Fiesta Beverages 7150 Island Queen Dr. Sparks, NV 89436

RECEIVED

2:07 pm, Jan 20, 2009

Alameda County Environmental Health

Ms. Barbara Jakub Alameda County Environmental Health Department 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re:

Perjury Statement

Former Fiesta Beverages Facility 966 89th Avenue

Oakland, California

ACDEH Fuel Leak Site # RO0000314

Dear Ms. Jakub,

"I declare under penalty of perjury, that the information and / or recommendations contained in the attached proposal or report is true and correct to the best of my knowledge."

Fourth Quarter 2008 Groundwater Monitoring Event

Former Fiesta Beverages Facility 966 89th Avenue Oakland, California 94621 ACHCSA Fuel Leak Site # RO0000314

> December 15, 2008 BEI Job No. 203004

> > Prepared for:

Mr. Ted Walbey Fiesta Beverages 7150 Island Queen Dr. Sparks, NV 89436

Prepared by:

Blymyer Engineers, Inc. 1829 Clement Avenue Alameda, CA 94501-1395 (510) 521-3773

Limitations

Services performed by Blymyer Engineers, Inc. have been provided in accordance with generally accepted professional practices for the nature and conditions of similar work completed in the same or similar localities, at the time the work was performed. The scope of work for the project was conducted within the limitations prescribed by the client. This report is not meant to represent a legal opinion. No other warranty, expressed or implied, is made. This report was prepared for the sole use of the client, Fiesta Beverages.

Blymyer Engineers, Inc.

CERTIFIED ENGINEERING

Mark E. Detterman, CEG

Senior Geologist

Michael S Lewis RF

Vice President, Technical Services

Table of Contents

1.0 Intro	duction and Background1									
2.0 Grou	Groundwater Sample Collection and Analytical Methods 8									
3.0 Grou	Groundwater Flow Data and Groundwater Sample Analytical Results9									
4.0 Intrin	sic Bioremediation Groundwater Sample Analytical Results									
5.0 Cond	lusions and Recommendations									
	Tables									
Table I:	Summary of Groundwater Elevation Measurements									
Table II:	Summary of Groundwater Sample Hydrocarbon Analytical Results									
Table III:	Summary of Groundwater Sample Fuel Oxygenate Analytical Results									
Table IV:	Summary of Groundwater Intrinsic Bioremediation Field Results									
Table V:	Summary of Groundwater Intrinsic Bioremediation Analytical Results									
	Figures									
	rigures									
Figure 1:	Site Location Map									
Figure 2:	Site Plan and Groundwater Gradient, November 25, 2008									
Figure 3:	Concentration of TPHG vs. Time in Well MW-3									
Figure 4:	Concentration of Benzene vs. Time in Well MW-3									
Figure 5:	Concentration of TPHG vs. Time in Well MW-1 and MW-1R									
Figure 6:	Concentration of Benzene vs. Time in Well MW-1 and MW-1R									
	Appendix									
Appendix A	: Standard Operating Procedures, Blaine Tech Services, Inc.									
Appendix B	•									
Appendix C										

1.0 Introduction and Background

In August 1990, one 500-gallon and one 1,000-gallon gasoline underground storage tanks (USTs) were removed from the subject site (Figures 1 and 2). Soil and groundwater were reported to be impacted from releases from one or both USTs. Overexcavation of the former UST basins occurred in January 1991. The excavations were reported to have reached approximately 15 feet by 8 feet by 14 feet deep and 12 feet by 7 feet by 14 feet deep, respectively, on January 14, 1991. Beginning in April 1991, aeration of the soil occurred onsite. In April 1993, 74.28 tons of soil were transported to the Remco recycling facility.

In June 1993, groundwater monitoring wells MW-1, MW-2, and MW-3 were installed. In general, the wells encountered black to grey to light brown clay to a depth of approximately 15 below grade surface (bgs). At 15 feet bgs, the three bores encountered a 0.5- to 2.0-foot-thick clayey sand. Below this unit a light brown to grey clay was present to a depth of 18 to 21 feet bgs. Underneath this unit, a 1- to 3-foot-thick sand was encountered in bores MW-1 and MW-2, while a clayey silt was encountered in bore MW-3. Below approximately 21 feet bgs, a green-grey or black clay was encountered to the full explored depth of 26.5 feet bgs in bore MW-1 and to 25 feet bgs in bores MW-2 and MW-3. Saturated soil was encountered below a depth of approximately 13 feet bgs (in clay overlaying the uppermost sand unit). The wells were installed with a screened interval between 10 and 25 feet bgs. Groundwater from the three wells was sampled six times between August 1993 and December 1998.

In November 1999, after obtaining appropriate permits, AllCal Property Services, Inc. (AllCal) installed four Geoprobe⁷ soil bores downgradient from the former location of the two USTs. The bores were installed in the public right-of-way across 89th Avenue from the subject site, in an unpaved portion of the roadway. Soil bores SB-1 and SB-2 were logged to a depth of 16 feet bgs. Silty clay was encountered to a depth of approximately 13 to 14 feet bgs. Below that depth, soil consisted of clayey silt that alternated between moist and saturated for several vertical feet. Bore SB-1 also encountered a poorly graded sand at 16 feet bgs. Hydrocarbon odors were present in both bores at a depth of approximately 6 feet bgs and green discolored soil was present at 10 feet bgs in bore SB-1. Discolored soil and gasoline odors were noted in both bores throughout the clayey silt, while brownish colored clay was present in both bores just above the silt. The groundwater interface

appears to have been encountered at an approximate depth of 16 feet bgs in the sand. A sheen was noted at that depth in SB-1. Groundwater samples were obtained from bores SB-1 and SB-2 after pushing the Geoprobe⁷ system to a total depth of 18 feet bgs. Soil bores SB-3 and SB-4 were directly pushed to a total depth of 18 feet bgs in order to obtain grab groundwater samples. Groundwater samples from bores SB-1 and SB-2 contained elevated concentrations of Total Petroleum Hydrocarbons (TPH) as gasoline, and benzene, toluene, ethylbenzene, and total xylenes (BTEX). Significantly lower concentrations of TPH as gasoline and total xylenes were encountered in the groundwater sample from soil bore SB-3, while all analytes were nondetectable in groundwater collected from soil bore SB-4. No soil samples were submitted for laboratory analysis from the four Geoprobe⁷ bores.

After the review of the January 2001 groundwater monitoring report, the Alameda County Health Care Services Agency (ACHCSA) approved the application of a 7% solution of hydrogen peroxide to the wells in an attempt to remediate dissolved constituents. On March 7, 2001, the solution was applied by AllCal and on April 25, 2001, a groundwater monitoring event was conducted to determine if a reduction in dissolved constituents had occurred. Based on the analytical data, a reduction was seen in wells MW-1 and MW-2, with some reductions also seen in well MW-3. This sampling event and subsequent interpretation was complicated by the presumed mis-marking of samples from wells MW-1 and MW-3. No further work at the site is known to have occurred between April 2001 and the March 2003 groundwater monitoring event.

On January 16, 2003, a new case manager, Mr. Amir Gholami, was appointed by the ACHCSA. On September 17, 2003, a workplan for a Geoprobe⁷ investigation of the site was submitted to the ACHCSA. The intent was to attempt to determine the lateral and vertical extent of impacted soil and groundwater in order to better target the residual contamination in future remedial actions to be determined. Due to the lack of a response from the ACHCSA, on February 17, 2004, Blymyer Engineers issued a *Letter of Intent to Proceed: Geoprobe⁷ Investigation*.

The Fourth Quarter 2003 Groundwater Monitoring Event report, dated January 6, 2004, recommended that analysis for fuel oxygenates by EPA Method 8260B be eliminated from the analytical program. It was reasoned that the data generated to date had been very consistent, and further quantification would not significantly add to the level of understanding at the site.

Additionally, the concentration of methyl *tert*-butyl ether (MTBE) can be monitored using EPA Method 8021B for no additional cost, and the resultant concentration of MTBE can be used as a proxy for the approximate concentration of the remaining fuel oxygenates. Based on the lack of response from the ACHCSA, it has been presumed that this was found reasonable and acceptable.

On March 15, 2004, Blymyer Engineers issued a letter entitled *Recommendation for Reduction of Groundwater Monitoring* that provided additional rationale for decreasing the groundwater sampling interval from quarterly to semi-annually. It argued that generation of quarterly analytical data would not significantly improve the level of understanding of impacts to the subsurface at the site, and recommended a reduction of the sampling interval to semi-annual. Based on the lack of response from the ACHCSA, it has been presumed that this was found reasonable and acceptable.

On December 14, 2004, Blymyer Engineers issued to the ACHCSA the *Report on a Geoprobe*[®] *Subsurface Investigation* which documented the installation of nine Geoprobe[®] soil bores at the site. The work further refined the known lateral and vertical extent of soil impacted by the petroleum release at the site. Grab groundwater samples in the upgradient and the eastern cross-gradient directions defined all petroleum compounds in groundwater to concentrations below the San Francisco Bay Regional Water Quality Control Board (RWQCB) Environmental Screening Levels (ESLs). Grab groundwater samples in the downgradient and western cross-gradient directions were unable to define most petroleum compounds to concentrations below the RWQCB ESLs. The installation of additional permanent groundwater monitoring wells was recommended as appropriate at the site in order to allow for groundwater sampling from a "repeatedly accessed location". It was reasoned that data generated from these locations will assist in determining appropriate remedial actions, and in monitoring remedial progress.

On July 6, 2005, the new case manager for the ACHCSA, Mr. Barney Chan, issued the letter *Fuel Leak Case RO0000314* commenting on the December 14, 2004 report. The ACHCSA determined that the collection of additional data is needed to progress the site towards closure. The letter requested a workplan to clear well MW-1 of several feet of sediment due to the potential for groundwater gradient biasing, requested further definition of the groundwater and soil plumes through the installation of additional wells and soil bores, requested a conduit study, and requested a Feasibility Study and Remedial Action Plan.

Blymyer Engineers submitted the *Workplan for Remedial Investigation / Feasibility Study*, on October 10, 2005. The Workplan detailed the procedures for the collection of Remediation by Natural Attenuation (RNA) analytical parameters from existing wells as an initial phase of a Remedial Investigation / Feasibility Study (RI/FS), as well as the installation of four additional groundwater monitoring wells, and the destruction and reinstallation of groundwater monitoring well MW-1. On November 18, 2005, the ACHCSA issued the letter *Fuel Leak Case RO0000314* commenting on the Workplan. The ACHCSA requested the following:

- The addition of two wells at specified locations for further plume characterization,
- Use of a maximum of 10 feet of screen in the wells,
- Confirmation of the presence of MTBE by EPA Method 8260 if MTBE concentrations rose significantly, and
- Collection of the RNA parameters.

The ACHCSA requested confirmation that the additional wells would be added by December 19, 2005, and that a RI/FS report would be submitted by February 19, 2006. Confirmation that the additional wells would be included was provided by telephone in December 2005; however, permitting issues delayed installation of the wells. The *Remedial Investigation / Feasibility Study Report* (RI/FS Report), dated September 8, 2006, was submitted to ACHCSA on October 6, 2006.

The RI/FS Report documented the destruction of well MW-1, the installation of replacement well MW-1R, and the installation of wells MW-4 through MW-9. The soil and groundwater data collected in the effort achieved vertical delineation, as well as upgradient, lateral, and downgradient delineation of all hydrocarbon compounds in soil and groundwater, with the exception of MTBE in groundwater. MTBE was delineated to below the Maximum Contaminant Level (MCL) and the non-drinking water ESL goal for the compound, but was slightly above the drinking water goal. Because the site is in an area that is not known to extensively use groundwater as a drinking water source, the numeric remedial goals were predominantly compared to the non-drinking water ESL goals; however, the ACHCSA may ultimately apply drinking water ESL goals to remedial efforts at the site.

Higher concentrations of TPH as gasoline appear to be relatively isolated near the former source (MW-1, MW-1R, GP-5, and GP-2; the latter based on PID results only). The presence of slightly higher concentrations at GP-6 or GP-8 likely indicates lateral migration through the clay units in the vadose zone in very thin, interbedded coarser grained deposits with more permeability and porosity. A conduit survey indicated that, due to depth of burial, the utility corridors do not appear to be acting as significant conduits in the site vicinity for groundwater movement and therefore contaminant migration. A notable decrease in analyte concentrations in soil is apparent with increasing depth. Generic *non-drinking water* ESL goals for soil were not exceeded for any compound beneath approximately 12 feet bgs.

The distribution of nitrate, methane and dissolved oxygen indicate that the TPH as gasoline groundwater plume is undergoing anaerobic degradation. Specifically, the elevated concentrations of nitrate observed in perimeter wells MW-4 through MW-9, in comparison to the concentration of nitrate in plume core wells MW-1/1R, MW-2 and MW-3, where the concentration is reduced to essentially one-half of its perimeter levels, and the correspondingly high methane concentrations in the plume core area suggest that active anaerobic degradation is occurring. The source of nitrate is likely leaking sewer lines located along 89th Avenue.

For the site as a whole, the limited area of hydrocarbon degradation suggested by the RNA data, collectively with the laboratory notes indicating relatively unmodified gasoline range hydrocarbons are present in soil and groundwater samples, and the continued recontamination of groundwater documented by graphs depicted on Figures 10 through 13 of the RI/FS Report, appear to document a release that is undergoing anaerobic microbial degradation, that RNA is oxygen limited, has reached stability with the surrounding area, and will not progress significantly further without remedial efforts.

Six potential remedial options were evaluated for appropriateness at the site; monitored natural attenuation (MNA), groundwater pump and treat, enhanced insitu bioremediation (EIB), air sparging-vapor recovery (ASVR), dual phase extraction, and insitu chemical oxidation (ISCO). A combination of EIB and ISCO was selected as the most appropriate remedial technology for the site due to multiple factors. ISCO was selected for the vicinity of the former tank excavation and would consist of the injection of the commercial oxidation product RegenOx. Chemical oxidation of

residual source soil and groundwater containing higher hydrocarbon concentrations is anticipated to eliminate potential residual free-phase hydrocarbons in the tank vicinity. EIB using Oxygen Releasing Compound Advanced (ORC Advanced) was selected for the larger area around and downgradient of the former tank location. Petroleum hydrocarbon compounds are recognized to degrade favorably and rapidly under aerobic (oxygen rich) conditions. To stimulate aerobic bacterial activity and increase the rate of biodegradation within the hydrocarbon plume, non-toxic inorganic chemicals (bionutrients) can be added to the groundwater that release oxygen, nitrogen ORC and phosphate, such as Advanced and bionutrient compounds (typically, nitrogen/phosphorus/potassium (NPK) fertilizer). At sites where stagnant hydrocarbon plumes are present, one or more of the essential bio-nutrient elements is commonly depleted, and natural attenuation of the hydrocarbon plume due to microbial activity ceases. By determining a site's "bioneeds," the missing elements can be injected into the hydrocarbon plume to boost bioactivity.

At the site, dissolved oxygen in groundwater is depleted to less than 1 mg/L, and based on available information the lack of dissolved oxygen is the limiting factor retarding current biological activity. For EIB, the supply of bio-nutrients is assessed prior to and during remediation. During the course of remediation, if nutrient concentrations are found to be inadequate, then further nutrient addition is performed.

