RECEIVED

10:01 am, Sep 01, 2010

Alameda County
Environmental Health

Former Fiesta Beverage

August 30, 2010

Barbara J. Jakub, P.G.
Hazardous Materials Specialist
Alameda County Environmental Health Services
Environmental Protection
1131 Harbor Bay Parkway, Suite 250
Alameda, California 94502-6577

Subject: Perjury Statement

Soil Gas Investigation and Groundwater Monitoring g Report

Former Fiesta Beverage

966 89th Avenue Oakland, California

ACDEH Fuel leak Site # RO0000314

Dear Ms. Jakub,

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached report are true and correct.

Please call me at (805) 286-4303 if you have any questions.

Sincerely,

Ted Walley

08/S6/S010 09:19 831--4S6-5602 TRINITY SOURCE GROUP

August 30, 2010 Project 308.003.006

Ms. Barbara Jakub Alameda County Environmental Health Services 1131 Harbor Parkway, Suite 250 Alameda, California 94502-6577

Re: Soil Gas Investigation and Groundwater Monitoring Report

Former Fiesta Beverage 966 89th Avenue Oakland, California

Dear Ms. Jakub:

Trinity Source Group, Inc. (Trinity) has prepared this letter on behalf of Mr. Ted Walbey, owner of the former Fiesta Beverage (Fiesta), to present the results of the soil gas investigation and one-time groundwater-monitoring event for the referenced site (Figures 1 and 2). This work was proposed in the November 20, 2009 *Soil Vapor Investigation Work Plan (Work Plan)*, and approved by Alameda County Environmental Health Services (ACEHS) in a letter dated June 10, 2010. The ACEHS letter is included in Attachment A. Based on the results of the work described herein, Trinity concludes that the UST case associated with this site should be closed.

SCOPE OF WORK

The scope of work completed for this investigation included:

- Installing and sampling one semi-permanent soil gas probe (SGP-1) west of the existing building to assess inhalation risks associated with the residual hydrocarbons;
- Installing and sampling one sub-slab vapor probe (SVP-1) inside the existing building at the site to assess indoor inhalation risks associated with the residual hydrocarbons at the site; and
- A one-time groundwater monitoring and sampling event.
- As requested by ACEHS, the confidential well logs obtained from the California Department of Water Resources have been uploaded to the ACEHS ftp site, as an addendum to the *Work Plan*.

The following tasks were completed:

Prefield

Prefield tasks included obtaining permits for the soil gas probe, preparing a site-specific health and safety plan, notifying USA Underground, and notifying inspectors and ACEHS. The permit is included in Attachment B.

f: 831.426.5602

Semi-Permanent Soil Gas and Sub-Slab Vapor Probe Installation and Sampling

On July 15, 2010, Trinity installed one semi-permanent soil gas probe (SGP-1) to approximately 3 feet below ground surface (bgs), using hand auger methods. The probe depth was initially targeted to be 5 feet bgs, but was modified due to hard drilling (refusal) at 3 feet bgs. Trinity also installed one sub-slab vapor probe (SVP-1) in the office area of the existing building. The locations of these two probes are shown on Figure 2. Field procedures are presented in Attachment C. The boring log for SGP-1 is included in Attachment D.

On July 21, 2010, Probes SGP-1 and SVP-1 were sampled. Field procedures for installation and sampling are presented in Attachment C, and field data sheets are included in Attachment E. Although the *Work Plan* stated that the probes would be left to equilibrate for 7 days, the sampling was conducted 6 days after installation. This deviation from the *Work Plan* is not considered significant with respect to the results of the investigation.

Groundwater Monitoring and Sampling Event

On July 21, 2010, Trinity measured depth to water in the existing wells MW-1R through MW-9 at the site. Well MW-4 was found to be paved over, and was not monitored or sampled. On July 22, 2010, Trinity collected groundwater samples from these wells. Sampling procedures are presented in Attachment C.

Laboratory Analysis

Vapor samples collected from SGP-1 and SVP-1 were submitted under chain-of-custody protocol to Torrent Laboratory, Inc., of Milpitas, California, a State-certified analytical laboratory (ELAP #1991). These samples were analyzed for total petroleum hydrocarbons as gasoline (TPHg), benzene, ethylbenzene, toluene, and xylenes (collectively BTEX), methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE), di-isopropyl ether (DIPE), tertiary amyl methyl ether (TAME), tert butyl alcohol (TBA), ethylene dibromide (EDB), and ethylene dichloride (EDC), by EPA Methods TO-3 and TO-15. In addition, helium (the leak test compound), oxygen, carbon dioxide and methane were analyzed by Method ASTM-1946D.

Groundwater samples were submitted under chain-of-custody protocol to Torrent. These samples were analyzed for TPHg by EPA Method 8015, and BTEX, MTBE, ETBE, DIPE, TAME, TBA, EDB, and EDC, by EPA Method 8260B.

Certified analytical reports and chain-of-custody documentation are included in Attachment F.

Purge-Water Disposal

Purge water was generated during this project, was contained in 55-gallon drums and disposed by a licensed contractor. Disposal documentation will be submitted on a later date upon receipt from contractor.

RESULTS

Soil Gas and Sub-Slab Vapor

Soil gas and sub-slab vapor results are summarized on Table 1.

- Toluene was detected above the laboratory detection limit in both samples at concentrations of 90.3 µg/m³ for SGP-1, and 78.6 µg/m³ for SVP-1.
- No other analytes were detected.

Groundwater Monitoring

Groundwater Elevation, Flow Direction and Gradient

On July 21, 2010, Trinity measured depth-to-groundwater in eight monitoring wells (MW-1, MW-2, MW-3, and MW-5 through MW-9), at the referenced site. Depth-to-groundwater data was subtracted from surveyed reference elevations to determine groundwater elevations. Groundwater level and elevation data are summarized in Table 2.

On the monitoring date, groundwater elevations in wells (MW-1, MW-2, MW-3, and MW-5 through MW-9) ranged from 12.39 feet above mean sea level (msl) in Well MW-8 to 13.51 feet msl in Well MW-5. Groundwater elevation data beneath the site and vicinity indicate a groundwater flow direction to the west with a gradient magnitude of 0.006 to 0.01 foot per foot (Figure 3).

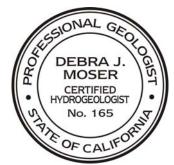
Groundwater Analytical Data

Groundwater analytical results are summarized on Table 2 and Figure 4. Historical groundwater monitoring data is included in Attachment G.

- TPHg was detected above the laboratory detection limit only in Well MW-3 at a concentration of 170 parts per billion (ppb). The laboratory noted that the detection was not a typical gasoline pattern.
- Benzene was detected above the laboratory detection limit in two wells at concentrations of 2.0 ppb in Well MW-2, and 9.2 ppb in Well MW-3.
- Ethylbenzene was detected above the laboratory detection limit in Well MW-3 at a concentration of 5.6 ppb.
- MTBE was detected above the laboratory detection limit in six of the eight sampled wells with concentrations ranging between 0.77 ppb in Well MW-7 and 3.4 ppb in Well MW-2.
- TAME was detected above the laboratory detection limit in four of the eight sampled wells with concentrations ranging between 0.98 ppb in Well MW-5 and 1.8 ppb in Well MW-3.
- No other analytes were detected.

CONCLUSIONS AND RECOMMENDATIONS

The soil gas and sub-slab vapor sampling indicated only minimal concentrations of toluene, and non-detectable concentrations of all other analytes, at sampling locations in the former UST area and beneath the existing building at the site. Based on this data, Trinity concludes that vapor intrusion from impacted soils is not a concern at this site.


The groundwater monitoring conducted confirmed that the shallow groundwater flow direction is towards the northwest, consistent with previous data. The very low concentrations of TPHg, benzene, ethylbenzene, MTBE and TAME detected in site wells confirm that post-remediation hydrocarbon concentrations at the site remain very low, indicating a stable plume.

Considering the site history of assessment and remediation, current groundwater conditions, and the current evaluation showing that vapor intrusion is not a concern, Trinity recommends closure of the UST case associated with this property.

Should you have any questions regarding this document, please call Trinity at (831) 426-5600.

Sincerely,

TRINITY SOURCE GROUP, INC.

Debra J. Moser, PG, CEG, CHG Senior Geologist Eric J. Choi Staff Scientist

fru Choi

ATTACHMENTS:

Table 1:Soil Gas and Sub-Slab Vapor Analytical Data Table 2:Groundwater Monitoring Data

Figure 1: Site Location Map

Figure 2: Site Map

Figure 3: Groundwater Elevation Contour Map, July 21, 2010

Figure 4: TPHg/Benzene/MTBE Concentrations in Groundwater, July 22, 2010

Attachment A: Alameda County Environmental Health Services Letter Dated June 10, 2010

Attachment B: Permit

Attachment C: Field Procedures
Attachment D: Boring Log

Attachment E: Field Data Sheets

Attachment F: Certified Analytical Reports and Chain-of-Custody and GeoTracker Upload

Documentation

Attachment G: Historical Groundwater Monitoring Data, Blymyer Engineers, December 15, 2008

cc: Mr. Ted Walbey, Fiesta Beverages

Table 1 Soil Gas and Sub-Slab Vapor Analytical Data Former Fiesta Beverages

966 89th Ave Oakland, California

							EPA An	alytical Test I	Methods							
				ASTI	M D1946					TO-15				TO-3 (MOD)		
Sample ID and Depth	Sample Date	Sample Time	Carbon Dioxide (%)	Helium (%)	Oxygen (%)	Methane (%)	Benzene (µg/m3)	Ethyl Benzene (µg/m³)	Toluene (µg/m³)	Total Xylenes (µg/m³)	MTBE (µg/m³)	TBA (µg/m³)	All Other TO-15 Compounds (µg/m³)	TPHg (µg/m³)		
SGP-1-3.0'	7/21/2010	1215	1.3	0.25	15.1	<0.0008	<3.2	<4.3	90.3	<13ª	<3.6	<17	ND	<1,400 ^b		
SVP-1-0.5'	7/21/2010	1356	7.03	0.26	10.6	<0.0007	<3.2	<4.3	78.6	5.29 ^d	<3.6	<17	ND	<1,400 ^b		
					CHHSLS (μg/m³) and SFRWQCB ESLs (μg/m³) Residential Property Use											
				N/A	N/A	N/A	84	420 ^c	63,000	21,000	9,400	N/A	N/A	10,000		
	CHHSLS (μg/m³) and SFRWQCB ESLs (μg/m³) Commercial Property Use															
			'	N/A	N/A	N/A	280	1,400 ^c	180,000	58,000	31,000	N/A	N/A	29,000		
Notes:																
SGP =	Soil gas probe	Э				ASTM =	American Soc	ciety for Testing	g Material							
SVP =	Sub-slab vapo	or probe				ESL =	Environmenta	al Screening Le	evels for Enviro	onmental Cond	erns at Sites V	Vith Contami	nated Soil and Groundw	vater (May 2008),		
	Methyl Tert-B	•						California EPA								
_	Total Petroleu	•	bons as g	asoline			•	aterboards/ca/g	•	-						
	Tert-Butyl Alc							o Bay Regiona								
	Micrograms p	er cubic me	ter		(-	g Levels in Eva	lluation of Con	aminanted P	Properties, California EP	A, January 2005		
	Percent							I Protection Ac		_ , 3						
	Not detected							D<8.7 μg/m ³ , c	-	. •						
	Not detected		tory report	for detect	ion limits			it was raised d		•						
	Not applicable							from CHHSLS	-	•		2009				
Bold =	Detected abor	ve practical	quantitatio	n limits		d =	o-xylene dete	cted at 5.29 µg	g/m²; m,p-xylei	ne not detected	a					
İ																

Table 2 Groundwater Monitoring Data Former Fiesta Beverages

966 89th Avenue Oakland, California

					Analytical Methods EPA 8015 EPA 8260B											
Well	Sample	Reference Elevation	Depth to Groundwater ^b	Groundwater Elevation	TPH as Gasoline	Benzene	Toluene	Ethyl- benzene	Xylenes (total)	MTBE	DIPE	ETBE	TAME	ТВА	EDB	EDC
ID#	Date	(feet)	(feet)	(feet)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MW-1R	7/22/10	21.75	9.03	12.72	<50	<0.50	<0.50	<0.50	<1.50	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50
MW-2	7/22/10	21.45	8.55	12.90	<50	2.0	<0.50	<0.50	<1.50	3.4	<0.50	<0.50	1.4	<5.0	<0.50	<0.50
MW-3	7/22/10	22.02	9.11	12.91	170 ^a	9.2	<0.50	5.6	<1.50	2.4	<0.50	<0.50	1.8	<5.0	<0.50	<0.50
MW-4	7/22/10	21.34														
MW-5	7/22/10	22.53	9.02	13.51	<50	<0.50	<0.50	<0.50	<1.50	1.0	<0.50	<0.50	0.98	<5.0	<0.50	<0.50
MW-6	7/22/10	21.97	8.69	13.28	<50	<0.50	<0.50	<0.50	<1.50	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50
MW-7	7/22/10	21.21	8.56	12.65	<50	<0.50	<0.50	<0.50	<1.50	0.77	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50
MW-8	7/22/10	20.97	8.58	12.39	<50	<0.50	<0.50	<0.50	<1.50	0.82	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50
MW-9	7/22/10	20.98	8.46	12.52	<50	<0.50	<0.50	<0.50	<1.50	1.6	<0.50	<0.50	1.3	<5.0	<0.50	<0.50

Notes:

Reference Elevation = Elevation relative to mean sea level.

Depth to Groundwater = Measured from notch/mark on north edge of well casing.

