane	ND	1.0	0.20	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.22	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.20	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-71-8	Dichlorodifluoromethane	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l	
541-73-1	m-Dichlorobenzene	ND	1.0	0.20	ug/l	
95-50-1	o-Dichlorobenzene	ND	1.0	0.20	ug/l	
106-46-7	p-Dichlorobenzene	ND	1.0	0.20	ug/l	

ND = Not detected MDL -

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 2 of 3

Report of Analysis

Client Sample ID: MW-2

 Lab Sample ID:
 C27055-2
 Date Sampled:
 04/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 04/05/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.20	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.20	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l	
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l	
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l	
75-09-2	Methylene chloride	ND	10	2.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	0.35	1.0	0.20	ug/l	J
91-20-3	Naphthalene	ND	5.0	0.50	ug/l	
103-65-1	n-Propylbenzene	ND	2.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.20	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	10	2.4	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.20	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.20	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l	
	TPH-GRO (C6-C10)	42.0	50	25	ug/l	J

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

1868-53-7 Dibromofluoromethane 99% 70-130%

ND = Not detected MDL - Method Detection Limit J = Indicent Indicent

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 $N = \ Indicates \ presumptive \ evidence \ of \ a \ compound$

į.

Client Sample ID: MW-2 Lab Sample ID: C27055-2

Date Sampled: 04/05/13 **Date Received:** 04/05/13 Matrix: AQ - Ground Water Method: SW846 8260B **Percent Solids:** n/a

T0600101592-9201 San Leandro Street, Oakland CA **Project:**

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	106%		70-130%
460-00-4	4-Bromofluorobenzene	99%		70-130%

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

3.2

Report of Analysis

Client Sample ID: MW-2

Lab Sample ID: C27055-2 **Date Sampled:** 04/05/13 Matrix: AQ - Ground Water Date Received: 04/05/13 Method: SW846 8015B M SW846 3510C **Percent Solids:** n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** 04/08/13 Run #1 GG42185.D 1 04/08/13 MT OP7779 GGG1125

Run #2

Final Volume Initial Volume

Run #1 1050 ml 1.0 ml

Run #2

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	ND 0.434	0.095 0.19	0.048 0.095	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	57%		32-1	24%	

ND = Not detected MDL - Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Client Sample ID: MW-3 Lab Sample ID:

C27055-3 **Date Sampled:** 04/05/13 Matrix: AQ - Ground Water **Date Received:** 04/05/13 Method: **Percent Solids:** SW846 8260B

T0600101592-9201 San Leandro Street, Oakland CA **Project:**

Analytical Batch File ID DF Analyzed By **Prep Date Prep Batch** VV497 Run #1 V12208.D 20 04/10/13 TNn/an/a

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	400	80	ug/l	
71-43-2	Benzene	1030	20	4.0	ug/l	
108-86-1	Bromobenzene	ND	20	4.0	ug/l	
74-97-5	Bromochloromethane	ND	20	4.0	ug/l	
75-27-4	Bromodichloromethane	ND	20	4.0	ug/l	
75-25-2	Bromoform	ND	20	4.4	ug/l	
104-51-8	n-Butylbenzene	51.8	40	4.0	ug/l	
135-98-8	sec-Butylbenzene	11.5	40	4.0	ug/l	J
98-06-6	tert-Butylbenzene	ND	40	5.6	ug/l	
108-90-7	Chlorobenzene	ND	20	4.0	ug/l	
75-00-3	Chloroethane	ND	20	4.0	ug/l	
67-66-3	Chloroform	ND	20	4.0	ug/l	
95-49-8	o-Chlorotoluene	ND	40	4.0	ug/l	
106-43-4	p-Chlorotoluene	ND	40	5.2	ug/l	
56-23-5	Carbon tetrachloride	ND	20	4.0	ug/l	
75-34-3	1,1-Dichloroethane	ND	20	4.0	ug/l	
75-35-4	1,1-Dichloroethylene	ND	20	4.0	ug/l	
563-58-6	1,1-Dichloropropene	ND	20	4.0	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	40	8.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	20	4.0	ug/l	
107-06-2	1,2-Dichloroethane	ND	20	4.0	ug/l	
78-87-5	1,2-Dichloropropane	ND	20	4.0	ug/l	
142-28-9	1,3-Dichloropropane	ND	20	4.0	ug/l	
108-20-3	Di-Isopropyl ether	ND	40	4.4	ug/l	
594-20-7	2,2-Dichloropropane	ND	20	4.0	ug/l	
124-48-1	Dibromochloromethane	ND	20	4.0	ug/l	
75-71-8	Dichlorodifluoromethane	ND	20	4.0	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	20	4.0	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	20	4.0	ug/l	
541-73-1	m-Dichlorobenzene	ND	20	4.0	ug/l	
95-50-1	o-Dichlorobenzene	ND	20	4.0	ug/l	
106-46-7	p-Dichlorobenzene	ND	20	4.0	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 3

Report of Analysis

Client Sample ID: MW-3 Lab Sample ID: C27055-3

Date Sampled: 04/05/13 Matrix: AQ - Ground Water **Date Received:** 04/05/13 Method: **Percent Solids:** SW846 8260B n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	20	4.0	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	20	6.0	ug/l	
100-41-4	Ethylbenzene	152	20	4.0	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	40	4.4	ug/l	
591-78-6	2-Hexanone	ND	200	40	ug/l	
87-68-3	Hexachlorobutadiene	ND	40	4.0	ug/l	
98-82-8	Isopropylbenzene	39.8	20	4.0	ug/l	
99-87-6	p-Isopropyltoluene	6.1	40	4.0	ug/l	J
108-10-1	4-Methyl-2-pentanone	ND	200	20	ug/l	
74-83-9	Methyl bromide	ND	40	4.0	ug/l	
74-87-3	Methyl chloride	ND	20	6.0	ug/l	
74-95-3	Methylene bromide	ND	20	4.0	ug/l	
75-09-2	Methylene chloride	ND	200	40	ug/l	
78-93-3	Methyl ethyl ketone	ND	200	40	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	20	4.0	ug/l	
91-20-3	Naphthalene	90.4	100	10	ug/l	J
103-65-1	n-Propylbenzene	97.7	40	4.0	ug/l	
100-42-5	Styrene	ND	20	4.0	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	40	8.0	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	200	48	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	20	6.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	20	4.0	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	20	4.0	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	20	4.4	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	40	4.0	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	40	4.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	40	4.0	ug/l	
95-63-6	1,2,4-Trimethylbenzene	760	40	4.0	ug/l	
108-67-8	1,3,5-Trimethylbenzene	186	40	4.0	ug/l	
127-18-4	Tetrachloroethylene	ND	20	6.0	ug/l	
108-88-3	Toluene	547	20	4.0	ug/l	
79-01-6	Trichloroethylene	ND	20	4.0	ug/l	
75-69-4	Trichlorofluoromethane	ND	20	4.0	ug/l	
75-01-4	Vinyl chloride	ND	20	4.0	ug/l	
1330-20-7	Xylene (total)	374	40	9.2	ug/l	
	TPH-GRO (C6-C10)	14200	1000	500	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	

1868-53-7 Dibromofluoromethane 101% 70-130%

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: MW-3 Lab Sample ID:

C27055-3 **Date Sampled:** 04/05/13 **Date Received:** 04/05/13 Matrix: AQ - Ground Water Method: SW846 8260B **Percent Solids:** n/a

T0600101592-9201 San Leandro Street, Oakland CA **Project:**

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	103%		70-130%
460-00-4	4-Bromofluorobenzene	102%		70-130%

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: MW-3 Lab Sample ID: C27055-3

Date Sampled: 04/05/13 Matrix: AQ - Ground Water **Date Received:** 04/05/13 Method: SW846 8015B M SW846 3510C **Percent Solids:** n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID **Prep Date Analytical Batch** DF Analyzed By **Prep Batch** Run #1 GG42211.D 5 04/09/13 MT 04/08/13 OP7779 GGG1125

Run #2

Final Volume Initial Volume

Run #1 1050 ml 1.0 ml

Run #2

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) ^a TPH (Motor Oil)	1.96 ND	0.48 0.95	0.24 0.48	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	65%		32-1	24%	

(a) Diesel pattern is not present; higher boiling gasoline compounds in Diesel range.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-4 Lab Sample ID:

C27055-4 **Date Sampled:** 04/05/13 Matrix: AQ - Ground Water **Date Received:** 04/05/13 Method: **Percent Solids:** SW846 8260B

T0600101592-9201 San Leandro Street, Oakland CA **Project:**

DF **Analytical Batch** File ID Analyzed By **Prep Date Prep Batch** VV497 Run #1 V12205.D 1 04/10/13 TNn/an/a

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	20	4.0	ug/l	
71-43-2	Benzene	11.0	1.0	0.20	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.20	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.20	ug/l	
75-25-2	Bromoform	ND	1.0	0.22	ug/l	
104-51-8	n-Butylbenzene	0.27	2.0	0.20	ug/l	J
135-98-8	sec-Butylbenzene	ND	2.0	0.20	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.28	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	1.0	0.20	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.20	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.26	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.20	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.40	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.20	ug/l	
142-28-9	1,3-Dichloropropane	ND	1.0	0.20	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.22	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.20	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-71-8	Dichlorodifluoromethane	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l	
541-73-1	m-Dichlorobenzene	ND	1.0	0.20	ug/l	
95-50-1	o-Dichlorobenzene	ND	1.0	0.20	ug/l	
106-46-7	p-Dichlorobenzene	ND	1.0	0.20	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 3

Client Sample ID: MW-4 Lab Sample ID: C27055-4

 Lab Sample ID:
 C27055-4
 Date Sampled:
 04/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 04/05/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

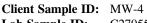
VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	1.3	1.0	0.20	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l	
98-82-8	Isopropylbenzene	0.59	1.0	0.20	ug/l	J
99-87-6	p-Isopropyltoluene	ND	2.0	0.20	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l	
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l	
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l	
75-09-2	Methylene chloride	ND	10	2.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
91-20-3	Naphthalene	ND	5.0	0.50	ug/l	
103-65-1	n-Propylbenzene	1.5	2.0	0.20	ug/l	J
100-42-5	Styrene	ND	1.0	0.20	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	10	2.4	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.20	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	0.57	1.0	0.20	ug/l	J
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.20	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l	
1330-20-7	Xylene (total)	0.98	2.0	0.46	ug/l	J
	TPH-GRO (C6-C10)	97.9	50	25	ug/l	

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

1868-53-7 Dibromofluoromethane 97% 70-130%

ND = Not detected MDL - Method Detection Limit


RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 3 of 3

Lab Sample ID: C27055-4 **Date Sampled:** 04/05/13 **Date Received:** 04/05/13 Matrix: AQ - Ground Water Method: SW846 8260B **Percent Solids:** n/a

T0600101592-9201 San Leandro Street, Oakland CA **Project:**

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	106%		70-130%
460-00-4	4-Bromofluorobenzene	101%		70-130%

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-4

Lab Sample ID: C27055-4 **Date Sampled:** 04/05/13 Matrix: AQ - Ground Water **Date Received:** 04/05/13 Method: SW846 8015B M SW846 3510C **Percent Solids:** n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** 04/08/13 Run #1 GG42186.D 1 04/08/13 MT OP7779 GGG1125 Run #2

Final Volume Initial Volume Run #1 1050 ml 1.0 ml

Run #2

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	ND ND	0.095 0.19	0.048 0.095	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	51%		32-1	24%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 3

Report of Analysis

Client Sample ID: MW-5 Lab Sample ID: C27055-5

 Lab Sample ID:
 C27055-5
 Date Sampled:
 04/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 04/05/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 V12206.D 1 04/10/13 TN n/a n/a VV497

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	20	4.0	ug/l	
71-43-2	Benzene	ND	1.0	0.20	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.20	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.20	ug/l	
75-25-2	Bromoform	ND	1.0	0.22	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.20	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.20	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.28	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	1.0	0.20	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.20	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.26	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.20	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.40	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.20	ug/l	
142-28-9	1,3-Dichloropropane	ND	1.0	0.20	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.22	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.20	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-71-8	Dichlorodifluoromethane	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l	
541-73-1	m-Dichlorobenzene	ND	1.0	0.20	ug/l	
95-50-1	o-Dichlorobenzene	ND	1.0	0.20	ug/l	
106-46-7	p-Dichlorobenzene	ND	1.0	0.20	ug/l	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Page 2 of 3

Report of Analysis

Client Sample ID: MW-5 Lab Sample ID: C27055-5

Date Sampled: 04/05/13 Matrix: AQ - Ground Water **Date Received:** 04/05/13 Method: **Percent Solids:** SW846 8260B n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.20	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.20	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l	
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l	
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l	
75-09-2	Methylene chloride	ND	10	2.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
91-20-3	Naphthalene	ND	5.0	0.50	ug/l	
103-65-1	n-Propylbenzene	ND	2.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.20	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	10	2.4	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.20	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.20	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l	
	TPH-GRO (C6-C10)	ND	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1060 52 7	D'1 C 4	000/		70.1	200/	

1868-53-7 Dibromofluoromethane 98% 70-130%

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: MW-5

Lab Sample ID: C27055-5 **Date Sampled:** 04/05/13 **Date Received:** 04/05/13 Matrix: AQ - Ground Water Method: **Percent Solids:** SW846 8260B n/a

T0600101592-9201 San Leandro Street, Oakland CA **Project:**

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	105%		70-130%
460-00-4	4-Bromofluorobenzene	101%		70-130%

ND = Not detected MDL - Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Client Sample ID: MW-5 Lab Sample ID:

C27055-5 **Date Sampled:** 04/05/13 Matrix: AQ - Ground Water **Date Received:** 04/05/13 Method: SW846 8015B M SW846 3510C **Percent Solids:** n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** 04/08/13 Run #1 GG42188.D 1 04/08/13 MT OP7779 GGG1125 Run #2

Final Volume Initial Volume Run #1 1040 ml 1.0 ml

Run #2

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	ND 1.22	0.096 0.19	0.048 0.096	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	65%		32-1	24%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-6

Lab Sample ID: C27055-6 **Date Sampled:** 04/05/13 Matrix: AQ - Ground Water **Date Received:** 04/05/13 Method: **Percent Solids:** SW846 8260B

T0600101592-9201 San Leandro Street, Oakland CA **Project:**

Analytical Batch File ID DF Analyzed By **Prep Date Prep Batch** VV497 Run #1 V12209.D 10 04/10/13 TNn/an/a

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	200	40	ug/l	
71-43-2	Benzene	750	10	2.0	ug/l	
108-86-1	Bromobenzene	ND	10	2.0	ug/l	
74-97-5	Bromochloromethane	ND	10	2.0	ug/l	
75-27-4	Bromodichloromethane	ND	10	2.0	ug/l	
75-25-2	Bromoform	ND	10	2.2	ug/l	
104-51-8	n-Butylbenzene	32.8	20	2.0	ug/l	
135-98-8	sec-Butylbenzene	7.4	20	2.0	ug/l	J
98-06-6	tert-Butylbenzene	ND	20	2.8	ug/l	
108-90-7	Chlorobenzene	ND	10	2.0	ug/l	
75-00-3	Chloroethane	ND	10	2.0	ug/l	
67-66-3	Chloroform	ND	10	2.0	ug/l	
95-49-8	o-Chlorotoluene	ND	20	2.0	ug/l	
106-43-4	p-Chlorotoluene	ND	20	2.6	ug/l	
56-23-5	Carbon tetrachloride	ND	10	2.0	ug/l	
75-34-3	1,1-Dichloroethane	ND	10	2.0	ug/l	
75-35-4	1,1-Dichloroethylene	ND	10	2.0	ug/l	
563-58-6	1,1-Dichloropropene	ND	10	2.0	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	20	4.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	10	2.0	ug/l	
107-06-2	1,2-Dichloroethane	6.4	10	2.0	ug/l	J
78-87-5	1,2-Dichloropropane	ND	10	2.0	ug/l	
142-28-9	1,3-Dichloropropane	ND	10	2.0	ug/l	
108-20-3	Di-Isopropyl ether	ND	20	2.2	ug/l	
594-20-7	2,2-Dichloropropane	ND	10	2.0	ug/l	
124-48-1	Dibromochloromethane	ND	10	2.0	ug/l	
75-71-8	Dichlorodifluoromethane	ND	10	2.0	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	10	2.0	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	10	2.0	ug/l	
541-73-1	m-Dichlorobenzene	ND	10	2.0	ug/l	
95-50-1	o-Dichlorobenzene	ND	10	2.0	ug/l	
106-46-7	p-Dichlorobenzene	ND	10	2.0	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: MW-6

Lab Sample ID: C27055-6 **Date Sampled:** 04/05/13 Matrix: AQ - Ground Water **Date Received:** 04/05/13 Method: **Percent Solids:** SW846 8260B

Project: T0600101592-9201 San Leandro Street, Oakland CA

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	10	2.0	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	10	3.0	ug/l	
100-41-4	Ethylbenzene	57.3	10	2.0	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	20	2.2	ug/l	
591-78-6	2-Hexanone	ND	100	20	ug/l	
87-68-3	Hexachlorobutadiene	ND	20	2.0	ug/l	
98-82-8	Isopropylbenzene	17.8	10	2.0	ug/l	
99-87-6	p-Isopropyltoluene	5.0	20	2.0	ug/l	J
108-10-1	4-Methyl-2-pentanone	ND	100	10	ug/l	
74-83-9	Methyl bromide	ND	20	2.0	ug/l	
74-87-3	Methyl chloride	ND	10	3.0	ug/l	
74-95-3	Methylene bromide	ND	10	2.0	ug/l	
75-09-2	Methylene chloride	ND	100	20	ug/l	
78-93-3	Methyl ethyl ketone	ND	100	20	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	10	2.0	ug/l	
91-20-3	Naphthalene	41.5	50	5.0	ug/l	J
103-65-1	n-Propylbenzene	48.5	20	2.0	ug/l	
100-42-5	Styrene	ND	10	2.0	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	20	4.0	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	100	24	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	10	3.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	10	2.0	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	10	2.0	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	10	2.2	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	20	2.0	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	20	2.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	20	2.0	ug/l	
95-63-6	1,2,4-Trimethylbenzene	447	20	2.0	ug/l	
108-67-8	1,3,5-Trimethylbenzene	112	20	2.0	ug/l	
127-18-4	Tetrachloroethylene	ND	10	3.0	ug/l	
108-88-3	Toluene	67.1	10	2.0	ug/l	
79-01-6	Trichloroethylene	ND	10	2.0	ug/l	
75-69-4	Trichlorofluoromethane	ND	10	2.0	ug/l	
75-01-4	Vinyl chloride	ND	10	2.0	ug/l	
1330-20-7	Xylene (total)	127	20	4.6	ug/l	
	TPH-GRO (C6-C10)	5090	500	250	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	

1868-53-7 Dibromofluoromethane 102% 70-130%

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: MW-6 Lab Sample ID:

C27055-6 **Date Sampled:** 04/05/13 **Date Received:** 04/05/13 Matrix: AQ - Ground Water Method: SW846 8260B **Percent Solids:** n/a

T0600101592-9201 San Leandro Street, Oakland CA **Project:**

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	103%		70-130%
460-00-4	4-Bromofluorobenzene	103%		70-130%

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-6 Lab Sample ID: C27055-

 Lab Sample ID:
 C27055-6
 Date Sampled:
 04/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 04/05/13

 Method:
 SW846 8015B M SW846 3510C
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 GG42189.D 1 04/08/13 MT 04/08/13 OP7779 GGG1125

Run #2

Initial Volume Final Volume

Run #1 1060 ml 1.0 ml

Run #2

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) ^a TPH (Motor Oil)	0.305 ND	0.094 0.19	0.047 0.094	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	62%		32-1	24%	

(a) Diesel pattern is not present; higher boiling gasoline compounds in Diesel range.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

 $N = \ Indicates \ presumptive \ evidence \ of \ a \ compound$

Client Sample ID: MW-7 Lab Sample ID: C27055-

 Lab Sample ID:
 C27055-7
 Date Sampled:
 04/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 04/05/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1V12207.D104/10/13TNn/an/aVV497

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	20	4.0	ug/l	
71-43-2	Benzene	ND	1.0	0.20	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.20	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.20	ug/l	
75-25-2	Bromoform	ND	1.0	0.22	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.20	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.20	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.28	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	1.0	0.20	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.20	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.26	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.20	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.40	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.20	ug/l	
142-28-9	1,3-Dichloropropane	ND	1.0	0.20	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.22	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.20	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-71-8	Dichlorodifluoromethane	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l	
541-73-1	m-Dichlorobenzene	ND	1.0	0.20	ug/l	
95-50-1	o-Dichlorobenzene	ND	1.0	0.20	ug/l	
106-46-7	p-Dichlorobenzene	ND	1.0	0.20	ug/l	

ND = Not detected MDL - M

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 2 of 3

Report of Analysis

Client Sample ID: MW-7 Lab Sample ID: C27055-7

 Lab Sample ID:
 C27055-7
 Date Sampled:
 04/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 04/05/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.20	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.20	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l	
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l	
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l	
75-09-2	Methylene chloride	ND	10	2.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	0.58	1.0	0.20	ug/l	J
91-20-3	Naphthalene	ND	5.0	0.50	ug/l	
103-65-1	n-Propylbenzene	ND	2.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.20	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	10	2.4	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.20	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.20	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l	
	TPH-GRO (C6-C10)	ND	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	

1868-53-7 Dibromofluoromethane 98% 70-130%

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 3 of 3

Client Sample ID: MW-7 Lab Sample ID: C27055-7

Date Sampled: 04/05/13 **Date Received:** 04/05/13 Matrix: AQ - Ground Water Method: SW846 8260B **Percent Solids:** n/a

T0600101592-9201 San Leandro Street, Oakland CA **Project:**

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	105%		70-130%
460-00-4	4-Bromofluorobenzene	100%		70-130%

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-7 Lab Sample ID: C27055-

 Lab Sample ID:
 C27055-7
 Date Sampled:
 04/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 04/05/13

 Method:
 SW846 8015B M SW846 3510C
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 GG42190.D 1 04/08/13 MT 04/08/13 OP7779 GGG1125

Run #2

Initial Volume Final Volume

Run #1 990 ml 1.0 ml

Run #2

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	ND ND	0.10 0.20	0.051 0.10	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	iits	
630-01-3	Hexacosane	68%		32-1	24%	

ND = Not detected MDL - Method Detection Limit J

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank
N = Indicates presumptive evidence of a compound

C

Client Sample ID: MW-9 Lab Sample ID: C27055

 Lab Sample ID:
 C27055-8
 Date Sampled:
 04/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 04/05/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a R16102.D 1 04/10/13 BD n/a n/a VR582

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	20	4.0	ug/l	
71-43-2	Benzene	ND	1.0	0.20	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.20	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.20	ug/l	
75-25-2	Bromoform	ND	1.0	0.22	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.20	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.20	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.28	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	1.0	0.20	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.20	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.26	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.20	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.40	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	0.67	1.0	0.20	ug/l	J
78-87-5	1,2-Dichloropropane	ND	1.0	0.20	ug/l	
142-28-9	1,3-Dichloropropane	ND	1.0	0.20	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.22	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.20	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-71-8	Dichlorodifluoromethane b	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l	
541-73-1	m-Dichlorobenzene	ND	1.0	0.20	ug/l	
95-50-1	o-Dichlorobenzene	ND	1.0	0.20	ug/l	
106-46-7	p-Dichlorobenzene	ND	1.0	0.20	ug/l	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

ယ

Page 2 of 3

Report of Analysis

Client Sample ID: MW-9 Lab Sample ID: C27055-8

Date Sampled: 04/05/13 Matrix: AQ - Ground Water **Date Received:** 04/05/13 Method: **Percent Solids:** SW846 8260B n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.20	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.20	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l	
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l	
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l	
75-09-2	Methylene chloride	ND	10	2.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	1.1	1.0	0.20	ug/l	
91-20-3	Naphthalene	ND	5.0	0.50	ug/l	
103-65-1	n-Propylbenzene	ND	2.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.20	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	10	2.4	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.20	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.20	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l	
	TPH-GRO (C6-C10)	ND	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1060 52 7	D'1 Cl 4	0.60/		70.1	200/	

1868-53-7 Dibromofluoromethane 96% 70-130%

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: MW-9 Lab Sample ID: C27055-8

Date Sampled: 04/05/13 **Matrix:** AQ - Ground Water **Date Received:** 04/05/13 Method: **Percent Solids:** SW846 8260B n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	99%		70-130%
460-00-4	4-Bromofluorobenzene	99%		70-130%

(a) Sample vial contained more than 0.5cm of sediment.