On December 18, 2006, the ACHCSA issued a letter indicating that it was in agreement with the proposed plan of action, namely EIB with localized ISCO, using a combination of ORC Advanced and RegenOx, respectively. The December 18, 2006 letter requested an interim corrective action plan (ICAP) by January 19, 2007, and quarterly monitoring reports by January 30, and April 30, 2007. A request for deadline extension was later submitted to, and approved by, the ACHCSA. The *Interim Corrective Action Plan* was submitted on February 7, 2007, and was approved by the ACHCSA on May 4, 2007. A pre-remedial groundwater sampling event to determine pre-remedial bacterial populations in groundwater, in the event of a bacterial die-off related to remedial injections, occurred on April 27, 2007. Remedial activities began on May 22, 2007 with a volume test injection. The first injection of RegenOx occurred between June 4 and June 7, 2007, and the second event occurred on June 26 and 27, 2007. It was not possible to inject the entire volume of RegenOx specified by Regenesis due to resurfacing of the injected material. On August 9, 2007, an

abbreviated interim round of sampling occurred on selected wells (MW-1R, MW-2, MW-3, and MW-5) to help determine the progress of the remedial actions at the site. Elevated concentrations of hydrocarbons were detected in plume core wells MW-1R and MW-3. As a consequence, an additional round of RegenOx injection occurred on September 12 and 13, 2007. These events were reported under separate cover.

On August 28, 2007, twenty-three 55-gallon drums of soil and fifteen 55-gallon drums of purge water, development water, and groundwater were removed from the subject site. The drums were transported by NRC Environmental to Crosby and Overton in Long Beach, California. The drums of soil represented soil cuttings from the installation of all soil bores and wells since 1993. The drums of water had accumulated since the installation of wells MW-1R, and MW-4 through MW-9, and as a result of fluid return flow to the surface during remedial injection activities.

On March 28, 2008, Blymyer Engineers was notified that a new case worker, Ms. Barbara Jakub, had been assigned to the project by the ACHCSA. On March 11, June 10, and September 18, 2008, quarterly groundwater monitoring reports for the first, second, and third quarters of 2008 were finalized and subsequently released. Case closure was recommended in the report for the previous quarterly event if groundwater concentrations continued to decrease.

2.0 Groundwater Sample Collection and Analytical Methods

This report documents the interim sampling of groundwater conducted for the Fourth Quarter 2008 groundwater monitoring event at the site. Quarterly groundwater samples were collected from monitoring wells MW-1R and MW-2 through MW-9 on November 25, 2008. The groundwater samples were collected by Blaine Tech Services, Inc. (Blaine) in accordance with Blaine Standard Operating Procedures for groundwater gauging, purging, and sampling. A copy is included as Appendix A. Depth to groundwater was measured in all wells during the sampling event. Temperature, pH, conductivity, and turbidity were measured initially, and then after removal of each of three well casing volumes for each well. Dissolved Oxygen (DO), Oxygen-Reduction Potential (ORP), and Ferrous Iron were measured post-purge and were collected near the total depth of each well, within the screened portion of the well, in order to minimize the effects of standard purging and sampling near the surface of the water column. These measurements are generally useful in determining if an adequate supply of oxygen is present in groundwater to allow microbial growth. The groundwater depth measurements and details of the monitoring well purging and sampling for each event are presented on the Well Monitoring Data Sheets and Well Gauging Data Sheets generated by Blaine and included as Appendix B. Depth-to-groundwater measurements are presented in Table I. All purge and decontamination water was temporarily stored in a Department of Transportation-approved 55-gallon drum for future disposal by the owner.

The groundwater samples were analyzed by McCampbell Analytical, Inc., a California-certified laboratory, on a 5-day turnaround time. Groundwater samples from all wells were analyzed for TPH as gasoline by Modified EPA Method 8015; and BTEX and MTBE by EPA Method 8021B. Tables II to V summarize current and previous analytical results for groundwater samples. The laboratory analytical report is included as Appendix C.

3.0 Groundwater Flow Data and Groundwater Sample Analytical Results

Previously surveyed top-of-casing (TOC) elevations were used to construct a groundwater gradient map (Figure 2). Groundwater depths during this monitoring event ranged between 8.54 to 9.03 feet below the top of the casings. Depth to groundwater in general has decreased an average of 0.29 feet since the August 2008 sampling event; however, there were divergences from the norm. Groundwater in well MW-6 rose 0.72 feet, while in well MW-7 it rose only 0.02 feet. In the First Quarter 2008 groundwater event, mounding in the vicinity of wells MW-2 and MW-3 suggested the infiltration of rainwater in the vicinity well MW-2. The integrity of the pavement in the area of the well appears to have been compromised by the vigorous remedial chemical oxidation reactions. During the May 2008 quarterly event, the dry spring appears to have returned the groundwater flow direction towards the west, generally the typical flow direction for the site. During the previous event in August 2008, groundwater flow remained towards the west; however, a slight mound was present around wells MW-1R and MW-2. Surface water infiltration may have been responsible for the slight mound as ponded surface water can be present near these two wells during the dry season. For the current event, and the majority of historic measurements, groundwater flow is towards the west. The average gradient across the full site area was calculated at approximately 0.001 feet/foot.

Between the August and November quarterly sampling events, the concentration of TPH as gasoline in well MW-1R decreased while the concentration of BTEX remained very similar (slight increases, slight decreases, or no change). In well MW-2, only benzene was encountered, essentially at the same concentration as the previous event. In well MW-3, all concentrations rose very slightly, and except for benzene, most rising to just over the limits of detection.

All other wells (upgradient, downgradient, and lateral) were non-detectable for TPH as gasoline, BTEX, and MTBE. Except for erratic detections of MTBE in several of these wells at trace concentrations, all of these wells have been nondetectable for all compounds since first sampled in June 2006 (eight consecutive sampling events over 2.5 years). All utility lines in the vicinity have previously been reviewed and are not considered to be conduits or preferential pathways for groundwater flow (*Remedial Investigation / Feasibility Study Report*; Blymyer Engineers; September 8, 2006).

Because vicinity groundwater is not generally considered to be of drinking water quality, but remains of potential beneficial use, groundwater concentrations have generally been compared to non-drinking water ESL standards at the site. In well MW-1R, concentrations of TPH as gasoline and benzene remained below the generic non-drinking water ESLs, but are over generic drinking water ESLs. All other compounds in well MW-1R were below generic drinking water ESL values as well as their respective MCLs. In wells MW-2 and MW-3, only benzene was over the drinking water ESL and the MCL for drinking water; all compounds were below their respective non-drinking water ESLs.

During 2008, only the concentration of TPH as gasoline in well MW-1R in one quarter (May 2008) was over the generic non-drinking water ESL at the site. All other compounds in all other wells were below their respective non-drinking water ESLs in 2008. Higher concentrations seen in 2007 in the wells immediately adjacent to the former tank basin are generally presumed to have been the result of the mobilization of hydrocarbons from soil to groundwater as a result of the injection of RegenOx between June and September 2007.

Concentrations of MTBE were not detected any of the wells sampled during the current sampling event. MTBE has not been detected in all wells for five consecutive quarters. When last detected (June 2007), it was only slightly above the limit of detection of $5.0\,\mu\text{g/L}$ (a maximum of $5.6\,\mu\text{g/L}$; in upgradient well MW-5 and downgradient well MW-9).

Groundwater samples were analyzed for four consecutive quarters for fuel oxygenates di-isopropyl ether (DIPE), ethyl *tert*-butyl ether (ETBE), MTBE, *tert*-amyl methyl ether (TAME), and *tert*-butyl alcohol (TBA) by EPA Method 8260B. Only MTBE and TAME have been detected in groundwater (June 2003; Table III). Only MTBE has a listed MCL of 13 Fg/L. Ethanol and methanol have also been analyzed and were nondetectable. Due to the consistency of the data, fuel oxygenate analysis was eliminated.

A graphical analysis of groundwater elevations and concentrations through time indicate that at well MW-3 prior to remedial injections, a rise in the groundwater elevation generally resulted in an increase in groundwater concentrations; likely indicating that rising groundwater was encountering impacted soil at a higher level (Figures 3 and 4). The analysis is less straight forward in well MW-1

/ MW-1R, but the graphs tend to suggest that as groundwater drops in elevation groundwater concentrations rise; possibly indicating drainage from soil to groundwater after a drop (Figures 5 and 6). For consistency all groundwater elevations in Figures 3 to 6 utilized the GeoTracker wellhead survey elevations to determine the groundwater elevation.

Data from well MW-3 for the current quarter are consistent with the historical trend, and with the exception of benzene, at concentrations below all regulatory goals. An analysis of Figures 3 and 4 indicates that generally TPH as gasoline and benzene concentrations in well MW-3 can be divided into three broad time periods; higher concentrations prior to the introduction of hydrogen peroxide in March 2001 (with likely mobilization of contamination from soil to groundwater documented in the April 2001 sampling event), followed by generally lower concentrations from April 2001 to roughly February 2007, a rapid rise in groundwater concentrations during the period of RegenOx injection (through August 2007), and a subsequent and substantial decline of concentrations to levels below, or marginally over, the limits of detection for three quarters (since the May 2008 sampling event).

This quarter data from well MW-1 / MW-1R is also consistent with historical trends; a rise in groundwater elevation is accompanied by a decrease in groundwater concentrations. As with well MW-3, a similar time division of contaminant concentrations in well MW-1 / MW-1R can also be observed; however, with a complication, which results in a less clear picture. Higher concentrations are present prior to the introduction of hydrogen peroxide in March 2001 (without the clear mobilization of contamination from soil to groundwater in the April 2001 sampling event), followed by generally lower concentrations from April 2001 to roughly June 2005. Since May 2006, due to a break in the well casing, well MW-1 was destroyed and was replaced with well MW-1R (the placement of well MW-1R was severely limited). Concentrations in well MW-1R decreased relative to well MW-1 (first sampled June 2006), and have remained lower, except for a sharp spike between August and November 2007, perhaps associated with the injection of RegenOx. Concentrations of TPH as gasoline and benzene have decreased substantially since the injections. A sharp decline in groundwater levels last quarter is notable as it was accompanied with lower contaminant concentrations and suggests decreasing residual soil concentrations.

Recent data from MW-1R suggest that granular backfill and soil predominately in the vadose zone and in proximity to the 6-inch-diameter gas main located approximately 5 feet to the north of well MW-1R and former MW-1 may be creating a reservoir for hydrocarbons not easily reached.

4.0 Intrinsic Bioremediation Groundwater Sample Analytical Results

Intrinsic bioremediation laboratory analytical parameters were not collected during the current sampling event; however, post-purge field parameters were collected. RNA parameters were collected near the bottom of the well, within the screened interval, to collect representative values of vicinity groundwater and to minimize the effect of standard purging on the parameters. Tables IV and V present the analytical results of current and previous RNA indicator parameters. Microbial use of petroleum hydrocarbons as a food source is affected by the concentration of a number of chemical compounds dissolved in groundwater at a site. RNA monitoring parameters were established by research conducted by the Air Force Center for Environmental Excellence. The research results were used to develop a technical protocol for documenting RNA in groundwater at petroleum hydrocarbon release sites (Wiedemeier, Wilson, Kampbell, Miller and Hansen, 1995, Technical Protocol for Implementing the Intrinsic Remediation with Long Term Monitoring for Natural Attenuation of Fuel Contamination Dissolved in Groundwater, Volumes I and II, U.S. Air Force Center for Environmental Excellence, Brooks Air Force Base, Texas). The protocol focuses on documenting both aerobic and anaerobic degradation processes whereby indigenous subsurface bacteria use various dissolved electron acceptors to degrade dissolved petroleum hydrocarbons.

In the order of preference, the following electron acceptors and metabolic by-products are used and generated, respectively, by the subsurface microbes (aerobes, Mn – Fe reducers, and methanogens) to degrade petroleum hydrocarbons: oxygen to carbon dioxide, nitrate to nitrogen, insoluble manganese (Mn⁴⁺) to soluble manganese (Mn²⁺), insoluble ferric iron (Fe³⁺) to soluble ferrous iron (Fe²⁺), sulfate to hydrogen sulfide, and carbon dioxide to methane. With the exception of oxygen, the use of all other electron acceptor pathways by microbes indicates increasingly anaerobic degradation. Aerobic degradation takes place first, and oxygen inhibits anaerobic degradation. As oxygen is consumed and an anoxic zone develops, the Mn – Fe reducers and methanogens begin to grow and release dissolved Mn, dissolved Fe, and methane (Commission on Geosciences, Environment and Resources, *Natural Attenuation for Groundwater Remediation*, 2000). Investigation of each of these electron acceptor pathways was conducted in selected wells at the site as part of the evaluation of RNA chemical parameters. Previous analytical results appear to have documented oxygen and nutrient (nitrate) limited natural biodegradation at the site.

Microbial use of petroleum hydrocarbons as a food source is principally affected by the concentration of dissolved oxygen (DO) in the groundwater present at a site. As with the previous quarter, DO was present in a very tight range of concentrations in post-purge groundwater, ranging from 0.07 milligrams per liter (mg/L) to 0.24 mg/L. Except for well MW-6, current concentrations have decreased further from concentrations that have previously been characterized as markedly lower than recent data. The data trend continues to indicate that recent higher concentrations of DO were related to RegenOx injection or infiltration of rainwater into the subsurface as opposed to overly vigorous purging. As seen previously at the site, the lower concentrations of DO have been identified as a limiting factor retarding biological activity.

ORP is another measure of the supply and use of oxygen at a site. The higher the reading in millivolts (mV), the more oxygenated the subsurface environment is, and the lower the readings, the more anaerobic or reducing the subsurface environment is. As in the previous quarter, and in general, plume core wells MW-1R, MW-2, and MW-3 contained lower ORP concentrations than the remaining wells. Except wells MW-7 and MW-8, with marginally higher ORP values, all wells yielded lower ORP values that range between -40 to 212 mV. In general, recent previous observations suggest that oxygenation from the RegenOx product or from rainwater were migrating across the area of study. Current observations indicate a decrease in the oxidation potential across the site and that the higher apparent demand for oxygen in the plume core remains. Higher ORP values have generally been located outside the plume core, suggesting that the strongest demand for oxygen is located in the plume core, and that any residual benefit from the injection of the RegenOx remedial product has dissipated.

Ferrous iron was also investigated during the current sampling event and was present in wells MW-1R, MW-4, MW-6, and MW-9. During the May 2008 monitoring event detectable ferrous iron returned to wells MW-1R and MW-3 for the first time since the remedial injections. The presence of ferrous iron in lateral wells MW-4 and MW-6, and downgradient well MW-9 (in addition to well MW-1R) again suggests that the supply of DO from the injection of the RegenOx or rainwater has ceased. In general, the presence of ferrous iron in wells indicates that Mn – Fe degrading microbial colonies near the wells have resumed microbial degradation of the contaminants (at a significantly slower rate) due to the relative lack of DO in the vicinity of the well.