MTBE = Methyl tert-butyl ether

DIPE = Diisopropyl ether

ETBE = Ethyl-tert-butyl ether

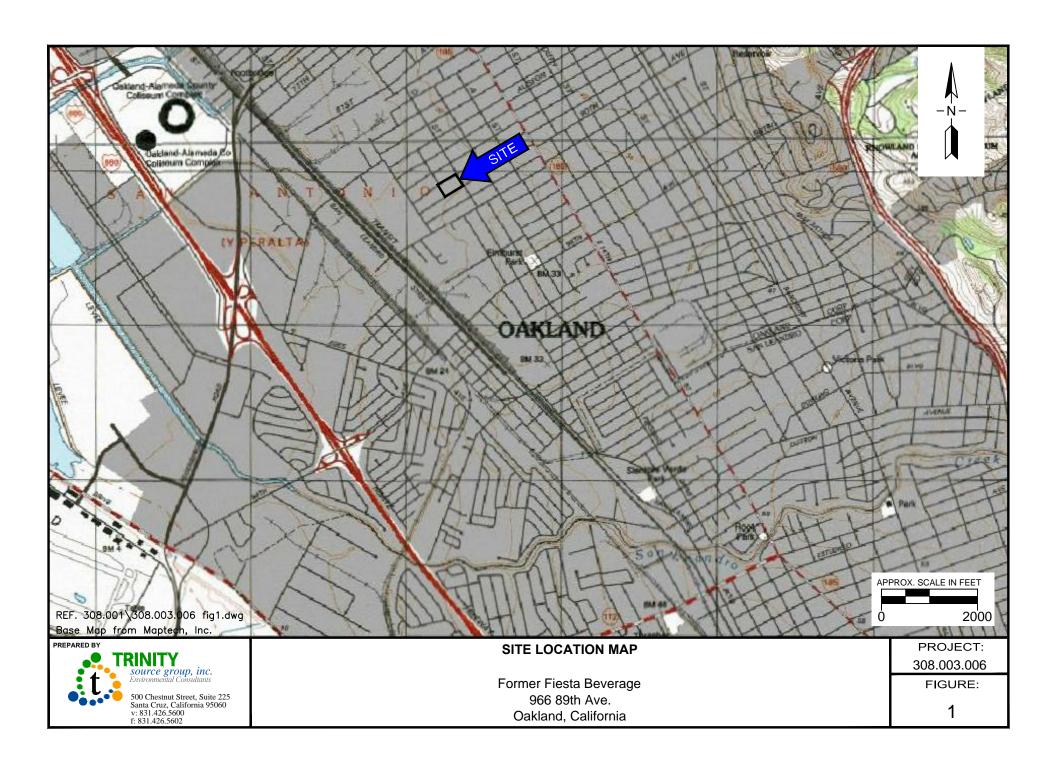
TAME = Tert-amyl methyl ether

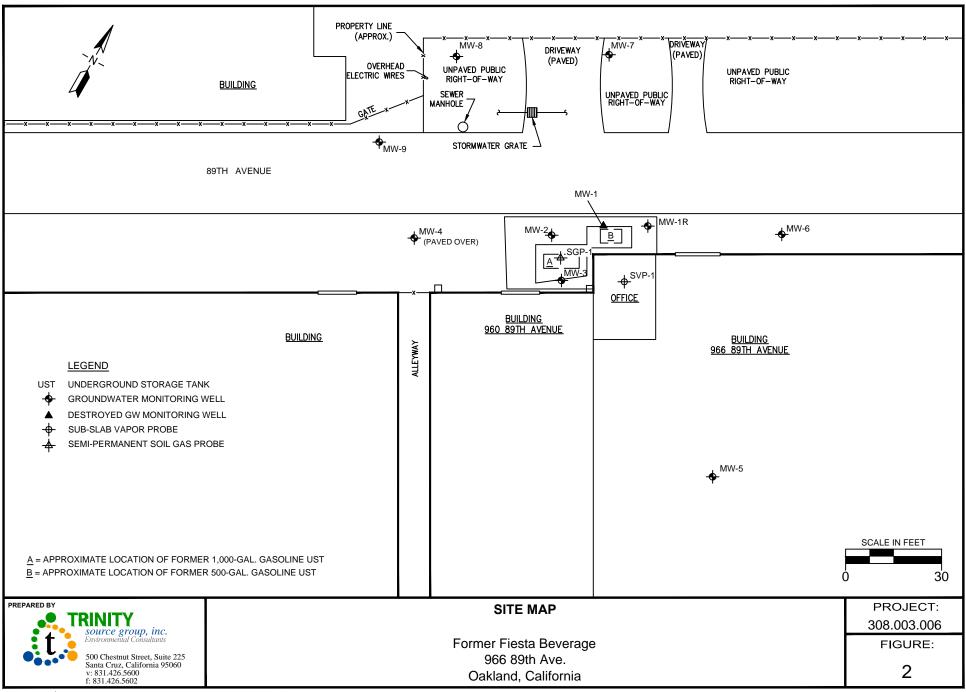
TBA = Tert-butyl alcohol

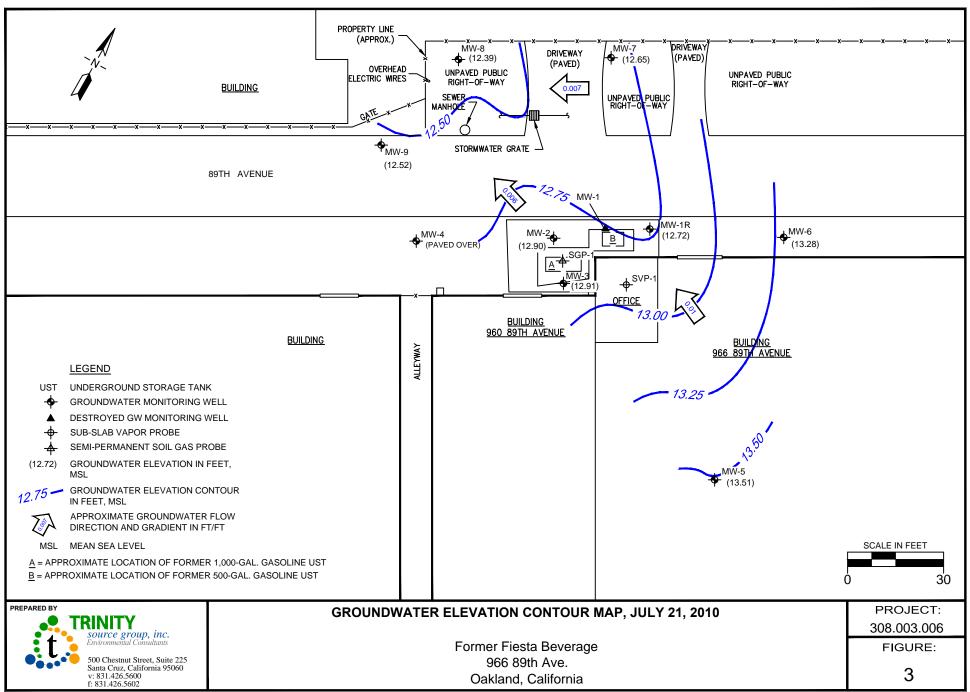
TPH = Total petroleum hydrocarbons

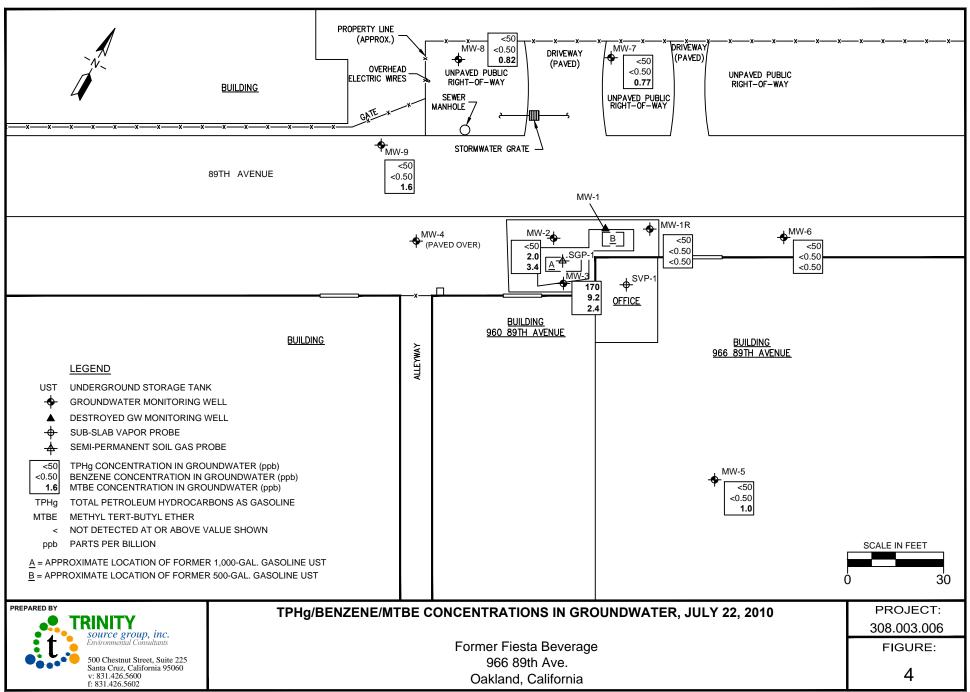
EDB = 1,2-Dibromoethane

EDC = 1,2-Dichloroethane


< = Not detected at or above value shown


ppb = parts per billion


a = Not typical Gasoline standard pattern. Hydrocarbons in the range of C5-C12 quantified as Gasoline.


b = Groundwater elevation measured on 7/21/10

FIGURES

ATTACHMENT A

ALAMEDA COUNTY ENVIRONMENTAL HEALTH SERVICES LETTER DATED JUNE 10, 2010

ALAMEDA COUNTY HEALTH CARE SERVICES

AGENCY

ALEX BRISCOE, Agency Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

June 10, 2010

Mr. Ted Walbey Fiesta Beverage 9890 Steelhead Rd. Pas Robles, CA 93446

Subject: WORK PLAN APPROVAL FOR Fuel Leak Case No. RO0000314 and GeoTracker Global ID T0600101573, Fiesta Beverage, 966 89th Avenue, Oakland, CA 94621

Dear Mr. Walbey:

Thank you for the recently submitted document entitled, Soil Vapor Investigation Work Plan, dated November 20, 2009, which was prepared by Trinity Source Group, Inc. for the subject site. Alameda County Environmental Health (ACEH) staff has reviewed the case file including the above-mentioned report/work plan for the above-referenced site. The work plan describes the methodology to be used to assess soil vapor at the site by installing a sub-slab vapor probe and semi-permanent soil gas probe.

ACEH generally concurs with the proposed scope of work and requests that you address the following technical comments, perform the proposed work, and send us the technical reports described below.

TECHNICAL COMMENTS

- Soil Vapor Probe Installation and Sampling The LARWQCB/DTSC guidance that is cited recommends using granular bentonite rather than bentonite chips when constructing the semi-permanent vapor probes. In accordance with these procedures please use 1 foot of dry granular bentonite with hydrated granular bentonite to the surface completion of the vapor probe. In addition to the proposed analytes please analyze for oxygen, carbon dioxide and methane.
- Preferential Pathway Study Thank you for completing the preferential pathway evaluation by performing a well survey. Please submit the confidential DWR well logs as an addendum to the report, mark as confidential and upload the addendum to our ftp site (not to Geotracker). The report will be placed in our confidential file and available only to internal staff for review.

NOTIFICATION OF FIELDWORK ACTIVITIES

Please schedule and complete the fieldwork activities by the date specified below and provide ACEH with at least three (3) business days notification prior to conducting the fieldwork.

Mr. Walbey RO0000314 June 10, 2010, Page 2

TECHNICAL REPORT REQUEST

Please submit technical reports to ACEH (Attention: Barbara Jakub), according to the following schedule:

August 30, 2010 - Soil and Water Investigation Report (SWI) with GWM

Thank you for your cooperation. Should you have any questions or concerns regarding this correspondence or your case, please call me at (510) 639-1287 or send me an electronic mail message at barbara.jakub@acgov.org.

Sincerely,

Digitally signed by Barbara Jakub DN: cn=Barbara Jakub, o=Local Oversight Program, ou=Alameda County Environmental Health,

email=barbara.jakub@acgov.org,

Date: 2010.06.10 11:55:51 -07'00'

Barbara J. Jakub, P.G.

Hazardous Materials Specialist

Enclosures: Responsible Party(ies) Legal Requirements/Obligations ACEH Electronic Report Upload (ftp) Instructions

cc: Deb Moser, Trinity Source Group, Inc, 500 Chestnut St., Suite 225, Santa Cruz, CA 95060 Leroy Griffin, Oakland Fire Department, 250 Frank H. Ogawa Plaza, Ste. 3341, Oakland, CA 94612-2032 (Sent via E-mail to: lgriffin@oaklandnet.com)

Donna Drogos, ACEH (Sent via E-mail to: donna.drogos@acgov.org) Barbara Jakub, ACEH (Sent via E-mail to: barbara.jakub@acgov.org)

GeoTracker

File

ATTACHMENT B PERMIT

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 07/13/2010 By jamesy

Permit Numbers: W2010-0529 Permits Valid from 07/15/2010 to 07/16/2010

Application Id:

1279063815798

City of Project Site: Oakland

Site Location:

966 89th Ave, Oakland, CA 94621

Project Start Date:

07/15/2010

Completion Date: 07/16/2010

Assigned Inspector:

Contact Vicky Hamlin at (510) 670-5443 or vickyh@acpwa.org

Applicant:

Trinity Source - Dan Birch

Phone: 831-426-5600

Property Owner:

500 Chesnut St. Ste 225, Santa Cruz, CA 95060

Ted Walbey

Phone: 805-286-4303

Client:

9890 Steelhead Rd., Pasa Robles, CA 93446 ** same as Property Owner **

Total Due:

\$265.00

Receipt Number: WR2010-0249

Total Amount Paid:

\$265.00

Payer Name: Daniel J Birch Paid By: VISA

PAID IN FULL

Works Requesting Permits:

Well Construction-Vapor monitoring well-Vapor monitoring well - 1 Wells

Driller: Trinity Source - Lic #: 913467 - Method: Hand

Work Total: \$265.00

Specifications

Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2010- 0529	07/13/2010	10/13/2010	SGP-1	1.00 in.	0.25 in.	1.00 ft	5.00 ft

Specific Work Permit Conditions

- 1. Drilling Permit(s) can be voided/ cancelled only in writing. It is the applicant's responsibility to notify Alameda County Public Works Agency, Water Resources Section in writing for an extension or to cancel the drilling permit application. No drilling permit application(s) shall be extended beyond ninety (90) days from the original start date. Applicants may not cancel a drilling permit application after the completion date of the permit issued has passed.
- 2. Compliance with the above well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate state reporting-requirements related to well destruction (Sections 13750 through 13755 (Division 7, Chapter 10. Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days, including permit number and site map.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled. properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

Alameda County Public Works Agency - Water Resources Well Permit

- 5. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 6. No changes in construction procedures or well type shall change, as described on this permit application. This permit may be voided if it contains incorrect information.
- 7. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 8. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.
- 9. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 10. Vapor monitoring wells above water level constructed with tubing maybe be backfilled with pancake-batter consistency bentonite. Minimum surface seal thickness is two inches of cement grout around well box.

Vapor monitoring wells above water level constructed with pvc pipe shall have a minimum seal depth (Neat Cement Seal) of 2 feet below ground surface (BGS). Minimum surface seal thickness is two inches of cement grout around well box. All other conditions for monitoring well construction shall apply.

ATTACHMENT C FIELD PROCEDURES

FIELD PROCEDURES

SOIL GAS AND SUB-SLAB VAPOR SAMPLING

Semi-Permanent Soil Gas Probe Installation

Soil gas sampling is accomplished by installing "semi-permanent" soil gas probes, with a sample depth of approximately 5 feet bgs. The installation, sampling and analysis procedures follow guidelines contained in the California Department of Toxic Substances Control (DTSC) guidance.¹

Semi-permanent soil gas probes are constructed in hand-augered or direct-push boreholes. The onsite Trinity geologist confirms the depth of the soil gas probes, based on observations made during the advancement of the boring. The depths are selected to sample soils of higher relative permeability (sandy horizons) and/or elevated PID readings, if such conditions exist.

Once the total depth of the borehole is reached and the soil gas sampling depth is confirmed, the probes are constructed. A diagram of the soil gas probe is included as Figure C-1. The boring is backfilled with hydrated granular bentonite up to the selected depth of the soil gas probe, if needed. Each probe is constructed with a tip consisting of a ceramic air stone (aquarium micro air bubbler) of ½-inch outside diameter and 2-inch length, with a standard NPT barb fitting; an appropriate length of ¼-inch outside diameter tubing; and a surface termination on the tubing with a Swagelok brass cap. Approximately 6 inches of #2/12 sand (or equivalent) is placed in the bottom of the borehole. The tip-tube-plug assembly is placed into the borehole with the tip resting on top of the sand pack. The ceramic tip is then covered with #2/12 sand until the top portion of the tip is covered with approximately 6 inches of sand. Hydrated bentonite chips are added to the hole in 1-foot lifts to the surface grade. The top of the semi-permanent soil gas probe is finished with a traffic-proof vault box set in concrete, flush with the surrounding surface grade.

Sub-Slab Vapor Probe Installation

Sub-slab vapor probes are installed to float in the concrete slab. The installation procedure is consistent with that described by USEPA². Sampling and analysis procedures generally follows the guidelines contained in San Mateo County's "Using a Geoprobe® to Collect Subsurface Vapor Samples for Human Health Risk Evaluation" (GPP Guidelines, Draft GPP Staff Guidance updated 3/9/06), San Mateo County's Draft "Subsurface Vapor Sampling for Human Health Risk Evaluation" (Revised 11/14/06) and the California Department of Toxic Substances Control (DTSC) "Advisory for Active Soil Gas Investigations" dated January 28, 2003. The installation procedures are summarized below:

The concrete slab underlying the building is assumed to be up to 6 inches thick. Therefore, to install a subslab probe, a one-inch diameter hole in the concrete slab is drilled to a depth of approximately 3 inches using

¹ DTSC, Advisory for Active Soil Gas Investigations, January 28, 2003; and Interim Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air, December 15, 2004 (Revised February 7, 2005).

² United States Environmental Protection Agency (2006), Assessment of Vapor Intrusion in Homes Near the Raymark Superfund Site Using Basement and Sub-Slab Air Samples, and

United States Environmental Protection Agency, *Draft Standard Operating Procedure for Installation of Sub-Slab Vapor Probes and Sampling Using EPA Method TO-15 to Support Vapor Intrusion Investigations.*

a rotary drill or equivalent equipment. Assuming that the hole does not penetrate the slab, the hole is vacuumed out to remove cuttings. The drill bit is then changed to 5/16-inch, and the hole is advanced approximately an additional 3 inches through the slab and into the underlying sub-slab material. The sub-slab vapor probe is assembled using a 2-inch long by ¼-inch inner-diameter (ID) stainless steel tube attached to an NPT ¼-inch ID brass or stainless steel threaded fitting and Swagelok cap or plug. This assembly is placed into the drilled hole, and grouted into place using Sakrete Bolt and Rail Cement (a non-shrinking, quick-setting cement). The cement installation is recessed so that the plug is accessible. The top of the plug is set flush with the top of the concrete slab. A schematic diagram of the sub-slab probe is presented on Figure C-2.

Soil Gas Sampling

Sampling Set-up

The soil gas probes are allowed to equilibrate for a minimum of one week prior to sample collection. Mobilization for soil gas sampling will not occur if measurable precipitation or site irrigation near the sampling location has occurred in the previous five days.

Prior to sampling, the sampling technician puts on a new pair of clean gloves, and the plug on the soil gas probe is removed and quickly replaced with a closed Swagelok valve. A tee fitting is connected to two six-liter Summa canisters with a pressure gauge installed on each of these fittings.

The two Summa canisters are connected by approximately 1 to 2 feet of tubing and a third tee fitting. The vacuum reading on each canister is confirmed and recorded before proceeding. The vacuum reading is expected to be 30 inches mercury ("Hg). On the downhole side of the third tee fitting, a 100 to 200-milliliter per minute (ml/min) flow regulator followed by a laboratory supplied particulate filter is installed. On the downhole side of the particulate filter, a vapor-tight valve is installed to connect the sampling equipment with the probe tube. A schematic drawing of the soil gas sampling set-up is shown on Figure C-3.

Leak Testing

A vacuum test is conducted on the connections between the Summa canisters and the valve on the downhole side of the regulator for 10 minutes by opening and closing the purge canister valve to place a test vacuum on the assembly. Further work is terminated if gauge vacuum cannot be maintained for 10 minutes.

Additional leak testing is performed during the soil gas sampling by placing a shroud over the sampling assembly, and maintaining a helium-enriched atmosphere under the shroud. The shroud is emplaced after purging the vapor probe, but before the sample is collected. Using a helium canister and appropriate tubing and fittings, helium is injected under the shroud. A helium detector is used to monitor the atmosphere beneath the shroud to make sure a helium-enriched environment is maintained until the sampling process is complete.

Purging

If the vacuum test is successful, purging is conducted. The purge canister valve and the valve on the downhole side of the particulate filter are opened and the time is recorded. The purge canister valve is closed after three volumes of air have been purged from the sample apparatus and borehole. The purge volume is calculated based on the internal volume of the tubing and probe apparatus. The amount of air purged is measured based on the time that the flow-control orifice is opened, with a flow rate of 100 to 200-ml/min, and

based on a discernable vacuum drop on the purge canister pressure gauge. The time at which purging is terminated is recorded.

Sampling

Following purging, the sample Summa canister valve is opened to begin sample collection. The time at which sample collection begins is recorded.

The flow-control orifice is maintained at 100 to 200-ml/min, and is kept open until the sample Summa canister pressure gauge indicates approximately 5"Hg. At that point, the sample canister valve is closed and the time recorded. The tee fitting on the sample canister is replaced with a laboratory-supplied brass plug.

The sample canister is labeled and chain-of-custody maintained by recording: sample name, sample date, sample time, final vacuum, canister and flow controller serial numbers, initials of sample collector, and the compounds to be analyzed by the certified laboratory. The sample canisters are stored in a container that blocks sunlight to the opaque canister and does not subject the air-tight canister to changes in pressure and temperature. The sample canisters are delivered to the analytical laboratory via ground transportation under chain-of-custody documentation.

Abandonment of Probes

The semi-permanent soil gas probes are typically left in place until site data indicates that they are no longer needed. After that time, the probes are abandoned. To abandon the semi-permanent soil gas probes, a roto-hammer is used to remove the cement surface seal. Then, the tubing assembly is pulled from the hole manually. A hand auger is used to remove the bentonite and sand to the depth of the sand pack. The remaining hole is filled with non-shrinking, quick-setting grout to match the surrounding grade.

The sub-slab vapor probe will be left in place until site data indicates that it is no longer needed. After that time, the probe will be abandoned by using a roto-hammer which will be used to core the grout out around the probe assembly. The probe assembly will be removed from the hole, and the hole will be filled with non-shrinking, quick-setting grout to match finish grade.

GROUNDWATER MONITORING AND SAMPLING

Groundwater Level and Total Depth Determination

A water level indicator is lowered down the well and a measurement of the depth to water from an established reference point on the casing is taken. The indicator probe is used to sound the bottom of the well and a measurement of the total depth of the well is taken. Both the water level and total depth measurements are taken to the nearest 0.01-foot.

Visual Analysis of Groundwater

Prior to purging and sampling groundwater-monitoring wells, a water sample is collected from each well for subjective analysis. The visual analysis involves gently lowering a clean, disposable polyethylene bailer to approximately one-half the bailer length past the water table interface. The bailer is then retrieved, and the sample contained within the bailer is examined for floating product or the appearance of a petroleum product sheen. If measurable free product is noted in the bailer, a water/product interface probe is used to determine

the thickness of the free product to the nearest 0.01-foot. The thickness of free product is determined by subtracting the depth to product from the depth to water.

Monitoring Well Purging and Sampling

Monitoring wells are purged by removing approximately three casing volumes of water from the well using a clean disposable bailer or electrical submersible purge pump. Purge volumes are calculated prior to purging. During purging, the temperature, pH, and electrical conductivity of the purge water are monitored. The well is considered to be sufficiently purged when the four casing volumes have been removed; the temperature, pH, and conductivity values have stabilized to within 10% of the initial readings; and the groundwater being removed is relatively free of suspended solids. After purging, groundwater levels are allowed to stabilize to within 80% of the initial water level reading. A water sample is then collected from each well with a clean, disposable polyethylene bailer. If the well is bailed or pumped dry prior to removing the minimum amount of water, the groundwater is allowed to recharge. If the well has recharged to within 80% of the initial depth to water reading within two hours, the well will continue to be purged until the minimum volume of water has been removed. If the well has not recharged to at least 80% of the initial depth to water reading within two hours, the well is considered to contain formational water and a groundwater sample is collected. Groundwater removed from the well is stored in 55-gallon drums at the site and labeled pending disposal.

In wells where free product is detected, the wells will be bailed to remove the free product. An estimate of the volume of product and water will be recorded. If the free product thickness is reduced to the point where a measurable thickness is no longer present in the well, a groundwater sample will be collected. If free product persists throughout the purging process, a final free product thickness measurement will be taken and a groundwater sample will not be collected.

Groundwater samples are stored in 40-milliliter vials so that air passage through the sample is minimized (to prevent volatilization of the sample). The vial is tilted and filled slowly until an upward convex meniscus forms over the mouth of the vial. The Teflon™ side of the septum (in cap) is then placed against the meniscus, and the cap is screwed on tightly. The sample is then inverted and the bottle is tapped lightly to check for air bubbles. If an air bubble is present in the vial, the cap is removed and more sample is transferred from the bailer. The vial is then resealed and rechecked for air bubbles. The sample is then appropriately labeled and stored on ice from the time of collection through the time of delivery to the laboratory. The chain-of-custody form is completed to ensure sample integrity. Groundwater samples are transported to a state-certified laboratory and analyzed within the U.S. Environmental Protection Agency-specified hold times for the specified analytes.