(b) CCV outside of control limits (biased high); not detected in sample.

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-9

 Lab Sample ID:
 C27055-8
 Date Sampled:
 04/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 04/05/13

 Method:
 SW846 8015B M SW846 3510C
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 GG42191.D 1 04/08/13 MT 04/08/13 OP7779 GGG1125

Run #2

Initial Volume Final Volume

Run #1 930 ml 1.0 ml

Run #2

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	ND ND	0.11 0.22	0.054 0.11	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	72%		32-1	24%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

63

Client Sample ID: MW-10 Lab Sample ID:

C27055-9 **Date Sampled:** 04/05/13 **Matrix:** AQ - Ground Water **Date Received:** 04/05/13 Method: **Percent Solids:** SW846 8260B

T0600101592-9201 San Leandro Street, Oakland CA **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 R16103.D 1 04/10/13 BD VR582 n/an/a

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	20	4.0	ug/l	
71-43-2	Benzene	ND	1.0	0.20	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.20	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.20	ug/l	
75-25-2	Bromoform	ND	1.0	0.22	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.20	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.20	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.28	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	1.0	0.20	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.20	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.26	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.20	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.40	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	0.26	1.0	0.20	ug/l	J
78-87-5	1,2-Dichloropropane	ND	1.0	0.20	ug/l	
142-28-9	1,3-Dichloropropane	ND	1.0	0.20	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.22	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.20	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-71-8	Dichlorodifluoromethane ^a	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l	
541-73-1	m-Dichlorobenzene	ND	1.0	0.20	ug/l	
95-50-1	o-Dichlorobenzene	ND	1.0	0.20	ug/l	
106-46-7	p-Dichlorobenzene	ND	1.0	0.20	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID: MW-10 Lab Sample ID: C27055-9

Date Sampled: 04/05/13 Matrix: AQ - Ground Water **Date Received:** 04/05/13 Method: **Percent Solids:** SW846 8260B n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.20	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.20	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l	
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l	
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l	
75-09-2	Methylene chloride	ND	10	2.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	0.20	1.0	0.20	ug/l	J
91-20-3	Naphthalene	ND	5.0	0.50	ug/l	
103-65-1	n-Propylbenzene	ND	2.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.20	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	10	2.4	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.20	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.20	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l	
	TPH-GRO (C6-C10)	ND	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	

1868-53-7 Dibromofluoromethane 92% 70-130%

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: MW-10 Lab Sample ID: C27055-9

Date Sampled: 04/05/13 Matrix: AQ - Ground Water **Date Received:** 04/05/13 Method: **Percent Solids:** SW846 8260B n/a

T0600101592-9201 San Leandro Street, Oakland CA **Project:**

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	100%		70-130%
460-00-4	4-Bromofluorobenzene	98%		70-130%

(a) CCV outside of control limits (biased high); not detected in sample.

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis Page 1 of 1

Client Sample ID: MW-10

Lab Sample ID: C27055-9 **Date Sampled:** 04/05/13 Matrix: AQ - Ground Water Date Received: 04/05/13 Method: SW846 8015B M SW846 3510C **Percent Solids:** n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** 04/08/13 Run #1 GG42192.D 1 04/08/13 MT OP7779 GGG1125

Run #2

Final Volume Initial Volume

Run #1 940 ml 1.0 ml

Run #2

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	ND 0.690	0.11 0.21	0.053 0.11	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	66%		32-1	24%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Client Sample ID: MW-11

 Lab Sample ID:
 C27055-10
 Date Sampled:
 04/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 04/05/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 R16104.D 1 04/10/13 BD n/a n/a VR582

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	20	4.0	ug/l	
71-43-2	Benzene	ND	1.0	0.20	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.20	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.20	ug/l	
75-25-2	Bromoform	ND	1.0	0.22	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.20	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.20	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.28	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	1.0	0.20	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.20	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.26	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.20	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.40	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.20	ug/l	
142-28-9	1,3-Dichloropropane	ND	1.0	0.20	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.22	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.20	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-71-8	Dichlorodifluoromethane ^a	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l	
541-73-1	m-Dichlorobenzene	ND	1.0	0.20	ug/l	
95-50-1	o-Dichlorobenzene	ND	1.0	0.20	ug/l	
106-46-7	p-Dichlorobenzene	ND	1.0	0.20	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: MW-11

Lab Sample ID: C27055-10 **Date Sampled:** 04/05/13 Matrix: AQ - Ground Water **Date Received:** 04/05/13 Method: **Percent Solids:** SW846 8260B n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.20	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.20	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l	
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l	
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l	
75-09-2	Methylene chloride	ND	10	2.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
91-20-3	Naphthalene	ND	5.0	0.50	ug/l	
103-65-1	n-Propylbenzene	ND	2.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.20	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	10	2.4	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.20	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.20	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l	
	TPH-GRO (C6-C10)	ND	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	94%		70-1	30%	

Dibromofluoromethane 70-130% 1868-53-7 94%

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 3 of 3

Client Sample ID: MW-11

Lab Sample ID: C27055-10 **Date Sampled:** 04/05/13 Matrix: AQ - Ground Water **Date Received:** 04/05/13 Method: **Percent Solids:** SW846 8260B n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	100%		70-130%
460-00-4	4-Bromofluorobenzene	97%		70-130%

(a) CCV outside of control limits (biased high); not detected in sample.

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-11 Lab Sample ID: C27055-10

 Lab Sample ID:
 C27055-10
 Date Sampled:
 04/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 04/05/13

 Method:
 SW846 8015B M SW846 3510C
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 GG42193.D 1 04/08/13 MT 04/08/13 OP7779 GGG1125

Run #2

Initial Volume Final Volume

Run #1 1060 ml 1.0 ml

Run #2

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	ND 0.718	0.094 0.19	0.047 0.094	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	49%		32-1	24%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 3

Report of Analysis

Client Sample ID: E-2

 Lab Sample ID:
 C27055-11
 Date Sampled:
 04/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 04/05/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 Q14145.D 1 04/10/13 PH n/a n/a VQ560

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	20	4.0	ug/l	
71-43-2	Benzene	ND	1.0	0.20	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.20	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.20	ug/l	
75-25-2	Bromoform	ND	1.0	0.22	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.20	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.20	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.28	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	1.0	0.20	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.20	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.26	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.20	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.40	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.20	ug/l	
142-28-9	1,3-Dichloropropane	ND	1.0	0.20	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.22	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.20	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-71-8	Dichlorodifluoromethane	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l	
541-73-1	m-Dichlorobenzene	ND	1.0	0.20	ug/l	
95-50-1	o-Dichlorobenzene	ND	1.0	0.20	ug/l	
106-46-7	p-Dichlorobenzene	ND	1.0	0.20	ug/l	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 2 of 3

Client Sample ID: E-2

Lab Sample ID: C27055-11 **Date Sampled:** 04/05/13 Matrix: AQ - Ground Water **Date Received:** 04/05/13 Method: **Percent Solids:** SW846 8260B n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.20	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.20	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l	
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l	
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l	
75-09-2	Methylene chloride	ND	10	2.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
91-20-3	Naphthalene	ND	5.0	0.50	ug/l	
103-65-1	n-Propylbenzene	ND	2.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.20	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	10	2.4	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.20	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.20	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l	
	TPH-GRO (C6-C10)	ND	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1969 52 7	Dibramafluaramathana	06%		70.1	200/	

1868-53-7 Dibromofluoromethane 96% 70-130%

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 3 of 3

Client Sample ID: E-2

Lab Sample ID: C27055-11 **Date Sampled:** 04/05/13 **Date Received:** 04/05/13 Matrix: AQ - Ground Water Method: SW846 8260B **Percent Solids:** n/a

T0600101592-9201 San Leandro Street, Oakland CA **Project:**

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	106%		70-130%
460-00-4	4-Bromofluorobenzene	101%		70-130%

ND = Not detected MDL - Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Page 1 of 1

Client Sample ID: E-2

 Lab Sample ID:
 C27055-11
 Date Sampled:
 04/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 04/05/13

 Method:
 SW846 8015B M SW846 3510C
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 GG42215.D 5 04/09/13 MT 04/08/13 OP7779 GGG1125

Run #2

Initial Volume Final Volume

Run #1 1060 ml 1.0 ml

Run #2

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	ND 5.10	0.47 0.94	0.24 0.47	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	iits	
630-01-3	Hexacosane	35%		32-1	24%	

ND = Not detected MDL - Method Detection Limit J = Indicat

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 3

Client Sample ID: E-3

 Lab Sample ID:
 C27055-12
 Date Sampled:
 04/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 04/05/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 Q14146.D 1 04/10/13 PH n/a n/a VQ560

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	5.5	20	4.0	ug/l	J
71-43-2	Benzene	1.0	1.0	0.20	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.20	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.20	ug/l	
75-25-2	Bromoform	ND	1.0	0.22	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.20	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.20	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.28	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	1.0	0.20	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.20	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.26	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.20	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.40	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	0.71	1.0	0.20	ug/l	J
78-87-5	1,2-Dichloropropane	ND	1.0	0.20	ug/l	
142-28-9	1,3-Dichloropropane	ND	1.0	0.20	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.22	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.20	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-71-8	Dichlorodifluoromethane	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l	
541-73-1	m-Dichlorobenzene	ND	1.0	0.20	ug/l	
95-50-1	o-Dichlorobenzene	ND	1.0	0.20	ug/l	
106-46-7	p-Dichlorobenzene	ND	1.0	0.20	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Page 2 of 3

Client Sample ID: E-3

Lab Sample ID: C27055-12 **Date Sampled:** 04/05/13 Matrix: AQ - Ground Water **Date Received:** 04/05/13 Method: **Percent Solids:** SW846 8260B n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.20	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.20	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l	
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l	
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l	
75-09-2	Methylene chloride	ND	10	2.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	0.43	1.0	0.20	ug/l	J
91-20-3	Naphthalene	ND	5.0	0.50	ug/l	
103-65-1	n-Propylbenzene	0.27	2.0	0.20	ug/l	J
100-42-5	Styrene	ND	1.0	0.20	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	10	2.4	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.20	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.20	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l	
	TPH-GRO (C6-C10)	161	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1070 52 7	Dil G 4	1000/		70.1	200/	

1868-53-7 Dibromofluoromethane 100% 70-130%

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 3 of 3

Client Sample ID: E-3

Lab Sample ID: C27055-12 **Date Sampled:** 04/05/13 **Date Received:** 04/05/13 Matrix: AQ - Ground Water Method: SW846 8260B **Percent Solids:** n/a

T0600101592-9201 San Leandro Street, Oakland CA **Project:**

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	108%		70-130%
460-00-4	4-Bromofluorobenzene	101%		70-130%

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: E-3

Lab Sample ID: C27055-12 **Date Sampled:** 04/05/13 Matrix: AQ - Ground Water **Date Received:** 04/05/13 Method: SW846 8015B M SW846 3510C **Percent Solids:** n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
Run #1	GG42239.D	250	04/09/13	MT	04/08/13	OP7779	GGG1126
Run #2							

Final Volume Initial Volume Run #1 1030 ml 1.0 ml Run #2

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	ND 357	24 49	12 24	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	187% a		32-1	24%	

(a) Outside control limits due to dilution.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 3

Client Sample ID: E-6

 Lab Sample ID:
 C27055-13
 Date Sampled:
 04/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 04/05/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 Q14147.D 1 04/10/13 PH n/a n/a VQ560

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

VOA 8260 List

Compound	Result	RL	MDL	Units	Q
Acetone	8.2	20	4.0	ug/l	J
Benzene	2.2	1.0	0.20	ug/l	
Bromobenzene	ND	1.0	0.20	ug/l	
Bromochloromethane	ND	1.0	0.20	ug/l	
Bromodichloromethane	ND	1.0	0.20	ug/l	
Bromoform	ND	1.0	0.22	ug/l	
n-Butylbenzene	1.1	2.0	0.20	ug/l	J
sec-Butylbenzene	0.62	2.0	0.20	ug/l	J
tert-Butylbenzene	2.1	2.0	0.28	ug/l	
Chlorobenzene	ND	1.0	0.20	ug/l	
Chloroethane	ND	1.0	0.20	ug/l	
Chloroform	ND	1.0	0.20	ug/l	
o-Chlorotoluene	ND	2.0	0.20	ug/l	
p-Chlorotoluene	ND	2.0	0.26	ug/l	
Carbon tetrachloride	ND	1.0	0.20	ug/l	
1,1-Dichloroethane	ND	1.0	0.20	ug/l	
1,1-Dichloroethylene	ND	1.0	0.20	ug/l	
1,1-Dichloropropene	ND	1.0	0.20	ug/l	
1,2-Dibromo-3-chloropropane	ND	2.0	0.40	ug/l	
1,2-Dibromoethane	ND	1.0	0.20	ug/l	
1,2-Dichloroethane	ND	1.0	0.20	ug/l	
1,2-Dichloropropane	ND	1.0	0.20	ug/l	
	ND	1.0	0.20	ug/l	
1 17	ND	2.0	0.22	ug/l	
	ND	1.0	0.20	ug/l	
Dibromochloromethane	ND	1.0	0.20	ug/l	
Dichlorodifluoromethane	ND	1.0	0.20	ug/l	
		1.0		ug/l	
				ug/l	
m-Dichlorobenzene	ND	1.0	0.20	ug/l	
o-Dichlorobenzene	ND	1.0		ug/l	
p-Dichlorobenzene	ND	1.0	0.20	ug/l	
	Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Chlorobenzene Chlorotoluene Chlorotoluene p-Chlorotoluene Carbon tetrachloride 1,1-Dichloroethane 1,1-Dichloroethylene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,3-Dichloropropane Di-Isopropyl ether 2,2-Dichloropropane Dibromochloromethane Dichlorodifluoromethane Dichlorodifluoromethane cis-1,2-Dichloropropene m-Dichlorobenzene o-Dichlorobenzene	Acetone Benzene Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromoform ND Bromoform ND n-Butylbenzene 1.1 sec-Butylbenzene 0.62 tert-Butylbenzene ND Chlorobenzene ND Chlorotoluene ND Chlorotoluene ND Carbon tetrachloride ND 1,1-Dichloroethane ND 1,1-Dichloropropene ND 1,2-Dibromo-3-chloropropane ND 1,2-Dichloropropane ND 1,3-Dichloropropane ND 1,3-Dichloropropane ND Di-Isopropyl ether ND Di-Isopropyl ether ND Di-Isopropyl ether ND Dichlorodifluoromethane ND Dichlorodifluoromethane ND Cis-1,2-Dichloropropene ND m-Dichlorobenzene ND O-Dichlorobenzene ND	Acetone Benzene Benzene Bromobenzene ND Bromochloromethane ND Bromodichloromethane ND Bromodichloromethane ND Bromoform ND	Acetone 8.2 20 4.0 Benzene 2.2 1.0 0.20 Bromobenzene ND 1.0 0.20 Bromochloromethane ND 1.0 0.20 Bromoform ND 1.0 0.22 n-Butylbenzene 1.1 2.0 0.20 sec-Butylbenzene 0.62 2.0 0.20 tert-Butylbenzene 2.1 2.0 0.28 Chlorobenzene ND 1.0 0.20 Chlorotohane ND 1.0 0.20 Chlorotoluene ND 1.0 0.20 Carbon tetrachloride ND 1.0 0.20 1,1-Dichloroethane ND 1.0 0.20 1,1-Dichloropropene ND 1.0 0.20 1,2-Dibromo-3-chloropropane ND 1.0 0.20 1,2-Dichloropropane ND 1.0 0.20 1,3-Dichloropropane ND 1.0 0.20 1,3-Dichloropropane ND 1.0 0.20 1,2-Dichloropropane ND 1.0 0.20 1,3-Dichloropropane ND 1.0 0.20 Di-Isopropyl ether ND 1.0 0.20 Di-Isopropyl ether ND 1.0 0.20 Dichlorodifluoromethane ND 1.0 0.20 Dichlorodifluoromethane ND 1.0 0.20 Dichlorodifluoromethane ND 1.0 0.20 Dichlorodifluoromethane ND 1.0 0.20 m-Dichlorobenzene ND 1.0 0.20	Acetone 8.2 20 4.0 ug/1 Benzene 2.2 1.0 0.20 ug/1 Bromobenzene ND 1.0 0.20 ug/1 Bromochloromethane ND 1.0 0.20 ug/1 Bromochloromethane ND 1.0 0.20 ug/1 Bromoform ND 1.0 0.22 ug/1 n-Butylbenzene 1.1 2.0 0.20 ug/1 sec-Butylbenzene 0.62 2.0 0.20 ug/1 etrt-Butylbenzene 2.1 2.0 0.28 ug/1 Chlorobenzene ND 1.0 0.20 ug/1 Chlorothane ND 1.0 0.20 ug/1 o-Chlorothane ND 1.0 0.20 ug/1 o-Chlorothane ND 1.0 0.20 ug/1 crbon tetrachloride ND 1.0 0.20 ug/1 l,1-Dichloroethane ND 1.0 0.20 ug/1 l,2-Dibromo-3-chloropropane ND 1.0 0.20 ug/1 l,2-Dichloropropane ND 1.0 0.20 ug/1 l,2-Dichloroethane ND 1.0 0.20 ug/1 l,2-Dichloropropane ND 1.0 0.20 ug/1 l,3-Dichloropropane ND 1.0 0.20 ug/1 l,3-Dichloropropane ND 1.0 0.20 ug/1 libromochloromethane ND 1.0 0.20 ug/1 libromochloromethane ND 1.0 0.20 ug/1 cis-1,2-Dichloroethylene ND 1.0 0.20 ug/1 cis-1,3-Dichloropropene ND 1.0 0.20 ug/1 m-Dichlorobenzene ND 1.0 0.20 ug/1 m-Dichlorobenzene ND 1.0 0.20 ug/1

ND = Not detected MDL - M

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: E-6

Lab Sample ID: C27055-13 **Date Sampled:** 04/05/13 Matrix: AQ - Ground Water **Date Received:** 04/05/13 Method: **Percent Solids:** SW846 8260B n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	4.3	1.0	0.20	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l	
98-82-8	Isopropylbenzene	2.0	1.0	0.20	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.20	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l	
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l	
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l	
75-09-2	Methylene chloride	ND	10	2.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	0.69	1.0	0.20	ug/l	J
91-20-3	Naphthalene	ND	5.0	0.50	ug/l	
103-65-1	n-Propylbenzene	4.8	2.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.20	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	10	2.4	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l	
95-63-6	1,2,4-Trimethylbenzene	0.43	2.0	0.20	ug/l	J
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.20	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l	
	TPH-GRO (C6-C10)	529	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	95%		70-1	30%	

1868-53-7 Dibromofluoromethane 95% 70-130%

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 3 of 3

Client Sample ID: E-6

Lab Sample ID: C27055-13 **Date Sampled:** 04/05/13 **Date Received:** 04/05/13 Matrix: AQ - Ground Water Method: SW846 8260B **Percent Solids:** n/a

T0600101592-9201 San Leandro Street, Oakland CA **Project:**

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	106%		70-130%
460-00-4	4-Bromofluorobenzene	102%		70-130%