5.0 Conclusions and Recommendations

The following summary and conclusions were generated from the available data discussed above:

- Depth to groundwater in general has decreased an average of 0.29 feet since the August 2008 sampling event. During recent quarterly events, surface water infiltration may have produced groundwater mounding in the vicinity of the former tank basins (MW-2); however, evidence of mounding was not present during the current event. Groundwater was found to flow across the entire site towards the west at an average gradient of approximately 0.001 feet/foot.
- Between the August and November quarterly sampling events the concentration of TPH as gasoline in well MW-1R decreased while the concentration of BTEX remained very similar. The concentrations of TPH as gasoline and benzene in well MW-1R remain below the generic non-drinking water ESLs, but over generic drinking water ESLs. All other concentrations in well MW-1R were below generic drinking water ESL values and their respective MCLs.
- Only benzene was encountered in well MW-2, at essentially the same concentration as the last
 quarterly event, while all concentrations in well MW-3 rose very slightly, generally returning to
 slightly over the limits of detection. In wells MW-2 and MW-3, only benzene was over the
 drinking water ESL and the MCL for drinking water and all compounds were below the nondrinking water ESLs.
- All other wells (upgradient, downgradient, and lateral) were non-detectable for TPH as gasoline and BTEX. Except for erratic detections of MTBE in several of these wells at trace concentrations, all of these wells have been nondetectable for all compounds since first sampled in June 2006 (eight consecutive sampling events over 2.5 years).
- MTBE was not detected in any of the wells during the current sampling event. MTBE has not been detected in all wells for five consecutive quarters. When present previously it was present marginally above the limit of detection of 5.0 μg/L.
- Except for well MW-6, the current concentration of DO in wells has decreased further from
 concentrations previously characterized as markedly lower than recent data. The data trend
 continues to indicate that recent higher concentrations of DO related to RegenOx injection or

infiltration of rainwater into the subsurface has dissipated. Lower concentrations of DO have typically been identified as a limiting factor at the site.

- Current observations indicate a decrease in the oxidation potential across the site. Higher ORP
 values have generally been located outside the plume core, suggesting that the strongest demand
 for oxygen is located in the plume core, and that any residual benefit from the injection of the
 RegenOx remedial product has dissipated.
- Ferrous iron was present in wells MW-1R, MW-4, MW-6, and MW-9. During the May 2008 monitoring event detectable ferrous iron returned to wells MW-1R and MW-3 for the first time since the remedial injections. The additional presence of ferrous iron in lateral wells MW-4 and MW-6, and downgradient well MW-9 indicates that the supply of DO from the injection of the RegenOx or rainwater has ceased.
- Graphical analysis of groundwater elevations and concentrations through time indicate that TPH as gasoline and benzene concentrations can be divided into three broad time periods: prior to introduction of hydrogen peroxide in March 2001 (with a concentration spike April 2001), followed by generally lower concentrations between April 2001 to roughly February 2007, followed by another concentration spike due to RegenOx injection (through August 2007), and finally a substantial decline of most contaminants (excluding benzene, or THP as gasoline in one well) to levels below regulatory concern since the May 2008 sampling event.
- Groundwater contamination at this location appears to be localized and the data indicates that it is principally associated with impacted material predominately in the vadose zone adjacent to the gas main. There is no significant downgradient expression of groundwater contamination in a very mature plume. It is highly unlikely that impacted vadose zone materials adjacent to the gas main can be fully remediated in-place without potential damage to the high pressure main.
- All utility lines in the vicinity have previously been reviewed and are not considered to be conduits or preferential pathways for groundwater flow.
- Abundant underground utility lines and building envelopes tightly constrain access to residual soil contamination beneath the site.

The following recommendations were generated from the available data discussed above:

- The site should be recommended for closure.
- A Soil Management Plan (SMP) should be formulated for the management of residual soil contamination beneath the site should subsurface work be required in the future (building improvements, utility repairs, etc.).
- All groundwater wells should be destroyed after agency approval of the SMP and acceptance of
 a case closure report by the RWQCB.
- A copy of this report will be forwarded to:

Ms. Barbara Jakub Alameda County Environmental Health Department Environmental Protection Division 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

	1	tii mittine, Oakiai	u, cumormu	
Well ID	Date	TOC Elevation	Depth to Water	Water Surface Elevation
	Bute	(feet)	(feet)	(feet)
MW-1	8/6/1993	18.72	8.96	9.76
	1/12/1996		8.55	10.17
	4/16/1996		7.65	11.07
	7/15/1996		8.76	9.96
	10/16/1996		9.04	9.68
	12/15/1998		8.38	10.34
	1/18/2001		8.49	10.23
	4/25/2001		8.24	10.48
	3/17/03*		8.08	10.64
	6/23/2003		8.63	10.09
	9/18/2003		8.90	9.82
	12/15/2003		8.15	10.57
	6/15/2004		8.67	10.05
	12/15/2004		7.99	10.73
	6/29/2005		7.88	10.84
	5/8/2006	21.70	Destroyed	Destroyed
	2/19/2007		Destroyed	Destroyed
	6/21/2007		Destroyed	Destroyed
	11/8/2007		Destroyed	Destroyed
	2/28/2008		Destroyed	Destroyed
	5/29/2008		Destroyed	Destroyed
	8/27/2008		Destroyed	Destroyed
	11/25/2008		Destroyed	Destroyed
MW-1R	6/12/2006	21.73	8.49	13.24
	2/19/2007		7.94	13.79
	6/21/2007		8.71	13.02
	8/9/2007		8.83	12.90
	11/8/2007]	9.80	11.93
	2/28/2008]	8.74	12.99
	5/29/2008		8.76	12.97
	8/27/2008		9.02	12.71
	11/25/2008		8.73	13.00
<u> </u>	•	•		•

Wall ID	Data	TOC Elevation	Depth to Water	Water Surface Elevation
Well ID	Date	(feet)	(feet)	(feet)
MW-2	8/6/1993	18.44	8.68	9.76
	1/12/1996		8.24	10.20
	4/16/1996		7.41	11.03
	7/15/1996		8.45	9.99
	10/16/1996		8.73	9.71
	12/15/1998		8.05	10.39
	1/18/2001		8.24	10.20
	4/25/2001		7.88	10.56
	3/17/03*		7.08	11.36
	6/23/2003		8.90	9.54
	9/18/2003		8.61	9.83
	12/15/2003		7.97	10.47
	6/15/2004		8.42	10.02
	12/15/2004		8.00	10.44
	6/29/2005		9.51	8.93
	6/12/2006	21.45	8.25	13.20
	2/19/2007		8.12	13.33
	6/21/2007		9.00	12.45
	8/9/2007		8.62	12.83
	11/8/2007		8.60	12.85
	2/28/2008		7.20	14.25
	5/29/2008		8.55	12.90
	8/27/2008		8.76	12.69
	11/25/2008		8.63	12.82

Well ID	Data	TOC Elevation	Depth to Water	Water Surface Elevation
Well ID	Date	(feet)	(feet)	(feet)
MW-3	8/6/1993	19.01	9.07	9.94
	1/12/1996		8.65	10.36
	4/16/1996		7.82	11.19
	7/15/1996		8.88	10.13
	10/16/1996		9.16	9.85
	12/15/1998		8.45	10.56
	1/18/2001		8.57	10.44
	4/25/2001		8.29	10.72
	3/17/03*		8.50	10.51
	6/23/2003]	9.05	9.96
	9/18/2003		9.11	9.90
	12/15/2003		8.03	10.98
	6/15/2004		8.85	10.16
	12/15/2004		8.84	10.17
	6/29/2005		9.00	10.01
	6/12/2006	22.02	8.62	13.40
	2/19/2007		8.12	13.90
	6/21/2007		9.86	12.16
	8/9/2007		9.60	12.42
	11/8/2007		8.83	13.19
	2/28/2008		7.99	14.03
	5/29/2008		8.57	13.45
	8/27/2008		9.60	12.42
	11/25/2008		9.02	13.00
MW-4	6/12/2006	21.34	8.37	12.97
	2/19/2007		7.77	13.57
	6/21/2007		8.48	12.86
	11/8/2007		8.61	12.73
	2/28/2008		7.73	13.61
	5/29/2008]	8.39	12.95
	8/27/2008		8.76	12.58
	11/25/2008		8.54	12.80

Well ID	Date	TOC Elevation	Depth to Water	Water Surface Elevation
Well ID	Date	(feet)	(feet)	(feet)
MW-5	6/12/2006	22.53	8.75	13.78
	2/19/2007		8.61	13.92
	6/21/2007		9.05	13.48
	8/9/2007		9.17	13.36
	11/8/2007		9.11	13.42
	2/28/2008		8.18	14.35
	5/29/2008		9.06	13.47
	8/27/2008		9.31	13.22
	11/25/2008		9.03	13.50
MW-6	6/12/2006	21.97	8.59	13.38
	2/19/2007		7.93	14.04
	6/21/2007		9.83	12.14
	11/8/2007		9.58	12.39
	2/28/2008		9.90	12.07
	5/29/2008		8.50	13.47
	8/27/2008		9.52	12.45
	11/25/2008		8.80	13.17
MW-7	6/12/2006	21.21	8.31	12.90
	2/19/2007		7.85	13.36
	6/21/2007		8.51	12.70
	11/8/2007		8.68	12.53
	2/28/2008		7.81	13.40
	5/29/2008		8.60	12.61
	8/27/2008		8.72	12.49
	11/25/2008]	8.70	12.51
MW-8	6/12/2006	20.97	8.37	12.60
	2/19/2007		7.99	12.98
	6/21/2007		8.53	12.44
	11/8/2007]	8.61	12.36
	2/28/2008]	7.79	13.18
	5/29/2008]	8.61	12.36
	8/27/2008]	8.76	12.21
	11/25/2008]	8.56	12.41

Table I, Summary of Groundwater Elevation Measurements BEI Job No. 203004, Former Fiesta Beverage 966 89th Avenue, Oakland, California										
Well ID	Date	TOC Elevation (feet)	Depth to Water (feet)	Water Surface Elevation (feet)						
MW-9	6/12/2006		8.50	12.48						
	2/19/2007		8.08	12.90						
	6/21/2007		8.55	12.43						
11/8/2007		20.98	8.67	12.31						
	2/28/2008	20.96	8.02	12.96						

Notes: TOC = Top of Casing

* = Initial data set collected under direction of Blymyer Engineers, Inc.

NM = Not measured

5/29/2008

8/27/2008

11/25/2008

= Resurveyed on February 7, or June 22, 2006 by CSS Environmental Services, Ir

8.51

8.81

8.64

12.47

12.17

12.34

Elevations in feet above mean sea level

Table II, Summary of Groundwater Sample Hydrocarbon Analytical Results BEI Job No. 203004, Former Fiesta Beverage 966 89th Avenue, Oakland, California Modified EPA EPA Method 8020 or 8021B Method 8015 $(\mu g/L)$ Sample Date $(\mu g/L)$ Ethylbenzene TPH as Gasoline Benzene Toluene Total Xylenes MTBE MCLN/A 1 150 700 1,750 13 Drinking Water Source 1 100 1 40 30 20 5 Non-Drinking Water 500 130 290 100 1,800 46 Source 2

Well ID

MW-1	8/6/1993	17,000	7.1	8.4	9.2	53	NA
	1/12/1996	12,000	1,900	840	370	1,100	NA
	4/16/1996	3,500	700	55	100	180	NA
	7/15/1996	11,000	2,300	450	350	910	NA
	10/16/1996	21,000	4,200	2,200	650	2,600	NA
	12/15/1998	10,000	1,800	520	270	1,100	<350
	1/18/2001	11,000 ^a	2,000	320	320	1,100	<120
	4/25/2001	2,100 ^{a, c}	270	46	59	130	< 5.0
	3/17/2003*	2,200 ^a	260	19	36	54	NA ^d
	6/23/2003	6,100 ^a	930	53	99	200	NA
	9/18/2003	3,800 ^a	660	13	24	34	NA
	12/15/2003	260 ^a	19	1.1	< 0.5	1.5	NA
	6/15/2004	5,200 ^a	520	13	38	39	< 50
	12/15/2004	2,400 ^a	370	8.2	13	14	<15
	6/29/2005	5,500 ^a	750	27	94	140	<100
	5/8/2006	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed
	2/19/2007	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed
	6/21/2007	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed
	11/8/2007	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed
	2/28/2008	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed
	5/29/2008	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed
	8/27/2008	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed
	11/25/2008	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed

Table II, Summary of Groundwater Sample Hydrocarbon Analytical Results BEI Job No. 203004, Former Fiesta Beverage 966 89th Avenue, Oakland, California

	966 89th Avenue, Oakland, California										
Well ID	Sample Date	Modified EPA Method 8015 (μg/L)		EPA Method 8020 or 8021B (μg/L)							
		TPH as Gasoline	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE				
1	MCL	N/A	1	150	700	1,750	13				
Drinking V	Vater Source 1	100	1	40	30	20	5				
	nking Water urce ²	500	46	130	290	100	1,800				
MW-1R	6/13/2006	90 ^a	24	< 0.5	< 0.5	1.9	7.0				
	2/19/2007	200 ^a	8	0.80	12	8.7	< 5.0				
	6/21/2007	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0				
	8/9/2007	870 ^a	140	6.30	23	22	<10				
	11/8/2007	3,800 ^a	330	22	140	130	<30				
	2/28/2008	150 ^a	5.5	< 0.5	3.9	2.2	< 5.0				
	5/29/2008	690 ^a	44	2	35	7.8	< 5.0				
	8/27/2008	190 ^a	14	< 0.5	8.1	1.5	< 5.0				
	11/25/2008	130 ^a	11	< 0.5	10	1.5	< 5.0				

Table II, Summary of Groundwater Sample Hydrocarbon Analytical Results BEI Job No. 203004, Former Fiesta Beverage 966 89th Avenue, Oakland, California Modified EPA EPA Method 8020 or 8021B Method 8015 $(\mu g/L)$ Well ID Sample Date $(\mu g/L)$ TPH as Gasoline Benzene Toluene Ethylbenzene Total Xylenes **MTBE MCL** N/A1 150 700 1,750 13 Drinking Water Source 1 100 1 40 30 20 5 Non-Drinking Water 500 46 130 290 100 1,800 Source ² MW-2 8/6/1993 2,700 1.3 1.7 2.0 NA 8.1 94 1/12/1996 2,700 600 310 220 NA 4/16/1996 190 **39** 10 NA 11 14 700 NA 7/15/1996 160 33 34 48 10/16/1996 190 48 8.2 10 13 NA 4.4 b 12/15/1998 200 **62 17** 4.9 14 1/18/2001 $300^{\,a}$ 74 26 7.3 21 7.3 4/25/2001 <50° 4.5 2.2 0.6 1.9 < 5.0 $NA^{\,d}$ 78^a 26 1.5 3.5 3/17/2003* 3.3 6/23/2003 160^a 51 1.6 1.2 1.8 NA 9/18/2003 < 50 2.1 < 0.5 < 0.5 < 0.5 NA 12 12/15/2003 < 50 < 0.5 < 0.5 < 0.5 NA 95 ^a 6/15/2004 15 1.3 1.8 1.2 < 30 12/15/2004 < 50 0.97 0.9 **7.8** 11 0.6 6/29/2005 130 29 2.000 3.3 3.4 6.7 150 a **59** 3.0 3.4 2.7 11 6/13/2006 51 ^a 2/19/2007 8 1.0 2.8 7.1 1.6 < 50 < 0.5 6/21/2007 < 0.5 < 0.5 < 0.5 < 5.0 8/9/2007 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 5.3 11/8/2007 160 a 23 5.0 14 <10 2/28/2008 < 50 1.3 < 0.5 < 0.5 < 0.5 < 5.0 5/29/2008 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 8/27/2008 < 50 1.1 < 0.5 < 0.5 < 0.5 < 5.0