ATTACHMENT D BORING LOG

Trin 500 San Tele

ENVIRONMENTAL BH 308.003.006.GPJ GINT US.GDT 8/30/10

Trinity Source Group, Inc. 500 Chestnut St., Suite 225 Santa Cruz, California 95060 Telephone: 831.426.5600

BORING NUMBER SGP-1

PAGE 1 OF 1

000000	Telephone: Fax: 831.42	831.426.5600 26.5602)			
CLIENT T	ed Walbey			PROJECT NAME Former Fiesta B	everage	
	NUMBER 308				venue Oakland, Califor	nia
DATE STAF	RTED _7/15/10)		GROUND ELEVATION	HOLE SIZE 1"	
DRILLING (CONTRACTOR	Trinity So	urce Group, Inc.	GROUND WATER LEVELS:		
DRILLING I	METHOD Har	nd Auger		AT TIME OF DRILLING DRY	<u> </u>	
LOGGED B	Y D. Birch		CHECKED BY D. Moser	AT END OF DRILLING DRY		
NOTES				AFTER DRILLING _DRY		_
Й						
SAMPLE TYPE	BLOW COUNTS (N VALUE)	PID (ppm) GRAPHIC	N	MATERIAL DESCRIPTION	WELL	DIAGRAM
0			0'-0 3' ASPHALT			
1 	AU .		0.3 0.3'-3' FILL Tank Exca	vation Backfill, Sandy Gravel	Set sw ow Over Ce	3' 3" Vault box in concrete with agelok cap erlay Neat ment 2.6' - 1/4" O.D. flon Tubing 2.5' Hydrated ntonite
			2.9 Refusal at 3'		Ce	5'-3' #2/12 Sand eramic Air Stone obe Tip

ATTACHMENT E FIELD DATA SHEETS

SOIL GAS INVESTIGATION PURGE, SAMPLE & LEAK TEST - FIELD DATA SHEET 6 Liter Summa

		•
	************	RINITY
	et.	source group inc
* 1 -		- SOUFCE group, inc. - Lawirannental Consultants
<i>o</i> n .	6.4	CO. D. COMP. D. C. ON COMMIX
- ·		

Project No.:	308.002.004		Purge Test Loc	cation: SGP-1 ou	itdoor	6
Facility Name:	Former Fiesta Beverage		Purge Method:	: 6L Summ	na Canister	
Address:	966 8th Avenue, Oaklnad,	California	Leak Test Con	apound :	Helium	
Staff:	Eric Choi		— Flow Control C	Orifice (ml/min):	Approximately 100 ml/min	
Date:	July 21, 2010	Tubing Size (in):	3/16 ID; 1/4 OD	, ,,,,	e Dia. (in): 2 OD	

nner Tubing Radius (inches)	Area of Inner Tubing Radius (r2)	Tubing Length (ft)	Convert feet to inches	Total Tubing Volume (ml)		1		Total Bore Hole Volume (ml)	No. of Tubing + Bore Hole Volumes to Purge	Conv. of cubic inches to ml	Total Purge Volume (ml)	Total Purge Volume (L) [L= ml/1000]	Max. Purge rate (ml/min)	Est. Purge Time (min)	
0.094	0.009	3	36	16.378	1	1.000	36	741.429	1	16.387	757.808	0.758	200	3.79	3.00
0.094	0.009	3	36	16.378	1	1.000	36	741.429	3	16.387	2273.423	2.273	200	11.37	3.00
0.094	0.009	3	36	16.378	1	1.000	36	741.429	7	16.387	5304.653	5.305	200	26.52	3.00

Purge volume for tubing can be calculated as follows:

(a) 3.141593(Pi) * tubing radius r² * inches of tubing * 16.3870641(conversion of cubic inches to milliliters)

Purge volume for the bore hole can be calculated as follow:

(b) 3.141593(Pi) * bore hole r² * inches of bore hole * 16.3870641(conversion of cubic inches to milliliters)

Total purge volume can be calculated as follows:

a + b * number of tubing/bore hole volume to be purged = total purge volume

Estimated purge time can be calculated as follows:

total purge volume (ml) + purge rate (max of 167 ml/min)

		Purging	j & Sampl	ling Data					Leak Test	s Data		Field Readir	ngs / Infor	mation	
Calculated Total Purge Volume (ml)	Time Start Purging (24 hr)	Time Stop Purging (24 hr)	Initial & Final Vacuum Gauge Reading (Hg")	Cum- ulative Total Volume Purged (ml)	Time Start Sampling (24 hr)		Final Vacuum Gauge Reading (Hg")	Iso- propanol Applied (yes/no)	Vacuum Train Leak Check (pass/fail)	Vacuum Train Test Start Time/ Vacuum (Hg")	Vacuum Train Test Stop		Probe Install Time	Purge Volumes	Probe Depth (Feet)
757.808						į	,2,					7/15/2010	1500	1	3.00
2273.423	1153	1208	-22Q	1300	TEGA	1250	<u>4-5</u>	No	PASS	11380-29	11/30-29	7/15/2010	1500	3	3.00
5304.653 Notes:	DUVW	1214		72 C	1215						`	7/15/2010	1500	7	3.00

Cample lanister # 479 @	
37 6 Helin 181210	-3201 436 Helium 10 159 55% Helium 101201 45% Helium 101205
Haria Whian 11285	39% relim 1810 47% Helin 10 1215 48% relim 10 1222 48% Helium 1230
the committee of the co	The results of the state of the

SOIL GAS INVESTIGATION PURGE, SAMPLE & LEAK TEST - FIELD DATA SHEET

•	T	RINITY
* 1	ide/	SOURCE group, inc. basironmental Considerate
	•	

Project	No.:
Facility	Name:

308.002.004

Former Fiesta Beverage

Purge Test Location:

SVP-1 indoor

966 8th Avenue, Oaklnad, California

Purge Method:

6L Summa Canister

Eric Choi

Helium

Flow Control Orifice (ml/min):

Leak Test Compound:

Approximately 100 ml/min

Staff: Date:

Address:

July 21, 2010

Tubing Size (in):

3/16 ID; 1/4 OD

Bore Hole Dia. (in): 2 OD

							Purge Vo	olume Calc	10 PM 10 PM 10 PM						
Inner Tubing Radius (inches)	Area of Inner Tubing Radius (r2)	Tubing Length (ft)	Convert feet to inches	Total Tubing Volume (ml)			Bore Hole	Total Bore Hole Volume (ml)	No. of Tubing + Bore Hole Volumes to Purge	Conv. of cubic inches to ml	Total Purge Volume (ml)	Total Purge Volume (L) [L= ml/1000]	Max. Purge rate (ml/min)	Est. Purge Time (min)	•
0.094	0.009	0.5	6	2.730	1	1,000	6	123.572	1	16.387	126.301	0.126	200	0,63	0.50
0.094	0.009	0.5	6	2.730	1	1.000	6	123.572	3	16.387	(378.904)	0.379	200	1.89	0.50
0.094	0.009	0.5	6	2.730	1	1.000	6	123.572	7	16.387	884.109	0.884	200	4.42	0.50

Purge volume for tubing can be calculated as follows:

(a) 3.141593(Pi) * tubing radius r2 * inches of tubing * 16.3870641(conversion of cubic inches to milliliters)

Purge volume for the bore hole can be calculated as follow:

(b) 3.141593(Pi) * bore hole r2 * inches of bore hole * 16.3870641(conversion of cubic inches to milliliters)

Total purge volume can be calculated as follows:

a + b * number of tubing/bore hole volume to be purged = total purge volume

Estimated purge time can be calculated as follows:

total purge volume (ml) + purge rate (max of 167 ml/min)

		Purging	8 Sampl	ing Data					Leak Test	s Data		Field Readin	ngs / Infor	mation	80 (5. %) (5
Calculated Total Purge Volume (ml)	Time Start Purging (24 hr)	Time Stop Purging (24 hr)	Initial & Final Vacuum Gauge Reading (Hg")	Cum- ulative Total Volume Purged (ml)	Time Start Sampling (24 hr)	Time Stop Sampling (24 hr)		Iso- propanol Applied (yes/no)	Vacuum Train Leak Check (pass/fail)	Vacuum Train Test Start Time/ Vacuum (Hg")	Vacuum Train Test Stop		Probe Install Time	Purge Volumes	Probe Depth (Feet)
126.301		ar.	-8/-10									7/15/2010	1130	1	0.50
378.904	BSZ	1355		<u> 2</u> 80	1356	1434	-31/-S	ND	PASS	Mrs/-29	1120/-29	7/15/2010		3	0.50
884.109 Notes:			7-29							1110		7/15/2010	1130	7	0.50

(NV96 (an) 54+ 428 C-29 851, ruci 400 K, INC preyous V(550 #1737 (3-10PS)	
Stora & desired the Machine	
41 m & (ani 54v H 458 0 -31 871 1359 Hum 48 9 1905 Helin 5 2 0 1920 Hum 2392	
1910/ Hellin & 49% 1925 / Fellin @ 45% 1930 /Hellin @ 46%	

TRINITY WELLHEAD INSPECTION FORM

Site Address	3"(ት) : <u>966</u> ያዜ Ave (Date:	July 21, 2010						
Project No.:	308.002.004	Technician:		Eric	Choi			Page:	of
Well ID	Well Inspected-No Corrective Action Required	Well Box Meets Compliance Requirements *see below	Water Pumped From Wellbox	Cap Replaced	Lock Replaced	Well Not Inspected (explain in notes)	New Deficiency Identified	Previously Identified Deficiency Persists	Notes
WM-1		-We11		++(y.	<u>d</u> —			
MW-IR	Yes	Yes	XES	100	NO		100	20	
MW-2	Yes	Yes	100	NO	NO	NO	Na	No	
MW-3	100	NO	<u>Yes</u>	'	100	NO	Ves	Yes/NA	weeds bolts, odor
MW-7	Yes	KES	NO	<u> </u>	W	No	NU	NU	, , , , , , , , , , , , , , , , , , ,
NW-4	Va -	- PAV		01		R-			
MW-5	Yes	Yes	(YU	NO	170	HU	ν υ	Ŋΰ	
MW-6 MW-6						-			
MW-9		V	—	\downarrow		water			
//\\ P=-(<u> </u>				7	<u> </u>		V	
	neet all three criter								2) WELL IS MARKED WITH
	<u> </u>							 	
									

Field Data Sheet

Depth to Water Data Form

Site Information Heroject Address Callord City	July 71, 2010 Alamda County	308.001 Project Number CA State	TRINITY SOURCE group, inc. Environmental Consultants 60 Cheman Saret, flow 22* SAM 1500 CA. 979e- 3. 21 420 586- 1. 430 440 6802
Water Level Equipment		Measured by:	<i>f</i>
Electronic Indicator		Name F	CCHOI
Oil Water Interface Probe		Notes:	
□Other (Specify)			

Well ID	DTW Order	Time (2400)	Total Depth	First DTW (toc or tob)	Second DTW (toc or tob)	Depth to SPH (toc or tob)	SPH Thickness (toc or tob)	Notes: (describe SPH)
WM-16			21,30	9,03	(toc or tob) 9,03	(100 0. 100)	(toe or too)	SFII)
MW-2			23,55	8,53	8,59			
MU-3			24,90	9,11	9,11			
M V-5			19170	9,02	9,02			
MW-6			19.65	4.05	9103	8.64	8,69	
F-UM			21,65	8.56	8,56			
WN-8			19130	8,54	8,58			***
Mr-9			21,45	<i>જ.</i> 46	8.46			
				-				
						444		

Signature			
_	 	 	

Trinity SPH or Purge Water Drum Log

500 Chestnut Street, Suite 225 Santa Cruz, California 95060 v: 831.426.5600 f: 831.426.5602 Site: Former Fiesta Beverages

966 89th Ave

Oakland, California

	Statu	s of Dr	rum(s)	Upon /	Arrival			
Date	7/22/10)						
Number of drum(s) Empty:	1							
Number of drum(s) 1/4 full:								
Number of drum(s) 1/2 full:								
Number of drum(s) 3/4 full:								
Number of drum(s) full:								
Total drum(s) on site:								
Are drum(s) properly labeled?	NAenoly							
Drum ID and Contents:	empty							
If you add any SPH to an empty If drum contains SPH, the drum All Trinity drums MUST be label	MUST be s d appropria	steel AND ately.	labeld wit	h appropri	ate label.		vater or DI	water.
	Status :	of Dru	m(s) U	pon De	parture			
Date	7/22/10							
Number of drum(s) Empty:	B							
Number of drum(s) 1/4 full:								
Number of drum(s) 1/2 full:								
Number of drum(s) 3/4 full:								
Number of drum(s) full:								
Total drum(s) on site:	l							
Are drum(s) properly labeled?	Yes							
Drum ID and Contents:	Rigetho							
		Locati	on of D	rum(s		201 - 518 201 - 518 - 518 - 518 - 518 - 518 - 518 - 518 - 518 - 518 - 518 - 518 - 518 - 518 - 518 - 518 - 518 - 518 - 518		
Describe location of drum(s): 🙀						neer ct	fia	
		Fir	nal Stat	lus				
site this event .								
Date of inspection:	Fluiro							
Drum(s) labeled properly:	Yes							
Logged by Trinity Field Tech:	Yes							
Office reviewed:								
•								

TEST EQUIPMENT CALIBRATION LOG

Former Fies Site: 966 8944	ta Beverage Ave Oaklan	d i CA	Date: 7/71/1	υ	Project No.: 3		2014
Equipment Name	Equipment Number	Date/Time of Test	Standards Used	Equipment Reading	Calibrated to :	Temp.	Initials
UHrander II		7/2/10 @ 1100	4,7,10	4.00,9.48	Ves	23,6	٤(
	·						

Well Purge and Sampling Log

Site: Former Fiesta E	Site: Former Fiesta Beverage										
Sampler: Eric Choi											
Date: July 21, 2010	Project#: 308. WZ WY										

Well ID: MW-1R

Well Diameter	TD BTOC	DTW BTOC	Purge Equipment	Sample Equipment
2''	21.30	9.03	12VDC Pump	Disposable Bailer

Purge Volume Calculation

TD21.3 - DTW 0.03 = 12.17 x Gallons per Linear Foot 0.16 = 1.06 x Casings 3 = -6 gallons

Time (24 hour)	1209	1311	1313	1314	1315	
Gallons Purged	, marine	2 1/2	31	5	6	
DO (mg/L)	0A8	14.0	0,36	0.33	0,32	
рН	6,84	6183	6.80	679	6,79	
Temperature (°C)	1815	18,0	18,0	18,0	18,0	
Conductivity (umhos/cm²)	746,3	744.5	736.7	736.D	735,4	
ORP (mV)	-4		-3	٥	\	VVIII - VVIII
Visual Description	(1/eox -				→	
Other						
Other						

Sample ID	Time	Quantity	Volume	Type	Preservative	Analysis
MW-1R	1318	3	40ml	VVA	MU	TPHg by EPA 8015
			-			BTEX,MTBE,ETBE,DIPE
· · · · · · · · · · · · · · · · · · ·						TAME,TBA,EDB,EDC-8260

Notes:

Casing Diameter	Gallons per Linear Foot
1.25"	0.077
1.5"	0.10
2"	0.16
3"	0.37
3.5"	0.50
4"	0.65
6"	1.46
 8"	2.60

Well Purge and Sampling Log

Site:	Former	Fiesta	Beverage

Sampler: Eric Choi

Date: July 21, 2010

Project #: 303. WQUY

Well ID: MW-2

Well Diameter	TD BTOC	DTW BTOC	Purge Equipment	Sample Equipment
2"	23.55	8,55	12VDC Pump	Disposable Bailer

Purge Volume Calculation $TD_{25.55} = DTW_{x} = 8.55 = 15.00_{x} = \frac{Gallons per}{Linear Foot} = \frac{0.16}{0.16} = \frac{2.4}{x} = \frac{Number of 3}{x} = \frac{3}{3}

Time (24 hour)	1328	1332	1337	13349	1342	
Gallons Purged	, and the little	3	5	6	71/2	
DO (mg/L)	0.64	0,56	0,38	0.33	0,28	· · · · · · · · · · · · · · · · · · ·
рН	6.83	6,80	6,79	6,80	6,81	
Temperature (°C)	18,7	18,9	1912	1912	19,2	
Conductivity (umhos/cm²)	762.7	766.9	789A	792,0	79 25	
ORP (mV)	<i>5</i> 3	17	2	16	32	
Visual Description	clear-				D	
Other						
Other						

Sample ID	Time	Quantity	Volume	Type	Preservative	Analysis
MW-2	1348	3	40ml	UU A	HUL	TPHg by EPA 8015
	1342					BTEX,MTBE,ETBE,DIPE
						TAME,TBA,EDB,EDC-8260

Notes:

Casing Diameter	Gallons per Linear Foot
1.25"	0.077
1.5"	0.10
2"	0.16
3"	0.37
3.5"	0.50
4"	0.65
6"	1.46
8"	2.60

Well Purge and Sampling Log

Site: Former Fiesta Beverage					
Sampler: Eric Choi					
Date: July 21, 2010	Project #:	***************************************			

Well ID: **MW-2**3

Well Diameter	TD BTOC	DTW BTOC	Purge Equipment	Sample Equipment
2"	24,90	9,11	12VDC Pump	Disposable Bailer

Purge Volume Calculation TD 24.40 DTW 9.11 = 15.74 Callons per X Linear Foot 0.16 = 2.5 Number of 3 = 711 gallons

Time (24 hour)	1352	1354	1355	1356	1358		
Gallons Purged	21/2	4	5	6	71/2		
DO (mg/L)	り、ら子	0,42	0.36	0,34	0.32		
рН	6.94	6,95	6,91	6,90	6.89		
Temperature (°C)	1813	18,1	18,0	18,0	18,0		
Conductivity (umhos/cm²)	849,9	823,1	667,6	800.1	799,0		
ORP (mV)	-148	-138	-128	-117	-118		
Visual Description	Clear				$ \rightarrow$	N	
Other							
Other				,			

Sample ID	Time	Quantity	Volume	Type	Preservative	Analysis
MVV-3	1400	}	40ml	NUA	HUL	TPHg by EPA 8015
						BTEX,MTBE,ETBE,DIPE
						TAME, TBA, EDB, EDC-826

Notes:

Casing Diameter	Gallons per Linear Foot
1.25"	0.077
1.5"	0.10
2"	0.16
3"	0.37
3.5"	0.50
4"	0.65
6"	1.46
8"	2.60

Site:	Former	Fiesta	Beverage

Sampler: Eric Choi

Date: July 21, 2010 Project #: 30

Project #: 308.007.004

Well ID: MW-5

Well Diameter	TD BTOC	DTW BTOC	Purge Equipment	Sample Equipment
2"	191,70	9,01	12VDC Pump	Disposable Bailer

Purge Volume Calculation

TD 197- DTW 9.02 = 10.65 x Linear Foot 0.16 = 1.7 x Casings 3 = 514 gallons

Time (24 hour)	1,58	1159	1200	1201	1202	
Gallons Purged	2	3	4	5	Sila	
DO (mg/L)	124	0,95	0,77	0.63	0,59	
рН	6,82	6,78	677	6,74	6,24	
Temperature (°C)	8,51	FIFI	17.7	17,6	17.6	
Conductivity (umhos/cm²)	0.PFJ	669,2	4.288	664,0	663.5	
ORP (mV)	151	151	151	151	151	
Visual Description	clear-				カ	
Other						
Other						

Sample ID	Time	Quantity	Volume	Type	Preservative	Analysis
MW-5	1205	3	YOMI	10h	HU	TPHg by EPA 8015
						BTEX,MTBE,ETBE,DIPE
						TAME,TBA,EDB,EDC-826

Casing Diameter	Gallons per Linear Foot
1.25"	0.077
1.5"	0.10
2"	0.16
3"	0.37
3.5"	0.50
4"	0.65
6"	1.46
8"	2.60

