29/11

SOIL AND GROUNDWATER INVESTIGATION REPORT 505 CEDAR STREET OAKLAND, CALIFORNIA

ENVIRONMENTAL SOLUTIONS, INC. PROJECT NO. 94-911

Prepared For:

STATE DEPARTMENT OF TRANSPORTATION ENVIRONMENTAL ENGINEERING BRANCH 111 Grand Avenue, 14th Floor Oakland, California 94623-0660

> Contract Number 53U495 Task Order Number 04-192211-05

> > September 27, 1994

Prepared By:

STATE OF CALIFORNIA OFFICE MEMO STD. 100 (REV. 10-91) Susan Hugo ROOM/STA. NO. PHONE NUMBER ATSS Chris Wilson 186-5647 ROOM/STA. NO. Caltrons Environmental Eng. SUBJECT Cal-East Foods site Susan: Here is 1 the soil and groundwater investigation report from the Cal-East foods site (505 Cechr Street). If you have please call Chris Wilson for the month-long delay in

SOIL AND GROUNDWATER INVESTIGATION REPORT 505 CEDAR STREET OAKLAND, CALIFORNIA

ENVIRONMENTAL SOLUTIONS, INC. PROJECT NO. 94-911

Prepared For:

STATE DEPARTMENT OF TRANSPORTATION ENVIRONMENTAL ENGINEERING BRANCH 111 Grand Avenue, 14th Floor Oakland, California 94623-0660

> Contract Number 53U495 Task Order Number 04-192211-05

> > September 27, 1994

Prepared By:

Jed A. Douglas Project Geologist

Cydney M. Miller

Senior Hydrogeologist

Catherine A. Henrich, C.E.G. 1586

Office Manager/Principal Hydrogeologist

TABLE OF CONTENTS SOIL AND GROUNDWATER INVESTIGATION REPORT CAL EAST OAKLAND, CALIFORNIA

1.0 INTROD	OUCTION	1
2.0 SITE DE	ESCRIPTION/SITE HISTORY	2
3.0 FIELD	INVESTIGATION	3
3.1	Drilling and Monitoring Well Installation Procedures	
3.2	Groundwater Sampling Procedures	
3.3	Analytical Testing Program	
4.0 RESULT	'S	6
4.1	Analytical Results	
	4.1.2 Groundwater	
5.0 CONCLI	USIONS	8
6.0 SCHEDU	JLE	9
	LIST OF TABLES	
Table 1	Water Level Data	-
Table 2	Temperature, and Conductivity Measurements	
Table 3a	Petroleum Hydrocarbons	
Table 3b	BTEX in Soil	
Table 3c	Lead in Soil	
Table 3d	Volatile Organic Compounds	
Table 3e	Heavy Metals	
	LIST OF FIGURES	
Figure 1	Site Vicinity Map	
Figure 2	Site Location Map	
Figure 3	Groundwater Contour Map	
Figure 4	Soil Analytical Data	
Figure 5	Groundwater Analytical Data	
Appendices Distribution		

The contents of this report reflect the views of the author who is responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the California Department of Transportation or the Federal Highway administration. This report does not constitute a standard, specification, or regulation.

1.0 INTRODUCTION

- 1. Environmental Solutions, Inc., a wholly owned subsidiary of TRC Companies, has prepared this Soil and Groundwater Investigation Report for the Caltrans Cal East site (Site), located at 505 Cedar Street in Oakland, California (Figure 1), as part of Task Order 04-192211-05 of Contract Number 53U495.
- 2. The purpose of the Task Order was to install and sample three groundwater monitoring wells to assess if soil and groundwater in the vicinity of the former underground storage tank has been impacted by petroleum hydrocarbons. This report presents the results of the field investigation performed by Environmental Solutions, Inc.

1

2.0 SITE DESCRIPTION/SITE HISTORY

1. The site project area is located at 505 Cedar Street in Oakland, California (Figure 2). The site was formerly occupied by Cal East Foods, a seafood distributor, and contains a large building and a concrete parking area. In November 1993, Reidel Environmental Services (RES) removed a 2,500-gallon gasoline underground storage tank (UST) from the site. Results of soil testing identified concentrations of gasoline, diesel, benzene, ethylbenzene, toluene, and xylenes in the soil on the Caltrans site. Over-excavation was performed by RES in November 1993, and the tank pit backfilled. RES prepared a workplan for monitoring well installation at the site, dated February 17, 1994. Environmental Solutions, Inc. utilized this workplan for the field activities performed.

3.0 FIELD INVESTIGATION

- 1. The field investigation was performed on April 4 and July 21, 1994. The scope of work for this task order, as outlined in the RES workplan, consisted of drilling three soil borings to depths of approximately 30 feet below grade, collecting soil samples during drilling, installing two 2-inch, and one 4-inch diameter monitoring wells in the borings, and collecting groundwater samples from the three newly installed monitoring wells. One of the groundwater monitoring wells was installed as a 4-inch diameter well, for potential future use as a groundwater extraction well.
- 2. The field work was performed in two phases. The first phase, conducted on April 4, 1994, consisted of installing one soil boring and one groundwater monitoring well. A broken slide hammer on the drill rig terminated drilling activities for the day. Relocation of one of the monitoring wells postponed the second phase until July 21, 1994 (See section 3.1, paragraph 3).
- 3. The following sections describe the drilling and monitoring well installation procedures, groundwater sampling procedures, and the analytical testing program.

3.1 Drilling and Monitoring Well Installation Procedures

1. Monitoring Well locations are shown on Figure 3. The drilling was performed by West Hazmat Drilling, of Newark, California, under the direction of an Environmental Solutions, Inc. geologist. The borings were drilled using a truck-mounted drilling rig equipped with 8-inch and 10-inch hollow-stem augers. Soil samples were collected from each boring for chemical testing at five foot intervals starting from five feet below ground surface (ft bgs). The soil samples were lithologically classified using the Unified Soil Classification System (USCS) and Munsell color standards. An organic vapor meter (OVM) was used to take readings on selected soil samples, and from borehole conditions during drilling (OVM readings are included on Boring logs in Appendix A). Soil samples were collected using an 18-inch long California modified split spoon sampler, lined with three 6-inch long, 2-inch diameter stainless steel tubes. After collection, the ends of the sample tubes were capped with teflon tape, followed by a plastic cap. No adhesive tape was used on the sample containers. The containers were labeled and placed in

- a cooler with blue ice, and transported under chain-of-custody documentation to Chromolab, Inc., in San Ramon, California.
- 2. All drilling tools were decontaminated by either a high-pressure hot water wash, or alconox wash with deionized water rinse, before and between each use. Decontamination water was drummed and stored on site in labeled 55-gallon drums. The soil cuttings were placed in seven labeled 55-gallon drums, and stored on site pending disposal.
- 3. Originally, Monitoring Well MW-1 was to be located in the former UST area. Boring B-1 was drilled and sampled in April 1994, and then grouted to the surface with neat cement. However, during drilling, depth to water was found to be at nine feet below ground surface, and the Alameda County Health Department would not allow the well to be screened in the former UST backfill material. This caused an additional boring to be installed on the site. Monitoring Well MW-1 was relocated on Cedar Street, (Figure 2). The installation of the well was delayed for several months because encroachment and excavation permits were required from the City of Oakland Department of Public Works.
- 4. A fifteen-foot length of 4-inch diameter, 0.01 inch slotted screen, was placed from 5 to 20 ft bgs in Monitoring Well MW-1, through the hollow stem augers. Attached above the screen, five feet of blank casing was placed from ground surface to five ft bgs. As the augers were slowly pulled up, #2/12 Lonestar sand was installed through the augers to a depth of one foot above the top of the slotted screen interval. A weighted measuring tape was used during sand installation to insure proper depth placement, and to prevent bridging of the sand. A one foot thick layer of bentonite pellets was installed on top of the sand, and hydrated with deionized water. The remainder of the annular space was filled with a 5% bentonite grout using a tremie pipe. The top of the casing was covered with a locking waterproof expandable cap, and a traffic rated cover box was installed over the well casing. This procedure was repeated for MW-2, with ten feet of .01 inch slotted two-inch diameter screen placed from nine to nineteen ft bgs, attached to nine feet of blank casing placed from ground surface to nine ft bgs, and for MW-3, with ten feet of .01 inch slotted twoinch diameter screen placed from five to fifteen ft bgs, attached to five feet of blank casing placed from ground surface to five ft bgs.