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: E-6

Lab Sample ID: C27055-13 **Date Sampled:** 04/05/13 Matrix: AQ - Ground Water Date Received: 04/05/13 Method: SW846 8015B M SW846 3510C **Percent Solids:** n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** 04/08/13 Run #1 GG42240.D 5 04/09/13 MT OP7779 GGG1126 Run #2

Final Volume Initial Volume Run #1 1040 ml 1.0 ml

Run #2

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	ND 3.21	0.48 0.96	0.24 0.48	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	iits	
630-01-3	Hexacosane	46%		32-1	24%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: E-7

Lab Sample ID: C27055-14 **Date Sampled:** 04/05/13 **Matrix:** AQ - Ground Water **Date Received:** 04/05/13 Method: **Percent Solids:** SW846 8260B n/a

T0600101592-9201 San Leandro Street, Oakland CA **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 Q14148.D 2 04/10/13 PH VQ560 n/an/a

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	15.2	40	8.0	ug/l	J
71-43-2	Benzene	125	2.0	0.40	ug/l	
108-86-1	Bromobenzene	ND	2.0	0.40	ug/l	
74-97-5	Bromochloromethane	ND	2.0	0.40	ug/l	
75-27-4	Bromodichloromethane	ND	2.0	0.40	ug/l	
75-25-2	Bromoform	ND	2.0	0.44	ug/l	
104-51-8	n-Butylbenzene	1.0	4.0	0.40	ug/l	J
135-98-8	sec-Butylbenzene	0.49	4.0	0.40	ug/l	J
98-06-6	tert-Butylbenzene	ND	4.0	0.56	ug/l	
108-90-7	Chlorobenzene	ND	2.0	0.40	ug/l	
75-00-3	Chloroethane	ND	2.0	0.40	ug/l	
67-66-3	Chloroform	ND	2.0	0.40	ug/l	
95-49-8	o-Chlorotoluene	ND	4.0	0.40	ug/l	
106-43-4	p-Chlorotoluene	ND	4.0	0.52	ug/l	
56-23-5	Carbon tetrachloride	ND	2.0	0.40	ug/l	
75-34-3	1,1-Dichloroethane	ND	2.0	0.40	ug/l	
75-35-4	1,1-Dichloroethylene	ND	2.0	0.40	ug/l	
563-58-6	1,1-Dichloropropene	ND	2.0	0.40	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	4.0	0.80	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.40	ug/l	
107-06-2	1,2-Dichloroethane	1.9	2.0	0.40	ug/l	J
78-87-5	1,2-Dichloropropane	ND	2.0	0.40	ug/l	
142-28-9	1,3-Dichloropropane	ND	2.0	0.40	ug/l	
108-20-3	Di-Isopropyl ether	ND	4.0	0.44	ug/l	
594-20-7	2,2-Dichloropropane	ND	2.0	0.40	ug/l	
124-48-1	Dibromochloromethane	ND	2.0	0.40	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.40	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	2.0	0.40	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	2.0	0.40	ug/l	
541-73-1	m-Dichlorobenzene	ND	2.0	0.40	ug/l	
95-50-1	o-Dichlorobenzene	ND	2.0	0.40	ug/l	
106-46-7	p-Dichlorobenzene	ND	2.0	0.40	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 3

Client Sample ID: E-7

 Lab Sample ID:
 C27055-14
 Date Sampled:
 04/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 04/05/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	2.0	0.40	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	2.0	0.60	ug/l	
100-41-4	Ethylbenzene	17.4	2.0	0.40	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	4.0	0.44	ug/l	
591-78-6	2-Hexanone	ND	20	4.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	4.0	0.40	ug/l	
98-82-8	Isopropylbenzene	2.5	2.0	0.40	ug/l	
99-87-6	p-Isopropyltoluene	ND	4.0	0.40	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	20	2.0	ug/l	
74-83-9	Methyl bromide	ND	4.0	0.40	ug/l	
74-87-3	Methyl chloride	ND	2.0	0.60	ug/l	
74-95-3	Methylene bromide	ND	2.0	0.40	ug/l	
75-09-2	Methylene chloride	ND	20	4.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	20	4.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	3.3	2.0	0.40	ug/l	
91-20-3	Naphthalene	6.3	10	1.0	ug/l	J
103-65-1	n-Propylbenzene	6.1	4.0	0.40	ug/l	
100-42-5	Styrene	ND	2.0	0.40	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	4.0	0.80	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	20	4.8	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.0	0.60	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	2.0	0.40	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.0	0.40	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	2.0	0.44	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	4.0	0.40	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	4.0	0.40	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	4.0	0.40	ug/l	
95-63-6	1,2,4-Trimethylbenzene	13.0	4.0	0.40	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	4.0	0.40	ug/l	
127-18-4	Tetrachloroethylene	ND	2.0	0.60	ug/l	
108-88-3	Toluene	20.9	2.0	0.40	ug/l	
79-01-6	Trichloroethylene	ND	2.0	0.40	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	ND	2.0	0.40	ug/l	
1330-20-7	Xylene (total)	28.7	4.0	0.92	ug/l	
	TPH-GRO (C6-C10)	1060	100	50	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	2 Limits		

1868-53-7 Dibromofluoromethane 107% 70-130%

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 3 of 3

Client Sample ID: E-7

Lab Sample ID: C27055-14 **Date Sampled:** 04/05/13 **Date Received:** 04/05/13 Matrix: AQ - Ground Water Method: SW846 8260B **Percent Solids:** n/a

T0600101592-9201 San Leandro Street, Oakland CA **Project:**

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	104%		70-130%
460-00-4	4-Bromofluorobenzene	105%		70-130%

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: E-7

 Lab Sample ID:
 C27055-14
 Date Sampled:
 04/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 04/05/13

 Method:
 SW846 8015B M SW846 3510C
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID **Prep Date Analytical Batch** DF Analyzed By **Prep Batch** Run #1 GG42195.D 1 04/08/13 MT 04/08/13 OP7779 GGG1125 Run #2

Run #1 1050 ml Final Volume
1.0 ml

Run #2

TPH Extractable

CAS No.	Compound	Result	RL	MDL Units		Q
	TPH (Diesel) ^a TPH (Motor Oil)	0.0751 ND	0.095 0.19	0.048 0.095	mg/l mg/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	Limits	
630-01-3	Hexacosane	65%		32-1	24%	

(a) Diesel pattern is not present; higher boiling gasoline compounds in Diesel range.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Client Sample ID: E-8

 Lab Sample ID:
 C27055-15
 Date Sampled:
 04/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 04/05/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	Q14149.D	5	04/10/13	PH	n/a	n/a	VQ560
Run #2	Q14172.D	10	04/10/13	PH	n/a	n/a	VQ561

I	Purge Volume
	0.0 ml
	0.0 ml

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	32.2	100	20	ug/l	J
71-43-2	Benzene	707 ^a	10	2.0	ug/l	
108-86-1	Bromobenzene	ND	5.0	1.0	ug/l	
74-97-5	Bromochloromethane	ND	5.0	1.0	ug/l	
75-27-4	Bromodichloromethane	ND	5.0	1.0	ug/l	
75-25-2	Bromoform	ND	5.0	1.1	ug/l	
104-51-8	n-Butylbenzene	2.7	10	1.0	ug/l	J
135-98-8	sec-Butylbenzene	1.3	10	1.0	ug/l	J
98-06-6	tert-Butylbenzene	9.1	10	1.4	ug/l	J
108-90-7	Chlorobenzene	ND	5.0	1.0	ug/l	
75-00-3	Chloroethane	ND	5.0	1.0	ug/l	
67-66-3	Chloroform	ND	5.0	1.0	ug/l	
95-49-8	o-Chlorotoluene	ND	10	1.0	ug/l	
106-43-4	p-Chlorotoluene	ND	10	1.3	ug/l	
56-23-5	Carbon tetrachloride	ND	5.0	1.0	ug/l	
75-34-3	1,1-Dichloroethane	ND	5.0	1.0	ug/l	
75-35-4	1,1-Dichloroethylene	ND	5.0	1.0	ug/l	
563-58-6	1,1-Dichloropropene	ND	5.0	1.0	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	2.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	5.0	1.0	ug/l	
107-06-2	1,2-Dichloroethane	3.6	5.0	1.0	ug/l	J
78-87-5	1,2-Dichloropropane	ND	5.0	1.0	ug/l	
142-28-9	1,3-Dichloropropane	ND	5.0	1.0	ug/l	
108-20-3	Di-Isopropyl ether	ND	10	1.1	ug/l	
594-20-7	2,2-Dichloropropane	ND	5.0	1.0	ug/l	
124-48-1	Dibromochloromethane	ND	5.0	1.0	ug/l	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	5.0	1.0	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	5.0	1.0	ug/l	
541-73-1	m-Dichlorobenzene	ND	5.0	1.0	ug/l	
95-50-1	o-Dichlorobenzene	ND	5.0	1.0	ug/l	
106-46-7	p-Dichlorobenzene	ND	5.0	1.0	ug/l	

ND = Not detected MDL - M

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 2 of 3

Client Sample ID: E-8

Lab Sample ID: C27055-15 **Date Sampled:** 04/05/13 Matrix: AQ - Ground Water **Date Received:** 04/05/13 Method: **Percent Solids:** SW846 8260B n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	5.0	1.0	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	5.0	1.5	ug/l	
100-41-4	Ethylbenzene	118	5.0	1.0	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	10	1.1	ug/l	
591-78-6	2-Hexanone	ND	50	10	ug/l	
87-68-3	Hexachlorobutadiene	ND	10	1.0	ug/l	
98-82-8	Isopropylbenzene	9.4	5.0	1.0	ug/l	
99-87-6	p-Isopropyltoluene	ND	10	1.0	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	50	5.0	ug/l	
74-83-9	Methyl bromide	ND	10	1.0	ug/l	
74-87-3	Methyl chloride	ND	5.0	1.5	ug/l	
74-95-3	Methylene bromide	ND	5.0	1.0	ug/l	
75-09-2	Methylene chloride	ND	50	10	ug/l	
78-93-3	Methyl ethyl ketone	ND	50	10	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	5.0	1.0	ug/l	
91-20-3	Naphthalene	18.2	25	2.5	ug/l	J
103-65-1	n-Propylbenzene	22.2	10	1.0	ug/l	
100-42-5	Styrene	ND	5.0	1.0	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	10	2.0	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	50	12	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	1.5	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	5.0	1.0	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.0	1.0	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	5.0	1.1	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	10	1.0	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	10	1.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	10	1.0	ug/l	
95-63-6	1,2,4-Trimethylbenzene	58.9	10	1.0	ug/l	
108-67-8	1,3,5-Trimethylbenzene	7.8	10	1.0	ug/l	J
127-18-4	Tetrachloroethylene	ND	5.0	1.5	ug/l	
108-88-3	Toluene	61.1	5.0	1.0	ug/l	
79-01-6	Trichloroethylene	ND	5.0	1.0	ug/l	
75-69-4	Trichlorofluoromethane	ND	5.0	1.0	ug/l	
75-01-4	Vinyl chloride	ND	5.0	1.0	ug/l	
1330-20-7	Xylene (total)	119	10	2.3	ug/l	
	TPH-GRO (C6-C10)	4750	250	130	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	95%	103%	70-130%		

Dibromofluoromethane 1868-53-7 95% 103% 70-130%

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 3 of 3

Client Sample ID: E-8

 Lab Sample ID:
 C27055-15
 Date Sampled:
 04/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 04/05/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	107%	106%	70-130%
460-00-4	4-Bromofluorobenzene	103%	101%	70-130%

(a) Result is from Run# 2

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: E-8

Lab Sample ID: C27055-15 **Date Sampled:** 04/05/13 Matrix: AQ - Ground Water **Date Received:** 04/05/13 Method: SW846 8015B M SW846 3510C **Percent Solids:** n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
Run #1	GG42248.D	1	04/09/13	MT	04/08/13	OP7779	GGG1126
Run #2							

	Initial Volume	Final Volume
Run #1	1060 ml	1.0 ml
Run #2		

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) ^a TPH (Motor Oil)	1.42 1.01	0.094 0.19	0.047 0.094	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
630-01-3	Hexacosane	58%		32-1	24%	

(a) Atypical Diesel pattern (C12-C28); heavier hydrocarbons contributing to quantitation.

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: E-12

 Lab Sample ID:
 C27055-16
 Date Sampled:
 04/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 04/05/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1Q14150.D104/10/13PHn/an/aVQ560

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	9.9	20	4.0	ug/l	J
71-43-2	Benzene	64.1	1.0	0.20	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.20	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.20	ug/l	
75-25-2	Bromoform	ND	1.0	0.22	ug/l	
104-51-8	n-Butylbenzene	0.84	2.0	0.20	ug/l	J
135-98-8	sec-Butylbenzene	0.52	2.0	0.20	ug/l	J
98-06-6	tert-Butylbenzene	0.63	2.0	0.28	ug/l	J
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	1.0	0.20	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.20	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.26	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.20	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.40	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.20	ug/l	
142-28-9	1,3-Dichloropropane	ND	1.0	0.20	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.22	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.20	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-71-8	Dichlorodifluoromethane	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l	
541-73-1	m-Dichlorobenzene	ND	1.0	0.20	ug/l	
95-50-1	o-Dichlorobenzene	ND	1.0	0.20	ug/l	
106-46-7	p-Dichlorobenzene	ND	1.0	0.20	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: E-12 Lab Sample ID:

C27055-16 **Date Sampled:** 04/05/13 Matrix: AQ - Ground Water **Date Received:** 04/05/13 Method: **Percent Solids:** SW846 8260B n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	8.1	1.0	0.20	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l	
98-82-8	Isopropylbenzene	2.3	1.0	0.20	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.20	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l	
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l	
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l	
75-09-2	Methylene chloride	ND	10	2.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
91-20-3	Naphthalene	2.8	5.0	0.50	ug/l	J
103-65-1	n-Propylbenzene	5.7	2.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.20	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	10	2.4	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l	
95-63-6	1,2,4-Trimethylbenzene	2.2	2.0	0.20	ug/l	
108-67-8	1,3,5-Trimethylbenzene	0.34	2.0	0.20	ug/l	J
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	3.3	1.0	0.20	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.20	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l	
1330-20-7	Xylene (total)	3.0	2.0	0.46	ug/l	
	TPH-GRO (C6-C10)	496	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 2 Limits		
1060 52 7	D'1 (1 .1	1000/		70.1	200/	

ND = Not detected MDL - Method Detection Limit

100%

RL = Reporting Limit

1868-53-7

E = Indicates value exceeds calibration range

Dibromofluoromethane

J = Indicates an estimated value

70-130%

Page 3 of 3

Client Sample ID: E-12

Lab Sample ID: C27055-16 **Date Sampled:** 04/05/13 **Date Received:** 04/05/13 Matrix: AQ - Ground Water Method: SW846 8260B **Percent Solids:** n/a

T0600101592-9201 San Leandro Street, Oakland CA **Project:**

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	106%		70-130%
460-00-4	4-Bromofluorobenzene	101%		70-130%

ND = Not detected MDL - Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Page 1 of 1

Client Sample ID: E-12

Lab Sample ID: C27055-16 **Matrix:** AQ - Ground Water

Method: SW846 8015B M SW846 3510C

Date Sampled: 04/05/13
Date Received: 04/05/13
Percent Solids: n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 GG42196.D 1 04/08/13 MT 04/08/13 OP7779 GGG1125

Run #2

Initial Volume Final Volume

Run #1 1040 ml 1.0 ml

Run #2

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) ^a TPH (Motor Oil)	0.0624 ND	0.096 0.19	0.048 0.096	mg/l mg/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 2 Limits		
630-01-3	Hexacosane	73%	32-124%			

(a) Diesel pattern is not present; higher boiling gasoline compounds in Diesel range.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 3

Client Sample ID: AS-1D

 Lab Sample ID:
 C27055-17
 Date Sampled:
 04/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 04/05/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1R16105.D104/10/13BDn/an/aVR582

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	20	4.0	ug/l	
71-43-2	Benzene	ND	1.0	0.20	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.20	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.20	ug/l	
75-25-2	Bromoform	ND	1.0	0.22	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.20	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.20	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.28	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	1.0	0.20	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.20	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.26	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.20	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.40	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.20	ug/l	
142-28-9	1,3-Dichloropropane	ND	1.0	0.20	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.22	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.20	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-71-8	Dichlorodifluoromethane ^a	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l	
541-73-1	m-Dichlorobenzene	ND	1.0	0.20	ug/l	
95-50-1	o-Dichlorobenzene	ND	1.0	0.20	ug/l	
106-46-7	p-Dichlorobenzene	ND	1.0	0.20	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: AS-1D

Lab Sample ID: C27055-17 **Date Sampled:** 04/05/13 Matrix: AQ - Ground Water **Date Received:** 04/05/13 Method: **Percent Solids:** SW846 8260B n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.20	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.20	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l	
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l	
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l	
75-09-2	Methylene chloride	ND	10	2.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
91-20-3	Naphthalene	ND	5.0	0.50	ug/l	
103-65-1	n-Propylbenzene	ND	2.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.20	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	10	2.4	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.20	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.20	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l	
	TPH-GRO (C6-C10)	ND	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	94%		70-1	30%	

Dibromofluoromethane 94% 70-130% 1868-53-7

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 3 of 3

Client Sample ID: AS-1D

Lab Sample ID: C27055-17 **Date Sampled:** 04/05/13 Matrix: AQ - Ground Water **Date Received:** 04/05/13 Method: SW846 8260B **Percent Solids:** n/a

T0600101592-9201 San Leandro Street, Oakland CA **Project:**

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	100%		70-130%
460-00-4	4-Bromofluorobenzene	97%		70-130%

(a) CCV outside of control limits (biased high); not detected in sample.

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: AS-1D

Lab Sample ID: C27055-17 **Date Sampled:** 04/05/13 **Matrix:** AQ - Ground Water **Date Received:** 04/05/13 Method: SW846 8015B M SW846 3510C **Percent Solids:** n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** 04/08/13 Run #1 GG42197.D 1 04/08/13 MT OP7779 GGG1125

Run #2

Final Volume Initial Volume

Run #1 1060 ml 1.0 ml

Run #2

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil)	ND ND	0.094 0.19	0.047 0.094	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	64%		32-1	24%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis Page 1 of 3

Client Sample ID: MW-3DUP

Lab Sample ID: C27055-18 **Date Sampled:** 04/05/13 **Matrix:** AQ - Ground Water **Date Received:** 04/05/13 Method: Percent Solids: n/a SW846 8260B

T0600101592-9201 San Leandro Street, Oakland CA **Project:**

Analytical Batch File ID DF Analyzed By **Prep Date Prep Batch** Run #1 R16106.D 10 04/10/13 BD VR582 n/an/a

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	200	40	ug/l	
71-43-2	Benzene	835	10	2.0	ug/l	
108-86-1	Bromobenzene	ND	10	2.0	ug/l	
74-97-5	Bromochloromethane	ND	10	2.0	ug/l	
75-27-4	Bromodichloromethane	ND	10	2.0	ug/l	
75-25-2	Bromoform	ND	10	2.2	ug/l	
104-51-8	n-Butylbenzene	ND	20	2.0	ug/l	
135-98-8	sec-Butylbenzene	16.7	20	2.0	ug/l	J
98-06-6	tert-Butylbenzene	ND	20	2.8	ug/l	
108-90-7	Chlorobenzene	ND	10	2.0	ug/l	
75-00-3	Chloroethane	ND	10	2.0	ug/l	
67-66-3	Chloroform	ND	10	2.0	ug/l	
95-49-8	o-Chlorotoluene	ND	20	2.0	ug/l	
106-43-4	p-Chlorotoluene	ND	20	2.6	ug/l	
56-23-5	Carbon tetrachloride	ND	10	2.0	ug/l	
75-34-3	1,1-Dichloroethane	ND	10	2.0	ug/l	
75-35-4	1,1-Dichloroethylene	ND	10	2.0	ug/l	
563-58-6	1,1-Dichloropropene	ND	10	2.0	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	20	4.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	10	2.0	ug/l	
107-06-2	1,2-Dichloroethane	2.9	10	2.0	ug/l	J
78-87-5	1,2-Dichloropropane	ND	10	2.0	ug/l	
142-28-9	1,3-Dichloropropane	ND	10	2.0	ug/l	
108-20-3	Di-Isopropyl ether	ND	20	2.2	ug/l	
594-20-7	2,2-Dichloropropane	ND	10	2.0	ug/l	
124-48-1	Dibromochloromethane	ND	10	2.0	ug/l	
75-71-8	Dichlorodifluoromethane ^a	ND	10	2.0	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	10	2.0	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	10	2.0	ug/l	
541-73-1	m-Dichlorobenzene	ND	10	2.0	ug/l	
95-50-1	o-Dichlorobenzene	ND	10	2.0	ug/l	
106-46-7	p-Dichlorobenzene	ND	10	2.0	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 3

Client Sample ID: MW-3DUP

 Lab Sample ID:
 C27055-18
 Date Sampled:
 04/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 04/05/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	10	2.0	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	10	3.0	ug/l	
100-41-4	Ethylbenzene	142	10	2.0	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	20	2.2	ug/l	
591-78-6	2-Hexanone	ND	100	20	ug/l	
87-68-3	Hexachlorobutadiene	ND	20	2.0	ug/l	
98-82-8	Isopropylbenzene	43.3	10	2.0	ug/l	
99-87-6	p-Isopropyltoluene	9.7	20	2.0	ug/l	J
108-10-1	4-Methyl-2-pentanone	ND	100	10	ug/l	
74-83-9	Methyl bromide	ND	20	2.0	ug/l	
74-87-3	Methyl chloride	ND	10	3.0	ug/l	
74-95-3	Methylene bromide	ND	10	2.0	ug/l	
75-09-2	Methylene chloride	ND	100	20	ug/l	
78-93-3	Methyl ethyl ketone	ND	100	20	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	10	2.0	ug/l	
91-20-3	Naphthalene	121	50	5.0	ug/l	
103-65-1	n-Propylbenzene	119	20	2.0	ug/l	
100-42-5	Styrene	6.5	10	2.0	ug/l	J
994-05-8	Tert-Amyl Methyl Ether	ND	20	4.0	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	100	24	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	10	3.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	10	2.0	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	10	2.0	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	10	2.2	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	20	2.0	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	20	2.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	20	2.0	ug/l	
95-63-6	1,2,4-Trimethylbenzene	881	20	2.0	ug/l	
108-67-8	1,3,5-Trimethylbenzene	223	20	2.0	ug/l	
127-18-4	Tetrachloroethylene	ND	10	3.0	ug/l	
108-88-3	Toluene	454	10	2.0	ug/l	
79-01-6	Trichloroethylene	ND	10	2.0	ug/l	
75-69-4	Trichlorofluoromethane	ND	10	2.0	ug/l	
75-01-4	Vinyl chloride	ND	10	2.0	ug/l	
1330-20-7	Xylene (total)	363	20	4.6	ug/l	
	TPH-GRO (C6-C10)	9970	500	250	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	n# 2 Limits		

1868-53-7 Dibromofluoromethane 100% 70-130%

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Ç

Page 3 of 3

Client Sample ID: MW-3DUP

 Lab Sample ID:
 C27055-18
 Date Sampled:
 04/05/13

 Matrix:
 AQ - Ground Water
 Date Received:
 04/05/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	99%		70-130%
460-00-4	4-Bromofluorobenzene	100%		70-130%

(a) CCV outside of control limits (biased high); not detected in sample.