Site: Former Fiesta Beverage

Sampler: Eric Choi

Date: July 21, 2010 Project #: 308,002,004

Well ID: MW-6

Well Diameter	TD BTOC	DTW BTOC	Purge Equipment	Sample Equipment
2"	19.65	8-09	12VDC Pump	Disposable Bailer

Purge Volume Calculation TD = 11.56 = 1.84 = 1.8

Time (24 hour)	1247	1248	1250	1251	1253	1254	
Gallons Purged	Enterphone Control	2	3	4	S	6	
DO (mg/L)	2,35	1,50	0.88	0.57	0,46	0.42	
рН	6.81	6,77	674	6.73	6,75	6.74	
Temperature (°C)	181	18/1	18.1	18.0	18.0	18,0	
Conductivity (umhos/cm²)	786.9	786.9	788,2	788,9	789,9	789,1	
ORP (mV)	162	162	159	157	152	149	
Visual Description	Cleor-						
Other							
Other							*****

Sample ID	Time	Quantity	Volume	Туре	Preservative	Analysis
MW-6	1257	3	40ml	VUA	HU	TPHg by EPA 8015
						BTEX,MTBE,ETBE,DIPE
						TAME,TBA,EDB,EDC-826

r	
Casing Diameter	Gallons per Linear Foot
1.25"	0.077
1.5"	0.10
2"	0.16
3"	0.37
3.5"	0.50
4"	0.65
6"	1.46
8"	2.60

Site: Former Fiesta Be	verage	
Sampler: Eric Choi		
Date: July 21, 2010	Project #:	308.002-004

Well ID: MW-7

Well Diameter	TD BTOC	DTW BTOC	Purge Equipment	Sample Equipment
2"	21.65	8.56	12VDC Pump	Disposable Bailer

Purge Volume Calculation

TD 2 165 DTW 8, 56 = 13.09 x Linear Foot 0:16 = 2 x Casings 3 = 6 gallons

	110 = 1	1.500	1 - 0 0	13000	<u> </u>		
Time (24 hour)	1226	1227	1228	1279	1230	1231	
Gallons Purged	· ·	2	3	Ч	S	6	
DO (mg/L)	1,12	0.86	0.68	0.54	0.47	0.43	
рН	6,83	6,83	6.84	6.84	6.84	6.84	
Temperature (°C)	1.8	18.1	18,1	18,1	18.1	18.2	
Conductivity (umhos/cm²)	PLFPF	747.2	747,0	746.9	7467	746,7	
ORP (mV)	159	157	155	152	148	146	
Visual Description	clear-		agas yanka adhaanii a ida iyo niinmiidda yaya mahimad a iyo dada ba miilim				
Other							
Other							

Sample ID	Time	Quantity	Volume	Туре	Preservative	Analysis
MW-7	1234	3	40ml	VUA	HU	TPHg by EPA 8015
						BTEX,MTBE,ETBE,DIPE
						TAME, TBA, EDB, EDC-826

Casing Diameter	Gallons per Linear Foot
1.25"	0.077
1.5"	0.10
2"	0.16
3"	0.37
3.5"	0.50
4"	0.65
6"	1.46
 8"	2.60

Site:	Former	Fiesta	Beverage

Sampler: Eric Choi

Date: July 21, 2010

Project #: 308.007.004

Well ID: WW-8

Well Diameter	TD BTOC	DTW BTOC	Purge Equipment	Sample Equipment
2"	19,30	8.5 8	12VDC Pump	Disposable Bailer

Purge Volume Calculation $TD = DTW = S - SS = 10 + 30 \times SS = 10 + 30 \times SS = 10 + 30 \times SS = 10 \times$

Time (24 hour)	1136	1137	1139	1140	11-11	
Gallons Purged		21/4	3114	414	514	
DO (mg/L)	1,86	1.19	6.81	0.67	0.62	
рН	679	6,77	676	676	6,75	
Temperature (°C)	18.5	18,4	18,3	18,3	18.3	
Conductivity (umhos/cm²)	7889	789,4	789,4	788,7	788,5	
ORP (mV)	130	128	129	128	127	
Visual Description	Clear -				<u>`</u>	
Other						
Other						

Sample ID	Time	Time Quantity		Type	Preservative	Analysis	
MW-8	1144	ß	YUMI	VOA	HLL	TPHg by EPA 8015	
-Wijekhanikyi						BTEX,MTBE,ETBE,DIPE	
						TAME,TBA,EDB,EDC-826	

Casing Diameter	Gallons per Lìnear Foot
1.25"	0.077
1.5"	0.10
2"	0.16
3"	0.37
3.5"	0.50
4"	0.65
6"	1.46
8"	2.60

Site: Former Fiesta Beverage

Sampler: Eric Choi

Date: July 21, 2010

Project #: 308.002.004

Well ID: MW-9

Well Diameter	TD BTOC	DTW BTOC	Purge Equipment	Sample Equipment
2"	71,95	8.46	12VDC Pump	Disposable Bailer

Purge Volume Calculation

2 \ \(\lambda \)
Gallons per Linear Foot $0.16 = 2.15 \times \text{Number of } 3 = 2.5 \times \text{gallons}$

Time (24 hour)	1115	1116	1117	1118	1119	1120	
Gallons Purged	112	21/2	31/2	41/2	sih	61/2	
DO (mg/L)	3,45	1.62	1.15	0.93	0.76	0,70	
рН	6.64	6.68	6.68	6.71	6.70	6,70	
Temperature (°C)	18,1	181	18.1	18.1	18,1	18.0	
Conductivity (umhos/cm²)	667.0	1,530	1.F33	667.3	667.7	667,3	
ORP (mV)	222	183	170	165	154	IŠI	
Visual Description	Clear -				a the spirite of a state of the spirite of the spir		
Other							
Other							

Sample ID	Time	Quantity	Volume	Туре	Preservative	Analysis
MW-9	1122	3	40ml	NUA	HL	TPHg by EPA 8015
W						BTEX,MTBE,ETBE,DIPE
						TAME,TBA,EDB,EDC-826

Casing Diameter	Gallons per Linear Foot
1.25"	0.077
1.5"	0.10
2"	0.16
3"	0.37
3.5"	0.50
4"	0.65
6"	1.46
8"	2.60

ATTACHMENT F

CERTIFIED ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY AND GEOTRACKER UPLOAD DOCUMENTATION

David Reinsma Trinity Source Group 500 Chestnut St,Suite 225 Santa Cruz, California 95060

Tel: 831-426-5600; Cell 831-227 4724

Fax: 831-426-5602 Email: dar@tsgcorp.net

RE: 966 89th Ave, Oakland, CA

Work Order No.: 1007090 Rev: 1

Dear David Reinsma:

Torrent Laboratory, Inc. received 2 sample(s) on July 21, 2010 for the analyses presented in the following Report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

H. S. Keelie	
	July 28, 2010
Nutan Kabir	Date

Total Page Count: 13 Page 1 of 13

Date: 7/28/2010

Client: Trinity Source Group

Project: 966 89th Ave, Oakland, CA

Work Order: 1007090

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Report revised to correct the Project Name per client request.

Rev1 7/30/10

Total Page Count: 13 Page 2 of 13

Sample Result Summary

Report prepared for: David Reinsma Date Received: 07/21/10

Trinity Source Group Date Reported: 07/28/10

SGP-1 1007090-001A

Parameters:	<u>Analysis</u> <u>Method</u>	<u>DF</u> <u>MDL</u>	<u>PQL</u>	Results ug/m3 or %
Carbon Dioxide	D1946	1.52 0.038	0.038	1.30%
Helium	D1946	1.52 0.0076	0.0076	0.25%
Oxygen	D1946	1.52 0.0380	0.0380	15.1%
Toluene	ETO15	2 1.9	3.8	90.3

SVP-1 1007090-002A

Parameters:	Analysis Method	<u>DF</u> <u>MDL</u>	<u>PQL</u>	Results ug/m3 or %
Carbon Dioxide	D1946	1.45 0.036	0.036	7.03%
Helium	D1946	1.45 0.0073	0.0073	0.26%
Oxygen	D1946	1.45 0.0363	0.0363	10.6%
Toluene	ETO15	2 1.9	3.8	78.6
o-Xylene	ETO15	2 1.6	4.3	5.29

Total Page Count: 13 Page 3 of 13

Report prepared for: David Reinsma Date Received: 07/21/10
Trinity Source Group Date Reported: 07/28/10

Client Sample ID: SGP-1 Lab Sample ID: 1007090-001A

Project Name/Location: 966 89th Ave, Oakland,CA Sample Matrix: Soil Vapor

Project Number:

Date/Time Sampled: 07/21/10 / 12:15 Certified Clean WO #:

Canister/Tube ID: 479 Received PSI: 13.3

Collection Volume (L): Corrected PSI:

Tag Number: 966 89th Ave.

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
MTBE	ETO15	NA	07/19/10	2	1.7	3.6	ND	ND		401520	NA
tert-Butanol	ETO15	NA	07/19/10	2	1.8	17	ND	ND		401520	NA
Diisopropyl ether (DIPE)	ETO15	NA	07/19/10	2	1.7	4.2	ND	ND		401520	NA
ETBE	ETO15	NA	07/19/10	2	1.3	4.2	ND	ND		401520	NA
Benzene	ETO15	NA	07/19/10	2	1.4	3.2	ND	ND		401520	NA
TAME	ETO15	NA	07/19/10	2	0.72	4.2	ND	ND		401520	NA
1,2-Dichloroethane (EDC)	ETO15	NA	07/19/10	2	1.9	4.1	ND	ND		401520	NA
Toluene	ETO15	NA	07/19/10	2	1.9	3.8	90.3	23.95		401520	NA
1,2-Dibromoethane (EDB)	ETO15	NA	07/19/10	2	4.1	15	ND	ND		401520	NA
Ethyl Benzene	ETO15	NA	07/19/10	2	2.0	4.3	ND	ND		401520	NA
m,p-Xylene	ETO15	NA	07/19/10	2	3.3	8.7	ND	ND		401520	NA
o-Xylene	ETO15	NA	07/19/10	2	1.6	4.3	ND	ND		401520	NA
(S) 4-Bromofluorobenzene	ETO15	NA	07/19/10	2	65	135	95.0 %			401520	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
TPH-Gasoline	ETO3	NΔ	07/19/10	4	700	1400	ND	ND		401535	NΔ

NOTE: Reporting limit was raised due to low initial canister pressure.

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL %	Results %	Results ppmv	Lab Qualifier	Analytical Batch	Prep Batch
Carbon Dioxide	D1946	NA	07/23/10	1.52	0.038	0.038	1.30			401556	NA
Helium	D1946	NA	07/23/10	1.52	0.0076	0.0076	0.25			401556	NA
Oxygen	D1946	NA	07/23/10	1.52	0.0380	0.0380	15.1			401556	NA
Methane	D1946	NA	07/23/10	1.52	0.0008	0.0008	ND	ND		401556	NA

Total Page Count: 13 Page 4 of 13

Corrected PSI:

Report prepared for: David Reinsma Date Received: 07/21/10 Trinity Source Group Date Reported: 07/28/10

Client Sample ID: SVP-1 Lab Sample ID: 1007090-002A Sample Matrix: Soil Vapor

Project Name/Location: 966 89th Ave, Oakland, CA

Project Number:

Date/Time Sampled: 07/21/10 / 13:56 Certified Clean WO #:

Canister/Tube ID: 858 Received PSI: 12.5

Collection Volume (L):

Tag Number: 966 89th Ave.

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
					J		ŭ	• •			
MTBE	ETO15	NA	07/19/10	2	1.7	3.6	ND	ND		401520	NA
tert-Butanol	ETO15	NA	07/19/10	2	1.8	17	ND	ND		401520	NA
Diisopropyl ether (DIPE)	ETO15	NA	07/19/10	2	1.7	4.2	ND	ND		401520	NA
ETBE	ETO15	NA	07/19/10	2	1.3	4.2	ND	ND		401520	NA
Benzene	ETO15	NA	07/19/10	2	1.4	3.2	ND	ND		401520	NA
TAME	ETO15	NA	07/19/10	2	0.72	4.2	ND	ND		401520	NA
1,2-Dichloroethane (EDC)	ETO15	NA	07/19/10	2	1.9	4.1	ND	ND		401520	NA
Toluene	ETO15	NA	07/19/10	2	1.9	3.8	78.6	20.85		401520	NA
1,2-Dibromoethane (EDB)	ETO15	NA	07/19/10	2	4.1	15	ND	ND		401520	NA
Ethyl Benzene	ETO15	NA	07/19/10	2	2.0	4.3	ND	ND		401520	NA
m,p-Xylene	ETO15	NA	07/19/10	2	3.3	8.7	ND	ND		401520	NA
o-Xylene	ETO15	NA	07/19/10	2	1.6	4.3	5.29	1.22		401520	NA
(S) 4-Bromofluorobenzene	ETO15	NA	07/19/10	2	65	135	85.0 %			401520	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
TPH-Gasoline	ETO3	NΔ	07/19/10	4	700	1400	ND	ND		401535	NΔ

NOTE: Reporting limit was raised due to low initial canister pressure.

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL %	Results %	Results ppmv	Lab Qualifier	Analytical Batch	Prep Batch
Carbon Dioxide	D1946	NA	07/23/10	1.45	0.036	0.036	7.03			401556	NA
Helium	D1946	NA	07/23/10	1.45	0.0073	0.0073	0.26			401556	NA
Oxygen	D1946	NA	07/23/10	1.45	0.0363	0.0363	10.6			401556	NA
Methane	D1946	NA	07/23/10	1.45	0.0007	0.0007	ND	ND		401556	NA

Total Page Count: 13 Page 5 of 13

MB Summary Report

Work Order: 1007090 Prep Method: NA Prep Date: NA Prep Batch: NA Matrix: Analytical ETO15 Analyzed Date: 07/19/10 Analytical 401520 Air Method: Batch: Units: ppbv

<u> </u>	1	1	T	
Parameters	MDL	PQL	Method Blank	Lab Qualifier
			Conc.	
Dichlorodifluoromethane	0.30	1.00	ND	
1,1-Difluoroethane	0.18	0.500	ND	
1,2-Dichlorotetrafluoroethane	0.70	2.00	ND	
Chloromethane	0.15	0.500	ND	
Vinyl Chloride	0.26	1.00	ND	
1,3-Butadiene	0.20	0.500	ND	
Bromomethane	0.18	0.500	ND	
Chloroethane	0.19	0.500	ND	
Trichlorofluoromethane	0.32	1.00	ND	
1,1-Dichloroethene	0.15	0.500	ND	
Freon 113	0.11	0.500	ND	
Carbon Disulfide	0.26	1.00	ND	
2-Propanol (Isopropyl Alcohol)	0.39	4.00	ND	
Methylene Chloride	0.17	0.500	ND	
Acetone	0.37	4.00	ND	
trans-1,2-Dichloroethene	0.16	0.500	ND	
Hexane	0.15	0.500	ND	
MTBE	0.24	0.500	ND	
tert-Butanol	0.22	2.00	ND	
Diisopropyl ether (DIPE)	0.21	0.500	ND	
1,1-Dichloroethane	0.18	0.500	ND	
ETBE	0.16	0.500	ND	
cis-1,2-Dichloroethene	0.13	0.500	ND	
Chloroform	0.25	1.00	ND	
Vinyl Acetate	0.16	0.500	ND	
Carbon Tetrachloride	0.14	0.500	ND	
1,1,1-Trichloroethane	0.15	0.500	ND	
2-Butanone (MEK)	0.21	0.500	ND	
Ethyl Acetate	0.21	0.500	ND	
Tetrahydrofuran	0.10	0.500	ND	
Benzene	0.21	0.500	ND	
TAME	0.086	0.500	ND	
1,2-Dichloroethane (EDC)	0.24	0.500	ND	
Trichloroethylene	0.26	1.00	ND	
1,2-Dichloropropane	0.29	1.00	ND	
Bromodichloromethane	0.13	0.500	ND	
1,4-Dioxane	0.35	1.00	ND	
•				

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 13 Page 6 of 13

TPH-Gasoline

50

100

ND

MB Summary Report

				MB Sun	nmary Re	eport			
Work Order:	1007090	Prep I	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Air	Analy	tical	ETO15	Anal	yzed Date:	07/19/10	Analytical	401520
Units:	ppbv	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
trans-1,3-Dichloro	propene	0.19	0.500	ND					
Toluene		0.25	0.500	ND					
4-Methyl-2-Pentar	none (MIBK)	0.21	0.500	ND					
cis-1,3-Dichloropr		0.25	0.500	ND					
Tetrachloroethyle		0.23	0.500	ND					
1,1,2-Trichloroeth		0.17	0.500	ND					
Dibromochlorome		0.20	0.500	ND					
1,2-Dibromoethan		0.27	1.00	ND					
2-Hexanone	,	0.27	1.00	ND					
Ethyl Benzene		0.23	0.500	ND					
Chlorobenzene		0.15	0.500	ND					
1,1,1,2-Tetrachlor	oethane	0.15	0.500	ND					
m,p-Xylene		0.38	1.00	ND					
o-Xylene		0.19	0.500	ND					
Styrene		0.16	0.500	ND					
Bromoform		0.11	0.500	ND					
1,1,2,2-Tetrachlor	oethane	0.10	0.500	ND					
4-Ethyl Toluene		0.17	0.500	ND					
1,3,5-Trimethylbe	nzene	0.15	0.500	ND					
1,2,4-Trimethylbe		0.14	0.500	ND					
1,4-Dichlorobenze		0.11	0.500	ND					
1,3-Dichlorobenze		0.14	0.500	ND					
Benzyl Chloride		0.12	0.500	ND					
1,2-Dichlorobenze	ene	0.15	0.500	ND					
Hexachlorobutadi		0.22	0.500	ND					
1,2,4-Trichlorober		0.46	1.00	ND					
Naphthalene		0.28	1.00	ND					
(S) 4-Bromofluoro	benzene	-		129 %					
Work Order:	1007090	Prep I	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Air	Analy		ETO3	Anal	yzed Date:	07/19/10	Analytical	401535
Units:	ppbv	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 13 Page 7 of 13

MB Summary Report

Work Order:	1007090	Prep Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Air	Analytical	D1946	Analyzed Date:	07/23/10	Analytical	401556
Units:	%	Method:				Batch:	

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier
bon Dioxide	0.025	0.025	ND	
Helium	0.0050	0.0050	ND	
Oxygen	0.025	0.025	ND	
Methane	0.0005	0.0005	ND	

Total Page Count: 13 Page 8 of 13

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

						, ,		
Work Order:	1007090	Prep Method:	NA	Prep Date:	NA	Prep Batch:	NA	
Matrix:	Air	Analytical	ETO15	Analyzed Date:	07/19/10	Analytical	401520	
Units:	ppbv	Method:				Batch:		

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroethene	0.15	0.500		20	113	121	6.37	65 - 135	30	
Benzene	0.21	0.500		20	125	122	1.90	65 - 135	30	
Trichloroethylene	0.26	1.00		20	115	108	6.52	65 - 135	30	
Toluene	0.25	0.500		20	106	104	1.81	65 - 135	30	
Chlorobenzene	0.15	0.500		20	98.8	89.1	10.3	65 - 135	30	
(S) 4-Bromofluorobenzene				20	105	100		65 - 135		

Work Order:	1007090	Prep Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Air	Analytical Method:	ETO3	Analyzed Date:	07/19/10	Analytical Batch:	401535
Units:	ppbv	wethou:				batch:	

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH-Gasoline	50	100		500	87.1	87.7	0.636	50 - 150	30	

Work Order:	1007090	Prep Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Air	Analytical	D1946	Analyzed Date:	07/23/10	Analytical	401556
Units:	%	Method:				Batch:	

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
Carbon Dioxide	0.0250	0.0250		2500	97.6	94.4	3.39	65 - 135	30	
Helium	0.0050	0.0050		1000	89.4	89.1	0.325	65 - 135	30	
Oxygen	0.0250	0.0250		2500	86.3	85.4	0.992	65 - 135		
Methane	0.0005	0.0005		2500	96.0	98.1	2.21	65 - 135	30	

Total Page Count: 13 Page 9 of 13

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - **mg/L** and **mg/Kg** (equivalent to PPM - parts per million in **liquid** and **solid**), **ug/L** and **ug/Kg** (equivalent to PPB - parts per billion in **liquid** and **solid**), **ug/m3**, **mg.m3**, **ppbv** and **ppmv** (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), **ug/Wipe** (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

- B Indicates when the anlayte is found in the associated method or preparation blank
- **D** Surrogate is not recoverable due to the necessary dilution of the sample
- **E** Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.
- H- Indicates that the recommended holding time for the analyte or compound has been exceeded
- J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative
- NA Not Analyzed
- N/A Not Applicable
- NR Not recoverable a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added
- R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts
- S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case parrative
- **X** -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards. Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Sample Receipt Checklist

Client Name: Trinity Source Group Date and Time Received: 7/21/2010 15:55

Project Name: 966 89th Ave, Oakland,CA Received By: PPATEL

Work Order No.: 1007090 Physically Logged By: PPATEL

Checklist Completed By: NG

Carrier Name: Client Droped off

Chain of Custody (COC) Information

Chain of custody present? <u>Yes</u>

Chain of custody signed when relinquished and received? Yes

Chain of custody agrees with sample labels? Yes

Custody seals intact on sample bottles? <u>Not Present</u>

Sample Receipt Information

Custody seals intact on shipping container/cooler?