4

5. The monitoring wells were developed on July 25, 1994, four days after completing the installation. Well development was performed by surging and pumping at least 10 wet well casing volumes from each well. The wells were allowed to recover at least 24-hours before sampling activities began. Development water was contained in labeled 55-gallon drums, and stored onsite pending disposal.

3.2 Groundwater Sampling Procedures

- 1. Groundwater sampling was performed on July 27, 1994, two days after well development. Prior to groundwater sample collection, depth to groundwater was measured with an electric water level meter in each well, and the wells were purged of at least 3 wet well casing volumes before samples were collected. During purging of each well, electrical conductivity and temperature measurements were collected with every well volume removed (Table 2). All development, purging, and sampling equipment was decontaminated prior to and between each use. Purge water was placed in two labelled 55-gallon drums, and stored on site pending disposal.
- 2. Groundwater samples were collected from the monitoring wells on July 27, 1994, using disposable two inch bailers. In order to reduce the loss of volatile constituents, samples for volatile organic compounds analysis were dispensed from the bailer using a disposable VOC sampler. The water samples were released into laboratory-supplied, sterile sample containers. The sample containers were labeled, placed in a cooler on ice, and transported under chain of custody documentation to Chromolab, Inc., in San Ramon, California.

3.3 Analytical Testing Program

- 1. The soil and water samples were submitted to Chromolab, Inc., in San Ramon, California, for the following analytical tests:
 - EPA Method 6010, Heavy Metal Scan
 - EPA Method 8015 Modified for gasoline
 - EPA Method 5520 Oil and Grease
 - EPA Method 8015 Modified for diesel (water samples only)
 - EPA Method 8020 Benzene, Toluene, Ethylbenzene and Xylenes (BTEX)
 - EPA 8240 Volatile Organic Compounds

4.0 RESULTS

- 1. The soils present at the site consist of brown, fine to medium grained, sands and clayey sands. The soils appear to be fill material, probably placed during the earlier part of this century to fill in existing wetlands on the San Francisco Bay margin.
- 2. The three groundwater monitoring wells were surveyed by Kistor, Savio & Rei, Inc. on August 5, 1994. Top of casing elevations and ground surface elevations were surveyed to an existing benchmark in the area. Elevation data is included in Table 1.
- 3. The groundwater at the site was found to be at a depth of approximately nine feet below ground surface, approximately one half foot above mean sea level (Table 1). The groundwater was determined to flow toward the southeast at a gradient of 0.0052 feet/foot (Figure 3).
- 4. Analytical results for soil and groundwater samples are presented in Tables 3a, 3b, 3c, 3d, and 3e, and are discussed below.

4.1 Analytical Results

4.1.1 Soil

- 1. TPH-gas and Oil and Grease were detected in the soil sample collected at 5 ft bgs from Boring MW-3 at concentrations of 1.5 mg/kg, and 71 mg/kg, respectively. No other soil samples showed the presence of these constituents.
- 2. Lead was detected in soil samples from Borings B-1 at 25 ft bgs, MW-1 at 5 and 10 ft bgs, and MW-3 at 5 and 10 ft bgs at concentrations ranging from 5.7 mg/kg to 27 mg/kg. None of these concentrations exceed ten times the STLC value for lead of 5 mg/kg, therefore WET analysis was not performed.
- 3. Volatile organic compounds (EPA test Method 8240) were detected in soil samples collected from Borings B-1 and MW-3. Benzene was detected in Boring B-1 in a soil sample collected at 15 ft bgs, at a concentration of 130 ug/kg. Soil samples collected from Boring MW-3 at 5 ft bgs contained the following constituents: acetone at a concentration of 60 ug/kg, benzene at a concentration of 25 ug/kg,

6

ethylbenzene at a concentration of 39 ug/kg, and total xylenes at a concentration of 7.7 ug/kg.

4.1.2 Groundwater

- 1. TPH-gas was detected in groundwater samples collected from monitoring wells MW-1 and MW-3 at concentrations of 0.12 mg/l, and 0.13 mg/l respectively. Oil and Grease was not detected in groundwater samples collected from the three monitoring wells. Diesel was not detected in groundwater samples from the three monitoring wells, however, a groundwater sample from Monitoring Well MW-3 had an unknown hydrocarbon detected in the gasoline/kerosene range. The laboratory quantified the unknown compound at 62 ug/l and suggested that it resembled weathered gasoline.
 - 2. Heavy metals detected in groundwater samples were all well below the STLC respective values for each constituent detected.
 - 3. Volatile organic compounds were detected in the groundwater samples collected from Monitoring Well MW-1, and included Methyl Ethyl Ketone (MEK) at a concentration of 3.4 ug/l and 1,2-Dichloroethane (1,2-DCA) at a concentration of 43 ug/l.
 - 4. This concentration of 1,2-DCA exceeds the California Maximum Contaminant Level (MCL) for drinking water of 0.5 ug/l. Other contaminants present in groundwater samples, including gasoline and MEK, are unregulated or unlisted in the MCLs.

State of California, Department of Health Services, Office of Drinking Water Maximum Contaminant Levels, May 1994.

5.0 CONCLUSIONS

- 1. On the basis of groundwater depth measurements collected on July 27, 1994, it appears that the groundwater flows toward the southeast at a gradient of 0.0052 vertical feet per horizontal foot. The flow direction and gradient may be influenced by several factors including seasonal fluctuations, local variation in soil composition, and the presence of braided stream channel sediments known to exist in the west Oakland area.
- 2. On the basis of soil and groundwater samples collected during this investigation, and laboratory analyses of these samples, it appears that both soil and groundwater have been impacted by petroleum hydrocarbons and volatile organic compounds (VOCs).
- 3. The presence of VOCs in soil samples collected from Borings B-1 and MW-3, and TPH-gas and Oil and Grease in soil samples collected from Boring MW-3 indicates that not all of the contaminated soil at the site has been removed.
- 4. The presence of TPH-gas and VOCs in the groundwater samples collected from Monitoring Well MW-1, and the presence of TPH-gas in the groundwater samples collected from Monitoring Well MW-3, indicates that constituents of the former UST may have migrated through the soils surrounding the former UST and impacted the groundwater. On the basis of the placement of Monitoring Wells MW-1 and MW-3, and the groundwater flow direction, it appears that contaminants have migrated off the site. Offsite concentrations of test method compounds are low, and the presence of Methyl Ethyl Ketone (MEK) may be due to degradation of naturally occurring organic matter in the soil.
- 5. The presence of 1,2-Dichloroethane (1,2-DCA) at a concentration of 43 ug/l in groundwater samples collected from Monitoring Well MW-1, is well above the MCL of 0.5 ug/l set by the State of California for drinking water. TPH-gasoline and MEK, compounds also present in groundwater samples from MW-1, are unregulated or unlisted in the MCLs. The groundwater in the site vicinity is not used for domestic purposes.