ND = Not detected MDL - Method Detection Limit J = Indicates and Indicates a

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Page 1 of 1

Client Sample ID: MW-3DUP

Lab Sample ID: C27055-18 **Date Sampled:** 04/05/13 **Matrix:** AQ - Ground Water **Date Received:** 04/05/13 Method: SW846 8015B M SW846 3510C Percent Solids: n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID **Prep Date Analytical Batch** DF Analyzed By **Prep Batch** Run #1 GG42214.D 10 04/09/13 MT 04/08/13 OP7779 GGG1125

Run #2

Final Volume Initial Volume

Run #1 1060 ml 1.0 ml

Run #2

TPH Extractable

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) ^a TPH (Motor Oil)	2.21 ND	0.94 1.9	0.47 0.94	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	58%		32-1	24%	

(a) Diesel pattern is not present; higher boiling gasoline compounds in Diesel range.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: TB-1

 Lab Sample ID:
 C27055-19
 Date Sampled:
 04/05/13

 Matrix:
 AQ - Trip Blank Water
 Date Received:
 04/05/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 R16101.D 1 04/10/13 BD n/a vR582

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

VOA 8260 List

Compound	Result	RL	MDL	Units	Q
Acetone	6.0	20	4.0	ug/l	J
Benzene	ND	1.0	0.20	ug/l	
Bromobenzene	ND	1.0	0.20	ug/l	
Bromochloromethane	ND	1.0	0.20	ug/l	
Bromodichloromethane	ND	1.0	0.20	ug/l	
Bromoform	ND	1.0	0.22	ug/l	
n-Butylbenzene	ND	2.0	0.20	ug/l	
sec-Butylbenzene	ND	2.0	0.20	ug/l	
tert-Butylbenzene	ND	2.0	0.28	ug/l	
Chlorobenzene	ND	1.0	0.20	ug/l	
Chloroethane	ND	1.0	0.20	ug/l	
Chloroform	ND	1.0	0.20	ug/l	
o-Chlorotoluene	ND	2.0	0.20	ug/l	
p-Chlorotoluene	ND	2.0	0.26	ug/l	
Carbon tetrachloride	ND	1.0	0.20	ug/l	
1,1-Dichloroethane	ND	1.0	0.20	ug/l	
1,1-Dichloroethylene	ND	1.0	0.20	ug/l	
1,1-Dichloropropene	ND	1.0	0.20	ug/l	
1,2-Dibromo-3-chloropropane	ND	2.0	0.40	ug/l	
1,2-Dibromoethane	ND	1.0	0.20	ug/l	
1,2-Dichloroethane	ND	1.0	0.20	ug/l	
1,2-Dichloropropane	ND	1.0	0.20	ug/l	
1,3-Dichloropropane	ND	1.0	0.20	ug/l	
Di-Isopropyl ether	ND	2.0	0.22	ug/l	
2,2-Dichloropropane	ND	1.0	0.20	ug/l	
Dibromochloromethane	ND	1.0	0.20	ug/l	
Dichlorodifluoromethane ^a	ND	1.0	0.20	ug/l	
	ND	1.0	0.20	ug/l	
cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l	
m-Dichlorobenzene	ND	1.0	0.20	ug/l	
o-Dichlorobenzene	ND	1.0	0.20	ug/l	
p-Dichlorobenzene	ND	1.0	0.20	ug/l	
	Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Chlorobenzene Chlorobenzene Chlorotoluene p-Chlorotoluene p-Chlorotoluene Carbon tetrachloride 1,1-Dichloroethane 1,1-Dichloroethylene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,3-Dichloropropane Di-Isopropyl ether 2,2-Dichloropropane Dibromochloromethane Dichlorodifluoromethane Dichlorodifluoromethane Dichlorodifluoropropene m-Dichlorobenzene o-Dichlorobenzene	Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromoform ND Bromoform ND n-Butylbenzene ND sec-Butylbenzene ND Chlorobenzene ND Chlorobenzene ND Chlorotoluene ND Chlorotoluene ND Carbon tetrachloride ND 1,1-Dichloroethane ND 1,1-Dichloropropene ND 1,2-Dibromo-3-chloropropane ND 1,2-Dichloropropane ND 1,3-Dichloropropane ND 1,3-Dichloropropane ND Di-Isopropyl ether ND 2,2-Dichloropropane ND Di-Isopropyl ether ND Dichlorodifluoromethane ND Dichlorodifluoromethane ND Dichlorodifluoromethane ND Dichlorodifluoromethane ND Dichlorobenzene ND o-Dichlorobenzene	Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromoform ND 1.0 Bromoform ND 1.0 ND 1.0 ND ND 1.0 ND 1.0 Sec-Butylbenzene ND 2.0 Chlorobenzene ND 1.0 Chlorobenzene ND 1.0 Chlorotoluene ND 1.0 Chlorotoluene ND 2.0 Carbon tetrachloride ND 1.0 1,1-Dichloroethane ND 1.0 1,1-Dichloroethylene ND 1,2-Dibromo-3-chloropropane ND 1,2-Dibromoethane ND 1,2-Dichloropropane ND 1,2-Dichloropropane ND 1,3-Dichloropropane ND 1,3-Dichloropropane ND 1,0 ND 1,3-Dichloropropane ND 1,0 ND	Acetone 6.0 20 4.0 Benzene ND 1.0 0.20 Bromobenzene ND 1.0 0.20 Bromochloromethane ND 1.0 0.20 Bromodichloromethane ND 1.0 0.20 Bromoform ND 1.0 0.22 n-Butylbenzene ND 2.0 0.20 sec-Butylbenzene ND 2.0 0.20 sec-Butylbenzene ND 2.0 0.20 tert-Butylbenzene ND 2.0 0.20 Chlorobenzene ND 1.0 0.20 Chlorobenzene ND 1.0 0.20 Chlorotohane ND 1.0 0.20 Chlorotoluene ND 1.0 0.20 Chlorotoluene ND 2.0 0.26 Carbon tetrachloride ND 1.0 0.20 1,1-Dichloroethane ND 1.0 0.20 1,1-Dichloropropene ND 1.0 0.20 <td> Acetone 6.0 20 4.0 ug/l </td>	Acetone 6.0 20 4.0 ug/l

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 3

Client Sample ID: TB-1

Lab Sample ID: C27055-19 **Date Sampled:** 04/05/13 Matrix: **Date Received:** 04/05/13 AQ - Trip Blank Water Method: SW846 8260B **Percent Solids:** n/a

T0600101592-9201 San Leandro Street, Oakland CA **Project:**

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.20	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.20	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l	
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l	
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l	
75-09-2	Methylene chloride	ND	10	2.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
91-20-3	Naphthalene	ND	5.0	0.50	ug/l	
103-65-1	n-Propylbenzene	ND	2.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.20	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	10	2.4	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.20	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.20	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	92%		70-13	30%	
2037-26-5	Toluene-D8	100%		70-13	30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 3 of 3

Client Sample ID: TB-1

Lab Sample ID: C27055-19 **Date Sampled:** 04/05/13 **Matrix:** AQ - Trip Blank Water **Date Received:** 04/05/13 Method: **Percent Solids:** SW846 8260B n/a

Project: T0600101592-9201 San Leandro Street, Oakland CA

VOA 8260 List

CAS No. **Surrogate Recoveries** Run#1 Run# 2 Limits 4-Bromofluorobenzene 460-00-4 97% 70-130%

(a) CCV outside of control limits (biased high); not detected in sample.

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

J = Indicates an estimated value

Misc	Forms
IVI1SC	Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

														SGRPCAT	347805	•	
DIA	INIE				OGERS AVEN			CON	DUCT	ANAL	YSIS	LO DE.	FECT		ACCUTEST	C270!	
BLA		SA	N JOSE,		RNIA 95112-1 AX (408) 573-7									ALL ANALYSES MUS' LIMITS SET BY CALIF			DETECTION
TECH SER	VICES, IN	C.			VE (408) 573-0									☐ EPA] RWQCB RE	GION
CHAIN OF CUS	TODY					_								LIA			0.07.
CHAIN OF COS	TODY	BTS#	13	040.	S-CK1	ι _ω			_					OTHER			
CLIENT	The Sou	irce Gro				CONTAINERS			(8015M)					SPECIAL INSTRUCTI	ONS		
SITE			мр			∃ ₹			010								
	Paco Pu								8	-				Invoice and Repo	ort to: The S	Source Gro	up
	9201 Sa	n Leanc	lro St.			¥.	(B)	<u>@</u>	TPH-mo					Attn: Paul Parmer		tier@theso	arcegroup.net
	Oakland,	CA]	290	97	1					(562)597-1055 e			
			MATRIX	CC	NTAINERS	Ϊğ	8	8	_					PO #: 04-PFT-0		_	
	1 1		10° 0° 1		1	COMPOSITE	TPH-g (8260B)	VOC's (8260B)	ΡΉ				İ	Geotracker EDI) files requi	red	
SAMPLE I.D.	DATE	TIME	S= SOIL W=H ₂ 0	TOTAL		Ö	TP	0.0	TPH-d					ADD'L INFORMATION	STATUS	CONDITION	LAB SAMPLE #
Awrl	4/8/13	1108	W	5	~·×		\times	\times	\times								1
Nw.2		1040	3	5	A.×		X	\times	X					SAMPLE LABOR	Ø		2
AW-3	- {	1240	W	5	14130		X	X	>								3
MW-4		رره5	W	5	MY		X	X	X								Ц
MW -5		1130	W	5	MIX		\succ	\times	\times								5
Mr.6		1310	W	5	MIX		/	\times	\times								6
Mw-7		(033	W	5	Mix		\searrow	Y	X								7
Mw. 9		1255	W	5	MIY		\succ	$ \times $	\searrow								8
Mu - 10		1225	V	5	MIX		\times	X	X					·	**		q
nw -11	\forall	1155	W	5	MIX		$ \angle $	5/	\succ								10
SAMPLING COMPLETED	DATE	TIME	SAMPLI	NG NG	1. 1.0.21					7.,	د سویا	5		RESULTS NEEDED NO LATER THAN		<u> </u>	
RELEASED BY	4/5/13	10100	LINIO	VIVICO D	Carey	DAT	icipy	THE	TIME	121			VED BY	NO LATER THAN	Standard TA	r Idate	TIME
INELEASED BY	On	1				ula	5/13		160	20		RECEI	AFD BA	P -	i.	414/13	
RELEASED BY	, 	<u> </u>				DAT			TIME		7	RECEI	VED BY	50-	-	DATE DATE	5 (600 Itime
•	~					•					-						•
RELEASED BY						DAT	E		TIME		pl.	RECEI	VED BY			DATE	TIME
SHIPPED VIA						DAT	E SEN	т	TIME :	SENT	-	COOLE	D #	ı			
							- 0211		· 11776m '		ľ	JOLL	π				
													T751/	P= 312° / 3	50c1,	LIOC	
													1 =1	1 = 5/2 / 5	, , ,	t • 1	10=2

C27055: Chain of Custody Page 1 of 4

SAMPLE ID. DATE TIME \$2 FOR TOTAL SAMPLE ID. DATE TIME \$2 FOR ALL SAMPLE BY			_			1680 R	OGERS AVENU	JE		CON	IDLICT	ANALY	'SIS T	O DETE	CT	TLAB	ACCUTEST	C270E	5 lohs#
	BLA	INE		SAI	N JOSE,											ALL ANALYSES MUS	T MEET SPECIF	ICATIONS AN	
CHANTOF CUSTODY BTS # P3c0+05 - CK-1 CLIENT The Source Group SITE Paco Pumps 9201 San Leandro St. Oakland, CA MATRIX CONTAINERS SAMPLE ID. DATE TIME \$\frac{3}{3} \frac{1}{3} \frac	TECH SER	RVICES	S, INC.													☐ EPA			GION
The Source Group SITE Paco Pumps 9201 San Leandro St. Oakland, CA MATRIX CONTAINERS SAMPLE ID DATE TIME 6 5 TOTAL \$\frac{6}{2} \frac{1}{2} \frac	CHAIN OF CUS	STODY		DTC #	P2_	740	S-CKI	1	Sc.										
SAMPLE I.D. DATE TIME SAMPLE	CLIENT	Tri (0 (0	<i>-</i>	ERS -			(M					SPECIAL INSTRUCTI	ONS		
SAMPLE I.D. DATE TIME SAMPLE	SITE				ир			Y A			3015					, , , , , , , , , , , , , , , , , , ,	The state of	g	
SAMPLE I.D. DATE TIME SAMPLE BY TOTAL SELEASED BY DATE TIME SAMPLING CONCLETED BY COOLER BY COOL											8) 01								
SAMPLE I.D. DATE TIME SAMPLING CONDITION LAB SAMPLE # Condition					ro St.			EAL	(B)	0B)	H-m							ntier@theso	ircegroup.net
SAMPLE I.D. DATE TIME SAMPLE BY TOTAL SELEASED BY DATE TIME SAMPLING CONCLETED BY COOLER BY COOL		Oakla	and, C	A	MATRIX	CC	NTAINERS	TISO.	(826	(826	/ TP		1						
Released by		T.	E				ī	SOME	₽. 1	C's	P-H					Geotracker ED	D files requi	red	1
12 13 13 13 14 15 15 15 15 15 15 15	SAMPLE I.D.	DATE	€ .	TIME	S=S W=H	TOTAL		0 = 0	TPI	ΛO	TPI					ADD'L INFORMATION	STATUS	CONDITION	LAB SAMPLE #
C - 6	£.2	uls1.	3 1	005	W	5	MIX		\times	\times	X								- 11
ET 1155 V 5 M18 V 15 E-12 1015 V 5 M18 V 15 A5.(0 1135 V 5 M18 V 17 MW-3DUP 1245 V 5 M18 V 17 MW-3DUP 1245 V 5 M18 V 17 ASAMPLING COMPLETED V 3 HCL VOAS V 18 SAMPLING COMPLETED V 15/13 1/1 W PERFORMED BY CORE V 16/13 1/1 W PERFORMED BY CORE V 15/13 (600 PERFORMED BY	E-3			325	w	5	Mix		\times	\geq	X								12
C-P (215 y	6-6			350	v	5	Mix		\times	×	X				8				13
C - P (215	E-7			155	W	5	Mix		X	\searrow	X								14
A5.10 MW-3pup 1245 W S MIX 17 MW-3pup 18 18 19 SAMPLING COMPLETED WISING COMPLETED WISING COMPLETED WISING COMPLETED WISING COMPLETED WISING PERFORMED BY CORET WITH PERFORMED BY CORET WITH PERFORMED BY CORET WITH PERFORMED BY DATE TIME RECEIVED BY DATE TIME	6-8		(215	V	5	Mix		X	\times	X								15
MW-3pu? 1245 LU S MIX TB-1 0900 V 3 HUL U0AS SAMPLING COMPLETED U15113 14W PERFORMED BY CORLY KLUPA TOLOW KLUPA	6-12		Į.	015	J	5	Mix		×	X	X								
MW - 3 DUP TB-1 OPOO U 3 HCL VOAS SAMPLING COMPLETED U/5/13 1KW PERFORMED BY COMPL	A5-10		1	135	W	5	MX		\times	\times	X								
SAMPLING DATE TIME SAMPLING COMPLETED W/5/13 YUM PERFORMED BY CORLY KLIPA TOLOW KIT SIM NO LATER THAN Standard TAT RELEASED BY DATE TIME RECEIVED BY DATE TIME RELEASED BY DATE TIME RECEIVED BY DATE TIME RECEIVED BY DATE TIME	MW-300P		1	245	N	S	MIX		Y	\succeq	X								18
COMPLETED 4/5/13 1400 PERFORMED BY COREY KAUPA TOLON KELEASED BY RELEASED BY RELEASED BY RELEASED BY DATE TIME RECEIVED BY DATE TIME	TB-1		6	900	نرا	3	HCL VOAS			\times									19
COMPLETED 4/5/13 1400 PERFORMED BY COREY KAUPA TOLON KELEASED BY RELEASED BY RELEASED BY RELEASED BY DATE TIME RECEIVED BY DATE TIME									,							1	100 C. 20 Francis 200		
RELEASED BY DATE TIME RECEIVED BY DATE TIME V V V V V V V V V	SAMPLING COMPLETED	DATE	E	TIME .			Y CORLU	V	1136	'n T	ne	. /	110	511			Standard TA	т	
RELEASED BY DATE TIME RECEIVED BY DATE TIME RELEASED BY DATE TIME RECEIVED BY DATE TIME SHIPPED VIA DATE SENT TIME SENT COOLER #	RELEASED BY	- 112		7				DAT	F		TIME	-	الم	RECEIVE	D BY		Otandard 174	DATE, .	1
RELEASED BY DATE TIME RECEIVED BY DATE TIME SHIPPED VIA DATE SENT TIME SENT COOLER#	IDELE LOED EV	3		V					55	3		00	9	DECEIVE		5000			
SHIPPED VIA DATE SENT TIME SENT COOLER#	LUCTENSED BA	0						INNI	-		I IIVIC			NEOEIVE	.001			PAIL	Trime
	RELEASED BY							DAT	E		TIME			RECEIVE	D BY		***************************************	DATE	TIME
	SHIPPED VIA							DAT	E SEN	Т	TIME	SENT	-7	COOLER	:#			5. 6554	
1.27	account.																		
			700.0			9/40													20=2

C27055: Chain of Custody Page 2 of 4

Accutest Laboratories Sample Receipt Summary

ACCUTEST

Accutest Job Number: C2705	5	Client:	The Source	Group		Project: Paco Pur	mps - Oakland, CA		
Date / Time Received: 4/5/201	3		Delivery M	ethod:	Client	Airbill #'s:			
ooler Temps (Initial/Adjusted)	#1: (3.:	2/3.2); #2: (3.	.5/3.5); #3: (4	.1/4.1); 0					
Cooler Security Y of 1. Custody Seals Present:	or N	3. COC P. 4. Smpl Date		Y or N V	1. Sample labe	prity - Documentation als present on bottles: abeling complete:	<u>Y</u>	or N	
Cooler Temperature	Y or	N				tainer label / COC agree:		✓	
Temp criteria achieved: Cooler temp verification: Cooler media: No, Coolers	IR G	Bag)			1. Sample rec	rs accounted for:	✓✓	or N	
Quality Control Preservation 1. Trip Blank present / cooler: 2. Trip Blank listed on COC:	Y	N N/			1. Analysis re	grity - Instructions quested is clear: eived for unspecified tests	<u>Y</u>	<u>N</u>	N/A
3. Samples preserved properly: 4. VOCs headspace free:	V				Sufficient v Compositing	olume recvd for analysis:	∀		✓
Comments Sample I.D.# MW-2	Labe	ed as "E-2", Sa	ample colllection	time on COC		"10:40"			✓
Accutest Laboratories V:408.588.0200					undy Avenue 8.588.0201				San Jose, CA 95 www/accutest.com

C27055: Chain of Custody Page 3 of 4

Sample Receipt Summary - Problem Resolution

Accutest Job Number: C27055

CSR: Nutan Kabir Response Date: 4/10/2013

Response: Here is Client's responseNutan,

Talked to Blaine Tech and sample MW-2 was accidentally labeled E-2 on the bottles. Checked the field forms and MW-2 was collected at 1040 and E-2 was collected at 1005.