Not Present

Shipping Container/Cooler In Good Condition? <u>Yes</u>

Samples in proper container/bottle? <u>Yes</u>

Samples containers intact? Yes

Sufficient sample volume for indicated test?

Yes

Sample Preservation and Hold Time (HT) Information

All samples received within holding time? Yes

Container/Temp Blank temperature in compliance? Temperature: °C

Water-VOA vials have zero headspace? No VOA vials submitted

Water-pH acceptable upon receipt? N/A

pH Checked by: pH Adjusted by:

Total Page Count: 13 Page 11 of 13

Login Summary Report

Client ID: TL5109 Trinity Source Group QC Level:

Project Name:966 89th Ave, Oakland,CATAT Requested:5+ day:0Project #:Date Received:7/21/2010

Report Due Date: 7/28/2010 Time Received: 15:55

Comments: 5 day TAT! Received 2 summas for TO-3,TO-15 pet, ASTMD-1946.

Work Order #: 1007090

WO Sample ID	Client Sample ID	Collection Date/Time	<u>Matrix</u>	Scheduled Disposal		<u>Test</u> On Hold	Requested Tests	Subbed
1007090-001A	SGP-1	07/21/10 12:15	Air				EDF A_TO-3GRO A_YD-1946FG A_TO-15Pet	
Sample Note:	TO-3, MBTEX,ETBE,DIPE,	TAME,DIPE,TBA,	EDB,EDC,	He,O2,CO2,CI	H4 for both	samples.		
1007090-001A1.5 2x	SGP-1	07/21/10 12:15	Air					
4007000 00440	000.4	07/04/40 40 45					A_YD-1946FG	
1007090-001A2x	SGP-1	07/21/10 12:15	Air				A TO-15Pet	
1007090-001A4x	SGP-1	07/21/10 12:15	Air				7_10 101 01	
4007000 0004	CVD 4	07/04/40 40.50	۸:-				A_TO-3GRO	
1007090-002A	SVP-1	07/21/10 13:56	Air				A_TO-3GRO A_YD-1946FG A_TO-15Pet	
1007090-002A1.4 5x	SVP-1	07/21/10 13:56	Air				7-10 101 dt	
	0.15						A_YD-1946FG	
1007090-002A2x	SVP-1	07/21/10 13:56	Air				A_TO-15Pet	
1007090-002A4x	SVP-1	07/21/10 13:56	Air				7_10-101 Gt	
							A_TO-3GRO	

Total Page Count: 13 Page 12 of 13

	483 Sinclair Frontag Milpitas, CA 95035 Phone: 408.263.52 FAX: 408.263.8293 www.torrentlab.com		• NO	OTE: SHA		IN REAS						ONLY •	10	AB WORK ORDER NO
Company Name: TRINITY Soul	RCEGROUP	, INC.		Locati	ion of S	ampling	: 96	6 1	sth	A V	(Oak	land	CA
Address: SOU CHESTNUT	ST SUI	TEZ	is	Purpo	se: Se	111	SAS	SA	MPL	1111	7			
City: SANTACRUZ Sta	te: CA	Zip Code:	95060	Specia	al Instru	ictions /	Comm	ents:						
Telephone: (131) 426-5600 FAX:	(831) 426-	5602							7					
REPORT TO: DAVE REINSMA	SAMPLER: 821	CCHO	1	P.O. 1	#: 30	8.00	02.0	000		MAIL:	ABS	TPI	עודוע	EGMAIL com
TURNAROUND TIME: 10 Work Days 3 Work Days Noon - Nxl 7 Work Days 2 Work Days 2 - 8 Hours 5 Work Days 1 Work Day Other	Day Storm Water Waste Water Ground Water Soil	Air Other		FORMAT: vel IV EDD	EPA 8260B - Full List EPA 8260B - 8010 List	☐ THP gas ☐ BTEX ☐ Oxygenates ☐ MTBE	THP Diesel Si-Gel Motor Oil	Pesticide - 8081	HELLING -1946D	百二	2 8270 Full List PAHs Only	TPH8-T0-3	BTEX, MTBE, ETBE, DIPE, TAME BA FOR, 20C-TO-1S	ANALYSIS REQUESTED
LAB ID CLIENT'S SAMPLE I.D.	DATE / TIME SAMPLED	MATRIX	# OF CONT	CONT		F 6	<u></u>		語る	Metals	28.7	TPH	EX ST	REMARKS
001A SGP-1	7/21/10@	AIR	i	SUMA					X			×	×	-6"Ha
001A SGP-1 7/21/10 @ AIR I SUMA X XX -61/1 002A SVP-1 7/21/10 @ AIR I SUMA X XX -61/1								-6" Mg						
			4											
1 Relinquished By: E Print:	H01 Pate: 12	1/10	Time:	Spm		ved By:	Bodo	rsor		NAVI	IN G		21-10	Time: 3:55 f. m
2 Relinquished By: Print:	Date:		Time:		Recen	ed By:			Print:			Date:		Time:
Were Samples Received in Good Condition? NOTE: Samples are discarded by the labor Log In By:				r arrange	1	d of Ship ts are ma		7)	10 . Da	te:	S	ample s	eals intact?	Yes NO NA

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 13 Page 13 of 13

David Reinsma Trinity Source Group 500 Chestnut St,Suite 225 Santa Cruz, California 95060

Tel: 831-426-5600; Cell 831-227 4724

Fax: 831-426-5602 Email: dar@tsgcorp.net

RE: 966 89th Ave, Oakland, CA

Work Order No.: 1007099

Dear David Reinsma:

Torrent Laboratory, Inc. received 8 sample(s) on July 22, 2010 for the analyses presented in the following Report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

Calledon	
	July 29, 2010
Patti Sandrock	Date

Total Page Count: 19 Page 1 of 19

Date: 7/29/2010

Client: Trinity Source Group

Project: 966 89th Ave,Oakland, CA

Work Order: 1007099

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Total Page Count: 19 Page 2 of 19

MW-1R

Sample Result Summary

Report prepared for: David Reinsma Date Received: 07/22/10

Trinity Source Group Date Reported: 07/29/10

1007099-001A

<u>Parameters:</u>
<u>Analysis</u> <u>DF MDL PQL Results Unit</u>
<u>Method</u>

All compounds were non-detectable for this sample.

MW-2 1007099-002A

Parameters:	Analysis Method	<u>DF</u>	MDL	<u>PQL</u>	Results	<u>Unit</u>
MTBE	SW8260B	1	0.38	0.50	3.4	ug/L
Benzene	SW8260B	1	0.33	0.50	2.0	ug/L
TAME	SW8260B	1	0.32	0.50	1.4	ug/L

MW-3 1007099-003A

Parameters:	<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
MTBE	SW8260B	1	0.38	0.50	2.4	ug/L
Benzene	SW8260B	1	0.33	0.50	9.2	ug/L
TAME	SW8260B	1	0.32	0.50	1.8	ug/L
Ethyl Benzene	SW8260B	1	0.15	0.50	5.6	ug/L
TPH(Gasoline)	SW8015B	1	22	50	170	ug/L

MW-5 1007099-004A

Parameters:	Analysis Method	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	Results	<u>Unit</u>
MTBE	SW8260B	1	0.38	0.50	1.0	ug/L
TAME	SW8260B	1	0.32	0.50	0.98	ug/L

MW-6 1007099-005A

Parameters:	<u>Analysis</u>	DF	<u>MDL</u>	<u>PQL</u>	Results	<u>Unit</u>
	Method					

All compounds were non-detectable for this sample.

Total Page Count: 19 Page 3 of 19

MW-7

Sample Result Summary

Report prepared for: David Reinsma Date Received: 07/22/10

Trinity Source Group Date Reported: 07/29/10

1007099-006A

MW-8 1007099-007A

 Parameters:
 Analysis Method
 DF MDL Method
 PQL PQL PQL PQL PQL
 Unit

 MTBE
 SW8260B
 1
 0.38
 0.50
 0.82
 ug/L

MW-9 1007099-008A

Parameters:	<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	<u>PQL</u>	Results	<u>Unit</u>
MTBE	SW8260B	1	0.38	0.50	1.6	ug/L
TAME	SW8260B	1	0.32	0.50	13	ua/l

Total Page Count: 19 Page 4 of 19

Report prepared for: David Reinsma Date Received: 07/22/10
Trinity Source Group Date Reported: 07/29/10

Client Sample ID:MW-1RLab Sample ID:1007099-001AProject Name/Location:966 89th Ave,Oakland, CASample Matrix:Groundwater

 Project Number:
 308-002-004

 Date/Time Sampled:
 07/22/10 / 13:18

 Tag Number:
 966 89th Ave.

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	07/27/10	1	0.38	0.50	ND		ug/L	401584	NA
tert-Butanol	SW8260B	NA	07/27/10	1	1.5	5.0	ND		ug/L	401584	NA
Diisopropyl ether (DIPE)	SW8260B	NA	07/27/10	1	0.36	0.50	ND		ug/L	401584	NA
ETBE	SW8260B	NA	07/27/10	1	0.40	0.50	ND		ug/L	401584	NA
Benzene	SW8260B	NA	07/27/10	1	0.33	0.50	ND		ug/L	401584	NA
TAME	SW8260B	NA	07/27/10	1	0.32	0.50	ND		ug/L	401584	NA
1,2-Dichloroethane	SW8260B	NA	07/27/10	1	0.28	0.50	ND		ug/L	401584	NA
Toluene	SW8260B	NA	07/27/10	1	0.19	0.50	ND		ug/L	401584	NA
1,2-Dibromoethane	SW8260B	NA	07/27/10	1	0.19	0.50	ND		ug/L	401584	NA
Ethyl Benzene	SW8260B	NA	07/27/10	1	0.15	0.50	ND		ug/L	401584	NA
m,p-Xylene	SW8260B	NA	07/27/10	1	0.20	1.0	ND		ug/L	401584	NA
o-Xylene	SW8260B	NA	07/27/10	1	0.13	0.50	ND		ug/L	401584	NA
(S) Dibromofluoromethane	SW8260B	NA	07/27/10	1	61.2	131	91.4		%	401584	NA
(S) Toluene-d8	SW8260B	NA	07/27/10	1	75.1	127	78.4		%	401584	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	07/27/10	1	64.1	120	101		%	401584	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	SW8015B	NA	07/28/10	1	22	50	ND	1	ug/L	401604	NA
(S) TFT	SW8015B	NA	07/28/10	1	34	114	60.5		%	401604	NA

Total Page Count: 19 Page 5 of 19

Report prepared for: David Reinsma Date Received: 07/22/10
Trinity Source Group Date Reported: 07/29/10

Client Sample ID:MW-2Lab Sample ID:1007099-002AProject Name/Location:966 89th Ave,Oakland, CASample Matrix:Groundwater

 Project Number:
 308-002-004

 Date/Time Sampled:
 07/22/10 / 13:45

 Tag Number:
 966 89th Ave.

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	07/27/10	1	0.38	0.50	3.4		ug/L	401584	NA
tert-Butanol	SW8260B	NA	07/27/10	1	1.5	5.0	ND		ug/L	401584	NA
Diisopropyl ether (DIPE)	SW8260B	NA	07/27/10	1	0.36	0.50	ND		ug/L	401584	NA
ETBE	SW8260B	NA	07/27/10	1	0.40	0.50	ND		ug/L	401584	NA
Benzene	SW8260B	NA	07/27/10	1	0.33	0.50	2.0		ug/L	401584	NA
TAME	SW8260B	NA	07/27/10	1	0.32	0.50	1.4		ug/L	401584	NA
1,2-Dichloroethane	SW8260B	NA	07/27/10	1	0.28	0.50	ND		ug/L	401584	NA
Toluene	SW8260B	NA	07/27/10	1	0.19	0.50	ND		ug/L	401584	NA
1,2-Dibromoethane	SW8260B	NA	07/27/10	1	0.19	0.50	ND		ug/L	401584	NA
Ethyl Benzene	SW8260B	NA	07/27/10	1	0.15	0.50	ND		ug/L	401584	NA
m,p-Xylene	SW8260B	NA	07/27/10	1	0.20	1.0	ND		ug/L	401584	NA
o-Xylene	SW8260B	NA	07/27/10	1	0.13	0.50	ND		ug/L	401584	NA
(S) Dibromofluoromethane	SW8260B	NA	07/27/10	1	61.2	131	97.4		%	401584	NA
(S) Toluene-d8	SW8260B	NA	07/27/10	1	75.1	127	81.9		%	401584	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	07/27/10	1	64.1	120	108		%	401584	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	SW8015B	NA	07/28/10	1	22	50	ND		ug/L	401604	NA
(S) TFT	SW8015B	NA	07/28/10	1	34	114	107		%	401604	NA

Total Page Count: 19 Page 6 of 19

Report prepared for: David Reinsma Date Received: 07/22/10
Trinity Source Group Date Reported: 07/29/10

Client Sample ID:MW-3Lab Sample ID:1007099-003AProject Name/Location:966 89th Ave,Oakland, CASample Matrix:Groundwater

 Project Number:
 308-002-004

 Date/Time Sampled:
 07/22/10 / 14:00

 Tag Number:
 966 89th Ave.

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	07/27/10	1	0.38	0.50	2.4		ug/L	401584	NA
tert-Butanol	SW8260B	NA	07/27/10	1	1.5	5.0	ND		ug/L	401584	NA
Diisopropyl ether (DIPE)	SW8260B	NA	07/27/10	1	0.36	0.50	ND		ug/L	401584	NA
ETBE	SW8260B	NA	07/27/10	1	0.40	0.50	ND		ug/L	401584	NA
Benzene	SW8260B	NA	07/27/10	1	0.33	0.50	9.2		ug/L	401584	NA
TAME	SW8260B	NA	07/27/10	1	0.32	0.50	1.8		ug/L	401584	NA
1,2-Dichloroethane	SW8260B	NA	07/27/10	1	0.28	0.50	ND		ug/L	401584	NA
Toluene	SW8260B	NA	07/27/10	1	0.19	0.50	ND		ug/L	401584	NA
1,2-Dibromoethane	SW8260B	NA	07/27/10	1	0.19	0.50	ND		ug/L	401584	NA
Ethyl Benzene	SW8260B	NA	07/27/10	1	0.15	0.50	5.6		ug/L	401584	NA
m,p-Xylene	SW8260B	NA	07/27/10	1	0.20	1.0	ND		ug/L	401584	NA
o-Xylene	SW8260B	NA	07/27/10	1	0.13	0.50	ND		ug/L	401584	NA
(S) Dibromofluoromethane	SW8260B	NA	07/27/10	1	61.2	131	91.8		%	401584	NA
(S) Toluene-d8	SW8260B	NA	07/27/10	1	75.1	127	83.9		%	401584	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	07/27/10	1	64.1	120	112		%	401584	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	SW8015B	NA	07/28/10	1	22	50	170	Х	ug/L	401604	NA
(S) TFT	SW8015B	NA	07/28/10	1	34	114	90.7		%	401604	NA

NOTE: x - Not typical of Gasoline standard pattern. Hydrocarbons in the range of C5-C12 quantified as Gasoline.

Total Page Count: 19 Page 7 of 19

Report prepared for: David Reinsma Date Received: 07/22/10
Trinity Source Group Date Reported: 07/29/10

Client Sample ID:MW-5Lab Sample ID:1007099-004AProject Name/Location:966 89th Ave,Oakland, CASample Matrix:Groundwater

 Project Number:
 308-002-004

 Date/Time Sampled:
 07/22/10 / 12:05

 Tag Number:
 966 89th Ave.

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	07/27/10	1	0.38	0.50	1.0		ug/L	401584	NA
tert-Butanol	SW8260B	NA	07/27/10	1	1.5	5.0	ND		ug/L	401584	NA
Diisopropyl ether (DIPE)	SW8260B	NA	07/27/10	1	0.36	0.50	ND		ug/L	401584	NA
ETBE	SW8260B	NA	07/27/10	1	0.40	0.50	ND		ug/L	401584	NA
Benzene	SW8260B	NA	07/27/10	1	0.33	0.50	ND		ug/L	401584	NA
TAME	SW8260B	NA	07/27/10	1	0.32	0.50	0.98		ug/L	401584	NA
1,2-Dichloroethane	SW8260B	NA	07/27/10	1	0.28	0.50	ND		ug/L	401584	NA
Toluene	SW8260B	NA	07/27/10	1	0.19	0.50	ND		ug/L	401584	NA
1,2-Dibromoethane	SW8260B	NA	07/27/10	1	0.19	0.50	ND		ug/L	401584	NA
Ethyl Benzene	SW8260B	NA	07/27/10	1	0.15	0.50	ND		ug/L	401584	NA
m,p-Xylene	SW8260B	NA	07/27/10	1	0.20	1.0	ND		ug/L	401584	NA
o-Xylene	SW8260B	NA	07/27/10	1	0.13	0.50	ND		ug/L	401584	NA
(S) Dibromofluoromethane	SW8260B	NA	07/27/10	1	61.2	131	89.0		%	401584	NA
(S) Toluene-d8	SW8260B	NA	07/27/10	1	75.1	127	82.8		%	401584	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	07/27/10	1	64.1	120	108		%	401584	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	SW8015B	NA	07/28/10	1	22	50	ND		ug/L	401604	NA
(S) TFT	SW8015B	NA	07/28/10	1	34	114	78.2		%	401604	NA

Total Page Count: 19 Page 8 of 19

Report prepared for: David Reinsma Date Received: 07/22/10
Trinity Source Group Date Reported: 07/29/10

Client Sample ID:MW-6Lab Sample ID:1007099-005AProject Name/Location:966 89th Ave,Oakland, CASample Matrix:Groundwater

 Project Number:
 308-002-004

 Date/Time Sampled:
 07/22/10 / 12:57

 Tag Number:
 966 89th Ave.