6.0 SCHEDULE

1. Environmental Solutions, Inc. is performing quarterly monitoring and sampling of the groundwater at the site for the next three consecutive quarters until March, 1995. Environmental Solutions, Inc. will monitor and sample the groundwater at the site again in October 1994.

Caltrans - Cal East ESI Project #94-911

Well Identification	Top of Casing Elevation*	Measuring Date	Depth to Water #	Water Level Elevation*
MW-I	9.25	7/22/94	8.83	0.42
MW-2	9.84	7/22/94	9.24	0.60
MW-3	9.41	7/22/94	8.94	0.47

^{* =} Measurements in feet above USGS Mean Sea Level

^{# =} Depths measured in feet from top of casing

Caltrans - Cal East ESI Project #94-911

Well Identification	Measuring Date	Temperature*	Conductivity+
MW-1	7/27/94	67.0	1158
MW-2	7/27/94	65.4	1040
MW-3	7/27/94	66.6	1756

^{*} Temperature in degrees fahrenheit

^{+ =} Conductivity in umhos

TABLE 3a: PETROLLUM HYDROCARBONS

Caltrans - Cal East ESI Project #94-911

		oring Location: Depth (in feet):	•	B-1 25	MW-1 5	MW-1 10	MW-1 15	MW-1
	-	eporting Limit	i .	mg/kg	mg/kg	mg/kg	mg/kg	20 mg/kg
TPH -Gasoline	EPA 8015	1.0	ND	ND	ND	ND	ND	ND
Oil & Grease	STD 5520	1.0 50	ND	ND	ND	ND	ND	ND
		'n	•					
	Во	oring Location:	MW-2	MW-2	MW-2	MW-3	MW-3	MW-3
		Depth (in feet):		10	15	5	10	16.5
	-	eporting Limit		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
TPH -Gasoline	EPA 8015	1.0	ND	NT	ND	1.5	ND	ND
Oil & Grease	STD 5520	1.0 50	ND	ND	ND	71	ND	ND
	Вс	oring Location:	MW-1	MW-2	MW-3			
		Sample		Water	Water			
***************************************	R	eporting Limit						
TPH - Gasoline	EPA 8015	0.05 mg/l		ND	0.13			
Oil & Grease	STD 5520	0.05 mg/l 1.0 mg/l 50 ug/l	ND	ND	ND	artin .		
TPH - Diesel	EPA 8015	50 ug/l	ND	ND	ND*			

^{* =} Unknown hydrocarbon in gasoline/kerosene range was observed in sample. Quantified at 62 ug/kg

NT = Not tested

ND = Not detected at or above reporting limit

Caltrans - Cal East ESI Project #94-911

	Box	ring Location:	B-1	B-1	MW-1	MW-1	MW-1	MW-1
	Sample D	epth (in feet):	15	25	5	10	15	20
	Re	porting Limit	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Benzene	EPA 8020	5.0	NT*	ND	NT*	NT*	NT*	NT*
Toluene	EPA 8020	5.0	NT*	ND	NT*	NT*	NT*	NT*
Ethylbenzene	EPA 8020	5.0 5.0 5.0	NT*	ND	NT*	NT*	NT*	NT*
Total Xylenes	EPA 8020	5.0	NT*	ND	NT*	NT*	NT*	NT*
	Boı	ring Location:	MW-2	MW-2	MW-2	MW-3	MW-3	MW-3
	Sample D	epth (in feet):	5	10	15	5	10	16.5
	Re	porting Limit	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Benzene	EPA 8020	5.0	NT*	NT*	ND	NT*	NT*	NT*
Toluene	EPA 8020	5.0 5.0 5.0 5.0	NT*	NT*	ND	NT*	NT*	NT*
Ethylbenzene	EPA 8020	5.0	NT*	NT*	ND	NŢ*	NT*	NT*
Total Xylenes	EPA 8020	5.0	NT*	NT*	ND	NT*	NT*	NT*

ND = Not detected at or above reporting limit

NT* = Not tested by this method, see Table 3d (EPA Method 8240)

TABLE 3c: LEAD IN SOIL

Caltrans - Cal East ESI Project #94-911

	Sample	oring Location: Depth (in feet): Reporting Limit	15	B-1 25 mg/kg	MW-1 5 mg/kg	MW-1 10 mg/kg	MW-1 15 mg/kg	MW-1 20 mg/kg
LEAD	EPA 3050	2.5	4.3	6.3	NT*	NT*	NT*	NT*
	д	oring Location:	MW 2	MW-2	MW-2	MW-3	MW-3	MW-3
		- 50				1V1 W -3		
	Sample	Depth (in feet):	5	10	15	5	10	16.5
*************	I	Reporting Limit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
LEAD	EPA 3050	2.5	5.8	NT*	(13)	NT*	NT*	NT*

ND = Not detected at or above reporting limit NT* = Not tested, see Table 3e (Heavy Metals)

TABLE 3d: VOLATILE ORGANIC COMPOUNDS

Caltrans - Cal East ESI Project #94-911

Boring L	ocation:	B-1	B-1	MW-1	MW-1	MW-1	MW-1
Soil Sample Depth (5	15	25	5	10	15	20
	ng Limit	8	ug/kg	ug/kg	ug/kg	ug/kg	
	ssīma <u>sassas</u> si			******	99969833498835498849365666	(**********************	ug/kg
Acetone	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ND	NT	ND	ND	ND	ND
Benzene Bromodichloromethane	5	130	NT*	ND	ND	ND	ND
Bromoform	5 5	ND	NT	ND	ND	ND	ND
Bromomethane	<i>5</i>	ND	NT	ND	ND	ND	ND
2-Butanone	5	ND ND	NT	ND	ND	ND	ND
Carbon Tetrachloride	5 5	ND	NT	ND	ND	ND	ND
Chlorobenzene	5 5	ND	NT	ND	ND	ND	ND
Chloroethane	5	ND	NT	ND	ND	ND	ND
	5 5	ND	NT	ND	ND	ND	ND
2-Chloroethylvinyl Ether Chloroform	5 5	ND ND	NT	ND	ND	ND	ND
Chloromethane	5	ND ND	NT	ND	ND	ND	ND
Dibromochloromethane	5	ND	NT	ND	ND	ND	ND
1, 1-Dichloroethane	5	ND ND	NT	ND	ND	ND	ND
1, 2-Dichloroethene	5	ND ND	NT NT	ND	ND	ND	ND
1, 1-Dichloroethene	5	ND ND	NT	ND ND	ND ND	ND	ND
1, 2-Dichloroethene (CIS)	5 5	ND ND	NT	ND ND	ND ND	ND	ND
1, 2-Dichloroethene (CIS)	5	ND ND	NT	ND ND		ND ND	ND
1, 2-Dichloropropane	5	ND ND	NT	ND ND	ND ND	ND ND	ND ND
1, 3-Dichloropropene (CIS)	5	ND ND	NT	ND ND	ND ND	ND ND	ND ND
1, 3-Dichloropropene (TRANS)	5	ND	NT	ND ND	ND	ND ND	ND ND
Ethylbenzene	5	ND ND	NT*	ND ND	ND ND	ND	ND ND
2-Hexanone	5	ND ND	NT	ND ND	ND ND	ND ND	ND ND
Methylene Chloride	25	ND ND	NT	ND ND	ND ND	ND	ND ND
4-Methyl-2-Pentanone	5	ND ND	NT	ND ND	ND	ND	ND
Styrene	5	ND	NT	ND	ND	ND	ND
1, 1, 2, 2-Tetrachloroethane	5	ND	NT	ND	ND	ND	ND
Tetrachloroethene	5	ND	NT	ND	ND	ND	ND
Toluene	5	ND	NT*	ND	ND	ND	ND
1, 1, 1-Trichloroethane	5	ND	NT	ND	ND	ND	ND
1, 1, 2-Trichloroethane			NT	ND	ND	ND	ND
Trichloroethene	5	ND	NT	ND	ND	ND	ND
Trichlorofluoromethane	5	ND	NT	ND	ND	ND	ND
Vinyl Acetate	5	ND	NT	ND	ND	ND	ND
Vinyl Chloride	5	ND	NT	ND	ND	ND	ND
Xylenes (TOTAL)	5 5 5 5 5 5	ND	NT*	ND	ND	ND	ND
	8			. 12.0			2 140