1.2

< 0.5

< 0.5

< 0.5

< 5.0

11/25/2008

< 50

Table II, Summary of Groundwater Sample Hydrocarbon Analytical Results BEI Job No. 203004, Former Fiesta Beverage 966 89th Avenue, Oakland, California Modified EPA EPA Method 8020 or 8021B Method 8015 $(\mu g/L)$ Well ID Sample Date $(\mu g/L)$ TPH as Gasoline Benzene Toluene Ethylbenzene **Total Xylenes MTBE MCL** N/A 1 150 700 1,750 13 100 Drinking Water Source 1 1 40 30 20 5 Non-Drinking Water 500 46 130 290 100 1,800 Source ² MW-3 8/6/1993 5,200 2.9 17 NA 2.1 3.6 1/12/1996 4,500 280 180 120 470 NA 4/16/1996 NA 5,400 370 340 160 **580** 7/15/1996 1,800 200 220 66 250 NA 10/16/1996 2,000 340 140 100 300 NA 12/15/1998 1,400 200 **39** 72 150 <22 1/18/2001 1,800^a 240 41 120 <10 86 4/25/2001 8.300 a, c 300 330 200 1,100 < 20 $NA^{\,d}$ 10 3/17/2003* 2,100^a 240 **78** 280 6/23/2003 < 50 2.5 0.6 0.69 1.4 NA 9/18/2003 < 50 < 0.5 < 0.5 < 0.5 < 0.5 NA 12/15/2003 2,400 300 120 140 260 NA 6/15/2004 < 50 1.1 < 0.5 < 0.5 < 0.5 6.2 12/15/2004 140 83 83 230 <15 1.600^a 6/29/2005 27 6.1 7.2 15 <15 230^a

Table II, Summary of Groundwater Sample Hydrocarbon Analytical Results BEI Job No. 203004, Former Fiesta Beverage 966 89th Avenue, Oakland, California Modified EPA EPA Method 8020 or 8021B Method 8015 $(\mu g/L)$ Well ID Sample Date $(\mu g/L)$ TPH as Gasoline Benzene Toluene Ethylbenzene Total Xylenes **MTBE MCL** N/A 1 150 700 1,750 13 100 Drinking Water Source 1 1 40 30 20 5 Non-Drinking Water 500 46 130 290 100 1,800 Source ² MW-4 6/12/2006 < 50 < 0.5 < 0.5 < 0.5 < 0.5 5.7 2/19/2007 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 6/21/2007 < 50 < 0.5 < 0.5 < 0.5 < 0.5 5.9 11/8/2007 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 2/28/2008 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 5/29/2008 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 8/27/2008 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 11/25/2008 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 MW-5 6/12/2006 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 2/19/2007 < 50 < 0.5 < 0.5 < 0.5 < 0.5 **5.6** 6/21/2007 < 50 < 0.5 < 0.5 < 0.5 < 0.5 5.4 11/8/2007 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 2/28/2008 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 5/29/2008 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 8/27/2008 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 11/25/2008 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 MW-6 6/13/2006 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 2/19/2007 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 6/21/2007 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 11/8/2007 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 2/28/2008 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 5/29/2008 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 5.0

< 5.0

8/27/2008

11/25/2008

< 50

< 50

Table II, Summary of Groundwater Sample Hydrocarbon Analytical Results BEI Job No. 203004, Former Fiesta Beverage 966 89th Avenue, Oakland, California Modified EPA EPA Method 8020 or 8021B Method 8015 $(\mu g/L)$ Well ID Sample Date $(\mu g/L)$ TPH as Gasoline Benzene Toluene Ethylbenzene Total Xylenes **MTBE MCL** N/A 1 150 700 1,750 13 100 Drinking Water Source 1 1 40 30 20 5 Non-Drinking Water 500 46 130 290 100 1,800 Source ² MW-7 6/12/2006 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 2/19/2007 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 6/21/2007 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 11/8/2007 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 2/28/2008 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 5/29/2008 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 8/27/2008 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 11/25/2008 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 MW-8 6/12/2006 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 2/19/2007 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 6/21/2007 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 11/8/2007 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 2/28/2008 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 5/29/2008 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 8/27/2008 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 11/25/2008 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 MW-9 6/12/2006 < 50 < 0.5 < 0.5 < 0.5 < 0.5 **5.6** 2/19/2007 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 6/21/2007 < 50 < 0.5 < 0.5 < 0.5 < 0.5 **5.6** 11/8/2007 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 2/28/2008 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0 5/29/2008 < 50 < 0.5 < 0.5 < 0.5 < 0.5 < 5.0

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 5.0

< 5.0

8/27/2008

11/25/2008

< 50

< 50

	Table II, Summary of Groundwater Sample Hydrocarbon Analytical Results BEI Job No. 203004, Former Fiesta Beverage 966 89th Avenue, Oakland, California											
Well ID	Sample Date	Modified EPA Method 8015 (µg/L)		EPA Method 8020 or 8021B (µg/L)								
		TPH as Gasoline	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE					
1	MCL	N/A	1 150 700 1,7		1,750	13						
Drinking Water Source 1		100	1 40 30		30	20	5					
Non-Drinking Water Source 2		500	46	130	290	100	1,800					

Notes: ug/L = micrograms per liter

TPH = Total Petroleum Hydrocarbons

EPA = Environmental Protection Agency

MTBE = Methyl *tert* -Butyl Ether

RWQCB = California Regional Water Quality Control Board, San Francisco Bay Region

ESL = Environmental Screening Level

N/A = Not applicable

NA = Not analyzed

RBSL = Risk Based Screening Level

- $\langle x \rangle$ = Analyte not detected at reporting limit x
- * = Initial data set collected under direction of Blymyer Engineers, Inc.

Bold results indicate detectable analyte concentrations.

Note: Shaded cell indicates that detected concentration exceeds

Non-Drinking Water ESL

¹ = From Table A; RWQCB Environmental Screening Levels (ESLs); Groundwater IS a Current or Potential Source of Drinking Water

² = From Table B; RWQCB Environmental Screening Levels (ESLs); Groundwater IS NOT a Current or Potential Source of Drinking Water

^a = Laboratory note indicates the unmodified or weakly modified gasoline is significant.

^b = Confirmed with EPA Method 8260.

^c = Groundwater samples for MW-1 and MW-3 suspected to have been switched (mismarked) in field. First collection of groundwater samples after application of Hydrogen Peroxide on March 7, 2001.

^d = Analysis conducted by EPA Method 8260. See Table III.

Table III, Summary of Groundwater Sample Fuel Oxygenate Analytical Results BEI Job No. 203004, Former Fiesta Beverage 966 89th Avenue, Oakland, California

Wall ID	Cample Date				EPA Me	thod 8260B	(ug/L)			
Non-Dr	Sample Date	TAME	TBA	EBD	1,2-DCA	DIPE	Ethanol	ETBE	Methanol	MTBE
Drinking Water Source 1		NV	12	0.05	0.5	NV	50,000	NV	NV	5
	rinking Water Source ²	NV	18,000	152	204	NV	50,000	NV	NV	1,800
	3/17/2003	8.3	< 5.0	NA	NA	< 0.50	NA	< 0.50	NA	10.0
MW 1	6/23/2003	6.4	<25	NA	NA	<2.5	NA	<2.5	NA	8.0
IVI VV - 1	9/18/2003	5.3	<25	NA	NA	<2.5	NA	<2.5	NA	8.5
	12/15/03 ³	9.0	< 5.0	NA	NA	< 0.5	NA	< 0.5	NA	12.0
	3/17/2003	2.1	6.0	NA	NA	< 0.50	NA	< 0.50	NA	13.0
	6/23/2003	4.5	< 5.0	NA	NA	< 0.50	NA	< 0.50	NA	11.0
MW-2	9/18/2003	0.7	<25	NA	NA	< 2.5	NA	< 2.5	NA	5.0
	12/15/03 ³	3.2	5.2	NA	NA	< 0.5	NA	< 0.5	NA	13.0
	6/13/2006	4.5	6.5	< 5.0	< 5.0	< 5.0	< 50	< 0.5	< 500	7.6
	3/17/2003	4.3	8.6	NA	NA	< 0.50	NA	< 0.50	NA	10.0
MW-3	6/23/2003	2.6	< 5.0	NA	NA	< 0.50	NA	< 0.50	NA	5.6
1V1 VV - 3	9/18/2003	3.6	<25	NA	NA	<2.5	NA	<2.5	NA	10.0
	12/15/03 ³	2.7	< 5.0	NA	NA	< 0.5	NA	< 0.5	NA	13.0
MW-4	6/12/2006	NA	NA	NA	NA	NA	NA	NA	NA	6.1

Table III, Summary of Groundwater Sample Fuel Oxygenate Analytical Results BEI Job No. 203004, Former Fiesta Beverage 966 89th Avenue, Oakland, California

Well ID	Sample Date EPA Method 8260B (ug/L)									
	Sample Date	TAME	TBA	EBD	1,2-DCA	DIPE	Ethanol	ETBE	Methanol	MTBE
Drinking	Drinking Water Source 1		12	0.05	0.5	NV	50,000	NV	NV	5
	Non-Drinking Water Source ²		18,000	152	204	NV	50,000	NV	NV	1,800

Notes: TAME = Methyl tert-Amyl Ether

TBA = tert-Butyl Alcohol

EDB = 1,2-Dibromoethane

1,2-DCA = 1,2-Dichloroethane

DIPE = Di-isopropyl ether

ETBE = Ethyl tert-butyl ether

MTBE = Methly tert-butyl ether

 $(\mu g/L)$ = Micrograms per liter

NV = No value

NA = Not analyzed

- ¹ = From Table A; Environmental Screening Levels (ESLs); Groundwater IS a Current or Potential Source of Drinking Water
- ² = From Table B; RWQCB Environmental Screening Levels (ESLs); Groundwater IS NOT a Current or Potential Source of Drinking Water
- ³ = In general after this date, fuel oxygenates were monitored using MTBE detected by EPA Method 8020B, as a proxy for the approximate concentration of the remaining fuel oxygenates.

Bold results indicate detectable analyte concentrations.

Note: Shaded cell indicates that detected concentration exceeds ESL

Table IV, Summary of Groundwater Intrinsic Bioremediation Field Results BEI Job No. 203004, Former Fiesta Beverage 966 89th Avenue, Oakland, California Field Meter Field Meter Field Meter Field Test Kit Field Meter Dissoved Oxidation Ferrous Iron Field Field pH Well ID Sample Date Reduction Temperature Oxygen Potential (mg/L)(mV) (Fe 2+)(o F / o C)pH units MW-1 3/17/2003 60.4 / 60.0 * 7.1 / 7.3 NA NA NA 6/23/2003 0.4 NA NA 61.0 / 61.0 * 6.9 / 6.99/18/2003 0.4 NA NA 65.1 / 62.9 * 7.1 / 6.9 12/15/2003 1.1 NA NA 13.1 / 13.4 6.8 / 6.764.5 / 63.4 * 6/15/2004 0.1 NA NA 6.9 / 7.0NA NA NA 15.4 / 17.5 7.0 / 6.9 12/15/2004 6/29/2005 0.24 / 0.171.0 4.5 19.78 / 21.63 7.15 / 7.08 5/8/2006 Destroyed Destroyed Destroyed Destroyed Destroyed 2/19/2007 Destroyed Destroyed Destroyed Destroyed Destroyed 6/21/2007 Destroyed Destroyed Destroyed Destroyed Destroyed 11/8/2007 Destroyed Destroyed Destroyed Destroyed Destroyed 2/28/2008 Destroyed Destroyed Destroyed Destroyed Destroyed 5/29/2008 Destroyed Destroyed Destroyed Destroyed Destroyed

Destroyed

Destroyed

172.9 / 172.9

8.0

22.0

-60

156

97

65

-38

Destroyed

Destroyed

0 / 0

NA

NA

NA

0.0

0.6

0.0

0.4

Destroyed

Destroyed

6.90 / 6.92

6.95 / 6.86

7.1

6.9

6.98

7.12

6.8

7.05

Destroyed

Destroyed

17.31 / 17.36

12.2 / 15.8

19.6

64.4

63.2

17.3

66.2

18.3

8/27/2008

11/25/2008

6/13/2006 2/19/2007

6/21/2007

11/8/2007

2/28/2008

5/29/2008

8/27/2008

11/25/2008

MW-1R

Destroyed

Destroyed

0.87 / 0.37

0.48

0.62

0.3

0.28

0.72

0.18

0.17

Table IV, Summary of Groundwater Intrinsic Bioremediation Field Results BEI Job No. 203004, Former Fiesta Beverage 966 89th Avenue, Oakland, California Field Meter Field Meter Field Meter Field Test Kit Field Meter Dissoved Oxidation Ferrous Iron Field Field pH Well ID Sample Date Reduction Temperature Oxygen Potential (mg/L)(mV) (Fe 2+)(o F / o C)pH units MW-2 3/17/2003 7.4 / 7.9 NA NA NA 66.0 / 64.2 * 6/23/2003 0.6 NA NA 62.1 / 61.8 * 6.8 / 7.19/18/2003 1.3 NA NA 66.7 / 63.7 * 6.7 / 6.9 6.6 / 6.6 12/15/2003 1.6 NA NA 13.2 / 13.4 64.5 / 65.0 * 6.3 / 7.16/15/2004 0.1 NA NA NA NA NA 7.1 / 7.1 12/15/2004 16.9 / 17.0 6/29/2005 0.19 / 0.240.7 0.7 18.58 / 21.18 7.12 / 7.136/13/2006 0.80 / 0.42168.0 / 168.0 0 / 017.49 / 17.70 6.97 / 6.98 80 NA 13.6 / 16.3 7.24 / 7.06 2/19/2007 0.2 6/21/2007 0.18 46 NA 18.3 7.1 11/8/2007 0.4 209 NA 64.0 7.07 2/28/2008 0.29 191 0.0 63.1 6.98 5/29/2008 1.53 212 0.0 17.8 7.18 8/27/2008 0.14 202 0.0 72.1 6.56 11/25/2008 0.12 96 0.0 18.4 7.03 MW-3 63.3 / 60.9 * 7.4 / 7.63/17/2003 NA NA NA 6/23/2003 0.7 NA 66.4 / 66.9 * 7.3 / 7.2 NA 9/18/2003 0.4 NA NA 63.7 / 62.6 * 7.1 / 7.112/15/2003 1.6 NA NA 14.7 / 15.1 6.5 / 6.46/15/2004 0.0 NA NA 63.1 / 62.3 * 7.5 / 7.1NA 15.4 / 16.7 7.2 / 7.012/15/2004 NA NA 6/29/2005 0.72 / 0.78141.7 / -67.6 0.9 17.65 / 18.79 6.94 / 7.021.01 / 0.41170.0 / 168.5 0 / 017.30 / 17.15 7.02 / 6.98 6/13/2006 2/19/2007 0.08 81 NA 13.7 / 15.6 7.10 / 6.956/21/2007 0.10 39 NA 18.1 7.2 11/8/2007 0.30 -30 NA 62.5 7.04 2/28/2008 0.32 132 0.0 61.2 5.45 5/29/2008 0.77 0.6 16.3 7.19 186 8/27/2008 0.15 128 0.0 65.7 7.08 -40 0.0 17.8 7.05 11/25/2008 0.11