Thanks,

Harlow Newton

 Accutest Laboratories
 2105 Lundy Avenue
 San Jose, CA 95131

 V:408.588.0200
 F: 408.588.0201
 www/accutest.com

C27055: Chain of Custody
Page 4 of 4

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

C

Method Blank Summary

Job Number: C27055

Account: SGRPCAPH The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VQ560-MB	Q14138.D	1	04/09/13	PH	n/a	n/a	VQ560

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	20	4.0	ug/l
71-43-2	Benzene	ND	1.0	0.20	ug/l
108-86-1	Bromobenzene	ND	1.0	0.20	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.20	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.20	ug/l
75-25-2	Bromoform	ND	1.0	0.22	ug/l
104-51-8	n-Butylbenzene	ND	2.0	0.20	ug/l
135-98-8	sec-Butylbenzene	ND	2.0	0.20	ug/l
98-06-6	tert-Butylbenzene	ND	2.0	0.28	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	1.0	0.20	ug/l
67-66-3	Chloroform	ND	1.0	0.20	ug/l
95-49-8	o-Chlorotoluene	ND	2.0	0.20	ug/l
106-43-4	p-Chlorotoluene	ND	2.0	0.26	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l
563-58-6	1,1-Dichloropropene	ND	1.0	0.20	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.40	ug/l
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.20	ug/l
142-28-9	1,3-Dichloropropane	ND	1.0	0.20	ug/l
108-20-3	Di-Isopropyl ether	ND	2.0	0.22	ug/l
594-20-7	2,2-Dichloropropane	ND	1.0	0.20	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l
75-71-8	Dichlorodifluoromethane	ND	1.0	0.20	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.20	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l
541-73-1	m-Dichlorobenzene	ND	1.0	0.20	ug/l
95-50-1	o-Dichlorobenzene	ND	1.0	0.20	ug/l
106-46-7	p-Dichlorobenzene	ND	1.0	0.20	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l

Method Blank Summary

Job Number: C27055

Account: SGRPCAPH The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VQ560-MB	Q14138.D	1	04/09/13	PH	n/a	n/a	VQ560

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units Q
591-78-6	2-Hexanone	ND	10	2.0	ug/l
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.20	ug/l
99-87-6	p-Isopropyltoluene	ND	2.0	0.20	ug/l
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l
75-09-2	Methylene chloride	ND	10	2.0	ug/l
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l
91-20-3	Naphthalene	ND	5.0	0.50	ug/l
103-65-1	n-Propylbenzene	ND	2.0	0.20	ug/l
100-42-5	Styrene	ND	1.0	0.20	ug/l
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l
75-65-0	Tert-Butyl Alcohol	ND	10	2.4	ug/l
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.20	ug/l
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l
108-88-3	Toluene	ND	1.0	0.20	ug/l
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	0.20	ug/l
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l
	TPH-GRO (C6-C10)	ND	50	25	ug/l

Method Blank Summary

Job Number: C27055

Account: SGRPCAPH The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Sample VQ560-MB	File ID Q14138.D	DF 1	Analyzed 04/09/13	By PH	Prep Date n/a	Prep Batch n/a	Analytical Batch VQ560

The QC reported here applies to the following samples:

CAS No.	Surrogate Recoveries	Limits				
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	96% 108% 100%	70-130% 70-130% 70-130%			
CAS No.	Tentatively Identified Comp	Centatively Identified Compounds			Units	Q
	Total TIC, Volatile			0	ug/l	

7

Method Blank Summary

Job Number: C27055

Account: SGRPCAPH The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VV497-MB	V12194.D	1	04/10/13	TN	n/a	n/a	VV497

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	20	4.0	ug/l
71-43-2	Benzene	ND	1.0	0.20	ug/l
108-86-1	Bromobenzene	ND	1.0	0.20	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.20	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.20	ug/l
75-25-2	Bromoform	ND	1.0	0.22	ug/l
104-51-8	n-Butylbenzene	ND	2.0	0.20	ug/l
135-98-8	sec-Butylbenzene	ND	2.0	0.20	ug/l
98-06-6	tert-Butylbenzene	ND	2.0	0.28	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	1.0	0.20	ug/l
67-66-3	Chloroform	ND	1.0	0.20	ug/l
95-49-8	o-Chlorotoluene	ND	2.0	0.20	ug/l
106-43-4	p-Chlorotoluene	ND	2.0	0.26	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l
563-58-6	1,1-Dichloropropene	ND	1.0	0.20	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.40	ug/l
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.20	ug/l
142-28-9	1,3-Dichloropropane	ND	1.0	0.20	ug/l
108-20-3	Di-Isopropyl ether	ND	2.0	0.22	ug/l
594-20-7	2,2-Dichloropropane	ND	1.0	0.20	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l
75-71-8	Dichlorodifluoromethane	ND	1.0	0.20	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.20	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l
541-73-1	m-Dichlorobenzene	ND	1.0	0.20	ug/l
95-50-1	o-Dichlorobenzene	ND	1.0	0.20	ug/l
106-46-7	p-Dichlorobenzene	ND	1.0	0.20	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l

Method Blank Summary

Job Number: C27055

SGRPCAPH The Source Group Account:

T0600101592-9201 San Leandro Street, Oakland CA **Project:**

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VV497-MB	V12194.D	1	04/10/13	TN	n/a	n/a	VV497

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units Q
591-78-6	2-Hexanone	ND	10	2.0	ug/l
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.20	ug/l
99-87-6	p-Isopropyltoluene	ND	2.0	0.20	ug/l
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l
75-09-2	Methylene chloride	ND	10	2.0	ug/l
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l
91-20-3	Naphthalene	ND	5.0	0.50	ug/l
103-65-1	n-Propylbenzene	ND	2.0	0.20	ug/l
100-42-5	Styrene	ND	1.0	0.20	ug/l
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l
75-65-0	Tert-Butyl Alcohol	ND	10	2.4	ug/l
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.20	ug/l
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l
108-88-3	Toluene	ND	1.0	0.20	ug/l
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	0.20	ug/l
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l
	TPH-GRO (C6-C10)	ND	50	25	ug/l

Page 3 of 3

Method: SW846 8260B

Method Blank Summary

Job Number: C27055

Account: SGRPCAPH The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Sample	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
VV497-MB	V12194.D	1	04/10/13	TN	n/a	n/a	VV497

The QC reported here applies to the following samples:

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	92%	70-130%
2037-26-5	Toluene-D8	104%	70-130%
460-00-4	4-Bromofluorobenzene	99%	70-130%

Method Blank Summary Job Number: C27055

SGRPCAPH The Source Group Account:

T0600101592-9201 San Leandro Street, Oakland CA **Project:**

Sample	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
VQ561-MB	Q14159.D	1	04/10/13	PH	n/a	n/a	VQ561

The QC reported here applies to the following samples:

C27055-15

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2	Benzene	ND	1.0	0.20	ug/l
CAS No.	Surrogate Recoveries		Limits		

1868-53-7	Dibromofluoromethane	96%	70-130%
2037-26-5	Toluene-D8	107%	70-130%
460-00-4	4-Bromofluorobenzene	102%	70-130%

Method Blank Summary

Job Number: C27055

Account: SGRPCAPH The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VR582-MB	R16098.D	1	04/10/13	BD	n/a	n/a	VR582

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	20	4.0	ug/l
71-43-2	Benzene	ND	1.0	0.20	ug/l
108-86-1	Bromobenzene	ND	1.0	0.20	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.20	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.20	ug/l
75-25-2	Bromoform	ND	1.0	0.22	ug/l
104-51-8	n-Butylbenzene	ND	2.0	0.20	ug/l
135-98-8	sec-Butylbenzene	ND	2.0	0.20	ug/l
98-06-6	tert-Butylbenzene	ND	2.0	0.28	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	1.0	0.20	ug/l
67-66-3	Chloroform	ND	1.0	0.20	ug/l
95-49-8	o-Chlorotoluene	ND	2.0	0.20	ug/l
106-43-4	p-Chlorotoluene	ND	2.0	0.26	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l
563-58-6	1,1-Dichloropropene	ND	1.0	0.20	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.40	ug/l
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.20	ug/l
142-28-9	1,3-Dichloropropane	ND	1.0	0.20	ug/l
108-20-3	Di-Isopropyl ether	ND	2.0	0.22	ug/l
594-20-7	2,2-Dichloropropane	ND	1.0	0.20	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l
75-71-8	Dichlorodifluoromethane	ND	1.0	0.20	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.20	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l
541-73-1	m-Dichlorobenzene	ND	1.0	0.20	ug/l
95-50-1	o-Dichlorobenzene	ND	1.0	0.20	ug/l
106-46-7	p-Dichlorobenzene	ND	1.0	0.20	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l

Method Blank Summary

Job Number: C27055

Account: SGRPCAPH The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VR582-MB	R16098.D	1	04/10/13	BD	n/a	n/a	VR582

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units Q
591-78-6	2-Hexanone	ND	10	2.0	ug/l
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.20	ug/l
99-87-6	p-Isopropyltoluene	ND	2.0	0.20	ug/l
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l
75-09-2	Methylene chloride	ND	10	2.0	ug/l
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l
91-20-3	Naphthalene	ND	5.0	0.50	ug/l
103-65-1	n-Propylbenzene	ND	2.0	0.20	ug/l
100-42-5	Styrene	ND	1.0	0.20	ug/l
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l
75-65-0	Tert-Butyl Alcohol	ND	10	2.4	ug/l
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.20	ug/l
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l
108-88-3	Toluene	ND	1.0	0.20	ug/l
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	0.20	ug/l
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l
	TPH-GRO (C6-C10)	ND	50	25	ug/l

Method Blank Summary

Job Number: C27055

Account: SGRPCAPH The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Sample VR582-MB	File ID R16098.D	DF	Analyzed 04/10/13	By BD	Prep Date	Prep Batch n/a	Analytical Batch VR582
V K302-WID	K10070.D	1	04/10/13	טט	n/ a	11/ α	V K362

The QC reported here applies to the following samples:

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	91%	70-130%
2037-26-5	Toluene-D8	101%	70-130%
460-00-4	4-Bromofluorobenzene	97%	70-130%

Page 1 of 3

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: C27055

Account: SGRPCAPH The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Q14135.D	1	04/09/13	PH	n/a	n/a	VQ560
Q14136.D	1	04/09/13	PH	n/a	n/a	VQ560
	Q14135.D	Q14135.D 1	Q14135.D 1 04/09/13	Q14135.D 1 04/09/13 PH	Q14135.D 1 04/09/13 PH n/a	Q14135.D 1 04/09/13 PH n/a n/a

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
	•	Ü			Ü			
67-64-1	Acetone	80	78.9	99	86.9	109	10	38-159/24
71-43-2	Benzene	20	19.2	96	19.4	97	1	77-122/25
108-86-1	Bromobenzene	20	19.2	96	19.6	98	2	76-126/17
74-97-5	Bromochloromethane	20	19.8	99	20.3	102	2	77-130/17
75-27-4	Bromodichloromethane	20	19.9	100	20.3	102	2	75-127/16
75-25-2	Bromoform	20	18.8	94	19.4	97	3	69-141/17
104-51-8	n-Butylbenzene	20	19.5	98	19.8	99	2	72-129/18
135-98-8	sec-Butylbenzene	20	18.1	91	18.5	93	2	74-128/18
98-06-6	tert-Butylbenzene	20	18.9	95	18.5	93	2	73-127/18
108-90-7	Chlorobenzene	20	18.3	92	18.6	93	2	77-122/16
75-00-3	Chloroethane	20	16.5	83	16.9	85	2	69-133/18
67-66-3	Chloroform	20	19.5	98	20.0	100	3	74-126/17
95-49-8	o-Chlorotoluene	20	18.3	92	18.8	94	3	72-127/20
106-43-4	p-Chlorotoluene	20	18.5	93	18.7	94	1	68-127/18
56-23-5	Carbon tetrachloride	20	20.0	100	20.4	102	2	71-133/19
75-34-3	1,1-Dichloroethane	20	19.3	97	19.8	99	3	71-125/17
75-35-4	1,1-Dichloroethylene	20	17.9	90	18.3	92	2	66-125/20
563-58-6	1,1-Dichloropropene	20	20.2	101	20.7	104	2	75-124/18
96-12-8	1,2-Dibromo-3-chloropropane	20	18.2	91	19.0	95	4	65-131/20
106-93-4	1,2-Dibromoethane	20	20.5	103	20.9	105	2	75-135/17
107-06-2	1,2-Dichloroethane	20	19.5	98	19.9	100	2	71-131/17
78-87-5	1,2-Dichloropropane	20	19.6	98	20.0	100	2	78-124/16
142-28-9	1,3-Dichloropropane	20	20.3	102	20.7	104	2	78-123/16
108-20-3	Di-Isopropyl ether	20	19.2	96	19.8	99	3	68-129/17
594-20-7	2,2-Dichloropropane	20	18.6	93	18.8	94	1	70-131/19
124-48-1	Dibromochloromethane	20	18.0	90	18.4	92	2	76-132/16
75-71-8	Dichlorodifluoromethane	20	16.1	81	15.4	77	4	32-168/28
156-59-2	cis-1,2-Dichloroethylene	20	19.3	97	19.9	100	3	73-126/17
10061-01-5	cis-1,3-Dichloropropene	20	20.2	101	20.7	104	2	72-130/16
541-73-1	m-Dichlorobenzene	20	17.6	88	18.0	90	2	75-124/16
95-50-1	o-Dichlorobenzene	20	17.8	89	18.3	92	3	76-124/16
106-46-7	p-Dichlorobenzene	20	18.8	94	19.3	97	3	75-124/16
156-60-5	trans-1,2-Dichloroethylene	20	19.6	98	19.9	100	2	71-126/18
10061-02-6	trans-1,3-Dichloropropene	20	20.5	103	21.0	105	2	71-126/16
100-41-4	Ethylbenzene	20	20.2	101	20.4	102	1	76-126/17
637-92-3	Ethyl Tert Butyl Ether	20	20.9	105	21.7	109	4	75-134/17

^{* =} Outside of Control Limits.

Page 2 of 3

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: C27055

Account: SGRPCAPH The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Sample	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
VQ560-BS	Q14135.D	1	04/09/13	PH	n/a	n/a	VQ560
VQ560-BSD	Q14136.D	1	04/09/13	PH	n/a	n/a	VQ560

The QC reported here applies to the following samples:

a.a		Spike	BSP	BSP	BSD	BSD		Limits
CAS No.	Compound	ug/l	ug/l	%	ug/l	%	RPD	Rec/RPD
591-78-6	2-Hexanone	80	92.1	115	94.7	118	3	67-150/22
87-68-3	Hexachlorobutadiene	20	18.6	93	19.0	95	2	69-135/20
98-82-8	Isopropylbenzene	20	18.9	95	19.0	95	1	61-125/17
99-87-6	p-Isopropyltoluene	20	18.3	92	18.7	94	2	68-127/18
108-10-1	4-Methyl-2-pentanone	80	82.1	103	84.4	106	3	71-142/21
74-83-9	Methyl bromide	20	16.0	80	16.4	82	2	68-132/18
74-87-3	Methyl chloride	20	17.6	88	23.6	118	29* a	39-150/28
74-95-3	Methylene bromide	20	19.7	99	20.1	101	2	77-127/16
75-09-2	Methylene chloride	20	18.1	91	18.5	93	2	67-128/18
78-93-3	Methyl ethyl ketone	80	86.4	108	89.9	112	4	56-155/23
1634-04-4	Methyl Tert Butyl Ether	20	19.7	99	20.5	103	4	73-132/17
91-20-3	Naphthalene	20	20.0	100	20.9	105	4	70-136/20
103-65-1	n-Propylbenzene	20	18.0	90	18.4	92	2	71-127/17
100-42-5	Styrene	20	21.1	106	21.3	107	1	72-134/16
994-05-8	Tert-Amyl Methyl Ether	20	20.1	101	20.9	105	4	73-133/17
75-65-0	Tert-Butyl Alcohol	100	103	103	110	110	7	60-149/26
630-20-6	1,1,1,2-Tetrachloroethane	20	21.2	106	21.5	108	1	77-130/16
71-55-6	1,1,1-Trichloroethane	20	20.2	101	20.7	104	2	74-128/19
79-34-5	1,1,2,2-Tetrachloroethane	20	20.9	105	21.6	108	3	77-129/17
79-00-5	1,1,2-Trichloroethane	20	20.4	102	20.9	105	2	77-125/16
87-61-6	1,2,3-Trichlorobenzene	20	18.7	94	19.1	96	2	70-133/18
96-18-4	1,2,3-Trichloropropane	20	20.9	105	21.6	108	3	69-126/18
120-82-1	1,2,4-Trichlorobenzene	20	18.5	93	19.2	96	4	68-129/17
95-63-6	1,2,4-Trimethylbenzene	20	20.2	101	20.7	104	2	74-129/17
108-67-8	1,3,5-Trimethylbenzene	20	20.4	102	20.9	105	2	77-129/17
127-18-4	Tetrachloroethylene	20	18.8	94	19.3	97	3	69-127/20
108-88-3	Toluene	20	19.9	100	20.2	101	1	75-122/17
79-01-6	Trichloroethylene	20	19.0	95	19.2	96	1	78-123/17
75-69-4	Trichlorofluoromethane	20	18.7	94	18.7	94	0	65-136/23
75-01-4	Vinyl chloride	20	14.1	71	16.5	83	16	57-146/22
1330-20-7	Xylene (total)	60	58.0	97	58.8	98	1	77-125/17

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
1868-53-7	Dibromofluoromethane	105%	106%	70-130%

^{* =} Outside of Control Limits.

5.2.1

Ö

Page 3 of 3

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: C27055

Account: SGRPCAPH The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
VQ560-BS	Q14135.D	1	04/09/13	PH	n/a	n/a	VQ560
VQ560-BSD	Q14136.D	1	04/09/13	PH	n/a	n/a	VQ560

The QC reported here applies to the following samples:

C27055-11, C27055-12, C27055-13, C27055-14, C27055-15, C27055-16

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
2037-26-5	Toluene-D8	106%	105%	70-130%
460-00-4	4-Bromofluorobenzene	106%	106%	70-130%

(a) Outside of in-house control limits; but within method acceptance limits.

^{* =} Outside of Control Limits.

Page 1 of 3

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: C27055

Account: SGRPCAPH The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VV497-BS	V12191.D	1	04/09/13	TN	n/a	n/a	VV497
VV497-BSD	V12192.D	1	04/10/13	TN	n/a	n/a	VV497

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
67-64-1	Acetone	80	55.7	70	55.2	69	1	38-159/24
71-43-2	Benzene	20	19.7	99	19.5	98	1	77-122/25
108-86-1	Bromobenzene	20	19.7	95	19.0	95	0	76-126/17
74-97-5	Bromochloromethane	20	18.9	95	18.4	92	3	77-130/17
75-27-4	Bromodichloromethane	20	18.9	95	18.8	94	1	75-127/16
75-25-2	Bromoform	20	18.3	92	18.5	93	1	69-141/17
104-51-8	n-Butylbenzene	20	20.1	101	20.0	100	0	72-129/18
135-98-8	sec-Butylbenzene	20	18.6	93	18.9	95	2	74-128/18
98-06-6	tert-Butylbenzene	20	18.9	95	19.0	95	1	73-127/18
108-90-7	Chlorobenzene	20	18.3	92	18.5	93	1	77-122/16
75-00-3	Chloroethane	20	18.2	91	17.7	89	3	69-133/18
67-66-3	Chloroform	20	20.3	102	19.8	99	2	74-126/17
95-49-8	o-Chlorotoluene	20	19.2	96	19.4	97	1	72-127/20
106-43-4	p-Chlorotoluene	20	18.5	93	18.7	94	1	68-127/18
56-23-5	Carbon tetrachloride	20	21.2	106	21.2	106	0	71-133/19
75-34-3	1,1-Dichloroethane	20	20.5	103	19.9	100	3	71-125/17
75-35-4	1,1-Dichloroethylene	20	19.3	97	19.0	95	2	66-125/20
563-58-6	1,1-Dichloropropene	20	21.4	107	21.0	105	2	75-124/18
96-12-8	1,2-Dibromo-3-chloropropane	20	17.7	89	17.2	86	3	65-131/20
106-93-4	1,2-Dibromoethane	20	17.5	88	17.6	88	1	75-135/17
107-06-2	1,2-Dichloroethane	20	19.3	97	18.9	95	2	71-131/17
78-87-5	1,2-Dichloropropane	20	19.5	98	19.4	97	1	78-124/16
142-28-9	1,3-Dichloropropane	20	18.3	92	17.9	90	2	78-123/16
108-20-3	Di-Isopropyl ether	20	19.4	97	18.9	95	3	68-129/17
594-20-7	2,2-Dichloropropane	20	19.4	97	18.8	94	3	70-131/19
124-48-1	Dibromochloromethane	20	18.0	90	17.9	90	1	76-132/16
75-71-8	Dichlorodifluoromethane	20	19.8	99	18.4	92	7	32-168/28
156-59-2	cis-1,2-Dichloroethylene	20	19.7	99	19.4	97	2	73-126/17
10061-01-5	cis-1,3-Dichloropropene	20	19.8	99	19.7	99	1	72-130/16
541-73-1	m-Dichlorobenzene	20	17.9	90	18.0	90	1	75-124/16
95-50-1	o-Dichlorobenzene	20	17.6	88	17.7	89	1	76-124/16
106-46-7	p-Dichlorobenzene	20	19.3	97	19.5	98	1	75-124/16
156-60-5	trans-1,2-Dichloroethylene	20	20.8	104	20.6	103	1	71-126/18
10061-02-6	trans-1,3-Dichloropropene	20	17.5	88	17.3	87	1	71-126/16
100-41-4	Ethylbenzene	20	20.3	102	20.4	102	0	76-126/17
637-92-3	Ethyl Tert Butyl Ether	20	21.1	106	20.7	104	2	75-134/17

^{* =} Outside of Control Limits.