ND = Not detected at or above reporting limit

NT = Not tested

NT* = Not Tested by this method, see Table 3b

TABLE 3d: VOLATILE ORGANIC COMPOUNDS

Caltrans - Cal East

ESI Project #94-911

E31 1 Toject #34-311							
Boring L	ocation:	MW-2	MW-2	MW-2	MW-3	MW-3	MW-3
Soil Sample Depth	(in feet):	5	10	15	5	10	16.5
Reportin	ng Limit	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Acetone	anga nakalika kacama)	garangan mara	ND	NT	60	ND	ND
Benzene	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ND	ND	NT*	25	ND	ND
Bromodichloromethane	5	ND	ND	NT	ND	ND	ND
Bromoform	5	ND	ND	NT	ND	ND	ND
Bromomethane	5	ND	ND	NT	ND	ND	ND
2-Butanone	5	ND	ND	NT	ND	ND	ND
Carbon Tetrachloride	5	ND	ND	NT	ND	ND	ND
Chlorobenzene	5 5	ND	ND	NT	ND	ND	ND
Chloroethane	. 5	ND	ND	NT	ND	ND	ND
2-Chloroethylvinyl Ether	5	ND	ND	NT	ND	ND	ND
Chloroform	5	ND	ND	NT	ND	ND	ND
Chloromethane	5 5	ND	ND	NT	ND	ND	ND
Dibromochloromethane	5	ND	ND	NT	ND	ND	ND
1, 1-Dichloroethane	5	ND	ND	NT	ND	ND	ND
1, 2-Dichloroethene	5	ND	ND	NT	ND	ND	ND
1, 1-Dichloroethene	5	ND	ND	NT	ND	ND	ND
1, 2-Dichloroethene (CIS)	5 5	ND	ND	NT	ND	ND	ND
1, 2-Dichloroethene (TRANS)	5	ND	ND	NT	ND	ND	ND
1, 2-Dichloropropane	5	ND	ND	NT	ND	ND	ND
1, 3-Dichloropropene (CIS)	5	ND	ND	NT	ND	ND	ND
1, 3-Dichloropropene (TRANS)	5	ND	ND	NT	ND	ND	ND
Ethylbenzene	5	ND	ND	NT*	39	ND	ND
2-Hexanone	5	ND	ND	NT	ND	ND	ND
Methylene Chloride	25	ND	ND	NT	ND	ND	ND
4-Methyl-2-Pentanone	5	ND	ND	NT	ND	ND	ND
Styrene	5	ND	ND	NT	ND	ND	ND
1, 1, 2, 2-Tetrachloroethane	5	ND	ND	NT	ND	ND	ND
Tetrachloroethene	5	ND	ND	NT	ND	ND	ND
Toluene	5	ND	ND	NT*	ND	ND	ND
1, 1, 1-Trichloroethane			ND	NT	ND	ND	ND
1, 1, 2-Trichloroethane	5	ND	ND	NT	ND	ND	ND
Trichloroethene	5	ND	ND	NT	ND	ND	ND
Trichlorofluoromethane	5	ND	ND	NT	ND	ND	ND
Vinyl Acetate	5	ND	ND	NT	ND	ND	ND
Vinyl Chloride	5 5 5 5 5 5	ND	ND	NT	ND	ND	ND
Xylenes (TOTAL)	5	ND	ND	NT*	7.7	ND	ND

ND = Not detected at or above reporting limit NT = Not tested NT* = Not Tested by this method, see Table 3b

TABLE 3d: VOLATILE ORGANIC COMPOUNDS

Caltrans - Cal East ESI Project #94-911

ESI Project #94-911				
Boring L	ocation:	MW-1	MW-2	MW-3
	Sample	Water	Water	Water
Reporti	ng Limit	ug/L	ug/L	ug/L
Acetone	ดงจากการัฐการัฐครามการ	**********	ND	ND
Benzene	5.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	ND	ND	ND
Bromodichloromethane	2.0	ND	ND	ND
Bromoform	2.0	ND	ND	ND
Bromomethane	2.0	ND	ND	ND
Methyl Ethyl Ketone	2.0	3.4	ND	ND
Carbon Tetrachloride	2.0	ND	ND	ND
Chlorobenzene	2.0	ND	ND	ND
Chloroethane	2.0	ND	ND	ND
2-Chloroethylvinyl Ether	2.0	ND	ND	ND
Chloroform	2.0	ND	ND	ND
Chloromethane	2.0	ND	ND	ND
Dibromochloromethane	2.0	ND	ND	ND
1, 1-Dichloroethane	2.0	ND	ND	ND
1, 2-Dichloroethane	2.0	43	ND	ND
1, 1-Dichloroethene	2.0	ND	ND	ND
1, 2-Dichloroethene (CIS)	2.0	ND	ND	ND
1, 2-Dichloroethene (TRANS)	2.0	ND	ND	ND
1, 2-Dichloropropane	2.0	ND	ND	ND
1, 3-Dichloropropene (CIS)	2.0	ND	ND	ND
1, 3-Dichloropropene (TRANS)	2.0	ND	ND	ND
Ethylbenzene	2.0	ND	ND	ND
2-Hexanone	2.0	ND	ND	ND
Methylene Chloride	5.0	ND	ND	ND
Methyl Isobutyl Ketone	2.0	ND	ND	ND
Styrene	2.0	ND	ND	ND
1, 1, 2, 2-Tetrachloroethane	2.0	ND	ND	ND
Tetrachloroethene	2.0	ND	ND	ND
Toluene	2.0	ND	ND	ND
1, 1, 1-Trichloroethane		ND	ND	ND ·
1, 1, 2-Trichloroethane	2.0	ND	ND	ND
Trichloroethene	2.0	ND	ND	ND
Trichlorofluoromethane	2.0	ND	ND	ND
Vinyl Acetate	2.0	ND	ND	ND
Vinyl Chloride	2.0 2.0 2.0 2.0 2.0 2.0 2.0	ND	ND	ND
Xylenes (TOTAL)	2.0	ND	ND	ND

