QUARTERLY MONITORING REPORT, Fourth Quarter 1996

2415 Mariner Square Drive Alameda, California 94501

Sampling Date: October 31, 1996

Prepared for:

Mariner Square & Associates 2900 Main Street, Suite 100 Alameda, California 94501 Union Pacific Railroad One Market Plaza San Francisco, California

Phillips Petroleum Company 4th and Keeler Avenue Bartlesville, Oklahoma 74004 Texaco, Inc. 10 Universal City Plaza, Suite 830 Universal City, California 91608-7812

Prepared by:

HYDRO-ENVIRONMENTAL TECHNOLOGIES, INC.

2394 Mariner Square Drive, Suite 2 Alameda, CA 94501 HETI Job No. 7-285.1

May 20, 1997

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 BACKGROUND	1
3.0 FIELD ACTIVITIES	2
4.0 RESULTS	3
4.1 Ground Water Elevation	
4.2 Ground Water Sample Analytical Results	
5.0 CONCLUSIONS	
6.0 CERTIFICATION	5
TABLES	
Table 1: Ground Water Elevations and Sample Analytical ResultsTable 2: Polynuclear Aromatics Sample Analytical Results	
FIGURES	
Figure 1: Site Location Map	
Figure 2: Site Plan	
Figure 3: Ground Water Contour Map	
Figure 4: TPHg Isoconcentration Map Figure 5: Benzene Isoconcentration Map	
Figure 6: Polynuclear Aromatics Distribution Map	
-	
<u>APPENDICES</u>	
Appendix A: HETI's Ground Water Sampling Protocols Appendix B: Monitoring Well Gauging Data Sheet Purge/Sample Data Sheets Appendix C: Laboratory Reports and Chain of Custody Records	
Appendix C: Laboratory Reports and Chain-of-Custody Records	

HYDRO ENVIRONMENTAL TECHNOLOGIES, INC.

In 1992 Subsurface Consultants, Inc. (SCI) supervised the drilling of six soil borings and the installation of six two-inch diameter monitoring wells designated MW-1 through MW-6. Petroleum hydrocarbon concentrations were detected in all soil samples collected and analyzed from the soil borings (Subsurface Consultants, Inc., Quarterly Groundwater Monitoring Report, dated December 23, 1992).

On June 14, 1994, Mclaren/Hart supervised the drilling of 13 soil borings, collecting and analyzing 28 soil samples and the installation of three four-inch diameter monitoring wells designated MW-7, MW-8, and MW-9. In the past, hydrocarbons have been detected in ground water samples collected from wells MW-1 through MW-6 and vinyl chloride and Freon-113 have been detected in groundwarer samples collected from wells MW-2 and MW-4. (Mclaren/Hart, Supplemental Site Investigation and Limited Feasibility Study Report, dated March 31, 1995). All monitoring well locations are shown on Figure 2, the Site Plan.

In a letter from Ms. Juliet Shin, Alameda County Environmental Protection Division, dated December 26, 1995, the County required a minimum of four quarterly ground water monitoring events to delineate the plume and assure that migration is not occurring off-site or into the San Francisco Bay. This Quarterly Monitoring Report presents the results of the second sampling event.

3.0 FIELD ACTIVITIES

On October 31, 1996 the monitoring wells were gauged for depth to first encountered ground water to the nearest hundredth of a foot using an electronic water sounder. Following gauging, all monitoring wells, except well MW-6, were purged of a minimum of three well volumes or purged dry while pH, temperature and conductivity measurements were monitored for stabilization. Purged water was stored on-site in two 55-gallon DOT drums with tight fitting lids. Separate phase petroleum hydrocarbons (SPH) were detected in well MW-6 with a measured thickness of 0.02 feet. Gauging and purging data is included in Table 1 and Appendix B.

Following recovery of the water levels to at least 80% of their static level, ground water samples were collected from the monitoring wells using dedicated polyethylene bailers. Samples were then labeled, documented on a chain-of-custody form, and stored in a chilled cooler for transport to the analytical laboratory.

Ground water samples were analyzed for total petroleum hydrocarbons as diesel (TPHd), motor oil (TPHmo) and gasoline (TPHg), benzene, toluene, ethylbenzene and total xylenes (BTEX) using the California Leaking Underground Fuel Tank (CA LUFT) Manual protocols, polynuclear aromatics (PNAs) by EPA Method 8310 and vinyl chloride by EPA Method 524.2. Sample analyses were performed by NEI/GTEL Environmental Laboratories, Inc. a state of California DHS-certified laboratory located in Wichita, Kansas.

HYDRO ENVIRONMENTAL TECHNOLOGIES, INC.

4.0 RESULTS

4.1 Ground Water Elevation

On October 31, 1996, depth to first encountered ground water in the wells ranged between 5.04 to 6.37 feet below top of well casing. Depth to water measurements and calculated ground water elevations in the wells are presented on Table 1. The depth to water measurements and the wellhead elevation data were used to calculate ground water elevation contours. These contours are shown on Figure 3, the Ground Water Contour Map. Figure 3 shows that ground water flows towards the southeast, with a ground water gradient of 0.625%.

4.2 Ground Water Sample Analytical Results

Analytical results indicated that dissolved TPHd was present in the ground water samples collected from all the wells sampled, in concentrations ranging from 93 (MW-1) to 4,900 micrograms per liter (μ g/L) (MW-5).

TPHmo was not detected above the indicated laboratory method detection limit in the ground water samples collected from any of the wells except wells MW-5 and MW-9 in concentrations of 860 and 720 $\mu g/L$, respectively.

TPHg was detected above the indicated laboratory method detection limit in the ground water samples collected from wells MW-2, MW-4, MW-5, MW-7 and MW-9 in concentrations ranging from 110 (MW-4) to 6,800 μ g/L (MW-5). These results are shown on Figure 4, the TPHg Isoconcentration Map.

Benzene was detected above the indicated laboratory method detection limit in the ground water samples collected from wells MW-4, MW-5, MW-7 and MW-9 in concentrations ranging from 1.1 (MW-7) to 20 $\mu g/L$ (MW-5). These results are shown on Figure 5, the Benzene Isoconcentration Map. Vinyl chloride was not detected above the indicated laboratory method detection limit in any of the wells sampled except well MW-4 with a concentration of 4.3 $\mu g/L$.