Page 2 of 3

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: C27055

Account: SGRPCAPH The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
VV497-BS	V12191.D	1	04/09/13	TN	n/a	n/a	VV497
VV497-BSD	V12192.D	1	04/10/13	TN	n/a	n/a	VV497

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
591-78-6	2-Hexanone	80	66.3	83	65.4	82	1	67-150/22
87-68-3	Hexachlorobutadiene	20	21.1	106	21.0	105	0	69-135/20
98-82-8	Isopropylbenzene	20	18.8	94	19.0	95	1	61-125/17
99-87-6	p-Isopropyltoluene	20	18.6	93	18.7	94	1	68-127/18
108-10-1	4-Methyl-2-pentanone	80	66.1	83	64.7	81	2	71-142/21
74-83-9	Methyl bromide	20	18.3	92	17.7	89	3	68-132/18
74-87-3	Methyl chloride	20	18.9	95	17.5	88	8	39-150/28
74-95-3	Methylene bromide	20	18.9	95	18.4	92	3	77-127/16
75-09-2	Methylene chloride	20	18.3	92	18.3	92	0	67-128/18
78-93-3	Methyl ethyl ketone	80	64.2	80	62.2	78	3	56-155/23
1634-04-4	Methyl Tert Butyl Ether	20	19.1	96	18.9	95	1	73-132/17
91-20-3	Naphthalene	20	19.0	95	19.1	96	1	70-136/20
103-65-1	n-Propylbenzene	20	18.6	93	18.5	93	1	71-127/17
100-42-5	Styrene	20	19.8	99	19.9	100	1	72-134/16
994-05-8	Tert-Amyl Methyl Ether	20	19.4	97	18.9	95	3	73-133/17
75-65-0	Tert-Butyl Alcohol	100	81.8	82	80.4	80	2	60-149/26
630-20-6	1,1,1,2-Tetrachloroethane	20	19.6	98	20.0	100	2	77-130/16
71-55-6	1,1,1-Trichloroethane	20	21.2	106	20.8	104	2	74-128/19
79-34-5	1,1,2,2-Tetrachloroethane	20	17.9	90	17.6	88	2	77-129/17
79-00-5	1,1,2-Trichloroethane	20	18.2	91	18.2	91	0	77-125/16
87-61-6	1,2,3-Trichlorobenzene	20	19.9	100	20.6	103	3	70-133/18
96-18-4	1,2,3-Trichloropropane	20	17.0	85	17.0	85	0	69-126/18
120-82-1	1,2,4-Trichlorobenzene	20	19.0	95	19.5	98	3	68-129/17
95-63-6	1,2,4-Trimethylbenzene	20	20.3	102	20.3	102	0	74-129/17
108-67-8	1,3,5-Trimethylbenzene	20	21.1	106	21.3	107	1	77-129/17
127-18-4	Tetrachloroethylene	20	19.7	99	19.6	98	1	69-127/20
108-88-3	Toluene	20	19.9	100	20.2	101	1	75-122/17
79-01-6	Trichloroethylene	20	20.2	101	19.8	99	2	78-123/17
75-69-4	Trichlorofluoromethane	20	20.1	101	19.9	100	1	65-136/23
75-01-4	Vinyl chloride	20	22.4	112	21.8	109	3	57-146/22
1330-20-7	Xylene (total)	60	57.5	96	57.9	97	1	77-125/17

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
1868-53-7	Dibromofluoromethane	102%	101%	70-130%

^{* =} Outside of Control Limits.

2.2

Page 3 of 3

Method: SW846 8260B

4

Blank Spike/Blank Spike Duplicate Summary

Job Number: C27055

Account: SGRPCAPH The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
VV497-BS	V12191.D	1	04/09/13	TN	n/a	n/a	VV497
VV497-BSD	V12192.D	1	04/10/13	TN	n/a	n/a	VV497

The QC reported here applies to the following samples:

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
2037-26-5	Toluene-D8	101%	102%	70-130%
460-00-4	4-Bromofluorobenzene	100%	101%	70-130%

^{* =} Outside of Control Limits.

5.2.3

Page 1 of 1

Method: SW846 8260B

45

Blank Spike/Blank Spike Duplicate Summary

Job Number: C27055

Account: SGRPCAPH The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
VQ561-BS	Q14156.D	1	04/10/13	PH	n/a	n/a	VQ561
VQ561-BSD	Q14157.D	1	04/10/13	PH	n/a	n/a	VQ561

The QC reported here applies to the following samples:

1868-53-7 Dibromofluoromethane

Toluene-D8

4-Bromofluorobenzene

C27055-15

2037-26-5

460-00-4

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	20	21.1	106	20.9	105	1	77-122/25
CAS No.	Surrogate Recoveries	BSP	BSI	D	Limits			

102%

105%

107%

70-130%

70-130%

70-130%

101%

107%

107%

^{* =} Outside of Control Limits.

Blank Spike/Blank Spike Duplicate Summary

Job Number: C27055

Account: SGRPCAPH The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
VR582-BS	R16095.D	1	04/10/13	BD	n/a	n/a	VR582
VR582-BSD	R16096.D	1	04/10/13	BD	n/a	n/a	VR582

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
67-64-1	Acetone	80	66.2	83	67.5	84	2	38-159/24
71-43-2	Benzene	20	18.6	93	18.6	93	0	77-122/25
108-86-1	Bromobenzene	20	19.5	98	19.5	98	0	76-126/17
74-97-5	Bromochloromethane	20	18.4	92	18.7	94	2	77-130/17
75-27-4	Bromodichloromethane	20	20.1	101	20.4	102	1	75-127/16
75-25-2	Bromoform	20	18.2	91	18.5	93	2	69-141/17
104-51-8	n-Butylbenzene	20	19.4	97	19.3	97	1	72-129/18
135-98-8	sec-Butylbenzene	20	19.7	99	19.5	98	1	74-128/18
98-06-6	tert-Butylbenzene	20	19.7	99	19.5	98	1	73-127/18
108-90-7	Chlorobenzene	20	19.3	97	19.1	96	1	77-122/16
75-00-3	Chloroethane	20	19.1	96	18.9	95	1	69-133/18
67-66-3	Chloroform	20	18.9	95	18.8	94	1	74-126/17
95-49-8	o-Chlorotoluene	20	19.2	96	19.2	96	0	72-127/20
106-43-4	p-Chlorotoluene	20	19.7	99	19.5	98	1	68-127/18
56-23-5	Carbon tetrachloride	20	19.7	99	19.6	98	1	71-133/19
75-34-3	1,1-Dichloroethane	20	18.2	91	18.1	91	1	71-125/17
75-35-4	1,1-Dichloroethylene	20	17.0	85	17.0	85	0	66-125/20
563-58-6	1,1-Dichloropropene	20	18.7	94	18.7	94	0	75-124/18
96-12-8	1,2-Dibromo-3-chloropropane	20	17.6	88	17.8	89	1	65-131/20
106-93-4	1,2-Dibromoethane	20	19.2	96	19.2	96	0	75-135/17
107-06-2	1,2-Dichloroethane	20	18.9	95	19.2	96	2	71-131/17
78-87-5	1,2-Dichloropropane	20	18.7	94	19.0	95	2	78-124/16
142-28-9	1,3-Dichloropropane	20	18.5	93	18.6	93	1	78-123/16
108-20-3	Di-Isopropyl ether	20	18.3	92	18.4	92	1	68-129/17
594-20-7	2,2-Dichloropropane	20	19.8	99	19.6	98	1	70-131/19
124-48-1	Dibromochloromethane	20	20.4	102	20.3	102	0	76-132/16
75-71-8	Dichlorodifluoromethane	20	19.1	96	18.6	93	3	32-168/28
156-59-2	cis-1,2-Dichloroethylene	20	17.8	89	17.9	90	1	73-126/17
10061-01-5	cis-1,3-Dichloropropene	20	19.8	99	20.2	101	2	72-130/16
541-73-1	m-Dichlorobenzene	20	19.4	97	19.4	97	0	75-124/16
95-50-1	o-Dichlorobenzene	20	19.2	96	19.4	97	1	76-124/16
106-46-7	p-Dichlorobenzene	20	19.3	97	19.2	96	1	75-124/16
156-60-5	trans-1,2-Dichloroethylene	20	18.0	90	17.8	89	1	71-126/18
	trans-1,3-Dichloropropene	20	20.0	100	20.1	101	0	71-126/16
100-41-4	Ethylbenzene	20	19.9	100	19.6	98	2	76-126/17
637-92-3	Ethyl Tert Butyl Ether	20	19.4	97	19.8	99	2	75-134/17

^{* =} Outside of Control Limits.

Page 2 of 3

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary Job Number: C27055

Account: SGRPCAPH The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VR582-BS	R16095.D	1	04/10/13	BD	n/a	n/a	VR582
VR582-BSD	R16096.D	1	04/10/13	BD	n/a	n/a	VR582

The QC reported here applies to the following samples:

		Spike	BSP	BSP	BSD	BSD		Limits
CAS No.	Compound	ug/l	ug/l	%	ug/l	%	RPD	Rec/RPD
591-78-6	2-Hexanone	80	75.0	94	76.3	95	2	67-150/22
87-68-3	Hexachlorobutadiene	20	19.6	98	19.9	100	2	69-135/20
98-82-8	Isopropylbenzene	20	20.1	101	19.8	99	2	61-125/17
99-87-6	p-Isopropyltoluene	20	20.1	101	19.9	100	1	68-127/18
108-10-1	4-Methyl-2-pentanone	80	75.2	94	77.9	97	4	71-142/21
74-83-9	Methyl bromide	20	19.6	98	19.5	98	1	68-132/18
74-87-3	Methyl chloride	20	16.9	85	19.6	98	15	39-150/28
74-95-3	Methylene bromide	20	19.1	96	19.6	98	3	77-127/16
75-09-2	Methylene chloride	20	17.0	85	17.0	85	0	67-128/18
78-93-3	Methyl ethyl ketone	80	72.7	91	75.3	94	4	56-155/23
1634-04-4	Methyl Tert Butyl Ether	20	19.4	97	19.9	100	3	73-132/17
91-20-3	Naphthalene	20	18.4	92	19.2	96	4	70-136/20
103-65-1	n-Propylbenzene	20	20.1	101	19.8	99	2	71-127/17
100-42-5	Styrene	20	20.6	103	20.3	102	1	72-134/16
994-05-8	Tert-Amyl Methyl Ether	20	20.2	101	20.6	103	2	73-133/17
75-65-0	Tert-Butyl Alcohol	100	111	111	116	116	4	60-149/26
630-20-6	1,1,1,2-Tetrachloroethane	20	20.2	101	20.2	101	0	77-130/16
71-55-6	1,1,1-Trichloroethane	20	19.2	96	19.3	97	1	74-128/19
79-34-5	1,1,2,2-Tetrachloroethane	20	18.3	92	18.6	93	2	77-129/17
79-00-5	1,1,2-Trichloroethane	20	18.6	93	18.5	93	1	77-125/16
87-61-6	1,2,3-Trichlorobenzene	20	18.6	93	19.5	98	5	70-133/18
96-18-4	1,2,3-Trichloropropane	20	19.6	98	19.7	99	1	69-126/18
120-82-1	1,2,4-Trichlorobenzene	20	19.3	97	19.9	100	3	68-129/17
95-63-6	1,2,4-Trimethylbenzene	20	19.8	99	19.7	99	1	74-129/17
108-67-8	1,3,5-Trimethylbenzene	20	20.2	101	20.1	101	0	77-129/17
127-18-4	Tetrachloroethylene	20	19.4	97	19.2	96	1	69-127/20
108-88-3	Toluene	20	19.3	97	19.1	96	1	75-122/17
79-01-6	Trichloroethylene	20	19.5	98	19.6	98	1	78-123/17
75-69-4	Trichlorofluoromethane	20	17.9	90	17.7	89	1	65-136/23
75-01-4	Vinyl chloride	20	18.6	93	18.5	93	1	57-146/22
1330-20-7	Xylene (total)	60	59.0	98	58.3	97	1	77-125/17

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
1868-53-7	Dibromofluoromethane	97%	98%	70-130%

^{* =} Outside of Control Limits.

5.2.4

Page 3 of 3

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: C27055

Account: SGRPCAPH The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VR582-BS	R16095.D	1	04/10/13	BD	n/a	n/a	VR582
VR582-BSD	R16096.D	1	04/10/13	BD	n/a	n/a	VR582

The QC reported here applies to the following samples:

C27055-8, C27055-9, C27055-10, C27055-17, C27055-18, C27055-19

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
2037-26-5	Toluene-D8	99%	98%	70-130%
460-00-4	4-Bromofluorobenzene	99%	98%	70-130%

G

^{* =} Outside of Control Limits.

Method: SW846 8260B

Laboratory Control Sample Summary Job Number: C27055

SGRPCAPH The Source Group Account:

T0600101592-9201 San Leandro Street, Oakland CA **Project:**

Sample VQ560-LCS	File ID Q14137.D	DF 1	Analyzed 04/09/13	By PH	Prep Date n/a	Prep Batch n/a	Analytical Batch VQ560

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	LCS ug/l	LCS %	Limits
	TPH-GRO (C6-C10)	125	142	114	60-130

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	103%	70-130%
2037-26-5	Toluene-D8	107%	70-130%
460-00-4	4-Bromofluorobenzene	101%	70-130%

^{* =} Outside of Control Limits.

Method: SW846 8260B

Laboratory Control Sample Summary Job Number: C27055

SGRPCAPH The Source Group Account:

T0600101592-9201 San Leandro Street, Oakland CA **Project:**

Sample VV497-LCS	File ID V12193.D	DF 1	Analyzed 04/10/13	By TN	Prep Date n/a	Prep Batch n/a	Analytical Batch VV497
---------------------	----------------------------	----------------	--------------------------	-----------------	----------------------	-----------------------	----------------------------------

The QC reported here applies to the following samples:

C27055-1, C27055-2, C27055-3, C27055-4, C27055-5, C27055-6, C27055-7

CAS No.	Compound	Spike ug/l	LCS ug/l	LCS %	Limits
	TPH-GRO (C6-C10)	125	125	100	60-130

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	98%	70-130%
2037-26-5	Toluene-D8	103%	70-130%
460-00-4	4-Bromofluorobenzene	101%	70-130%

^{* =} Outside of Control Limits.

Method: SW846 8260B

Laboratory Control Sample Summary Job Number: C27055

SGRPCAPH The Source Group Account:

T0600101592-9201 San Leandro Street, Oakland CA **Project:**

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VQ561-LCS	Q14158.D	1	04/10/13	PH	n/a	n/a	VQ561

The QC reported here applies to the following samples:

C27055-15

LCS Spike LCS CAS No. Compound ug/l ug/l **%** Limits

CAS No.	Surrogate Recoveries	BSP	Limits
	Dibromofluoromethane	97%	70-130%
	Toluene-D8	107%	70-130%
	4-Bromofluorobenzene	102%	70-130%

^{* =} Outside of Control Limits.

Method: SW846 8260B

Laboratory Control Sample Summary Job Number: C27055

SGRPCAPH The Source Group Account:

T0600101592-9201 San Leandro Street, Oakland CA **Project:**

	Sample VR582-LCS	File ID R16097.D	DF 1	Analyzed 04/10/13	By BD	Prep Date n/a	Prep Batch n/a	Analytical Batch VR582
--	---------------------	----------------------------	----------------	--------------------------	----------	------------------	-------------------	---------------------------

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	LCS ug/l	LCS %	Limits
	TPH-GRO (C6-C10)	125	133	106	60-130

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	95%	70-130%
2037-26-5	Toluene-D8	99%	70-130%
460-00-4	4-Bromofluorobenzene	99%	70-130%

^{* =} Outside of Control Limits.

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C27055

SGRPCAPH The Source Group Account:

Project: T0600101592-9201 San Leandro Street, Oakland CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C27035-9MS	Q14151.D	10	04/10/13	PH	n/a	n/a	VQ560
C27035-9MSD	Q14152.D	10	04/10/13	PH	n/a	n/a	VQ560
C27035-9	Q14140.D	10	04/10/13	PH	n/a	n/a	VQ560

The QC reported here applies to the following samples:

		C27035-9		Spike	MS	MS	MSD	MSD		Limits
CAS No.	Compound	ug/l	Q	ug/l	ug/l	%	ug/l	%	RPD	Rec/RPD
67-64-1	Acetone	ND		800	962	120	1030	129	7	38-159/24
71-43-2	Benzene	467		200	650	92	722	128* a	10	77-122/16
108-86-1	Bromobenzene	ND		200	196	98	205	103	4	76-126/17
74-97-5	Bromochloromethane	ND		200	212	106	240	120	12	77-130/17
75-27-4	Bromodichloromethane	ND		200	194	97	217	109	11	75-127/16
75-25-2	Bromoform	ND		200	139	70	155	78	11	69-141/17
104-51-8	n-Butylbenzene	9.3	J	200	198	94	214	102	8	72-129/18
135-98-8	sec-Butylbenzene	3.2	J	200	185	91	197	97	6	74-128/18
98-06-6	tert-Butylbenzene	ND		200	268	134* b	283	142* b	5	73-127/18
108-90-7	Chlorobenzene	ND		200	182	91	197	99	8	77-122/16
75-00-3	Chloroethane	ND		200	182	91	204	102	11	69-133/18
67-66-3	Chloroform	ND		200	208	104	236	118	13	74-126/17
95-49-8	o-Chlorotoluene	ND		200	194	97	205	103	6	72-127/20
106-43-4	p-Chlorotoluene	ND		200	187	94	199	100	6	68-127/18
56-23-5	Carbon tetrachloride	ND		200	198	99	220	110	11	71-133/19
75-34-3	1,1-Dichloroethane	ND		200	207	104	235	118	13	71-125/17
75-35-4	1,1-Dichloroethylene	ND		200	199	100	224	112	12	66-125/20
563-58-6	1,1-Dichloropropene	ND		200	206	103	229	115	11	75-124/18
96-12-8	1,2-Dibromo-3-chloropropane	ND		200	200	100	209	105	4	65-131/20
106-93-4	1,2-Dibromoethane	ND		200	210	105	225	113	7	75-135/17
107-06-2	1,2-Dichloroethane	ND		200	199	100	218	109	9	71-131/17
78-87-5	1,2-Dichloropropane	ND		200	200	100	222	111	10	78-124/16
142-28-9	1,3-Dichloropropane	ND		200	205	103	220	110	7	78-123/16
108-20-3	Di-Isopropyl ether	ND		200	208	104	235	118	12	68-129/17
594-20-7	2,2-Dichloropropane	ND		200	166	83	187	94	12	70-131/19
124-48-1	Dibromochloromethane	ND		200	156	78	172	86	10	76-132/16
75-71-8	Dichlorodifluoromethane	ND		200	183	92	188	94	3	32-168/28
156-59-2	cis-1,2-Dichloroethylene	ND		200	208	104	236	118	13	73-126/17
10061-01-5	cis-1,3-Dichloropropene	ND		200	186	93	208	104	11	72-130/16
541-73-1	m-Dichlorobenzene	ND		200	177	89	187	94	5	75-124/16
95-50-1	o-Dichlorobenzene	ND		200	183	92	192	96	5	76-124/16
106-46-7	p-Dichlorobenzene	ND		200	191	96	200	100	5	75-124/16
156-60-5	trans-1,2-Dichloroethylene	ND		200	210	105	240	120	13	71-126/18
10061-02-6	trans-1,3-Dichloropropene	ND		200	182	91	197	99	8	71-126/16
100-41-4	Ethylbenzene	394		200	581	94	631	119	8	76-126/17
637-92-3	Ethyl Tert Butyl Ether	ND		200	228	114	259	130	13	75-134/17
	•									

^{* =} Outside of Control Limits.

Page 2 of 3

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C27055

SGRPCAPH The Source Group Account:

T0600101592-9201 San Leandro Street, Oakland CA **Project:**

Sample	File ID	DF	Analyzed 04/10/13 04/10/13	By	Prep Date	Prep Batch	Analytical Batch
C27035-9MS	Q14151.D	10		PH	n/a	n/a	VQ560
C27035-9MSD	O14152.D	10		PH	n/a	n/a	VO560
C27035-9M5D	Q14140.D	10	04/10/13	PH	n/a	n/a	VQ560

The QC reported here applies to the following samples:

		C27035-9		Spike	MS	MS	MSD	MSD		Limits
CAS No.	Compound	ug/l	Q	ug/l	ug/l	%	ug/l	%	RPD	Rec/RPD
591-78-6	2-Hexanone	ND		800	945	118	1020	128	8	67-150/22
87-68-3	Hexachlorobutadiene	ND		200	182	91	197	99	8	69-135/20
98-82-8	Isopropylbenzene	27.0		200	213	93	231	102	8	61-125/17
99-87-6	p-Isopropyltoluene	2.1	J	200	187	92	200	99	7	68-127/18
108-10-1	4-Methyl-2-pentanone	19.2	J	800	877	107	967	118	10	71-142/21
74-83-9	Methyl bromide	ND	J	200	172	86	191	96	10	68-132/18
74-87-3	Methyl chloride	ND		200	267	134	204	102	27	39-150/28
74-95-3	Methylene bromide	ND		200	204	102	222	111	8	77-127/16
75-09-2	Methylene chloride	ND		200	201	101	229	115	13	67-128/18
78-93-3	Methyl ethyl ketone	ND		800	947	118	1080	135	13	56-155/23
1634-04-4	Methyl Tert Butyl Ether	ND		200	217	109	248	124	13	73-132/17
91-20-3	Naphthalene	166		200	389	112	411	123	6	70-136/20
103-65-1	n-Propylbenzene	63.9		200	244	90	259	98	6	71-127/17
100-42-5	Styrene	ND		200	215	108	233	117	8	72-134/16
994-05-8	Tert-Amyl Methyl Ether	ND		200	220	110	251	126	13	73-133/17
75-65-0	Tert-Butyl Alcohol	334		1000	1540	121	1820	149	17	60-149/26
630-20-6	1,1,1,2-Tetrachloroethane	ND		200	211	106	228	114	8	77-130/16
71-55-6	1, 1, 1-Trichloroethane	ND		200	218	109	249	125	13	74-128/19
79-34-5	1,1,2,2-Tetrachloroethane	ND		200	219	110	229	115	4	77-129/17
79-00-5	1,1,2-Trichloroethane	ND		200	206	103	220	110	7	77-125/16
87-61-6	1,2,3-Trichlorobenzene	ND		200	191	96	202	101	6	70-133/18
96-18-4	1,2,3-Trichloropropane	ND		200	183	92	200	100	9	69-126/18
120-82-1	1,2,4-Trichlorobenzene	ND		200	191	96	203	102	6	68-129/17
95-63-6	1,2,4-Trimethylbenzene	291		200	489	99	522	116	7	74-129/17
108-67-8	1,3,5-Trimethylbenzene	37.0		200	341	152* b	364	164* b	7	77-129/17
127-18-4	Tetrachloroethylene	ND		200	182	91	197	99	8	69-127/20
108-88-3	Toluene	649		200	822	87	888	120	8	75-122/17
79-01-6	Trichloroethylene	ND		200	196	98	218	109	11	78-123/17
75-69-4	Trichlorofluoromethane	ND		200	202	101	217	109	7	65-136/23
75-01-4	Vinyl chloride	ND		200	198	99	203	102	2	57-146/22
1330-20-7	Xylene (total)	547		600	1110	94	1200	109	8	77-125/17
	-									

CAS No.	Surrogate Recoveries	MS	MSD	C27035-9	Limits
1868-53-7	Dibromofluoromethane	111%	117%	102%	70-130%

^{* =} Outside of Control Limits.