ND = Not detected at or above reporting limit NT = Not tested

TABLE 3e: HEAVY METALS

Caltrans - Cal East ESI Project #94-911

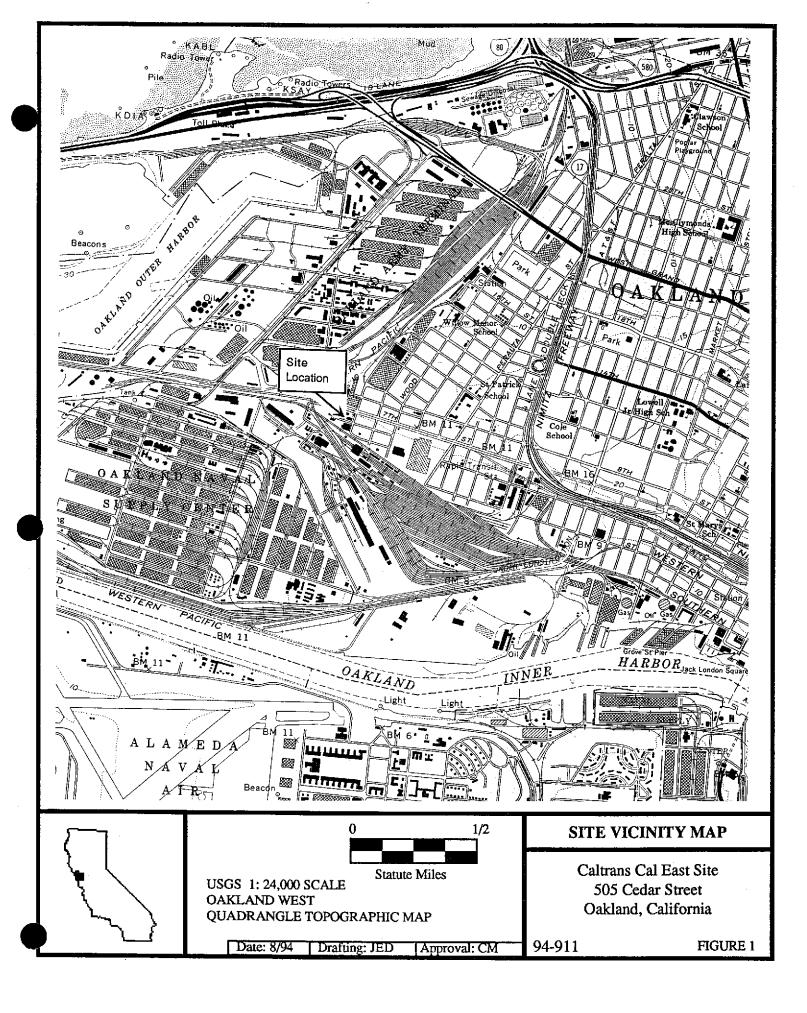
	Roring	Location:	B-1	B-1	MW-1	MW-1	MW-1	MW-1
0-:	_	′ 8	8					
501	l Sample Deptl	` 7	9	25	5	10	15	20
THE STATE OF THE S	Repor	ting Limit	(mg/kg)	(mg/kg)	mg/kg	mg/kg	mg/kg	mg/kg
Antimony	EPA 6010	1.0	NT	NT	3.5	1.4	ND	1.7
Arsenic	EPA 6010	1.0 0.25 0.25 0.05 0.05 0.5 0.25 0.5 0.5 0.25 0.5 0.25 0.5 0.25 2.0 0.5 0.25	NT	NT	ND	ND	ND	ND
Barium	EPA 6010	0.25	NT	NT	63	58	55	47
Beryllium	EPA 6010	0.05	NT	NT	0.14	ND	ND	ND
Cadmium	EPA 6010	0.05	NT	NT	ND	ND	ND	ND
Chromium	EPA 6010	0.5	NT	NT	74	54	58	54
Cobalt	EPA 6010	0.5	NT	NT	5. 7	5.7	6.6	5.1
Copper	EPA 6010	0.25	NT	NT	7.7	6.9	5.3	5.7
Lead	EPA 6010	0.5	NT*	NT*	5.9	5.7	4.0	3.4
Molybdenum	EPA 6010	0.25	NT	NT	ND	ND	ND	ND
Nickel	EPA 6010	0.5	NT	NT	42	36	36	32
Selemium	EPA 6010	0.5	NT	NT	24	ND	ND	ND
Silver	EPA 6010	0.25	NT	NT	ND	ND	ND	ND
Thallium	EPA 6010	2.0	NT	NT	ND	ND	ND	. ND
Vanadium	EPA 6010	0.5	NT	NT	38	26	21	21
Zinc	EPA 6010	0.25	NT	NT	31	26	26	26
Mercury	EPA 6010	0.05	NT	NT	ND	ND	ND	ND

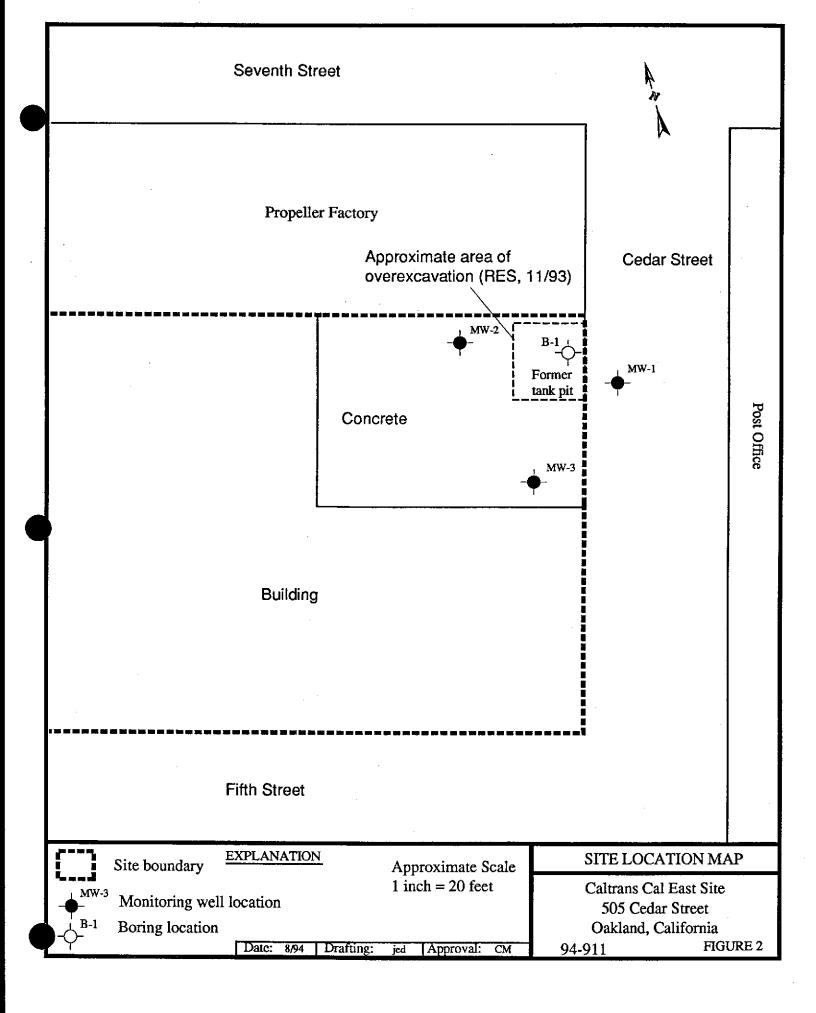
ND = Not Detected at or above reporting limit NT* = Not Tested by this method, see Table 3c