	Analysis	Prep	Date	DF	MDL	PQL	Results	Lab	Unit	Analytical	Prep
Parameters:	Method	Date	Analyzed					Qualifier		Batch	Batch
MTBE	SW8260B	NA	07/27/10	1	0.38	0.50	ND		ug/L	401584	NA
tert-Butanol	SW8260B	NA	07/27/10	1	1.5	5.0	ND		ug/L	401584	NA
Diisopropyl ether (DIPE)	SW8260B	NA	07/27/10	1	0.36	0.50	ND		ug/L	401584	NA
ETBE	SW8260B	NA	07/27/10	1	0.40	0.50	ND		ug/L	401584	NA
Benzene	SW8260B	NA	07/27/10	1	0.33	0.50	ND		ug/L	401584	NA
TAME	SW8260B	NA	07/27/10	1	0.32	0.50	ND		ug/L	401584	NA
1,2-Dichloroethane	SW8260B	NA	07/27/10	1	0.28	0.50	ND		ug/L	401584	NA
Toluene	SW8260B	NA	07/27/10	1	0.19	0.50	ND		ug/L	401584	NA
1,2-Dibromoethane	SW8260B	NA	07/27/10	1	0.19	0.50	ND		ug/L	401584	NA
Ethyl Benzene	SW8260B	NA	07/27/10	1	0.15	0.50	ND		ug/L	401584	NA
m,p-Xylene	SW8260B	NA	07/27/10	1	0.20	1.0	ND		ug/L	401584	NA
o-Xylene	SW8260B	NA	07/27/10	1	0.13	0.50	ND		ug/L	401584	NA
(S) Dibromofluoromethane	SW8260B	NA	07/27/10	1	61.2	131	100		%	401584	NA
(S) Toluene-d8	SW8260B	NA	07/27/10	1	75.1	127	86.3		%	401584	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	07/27/10	1	64.1	120	109		%	401584	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	SW8015B	NA	07/28/10	1	22	50	ND		ug/L	401604	NA
(S) TFT	SW8015B	NA	07/28/10	1	34	114	70.3		%	401604	NA

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 19 Page 9 of 19

Report prepared for: David Reinsma Date Received: 07/22/10
Trinity Source Group Date Reported: 07/29/10

Client Sample ID:MW-7Lab Sample ID:1007099-006AProject Name/Location:966 89th Ave,Oakland, CASample Matrix:Groundwater

 Project Number:
 308-002-004

 Date/Time Sampled:
 07/22/10 / 12:34

 Tag Number:
 966 89th Ave.

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	07/27/10	1	0.38	0.50	0.77		ug/L	401584	NA
tert-Butanol	SW8260B	NA	07/27/10	1	1.5	5.0	ND		ug/L	401584	NA
Diisopropyl ether (DIPE)	SW8260B	NA	07/27/10	1	0.36	0.50	ND		ug/L	401584	NA
ETBE	SW8260B	NA	07/27/10	1	0.40	0.50	ND		ug/L	401584	NA
Benzene	SW8260B	NA	07/27/10	1	0.33	0.50	ND		ug/L	401584	NA
TAME	SW8260B	NA	07/27/10	1	0.32	0.50	ND		ug/L	401584	NA
1,2-Dichloroethane	SW8260B	NA	07/27/10	1	0.28	0.50	ND		ug/L	401584	NA
Toluene	SW8260B	NA	07/27/10	1	0.19	0.50	ND		ug/L	401584	NA
1,2-Dibromoethane	SW8260B	NA	07/27/10	1	0.19	0.50	ND		ug/L	401584	NA
Ethyl Benzene	SW8260B	NA	07/27/10	1	0.15	0.50	ND		ug/L	401584	NA
m,p-Xylene	SW8260B	NA	07/27/10	1	0.20	1.0	ND		ug/L	401584	NA
o-Xylene	SW8260B	NA	07/27/10	1	0.13	0.50	ND		ug/L	401584	NA
(S) Dibromofluoromethane	SW8260B	NA	07/27/10	1	61.2	131	101		%	401584	NA
(S) Toluene-d8	SW8260B	NA	07/27/10	1	75.1	127	85.0		%	401584	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	07/27/10	1	64.1	120	109		%	401584	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	SW8015B	NA	07/28/10	1	22	50	ND		ug/L	401604	NA
(S) TFT	SW8015B	NA	07/28/10	1	34	114	78.3		%	401604	NA

Total Page Count: 19 Page 10 of 19

Report prepared for: David Reinsma Date Received: 07/22/10
Trinity Source Group Date Reported: 07/29/10

Client Sample ID:MW-8Lab Sample ID:1007099-007AProject Name/Location:966 89th Ave,Oakland, CASample Matrix:Groundwater

 Project Number:
 308-002-004

 Date/Time Sampled:
 07/22/10 / 11:44

 Tag Number:
 966 89th Ave.

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
			,u., _ u					4			
MTBE	SW8260B	NA	07/27/10	1	0.38	0.50	0.82		ug/L	401584	NA
tert-Butanol	SW8260B	NA	07/27/10	1	1.5	5.0	ND		ug/L	401584	NA
Diisopropyl ether (DIPE)	SW8260B	NA	07/27/10	1	0.36	0.50	ND		ug/L	401584	NA
ETBE	SW8260B	NA	07/27/10	1	0.40	0.50	ND		ug/L	401584	NA
Benzene	SW8260B	NA	07/27/10	1	0.33	0.50	ND		ug/L	401584	NA
TAME	SW8260B	NA	07/27/10	1	0.32	0.50	ND		ug/L	401584	NA
1,2-Dichloroethane	SW8260B	NA	07/27/10	1	0.28	0.50	ND		ug/L	401584	NA
Toluene	SW8260B	NA	07/27/10	1	0.19	0.50	ND		ug/L	401584	NA
1,2-Dibromoethane	SW8260B	NA	07/27/10	1	0.19	0.50	ND		ug/L	401584	NA
Ethyl Benzene	SW8260B	NA	07/27/10	1	0.15	0.50	ND		ug/L	401584	NA
m,p-Xylene	SW8260B	NA	07/27/10	1	0.20	1.0	ND		ug/L	401584	NA
o-Xylene	SW8260B	NA	07/27/10	1	0.13	0.50	ND		ug/L	401584	NA
(S) Dibromofluoromethane	SW8260B	NA	07/27/10	1	61.2	131	97.2		%	401584	NA
(S) Toluene-d8	SW8260B	NA	07/27/10	1	75.1	127	87.9		%	401584	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	07/27/10	1	64.1	120	104		%	401584	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	SW8015B	NA	07/28/10	1	22	50	ND	1	ug/L	401604	NA
(S) TFT	SW8015B	NA	07/28/10	1	34	114	90.8		%	401604	NA

Total Page Count: 19 Page 11 of 19

Report prepared for: David Reinsma Date Received: 07/22/10
Trinity Source Group Date Reported: 07/29/10

Client Sample ID:MW-9Lab Sample ID:1007099-008AProject Name/Location:966 89th Ave,Oakland, CASample Matrix:Groundwater

 Project Number:
 308-002-004

 Date/Time Sampled:
 07/22/10 / 11:22

 Tag Number:
 966 89th Ave.

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
											ĺ
MTBE	SW8260B	NA	07/27/10	1	0.38	0.50	1.6		ug/L	401584	NA
tert-Butanol	SW8260B	NA	07/27/10	1	1.5	5.0	ND		ug/L	401584	NA
Diisopropyl ether (DIPE)	SW8260B	NA	07/27/10	1	0.36	0.50	ND		ug/L	401584	NA
ETBE	SW8260B	NA	07/27/10	1	0.40	0.50	ND		ug/L	401584	NA
Benzene	SW8260B	NA	07/27/10	1	0.33	0.50	ND		ug/L	401584	NA
TAME	SW8260B	NA	07/27/10	1	0.32	0.50	1.3		ug/L	401584	NA
1,2-Dichloroethane	SW8260B	NA	07/27/10	1	0.28	0.50	ND		ug/L	401584	NA
Toluene	SW8260B	NA	07/27/10	1	0.19	0.50	ND		ug/L	401584	NA
1,2-Dibromoethane	SW8260B	NA	07/27/10	1	0.19	0.50	ND		ug/L	401584	NA
Ethyl Benzene	SW8260B	NA	07/27/10	1	0.15	0.50	ND		ug/L	401584	NA
m,p-Xylene	SW8260B	NA	07/27/10	1	0.20	1.0	ND		ug/L	401584	NA
o-Xylene	SW8260B	NA	07/27/10	1	0.13	0.50	ND		ug/L	401584	NA
(S) Dibromofluoromethane	SW8260B	NA	07/27/10	1	61.2	131	98.9		%	401584	NA
(S) Toluene-d8	SW8260B	NA	07/27/10	1	75.1	127	87.2		%	401584	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	07/27/10	1	64.1	120	106		%	401584	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	SW8015B	NA	07/28/10	1	22	50	ND		ug/L	401604	NA
(S) TFT	SW8015B	NA	07/28/10	1	34	114	56.2		%	401604	NA

Total Page Count: 19 Page 12 of 19

MB Summary Report

Work Order: 1007099 Prep Method: NA NA Prep Date: NA Prep Batch: Matrix: Water Analytical SW8260B **Analyzed Date:** 07/27/10 Analytical 401584 Method: Batch: Units: ug/L