Table IV, Summary of Groundwater Intrinsic Bioremediation Field Results BEI Job No. 203004, Former Fiesta Beverage 966 89th Avenue, Oakland, California Field Meter Field Meter Field Meter Field Test Kit Field Meter Dissoved Oxidation Ferrous Iron Field Field pH Well ID Sample Date Reduction Temperature Oxygen Potential (mg/L)(mV) (Fe 2+)(o F / o C)pH units MW-4 16.90 / 16.79 6/12/2006 0.67 / 0.33164.3 / 161.0 0.5 / 06.82 / 6.79 2/19/2007 0.21 98 NA 13.7 / 15.0 7.14 / 7.036/21/2007 0.31 118 NA 16.4 7.0 62.7 11/8/2007 0.30 222 NA 6.96 0.28 0.0 7.01 2/28/2008 173 61.6 5/29/2008 1.07 228 0.0 16.2 6.81 8/27/2008 0.20 217 0.0 72.7 6.83 11/25/2008 0.11 153 0.1 17.6 6.95 MW-5 6/12/2006 0.61 / 0.31175.2 / 169.0 0 / 018.40 / 18.01 7.01 / 6.94 2/19/2007 1.98 -114 NA 12.7 / 14.1 6.93 / 6.73 6/21/2007 1.23 99 NA 16.8 7.1 11/8/2007 0.30 211 NA 63.9 6.85 2/28/2008 0.26 213 0.0 62.6 7.14 5/29/2008 0.80 249 0.0 16.5 7.18

265

175

181.2 / 174.8

-30

102

-8

212

194

241

220

0.0

0.0

0 / 0

NA

NA

NA

0.0

0.0

0.0

0.3

64.7

17.8

17.25 / 17.32

14.6 / 15.6

16.2

63.5

60.8

16.3

65.0

17.9

6.46

6.99

6.94 / 6.83

6.58 / 6.74

7.1

6.99

6.93 7.22

6.83

6.90

8/27/2008

11/25/2008

6/13/2006

2/19/2007

6/21/2007

2/28/2008

5/29/2008

8/27/2008

11/25/2008

MW-6

0.11

0.07

3.10 / 0.81

0.21

0.26

0.60

0.37

1.75

0.14

0.24

BEI Job No. 203004, Former Fiesta Beverage 966 89th Avenue, Oakland, California Field Meter Field Meter Field Meter Field Test Kit Field Meter Dissoved Oxidation Ferrous Iron Field Field pH Well ID Sample Date Reduction Temperature Oxygen Potential (mg/L)(mV) (Fe 2+)(o F / o C)pH units MW-7 6/12/2006 0.59 / 0.27172.5 / 171.8 0.5 / 0.26.90 / 6.87 18.14 / 18.00 2/19/2007 0.10 110 NA 16.2 / 17.2 7.69 / 7.21 6/21/2007 0.14 123 NA 17.3 7.0 11/8/2007 0.30 227 NA 64.5 6.90 0.0 64.2 7.00 2/28/2008 0.27 142 7.17 5/29/2008 1.47 83 0.0 17.8 8/27/2008 0.21 196 0.0 76.1 6.83 11/25/2008 0.19 206 0.0 18.4 7.07 MW-8 0.37 / 0.33186.1 / 180.4 0 / 018.55 / 18.39 6/12/2006 6.85 / 6.852/19/2007 0.11 102 NA 15.2 / 16.6 7.23 / 7.07 6/21/2007 0.12 111 NA 17.2 7.1 11/8/2007 0.30 232 NA 64.3 7.01 2/28/2008 0.26 206 0.0 63.1 7.08 7.22 5/29/2008 1.23 72 0.0 17.5 8/27/2008 0.26 190 0.0 74.8 6.29 0.13 212 0.0 19.0 7.03 11/25/2008 MW-9 6/12/2006 2.01 / 1.87 206.0 / 191.0 0 / 016.88 / 16.91 6.63 / 6.66 2/19/2007 0.08 101 NA 15.8 / 16.3 7.56 / 7.230.12 112 16.5 7.1 6/21/2007 NA 11/8/2007 0.40 230 NA 65.1 6.94 2/28/2008 0.26 208 0.0 62.1 7.01 94 7.33 5/29/2008 1.44 0.0 17.1 203 72.2 7.69 8/27/2008 0.28 0.0 11/25/2008 0.12 123 0.1 18.7 7.01

Table IV, Summary of Groundwater Intrinsic Bioremediation Field Results

Notes: mV = Millivolts

mg/L = Milligrams per liter

° F / ° C = degrees Fahrenheit / degrees Centigrade

* = degrees Fahrenheit

2.6 / 2.2 = Initial reading (pre-purge) / Final reading (post-purge)

NA = Not analyzed

Table V, S		undwater Intri No. 203004, Fo 9th Avenue, Oa	rmer Fiesta B	everage	vtical Results
		Method SM 5310B	Method	Method RSK 174	
Well ID	Sample Date	CO_2	Nitrate (as N)	Sulfate	Methane
			mg/L		μg/L
MW-1	6/29/2005	490	<0.1	5	5,900
	5/8/2006	Destroyed	Destroyed	Destroyed	Destroyed
MW-1R	6/13/2006	290	4.3	46	24
MW-2	6/29/2005	250	4.1	42	68
	6/13/2006	290	3.2	44	45
MW-3	6/29/2005	230	3.5	33	370
	6/13/2006	220	3.5	33	55
MW-4	6/12/2006	260	8.6	44	1.1
MW-5	6/12/2006	240	6.8	45	1.5
MW-6	6/13/2006	290	7.2	50	< 0.5
MW-7	6/12/2006	260	6	51	< 0.5
MW-8	6/12/2006	330	7.3	46	< 0.5
MW-9	6/12/2006	240	8.3	44	1.1

Notes: SM = Standard Method

mg/L = Milligrams per liter $\mu g/L = Micrograms$ per liter $CO_2 = Carbon$ Dioxide

Table V	Table VI, Summary of Groundwater Bacteria Enumeration Analytical Results BEI Job No. 203004, Former Fiesta Beverage 966 89th Avenue, Oakland, California												
			Aerobic Bacteria										
		Method 9215A (HPC) / SM 9215 B Modified											
Well ID	Sample Date	Hydrocarbon Degraders	Total Heterotrophs	Target Hydrocarbons Tested									
		cfu/ml											
MW-1R	4/27/2007	1,000	1,000	Gasoline/Diesel									
	8/9/2007	2,000	10,000	Gasoline/Diesel									
MW-2	4/27/2007	1,000	3,000	Gasoline/Diesel									
MW-5	8/9/2007	300	3,000	Gasoline/Diesel									
MW-6	4/27/2007	600	600 1,000 Gasoline/Diesel										
MW-9	4/27/2007	200	300	Gasoline/Diesel									

Notes: SM = Standard Method

cfu/ml = Colony forming units per milliliter

BEI JOB NO.

3-19-03

203004

SCALE IN FEET

1000

2000

SITE LOCATION MAP

FORMER FIESTA BEVERAGE 966 89TH AVE. OAKLAND, CA

Figure 3: Concentration of TPHG vs. Time in Well MW-3

Figure 4: Concentration of Benzene vs. Time in Well MW-3

Figure 5: Concentration of TPHG vs. Time in Well MW-1 / MW-1R

Figure 6: Concentration of Benzene vs. Tlme in Well MW-1 / MW-1R

Appendix A
Standard Operating Procedures
Blaine Tech Services, Inc.

Blaine Tech Services, Inc. Standard Operating Procedure

WATER LEVEL, SEPARATE PHASE LEVEL AND TOTAL WELL DEPTH MEASUREMENTS (GAUGING)

Routine Water Level Measurements

- 1. Establish that water or debris will not enter the well box upon removal of the cover.
- 2. Remove the cover using the appropriate tools.
- 3. Inspect the wellhead (see Wellhead Inspections).
- 4. Establish that water or debris will not enter the well upon removal of the well cap.
- 5. Unlock and remove the well cap lock (if applicable). If lock is not functional cut it off.
- 6. Loosen and remove the well cap. CAUTION: DO NOT PLACE YOUR FACE OR HEAD DIRECTLY OVER WELLHEAD WHEN REMOVING THE WELL CAP. WELL CAP MAY BE UNDER PRESSURE AND/OR MAY RELEASE ACCUMULATED AND POTENTIALLY HARMFULL VAPORS.
- 7. Verify and identify survey point as written on S.O.W.
 - TOC: If survey point is listed as Top of Casing (TOC), look for the exact survey point in the form of a notch or mark on the top of the casing. If no mark is present, use the north side of the casing as the measuring point.
 - TOB: If survey point is listed as Top of Box (TOB), the measuring point will be established manually. Place the inverted wellbox lid halfway across the wellbox opening and directly over the casing. The lower edge of the inverted cover directly over the casing will be the measuring point.
- 8. Put new Latex or Nitrile gloves on your hands.
- 9. Slowly lower the Water Level Meter probe into the well until it signals contact with water with a tone and/or flashing a light.
- 10. Gently raise the probe tip slightly above the water and hold it there. Wait momentarily to see if the meter emits a tone, signaling rising water in the casing. Gently lower the probe tip slightly below the water. Wait momentarily to see if the meter stops emitting a tone, signaling dropping water in the casing. Continue process until water level stabilizes indicating that the well has equilibrated.
- 11. While holding the probe at first contact with water and the tape against the measuring point, note depth. Repeat twice to verify accuracy. Write down measurement on Well Gauging Sheet under Depth to Water column.
- 12. Recover probe, replace and tighten well cap, replace lock (if applicable), replace well box cover and tighten hardware (if applicable)

Water Level and Separate Phase Thickness Measurements in Wells Suspected of Containing Separate Phase

- 1. Establish that water or debris will not enter the well box upon removal of the cover.
- 2. Remove the cover using the appropriate tools.
- 3. Inspect the wellhead (see Wellhead Inspections).
- 4. Establish that water or debris will not enter the well upon removal of the well cap.

GAUGING SOP Page 2 of 3

5. Unlock and remove the well cap lock (if applicable). If lock is not functional cut it off.

- 6. Loosen and remove the well cap. CAUTION: DO NOT PLACE YOUR FACE OR HEAD DIRECTLY OVER WELLHEAD WHEN REMOVING THE WELL CAP. WELL CAP MAY BE UNDER PRESSURE AND/OR MAY RELEASE ACCUMULATED AND POTENTIALLY HARMFULL VAPORS.
- 7. Verify and identify survey point as written on S.O.W.
 - TOC: If survey point is listed as Top of Casing (TOC), look for the exact survey point in the form of a notch or mark on the top of the casing. If no mark is present, use the north side of the casing as the measuring point.
 - TOB: If survey point is listed as Top of Box (TOB), the measuring point will be established manually. Place the inverted well box lid halfway across the well box opening and directly over the casing. The lower edge of the inverted cover directly over the casing will be the measuring point.
- 8. Put new Nitrile gloves on your hands.
- 9. Slowly lower the tip of the Interface Probe into the well until it emits either a solid or broken tone.

BROKEN TONE: Separate phase layer is not present. Go to Step 8 of Routine Water Level Measurements shown above to complete gauging process using the Interface probe as you would a Water Level Meter.

SOLID TONE: Separate phase layer is present. Go to the next step.

- 10. Gently raise the probe tip slightly above the separate phase layer and hold it there. Wait momentarily to see if the meter emits a tone, signaling rising water in the casing. Gently lower the probe tip slightly below the separate phase layer. Wait momentarily to see if the meter stops emitting a tone, signaling dropping water in the casing. Continue process until water level stabilizes indicating that the well has equilibrated.
- 11. While holding the probe at first contact with the separate phase layer and the tape against the measuring point, note depth. Repeat twice to verify accuracy. Write down measurement on Well Gauging Sheet under Depth to Product column.
- 12. Gently lower the probe tip until it emits a broken tone signifying contact with water. While holding the probe at first contact with water and the tape against the measuring point, note depth. Repeat twice to verify accuracy. Write down measurement on Well Gauging Sheet under Depth to Water column.
- 13. Recover probe, replace and tighten well cap, replace lock (if applicable), replace well box cover and tighten hardware (if applicable).

Routine Total Well Depth Measurements

- 1. Lower the Water Level Meter probe into the well until it lightens in your hands, indicating that the probe is resting at the bottom of well.
- 2. Gently raise the tape until the weight of the probe increases, indicating that the probe has lifted off the well bottom.
- 3. While holding the probe at first contact with the well bottom and the tape against the well measuring point, note depth. Repeat twice to verify accuracy. Write down measurement on Well Gauging Sheet under Total Well Depth column.

GAUGING SOP Page 3 of 3

4. Recover probe, replace and tighten well cap, replace lock (if applicable), replace well box cover and tighten hardware (if applicable).

PURGING SOP Page 1 of 3

Blaine Tech Services, Inc. Standard Operating Procedure

WELL WATER EVACUATION (PURGING)

Purpose

Evacuation of a predetermined minimum volume of water from a well (purging) while simultaneously measuring water quality parameters is typically required prior to sampling. Purging a minimum volume guarantees that actual formation water is drawn into the well. Measuring water quality parameters either verifies that the water is stable and suitable for sampling or shows that the water remains unstable, indicating the need for continued purging. Both the minimum volume and the stable parameter qualifications need to be met prior to sampling. This assures that the subsequent sample will be representative of the formation water surrounding the well screen and not of the water standing in the well.

Defining Casing Volumes

The predetermined minimum quantity of water to be purged is based on the wells' casing volume. A casing volume is the volume of water presently standing within the casing of the well. This is calculated as follows:

Casing Volume = (TD - DTW) VCF

- 1. Subtract the wells' depth to water (DTW) measurement from its total depth (TD) measurement. This is the height of the water column in feet.
- 2. Determine the well casings' volume conversion factor (VCF). The VCF is based on the diameter of the well casing and represents the volume, in gallons, that is contained in one (1) foot of a particular diameter of well casing. The common VCF's are listed on our Well Purge Data Sheets.
- 3. Multiply the VCF by the calculated height of the water column. This is the casing volume, the amount of water in gallons standing in the well.

Remove Three to Five Casing Volumes

Prior to sampling, an attempt will be made to purge all wells of a minimum of three casing volumes and a maximum of five casing volumes except where regulations mandate the minimum removal of four casing volumes.

Choose the Appropriate Evacuation Device Based on Efficiency

In the absence of instructions on the SOW to the contrary, selection of evacuation device will be based on efficiency.

Measure Water Quality Parameters at Each Casing Volume

At a minimum, water quality measurements include pH, temperature and electrical conductivity (EC). Measurements are made and recorded at least once every casing volume. They are considered stable when all parameters are within 10% of their previous measurement.

Note: The following instructions assume that well has already been properly located, accessed, inspected and gauged.

Prior to Purging a Well

- 1. Confirm that the well is to be purged and sampled per the SOW.
- 2. Confirm that the well is suitable based on the conditions set by the client relative to separate phase.
- 3. Calculate the wells' casing volume.
- 4. Put new Latex or Nitrile gloves on your hands.