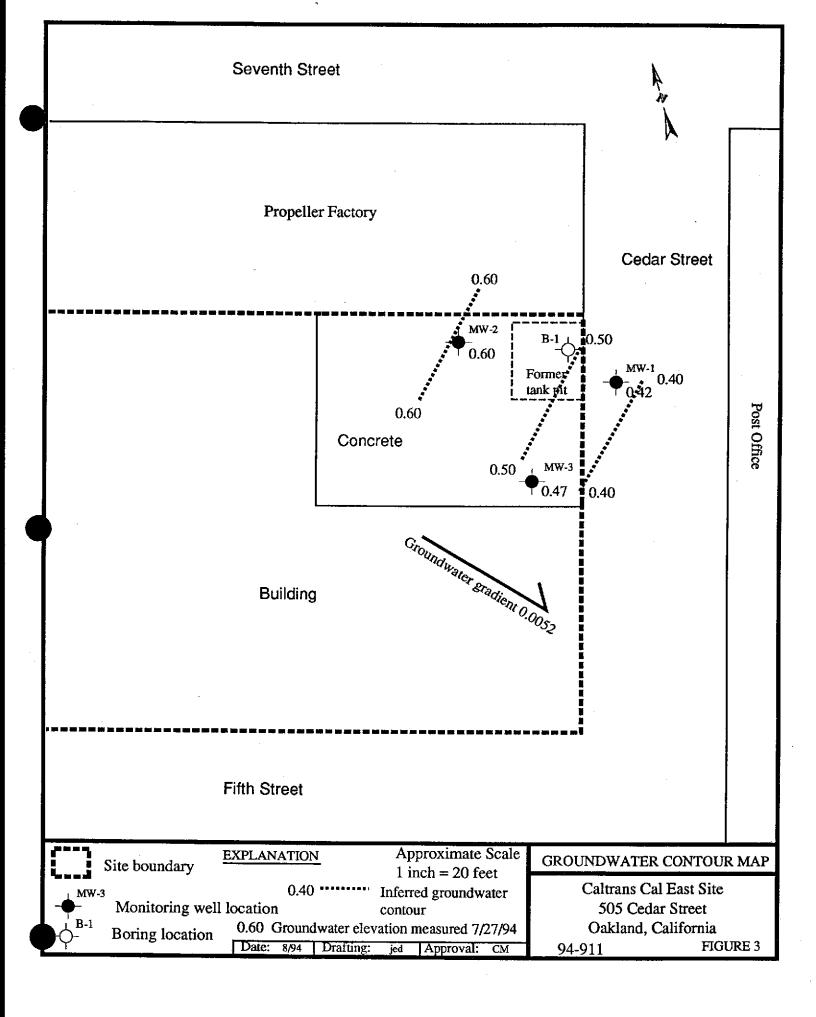
TABLE 3e: HEAVY METALS

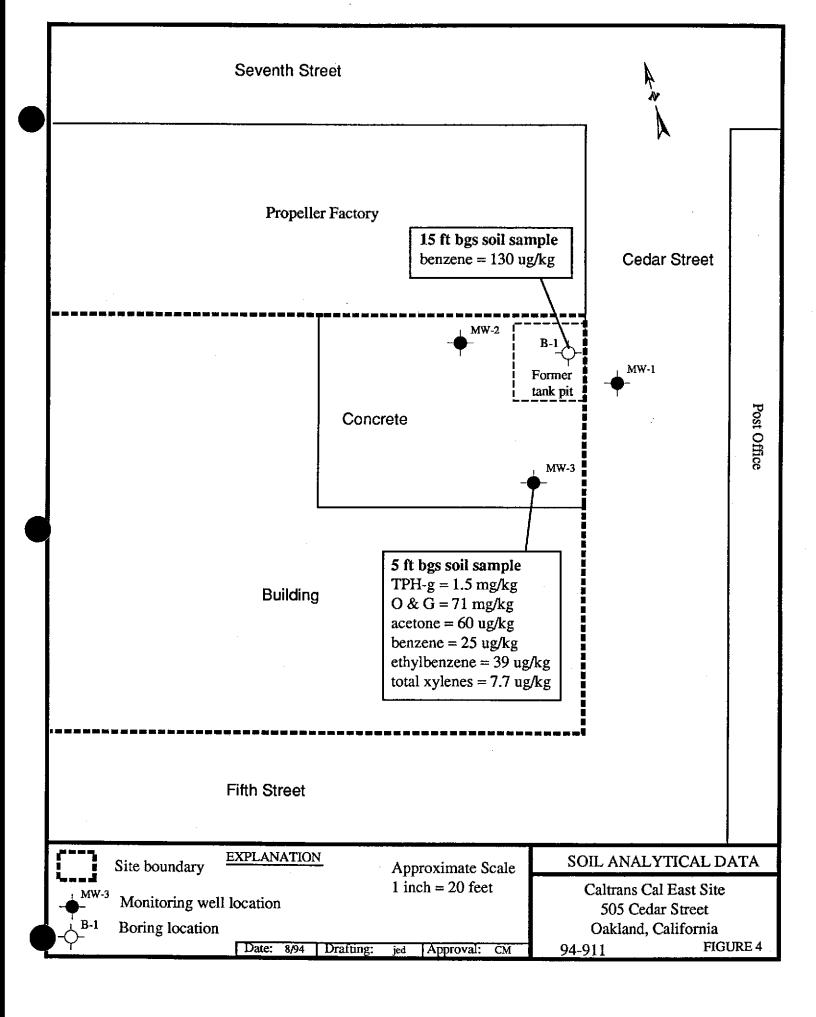
Caltrans - Cal East ESI Project #94-911

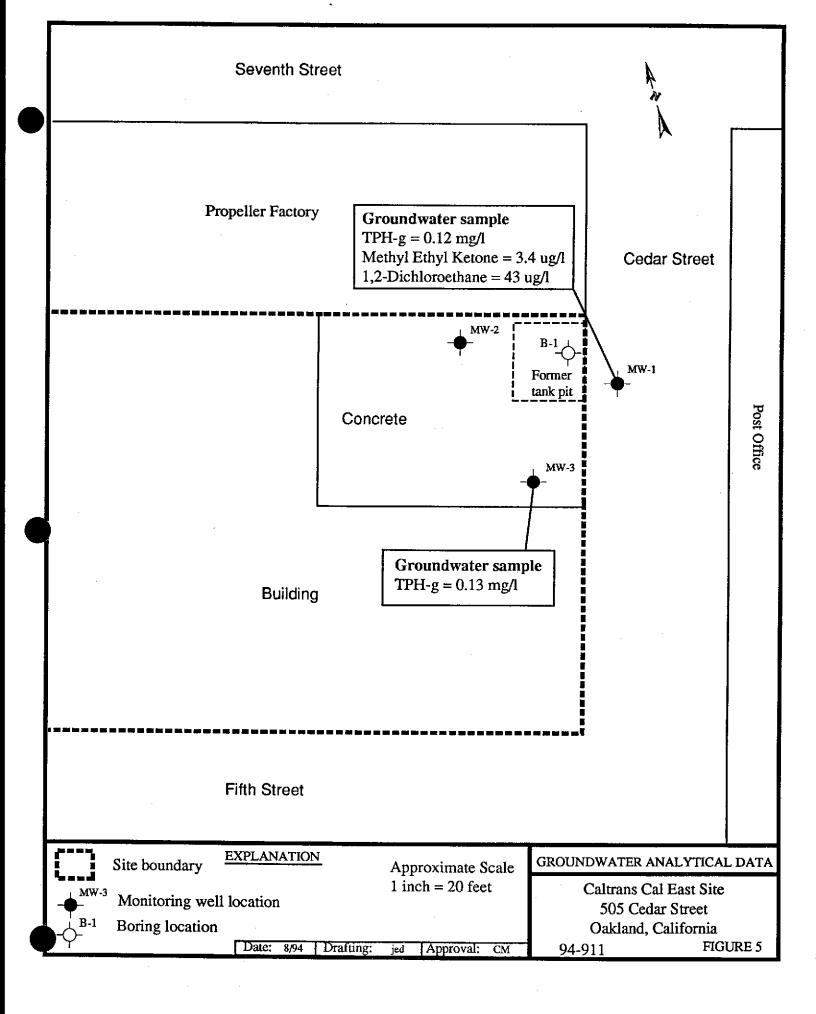
,	Boring	Location:	MW-2	MW-2	MW-2	MW-3	MW-3	MW-3
So	il Sample Dept	h (in feet):	5	10	15	5	10	16.5
	Repor	ting Limit	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Antimony	EPA 6010	1.0	NT	ND	NT	ND	ND	1.9
Arsenic	EPA 6010	0.25	NT	ND	NT	ND	ND	ND
Barium	EPA 6010	0.25	NΤ	55	NT	44	62	50
Beryllium	EPA 6010	0.05	NT	ND	NT	ND	ND	ND
Cadmium	EPA 6010	0.05	NT	0.6	NT	ND	ND	ND
Chromium	EPA 6010	0.5	NT	30	NT	42	53	47
Cobalt	EPA 6010	0.5	NT	6.2	NT	6.1	6.4	4.6
Copper	EPA 6010	0.25	NT	7.9	NT	18	7.6	4.6
Lead	EPA 6010	0.5	NT*	1.2	NT*	27	9.1	4.4
Molybdenum	EPA 6010	0.25	NT	1.6	NT	ND	ND	ND
Nickel	EPA 6010	0.5	NT	37	NT	15	38	29
Selemium	EPA 6010	0.5	NT	ND	NT	ND	ND	8.1
Silver	EPA 6010	0.25	NT	0.95	NT	ND	ND	ND
Thallium	EPA 6010	2.0	NT	ND	NT	ND	ND	ND
Vanadium	EPA 6010	0.5	NT	27	NT	22	25	19
Zinc	EPA 6010	1.0 0.25 0.25 0.05 0.5 0.5 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	NT	21	NT	69	26	21
Mercury	EPA 6010	0.05	NT	ND	NT	0.18	ND	ND