Concentrations of polynuclear aromatics were detected above the indicated laboratory method detection limits in the ground water samples collected from wells MW-2, MW-4, MW-5 and MW-9. These results are shown on Figure 6, The Polynuclear Aromatics Distribution Map.

The California Department of Health Services and the U.S. Environmental Protection Agency's (EPA) Drinking Water Standards, primary maximum contaminant levels (MCLs) for benzene are 1 μ g/l and 5 μ g/l, respectively. The state and federal MCLs for vinyl chloride are 0.5 μ g/l and 2 μ g/l, respectively. There are no state or federal MCLs for TPHd, TPHmo, or TPHg. The MCLs are listed on Tables 1 and 2.

HYDRO ENVIRONMENTAL TECHNOLOGIES, INC.

5.0 CONCLUSIONS

- The general ground water flow direction across the site is towards the southeast with an approximate ground water gradient ranging from 0.625% to 0.73%.
- TPHmo was detected in two of the eight wells sampled. TPHd was detected in all of the wells sampled. TPHg was detected in five of the eight wells sampled.
- Benzene was detected in four of the eight wells sampled and exceeded the state MCLs in all the samples.
- Vinyl chloride was detected in one of the eight wells sampled and exceeded the state MCL in that sample.
- PNAs were detected in three of the eight wells sampled.
- SPH was noted in well MW-6 in a thickness of 0.02 feet. Previously, SPH had been noted in well MW-6 at a thickness of 0.16 feet.
- The ground water flow direction and laboratory results from this sampling event are consistent with the results noted in the Quarterly Monitoring Report Second Quarter 1996 dated January 15, 1997.

HYDR**©** ENVIR**©**NMENTAL TECHN**©**LOGIES, INC.

60 CERTIFICATION

This report was prepared under the supervision of a registered geologist. All statements, conclusions and recommendations are based solely upon field observations and analytical analyses performed by a state-certified laboratory related to the work performed by Hydro-Environmental Technologies, Inc.

It is possible that variations in the soil or ground water conditions exist beyond the points explored in this investigation. Also, site conditions are subject to change at some time in the future due to variations in rainfall, temperature, regional water usage, or other factors.

The service performed by Hydro-Environmental Technologies, Inc. has been conducted in a manner consistent with the level of care and skill ordinarily exercised by members of our profession currently practicing under similar conditions in the area of the site. No other warranty, expressed or implied, is made.

Hydro-Environmental Technologies, Inc. includes in this report chemical analytical data from a state-certified laboratory. These analyses are performed according to procedures suggested by the U.S. EPA and the State of California. Hydro-Environmental Technologies, Inc. is not responsible for laboratory errors in procedure or result reporting.

Prepared by:

Reviewed by:

Frances Maroni Project Engineer

Gary Pischke, C.E Senior Geologist

Table 1 GROUND WATER ELEVATONS AND SAMPLE ANALYTICAL RESULTS

Mariner Square 2415 Mariner Square Drive Alameda, CA

Well	Sample	TOC	DTW	GWE	TPHd	TPHmo	TPHg	В	T	E	x	МТВЕ	Vinyl Cl
I.D. #	Date	(feet)	(feet)	(feet)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
	•••								·				
MW-1	6/13/94	11.99	5.69	6.30				-					_
	9/27/94	11.99	5.64	6.35	530	ND<50	ND<50	ND<0.3	ND<0.3	ND<0.3	ND<0.3		
	10/25/94	11.99	5.86	6.13				-	-				
	6/28/96	11.99	5.34	6.65	ND<50	ND<200 (1)	ND<100	ND<0.5	ND<1.0	ND<1.0	ND<2.0		ND<0.5
	10/31/96	11.99	5.38	6.61	93 is:	∴3ND<200	ND<100	ND<0.5	ND<1.0	: ND<1.0	ND<2.0	ND<10	ND<1.0
MW-2	6/13/94	15.21	5.92	9.29	37V-2 67	(13774 13.	M - :		j: <u>\$-</u>	garij See ga	15. ±3 -		
11111 &	9/26/94	15.21	6.51	8.70				ND<3.0	ND<3.0	™ ND<3.0	ND<3.0		√ .
	10/25/94	15.21	6.67	8.54					·	_ +- <u>3-4</u>			. ,
	6/28/96(2)	15.21	5.68	9.53	100 (3,4)	ND<200(1)	980	0.5	ND<1.0	2.3	3.1	ti	ND<0.5
	10/31/96	15.21	6.37	8.84		ND<200	÷ 220 ··	ND<0.5	ND<1.0	: ND<1.0	ND<2.0	ND<10	ND<1.0
MW-3	6/13/94	14.19	4.91	9.28	- -		فسند						
17277	9/27/94	14.19	5.29	8.90	720	ND<50	ND<50	ND<3.0	ND<0.3	ND<0.3	ND<0.3		
	10/25/94	14.19	5.42	8.77					-				
	6/28/96	14.19	4.69	9.50	120 (3)	ND<200(1)	ND<100	ND<0.5	ND<1.0	ND<1.0	ND<2.0		ND<0.5
	10/31/96	14.19	5.24	8.95	160、	ND<200	ND<100	ND<0.5	ND<1.0	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-4	6/13/94	13.95	4.50	9.45									_
14114 -1	9/27/94	13.95	5.39	8.56	890.	ND<50	ND<50	12	0.43	ND<0.3	ND<0.3	-	
	10/25/94	13.95	5.55	8.40								_	
	6/28/96	13.95	4.25	9.70	170-(3,4)	ND<200(1)	180	4	ND<1.0	ND<1.0	ND<2.0	_	2.5
	10/31/96	13.95	5.05	8.90	330	ND<200	110	6.2	ND<1.0	ND<1.0	ND<2.0	ND<10	4.3
MW-5	6/13/94	14.60	5.30	9.30							_		
14144-2	9/26/94	14.60	5.82	8.78	7 80	ND<500	3,100	7.9	11	8.7	14		
	10/25/94	14.60	5.95	8.65									
	6/28/96	14.60	5.04	9.56	610 (3,4)	790 (1)	5,000	1.2	6.8	. 21	14		ND<0.5

. . . .