Purging With a Bailer (Stainless Steel, Teflon or Disposable)

- 1. Attach bailer cord or string to bailer. Leave other end attached to spool.
- 2. Gently lower empty bailer into well until well bottom is reached.
- 3. Cut cord from spool. Tie end of cord to hand.
- 4. Gently raise full bailer out of well and clear of well head. Do not let the bailer or cord touch the ground.
- 5. Pour contents into graduated 5-gallon bucket or other graduated receptacle.
- 6. Repeat purging process.
- 7. Upon removal of first casing volume, fill clean parameter cup with purgewater, empty the remainder of the purgewater into the bucket, lower the bailer back into the well and secure the cord on the Sampling Vehicle.
- 8. Use the water in the cup to collect and record parameter measurements.
- 9. Continue purging until second casing volume is removed.
- 10. Collect parameter measurements.
- 11. Continue purging until third casing volume is removed.
- 12. Collect parameter measurements. If parameters are stable, stop purging. If parameters remain unstable, continue purging until stabilization occurs or the fifth casing volume is removed.

Purging With a Pneumatic Pump

- 1. Position Pneumatic pump hose reel over the top of the well.
- 2. Gently unreel and lower the pump into the well. Do not contact the well bottom.
- 3. Secure the hose reel.
- 4. Begin purging into graduated 5-gallon bucket or other graduated receptacle.
- 5. Adjust water recharge duration and air pulse duration for maximum efficiency.
- 6. Upon removal of first casing volume, fill clean parameter cup with water.
- 7. Use the water in the cup to collect and record parameter measurements.
- 8. Continue purging until second casing volume is removed.

- 9. Collect parameter measurements.
- 10. Continue purging until third casing volume is removed.
- 11. Collect parameter measurements. If parameters are stable, stop purging. If parameters remain unstable, continue purging until stabilization occurs or the fifth casing volume is removed.
- 12. Upon completion of purging, gently recover the pump and secure the reel.

Purging With a Fixed Speed Electric Submersible Pump

- 1. Position Electric Submersible hose reel over the top of the well.
- 2. Gently unreel and lower the pump to the well bottom.
- 3. Raise the pump 5 feet off the bottom.
- 4. Secure the hose reel.
- 5. Begin purging.
- 6. Verify pump rate with flow meter or graduated 5-gallon bucket
- 7. Upon removal of first casing volume, fill clean parameter cup with water.
- 8. Use the water in the cup to collect and record parameter measurements.
- 9. Continue purging until second casing volume is removed.
- 10. Collect parameter measurements.
- 11. Continue purging until third casing volume is removed.
- 12. Collect parameter measurements. If parameters are stable, stop purging. If parameters remain unstable, continue purging until stabilization occurs or the fifth casing volume is removed.
- 13. Upon completion of purging, gently recover the pump and secure the reel.

Sampling SOP

Blaine Tech Services, Inc. Standard Operating Procedure

SAMPLE COLLECTION FROM GROUNDWATER WELLS USING BAILERS

Sampling with a Bailer (Stainless Steel, Teflon or Disposable)

- 1. Put new Latex or Nitrile gloves on your hands.
- 2. Determine required bottle set.
- 3. Fill out sample labels completely and attach to bottles.
- Arrange bottles in filling order and loosen caps (see Determine Collection Order below).
- 5. Attach bailer cord or string to bailer. Leave other end attached to spool.
- 6. Gently lower empty bailer into well until water is reached.
- 7. As bailer fills, cut cord from spool and tie end of cord to hand.
- 8. Gently raise full bailer out of well and clear of well head. Do not let the bailer or cord touch the ground. If a set of parameter measurements is required, go to step 9. If no additional measurements are required, go to step 11.
- Fill a clean parameter cup, empty the remainder contained in the bailer into the sink, lower the bailer back into the well and secure the cord on the Sampling Vehicle. Use the water in the cup to collect and record parameter measurements.
- Fill bailer again and carefully remove it from the well.
- 11. Slowly fill and cap sample bottles. Fill and cap volatile compounds first, then semi-volatile, then inorganic. Return to the well as needed for additional sample material.

Fill 40-milliliter vials for volatile compounds as follows: Slowly pour water down the inside on the vial. Carefully pour the last drops creating a convex or positive meniscus on the surface. Gently screw the cap on eliminating any air space in the vial. Turn the vial over, tap several times and check for trapped bubbles. If bubbles are present, repeat process.

Fill 1 liter amber bottles for semi-volatile compounds as follows: Slowly pour water into the bottle. Leave approximately 1 inch of headspace in the bottle. Cap bottle.

Field filtering of inorganic samples using a stainless steel bailer is performed as follows: Attach filter connector to top of full stainless steel bailer. Attach 0.45 micron filter to connector. Flip bailer over and let water gravity feed through the filter and into the sample bottle. If high turbidity level of water clogs filter, repeat process with new filter until bottle is filled. Leave headspace in the bottle. Cap bottle.

Field filtering of inorganic samples using a disposable bailer is performed as follows: Attach 0.45 micron filter to connector plug. Attach connector plug to bottom of full disposable bailer. Water will gravity feed through the filter and into the sample bottle. If high turbidity level of water clogs filter, repeat process with new filter until bottle is filled. Leave headspace in the bottle. Cap bottle.

- 12. Bag samples and place in ice chest.
- 13. Note sample collection details on well data sheet and Chain of Custody.

BLAINE TECH SERVICES, INC

Page 1 of 1

Well Monitoring Data Sheets and Well Gauging Data,

Blaine Tech Services, Inc. November 25, 2008

BLAI	AIE	CANLI			BERS AVENU			COV	IDUCT	ANAL	YSIS T	O DET	ECT	LA		McCampbell		DHS#
		SAN J	OSE, CAI		IIA 95112-110 (408) 573-777										L ANALYSES MUST			DETECTION
TECH SER	VICES, INC	i.	P		(408) 573-055							I			MITS SET BY CALIFO EPA			
															LIA	L] KWQCB REC	GION
CHAIN OF CUS	TODY	RTS#	0811	12.	Sal										OTHER			
CLIENT					W C	ERS									DECLAR INCEDITORIO			
	Blymyer	Engine	ers, Inc	С.		AN		1B						51	PECIAL INSTRUCTION	DNS		
SITE	Former l	Fiesta B	everag	е		CONTAINERS		(8021B)						Tr	voice and Repo	rt to · Plym	ver Engine	ora Ino
	966 89th					_											yer Engine	ers, mc.
	900 8911	Avenu	ie			E ALL	(8015M)	MTBE				l		A	ttn: Mark Dette	erman		
	Oakland,	CA		,	· · · · · · · · · · · · · · · · · · ·	COMPOSITE	301	M						Ε	DF Format Req	uired.		
			MATRIX		VTAINERS	4PO	3) 5	व्य				1						
	1 1		100 02		1	l S		EX						G	lobal ID = T060010	1573	1 1	
SAMPLE I.D.	DATE	TIME	S= SOIL W=H ₂ 0	TOTAL	_	0 = 0	TPH-G	BTEX							DD'L INFORMATION	STATUS	CONDITION	LAB SAMPLE#
MW-1R	11/25/16	1055	W	3		<u> </u>	 		1					1,"		JIAIOS	CONDITION	LAB SAMPLE #
······	1		 	3	HCL Voa		X	X	-					- -			-	
MW-2		1135	W	3	HCL Voa		X	X	ļ									
MW-3	_	1205	W	3	HCL Voa		Х	Х										
MW-4		1510	W	3	HCL Voa		Х	Х										
MW-5		1420	W	3	HCL Voa		Х	Х										
MW-6		1015.	W	3	HCL Voa		Х	Х										
MW-7		1340	W	3	HCL Voa		Х	Х										
MW-8		1310	W	3	HCL Voa		Х	х										
MW-9	J	235	W	3	HCL Voa		Х	Х										
														\top				
SAMPLING	DATE	TIME	SAMPLI	NG	_1	L	<u> </u>	L	<u> </u>	l	<u></u>	1	<u>i</u>	RI				
COMPLETED	11(25/05)	1510	PERFOR	RMED E	3Y JOS	Se	ort	12							O LATED THAN	As contracted	4	
RELEASED BY						DAT			TIME			RECE	₩ED BY			7.10 00111140101	DATE	TIME
RELEASED BY	02	2				41	25/0	P-	16	5 O			~ C	2	_		11/7510	8 1650
RELEASED BY		,	<i>/</i> .	0)		DAT	Έ	_	TIME		_1	RECE	IVED BY/		7 /		DATE	TIME
Land State of the	y CS	Angolo	Cried has			11/	261	050	13	340		\mathcal{I}	Soull	2 (ate		(1/26/03 DATE	13:40
RELEASED BY						DAT			TIME			RECE	IVED BY	 -			DATE	TIME
[a.u.====																		
SHIPPED VIA						DAT	E SEN	IT	TIME	SENT	- T	COOL	ER#					
} .					•	ı			1		1			ŧ				

WELL GAUGING DATA

Project # O	31125-JOI	Date 11(25/08	Client Blymys	
Site 966	89th Are	Oakland wa		

	1				Thickness	Volume of	Ì	1	C	1
		Well		Depth to	of	Immiscibles			Survey Point:	
		Size	Sheen /		Immiscible	1	Depth to water	Depth to well	TOB or	
Well ID	Time	(in.)	Odor		Liquid (ft.)		(ft.)	bottom (ft.)	TOC	Notes
MW-1e	925	2	_				8,73	21.43	T	
mw-2	905	2					8.63	73.71	derin management	
mw-3	907	1	ts. in			- T-questantes		24.85		
mw-4	1430	2		l ove			8.54	21.80	On development of the control of the	
mw-5	1400	2		l oje			9,03	19.70	Michael Parkers and American	
mw-6	902	2		ű S	*		8.80	19.74	Ville City of the	
mw-7	909	2			, d		8-70	21.70	The state of the s	
mw-8	715	2		/			8.56	19,50		
mw-9	920	2					8.64	21.93	1	
	***************************************					.(2	94 .03	91.70		
									·	
				•						
š										- 144-
							·			

Page 1 of 1

WELLHEAD INSPECTION CHECKLIST

Date <u>11 (25</u>	108				Blynn	109				
Site Address	966	8914	Ne.	C	aklun	L CA.				
Job Number	08118	25-501	-	··		Tec	hnician	<u> </u>		
Well ID	N	II Inspected - o Corrective tion Required	Water Ba From Wellbo	(Wellbox Components Cleaned	Cap Replaced	Debris Removed From Wellbox	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)
inu-12		∞								
mw-2	,,	X				٨	·			
NW-3			1	-12	Bolls	MISSIE	a ta	~ 14 L	vell	
my.4	>		入) .)			
mw-5		C								
mw-6 mw-7										
		<								
mw-8 mw-9	-	X								
mar-9										
<u>, , , , , , , , , , , , , , , , , , , </u>										
NOTES:										
					-		****			
		P. C.								

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAI	VIE Byny	in & Farm	Ewson.	PROJECT NUMBER 08/125-501						
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIALS			
myron L Ultrameter II	6222712	840 MANOS	PH 7	7	423	16°C	SO			
			PHID ORP Solution 3900 MS Solution	247 @ 16°C 3927						
yzi sso 00.	0351287	845 11125/08	The state of the s	iot	yes	16,50	9			
neter				-						
			-	e ,						
				·						

V. LLL MONITORING DATA SHELT

Project#: (Client: Kgnya									
Sampler:	C2			Date:	4/25/0	&				
Well I.D.:	MW-11	2		Well D	Diameter	: ② 3	4	6 8	*******	
Total Well	Depth (TD): Z(. 43	Depth to Water (DTW): 8.73						
Depth to Fr	ee Product			Thickness of Free Product (feet):						
Referenced	to:	PVC	Grade	D.O. Meter (if req'd): (YSI) HACH						
DTW with	80% Rech	arge [(H	eight of Water	Colum	n x 0.20)) + DTW]:	THE PERSON OF	,27		
	Bailer Disposable B Positive Air I Electric Subn	Displacemer	nt Extrac Other	Waterra Peristaltic tion Pump		Sampling M	Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing Multiplier 0.65		
2.0 ((Gals.) X Speci	5 fied Volum	$= \frac{6.0}{\text{Calculated Vo}}$	_ Gals. olume	2" 3"	0.16 0.37	6" Other	1.47 radius ² * 0.163		
Time	Temp (°F or C)	рН	Cond. (mS or μS)	(N	bidity ΓUs)	Gals. Rem	oved	Observations		
1046	18.3	7.11	867	909		2.0				
1050	19.0	4.0+	839	1000		4.0	· · · · · · · · · · · · · · · · · · ·		Miles de la companya	
1052_	18-3	7.05	848	10007	7	6.0				
Post pag Did well de	,	uncuts Yes (tulen at	\[\lambda\] \[\lambda\] Gallon	1	下。 y evacuate	ed: (0.4 6.0		
Sampling D	ate: 11/25k	7×	Sampling Time	e: 1054	,)	Depth to				
Sample I.D.	: mw-	1R		Labora	tory:	Kiff CalS	Science	Other Weaunglo	el	
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other: Se	e	Ce96 _ 1		
EB I.D. (if a	applicable)		@ Fime	Duplic	ate I.D.	(if applical		·	decree to the	
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other:				
D.O. (if req	'd): Pr	e-purge:		mg/L Post-purge: O.12			0.17	^{1g} /L		
O.R.P. (if re	eq'd): Pr	e-purge:		mV	P	ost-purge:			ıV	

V. LLL MONITORING DATA SHELT

Project #: (DBII 25-	<u> 101</u>		Client:	Bung				
Sampler:	50			Date:	U25108				
Well I.D.: 4	M 20-2P	. v	nw-Z		Diameter	: ② 3	4	6 8	***************************************
Total Well	Depth (TI			Depth	to Water	r (DTW):	8.6	3	
Depth to Fro	ee Produc	t:		Thickn	ess of F	ree Produ			
Referenced	to:	(PVC)	Grade	D.O. N	leter (if	req'd):	(YSI) HACH	
DTW with 8	80% Rech	arge [(H	leight of Water	r Columi	n x 0.20)) + DTW]	: 3	11.65	
-	Bailer Disposable E Positive Air I Electric Subr	Displaceme	ent Extra Other	Waterra Peristaltic ction Pump		Sampling I	Method: Other:	Bailer Disposable Bailer Extraction P Dedicated Tu	'ort
2.4 (Classe Volume	Gals.) X Spec	3 ified Volun	= <mark>1,2</mark> nes Calculated V	_ Gals. olume	Well Diamete I" 2" 3"	0.04 0.16 0.37	Well D 4" 6" Other	Diameter Multiplier 0.65 1.47 radius ² * 0.10	63
Time UZ4	Temp (°F or °C)	pH	Cond. (mS or µS)	(N	bidity ΓUs)	Gals. Ren	noved	Observatio	ons
		7000		62		24			
1127	18.3	7.06	869		07	4.8			
1130	18.4	7.03	865	Lac	202	7.2			
post pag	· ·	nates	tuben 60		2 595		Fe2	=0.0	
Did well de		······································	No	Gallon	s actuall	y evacuat	ed:	4-2	
Sampling D	ate: [[[Z5]	08	Sampling Tim	ie: UZ	5	Depth to	Water	r: 10.98	
Sample I.D.	: WW -	2		Labora	tory:	Kiff Cal	Science	Other McCiv	mpbell
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other: 5	ee (COC	
EB I.D. (if a	pplicable):	(A) Time	Duplica	ate I.D.	(if applica	ble):		
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	. ,	Other:			
D.O. (if req'	d): P	re-purge:		mg/L	Р	ost-purge:		0.12	mg/L
O.R.P. (if re	eq'd): Pr	re-purge:		mV	P	ost-purge:		96	mV