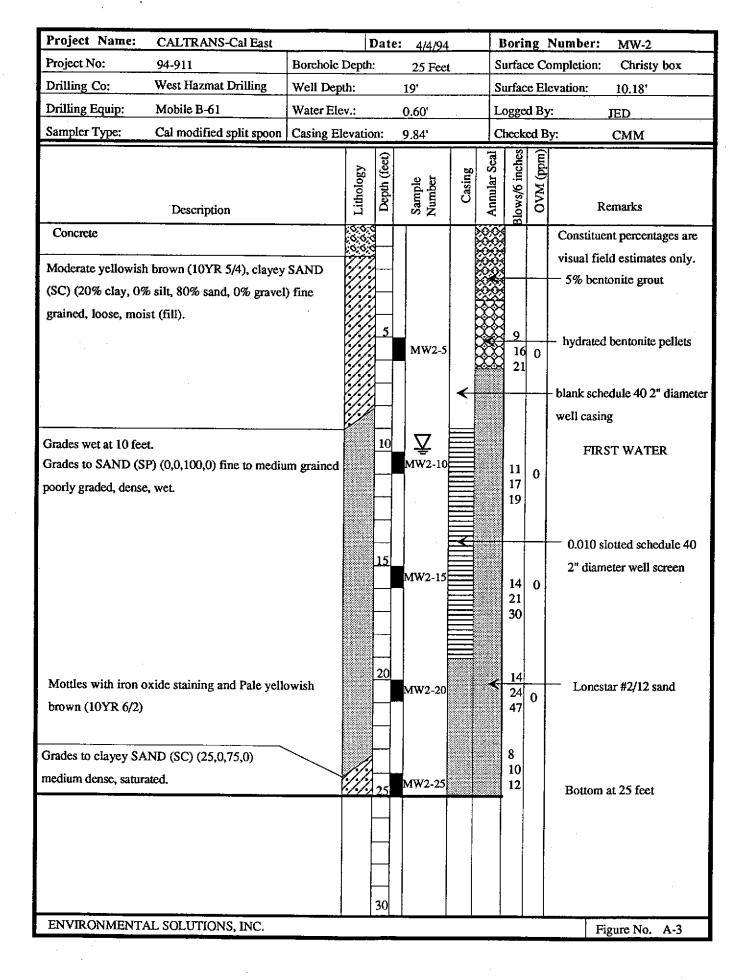

ND = Not Detected at or above reporting limit NT* = Not Tested by this method, see Table 3c


TABLE 3e: HEAVY METALS


Caltrans - Cal East ESI Project #94-911


-	MW-1	MW-2	MW-3		
		Sample	Water	Water	Water
######################################	Repo	rting Limit	(mg/L)	(mg/L)	(mg/L)
Antimony	EPA 6010	0.02	ND	ND	ND
Arsenic	EPA 6010	0.005	ND	ND	ND
Barium	EPA 6010	0.005	0.069	0.011	0.21
Beryllium	EPA 6010	0.001	ND	ND	ND
Cadmium	EPA 6010	0.001	ND	ND	ND
Chromium	EPA 6010	0.01	0.011	ND	ND
Cobalt	EPA 6010	0.01	ND	ND	ND
Copper	EPA 6010	0.005	ND	ND	ND
Lead	EPA 6010	0.01	ND	ND	ND
Molybdenum	EPA 6010	0.005	0.0059	0.0066	ND
Nickel	EPA 6010	0.02	ND	ND	ND
Selemium	EPA 6010	0.01	ND	ND	ND
Silver	EPA 6010	0.005	ND	ND	ND
Thallium	EPA 6010	0.01	0.04	0.017	ND
Vanadium	EPA 6010	0.01	ND	ND	ND
Zinc	EPA 6010	0.01	0.38	0.012	0.17
Mercury	EPA 6010	0.02 0.005 0.005 0.001 0.001 0.005 0.01 0.005 0.02 0.01 0.005 0.01 0.005 0.01 0.001	ND	ND	ND