Page 1 of 3

Table 1

GROUND WATER ELEVATONS AND SAMPLE ANALYTICAL RESULTS

Mariner Square

2415 Mariner Square

Well	Sample Date	TOC (feet)	DTW (feet)	GWE (feet)	TPHd (µg/L)	TPHmo (μg/L)	TPHg (μg/L)	Β (μg/L)	Τ (μg/L)	E (μg/L)	X (μg/L)	MTBE (μg/L)	Vinyl Cl (μg/L)
MW-5	10/31/96	14.60	5.73	8.87	4,900	860	6,800	20	5.9	15	19	ND<10	ND<1.0
MW-6	6/13/94	14.81	5.96	8.85									-
	9/27/94	14.81	5.90	8.91	9,900	3,200	1,100	ND<3.0	ND<3.0	ND<3.0	ND<3.0		
	10/7/94	14.81	5.82	8.99			·: .						
	10/14/94	14.81	5.89	8.92	.	:	-	-			· · · · · ·	. 	
	10/21/94	14.81	5.90	8.91	 + .	<u></u> پش	J 15 "		-	· - /			
	10/25/94	14.81	5.99	8.82	 .		. - .					`. 	.057.7
	6/28/96	14.81	5.33	9.48	SPH (0.16')	SPH	SPH	SPH.	SPH	SPH	SPH	SPH	SPH
	10/31/96	14.81	5.17	9.64	SPH (0.02')	SPH	SPH	SPH	SPH.	SPH	SPH	SPH	-SPH
> 6141 #7	9/27/94	13.61	5.95	7.66	1,800	ND<250	ND<250	ND<0.3	ND<0.3	ND<0.3	ND<0.3		_
MW-7	10/25/94	13.61	6.09	7.52						-			
	6/28/96	13.61	5.42	8.19	490 (3,4)	ND<200(1)	560	0.6	ND<1.0	ND<1.0	2.7		ND<0.5
	10/31/96	13.61	5.90	7.71	420	ND<200	200	1.1	ND<1.0	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-8	9/27/94	12.64	6.06	6.58	320	ND<50	ND<50	ND<0.3	ND<0.3	ND<0.3	ND<0.3		
14144-0	10/25/94	12.64	6.26	6.38		_	_						
	6/28/96	12.64	6.00	6.64	58 (3)	ND<200(1)	ND<100	ND<0.5	ND<1.0	ND<1.0	ND<2.0		ND<0.5
	10/31/96	12.64	5.85	6.79	120	ND<200	ND<100	ND<0.5	ND<1.0	ND<1.0	ND<2.0	ND<10	ND<1.0
MW-9	9/26/94	14.92	5.88	9.04	2,200	ND<500	ND<500	ND<0.3	ND<0.3	ND<0.3	ND<0.3		-
141 6 6 - 2	10/25/94	14.92	6.04	8.88					_				
	6/28/96	14.92	5.14	9.78	550 (3,4)	ND<200(1)	390	5.2	ND<1.0	ND<1.0	ND<2.0		ND<0.5
	10/31/96	14.92	6.37	8.55	590	720	300	5.9	ND<1.0	ND<1.0	ND<2.0	ND<10	ND<1.0
CA Prime	ary MCL (5)							1	100 (7)	680	1,750		0.5
1	rimary MCL	(6)	•					5	1,000	700	10,000		2

Page 2 of 3

Table 1

GROUND WATER ELEVATONS AND SAMPLE ANALYTICAL RESULTS

Mariner Square 2415 Mariner Square Drive Alameda, CA

Notes:

TOC:	Top of well casing referenced to mean sea level. Survey conducted by a state-licensed surveyor.
DTW:	Depth to water.
GWE:	Ground water elevation.
TPHg:	Total petroleum hydrocarbons as gasoline by EPA Method 8015 (modified).
BTEX:	Benzene, toluene, ethylbenzene and total xylenes by EPA Method 8020.
TPHd:	Total petroleum hydrocarbons as diesel by EPA Method 8015 (modified).
TRPH:	Total petroleum hydrocarbons as diesel by EPA Method 8015 (modified). Total Recoverable Petroleum Hydrocarbons by EPA Method 418.1.
Vinyl Cl:	Vinyl chloride by EPA Method 524.2.
μg/L:	Micrograms per Liter.
:	Not analyzed/sampled.
ND:	Not detected above the indicated laboratory method detection limit.
(SPH):	Separate phase hydrocarbons - No sample collected.
(1):	Lubricating oil can not be qualitatively identified by type of oil because of chromatographic likeness of different oil types.
	Due to non-volatility of certain oils, much of the oil present may never be quantified by this gas chromatographic method.
	Quantitation obtained for lubricating oil by this method should, therefore, be treated as an estimate. This method quantifies
	lubricating oil against 10-W-40 standards. For the most accurate analysis of lubricating oil, an infrared method is recommended.
(2):	Water sample collected from MW-2 was analyzed for Freon 113 by EPA Method 8010A. Results were below the detection limit of 1.0 µg/L.
(3):	Qualitative identification is uncertain because the material present does not match laboratory standards.
(4):	Quantitation uncertain due to matrix interferences.
(5):	Drinking Water Standards, California Department of Health Services, Primary Maximum Contaminant Level (MCL).
(6):	Drinking Water Standards, U.S. Environmental Protection Agency, Primary Maximum Contaminant Level (MCL).
(7):	California State Action Level, Department of Health Services.