LL MONITORING DATA SH. T

Project #:	081125-	101		Client: Blywn	0156				
Sampler:	50			Date: 11/25/	` ()				
Well I.D.:	botto JR	- Mu	J ~ 3	Well Diameter	r: ② 3 4	6 8			
Total Well	Depth (TI)): 2°	4.85	Depth to Wate	er (DTW): 9, ()7_			
Depth to Fi	ree Produc	t:		Thickness of Free Product (feet):					
Referenced	to:	PVC) Grade	D.O. Meter (if	req'd):	YSI) HACH			
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20) + DTW]: \Z.	. 19			
Purge Method:	Bailer Disposable E Positive Air I Electric Subr	Displaceme	ent Extrac Other	Waterra Peristaltic tion Pump Well Diamet	Sampling Method Other	₩Disposable Bailer Extraction Port Dedicated Tubing			
2.5 (Old Case Volume	Gals.) XSpeci	3 fied Volun		_ Gals. 1" 2"	er Multiplier Well 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 radius ² * 0.163			
Time	Temp (°F or °C)	pН	Cond. (mS or μS)	Turbidity (NTUs)	Gals. Removed	Observations			
1148	179	7.04	973	72.9	2.5				
1150	17.9	7.04	912	116	Sho				
1152	128	7.05	927	158	7.5				
Post pw Did well de		rumetr Yes	taken a	Gallons actuall	evacuated:	Fetz = 0.0			
Sampling D	ate: 11 25/1	18	Sampling Time	e: 1205	Depth to Wate	r: 11.87			
Sample I.D.	: WW-	3	**	Laboratory:	Kiff CalScience	e Other McCampbell			
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See	cee .			
EB I.D. (if a	applicable)		@ Time	Duplicate I.D.					
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:				
D.O. (if req'	d): Pr	e-purge:		mg/ _L P	ost-purge:	O. (mg/L			
O.R.P. (if re	ea'd): Pr	e-purge:		* mV P	ost-purge:	-40 mV			

V LL MONITORING DATA SH. .T

Project #: 0	<u> 181125-</u>	101		Client: Blain	195	
Sampler:	80			Date: 1/125/08		
Well I.D.:	V ISTO 4	le m	w-4	Well Diameter	r: ② 3 4	6 8
Total Well	Depth (TI	_	.80	Depth to Water	er (DTW): 8,5	
Depth to Fr	ee Produc	t:		Thickness of F	Free Product (fe	eet):
Referenced	to:	PVC	Grade	D.O. Meter (if	req'd):	YSI HACH
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20) + DTW]:	.19
-	Bailer ≱Disposable B Positive Air I Electric Subn	Displaceme		Waterra Peristaltic ction Pump Well Diamete		Disposable Bailer Extraction Port Dedicated Tubing
2 (C 1 Case Volume		5 ified Volum	$\frac{1}{1} = \frac{6.3}{\text{Calculated Vo}}$	1" 2" Gals.	0.04 4" 0.16 6" 0.37 Other	0.65 1.47
Time	Temp (°F or °C)	рН	Cond. (mS or µS)	Turbidity (NTUs)	Gals. Removed	Observations
14S5	4.3	6,97	696	481	21	
1457	17.5	6.96	695	960	4.2	
1459	17.6	6.95	695	1000 C	6.3	ACC
post pung Did well dev	Pe∕iin water?		taken @ 1	& bgs Gallons actuall	ly evacuated:	6.3
Sampling Da	ate: 11/2	5/08	Sampling Time	e: 15 (6	Depth to Wate	1
Sample I.D.:		· · · · · · · · · · · · · · · · · · ·		Laboratory:	Kiff CalScience	e Other <u>incampbell</u>
Analyzed for	or: TPH-G	BTEX		Oxygenates (5)	Other: See	Coe
EB I.D. (if a	.pplicable)):	@ Time	Duplicate I.D. ((if applicable):	
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	• • • • • • • • • • • • • • • • • • • •	Other:	
D.O. (if req'o	d): Pr	re-purge:		mg/ _L Po	ost-purge:	O.ll mg/L
O.R.P. (if re	q'd): Pr	re-purge:		mV Po	ost-purge:	ISZ * mV

V LL MONITORING DATA SHE

Project #:	08(125-,	fv1		Client:	Bum	1406			COMMISSION CONTRACTOR OF THE C	
Sampler:	30			<u></u>	12/10	A .				
Well I.D.:	WW-5	P In	ν~5	Well Dia	meter	: 6 3	4	6 8	-	
Total Well	Depth (TD		, 70	Depth to	Wate	r (DTW):	9. (23		
Depth to Fr	ee Produc	t:		Thickness of Free Product (feet):						
Referenced		(PVC)	Grade	D.O. Me				YSI HAC	 'H	
DTW with	80% Rech	arge [(H	leight of Water			·——————	: ((.16		
s 7	Bailer ¢Disposable B Positive Air I Electric Subr Gals.) X Speci	Displaceme	Other	_ Gals.	ell Diamete 1" 2" 3"	Sampling Per Multiplier 0.04 0.16 0.37	Other:	Bailer Disposable Extraction Dedicated To Diameter Multiplier 0.65 1.47 radius² * 0.	Port ubing	
Time	Temp (°F or °C)	pН	Cond. (mS or μS)	Turbid (NTU	-	Gals. Rer	noved	Observati	ons	
402	(7-7	7.05	770	984		1.7				
1404	17.9	7.02	721	1000	<u>ر</u>	3 - 4				
1406	17-8	6.99	721	(0004	si manggar	571	1			
Post Dyg Did well de	parame water?	thes to	iku at l	Gallons a	actuall	y evacuat	<u>0.5</u>	·		
Sampling D	ate: ((/25	5/08	Sampling Tim	e: 14:20	\mathcal{O}	Depth to	Water	r: 10,23		
Sample I.D.	×.			Laborato	ry:	Kiff Cal	Science		npbell	
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenate	s (5)	Other:	See	COC		
EB I.D. (if a	applicable)):	@ Time	Duplicate	e I.D.	(if applica				
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenate	s (5)	Other:		The state of the s		
D.O. (if req'	d): P1	e-purge:	A COLOR	mg/L	· (é	ost-purge:		6.67	mg/L	
O.R.P. (if re	eg'd): Pi	e-purge:		mV	(P	ost-purge.		125	тV	

V LL MONITORING DATA SHE

Project #: C	81125-J	01		Client:	Blyma	425			
	SU				1/25/08	1			
	M4-6	·R m	W-6	Well D	iameter	: 67 3	4	6 8 _	
Total Well			14	Depth	to Water	r (DTW):	8,8	0	
Depth to Fr	ee Produc	t:		Thickn	ess of F	ree Produ		-	
Referenced	to:	(PVC)	Grade	D.O. M	leter (if	reald):		YSI I	HACH
DTW with 8	80% Rech		leight of Water	·/·····			: 10	0.99	
Purge Method:	Bailer Disposable B Positive Air I Electric Subr	ailer Displaceme		Waterra Peristaltic tion Pump	Well Diamete	Sampling 1	Method: Other:	Disposa Extract Dedicate	niler ble Bailer tion Port ed Tubing
Case Volume	,	ified Volum	$= \underbrace{5.4}_{\text{Calculated Vo}}$	_Gals.	1" 2" 3"	0.04 0.16 0.37	4" 6" Other	0.65 1.47	² * 0.163
Time	Temp (°F or Ĉ	рН	Cond. (mS or μS)	1	oidity TUs)	Gals. Ren	noved	Obser	vations
1002	17.8	6.86	805	129		1.8			
1004	17.8	6.87	803.	74		3.6			
1006	179	6.90	800	510		5.4			
ja Salah				3					
Post pur Did well de	70 (netas Yes (tuke at 1		las sactuall	y evacuat	2+ ed: =	0.3	
Sampling D	ate: 11 (25	108	Sampling Time			Depth to			, >
Sample I.D.	: MW-	6		Labora	tory:	Kiff Cal	Science	Other W	campbell
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ites (5)	Other:	Set	e coc	
EB I.D. (if a	pplicable)):	@ Time	Duplica	ate I.D. ((if applica			
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	tes (5)	Other:	***		
D.O. (if req'	d): P1	e-purge:		$^{ m mg}/_{ m L}$	P	ost-purge:		0.24	mg/L
O.R.P. (if re	u'd). Pr	e-nurge		mV	(D.	oct-nurge.		170	mV

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

V LLL MONITORING DATA SHLLT

Project #: 🖰	ell I.D.: Auto-742 Mu-7 otal Well Depth (TD): 21.70 epth to Free Product: eferenced to: PVC Grade TW with 80% Recharge [(Height of V) ge Method: Bailer Positive Air Displacement Electric Submersible Other Temp (Gals.) X 3 Specified Volumes Calcul Temp (°F or °C) pH (mS or ph) 3 2 6 (§ C 7.20 7.72 3 28 17.9 7.06 7.71 3 30 18.4 7.07 76.9 eost pure pure pure fix tules d well dewater? Yes No mpling Date: 1(125/08 Sampling mple I.D.: MW 7 nalyzed for: TPH-G BTEX MTBE TF B I.D. (if applicable): Time				Blyma	95			
Sampler: 👃	Vell I.D.:				-11				
Well I.D.:	well I.D.: who IR won I otal Well Depth (TD): 21.70 Depth to Free Product: Deferenced to: PVC Grade OTW with 80% Recharge [(Height of Varge Method: Bailer Positive Air Displacement Electric Submersible Other Time (Specified Volumes Specified Volumes Calcul Temp Cond (mS or pH (mS o					<i>n</i> \	4	6 8	***************************************
	representation of the state of				to Water	r (DTW):	8.7	O	
Depth to Fro	ee Product	•		Thickr	ness of F	ree Prodi	ıct (fee	t):	
Referenced	to:	(PVC)	Grade	D.O. N	Aeter (if	req'd):		YSI) HACH	***************************************
DTW with 8	80% Recha	arge [(H	leight of Water	Colum	n x 0.20)) + DTW]:	30	
Depth to Water (DTW): 8 Formula									
	Date: It 25 08 Bill I.D.: 1 10 12 14 15 Bill I.D.: 1 14 15 Bill I.D.: 1 15 With 80% Recharge [(Height of Water Column x 0.20) + DTW]: II. 3 Bill I.D.: 1 15 Bill I.D.: 1 15 Waterra 15 Bill I.D.: 1 15 Bill I.D.								
<u>~</u>	Date: It(25/08) Date: It(25/08) Date: It(25/08) Date: It(25/08) Date: It(25/08) Date: It(25/08) Depth to Water (DTW): 8 70 Depth to Free Product: Thickness of Free Product (Feet): Ferenced to: FVC Grade D.O. Meter (if req'd): V\$I HACH We with 80% Recharge [(Height of Water Column x 0.20) + DTW]: It. 30 Bailer Positive Air Displacement Electric Submersible Ditter Positive Air Displacement Electric Submersible Ditter Other: Depth to Water (DTW): 8 70 Thickness of Free Product (Feet): Feer Product (Feet): Feet Product								
1326	1 . V	t. 20	++6	1690)<	2.	.0		
1328	14.9	7.06	7+1	109090	<u> </u>	420		WHILE STATE OF THE	
1330	18.4	7,07	769	1000	ンし	6.	0		
1	į į		10020	<u> </u>				<i>- 0.</i> O	
Sampling D	ate: 1(/75/	<u> </u>	Sampling Tim					:1104	
	Date: III 25/08 cell I.D.: 12/12 1/12 1/12 1/12 Depth to Water (DTW): 8 70 cepth to Free Product: Thickness of Free Product (feet): 12/14 1/12 1/12 1/12 1/12 1/12 1/12 1/1								
Analyzed fo	Date: 1(1/25/08) Well I.D.: Water 1/2 Will - 7 Well Diameter: ② 3 4 6 8 Depth to Free Product (Feet): Depth to Water (I Free'd): Ysi HACH Drive with 80% Recharge [(Height of Water Column x 0.20) + DTW]: 11.30 Date: 1(1/25/08) Well Diameter: ② 3 4 6 8 Depth to Water (I Free'd): Ysi HACH Drive With 80% Recharge [(Height of Water Column x 0.20) + DTW]: 11.30 Date: 1(1/25/08) Well Diameter: ② 3 4 6 8 Depth to Water (I Free'd): Ysi HACH Drive With 80% Recharge [(Height of Water Column x 0.20) + DTW]: 11.30 Date: 1(1/25/08) Well Diameter: ② 3 4 6 8 Depth to Water (I Free'd): Ysi HACH Drive With 80% Recharge [(Height of Water Column x 0.20) + DTW]: 11.30 Date: 1(1/25/08) Well Diameter: ② 3 4 6 8 Depth to Water (I Free'd): Ysi HACH Drive Water (I Free'd): Water (I Free'd								
EB I.D. (if a	applicable)			Duplic	ate I.D.	(if applic			
Analyzed fo	or: TPH-G	ВТЕХ	MTBE TPH-D			Other:			
D.O. (if req'	'd): Pr	e-purge:		mg/L Post-purge: O.19					mg/L
O.R.P. (if re	eq'd): Pr	e-purge:		mV	. P	ost-purge:			mV

WELL MONITORING DATA SHLET

Project #: 0	J81125 -{	01		Client: Blyma	(OL						
Sampler:	80 0										
Well I.D.:	MW-8	t m	w-8		21						
Total Well	Depth (TD): [9	,50	Depth to Wate	er (DTW): S,4	56					
Depth to Fro	ee Product	••		Thickness of F	ree Product (fe	et):					
Referenced	to:	(PVC)	Grade	D.O. Meter (if	req'd):	(YSI) HACH					
DTW with 8	80% Rech	arge [(H	leight of Water			1, 75					
-	Disposable B Positive Air I	Displaceme	ent Extrac		Sampling Method:	Bailer Disposable Bailer Extraction Port Dedicated Tubing					
Electric Submersible Other: Other: Well Diameter Multiplier Well Diameter Multiplier											
Time		pН		1	Gals. Removed	Observations					
1258	8.81	7.02	795	1000 4	1.8						
1300	18.7	6.98	603	10002	3.6						
302	19.0	7.03	799	10002	57.4						
post page	pova	nells	taken @ 10	o has	Fe2+ = 0	D. ()					
Well I.D.: Wall Depth (TD): [9,50] Depth to Water (DTW): \$,56 Depth to Free Product: Thickness of Free Product (feet): Referenced to: PVO Grade D.O. Meter (if req'd): ST HACH DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: 1(1,75) Purge Method: Bailer Positive Air Displacement Electric Submersible Tensitive Air Displacement Electric Submersible 1. Grade D.O. Meter (if req'd): ST HACH DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: 1(1,75) Purge Method: Bailer Positive Air Displacement Electric Submersible Peristaltic Extraction Pump Other Other: Well Diameter: Multiplic Well Diameter Multiplic Decicated Tubing Other: Other: Well Diameter: Multiplic Well Diameter Multiplic Decicated Tubing Other: Other: Other: Well Diameter: Multiplic Well Diameter Multiplic Decicated Tubing Other: Other: Other: Other: Other: Other: Other: Multiplic Decicated Tubing Other: Other: Other: Other: Multiplic Decicated Tubing Other:		<u>-</u>									
Sampling D	ate: 11 <i>[125]</i>	08	Sampling Time	e: 13 lO	Depth to Wate	r: 10.51					
Sample I.D.	: mw-	-8		Laboratory:	Kiff CalScience	e Other We Clumbel					
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: Se	e coe					
EB I.D. (if a	ipplicable)			Duplicate I.D.	(if applicable):	Ŧ					
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:						
D.O. (if req'	d): Pr	e-purge:		mg/ _L P	'ost-purge:	0.13 mg/L					
O.R.P. (if re	q'd): Pr	e-purge:		mV P	ost-purge:	212 mV					