Conc. Conc.					
Chloromethane 0.41 0.50 ND Vinyl Chloride 0.37 0.50 ND Bromomethane 0.37 0.50 ND Trichlorofluoromethane 0.34 0.50 ND Trichloroethene 0.29 0.50 ND Freon 113 0.38 0.50 ND Methylene Chloride 0.18 5.0 ND trans-1,2-Dichloroethene 0.31 0.50 ND MTBE 0.38 0.50 ND tert-Butanol 1.5 5.0 ND Diisopropyl ether (DIPE) 0.36 0.50 ND 1,1-Dichloroethane 0.28 0.50 ND 1,1-Dichloroethane 0.33 0.50 ND 2,2-Dichloropropane 0.37 0.50 ND Bromochloromethane 0.34 0.50 ND Christoffor 0.29 0.50 ND Carbon Tetrachloride 0.26 0.50 ND 1,1-Dichloroethane 0.	Parameters	MDL	PQL	Blank	Lab Qualifier
Chloromethane 0.41 0.50 ND Vinyl Chloride 0.37 0.50 ND Bromomethane 0.37 0.50 ND Trichlorofluoromethane 0.34 0.50 ND Trichloroethene 0.29 0.50 ND Freon 113 0.38 0.50 ND Methylene Chloride 0.18 5.0 ND trans-1,2-Dichloroethene 0.31 0.50 ND MTBE 0.38 0.50 ND tert-Butanol 1.5 5.0 ND Diisopropyl ether (DIPE) 0.36 0.50 ND 1,1-Dichloroethane 0.28 0.50 ND ETBE 0.40 0.50 ND cis-1,2-Dichloroethane 0.33 0.50 ND 2,2-Dichloropropane 0.37 0.50 ND Bromochloromethane 0.34 0.50 ND 1,1,1-Trichloroethane 0.32 0.50 ND 1,1-Dichloropropene 0.4	Dichlorodifluoromethane	0.41	0.50	ND	
Vinyl Chloride 0.37 0.50 ND Bromomethane 0.37 0.50 ND Trichlorofluoromethane 0.34 0.50 ND 1,1-Dichloroethene 0.29 0.50 ND Freon 113 0.38 0.50 ND Methylene Chloride 0.18 5.0 ND Mtrans-1,2-Dichloroethene 0.31 0.50 ND MTBE 0.38 0.50 ND tert-Butanol 1.5 5.0 ND Diisopropyl ether (DIPE) 0.36 0.50 ND 1,1-Dichloroethane 0.28 0.50 ND 1,1-Dichloroethane 0.28 0.50 ND ETBE 0.40 0.50 ND Cis-1,2-Dichloroethane 0.37 0.50 ND Promochloromethane 0.34 0.50 ND Carbon Tetrachloride 0.26 0.50 ND Carbon Tetrachloroethane 0.32 0.50 ND 1,1-Dichloropropene					
Bromomethane 0.37 0.50 ND Trichlorofluoromethane 0.34 0.50 ND 1,1-Dichloroethene 0.29 0.50 ND Freon 113 0.38 0.50 ND Methylene Chloride 0.18 5.0 ND trans-1,2-Dichloroethene 0.31 0.50 ND MTBE 0.38 0.50 ND tert-Butanol 1.5 5.0 ND Diisopropyl ether (DIPE) 0.36 0.50 ND 1,1-Dichloroethane 0.28 0.50 ND 1,1-Dichloroethane 0.28 0.50 ND ETBE 0.40 0.50 ND cis-1,2-Dichloroethane 0.37 0.50 ND Bromochloromethane 0.34 0.50 ND Carbon Tetrachloride 0.26 0.50 ND Carbon Tetrachloride 0.26 0.50 ND 1,1-Trichloroethane 0.32 0.50 ND 1,2-Dichloropropene	Vinyl Chloride		0.50	ND	
Trichlorofluoromethane 0.34 0.50 ND 1,1-Dichloroethene 0.29 0.50 ND Freon 113 0.38 0.50 ND Methylene Chloride 0.18 5.0 ND trans-1,2-Dichloroethene 0.31 0.50 ND MTBE 0.38 0.50 ND tert-Butanol 1.5 5.0 ND Diisopropyl ether (DIPE) 0.36 0.50 ND 1,1-Dichloroethane 0.28 0.50 ND 1,1-Dichloroethane 0.28 0.50 ND 1,1-Dichloroethane 0.33 0.50 ND 2,2-Dichloroethane 0.37 0.50 ND 2,2-Dichloroethane 0.34 0.50 ND Carbon Tetrachloride 0.26 0.50 ND Carbon Tetrachloride 0.26 0.50 ND 1,1-Tichloroethane 0.32 0.50 ND 1,1-Dichloropropene 0.40 0.50 ND 1,2-Dichlor	-				
1,1-Dichloroethene 0.29 0.50 ND Freon 113 0.38 0.50 ND Methylene Chloride 0.18 5.0 ND trans-1,2-Dichloroethene 0.31 0.50 ND MTBE 0.38 0.50 ND tert-Butanol 1.5 5.0 ND Diisopropyl ether (DIPE) 0.36 0.50 ND 1,1-Dichloroethane 0.28 0.50 ND ETBE 0.40 0.50 ND cis-1,2-Dichloroethene 0.33 0.50 ND 2,2-Dichloropropane 0.37 0.50 ND Bromochloromethane 0.34 0.50 ND Chloroform 0.29 0.50 ND Chloroethoroethane 0.32 0.50 ND 1,1-Trichloroethane 0.32 0.50 ND 1,1-Dichloropropene 0.40 0.50 ND 1,2-Dichloroethane 0.28 0.50 ND 1,2-Dichloropropane <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
Freon 113 0.38 0.50 ND Methylene Chloride 0.18 5.0 ND trans-1,2-Dichloroethene 0.31 0.50 ND MTBE 0.38 0.50 ND tert-Butanol 1.5 5.0 ND Diisopropyl ether (DIPE) 0.36 0.50 ND 1,1-Dichloroethane 0.28 0.50 ND 1,1-Dichloroethane 0.28 0.50 ND ETBE 0.40 0.50 ND 2,2-Dichloropropane 0.37 0.50 ND Bromochloromethane 0.34 0.50 ND Chloroform 0.29 0.50 ND Carbon Tetrachloride 0.26 0.50 ND 1,1-Trichloroethane 0.32 0.50 ND 1,1-Dichloropropene 0.40 0.50 ND 1,2-Dichloroethane 0.28 0.50 ND 1,2-Dichloroethane 0.28 0.50 ND 1,2-Dichloropropane	1,1-Dichloroethene		0.50	ND	
Methylene Chloride 0.18 5.0 ND trans-1,2-Dichloroethene 0.31 0.50 ND MTBE 0.38 0.50 ND tert-Butanol 1.5 5.0 ND Diisopropyl ether (DIPE) 0.36 0.50 ND 1,1-Dichloroethane 0.28 0.50 ND ETBE 0.40 0.50 ND cis-1,2-Dichloroethene 0.33 0.50 ND 2,2-Dichloropropane 0.37 0.50 ND Bromochloromethane 0.34 0.50 ND Chloroform 0.29 0.50 ND Carbon Tetrachloride 0.26 0.50 ND 1,1-Trichloroethane 0.32 0.50 ND 1,1-Dichloropropene 0.40 0.50 ND 1,2-Dichloroethane 0.28 0.50 ND 1,2-Dichloroethane 0.28 0.50 ND 1,2-Dichloropropane 0.37 0.50 ND Dibromodichloromethane<	·				
trans-1,2-Dichloroethene 0.31 0.50 ND MTBE 0.38 0.50 ND tert-Butanol 1.5 5.0 ND Diisopropyl ether (DIPE) 0.36 0.50 ND 1,1-Dichloroethane 0.28 0.50 ND 1,1-Dichloroethane 0.28 0.50 ND ETBE 0.40 0.50 ND cis-1,2-Dichloroethane 0.33 0.50 ND 2,2-Dichloropropane 0.37 0.50 ND Bromochloromethane 0.34 0.50 ND Chloroform 0.29 0.50 ND Carbon Tetrachloride 0.26 0.50 ND 1,1-Trichloroethane 0.32 0.50 ND 1,1-Dichloropropene 0.40 0.50 ND 1,2-Dichloroethane 0.28 0.50 ND TAME 0.32 0.50 ND 1,2-Dichloropropane 0.37 0.50 ND 1,2-Dichloropropane <td< td=""><td>Methylene Chloride</td><td></td><td></td><td></td><td></td></td<>	Methylene Chloride				
MTBE 0.38 0.50 ND tert-Butanol 1.5 5.0 ND Diisopropyl ether (DIPE) 0.36 0.50 ND 1,1-Dichloroethane 0.28 0.50 ND 1,1-Dichloroethane 0.28 0.50 ND ETBE 0.40 0.50 ND cis-1,2-Dichloroethene 0.33 0.50 ND 2,2-Dichloropropane 0.37 0.50 ND Bromochloromethane 0.34 0.50 ND Chloroform 0.29 0.50 ND Carbon Tetrachloride 0.26 0.50 ND 1,1-Trichloroethane 0.32 0.50 ND 1,1-Dichloropropene 0.40 0.50 ND 1,2-Dichloroethane 0.33 0.50 ND TAME 0.32 0.50 ND 1,2-Dichloropropane 0.38 0.50 ND 1,2-Dichloropropane 0.37 0.50 ND 1,2-Dichloropropene 0.30	trans-1,2-Dichloroethene			ND	
tert-Butanol 1.5 5.0 ND Diisopropyl ether (DIPE) 0.36 0.50 ND 1,1-Dichloroethane 0.28 0.50 ND ETBE 0.40 0.50 ND cis-1,2-Dichloroethene 0.33 0.50 ND 2,2-Dichloropropane 0.37 0.50 ND Bromochloromethane 0.34 0.50 ND Chloroform 0.29 0.50 ND Carbon Tetrachloride 0.26 0.50 ND Carbon Tetrachloride 0.26 0.50 ND 1,1,1-Trichloroethane 0.32 0.50 ND 1,1-Dichloropropene 0.40 0.50 ND 1,1-Dichloropropene 0.40 0.50 ND 1,2-Dichloroethane 0.32 0.50 ND 1,2-Dichloroethylene 0.38 0.50 ND Trichloroethylene 0.38 0.50 ND 1,2-Dichloropropane 0.37 0.50 ND Bromodic			0.50	ND	
Diisopropyl ether (DIPE) 0.36 0.50 ND 1,1-Dichloroethane 0.28 0.50 ND ETBE 0.40 0.50 ND cis-1,2-Dichloroethene 0.33 0.50 ND 2,2-Dichloropropane 0.37 0.50 ND Bromochloromethane 0.34 0.50 ND Chloroform 0.29 0.50 ND Carbon Tetrachloride 0.26 0.50 ND Carbon Tetrachloride 0.26 0.50 ND 1,1,1-Trichloroethane 0.32 0.50 ND 1,1-Dichloropropene 0.40 0.50 ND 1,1-Dichloropropene 0.40 0.50 ND 1,2-Dichloroethane 0.32 0.50 ND 1,2-Dichloroethylene 0.33 0.50 ND Trichloropropane 0.38 0.50 ND 1,2-Dichloropropane 0.37 0.50 ND Bromodichloromethane 0.23 0.50 ND <td< td=""><td>tert-Butanol</td><td></td><td>5.0</td><td></td><td></td></td<>	tert-Butanol		5.0		
1,1-Dichloroethane 0.28 0.50 ND ETBE 0.40 0.50 ND cis-1,2-Dichloroethene 0.33 0.50 ND 2,2-Dichloropropane 0.37 0.50 ND Bromochloromethane 0.34 0.50 ND Chloroform 0.29 0.50 ND Chloroform 0.29 0.50 ND Carbon Tetrachloride 0.26 0.50 ND Carbon Tetrachloride 0.26 0.50 ND 1,1,1-Trichloroethane 0.32 0.50 ND 1,1-Dichloropropene 0.40 0.50 ND Benzene 0.33 0.50 ND TAME 0.32 0.50 ND 1,2-Dichloroethane 0.28 0.50 ND Trickloroethylene 0.38 0.50 ND 1,2-Dichloropropane 0.37 0.50 ND Bromodichloromethane 0.23 0.50 ND Toluene 0.19				ND	
ETBE 0.40 0.50 ND cis-1,2-Dichloroethene 0.33 0.50 ND 2,2-Dichloropropane 0.37 0.50 ND Bromochloromethane 0.34 0.50 ND Chloroform 0.29 0.50 ND Carbon Tetrachloride 0.26 0.50 ND 1,1-Trichloroethane 0.32 0.50 ND 1,1-Dichloropropene 0.40 0.50 ND 1,1-Dichloropropene 0.40 0.50 ND Benzene 0.33 0.50 ND TAME 0.32 0.50 ND 1,2-Dichloroethane 0.28 0.50 ND Trichloroethylene 0.38 0.50 ND 1,2-Dichloropropane 0.37 0.50 ND 1,2-Dichloropropane 0.37 0.50 ND Bromodichloromethane 0.23 0.50 ND 2-Chloroethyl vinyl ether 0.91 2.0 ND Tetrachloroethylene				ND	
2,2-Dichloropropane 0.37 0.50 ND Bromochloromethane 0.34 0.50 ND Chloroform 0.29 0.50 ND Carbon Tetrachloride 0.26 0.50 ND 1,1,1-Trichloroethane 0.32 0.50 ND 1,1-Dichloropropene 0.40 0.50 ND Benzene 0.33 0.50 ND TAME 0.32 0.50 ND 1,2-Dichloroethane 0.28 0.50 ND Trichloroethylene 0.38 0.50 ND Dibromomethane 0.21 0.50 ND 1,2-Dichloropropane 0.37 0.50 ND Bromodichloromethane 0.23 0.50 ND 2-Chloroethyl vinyl ether 0.91 2.0 ND cis-1,3-Dichloropropene 0.30 0.50 ND Tetrachloroethylene 0.15 0.50 ND trans-1,3-Dichloropropene 0.20 0.50 ND 1,1,2-Tri		0.40	0.50	ND	
Bromochloromethane 0.34 0.50 ND Chloroform 0.29 0.50 ND Carbon Tetrachloride 0.26 0.50 ND 1,1,1-Trichloroethane 0.32 0.50 ND 1,1-Dichloropropene 0.40 0.50 ND Benzene 0.33 0.50 ND TAME 0.32 0.50 ND 1,2-Dichloroethane 0.28 0.50 ND Trichloroethylene 0.38 0.50 ND Dibromomethane 0.21 0.50 ND 1,2-Dichloropropane 0.37 0.50 ND 1,2-Dichloromethane 0.23 0.50 ND 2-Chloroethyl vinyl ether 0.91 2.0 ND cis-1,3-Dichloropropene 0.30 0.50 ND Toluene 0.19 0.50 ND Tetrachloroethylene 0.15 0.50 ND trans-1,3-Dichloropropene 0.20 0.50 ND 1,1,2-Trichloroethane<	cis-1,2-Dichloroethene	0.33	0.50	ND	
Chloroform 0.29 0.50 ND Carbon Tetrachloride 0.26 0.50 ND 1,1,1-Trichloroethane 0.32 0.50 ND 1,1-Dichloropropene 0.40 0.50 ND Benzene 0.33 0.50 ND TAME 0.32 0.50 ND 1,2-Dichloroethane 0.28 0.50 ND Trichloroethylene 0.38 0.50 ND Dibromomethane 0.21 0.50 ND 1,2-Dichloropropane 0.37 0.50 ND Bromodichloromethane 0.23 0.50 ND 2-Chloroethyl vinyl ether 0.91 2.0 ND cis-1,3-Dichloropropene 0.30 0.50 ND Toluene 0.19 0.50 ND Tetrachloroethylene 0.15 0.50 ND trans-1,3-Dichloropropene 0.20 0.50 ND 1,1,2-Trichloroethane 0.20 0.50 ND Dibromochlorometha	2,2-Dichloropropane	0.37	0.50	ND	
Carbon Tetrachloride 0.26 0.50 ND 1,1,1-Trichloroethane 0.32 0.50 ND 1,1-Dichloropropene 0.40 0.50 ND Benzene 0.33 0.50 ND TAME 0.32 0.50 ND 1,2-Dichloroethane 0.28 0.50 ND 1,2-Dichloroethylene 0.38 0.50 ND Dibromomethane 0.21 0.50 ND 1,2-Dichloropropane 0.37 0.50 ND Bromodichloromethane 0.23 0.50 ND 2-Chloroethyl vinyl ether 0.91 2.0 ND cis-1,3-Dichloropropene 0.30 0.50 ND Toluene 0.19 0.50 ND Tetrachloroethylene 0.15 0.50 ND trans-1,3-Dichloropropene 0.20 0.50 ND 1,1,2-Trichloroethane 0.20 0.50 ND Dibromochloromethane 0.21 0.50 ND 1,3-D	Bromochloromethane	0.34	0.50	ND	
1,1,1-Trichloroethane 0.32 0.50 ND 1,1-Dichloropropene 0.40 0.50 ND Benzene 0.33 0.50 ND TAME 0.32 0.50 ND 1,2-Dichloroethane 0.28 0.50 ND Trichloroethylene 0.38 0.50 ND Dibromomethane 0.21 0.50 ND 1,2-Dichloropropane 0.37 0.50 ND Bromodichloromethane 0.23 0.50 ND 2-Chloroethyl vinyl ether 0.91 2.0 ND cis-1,3-Dichloropropene 0.30 0.50 ND Toluene 0.19 0.50 ND Tetrachloroethylene 0.15 0.50 ND trans-1,3-Dichloropropene 0.20 0.50 ND 1,1,2-Trichloroethane 0.20 0.50 ND Dibromochloromethane 0.21 0.50 ND 1,3-Dichloropropane 0.18 0.50 ND	Chloroform	0.29	0.50	ND	
1,1-Dichloropropene 0.40 0.50 ND Benzene 0.33 0.50 ND TAME 0.32 0.50 ND 1,2-Dichloroethane 0.28 0.50 ND Trichloroethylene 0.38 0.50 ND Dibromomethane 0.21 0.50 ND 1,2-Dichloropropane 0.37 0.50 ND Bromodichloromethane 0.23 0.50 ND 2-Chloroethyl vinyl ether 0.91 2.0 ND cis-1,3-Dichloropropene 0.30 0.50 ND Toluene 0.19 0.50 ND Tetrachloroethylene 0.15 0.50 ND trans-1,3-Dichloropropene 0.20 0.50 ND 1,1,2-Trichloroethane 0.20 0.50 ND Dibromochloromethane 0.21 0.50 ND 1,3-Dichloropropane 0.18 0.50 ND	Carbon Tetrachloride	0.26	0.50	ND	
Benzene 0.33 0.50 ND TAME 0.32 0.50 ND 1,2-Dichloroethane 0.28 0.50 ND Trichloroethylene 0.38 0.50 ND Dibromomethane 0.21 0.50 ND 1,2-Dichloropropane 0.37 0.50 ND Bromodichloromethane 0.23 0.50 ND 2-Chloroethyl vinyl ether 0.91 2.0 ND cis-1,3-Dichloropropene 0.30 0.50 ND Toluene 0.19 0.50 ND Tetrachloroethylene 0.15 0.50 ND trans-1,3-Dichloropropene 0.20 0.50 ND 1,1,2-Trichloroethane 0.20 0.50 ND Dibromochloromethane 0.21 0.50 ND 1,3-Dichloropropane 0.18 0.50 ND	1,1,1-Trichloroethane	0.32	0.50	ND	
TAME 0.32 0.50 ND 1,2-Dichloroethane 0.28 0.50 ND Trichloroethylene 0.38 0.50 ND Dibromomethane 0.21 0.50 ND 1,2-Dichloropropane 0.37 0.50 ND Bromodichloromethane 0.23 0.50 ND 2-Chloroethyl vinyl ether 0.91 2.0 ND cis-1,3-Dichloropropene 0.30 0.50 ND Toluene 0.19 0.50 ND Tetrachloroethylene 0.15 0.50 ND trans-1,3-Dichloropropene 0.20 0.50 ND 1,1,2-Trichloroethane 0.20 0.50 ND Dibromochloromethane 0.21 0.50 ND 1,3-Dichloropropane 0.18 0.50 ND	1,1-Dichloropropene	0.40	0.50	ND	
1,2-Dichloroethane 0.28 0.50 ND Trichloroethylene 0.38 0.50 ND Dibromomethane 0.21 0.50 ND 1,2-Dichloropropane 0.37 0.50 ND Bromodichloromethane 0.23 0.50 ND 2-Chloroethyl vinyl ether 0.91 2.0 ND cis-1,3-Dichloropropene 0.30 0.50 ND Toluene 0.19 0.50 ND Tetrachloroethylene 0.15 0.50 ND trans-1,3-Dichloropropene 0.20 0.50 ND 1,1,2-Trichloroethane 0.20 0.50 ND Dibromochloromethane 0.21 0.50 ND 1,3-Dichloropropane 0.18 0.50 ND	Benzene	0.33	0.50	ND	
Trichloroethylene 0.38 0.50 ND Dibromomethane 0.21 0.50 ND 1,2-Dichloropropane 0.37 0.50 ND Bromodichloromethane 0.23 0.50 ND 2-Chloroethyl vinyl ether 0.91 2.0 ND cis-1,3-Dichloropropene 0.30 0.50 ND Toluene 0.19 0.50 ND Tetrachloroethylene 0.15 0.50 ND trans-1,3-Dichloropropene 0.20 0.50 ND 1,1,2-Trichloroethane 0.20 0.50 ND Dibromochloromethane 0.21 0.50 ND 1,3-Dichloropropane 0.18 0.50 ND	TAME	0.32	0.50	ND	
Dibromomethane 0.21 0.50 ND 1,2-Dichloropropane 0.37 0.50 ND Bromodichloromethane 0.23 0.50 ND 2-Chloroethyl vinyl ether 0.91 2.0 ND cis-1,3-Dichloropropene 0.30 0.50 ND Toluene 0.19 0.50 ND Tetrachloroethylene 0.15 0.50 ND trans-1,3-Dichloropropene 0.20 0.50 ND 1,1,2-Trichloroethane 0.20 0.50 ND Dibromochloromethane 0.21 0.50 ND 1,3-Dichloropropane 0.18 0.50 ND	1,2-Dichloroethane	0.28	0.50	ND	
1,2-Dichloropropane 0.37 0.50 ND Bromodichloromethane 0.23 0.50 ND 2-Chloroethyl vinyl ether 0.91 2.0 ND cis-1,3-Dichloropropene 0.30 0.50 ND Toluene 0.19 0.50 ND Tetrachloroethylene 0.15 0.50 ND trans-1,3-Dichloropropene 0.20 0.50 ND 1,1,2-Trichloroethane 0.20 0.50 ND Dibromochloromethane 0.21 0.50 ND 1,3-Dichloropropane 0.18 0.50 ND		0.38	0.50	ND	
Bromodichloromethane 0.23 0.50 ND 2-Chloroethyl vinyl ether 0.91 2.0 ND cis-1,3-Dichloropropene 0.30 0.50 ND Toluene 0.19 0.50 ND Tetrachloroethylene 0.15 0.50 ND trans-1,3-Dichloropropene 0.20 0.50 ND 1,1,2-Trichloroethane 0.20 0.50 ND Dibromochloromethane 0.21 0.50 ND 1,3-Dichloropropane 0.18 0.50 ND		0.21	0.50	ND	
2-Chloroethyl vinyl ether 0.91 2.0 ND cis-1,3-Dichloropropene 0.30 0.50 ND Toluene 0.19 0.50 ND Tetrachloroethylene 0.15 0.50 ND trans-1,3-Dichloropropene 0.20 0.50 ND 1,1,2-Trichloroethane 0.20 0.50 ND Dibromochloromethane 0.21 0.50 ND 1,3-Dichloropropane 0.18 0.50 ND	1,2-Dichloropropane	0.37	0.50	ND	
cis-1,3-Dichloropropene 0.30 0.50 ND Toluene 0.19 0.50 ND Tetrachloroethylene 0.15 0.50 ND trans-1,3-Dichloropropene 0.20 0.50 ND 1,1,2-Trichloroethane 0.20 0.50 ND Dibromochloromethane 0.21 0.50 ND 1,3-Dichloropropane 0.18 0.50 ND	Bromodichloromethane	0.23	0.50	ND	
Toluene 0.19 0.50 ND Tetrachloroethylene 0.15 0.50 ND trans-1,3-Dichloropropene 0.20 0.50 ND 1,1,2-Trichloroethane 0.20 0.50 ND Dibromochloromethane 0.21 0.50 ND 1,3-Dichloropropane 0.18 0.50 ND	2-Chloroethyl vinyl ether	0.91	2.0	ND	
Tetrachloroethylene 0.15 0.50 ND trans-1,3-Dichloropropene 0.20 0.50 ND 1,1,2-Trichloroethane 0.20 0.50 ND Dibromochloromethane 0.21 0.50 ND 1,3-Dichloropropane 0.18 0.50 ND	cis-1,3-Dichloropropene	0.30	0.50	ND	
trans-1,3-Dichloropropene 0.20 0.50 ND 1,1,2-Trichloroethane 0.20 0.50 ND Dibromochloromethane 0.21 0.50 ND 1,3-Dichloropropane 0.18 0.50 ND			0.50	ND	
1,1,2-Trichloroethane 0.20 0.50 ND Dibromochloromethane 0.21 0.50 ND 1,3-Dichloropropane 0.18 0.50 ND	Tetrachloroethylene	0.15	0.50	ND	
Dibromochloromethane 0.21 0.50 ND 1,3-Dichloropropane 0.18 0.50 ND	trans-1,3-Dichloropropene	0.20	0.50	ND	
1,3-Dichloropropane 0.18 0.50 ND	1,1,2-Trichloroethane	0.20	0.50	ND	
		0.21	0.50	ND	
1.3 Dibramosthana 0.10 0.50 ND	1,3-Dichloropropane	0.18	0.50	ND	
1,2-Dibioindethalie 0.19 0.50 ND	1,2-Dibromoethane	0.19	0.50	ND	
Chlorobenzene 0.14 0.50 ND	Chlorobenzene	0.14	0.50	ND	
Ethyl Benzene 0.15 0.50 ND	Ethyl Benzene	0.15	0.50	ND	
1,1,1,2-Tetrachloroethane 0.10 0.50 ND		0.10	0.50	ND	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 19 Page 13 of 19

(S) TFT

MB Summary Report

				MID Sur	nmary Re	eport			
Work Order:	1007099	Prep M	lethod:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Water	Analyti		SW8260B	Anal	yzed Date:	07/27/10	Analytical	401584
Units:	ug/L	Method	d:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
m,p-Xylene		0.20	1.0	ND					
o-Xylene		0.13	0.50	ND					
Styrene		0.20	0.50	ND					
Bromoform		0.45	1.0	ND					
Isopropyl Benzer	ne	0.28	0.50	ND					
Bromobenzene		0.39	0.50	ND					
1,1,2,2-Tetrachlo	roethane	0.26	0.50	ND					
n-Propylbenzene		0.30	0.50	ND					
2-Chlorotoluene		0.33	0.50	ND					
1,3,5-Trimethylbe	enzene	0.20	0.50	ND					
4-Chlorotoluene		0.32	0.50	ND					
tert-Butylbenzene	Э	0.29	0.50	ND					
1,2,3-Trichloropro		0.59	1.0	ND					
1,2,4-Trimethylbe		0.33	0.50	ND					
sec-Butyl Benzer		0.24	0.50	ND					
p-Isopropyltoluen		0.25	0.50	ND					
1,3-Dichlorobenz		0.31	0.50	ND					
1,4-Dichlorobenz		0.37	0.50	ND					
n-Butylbenzene		0.32	0.50	ND					
1,2-Dichlorobenz	ene	0.39	0.50	ND					
1,2-Dibromo-3-C		0.45	1.0	ND					
Hexachlorobutad		0.22	0.50	ND					
1,2,4-Trichlorobe		0.48	1.0	ND					
Naphthalene		0.57	1.0	ND					
1,2,3-Trichlorobe	nzene	0.52	1.0	ND					
Ethanol		100	100	ND	TIC				
(S) Dibromofluoro	omethane			95.2					
(S) Toluene-d8				81.7					
(S) 4-Bromofluor	obenzene			102					
Work Order:	1007099	Prep M	lethod:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Water	Analyti		SW8015B	-	yzed Date:	07/28/10	Analytical	401604
		Method				-		Batch:	
Units:	ug/L								
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
TPH(Gasoline)		22	50	22	,	<u> </u>			
(S) TET				100					

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

109

Total Page Count: 19 Page 14 of 19

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

Work Order:	1007099	Prep Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Water	Analytical	SW8260B	Analyzed Date:	07/27/10	Analytical	401584
Units:	ug/L	Method:				Batch:	

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroethene	0.29	0.50		17.04	108	104	3.82	61.4 - 129	30	
Benzene	0.33	0.50		17.04	101	104	2.17	66.9 - 140	30	
Trichloroethylene	0.38	0.50		17.04	110	105	4.88	69.3 - 144	30	
Toluene	0.19	0.50		17.04	108	105	2.64	76.6 - 123	30	
Chlorobenzene	0.14	0.50		17.04	109	111	1.82	73.9 - 137	30	
(S) Dibromofluoromethane				11.36	82.5	90.6		61.2 - 131		
(S) Toluene-d8				11.36	83.4	87.7		75.1 - 127		
(S) 4-Bromofluorobenzene				11.36	104	105		64.1 - 120		

Work Order:	1007099	Prep Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Water	Analytical Method:	SW8015B	Analyzed Date:	07/28/10	Analytical Batch:	401604
Units:	ug/L	wethou.				Daton.	

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH(Gasoline)	22	50		227.27	105	109	3.83	52.4 - 127	30	
(S) TFT				113.6	104	71.7		58.4 - 133		

Total Page Count: 19 Page 15 of 19

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - **mg/L** and **mg/Kg** (equivalent to PPM - parts per million in **liquid** and **solid**), **ug/L** and **ug/Kg** (equivalent to PPB - parts per billion in **liquid** and **solid**), **ug/m3**, **mg.m3**, **ppbv** and **ppmv** (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), **ug/Wipe** (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

- B Indicates when the anlayte is found in the associated method or preparation blank
- **D** Surrogate is not recoverable due to the necessary dilution of the sample
- E Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.
- H- Indicates that the recommended holding time for the analyte or compound has been exceeded
- J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative
- NA Not Analyzed
- N/A Not Applicable
- NR Not recoverable a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added
- R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts
- S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case parrative
- **X** -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards. Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Sample Receipt Checklist

Client Name: Trinity Source Group Date and Time Received: 7/22/2010 15:55

Project Name: 966 89th Ave,Oakland, CA Received By: NK

Work Order No.: 1007099 Physically Logged By: YB

Checklist Completed By: YB

Carrier Name:

Chain of Custody (COC) Information

Chain of custody present? <u>Yes</u>

Chain of custody signed when relinquished and received? Yes

Chain of custody agrees with sample labels? Yes

Custody seals intact on sample bottles? <u>Not Present</u>

Sample Receipt Information

Custody seals intact on shipping container/cooler?