4.1

Page 3 of 3

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C27055

Account: SGRPCAPH The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Sample C27035-9MS C27035-9MSD C27035-9	File ID Q14151.D Q14152.D Q14140.D	DF 10 10 10	Analyzed 04/10/13 04/10/13 04/10/13	By PH PH PH	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch VQ560 VQ560 VQ560

The QC reported here applies to the following samples:

CAS No.	Surrogate Recoveries	MS	MSD	C27035-9	Limits
2037-26-5	Toluene-D8	105%	103%	106%	70-130%
460-00-4	4-Bromofluorobenzene	105%	107%	103%	70-130%

⁽a) Outside control limits due to high level in sample relative to spike amount.

⁽b) Outside laboratory control limits.

^{* =} Outside of Control Limits.

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C27055

SGRPCAPH The Source Group Account:

Project: T0600101592-9201 San Leandro Street, Oakland CA

Sample C27055-3MS C27055-3MSD C27055-3	File ID V12210.D V12211.D V12208.D	DF 20 20 20	Analyzed 04/10/13 04/10/13 04/10/13	By TN TN TN	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch VV497 VV497 VV497
C2/033-3	V 12208.D	20	04/10/13	IN	II/ a	II/ a	V V 497

The QC reported here applies to the following samples:

C27055-1, C27055-2, C27055-3, C27055-4, C27055-5, C27055-6, C27055-7

CAGN		C27055-		Spike	MS	MS	MSD	MSD	DDD	Limits
CAS No.	Compound	ug/l	Q	ug/l	ug/l	%	ug/l	%	RPD	Rec/RPD
67-64-1	Acetone	ND		1600	1210	76	1180	74	3	38-159/24
71-43-2	Benzene	1030		400	1380	88	1450	105	5	77-122/16
108-86-1	Bromobenzene	ND		400	396	99	395	99	0	76-126/17
74-97-5	Bromochloromethane	ND		400	381	95	385	96	1	77-130/17
75-27-4	Bromodichloromethane	ND		400	396	99	384	96	3	75-127/16
75-25-2	Bromoform	ND		400	373	93	368	92	1	69-141/17
104-51-8	n-Butylbenzene	51.8		400	438	97	456	101	4	72-129/18
135-98-8	sec-Butylbenzene	11.5	J	400	397	96	406	99	2	74-128/18
98-06-6	tert-Butylbenzene	ND		400	556	139* a	577	144* a	4	73-127/18
108-90-7	Chlorobenzene	ND		400	377	94	385	96	2	77-122/16
75-00-3	Chloroethane	ND		400	379	95	382	96	1	69-133/18
67-66-3	Chloroform	ND		400	419	105	411	103	2	74-126/17
95-49-8	o-Chlorotoluene	ND		400	363	91	366	92	1	72-127/20
106-43-4	p-Chlorotoluene	ND		400	376	94	380	95	1	68-127/18
56-23-5	Carbon tetrachloride	ND		400	437	109	435	109	0	71-133/19
75-34-3	1,1-Dichloroethane	ND		400	421	105	414	104	2	71-125/17
75-35-4	1,1-Dichloroethylene	ND		400	400	100	402	101	0	66-125/20
563-58-6	1,1-Dichloropropene	ND		400	437	109	437	109	0	75-124/18
96-12-8	1,2-Dibromo-3-chloropropane	ND		400	356	89	357	89	0	65-131/20
106-93-4	1,2-Dibromoethane	ND		400	361	90	357	89	1	75-135/17
107-06-2	1,2-Dichloroethane	ND		400	395	99	377	94	5	71-131/17
78-87-5	1,2-Dichloropropane	ND		400	408	102	406	102	0	78-124/16
142-28-9	1,3-Dichloropropane	ND		400	370	93	367	92	1	78-123/16
108-20-3	Di-Isopropyl ether	ND		400	399	100	390	98	2	68-129/17
594-20-7	2,2-Dichloropropane	ND		400	310	78	301	75	3	70-131/19
124-48-1	Dibromochloromethane	ND		400	362	91	363	91	0	76-132/16
75-71-8	Dichlorodifluoromethane	ND		400	457	114	419	105	9	32-168/28
156-59-2	cis-1,2-Dichloroethylene	ND		400	409	102	408	102	0	73-126/17
10061-01-5	cis-1,3-Dichloropropene	ND		400	380	95	378	95	1	72-130/16
541-73-1	m-Dichlorobenzene	ND		400	373	93	377	94	1	75-124/16
95-50-1	o-Dichlorobenzene	ND		400	364	91	363	91	0	76-124/16
106-46-7	p-Dichlorobenzene	ND		400	398	100	399	100	0	75-124/16
156-60-5	trans-1,2-Dichloroethylene	ND		400	423	106	423	106	0	71-126/18
10061-02-6	trans-1,3-Dichloropropene	ND		400	330	83	330	83	0	71-126/16
100-41-4	Ethylbenzene	152		400	558	102	576	106	3	76-126/17
637-92-3	Ethyl Tert Butyl Ether	ND		400	435	109	431	108	1	75-134/17

^{* =} Outside of Control Limits.

Page 2 of 3

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C27055

Account: SGRPCAPH The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Sample C27055-3MS C27055-3MSD C27055-3	File ID V12210.D V12211.D V12208.D	DF 20 20 20	Analyzed 04/10/13 04/10/13 04/10/13	By TN TN TN	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch VV497 VV497 VV497
C2/033-3	V 12208.D	20	04/10/13	IN	II/ a	II/ a	V V 497

The QC reported here applies to the following samples:

C27055-1, C27055-2, C27055-3, C27055-4, C27055-5, C27055-6, C27055-7

		C27055-3		Spike	MS MS		MSD MSI			Limits
CAS No.	Compound	ug/l	Q	ug/l	ug/l	%	ug/l	%	RPD	Rec/RPD
591-78-6	2-Hexanone	ND		1600	1340	84	1310	82	2	67-150/22
87-68-3	Hexachlorobutadiene	ND		400	400	100	415	104	4	69-135/20
98-82-8	Isopropylbenzene	39.8		400	431	98	439	100	2	61-125/17
99-87-6	p-Isopropyltoluene	6.1	J	400	383	94	391	96	2	68-127/18
108-10-1	4-Methyl-2-pentanone	ND	_	1600	1440	90	1420	89	1	71-142/21
74-83-9	Methyl bromide	ND		400	378	95	381	95	1	68-132/18
74-87-3	Methyl chloride	ND		400	402	101	376	94	7	39-150/28
74-95-3	Methylene bromide	ND		400	388	97	374	94	4	77-127/16
75-09-2	Methylene chloride	ND		400	390	98	389	97	0	67-128/18
78-93-3	Methyl ethyl ketone	ND		1600	1310	82	1280	80	2	56-155/23
1634-04-4	Methyl Tert Butyl Ether	ND		400	393	98	387	97	2	73-132/17
91-20-3	Naphthalene	90.4	J	400	480	97	478	97	0	70-136/20
103-65-1	n-Propylbenzene	97.7		400	469	93	481	96	3	71-127/17
100-42-5	Styrene	ND		400	413	103	413	103	0	72-134/16
994-05-8	Tert-Amyl Methyl Ether	ND		400	401	100	394	99	2	73-133/17
75-65-0	Tert-Butyl Alcohol	ND		2000	1820	91	1780	89	2	60-149/26
630-20-6	1,1,1,2-Tetrachloroethane	ND		400	410	103	417	104	2	77-130/16
71-55-6	1,1,1-Trichloroethane	ND		400	436	109	438	110	0	74-128/19
79-34-5	1,1,2,2-Tetrachloroethane	ND		400	367	92	354	89	4	77-129/17
79-00-5	1,1,2-Trichloroethane	ND		400	379	95	377	94	1	77-125/16
87-61-6	1,2,3-Trichlorobenzene	ND		400	393	98	397	99	1	70-133/18
96-18-4	1,2,3-Trichloropropane	ND		400	333	83	325	81	2	69-126/18
120-82-1	1,2,4-Trichlorobenzene	ND		400	383	96	393	98	3	68-129/17
95-63-6	1,2,4-Trimethylbenzene	760		400	1120	90	1190	108	6	74-129/17
108-67-8	1,3,5-Trimethylbenzene	186		400	627	110	656	118	5	77-129/17
127-18-4	Tetrachloroethylene	ND		400	403	101	410	103	2	69-127/20
108-88-3	Toluene	547		400	932	96	984	109	5	75-122/17
79-01-6	Trichloroethylene	ND		400	419	105	414	104	1	78-123/17
75-69-4	Trichlorofluoromethane	ND		400	428	107	431	108	1	65-136/23
75-01-4	Vinyl chloride	ND		400	476	119	470	118	1	57-146/22
1330-20-7	Xylene (total)	374		1200	1570	100	1600	102	2	77-125/17

CAS No.	Surrogate Recoveries	MS	MSD	C27055-3	Limits
1868-53-7	Dibromofluoromethane	100%	99%	101%	70-130%

^{* =} Outside of Control Limits.

.4.2

Page 3 of 3

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C27055

Account: SGRPCAPH The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C27055-3MS	V12210.D	20	04/10/13	TN	n/a	n/a	VV497
C27055-3MSD	V12211.D	20	04/10/13	TN	n/a	n/a	VV497
C27055-3	V12208.D	20	04/10/13	TN	n/a	n/a	VV497

The QC reported here applies to the following samples:

C27055-1, C27055-2, C27055-3, C27055-4, C27055-5, C27055-6, C27055-7

CAS No.	Surrogate Recoveries	MS	MSD	C27055-3	Limits
2037-26-5	Toluene-D8	103%	103%	103%	70-130%
460-00-4	4-Bromofluorobenzene	102%	100%	102%	70-130%

(a) Outside laboratory control limits.

^{* =} Outside of Control Limits.

5.4.3

Page 1 of 1

Method: SW846 8260B

C

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C27055

Account: SGRPCAPH The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C27055-15MS	Q14173.D	10	04/10/13	PH	n/a	n/a	VQ561
C27055-15MSD	Q14174.D	10	04/10/13	PH	n/a	n/a	VQ561
C27055-15	Q14172.D	10	04/10/13	PH	n/a	n/a	VQ561

The QC reported here applies to the following samples:

C27055-15

CAS No.	Compound	C27055-15 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	707	200	885	89	885	89	0	77-122/16
CAS No.	Surrogate Recoveries	MS	MSD	C27	055-15	Limits			
1868-53-7	Dibromofluoromethane	102%	103%	103	%	70-130%	, D		
2037-26-5	Toluene-D8	107%	106%	106	%	70-130%	, D		
460-00-4	4-Bromofluorobenzene	106%	107%	101	%	70-130%	, D		

^{* =} Outside of Control Limits.

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C27055

SGRPCAPH The Source Group Account:

Project: T0600101592-9201 San Leandro Street, Oakland CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C27100-2MS	R16116.D	1	04/10/13	BD	n/a	n/a	VR582
C27100-2MSD	R16117.D	1	04/10/13	BD	n/a	n/a	VR582
C27100-2	R16100.D	1	04/10/13	BD	n/a	n/a	VR582

The QC reported here applies to the following samples:

			-2	Spike	MS	MS	MSD	MSD		Limits
CAS No.	Compound	ug/l	Q	ug/l	ug/l	%	ug/l	%	RPD	Rec/RPD
67.64.1	A	ND		90	66.2	92	66.0	0.4	1	20 150/24
67-64-1	Acetone	ND		80	66.2	83	66.8	84	1	38-159/24
71-43-2	Benzene	ND		20	18.5	93	18.5	93	0	77-122/16
108-86-1	Bromobenzene	ND		20	19.8	99	20.1	101	2	76-126/17
74-97-5	Bromochloromethane	ND		20	18.2	91	18.2	91	0	77-130/17
75-27-4	Bromodichloromethane	ND		20	19.5	98	19.6	98	1	75-127/16
75-25-2	Bromoform	ND		20	16.8	84	17.1	86	2	69-141/17
104-51-8	n-Butylbenzene	ND		20	19.0	95	19.2	96	1	72-129/18
135-98-8	sec-Butylbenzene	ND		20	19.9	100	20.1	101	1	74-128/18
98-06-6	tert-Butylbenzene	ND	_	20	19.9	100	20.0	100	1	73-127/18
108-90-7	Chlorobenzene	0.77	J	20	19.9	96	20.1	97	1	77-122/16
75-00-3	Chloroethane	ND		20	18.4	92	18.1	91	2	69-133/18
67-66-3	Chloroform	ND		20	18.5	93	18.6	93	1	74-126/17
95-49-8	o-Chlorotoluene	ND		20	19.1	96	19.4	97	2	72-127/20
106-43-4	p-Chlorotoluene	ND		20	19.7	99	19.7	99	0	68-127/18
56-23-5	Carbon tetrachloride	ND		20	20.4	102	20.5	103	0	71-133/19
75-34-3	1,1-Dichloroethane	1.2		20	18.8	88	18.6	87	1	71-125/17
75-35-4	1,1-Dichloroethylene	ND		20	17.7	89	17.5	88	1	66-125/20
563-58-6	1,1-Dichloropropene	ND		20	19.3	97	19.3	97	0	75-124/18
96-12-8	1,2-Dibromo-3-chloropropane	ND		20	16.8	84	17.4	87	4	65-131/20
106-93-4	1,2-Dibromoethane	ND		20	18.9	95	19.2	96	2	75-135/17
107-06-2	1,2-Dichloroethane	ND		20	18.4	92	18.6	93	1	71-131/17
78-87-5	1,2-Dichloropropane	ND		20	18.6	93	18.7	94	1	78-124/16
142-28-9	1,3-Dichloropropane	ND		20	18.1	91	18.4	92	2	78-123/16
108-20-3	Di-Isopropyl ether	ND		20	17.8	89	17.8	89	0	68-129/17
594-20-7	2,2-Dichloropropane	ND		20	18.5	93	18.3	92	1	70-131/19
124-48-1	Dibromochloromethane	ND		20	19.2	96	19.5	98	2	76-132/16
75-71-8	Dichlorodifluoromethane	ND		20	20.3	102	20.3	102	0	32-168/28
156-59-2	cis-1,2-Dichloroethylene	1.7		20	19.1	87	19.0	87	1	73-126/17
10061-01-5	·	ND		20	18.5	93	18.7	94	1	72-130/16
541-73-1	m-Dichlorobenzene	ND		20	19.5	98	19.6	98	1	75-124/16
95-50-1	o-Dichlorobenzene	ND		20	19.3	97	19.5	98	1	76-124/16
106-46-7	p-Dichlorobenzene	1.7		20	20.6	95	20.8	96	1	75-124/16
156-60-5	trans-1,2-Dichloroethylene	ND		20	17.7	89	17.6	88	1	71-126/18
10061-02-6		ND		20	18.5	93	18.8	94	2	71-126/16
100-41-4	Ethylbenzene	ND		20	19.8	99	20.0	100	1	76-126/17
637-92-3	Ethyl Tert Butyl Ether	ND		20	19.1	96	19.2	96	1	75-134/17
031-72-3	Early I felt Butyl Eulei	TID		20	17.1	70	17.2	70	1	75-15-717

^{* =} Outside of Control Limits.

Page 2 of 3

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C27055

Account: SGRPCAPH The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C27100-2MS	R16116.D	1	04/10/13	BD	n/a	n/a	VR582
C27100-2MSD	R16117.D	1	04/10/13	BD	n/a	n/a	VR582
C27100-2	R16100.D	1	04/10/13	BD	n/a	n/a	VR582

The QC reported here applies to the following samples:

CACN	G 1	C27100		Spike	MS	MS	MSD	MSD	DDD	Limits
CAS No.	Compound	ug/l	Q	ug/l	ug/l	%	ug/l	%	RPD	Rec/RPD
591-78-6	2-Hexanone	ND		80	74.0	93	74.9	94	1	67-150/22
87-68-3	Hexachlorobutadiene	ND		20	19.6	98	20.3	102	4	69-135/20
98-82-8	Isopropylbenzene	ND		20	20.2	101	20.4	102	1	61-125/17
99-87-6	p-Isopropyltoluene	ND		20	20.0	100	20.2	101	1	68-127/18
108-10-1	4-Methyl-2-pentanone	ND		80	73.7	92	75.1	94	2	71-142/21
74-83-9	Methyl bromide	ND		20	18.5	93	18.4	92	1	68-132/18
74-87-3	Methyl chloride	ND		20	16.5	83	16.4	82	1	39-150/28
74-95-3	Methylene bromide	ND		20	18.8	94	19.1	96	2	77-127/16
75-09-2	Methylene chloride	ND		20	16.4	82	16.3	82	1	67-128/18
78-93-3	Methyl ethyl ketone	ND		80	70.8	89	71.1	89	0	56-155/23
1634-04-4	Methyl Tert Butyl Ether	ND		20	19.2	96	19.5	98	2	73-132/17
91-20-3	Naphthalene	ND		20	18.6	93	19.5	98	5	70-136/20
103-65-1	n-Propylbenzene	ND		20	20.1	101	20.2	101	0	71-127/17
100-42-5	Styrene	ND		20	17.7	89	17.9	90	1	72-134/16
994-05-8	Tert-Amyl Methyl Ether	ND		20	20.0	100	20.2	101	1	73-133/17
75-65-0	Tert-Butyl Alcohol	4.0	J	100	118	114	118	114	0	60-149/26
630-20-6	1,1,1,2-Tetrachloroethane	ND		20	20.2	101	20.5	103	1	77-130/16
71-55-6	1,1,1-Trichloroethane	ND		20	19.7	99	19.7	99	0	74-128/19
79-34-5	1,1,2,2-Tetrachloroethane	ND		20	18.2	91	18.4	92	1	77-129/17
79-00-5	1,1,2-Trichloroethane	ND		20	18.1	91	18.4	92	2	77-125/16
87-61-6	1,2,3-Trichlorobenzene	ND		20	18.3	92	19.5	98	6	70-133/18
96-18-4	1,2,3-Trichloropropane	ND		20	18.1	91	18.4	92	2	69-126/18
120-82-1	1,2,4-Trichlorobenzene	ND		20	19.0	95	19.6	98	3	68-129/17
95-63-6	1,2,4-Trimethylbenzene	ND		20	18.7	94	18.8	94	1	74-129/17
108-67-8	1,3,5-Trimethylbenzene	ND		20	19.9	100	20.2	101	1	77-129/17
127-18-4	Tetrachloroethylene	1.2		20	21.2	100	21.3	101	0	69-127/20
108-88-3	Toluene	ND		20	19.2	96	19.4	97	1	75-122/17
79-01-6	Trichloroethylene	2.3		20	21.6	97	21.8	98	1	78-123/17
75-69-4	Trichlorofluoromethane	ND		20	19.2	96	19.3	97	1	65-136/23
75-01-4	Vinyl chloride	ND		20	19.1	96	18.7	94	2	57-146/22
1330-20-7	Xylene (total)	ND		60	58.6	98	58.9	98	1	77-125/17

CAS No.	Surrogate Recoveries	MS	MSD	C27100-2	Limits
1868-53-7	Dibromofluoromethane	95%	96%	93%	70-130%

^{* =} Outside of Control Limits.

.4.4

Page 3 of 3

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C27055

Account: SGRPCAPH The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C27100-2MS	R16116.D	1	04/10/13	BD	n/a	n/a	VR582
C27100-2MSD	R16117.D	1	04/10/13	BD	n/a	n/a	VR582
C27100-2	R16100.D	1	04/10/13	BD	n/a	n/a	VR582

The QC reported here applies to the following samples:

C27055-8, C27055-9, C27055-10, C27055-17, C27055-18, C27055-19

CAS No.	Surrogate Recoveries	MS	MSD	C27100-2	Limits
2037-26-5	Toluene-D8	98%	99%	100%	70-130%
460-00-4	4-Bromofluorobenzene	98%	99%	97%	70-130%

Ç

^{* =} Outside of Control Limits.

GC Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- · Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method: SW846 8015B M

Method Blank Summary

Job Number: C27055

630-01-3

Hexacosane

Account: SGRPCAPH The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Sample OP7779-MB	File ID GG42177.D	DF 1	Analyzed 04/08/13	By MT	Prep Date 04/08/13	Prep Batch OP7779	Analytical Batch GGG1125

The QC reported here applies to the following samples:

C27055-1, C27055-2, C27055-3, C27055-4, C27055-5, C27055-6, C27055-7, C27055-8, C27055-9, C27055-10, C27055-11, C27055-12, C27055-13, C27055-14, C27055-15, C27055-16, C27055-17, C27055-18

32-124%

CAS No.	Compound	Result	RL	MDL	Units Q
	TPH (Diesel) TPH (Motor Oil)	ND ND	0.10 0.20	0.050 0.10	mg/l mg/l
CAS No.	Surrogate Recoveries		Limit	s	

69%

Method: SW846 8015B M

Blank Spike/Blank Spike Duplicate Summary

Job Number: C27055

Account: SGRPCAPH The Source Group

Project: T0600101592-9201 San Leandro Street, Oakland CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP7779-BS	GG42178.D	1	04/08/13	MT	04/08/13	OP7779	GGG1125
OP7779-BSD	GG42179.D	1	04/08/13	MT	04/08/13	OP7779	GGG1125

The QC reported here applies to the following samples:

C27055-1, C27055-2, C27055-3, C27055-4, C27055-5, C27055-6, C27055-7, C27055-8, C27055-9, C27055-10, C27055-11, C27055-12, C27055-13, C27055-14, C27055-15, C27055-16, C27055-17, C27055-18

CAS No.	Compound	Spike mg/l	BSP mg/l	BSP %	BSD mg/l	BSD %	RPD	Limits Rec/RPD
	TPH (Diesel)	1	0.711	71	0.666	67	7	38-115/22
	TPH (Motor Oil)	1	0.749	75	0.707	71	6	45-114/20

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
630-01-3	Hexacosane	79%	76%	32-124%

^{* =} Outside of Control Limits.