Table 2 POLYNUCLEAR AROMATICS SAMPLE ANALYTICAL RESULTS

Mariner Development 2415 Mariner Square Drive Alameda, CA

Well No.	Sample Date	Naph- thalene	Acenaph- thalene	thene	Fluorene	Phenan- threne	Anthra- cene µg/L	Fluoran- thene µg/L	Pyrene μg/L
	·	μg/L	μg/L	μ g/L	μg/L	μg/L	μg/L	µ6/2	<u> </u>
3.57A7 1	6/28/96	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<1.0	ND<1.0 ***	ND<0.5	ND<0.5
MW-1	10/31/96	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<1.0	ND<1.0	ND<0.5	ND<0.5
	10/51/50	110 1210	112 1215						
MW-2	6/28/96	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<1.0	ND<1.0	0.82	0.77
	10/31/96	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<1.0	ND<1.0	ND<0.5	ND<0.5
3 5547 0	c /20 /0C	ND<2.0	ND<2.0	ND<2.02"/56	ND<2.0	ND<1.0	ND<1.0*****	ND<0.5	ND<0.5
MW-3	6/28/96 10/31/96	ND<2.0	ND<2.0	ND<2.0		ND<1.0	ND<1.0 %	ND<0.5	ND<0.5
	10/31/50	112 12.0	1,2						•
MW-4	6/28/96	ND<2.0	2. 5	2.3	ND<2.0	ND<1.0		1.8	
40	10/31/96	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<1.0 10	ND<1.0	· 0.92	1.6
7.						0.5	0.0	8.6	8.4
MW-5	6/28/96	2.0	96 (1)		ND<2.0	9.5 14	2.3 2.9	11	15
	10/31/96	ND<2.0	150	8.3	2.4	14	2.9	**	10
MW-6	6/28/96	SPH	SPH	SPH ***	SPH : : : :	SPH	SPH	SPH	SPH :
14144-0	10/31/96	SPH	SPH	SPH	SPH	SPH	SPH	SPH	SPH
	10,01,20	D. 11	<u> </u>						
MW-7	6/28/96	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<1.0	ND<1.0	ND<0.5	ND<0.5
,,	10/31/96	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<1.0	ND<1.0	ND<0.5	ND<0.5
) WH O	4 /00 /04	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<1.0	ND<1.0	ND<0.5	ND<0.5
MW-8	6/28/96 10/31/96	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<1.0	ND<1.0	ND<0.5	ND<0.5
	10/31/96	141242.0	14242.0	110 12.0					
MW-9	6/28/96	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<1.0	ND<1.0	0.73	ND<0.5
14144 /	10/31/96	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<1.0	ND<1.0	0.69	1.10
								 	
CA Primary							· <u>-</u>		-
EPA Primar	y MCLs (3)								

Table 2 POLYNUCLEAR AROMATICS SAMPLE ANALYTICAL RESULTS

Mariner Development 2415 Mariner Square Drive Alameda, CA

Well No.	Sample Date	Benzo[a]- anthracene μg/L	Chrysene µg/L	Benzo[b]fluor- I anthene µg/L	Benzo[k]fluor- anthene μg/L	Benzo[a]- pyrene µg/L	Dibenzo[a,h]- anthracene μg/L	Benzo[g,h,i]- perylene µg/L	Indeno[1,2,3-cd]- pyrene μg/L
MW-1	6/28/96	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
14144-1	10/31/96	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-2	6/28/96	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
14144-77	10/31/96	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-3	6/28/96	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	10/31/96	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-4	6/28/96	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	10/31/96	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-5	6/28/96	1.0	0.68	ND<0.5	ND<0.5	0.78	ND<0.5	0.57	ND<0.5
	10/31/96	1.9	1.8	0.51	ND<0.5	0.84	ND<0.5	ND<0.5	ND<0.5
MW-6	6/28/96	SPH	SPH	SPH	SPH	SPH	SPH	SPH	SPH ·
	10/31/96	SPH	SPH	SPH	SPH	SPH	SPH	SPH	SPH
MW-7	6/28/96	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	10/31/96	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-8	6/28/96	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
2.2.4.2	10/31/96	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-9	6/28/96	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	10/31/96	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
CA Primary	MCLs (2)								
EPA Primar		0.1	0.2	0.2	0.2	0.2	0.3		0.4

Table 2 POLYNUCLEAR AROMATICS SAMPLE ANALYTICAL RESULTS

Mariner Development 2415 Mariner Square Drive Alameda, CA

Notes:

Polynuclear Polynuclear Aromatics by EPA Method 8310.

Aromatics:

Well No.: Well identification number used by HETI.

Date: Date ground water sample was collected.

μg/L: Micrograms per liter (ppb).

ND: Not detected in concentrations exceeding the laboratory method detection limit.

(1): The qualitative identification for Acenaphthylene is uncertain due to matrix interferences.

(2): Drinking Water Standards, California Department of Health Services, Primary Maximum Contaminant Level (MCL).

(3): Drinking Water Standards, U.S. Environmental Protection Agency, Primary Maximum Contaminant Level (MCL).

SPH: Separate phase hydrocarbons - No sample collected.

	- <u>MO</u>	NITORING WE	LL GAUGING D	 .		• •
GAUGI	ED BY: F	Μ		DATE	: 10	1.31.96
►	-		SI/P, Solinst	#1,	#2, #3	
Monitoring	Depth to	Depth to	Seperate-phase	Replac	ements	Condition
Well I.D.	Water (feet)	Bottom (feet)	hydrocarbons thickness (feet)	Lock	Bailer	Comments
Mw-8	5.85	13.57		OK	OK-	
me2-1	5.38	14.73		OL	91	
ma-7	5.90	13.28		OL	OV_	
mu-3	5.24	10.56		OV_	OK	
ma-2	6.37	b.25		OL_	OE	
mu-4	5.05	12.21		OL	OL	
mw-9	(a.37	13.08		OK	01	Cl. CHEBITON)
mw-5	5.73	9.86		ok	OK	SI. SIESLION GEOUNDANTE
mu-60	SPHSIT	5.47	0-02'	OR) oth	
_,					-	
				-	 	
					 	
				·		
				-	1	
				-	-	
					-	
	,			-	 	
				 	+	
				-	+	
1 80	,		:		+	
		-		 -		
	-					
*** ***		•		_		SAN PROCES
	RATIONENT	TAL	LOCATION: MY	teiv		Job No. 7-285 SHEET

.

PURGED/S.	AMPLED BY: _	FM		DATE: LE	019.15.	- ,
	TA: htom: 9.80 ter: 5.73) ft. diam. 2 ft. 2 in. 4 in.	version gals/ft. x 0.16 x 0.65 x 1.44	Well casing volume # volumes to purg *Total volume to p * unless chemical pare	e x 3 urge = 1/98	vols.
PURGING I Purge metho (circle one)	DATA: od: PVC bailer/	Submersible pun	np/Suction lift	pump/		-
(ende one)	Time	Volume (gallons)	Temp. (°F)	Conductivity (mS/cm)	pН	,
	305 309 312	00 1.00 2.00	(08-5) 100 Turk	idity: Sugar	15.27	
	Recharge:	<u>l</u>		ft.		۶,
	NG DATA:	cated bailer /_		THE ST	Total Po EDS &	20
ENV	or ó- irónme inólogi			NG WEIL PURGES. WEIL # MW- MATINER	5	Job No." 7-285. SHEET

• :

3

PURGED/S	AMPLED BY: _	EM		DATE: 10	231.96	_				
Depth to wa	ATA: ottom: 1308 ater: 6.37	ft. diam. ft. 2 in. 4 in.	yersion gals/ft. × 0.16 × 0.65 × 1.44	Well casing volume # volumes to purg *Total volume to p * unless chemical pare	e x 3 urge = [3-08	vois. Sgallons				
PURGING Purge meti (circle one)	nod: PVC bailer/	Submersible pun	np/Suction lift	pump/						
(2200)	Time	Volume (gallons)	Temp. (°F)	Conductivity (mS/cm)	pН					
	2:15 2:20 2:25 2:30	0 5 10 13:25	72.1	1.14	15.54 15.55 15.50					
	Color: G	2000		oidity: SUEH	1- MOD	·, ,				
	Sample for: (circle) SAMPLING DATA: THEY BIEN METALS TOO 8010 THEY O-PD TEL 8220 THEY TOO TOTAL PD EDB 8240 Other: WAY BY									
ENV	or & - vir&nme in&logi	NTAL ES, INC.		NG WELL PURGE/S/ WELL # MW- MAZINEY	<u>-</u> }	Job No. 7285. SHEET				

:

1.