Not Present

Shipping Container/Cooler In Good Condition? <u>Yes</u>

Samples in proper container/bottle? Yes

Samples containers intact? Yes

Sufficient sample volume for indicated test?

Yes

Sample Preservation and Hold Time (HT) Information

All samples received within holding time? Yes

Container/Temp Blank temperature in compliance? Temperature: 4 °C

Water-VOA vials have zero headspace? Yes

Water-pH acceptable upon receipt?

pH Checked by: pH Adjusted by:

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 19

Page 17 of 19

Login Summary Report

Client ID: TL5109 Trinity Source Group QC Level:

 Project Name:
 966 89th Ave,Oakland, CA
 TAT Requested:
 5+ day:0

 Project #:
 308-002-004
 Date Received:
 7/22/2010

Report Due Date: 7/29/2010 Time Received: 15:55

Comments: 5 day TAT! Received 8 waters for TPHg by 8015 and BTEX,Oxys by 8260.

Work Order #: 1007099

WO Sample ID	<u>Client</u> <u>Sample ID</u>	Collection Date/Time	<u>Matrix</u>		Sample On Hold	<u>Test</u> On Hold	Requested Tests	Subbed
1007099-001A	MW-1R	07/22/10 13:18	Water	09/05/10			W_8260Pet W_GC GRO	
Sample Note:	TPH-g by 8015, BTEX, 5	oxygenates, EDB, E	DC for all s	amples.			_	
1007099-002A	MW-2	07/22/10 13:45	Water	09/05/10			W_8260Pet	
1007099-003A	MW-3	07/22/10 14:00	Water	09/05/10			W_GC GRO W_8260Pet	
1007099-004A	MW-5	07/22/10 12:05	Water	09/05/10			W_GC GRO	
1007099-005A	MW-6	07/22/10 12:57	Water	09/05/10			W_8260Pet W_GC GRO	
4007000 0004	A 4) A / ¬7	07/00/40 40 04	NA	00/05/40			W_8260Pet W_GC GRO	
1007099-006A	MW-7	07/22/10 12:34	Water	09/05/10			W_8260Pet W_GC GRO	
1007099-007A	MW-8	07/22/10 11:44	Water	09/05/10			W_8260Pet	
1007099-008A	MW-9	07/22/10 11:22	Water	09/05/10			W_GC GRO	
							W_8260Pet W_GC GRO	

Total Page Count: 19 Page 18 of 19

Torrent LABORATORY, INC.	483 Sinclair Frontag Milpitas, CA 95035 Phone: 408.263.52: FAX: 408.263.8293 www.torrentlab.com	58	· NOT	C E: SHAI	HAIN DED AREA	OF	CUST RITORREN	ODY	NLY•)	LABV	VORK ORDER NO 4989 100709	9
Company Name: TRINITYS	MRCE GROW	PINC		Locatio	on of Sampli	ng: 966	89th	ALL: 0	akla	4 O	4	
Address SOO CHESTNUT		TEZ	25	Purpos	se:One-	TIME	GW	salm	148			
City: SAINTA CRUZ St	ate: C	Zip Code	95060	Specia	I Instruction	s / Commer	nts:					
Telephone: (331) 426-SWUFAX REPORT TO: DAVE REINEMA	(831)426-	5602							- 1	1-1-0		-
REPORT TO: DAVE KEINIMA	SAMPLER: EPI	CCH	01	P.O. #	308,0) \	EMAIL: LAB	TRIN	itye	SMAIL COM	ļ
TURNAROUND TIME:	SAMPLE TYPE	:	REPORT FO	ORMAT:		TEA,	ត្ត	^ -				
10 Work Days 3 Work Days Noon - N	Macta Mater	Air Other	QC Level		`	5,78 5,78	8				ANALYSIS REQUESTED	
7 Work Days 2 Work Days 2 - 8 Hou	Ground Water		Excel / EC	DO	PH8 by 8015	TAME				1		,
LAB ID CLIENT'S SAMPLE I.D.	DATE / TIME SAMPLED	MATRIX		CONT TYPE	7	BTC)					REMARKS	
-0014 MW-1R	7/2410 @	WATER	3 1	24Q1	X	X				6.30		
- 002A MW-2	7/2110@ 1345 7/21/10@		3 1	240	X	X				715	The state of the s	[AB
- DO3A MW-3	7/2/10@		3	icas	X	X				12 (1 m m m m m m m m m m m m m m m m m m		FORRENT
Mb-4	7		3									TORF
0044 MW-S	7/22/10 @		3 V	2AO	X	X				10 10-17 11 10-17 11 10-17 11 11-18 12 11-18 13 11-18 14 11-18 15 11-18 16 11-		S - State - Adolphia
- 2008 A MM-6	7/22/10@		3 V	UAS	χ	A				Tribania Services Services Services Services		1,432.1
3-WM 4800- -004 MW-7 -0084 MW-9	7/22/10@ 1234		3 V	10AS	X	1				7 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	00	
-0074 MW-8	7/22/100		3 V	2401	X	X				1	mp 4°C	
D-WM #800-	7/22/100	٧	3 V	10/45	χ	X				1	3/11.40	
The state of the s										13.1		
Relinquished By Frint:	01 Date:	2/10	Time:	3	Received B	is but	Print		Date:	22/10	Time:	
"nquished By: Print:	Date:		Time:		Received B		Print		Date:	apay a siya Jarah S	Time:	
'in Good Condition?	_		_		Method of Si	nipment	Dle	tt :	Sample sea	ls intact?	Yes NO NO	ΙA
by the labo	ratory 30 days from dat	or section in say	unless other a og In Review	1	-ments are	made.		removed the	anning -	Page	J of	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 19 Page 19 of 19

GEOTRACKER ESI

UPLOADING A GEO_WELL FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

<u>Submittal</u>

GEO_WELL

<u>Type:</u> Submittal

SOILGASINVESTIGATIONANDGROUNDWATERMONITORINGREPORTDEPTH

Title:

-TO-WATERDATA

Facility Global ID:

T0600101573

Facility

FIESTA BEVERAGE

Name: File Name:

GEO_WELL.zip

Organization

Trinity Source Group, Inc.

Name:

<u>Username:</u>

TRINITY SOURCE GROUP

IP Address:

69.198.129.110

Submittal Date/Time:

8/30/2010 11:17:13 AM

Confirmation

<u>Number:</u>

1885896086

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: EDF - Other Report / Document

Submittal Title: SOILINVESTIGATIONANDGROUNDWATERMONITORINGREPORT

Facility Global ID: T0600101573

Facility Name: FIESTA BEVERAGE

File Name: TSG 1007090 966 89th Ave EDF.zip

Organization Name: Trinity Source Group, Inc.
Username: TRINITY SOURCE GROUP

IP Address: 69.198.129.110

Submittal Date/Time: 8/30/2010 10:48:35 AM

Confirmation Number: 5556378960

VIEW QC REPORT

VIEW DETECTIONS REPORT

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:

EDF - Other Report / Document

Submittal Title:

SOILGASINVESTIGATIONANDGROUNDWATERMONITORINGREPORTGW

Facility Global ID:

T0600101573

Facility Name:

FIESTA BEVERAGE

File Name:

TSG 1007099 966 89th Ave EDF.zip

<u>Organization</u>

Trinity Source Group, Inc.

Name: Username:

TRINITY SOURCE GROUP

IP Address:

69.198.129.110

Submittal

Date/Time:

8/30/2010 10:49:39 AM

Confirmation

Number:

1022531092

VIEW QC REPORT

VIEW DETECTIONS REPORT

GEOTRACKER ESI

UPLOADING A GEO_REPORT FILE

SUCCESS

Your GEO_REPORT file has been successfully submitted!

Submittal

GEO_REPORT

Type: Report Title:

SOILGASINVESTIGATIONANDGROUNDWATERMONITORINGREPORT

Report Type:

Other Report / Document

Report Date:

8/30/2010

Facility

T0600101573

Global ID: Facility Name:

FIESTA BEVERAGE

File Name:

RO0000314_Former Fiesta Beverage_Soil Gas Investigation and

Groundwater Monitoring Report 8.30.2010.pdf

Organization

Name:

Trinity Source Group, Inc.

TRINITY SOURCE GROUP

Username: IP Address:

69.198.129.110

Submittal Date/Time:

Number:

8/30/2010 11:37:14 AM

Confirmation

7456338346

ATTACHMENT G

HISTORICAL GROUNDWATER MONITORING DATA, BLYMYER ENGINEERS, DECEMBER 15, 2008

		700 07 til 1	avenue, Oar	nana, Cami	J1 1114		
Well ID	Sample Date	Modified EPA Method 8015 (µg/L)	EPA Method 8020 or 8021B (µg/L)				
		TPH as Gasoline	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
N	MCL	N/A	1	150	700	1,750	13
Drinking V	Vater Source 1	100	1	40	30	20	5
	nking Water urce ²	500	46	130	290	100	1,800
MW-1	8/6/1993	17,000	7.1	8.4	9.2	53	NA
	1/12/1996	12,000	1,900	840	370	1,100	NA
	4/16/1996	3,500	700	55	100	180	NA
	7/15/1996	11,000	2,300	450	350	910	NA
	10/16/1996	21,000	4,200	2,200	650	2,600	NA
	12/15/1998	10,000	1,800	520	270	1,100	<350
	1/18/2001	11,000 ^a	2,000	320	320	1,100	<120
	4/25/2001	2,100 ^{a, c}	270	46	59	130	< 5.0
	3/17/2003*	2,200 ^a	260	19	36	54	NA ^d
	6/23/2003	6,100 ^a	930	53	99	200	NA
	9/18/2003	3,800 ^a	660	13	24	34	NA
	12/15/2003	260 ^a	19	1.1	< 0.5	1.5	NA
	6/15/2004	5,200 ^a	520	13	38	39	< 50
	12/15/2004	2,400 ^a	370	8.2	13	14	<15
	6/29/2005	5,500 ^a	750	27	94	140	<100
	5/8/2006	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed
	2/19/2007	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed
	6/21/2007	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed
	11/8/2007	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed
	2/28/2008	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed
	5/29/2008	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed
	8/27/2008	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed
	11/25/2008	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed

	700 osta rivenue, Sakiana, Cantorna								
Well ID	Sample Date	Modified EPA Method 8015 (µg/L)		EPA Method 8020 or 8021B (μg/L)					
		TPH as Gasoline	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE		
ı	MCL	N/A	1	150	700	1,750	13		
Drinking V	Vater Source 1	100	1	40	30	20	5		
	nking Water urce ²	500	46	130	290	100	1,800		
MW-1R	6/13/2006	90 ^a	24	< 0.5	< 0.5	1.9	7.0		
	2/19/2007	200 ^a	8	0.80	12	8.7	< 5.0		
	6/21/2007	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0		
	8/9/2007	870 ^a	140	6.30	23	22	<10		
	11/8/2007	3,800 ^a	330	22	140	130	<30		
	2/28/2008	150 ^a	5.5	< 0.5	3.9	2.2	< 5.0		
	5/29/2008	690 ^a	44	2	35	7.8	< 5.0		
	8/27/2008	190 ^a	14	< 0.5	8.1	1.5	< 5.0		
	11/25/2008	130 ^a	11	< 0.5	10	1.5	< 5.0		

Table II, Summary of Groundwater Sample Hydrocarbon Analytical Results BEI Job No. 203004, Former Fiesta Beverage 966 89th Avenue, Oakland, California Modified EPA EPA Method 8020 or 8021B Method 8015 $(\mu g/L)$ Well ID Sample Date $(\mu g/L)$ TPH as Gasoline Benzene Toluene Ethylbenzene Total Xylenes **MTBE MCL** N/A 1 150 700 1,750 13 Drinking Water Source 1 100 1 40 30 20 5 Non-Drinking Water 500 46 130 290 100 1,800 Source ² MW-2 8/6/1993 2,700 1.3 1.7 2.0 NA 8.1 1/12/1996 2,700 600 310 94 220 NA 4/16/1996 190 **39** 11 10 14 NA 7/15/1996 700 160 33 34 48 NA 10/16/1996 190 48 8.2 **10** 13 NA 4.4 ^b 12/15/1998 200 **62 17** 4.9 14 1/18/2001 300^a 74 26 7.3 21 7.3 4/25/2001 <50° 4.5 2.2 0.6 1.9 < 5.0 78 ^a NA^{d} 26 1.5 3.5 3/17/2003* 3.3 6/23/2003 160 a 51 1.6 1.2 1.8 NA 9/18/2003 < 50 < 0.5 NA 2.1 < 0.5 < 0.5 < 50 NA 12/15/2003 12 < 0.5 < 0.5 < 0.5 95 a 6/15/2004 15 1.3 1.8 1.2 < 30 12/15/2004 < 50 11 0.97 0.6 0.9 **7.8** 6/29/2005 130 29 2.000 3.3 6.7 3.4 6/13/2006 150 a **59** 3.0 3.4 2.7 11 51 ^a 8 2.8 7.1 2/19/2007 1.6 1.0 6/21/2007 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 8/9/2007 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0

23

1.3

< 0.5

1.1

1.2

11/8/2007

2/28/2008

5/29/2008

8/27/2008

11/25/2008

160 a

< 50

< 50

< 50

< 50

5.0

< 0.5

< 0.5

< 0.5

< 0.5

5.3

< 0.5

< 0.5

< 0.5

< 0.5

< 10

< 5.0

< 5.0

< 5.0

< 5.0

14

< 0.5

< 0.5

< 0.5

< 0.5

		966 89th A	Avenue, Oak	dand, Calif	ornia			
Well ID	Sample Date	Modified EPA Method 8015 (μg/L)	hod 8015 EPA Method 8020 or 8021B (ug/L)					
		TPH as Gasoline	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	
1	MCL	N/A	1	150	700	1,750	13	
Drinking V	Vater Source ¹	100	1	40	30	20	5	
	nking Water urce ²	500	46	130	290	100	1,800	
MW-3	8/6/1993	5,200	2.1	2.9	3.6	17	NA	
	1/12/1996	4,500	280	180	120	470	NA	
	4/16/1996	5,400	370	340	160	580	NA	
	7/15/1996	1,800	200	220	66	250	NA	
	10/16/1996	2,000	340	140	100	300	NA	
	12/15/1998	1,400	200	39	72	150	<22	
	1/18/2001	1,800 ^a	240	41	86	120	<10	
	4/25/2001	8,300 ^{a, c}	300	330	200	1,100	<20	
	3/17/2003*	2,100 ^a	240	78	10	280	NA ^d	
	6/23/2003	<50	2.5	0.6	0.69	1.4	NA	
	9/18/2003	<50	< 0.5	< 0.5	< 0.5	< 0.5	NA	
	12/15/2003	2,400	300	120	140	260	NA	
	6/15/2004	<50	1.1	< 0.5	< 0.5	< 0.5	6.2	
	12/15/2004	1,600 ^a	140	83	83	230	<15	
	6/29/2005	230 ^a	27	6.1	7.2	15	<15	
	6/13/2006	68 ^a	3.1	1.8	< 0.5	< 0.5	< 5.0	
	2/19/2007	280 ^a	49	11	18	23	< 5.0	
	6/21/2007	1,500 ^a	120	64	62	250	< 50	
	8/9/2007	2,400 ^a	140	19	100	110	<65	
	11/8/2007	440 ^a	7.2	3.3	8.6	26	<15	
	2/28/2008	320 ^a	10	5.8	9.6	32	<12	
	5/29/2008	<50	1.0	< 0.5	< 0.5	< 0.5	<5.0	
	8/27/2008	<50	1.3	< 0.5	< 0.5	< 0.5	<5.0	
	11/25/2008	61 ^a	4.8	0.56	1.1	1.5	<5.0	

	900 89th Avenue, Oakiand, Cainornia							
Well ID	Sample Date	Modified EPA Method 8015 (μg/L)	EPA Method 8020 or 8021B (μg/L)					
		TPH as Gasoline	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	
1	MCL	N/A	1	150	700	1,750	13	
Drinking V	Water Source 1	100	1	40	30	20	5	
	nking Water urce ²	500	46	130	290	100	1,800	
MW-4	6/12/2006	<50	< 0.5	< 0.5	< 0.5	< 0.5	5.7	
	2/19/2007	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	6/21/2007	<50	< 0.5	< 0.5	< 0.5	< 0.5	5.9	
	11/8/2007	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	2/28/2008	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	5/29/2008	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	8/27/2008	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	11/25/2008	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
MW-5	6/12/2006	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	2/19/2007	<50	< 0.5	< 0.5	< 0.5	< 0.5	5.6	
	6/21/2007	<50	< 0.5	< 0.5	< 0.5	< 0.5	5.4	
	11/8/2007	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	2/28/2008	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	5/29/2008	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	8/27/2008	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	11/25/2008	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
MW-6	6/13/2006	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	2/19/2007	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	6/21/2007	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	11/8/2007	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	2/28/2008	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	5/29/2008	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	8/27/2008	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	11/25/2008	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	

	966 89th Avenue, Oakland, California							
Well ID	Sample Date	Modified EPA Method 8015 (μg/L)	EPA Method 8020 or 8021B (μg/L)					
		TPH as Gasoline	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	
N	MCL	N/A	1	150	700	1,750	13	
Drinking V	Vater Source 1	100	1	40	30	20	5	
	nking Water urce ²	500	46	130	290	100	1,800	
MW-7	6/12/2006	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	2/19/2007	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	6/21/2007	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	11/8/2007	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	2/28/2008	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	5/29/2008	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	8/27/2008	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	11/25/2008	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
MW-8	6/12/2006	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	2/19/2007	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	6/21/2007	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	11/8/2007	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	2/28/2008	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	5/29/2008	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	8/27/2008	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	11/25/2008	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
MW-9	6/12/2006	<50	< 0.5	< 0.5	< 0.5	< 0.5	5.6	
	2/19/2007	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	6/21/2007	<50	< 0.5	< 0.5	< 0.5	< 0.5	5.6	
	11/8/2007	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	2/28/2008	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	5/29/2008	<50	< 0.5	< 0.5	< 0.5	<0.5	< 5.0	
	8/27/2008	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	11/25/2008	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	

Table II, Summary of Groundwater Sample Hydrocarbon Analytical Results BEI Job No. 203004, Former Fiesta Beverage 966 89th Avenue, Oakland, California									
Well ID	Sample Date	Modified EPA Method 8015 (µg/L)	EPA Method 8020 or 8021B (µg/L)						
		TPH as Gasoline	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE		
1	MCL	N/A	1	150	700	1,750	13		
Drinking Water Source 1		100	1	40	30	20	5		
Non-Drinking Water Source ²		500	46	130	290	100	1,800		

Notes: ug/L = micrograms per liter

TPH = Total Petroleum Hydrocarbons

EPA = Environmental Protection Agency

MTBE = Methyl *tert* -Butyl Ether

RWQCB = California Regional Water Quality Control Board, San Francisco Bay Region

ESL = Environmental Screening Level

N/A = Not applicable

NA = Not analyzed

RBSL = Risk Based Screening Level

- $\langle x \rangle$ = Analyte not detected at reporting limit x
- * = Initial data set collected under direction of Blymyer Engineers, Inc.
- ^a = Laboratory note indicates the unmodified or weakly modified gasoline is significant.
- ^b = Confirmed with EPA Method 8260.
- ^c = Groundwater samples for MW-1 and MW-3 suspected to have been switched (mismarked) in field. First collection of groundwater samples after application of Hydrogen Peroxide on March 7, 2001.
- ^d = Analysis conducted by EPA Method 8260. See Table III.

Doid fesuits illu	icate detectable analyte concentrations.
	Note: Shaded cell indicates that detected concentration exceeds
	Non-Drinking Water ESL

¹ = From Table A; RWQCB Environmental Screening Levels (ESLs); Groundwater IS a Current or Potential Source of Drinking Water

² = From Table B; RWQCB Environmental Screening Levels (ESLs); Groundwater IS NOT a Current or Potential Source of Drinking Water