APPENDIX I PARTICLE SIZE DISTRIBUTION ANALYSIS

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-48500-2 Client Project/Site: Paco Pumps

For:

The Source Group 3478 Buskirk Avenue, Suite 100 Pleasant Hill, California 94523

Attn: Mr. Paisha Jorgensen

Asansf Sal

Authorized for release by: 5/9/2013 3:01:32 PM

Afsaneh Salimpour, Project Manager I afsaneh.salimpour@testamericainc.com

LINKS

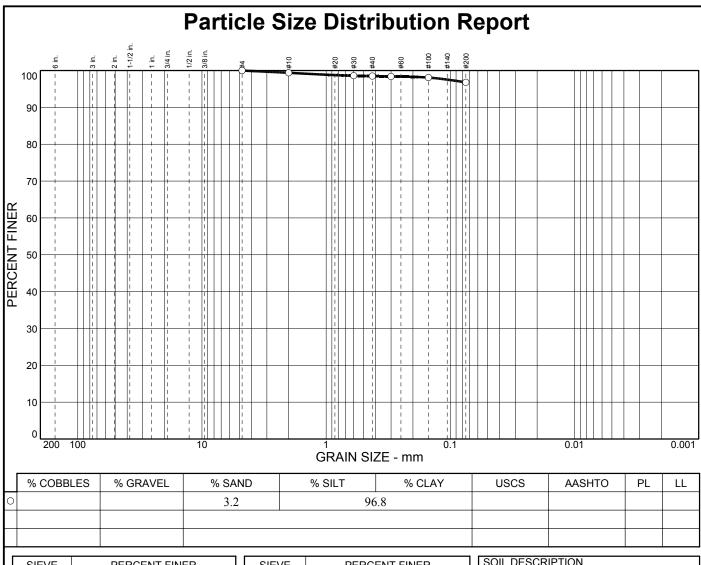
Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.


Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: The Source Group Project/Site: Paco Pumps

TestAmerica Job ID: 720-48500-2

Table of Contents

Cover Page	1
Table of Contents	2
Subcontract Data	3
Chain of Custody	4
Receipt Checklists	5

SIEVE	PERCENT FINER					
inches size	0					
	(L GRAIN SIZE				
D ₆₀						
1						
D ₃₀						
D ₁₀						
	COEFFICIENTS					
C _C						
C _c						
- C C	O Source: SV 7 5 5 (720 49500 20)					

SIEVE	PERCENT FINER				
number size	0				
	100.0 99.4 98.6 98.5 98.4 98.1 96.8				

SOIL DESCRIPTION
O Dark Gray CLAY

REMARKS:

O Source: SV-7-5.5 (720-48500-20)

COOPER TESTING LABORATORY

Client: Test America

Project: Paco Pumps - 72009158

Project No.: 634-075

Figure

Salimpour, Afsaneh

From: Paisha Jorgensen [pjorgensen@thesourcegroup.net]

Sent: Tuesday, April 23, 2013 12:26 PM

Salimpour, Afsaneh To:

Subject: Re: Paco Pumps, Job ID 720-48500-1

OK, let's just do the sieve analysis.

Thanks.

From: "Salimpour, Afsaneh" < Afsaneh.Salimpour@testamericainc.com >

Date: Tuesday, April 23, 2013 12:22 PM

To: Paisha Jorgensen <pjorgensen@thesourcegroup.net>

Subject: RE: Paco Pumps, Job ID 720-48500-1

Hi Paosha.

I checked with our sub lab and they said they can not do Total porosity and bulk density on disturbed sample.

720-48500-2

From: Paisha Jorgensen [mailto:pjorgensen@thesourcegroup.net]

Sent: Friday, April 19, 2013 6:36 AM

To: Salimpour, Afsaneh

Subject: Paco Pumps, Job ID 720-48500-1

Afsaneh,

We would like sample ID SV-7-5.5 (corresponding to Lab Sample ID 720-48500-20) to be analyzed for the following physical properties:

Total porosity **Bulk density** Sieve analysis

We understand that the sample has been disturbed, which may affect sample results.

Thank you,

Paisha Jorgensen, P.G. Project Geologist pjorgensen@thesourcegroup.net

The Source Group, Inc.

Environmental Engineering, Hydrogeologic & Management Services 3478 Buskirk Avenue, Suite 100 Pleasant Hill, CA 94523 510.847.9217 mobile 925.944.2856 ext. 380 www.thesourcegroup.net?

720-48500 Chain of Custody

The materials transmitted by this electronic mail are confidential, are only for the use of the intended recipient, and may also be subject to applicable privileges. Any dissemination, distribution, or copying of this communication is strictly prohibited. If you have received this communication in error, please immediately notify the sender. Please also remove this message from your hard drive, diskette, and any other storage device.

Reduce, Reuse, Recycle.

Login Sample Receipt Checklist

Client: The Source Group Job Number: 720-48500-2

List Source: TestAmerica Pleasanton

Login Number: 48500 List Number: 1

Creator: Bullock, Tracy

Steator. Bullock, fracy		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6 mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

APPENDIX J JOHNSON AND ETTINGER MODEL

DATA ENTRY SHEET

DTSC

Vapor Intrusion Guidance

SG-SCREEN	ı
A Version 2.0;	04/

++£ £{ "+3♂«c£

	Soil (Gas Concentration	n Data	Interim Final 12/04
ENTER	ENTER		ENTER	(last modified 2/4/09)
	Soil		Soil	
Chemical	gas	OR	gas	
CAS No.	conc.,		conc.,	
(numbers only,	C_g		C_g	
no dashes)	(μg/m³)		(ppmv)	Chemical
71432	2.30E+04			Benzene

ENTER Depth	ENTER	ENTER	ENTER		ENTER
below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	Soil gas sampling depth below grade, L _s (cm)	Average soil temperature, T _s (°C)	Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	User-defined vadose zone soil vapor permeability, k_v (cm^2)
15	167.6	24			1.00E-08

MORE **↓**

ENTER	ENTER	ENTER	ENTER
Vandose zone	Vadose zone	Vadose zone	Vadose zone
SCS	soil dry	soil total	soil water-filled
soil type	bulk density,	porosity,	porosity,
b{{[«f [Kc]	ρ_b^A	n^V	$\theta_{\mathbf{w}}^{\ \ V}$
♂dk+£+	(g/cm ³)	(unitless)	(cm ³ /cm ³)
С	1.53	0.428	0.387

ENTER

Average vapor flow rate into bldg. (Leave blank to calculate)

Q_{soil}
(L/m)

5

ENTER Averaging	ENTER Averaging	ENTER	ENTER
time for carcinogens, AT _C (yrs)	time for noncarcinogens, AT _{NC} (yrs)	Exposure duration, ED (yrs)	Exposure frequency, EF (days/yr)
70	25	25	250

INTERMEDIATE CALCULATIONS SHEET

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, θ_a^V (cm³/cm³)	Vadose zone effective total fluid saturation, S _{te} (cm³/cm³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm²)	Vadose zone soil effective vapor permeability, k _v (cm²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (µg/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
152.6	0.041	#N/A	#N/A	#N/A	1.00E-08	4,000	2.30E+04	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Delta H_{\text{v,TS}}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μτs (g/cm-s)	Vadose zone effective diffusion coefficient, Deff v (cm²/s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	7,977	5.29E-03	2.17E-01	1.80E-04	2.20E-05	152.6
Convection path length,	Source vapor conc., C _{source} (µg/m³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m³)
15	2.30E+04	1.25	8.33E+01	2.20E-05	5.00E+03	#NUM!	4.24E-06	9.76E-02

Unit
risk Reference
factor, conc.,
URF RfC
(µg/m³).1 (mg/m³)

2.9E-05 3.0E-02

END

DTSC / HERD Last Update: 11/1/03

DATA ENTRY SHEET

SG-SCRE	EN
PA Version 2.0	0; 04/

DTSC

Vapor Intrusion Guidance

++£ £{ "+3♂«c£

_	Soil G	Sas Concentration	on Data	Interim Final 12/04
ENTER	ENTER		ENTER	(last modified 2/4/09)
	Soil		Soil	
Chemical	gas	OR	gas	
CAS No.	conc.,		conc.,	
(numbers only,	C_g		C_{g}	
no dashes)	(μg/m³)		(ppmv)	Chemical
100414	5.20E+03			Ethylbenzene

MORE **↓**

ENTER Depth	ENTER	ENTER	ENTER		ENTER
below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	Soil gas sampling depth below grade, L _s (cm)	Average soil temperature, T _s (°C)	Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	User-defined vadose zone soil vapor permeability, k_v (cm^2)
15	167.6	24			1.00E-08

MORE ↓

ENTER	ENTER	ENTER	ENTER
Vandose zone	Vadose zone	Vadose zone	Vadose zone
SCS	soil dry	soil total	soil water-filled
soil type	bulk density,	porosity,	porosity,
b{{[«f [Kc]	ρ_b^A	n^V	$\theta_{\mathbf{w}}^{\ \ V}$
♂dk+£+	(g/cm ³)	(unitless)	(cm ³ /cm ³)
С	1.53	0.428	0.387

ENTER

Average vapor flow rate into bldg. (Leave blank to calculate)

Q_{soil}
(L/m)

5

ENTER	ENTER	ENTER	ENTER
Averaging time for carcinogens, AT _C	Averaging time for noncarcinogens, AT _{NC}	Exposure duration, ED	Exposure frequency, EF
(yrs)	(yrs)	(yrs)	(days/yr)
70	25	25	250

INTERMEDIATE CALCULATIONS SHEET

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, $\theta_a^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Vadose zone effective total fluid saturation, S _{te} (cm³/cm³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm²)	Vadose zone soil effective vapor permeability, k _v (cm²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (µg/m³)	Bldg. ventilation rate, Q _{building} (cm³/s)
152.6	0.041	#N/A	#N/A	#N/A	1.00E-08	4,000	5.20E+03	3.39E+04
152.6	0.041	#IN/A	#IN/A	#IN/A	1.00E-06	4,000	5.20E+03	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µTS (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} _V (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	9,994	7.43E-03	3.05E-01	1.80E-04	1.58E-05	152.6
Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm²/s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ¹) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m³)
15	5.20E+03	1.25	8.33E+01	1.58E-05	5.00E+03	#NUM!	3.04E-06	1.58E-02

Unit
risk Reference
factor, conc.,
URF RfC
(µg/m³)-1 (mg/m³)

2.5E-06 1.0E+00

DATA ENTRY SHEET

SG-SCREEN
A Version 2.0; 04/

)	
++£	£{	"+3♂«c£	

DTSC

Vapor Intrusion Guidance Interim Final 12/04

	Soil	Gas Concentration	n Data	Interim Final 12/04
ENTER	ENTER		ENTER	(last modified 2/4/09)
	Soil		Soil	
Chemical	gas	OR	gas	
CAS No.	conc.,		conc.,	
(numbers only,	C_g		C_g	
no dashes)	(μg/m³)	_	(ppmv)	Chemical
		_		
71432	2.40E+03	1		Benzene

MODE
WORE
.
•

ENTER Depth	ENTER	ENTER	ENTER		ENTER
below grade	Soil gas		Vadose zone		User-defined
to bottom	sampling	Average	SCS		vadose zone
of enclosed	depth	soil	soil type		soil vapor
space floor,	below grade,	temperature,	(used to estimate	OR	permeability,
L _F	Ls	Ts	soil vapor		k _v
(15 or 200 cm)	(cm)	(°C)	permeability)		(cm ²)
15	167.6	24			1.00E-08

	MORE
	$\mathbf{\Psi}$
_	

ENTER	ENTER	ENTER	ENTER
Vandose zone	Vadose zone	Vadose zone	Vadose zone
SCS	soil dry	soil total	soil water-filled
soil type	bulk density,	porosity,	porosity,
b{{[«f [Kc]]	ρ_b^A	n^V	$\theta_{\mathbf{w}}^{\ \ \ \ \ \ \ \ \ \ \ \ }$
∂∂k+£+	(g/cm ³)	(unitless)	(cm ³ /cm ³)
С	1.53	0.428	0.387

ENTER

Average vapor flow rate into bldg. (Leave blank to calculate) \mathbf{Q}_{soil} (L/m)

ENTER Averaging	ENTER Averaging	ENTER	ENTER
time for carcinogens, AT _C (yrs)	time for noncarcinogens, AT _{NC} (yrs)	Exposure duration, ED (yrs)	Exposure frequency, EF (days/yr)
			T
70	25	25	250

INTERMEDIATE CALCULATIONS SHEET

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, $\theta_a^{\ V}$ (cm³/cm³)	Vadose zone effective total fluid saturation, S _{te} (cm³/cm³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm²)	Vadose zone soil effective vapor permeability, k _v (cm²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (µg/m³)	Bldg. ventilation rate, Q _{building} (cm³/s)
152.6	0.041	#N/A	#N/A	#N/A	1.00E-08	4,000	2.40E+03	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature,	Vadose zone effective diffusion coefficient, D ^{eff} _V (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	7,977	5.29E-03	2.17E-01	1.80E-04	2.20E-05	152.6
Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm³/s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m³)
15	2.40E+03	1.25	8.33E+01	2.20E-05	5.00E+03	#NUM!	4.24E-06	1.02E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(μg/m³) ⁻¹	(mg/m³)

2.9E-05 3.0E-02

END

DTSC / HERD Last Update: 11/1/03

DATA ENTRY SHEET

DTSC

SG-SCREEN
PA Version 2.0; 04/

++£ £{ "+3♂«c£

	Soil	Gas Concentration	on Data	Vapor Intrusion Guidance Interim Final 12/04
ENTER	ENTER Soil		ENTER Soil	(last modified 2/4/09)
Chemical CAS No. (numbers only,	gas conc., C _q	OR	gas conc., C _a	
no dashes)	(μg/m³)	1	(ppmv)	Chemical
100414	1.40E+02]		Ethylbenzene

ENTER Depth	ENTER	ENTER	ENTER		ENTER
below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	Soil gas sampling depth below grade, L _s (cm)	Average soil temperature, T _S (°C)	Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	User-defined vadose zone soil vapor permeability, k_v (cm^2)
15	167.6	24			1.00E-08

MORE **↓**

ENTER	ENTER	ENTER	ENTER
Vandose zone	Vadose zone	Vadose zone	Vadose zone
SCS	soil dry	soil total	soil water-filled
soil type	bulk density,	porosity,	porosity,
b{{[«f [Kc]	ρ_b^A	n^V	$\theta_{\mathbf{w}}^{\ \ V}$
♂dk+£+	(g/cm ³)	(unitless)	(cm ³ /cm ³)
С	1.53	0.428	0.387

ENTER

Average vapor flow rate into bldg. (Leave blank to calculate)
Q_{soil}
(L/m)

ENTER Averaging	ENTER Averaging	ENTER	ENTER
time for carcinogens, AT _C (yrs)	time for noncarcinogens, AT _{NC} (yrs)	Exposure duration, ED (yrs)	Exposure frequency, EF (days/yr)
			T
70	25	25	250

INTERMEDIATE CALCULATIONS SHEET

Source-building separation, L_T (cm)	$\begin{tabular}{ll} Vadose zone & soil & \\ air-filled & porosity, & \\ \theta_a^{\ \ V} & \\ (cm^3/cm^3) & \\ \end{tabular}$	Vadose zone effective total fluid saturation, S _{te} (cm³/cm³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (µg/m³)	Bldg. ventilation rate, Q _{building} (cm³/s)
152.6	0.041	#N/A	#N/A	#N/A	1.00E-08	4,000	1.40E+02	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature,	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	9,994	7.43E-03	3.05E-01	1.80E-04	1.58E-05	152.6
Convection path length,	Source vapor conc., C _{source} (µg/m³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m³)
15	1.40E+02	1.25	8.33E+01	1.58E-05	5.00E+03	#NUM!	3.04E-06	4.26E-04

Unit risk Reference factor, conc., URF RfC $(\mu g/m^3)^{-1}$ (mg/m^3)

2.5E-06 1.0E+00

END

DTSC / HERD Last Update: 11/1/03

DATA ENTRY SHEET

DTSC

SG-SCREEN
PA Version 2.0; 04

++£ £{ "+3♂«c£

	Soil Gas Concentration Data			Vapor Intrusion Guidance Interim Final 12/04
ENTER	ENTER Soil		ENTER Soil	(last modified 2/4/09)
Chemical CAS No. (numbers only,	gas conc., C _g	OR	gas conc., C _g	
no dashes)	(μg/m³)		(ppmv)	Chemical
71432	5.60E+05			Benzene

MORE
1110111
•

ENTER Depth	ENTER	ENTER	ENTER		ENTER
below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	Soil gas sampling depth below grade, L _s (cm)	Average soil temperature, T _S (°C)	Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	User-defined vadose zone soil vapor permeability, k _v (cm²)
15	167.6	24			1.00E-08

MORE	1
Ψ.	
	_

ENTER	ENTER	ENTER	ENTER
Vandose zone	Vadose zone	Vadose zone	Vadose zone
SCS	soil dry	soil total	soil water-filled
soil type	bulk density,	porosity,	porosity,
b{{[«f [Kc]]	ρ_b^A	n^V	$\theta_{\mathbf{w}}^{\ \ V}$
ੀ∂'k+£+	(g/cm ³)	(unitless)	(cm ³ /cm ³)
С	1.53	0.428	0.387

Average vapor flow rate into bldg. (Leave blank to calculate)
Q_{soil} (L/m)

ENTER Averaging	ENTER Averaging	ENTER	ENTER
time for carcinogens, AT _C (yrs)	time for noncarcinogens, AT _{NC} (yrs)	Exposure duration, ED (yrs)	Exposure frequency, EF (days/yr)
70	25	25	250

INTERMEDIATE CALCULATIONS SHEET

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, $\theta_a^{\ V}$ (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm³/cm³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm²)	Vadose zone soil effective vapor permeability, k _v (cm²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (µg/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
152.6	0.041	#N/A	#N/A	#N/A	1.00E-08	4,000	5.60E+05	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H_{TS} (atm-m³/mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µтs (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} _V (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	7,977	5.29E-03	2.17E-01	1.80E-04	2.20E-05	152.6
Convection path length,	Source vapor conc., C _{source} (µg/m³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m³)
15	5.60E+05	1.25	8.33E+01	2.20E-05	5.00E+03	#NUM!	4.24E-06	2.38E+00

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(μg/m³) ⁻¹	(mg/m³)

2.9E-05 3.0E-02

END

DTSC / HERD Last Update: 11/1/03

DATA ENTRY SHEET

DTSC

SG-SCREEN
PA Version 2.0; 04/

++£ £{ "+3♂«c£

					Vapor Intrusion Guidance
	_	Soil C	Gas Concentration	ı Data	Interim Final 12/04
	ENTER	ENTER		ENTER	(last modified 2/4/09)
		Soil		Soil	
	Chemical	gas	OR	gas	
	CAS No.	conc.,		conc.,	
	(numbers only,	C_q		C _q	
_	no dashes)	(μg/m³)		(ppmv)	Chemical
-			•		
	100414	4.50E+04	Г		Ethylbenzene

ENTER Depth	ENTER	ENTER	ENTER		ENTER	
below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	Soil gas sampling depth below grade, L _s (cm)	Average soil temperature, T _S (°C)	Vadose zone SCS soil type (used to estimate OR soil vapor permeability)		User-defined vadose zone soil vapor permeability, k _v (cm²)	
15	167.6	24			1.00E-08	

MORE **↓**

ENTER	ENTER	ENTER	ENTER	
Vandose zone	Vadose zone	Vadose zone	Vadose zone	
SCS	soil dry	soil total	soil water-filled	
soil type	bulk density,	porosity,	porosity,	
b{{[«f [Kc]]	ρ_b^A	n^V	$\theta_{\mathbf{w}}^{\ \ V}$	
♂dk+£+	(g/cm ³)	(unitless)	(cm ³ /cm ³)	
С	1.53	0.428	0.387	

ENTER

Average vapor flow rate into bldg. (Leave blank to calculate)
Q_{soil} (L/m)

ENTER Averaging	ENTER Averaging	ENTER	ENTER
time for carcinogens, AT _C (yrs)	time for noncarcinogens, AT _{NC} (yrs)	Exposure duration, ED (yrs)	Exposure frequency, EF (days/yr)
70	25	25	250

INTERMEDIATE CALCULATIONS SHEET

Source-building separation, L_T (cm)	Vadose zone soil air-filled porosity, θ_a^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm³/cm³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (µg/m³)	Bldg. ventilation rate, Q _{building} (cm³/s)
	•		, .	, ,	` .	,	(1.0	
152.6	0.041	#N/A	#N/A	#N/A	1.00E-08	4,000	4.50E+04	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature,	Vadose zone effective diffusion coefficient, Deff v (cm²/s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	9,994	7.43E-03	3.05E-01	1.80E-04	1.58E-05	152.6
Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m³)
15	4.50E+04	1.25	8.33E+01	1.58E-05	5.00E+03	#NUM!	3.04E-06	1.37E-01

Unit
risk Reference
factor, conc.,
URF RfC
(µg/m³)-1 (mg/m³)

2.5E-06 1.0E+00

END

DTSC / HERD Last Update: 11/1/03