.

. .

PURGED/SA	AMPLED BY: _	EM		_ DATE: _(S	-31910	_
. •	TA: :om: <u>12.25</u> er: <u>(0.37</u> 5.88 f	ft. diam.	version gals/ft. x 0.16 x 0.65 x 1.44	Well casing volume # volumes to purg *Total volume to p * unless chemical par	ge x <u>3</u> urge = <u>2.87</u>	_ vols. >_gallons
PURGING D Purge metho (circle one)	•	Submersible pur	np/ Suction lift	: pump/		
	Time	Volume (gallons)	Temp. (°F)	Conductivity (mS/cm)	pH	
	143	1.50	74-0	0.95 0.55	15.53	
						·•
						ow.
					·	
	Color: _C Recharge:	PODE		oidity: SUOHT	-SANDY	٠.
SAMPLING Sampling	G DATA: method: Dedic	cated bailer/		Trig/800	mple for: (circle) METALS TOC. & OPP TEL 8 Total PD ED8 8 SOZ Nitraces 8	720 240 250 8270
21	rð- rðnmei nðlogi			NG WELL PURGESA WELL # MW-2 MADINERS	<u>.</u>	Job No. 7285. (SHEET (of)

. - -

PURGED/S	AMPLED BY: _	ΕW		_ DATE: <u>\</u>	731.96	
8	ttom: <u>10.57</u> hter: <u>5.2</u> 4	oft. diam. ft. 2 in. 4 in.	gals/ft. x 0.16 x 0.65 x 1.44	Well casing volume # volumes to purg *Total volume to p * unless chemical pare	re x <u>3</u> urge = <u>7</u> .55	_ vols. _ _ gallons
PURGING I Purge meth	OATA: od: PVC bailer/	Submersible pur	np Suction lift	pump/		
,—	Time	Volume (gallons)	Temp. (°F)	Conductivity (mS/cm)	pН	
	1:09	0	-	2/10	15.72	-
	1:12 2:15	1-30 a.60	77.1	2.40	15.70	
						· -
						_
						†
		^		idity: SUGiff		<u> </u>
	Color: _C Recharge:	<u>4002</u>		ft.	· ·	
	IG DATA:	cated bailer				1
				other: F	ACA MITTAN	
11	r ð- Ir ð nmei Inðlogi	1		GWELL PURGE/SA WEIL # MUD- MADINER	3	Job No. 7285. SHEET \ of \

• • _-

PURGED/SA	AMPLED BY: _	FM		_ date: <u>\</u>	0-3196	
1 1	17A: htom: <u>12·21</u> hter: <u>5.05</u>	ft. diam. ft. 2 in. 4 in.	gals/ft. x 0.16 x 0.65 x 1.44	Well casing volum # volumes to purg *Total volume to purg * unless chemical para	urge = 3.45	_vols. _ gallons
PURGING I		Submersible pur	ng/ Suction lift	t pump/	-	
(circle one)	Time	Volume (gallons)	Temp. (°F)	Conductivity (mS/cm)	рН	
	1200	0 a	744	2.09	15.51	
	1220	4	75.5	3.18	15.60	

						: nae
			-			
	Còlor: S	<u> </u>	Turi	bidity: SUGH	<u> </u>	1
	_	FAIR	SPF	<u>ft.</u>		<i>)</i> ,
	iG DATA: method Dedic	ated bailer		TPHg/8TE	,	no 1221 240 260 8270
11	DR &- IR & NMEI IN&LOGI	1	·	NG WELL PURGESA WELL # MW-C	7	Job No. 7-285. SHEET \ of [

де (

-

PURGED/S	AMPLED BY: _	FM		_ DATE: <u>\</u>	201.90				
Depth to bo									
PURGING I Purge methological (circle one)		Submersible pur	np/ Suction lift	: pump/					
	Time	Volume (gallons)	Temp. (°F)	Conductivity (mS/cm)	pН				
	1135	0				- 0			
	1240	5	72.8	7.11	9.8 10	.29			
	1245	10	74.5	6.6	11.74				
	1150	15	69.7	5.47	0.77	, 			
						41-			
				ina.	:	·w			
,									
		0-1 6-0-		l hidity: SUGH?	<u> </u>]			
	Color: Recharge:	FAIR	, -	ft.		<i>,</i>			
	Sample for: (circle) Sample for: (circle) Frig./BTEX METALS TOC SOTO THAT O.PS TEL 8022 Sol GOZ Nitrees \$250 \$270 Other: HAM MITTEE Other: HAM MITTEE Other: HAM MITTEE Other: HAM MITTEE Sample for: (circle) Frig./BTEX METALS TOC SOTO Other: HAM MITTEE Other: HAM MITTEE Sample for: (circle) Frig./BTEX METALS TOC SOTO Other: HAM MITTEE Other: HAM MITTEE Other: HAM MITTEE Sample for: (circle) Frig./BTEX METALS TOC SOTO Other: HAM MITTEE Other: HAM MITTEE Other: HAM MITTEE Other: HAM MITTEE OTHER MITTEE OTHE								
	R&- IR&NMEI N&LOGI	11		NG WELL PURGESA WELL # MW - ^ MARINTER	7	Job No. 7285. SHEET of			