WELL MONITORING DATA SHEET

				-		
Project #:) 81125.	301		Client: Blym	11.106	
Sampler:	80			1 .1	- []	
Well I.D.:	HALD O	ik u	nw-9		0)	6 8
Total Well	Depth (TD		41	Depth to Wate	er (DTW): %. &	
Depth to Fr	ee Product	-•	, , , ,	Thickness of F	Free Product (fee	et):
Referenced	to:	(PVC)	Grade	D.O. Meter (if	req'd):	YSI HACH
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20) + DTW]: (\.	29
Sampler: Well I.D.: Well Diameter: 2 3 4 6 8 Total Well Depth (TD): 21.93 Depth to Water (DTW): 8-64 Depth to Free Product: Thickness of Free Product (feet):						Disposable Bailer Extraction Port Dedicated Tubing Diameter Multiplier 0.65 1.47
	Speci	fied Volun	nes Calculated Vo	Jume 3"	0.37 Other	radius* * 0.163
A	(°F or °C)	éstand -	(mS or μS)	1		Observations
	,	TUT	601	151		
		100	696	540		
(224	10,+	+,01	693	584	6.5	
			α_{-}		1	= 0.1
Sampler: Date: 11/2 1/0 8 Well I.D.: 144 Af ww - 9 Well Depth to Water (DTW): 7 64 Depth to Free Product: Thickness of Free Product (feet): Referenced to: (FVC) Grade D.O. Meter (if req'd): (YSI) HACH DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: (1 - Z9) Purge Method: Bailer Positive Air Displacement Electric Submersible Other Positive Air Displacement Electric Submersible Other Temp Other Temp Time (For °C) pH (mS or µS) (NTUs) Gals. Removed Observations 12.1 (3.1 7.07 667 13 2.1 1.2 1.2 1.2 1.2 1.2 1.3 1.2 1.2 1.2 1.3 1.2 1.2 1.2 1.3 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3						
Sample I.D.	: ww	-9		Laboratory:	Kiff CalScience	e Other <u>ine Couple</u> ll
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See	Cerc
Date: [1] 2 10 8 Well I.D.: Lage AF www-9 Well Diameter: 2 3 4 6 8 Potal Well Depth (TD): 2 1.93 Depth to Free Product: Thickness of Free Product (feet): Referenced to: (PVC) Grade D.O. Meter (if req'd): Y81 HACH DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: 1 29 Druge Method: Bailer Positive Air Displacement Electric Submersible Detailer Submersible Positive Air Displacement Electric Submersible Case Volume Specified Volumes Specified Volumes Calculated Volume Specified Volume Specifi						
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	
D.O. (if req'	d): Pı	e-purge:	The second secon	mg/L (F	Post-purge:	0-12 mg/L
O.R.P. (if re	sa'd). Pi	e-purge:		mV (I	Post-nurge:	127 mV

Si or Purge Water Drum Lo

Client: Blymyon	_ eng_				
Site Address: Blym you	of Ar.	DALLAND	, CA		
STATUS OF DRUM(S) UPON	ARRIVAL				
Date	11125/08				
Number of drum(s) empty:	Ģ				
Number of drum(s) 1/4 full:	10± 0				
Number of drum(s) 1/2 full:					
Number of drum(s) 3/4 full:	2				
Number of drum(s) full:	@ 并 5				
Total drum(s) on site: (Q87				
Are the drum(s) properly labeled?	Y				
Drum ID & Contents:	Purje H20				
If any drum(s) are partially or totally filled, what is the first use date:	08/127/07				
-If drum contains SPH, the drum MUST be s -All BTS drums MUST be labeled appropria STATUS OF DRUM(S) UPON	tely.	NO - 6-20 TO 22 - 25 TO 23 TO 25	oropriate label.		
Date	11/25/06				
Number of drums empty:	5				
Number of drum(s) 1/4 full:	ĺ				
Number of drum(s) 1/2 full:					
Number of drum(s) 3/4 full:					
Number of drum(s) full:	1		43.75 3.74		
Total drum(s) on site:	8				
Are the drum(s) properly labeled?	Y				
Drum ID & Contents:	Puge H2D				
LOCATION OF DRUM(S)	Yes		6885 6885		
Describe location of drum(s):					
FINAL STATUS					
Number of new drum(s) left on site this event	1				
Date of inspection:	11125 608				
Drum(s) labelled properly:	У				
Logged by BTS Field Tech:	80				
Office reviewed by:	11/				

Appendix C
Analytical Laboratory Report

McCampbell Analytical, Inc. December 5, 2008

McCampbell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

Blymyer Engineers, Inc.	Client Project ID: #081125-S02; Former	Date Sampled: 11/25/08
1829 Clement Avenue	Fiesta Beverage, 966 89th Ave	Date Received: 11/26/08
Alameda, CA 94501-1395	Client Contact: Mark Detterman	Date Reported: 12/05/08
7 Halloud, C/1 7 1501 1575	Client P.O.:	Date Completed: 12/05/08

WorkOrder: 0811850

December 05, 2008

_			
Dear	N/	വഴ	7
17541	IV	เลเ	N.

Enclosed within are:

- 1) The results of the 9 analyzed samples from your project: #081125-S02; Former Fiesta Bevera
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

DIAL	NIE		-		ERS AVENU			CON	DUCT /	ANALY	YSIS T	O DE	TECT		LAB McCampbell DHS#
BLAI TECH SER				FAX	IA 95112-110 (408) 573-777 (408) 573-055	11	30								ALL ANALYSES MUST MEET SPECIFICATIONS AND DETECTION LIMITS SET BY CALIFORNIA DHS AND PPA RWQCB REGION
CHAIN OF CUS	STODY	BTS#	0811	25.	502	SS									LIA OTHER
CLIENT	Blymyer	Engine	ers, Inc	c.		INER		(B)							SPECIAL INSTRUCTIONS
SITE	Former					CONTAINERS		(8021B)							Invoice and Report to : Blymyer Engineers, Inc.
	966 89th					ALL C	इ	E (8							Attn: Mark Detterman
	Oakland, CA					15M)	MTBE							EDF Format Required.	
SAMPLE I.D.	DATE	TIME	NATRIX S= SOIL W=H ₂ 0	TOTAL	ITAINERS	C = COMPOSITE	TPH-G (801:	BTEX & N							Global ID = T0600101573 ADD'L INFORMATION STATUS CONDITION LAB SAMPLE
MW-1R	11/25/08		W	3	HCL Voa		х	х							- ON BING ON BING
MW-2	1	1135	W	3	HCL Voa		х	х							
MW-3		1205	W	3	HCL Voa		х	х							
MW-4	- —	1510	w	3	HCL Voa		х	х							
MW-5		1420	w	3	HCL Voa		х	х						0	4
MW-6		1015.	W	3	HCL Voa		х	х				GO	OD C	DNDIT	TON APPROPRIATE
MW-7		1340	w	3	HCL Voa		х	х				DE	CHLO	1100	ABSENT CONTAINERS TED IN LAB PRESERVED IN LAB VOAS 10 & G1 METALS] OTHER I
MW-8		1310	w	3	HCL Voa		х	х				PR	ESER	VATIO	
MW-9	4	1235	W	3	HCL Voa		х	Х							
SAMPLING COMPLETED	DATE (15(0%		SAMPLI PERFO		Y Jos			乞							RESULTS NEEDED NO LATER THAN As contracted
RELEASED BY						DAT Q'(2	5/0	8	TIME 165	6		6	IMED (an	DATE TIME
RELEASED BY	m a	angle	Custo.	en)		DAT	166		TIME	40		BECE	IVED	BY	Cost = 1/26/03 13:4
RELEASED BY	Don	k Cart	t_			DAT			TIME (7)	9		RECE	IVED	BY C	Cost 8 18:4
SHIPPED VIA					,	DAT	E SEN	IT	TIME	SENT		COOL	ER#		

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

	llow Pass Rd				_			_									
	g, CA 94565-1701 52-9262					Work	Order:	08118	350	(ClientC	ode: B	EIA				
			WriteOn	☑ EDF		Excel	[Fax	5	✓ Email		Hard	Сору	Thir	dParty	☐ J-f	lag
Report to: Mark Dettern	man	Email:	MDetterman@	blymyer.com			Bill to: Ac	counts	Payable	e			Requ	uested	TAT:	5 d	lays
Blymyer Eng 1829 Cleme	nt Avenue	cc: PO:					Bly 18:	myer E 29 Clen	nginee nent Av	rs, Inc. enue					ived:		
Alameda, C	A 94501-1395 '3 FAX (510) 865-2594	ProjectNo:	#081125-S02; 966 89th Ave	; Former Fiesta Be	evera	ge,	Ala	ameda,	CA 945	501-139	95		Date	e Print	ed:	11/26/2	2008
									Req	uested	Tests	(See leg	gend be	elow)			
Lab ID	Client ID		Matrix	Collection Date	H <u>ol</u> d	1	2	3	4	5	6	7	8	9	10	11	12
0811850-001	MW-1R		Water	11/25/2008 10:55		Α	Α							<u> </u>			
0811850-002	MW-2		Water	11/25/2008 11:35	Ш	Α											
0811850-003	MW-3		Water	11/25/2008 12:05		Α								<u> </u>			
0811850-004	MW-4		Water	11/25/2008 15:10		Α											
0811850-005	MW-5		Water	11/25/2008 14:20		Α											
0811850-006	MW-6		Water	11/25/2008 10:15		Α											
0811850-007	MW-7		Water	11/25/2008 13:40		Α											
0811850-008	MW-8		Water	11/25/2008 13:10		Α											
0811850-009	MW-9		Water	11/25/2008 12:35		Α											
Test Legend: 1	TEX_W 2 7 12	PREDF F	EPORT	3 8				4 9						5 10			
•••	, (12)												Prepa	ared by	: Ana V	⁷ enegas	

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Sample Receipt Checklist

Client Name:	Blymyer Engin	eers, Inc.			Date a	and Time Received:	11/26/08 7	:21:54 PM
Project Name:	#081125-S02; F	ormer Fiesta Beve	rage,	966 89t	th A Check	klist completed and r	eviewed by:	Ana Venegas
WorkOrder N°:	0811850	Matrix Water			Carrie	er: Derik Cartan (I	MAI Courier)	
	Ana Venegas Ana V							
Chain of custody	present?		Yes	V	No 🗆			
Chain of custody	signed when relind	juished and received?	Yes	V	No \square			
Chain of custody	agrees with sampl	e labels?	Yes	✓	No 🗌			
Sample IDs noted	by Client on COC?		Yes	V	No 🗆			
Date and Time of	collection noted by	Client on COC?	Yes	~	No 🗆			
Sampler's name r	noted on COC?		Yes	V	No 🗆			
		<u>s</u>	ample	Receipt	t Information	<u>1</u>		
Custody seals in	tact on shipping cor	ntainer/cooler?	Yes		No 🗆		NA 🔽	
Shipping containe	er/cooler in good co	ndition?	Yes	V	No 🗆			
Samples in prope	er containers/bottles	s?	Yes	~	No \square			
Sample containe	rs intact?		Yes	✓	No 🗆			
Sufficient sample	e volume for indicate	ed test?	Yes	✓	No 🗌			
		Sample Prese	rvatio	n and Ho	old Time (HT) Information		
All samples recei	ived within holding t	ime?	Yes	✓	No 🗌			
Container/Temp I	Blank temperature		Coole	er Temp:	2.8°C		NA \square	
Water - VOA vial	ls have zero heads	pace / no bubbles?	Yes	✓	No \square	No VOA vials subm	itted	
Sample labels ch	necked for correct p	reservation?	Yes	~	No 🗌			
TTLC Metal - pH	acceptable upon re	ceipt (pH<2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?							
		(Ice Typ	oe: WE	ET ICE)			
* NOTE: If the "N	No" box is checked,	see comments below.						
	=====				====			
Client contacted:		Date contac	ted:			Contacted	by:	
Comments:								

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Blymyer Engineers, Inc.	Client Project ID: #081125-S02; Former Fiesta Beverage, 966 89th Ave	Date Sampled: 11/25/08
1829 Clement Avenue	Flesta Develage, 900 89th Ave	Date Received: 11/26/08
	Client Contact: Mark Detterman	Date Extracted: 12/02/08-12/05/08
Alameda, CA 94501-1395	Client P.O.:	Date Analyzed 12/02/08-12/05/08

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Analytical methods SW8021B/8015Cm Extraction method SW5030B Lab ID Client ID Matrix TPH(g) MTBE Benzene Toluene Ethylbenzene Xylenes DF % SS 001A MW-1R W 130,d1 ND 11 ND 10 96 002A W ND MW-2ND ND 1.2 ND ND 1 93 003A W MW-3 61,d1 ND 4.8 0.56 1.1 1.5 1 85 004A MW-4 W ND ND ND ND ND ND 1 95 005A MW-5 W ND ND ND ND ND ND 1 96 006A MW-6 W ND ND ND ND ND ND 1 97 007A MW-7 W ND ND ND ND ND ND 1 108 MW-8 008A W ND ND ND ND ND ND 1 121 009A MW-9 W ND ND ND ND ND ND 95 Reporting Limit for DF = 1; W 5 50 0.5 0.5 0.5 0.5 μ g/L ND means not detected at or 1.0 0.05 0.005 0.005 0.005 0.005 mg/Kg above the reporting limit

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 39962 WorkOrder 0811850

EPA Method SW8021B/8015Cm Extraction SW5030B Spiked Sample ID: 0811848-008A												
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
Tillalyto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex)	ND	60	99.3	92.4	7.15	86.2	93.2	7.88	70 - 130	20	70 - 130	20
MTBE	ND	10	95.1	85.6	10.6	81.3	88.1	8.11	70 - 130	20	70 - 130	20
Benzene	ND	10	96.3	92.8	3.72	96	94.5	1.61	70 - 130	20	70 - 130	20
Toluene	ND	10	87.2	84	3.73	87.2	87.8	0.764	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	97	93	4.27	97	94.2	2.98	70 - 130	20	70 - 130	20
Xylenes	ND	30	94	88.2	6.35	92	90.4	1.81	70 - 130	20	70 - 130	20
%SS:	97	10	101	102	1.59	110	101	8.34	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 39962 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0811850-001A	11/25/08 10:55 AM	12/02/08	12/02/08 5:42 PM	0811850-002A	11/25/08 11:35 AM	12/02/08	12/02/08 6:16 PM
0811850-003A	11/25/08 12:05 PM	12/02/08	12/02/08 6:49 PM	0811850-004A	11/25/08 3:10 PM	12/02/08	12/02/08 7:23 PM
0811850-005A	11/25/08 2:20 PM	12/02/08	12/02/08 7:56 PM	0811850-006A	11/25/08 10:15 AM	12/02/08	12/02/08 8:30 PM
0811850-007A	11/25/08 1:40 PM	12/02/08	12/02/08 9:03 PM	0811850-008A	11/25/08 1:10 PM	12/05/08	12/05/08 8:52 AM
0811850-009A	11/25/08 12:35 PM	12/02/08	12/02/08 9:36 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