H H

PURGED/S	AMPLED BY:	ΈW		_ DATE:lo	0.31.90				
GAUGING DATA: Depth to bottom: 14.73 ft. Conversion Well casing volume 1.49 gallons Depth to water: 5.38 ft. diam. $\frac{\text{gals/ft.}}{\text{gallons}}$ # volumes to purge x 3 vols. Saturated Thickness: 9.35 ft. 4 in. $\frac{\text{gals/ft.}}{\text{gallons}}$ *Total volume to purge = 4.48 gallons * unless chemical parameters stabilize earlier									
PURGING I Purge methological (circle one)		Submersible pur	mp/Suction life	: pump/					
	Time	Volume (gallons)	Temp. (°F)	Conductivity (mS/cm)	pН				
	1055	0							
	1058	2.5	70.6	8.91	7.18				
	1101	5.0	734	6.48	7.28				
			2.7			*			
-	<u> </u>					-			
				·		~			
						1 .			
	Color: C	DAY	Turk	oidity: SUGH	<u> </u>				
	Recharge: C700D SPPft.								
Sample for: (circle) Sample for: (circle) TiPig/BIEX METALS TOG 8010 TIPIG/BIEX MET									
ENV	HYDRO- ENVIRONMENTAL TECHNOLOGIES, INC. MONITORING WELL PURGE/SAMPLE SHEET WELL # MOUST SHEET LOCATION MATERIAL SOURCE Of								

.

PURGED/S	AMPLED BY: _	<u>EM</u>		_ DATE: <u>16</u>	-3196				
-	ater: <u>5.85</u>	ft. diam. ft. 2 in. 4 in.	version gals/ft. × 0.16 × 0.65 × 1.44	Well casing volume # volumes to purg *Total volume to p * unless chemical par	re x <u>3</u> urge = <u>15-0</u>	_vols.			
PURGING I Purge meth (circle one)	DATA: nod: PVC bailer/	Submersible pur	np/ Suction lift	pump/					
	Time	Volume (gallons)	Temp. (°F)	Conductivity (mS/cm)	pН				
	1015	5	71.5	10.48	6.90				
	1025	10	67.3	8.77	6.88				
	1035	15.10	69.0	8.93	Q.70	-			
-									
						. Angular			
	Color: OPEY Turbidity: SCIGHT Recharge: GCOD SPPft.								
	Sample for: (circle) Sample for: (circle) THE STEX METALS TOX: 8010 Sampling method: Dedicated bailer Sample for: (circle) THE STEX METALS TOX: 8010 Other: DAY METALS TOX: 8010								
ENV	DR &- IR & NMEI IN&LOGI			IG WELL PURGE/SA WEIL # MW- MAPINE P-	8	Job No. 1285. SHEET			

Midwest Region

4211 May Avenue Wichita, KS 67209 (316) 945-2624 (800) 633-7936 (316) 945-0506 (FAX)

November 19, 1996

Gary Piscki HYDRO-ENVIRONMENTAL TECHNOLOGIES, INC 2394 Mariner Square Dr. Suite 2 Alameda, CA 94501

RE: GTEL Client ID:

Login Number:

Project ID (number):

Project ID (name):

HYE01HYE01 W6110029

7-285.1

MARINER SQUARE/ALAMEDA/CA

Dear Gary Piscki:

Enclosed please find the analytical results for the samples received by GTEL Environmental Laboratories, Inc. on 11/01/96.

A formal Quality Assurance/Quality Control (QA/QC) program is maintained by GTEL, which is designed to meet or exceed the EPA requirements. Analytical work for this project met QA/QC criteria unless otherwise stated in the footnotes. This report is to be reproduced only in full.

NEI/GTEL is certified by the California Department of Health Service under Certification Number 1845.

If you have any questions regarding this analysis, or if we can be of further assistance, please call our Customer Service Representative.

Sincerely,

GTEL Environmental Laboratories, Inc.

Terry R. Loucks

Laboratory Director

ANALYTICAL RESULTS Polynuclear Aromatics

GTEL Client ID:

HYE01HYE01

Login Number:

W6110029

Project ID (number): 7-285.1

Project ID (name):

MARINER SQUARE/ALAMEDA/CA

Method: EPA 8310

Matrix: Aqueous

GTEL Sample Number Client ID	W6110029-01 MW-1	W6110029-02 MW-2	W6110029-03 MW-3	W6110029-04 MW-4
Date Sampled	10/31/96	10/31/96	10/31/96	10/31/96
Date Prepared	11/05/96	11/05/96	11/05/96	11/05/96
Date Analyzed	11/14/96	11/14/96	11/14/96	11/14/96
Dilution Factor	1.00	1.00	1.00	1.00

	Reporting			•		
Analyte	Li <u>mit</u>	Units	C	oncentration:		and the second s
Naphthalene	2.0	ug/L	< 2.0	< 2.0	< 2.0	< 2.0
Acenaphthylene	2.0	ug/L	< 2.0	< 2.0	< 2.0	< 2.0
Acenaphthene:	2.0	ug/L	< 2.0	< 2.0	< 2.0	< 2.0
Fluorene	2.0	ug/L	< 2.0	< 2.0	< 2.0	< 2.0
Phenanthrene	1.0	ug/L	< 1.0	< 1.0	< 1.0	< 1:0
Anthracene	1.0	ug/L	< 1.0	< 1.0	< 1.0	< 1.0
Fluoranthene	0.50	ug/L	< 0.50	< 0.50	< 0.50	0.92
Pyrene	0.50	ug/L	< 0.50	< 0.50	< 0.50	1.6
Benzo[a]anthracene	0.50	ug/L	< 0.50	< 0.50	< 0.50	< 0.50
Chrysene	0.50	ug/L	< 0.50	< 0.50	< 0.50	< 0.50
Benzo[b]fluoranthene	0,50	ug/L	< 0.50	< 0.50	< 0.50	< 0.50
Benzo[k]fluoranthene	0.50	ug/L	< 0.50	< 0.50	< 0.50	< 0.50
Benzo[a]pyrene	0.50	ug/L	< 0.50	< 0.50	< 0.50	< 0.50
Dibenzo[a,h]anthracene	0.50	ug/L	< 0.50	< 0.50	< 0.50	< 0.50
8enzo[g.h.i]perylene	0.50	ug/L	< 0.50	< 0.50	< 0.50	< 0.50
<pre>Indeno[1.2.3-cd]pyrene</pre>	0.50	ug/L	< 0.50	< 0.50	< 0.50	< 0.50

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

Extraction by EPA Method 3510 (liquid/liquid). "Test Methods for Evaluating Solid Waste. Physical/Chemical Methods". SW-846. Third Edition including

NEI/GTEL Wichita, KS W6110029

Page: 1

ANALYTICAL RESULTS Polynuclear Aromatics

GTEL Client ID:

HYE01HYE01

Login Number:

W6110029

Project ID (number): 7-285.1

Project ID (name):

MARINER SQUARE/ALAMEDA/CA

Method: EPA 8310

Matrix: Aqueous

GTEL Sample Number	W6110029-05	W6110029-06	W6110029-07	W6110029-08
-	MW-5	MW - 7	MW-8	MW-9
	10/31/96	10/31/96	10/31/96	10/31/96
•	11/05/96	11/05/96	11/05/96	11/05/96
-		11/14/96	11/13/96	11/14/96
•		1.00	1.00	1.00
	GTEL Sample Number Client ID Date Sampled Date Prepared Date Analyzed Dilution Factor	Client ID MW-5 Date Sampled 10/31/96 Date Prepared 11/05/96 Date Analyzed 11/16/96	Client ID MW-5 MW-7 Date Sampled 10/31/96 10/31/96 Date Prepared 11/05/96 11/05/96 Date Analyzed 11/16/96 11/14/96	Client ID MW-5 MW-7 MW-8 Date Sampled 10/31/96 10/31/96 10/31/96 Date Prepared 11/05/96 11/05/96 11/05/96 Date Analyzed 11/16/96 11/14/96 11/13/96

	Reporting					
Analyte	Limit_	Units	Co	ncentration:	-	
Naphthalene	2.0	ug/L	< 2.0	< 2.0	< 2.0	< 2_0
Acenaphthylene	2.0	ug/L	150	< 2.0	< 2.0	< 2.0
Acenaphthene	2.0	ug/L	8.3	< 2.0	< 2.0	< 2.0
Fluorene	2.0	ug/L	2.4	< 2.0	< 2.0	< 2.0
Phenanthren e	1.0	ug/L	14.	< 1.0	< 1.0	< 1.0
Anthracene	1.0	ug/L	2.9	< 1.0	< 1.0	< 1.0
Fluoranthene	0.50	ug/L	11,	< 0.50	< 0.50	0.69
Pyrene	0.50	ug/L	15.	< 0.50	< 0.50	1.1
Benzo[a]anthracene	0.50	ug/L	1.9	< 0.50	< 0.50	< 0.50
Chrysene Chrysene	0.50	ug/L	1.8	< 0.50	< 0.50	< 0.50
Benzo[b]fluoranthene	0.50	ug/L	0.51	< 0.50	< 0.50	< 0.50
Benzo[k]fluoranthene	0.50	ug/L	< 0.50	< 0.50	< 0.50	< 0.50
Benzo[a]pyrene	0.50	ug/L	0.84	< 0.50	< 0.50	< 0.50
Dibenzo[a.h]anthracene	0.50	ug/L	< 0.50	< 0.50	< 0.50	< 0.50
Benzo[g,h,i]perylene	0::50	ug/L	< 0.50	< 0.50	< 0.50	< 0.50
Indeno[1,2,3-cd]pyrene	0.50	ug/L	< 0.50	< 0.50	< 0.50	< 0.50

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

EPA 8310:

Extraction by EPA Method 3510 (liquid/liquid). "Test Methods for Evaluating Solid Waste. Physical/Chemical Methods". SW-846. Third Edition including Update 2.

W6110029-05:

The qualitative identification for Acenaphthylene is uncertain due to matrix interferences.

W6110029-08:

The recovery for the method recommended surrogate, p-Terphenyl, is outside of control limits due to probable matrix effects, therefore any reported value should be considered an estimate of the true value.

NEI/GTEL Wichita, KS W6110029

Page: 2

GTEL Client ID:

HYE01HYE01

Login Number:

W6110029

Project ID (number): 7-285.1

Project ID (name):

MARINER SQUARE/ALAMEDA/CA

Method: EPA 8020A

Matrix: Aqueous

GTEL Sample Number	W6110029-01	W6110029-02	W6110029-03	W6110029-04
Client ID	MW-1	MW-2	MW-3	MW-4
Date Sampled	10/31/96	10/31/96	10/31/96	10/31/96
Date Analyzed	11/07/96	11/07/96	11/07/96	11/07/96
Dilution Factor	1.00	1.00	1.00	1.00

Reporting

	(Cpor cring					
Analyte	Limit	Units	<u>Cc</u>	ncentration:		
MTBE	10.	ug/L	< 10.	< 10.	< 10.	< IU.
Benzene	0.5	ug/L	< 0.5	< 0.5	< 0.5	6.2
Toluene	1 0	ug/L	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	1.0	ug/L	< 1.0	< 1.0	< 1.0	< 1.0
Xylenes (total)	2.0	ug/L	< 2.0	< 2.0	< 2.0	< 2.0
TDH as Gas	100	µа/L	< 100	220	< 100	110
IFII 43 U43	700	-3, -				

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

Gasoline range hydrocarbons (TPH) quantitated by GC/FID with purge and trap and modified EPA Method 8015. Analyte list modified to include additional compounds. "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods". SW-846. Third Edition including promulgated Update II.

W6110029-03:

Sample was received at pH 7.

GTEL Client ID:

HYE01HYE01

Login Number:

W6110029

Project ID (number): 7-285.1

Project ID (name):

MARINER SQUARE/ALAMEDA/CA

Method: EPA 8020A

Matrix: Aqueous

GTEL Sample Number Client ID	W6110029-05 MW-5	W6110029-06 MW-7	W6110029-07 MW-8	W6110029-08 MW-9
Date Sampled	10/31/96	10/31/96	10/31/96	10/31/96
Date Analyzed	11/07/96	11/07/96	11/07/96	11/07/96
Dilution Factor	1.00	1.00	1.00	1.00

Reporting

1,0	JOI CITIES					
Analyte	Limit	Units	<u> </u>	centration:		
MTBE	10.	tig/L	< 10,	< 10.	< 10.	< 10.
Benzene	0.5	ug/L	20.	1.1	< 0.5	5.9
Toluene	1.0	ug/L	5.9	< 1.0	< 1.0	< 1.0
Ethylbenzene	1.0	ug/L	15.	< 1.0	< 1.0	< 1.0
Xylenes (total)	2,0	ug/L	19.	< 2.0	< 2.0	< 2.0
TPH as Gas	100	ug/L	6800	200	< 100	300

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

EPA 8020A:

Gasoline range hydrocarbons (TPH) quantitated by GC/FID with purge and trap and modified EPA Method 8015. Analyte list modified to include additional compounds. "Test Methods for Evaluating Solid Waste. Physical/Chemical Methods". SW-846. Third Edition including promulgated Update II.

GTEL Client ID:

HYE01HYE01

Login Number:

W6110029

Project ID (number): 7-285.1

Project ID (name):

MARINER SQUARE/ALAMEDA/CA

Method: EPA 8010B

Matrix: Aqueous

GTEL Sample Number	W6110029-01	W6110029-02	W6110029-03	W6110029-04
Client ID	MW-1	MW-2	MW-3	MW-4
Date Sampled	10/31/96	10/31/96	10/31/96	10/31/96
Date Analyzed	11/06/96	11/06/96	11/06/96	11/06/96
Dilution Factor	1.00	1.00	1.00	1.00

Reporting

Concentration: Limit Units Analyte 1.0 ug/L < 1.0 Vinyl Chloride

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

EPA 8010B:

"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, Third Edition including promulgated Update II.

GTEL Client ID:

HYE01HYE01

Login Number:

W6110029

Project ID (number): 7-285.1

Project ID (name):

MARINER SQUARE/ALAMEDA/CA

Method: EPA 8010B

Matrix: Aqueous

 GTEL Sample Number	W6110029-05	W6110029-06	W6110029-07	W6110029-08
Client ID	MW-5	MW-7	8-WM	MW-9
Date Sampled	10/31/96	10/31/96	10/31/96	10/31/96
Date Analyzed	11/06/96	11/06/96	11/06/96	11/06/96
Dilution Factor	1.00	1.00	1.00	1.00_

Reporting

Analyte	Limit	Units		Concentration:		
Vinvl Chloride	1.0	ug/L	< 1.0	< 1.0	< 1.0	< 1.0

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, Third Edition including promulgated Update II.

Project ID (Number): 7-285.1

Project ID (Name): Mariner Square

Almeda, CA

Work Order Number: W6-11-0029 Date Reported: 11-14-96

ANALYTICAL RESULTS

TPH as Diesel Fuel in Water GC/FIDa

GTEL Sample Number Client Identification Date Sampled Date Extracted Date Analyzed		01	02	03	04 ^e
		MW-1	MW-2	MW-3	MW-4
		10-31-96	10-31-96	10-31-96	10-31-96
		11-04-96	11-04-96	11-04-96	10-04-96
		11-13-96	11-13-96	11-13-96	11-13-96
Analyte	RLb ug/L	Concentration, ug/L			
TPH as Diesel Fuel (Silica gel cleaned)b	50	93d	180d	160d	330 ^d
TPH as Lubricating Oil (Silica gel cleaned) ^b	200	<200	<200	<200	<200
RL ^c Multiplier		1	1	1	1

- ASTMMethod D3328 (modified) is used for qualitative identification of fuel patterns. The method has been modified to include quantitation by applying calibration and quality assurance guidelines outlined in EPA's publication, Test Methods for Evaluating Solid Waste, SW846, Third Edition, Revision 0, November 1986. Liquid-liquid extraction with methylene chloride. This method is equivalent to the а California LUFTmanual DHS method for diesel fuel.
- Extracts were silica gel cleaned per (modified) EPA 3630. ь
- Reporting Limit ¢
- Due to qualitative uncertainty, all material in the C9 to C22 range was quantitated as diesel fuel. ď
- The surrogate percent recovery for this sample is outside of acceptability limits. Therefore, ther ę reported concentrations should be considered as an estimate.

Project ID (Number): 7-285.1

Project ID (Name): Mariner Square

Almeda, CA

Work Order Number: W6-11-0029 Date Reported: 11-14-96

ANALYTICAL RESULTS

TPH as Diesel Fuel in Water GC/FIDa

GTEL Sample Number		05	06	07	08
Client Identification		MW-5	MW-7	MW-8	MW-9
Date Sampled Date Extracted Date Analyzed		10-31-96	10-31-96	10-31-96	10-31-96
		11-04-96	11-04-96	11-04-96	10-04-96
		11-14-96	11-14-96	11-14-96	11-14-96
Analyte	RLb ug/L	Concentration, ug/L			
TPH as Diesel Fuel (Silica gel cleaned) ^b	50	4900d	420d	120d	590d
TPH as Lubricating Oil (Silica gel cleaned) ⁵	200	860	<200	<200	720
RL ^c Multiplier		3	1	1	11

- ASTM Method D3328 (modified) is used for qualitative identification of fuel patterns. The method has been modified to include quantitation by applying calibration and quality assurance guidelines outlined in EPA's publication, Test Methods for Evaluating Solid Waste, SW846, Third Edition, Revision 0, November 1986. Liquid-liquid extraction with methylene chloride. This method is equivalent to the а California LUFT manual DHS method for diesel fuel.
- Extracts were silica gel cleaned per (modified) EPA 3630. b
- c Reporting Limit
- Due to qualitative uncertainty, all material in the C9 to C22 range was quantitated as diesel fuel. đ

CHAIN OF CUSTODY RECORD

HETICAL JOB No.: 7-285.	Date Time
Relenquished by: Signature)	7396 CF Dn
Relatived by: Pills William William William William	31/96 5:05
	1/96 0845
PROJECTNAME: MARINER STOLLARS	PAGE1 OF
Sample Number DATE & TIME No. & Type Container Analysis Requested	Lab Remarks
MW-1 1031.9(c) 1	

CHAIN OF CUSTODY RECORD

SAMPLER Printed Native: FRANCOS MARONI Signature: FRANCOS MARONI DELIVER TO: NEI/GTEL ATTENTION: JOHN HETICAL JOB No.: 7-28517	SEND RESULTS TO: HYDRO-ENVIRONMENTAL TEC 2363 MARINER SQUARE DR., SUI ALAMEDA, CA 94501 (510) 521-2684, (FAX) 521-5078 ATTENTION: SEND INVOICE TO: THETT CAPPY PASCHER	TE 243
Relanquished by: Glignature) Referentiated by: Relanquished by: Relanquished by: Relanduished by:	John Welly TORY feel le	Date Time 10496 450m 10/3/96 5:05p- 11/196 0845 PAGEZOF 2
Sample Number DATE & TIME No. & Type Contain The No	Analysis Requested Analys	Lab Remarks No Seals 1°C 110 912 4973 OF OS OS OS OS OS OS OS OS OS
Special Instructions: SIUCHOE CLEAU—CA		72 HOURS 24 HOURS