ND = Not Detected at or above reporting limit



APPENDIX A

BORING LOGS

Project No: 94-911 Surface Surface Completion Grow Fill Core West Hazmat Drilling Well Depth: N/A Surface Elevation: N/A Surface S	Project Name:	CALTRANS-Cal East	· · · · · · · · · · · · · · · · · · ·	I	ate	: 4/4/94		Bori	ng	Number: B-1	
Defilting Co: West Hazmat Dritting Well Deph: N/A Surface Elevation: V/A Logged By: JED Sampler Type: Cal modified split spoon Casing Elevation: N/A Checked By: CMM Description Total Color of the part of t	Project No:		L.,								
Sampler Type: Cal modified split spoon Casing Elevation: N/A Checked By: CMM Description	Drilling Co:	West Hazmat Drilling									
Sampler Type: Cal modified split spoon Casing Elevation: N/A Checked By: CMM Description Description Description Description Dark yellowish brown (10YR 4/2), SAND (SP) (0% clay) Dark yellowish brown (10YR 4/2), SAND (SP) (0% clay) Dark yellowish brown (10YR 4/2), SAND (SP) (0% clay) Dark yellowish brown (10YR 4/2), SAND (SP) (0% clay) Dark yellowish brown (10YR 4/2), SAND (SP) (0% clay) Dark yellowish brown (10YR 4/2), SAND (SP) (0% clay) Dark yellowish brown (10YR 5/4 clayey SAND (SC) Dark yellowish brown (10YR	Drilling Equip:	Mobile B-61					Logge	Logged By: JED			
Dark yellowish brown (10YR 4/2), SAND (SP) (0% clay 0% silt, 100% sand, 0% gravel) fine to medium grained, poorly graded, loose, moist (fill). S	Sampler Type:	Cal modified split spoon	Casing Elevation: N/A								
Dark yellowish brown (10YR 4/2), SAND (SP) (0% clay 0% silt, 100% sand, 0% gravel) fine to medium grained, poorly graded, loose, moist (fill). S		<u></u>			च्च			cal thes	(mc		
Dark yellowish brown (10YR 4/2), SAND (SP) (0% clay 0% silt, 100% sand, 0% gravel) fine to medium grained, poorly graded, loose, moist (fill). S				logs	th (fe	ple ber	sing	ılar S 6 inc	М (Э		
Dark yellowish brown (10YR 4/2), SAND (SP) (0% clay 0% silt, 100% sand, 0% gravel) fine to medium grained, poorly graded, loose, moist (fill). S		Description		Lith	Deb	Sam	ٽا	Annu 3lows/	\ O	Remarks	
poorly graded, loose, moist (fill). S	Dark yellowish bro	own (10YR 4/2), SAND (SI	P) (0% clay					1 "		Constituent percentages are	
Grades wet. 10	0% silt, 100% sand	1, 0% gravel) fine to mediur	n grained,			İ				visual field estimates only.	
Grades wet. 10	poorly graded, loos	se, moist (fill).									
Grades wet. 10		•									
Grades wet. 10					5			3			
Grades wet. 10 \$\frac{1}{2} \frac{1}{8} \frac{1}{10} \frac{1}{2} \frac{1}{26} \frac{1}{0} \frac{1}{11} \frac{1}{26} \frac{1}{0} \frac{1}{2} \frac{1}{26} \frac{1}{0} \frac{1}{2} \frac{1}{36} \frac{1}	•					B-1-5		2	0		
B-1-10 12 26 15 B-1-15 17 36 8 B-1-20 Moderate yellowish brown 10YR 5/4 clayey SAND (SC) 25 B-1-25 N/A 0 17 36 50 1 17 36 50 1 D 18 B-1-25 B-1-25 B-1-25 B-1-25 B-1-30								2			
B-1-10 12 26 15 B-1-15 17 36 8 B-1-20 Moderate yellowish brown 10YR 5/4 clayey SAND (SC) 25 B-1-25 N/A 0 17 36 50 1 17 36 50 1 D 18 B-1-25 B-1-25 B-1-25 B-1-25 B-1-30			,		Ц						
B-1-10 12 26 15 B-1-15 17 36 8 B-1-20 Moderate yellowish brown 10YR 5/4 clayey SAND (SC) 25 B-1-25 N/A 0 17 36 50 1 17 36 50 1 D 18 B-1-25 B-1-25 B-1-25 B-1-25 B-1-30											
B-1-10 12 26 0 15 B-1-15 17 36 8 8 17 36 50 1 17 36 50 1 17 36 50 1 17 36 50 1 17 36 50 1 17 36 50 1 17 36 50 1 18 19 19 19 19 19 19	Grades wet.				10	了		5		FIRST WATER	
B-1-15 B-1-15 B-1-20 B-1-20 B-1-20 B-1-20 B-1-20 B-1-20 B-1-25 N/A O (25,0,75,0) medium dense, saturated.						B-1-10		12	0		
B-1-15 27 36 8 17 36 50 1 1 1 1 1 1 1 1 1								26			
B-1-15 27 36 8 17 36 50 1 1 1 1 1 1 1 1 1											
B-1-15 27 36 8 17 36 50 1 1 1 1 1 1 1 1 1											
Moderate yellowish brown 10YR 5/4 clayey SAND (SC) B-1-20 B-1-20 N/A 0 17 36 50 1 N/A 0 B-1-25 B-1-25 B-1-25 N/A 0 Bottom at 30 feet					15						
B-1-20 Moderate yellowish brown 10YR 5/4 clayey SAND (SC) (25,0,75,0) medium dense, saturated. B-1-25 B-1-25 N/A 9 21 50 for graph of the property of th						B-1-15			8		
B-1-20 Moderate yellowish brown 10YR 5/4 clayey SAND (SC) (25,0,75,0) medium dense, saturated. B-1-25 B-1-25 N/A 9 21 50 for graph of the property of th											
B-1-20 Moderate yellowish brown 10YR 5/4 clayey SAND (SC) (25,0,75,0) medium dense, saturated. B-1-25 B-1-25 N/A 9 21 50 for graph of the property of th											
B-1-20 Moderate yellowish brown 10YR 5/4 clayey SAND (SC) (25,0,75,0) medium dense, saturated. B-1-25 B-1-25 N/A 9 21 50 for graph of the property of th		•			_						
Moderate yellowish brown 10YR 5/4 clayey SAND (SC) B-1-20 B-1-20 N/A O Solution 1 Solution 1 N/A O Solution 25 B-1-25 B-1-25 B-1-25 B-1-30 B-1-30 B-1-30 Bottom at 30 feet					20						
(25,0,75,0) medium dense, saturated. B-1-25 B-1-25 9 21 50 for 3" 0 Bottom at 30 feet						B-1-20			1		
(25,0,75,0) medium dense, saturated. B-1-25 B-1-25 9 21 50 for 3" 0 Bottom at 30 feet					_						
(25,0,75,0) medium dense, saturated. B-1-25 B-1-25 9 21 50 for 3" 0 Bottom at 30 feet		•			\Box						
(25,0,75,0) medium dense, saturated. B-1-25 B-1-25 9 21 50 for 3" 0 Bottom at 30 feet					Н						
23,0,75,0) medium dense, saturated. 9 21 50 for 3" 0 Bottom at 30 feet		- •	ND (SC)		25	D 1 25		N/A	Δ		
B-1-30 21 50 for 3" 0 Bottom at 30 feet	(25,0,75,0) medium	dense, saturated.				D-1-43			U		
50 for 3" 0 Bottom at 30 feet					\dashv					·	
B-1-30 for 3" 0 Bottom at 30 feet			į								
TANADON COMMITTEE CONTRACTOR OF THE CONTRACTOR O					30	B-1-30		for	0	Bottom at 30 feet	
	ENVIRONMENT	AL SOLUTIONS, INC.		<u> </u>		ā		_] 3	U	Figure No. A-1	

Project Name: CALTRANS-Cal East		D:	ate:	7/21/9	4	В	orir	ıg	Number: MW-1	
Project No: 94-911	Borehole I	Depth:		21.5 Feet			Surface Completion: Chrisy box			
Drilling Co: West Hazmat Drilling	Well Depth: 20'			20'	Su	rfac	e El	evation: 9.42'		
Drilling Equip: Mobile B-61	Water Elev.:			0.42'			Logged By: JED			
Sampler Type: Cal modified split spoon	Casing Elevation: 9.25'				25' Checked By:			d B	у: СММ	
Description		Lithology	Depth (feet)	Sample Number	Casing	Annular Seal	3lows/6 inches	OVM (ppm)	Remarks	
Asphalt and baserock Moderate yellowish brown (10YR 5/4), SANI (0% clay, 0% silt, 100% sand, 0% gravel) fine medium grained, poorly graded, medium dense Grades wet at 10.5 feet.	O (SP)	-	5	MW1-5 <u>↓</u> MW1-10	\		12 20 27 20 38 45	0	Constituent percentages are visual field estimates only. 5% bentonite grout hydrated bentonite pellets blank schedule 40, 4" diameter well casing. FIRST WATER	
Grades to clayey SAND (SC) (25,0,75,0) fine g sand, dense, wet. Mottles with medium dark gray (N4).	grained		20	MW1-15 MW1-20		•	20 35 45 22 40 50	0	— 0.010 slotted schedule 40 4" diameter well screen Lonestar #2/12 sand	
			2.5				for 4"	V	Bottom at 21.5 feet	
ENVIRONMENTAL SOLUTIONS, INC.		3	30							
LEAVE CONTRIGENTAL SOLUTIONS, INC.	7 								Figure No. A-2	

Project Name: CALTRANS-Cal East Date: 7/21/94							Во	Boring Number: MW-3			
Project No:	94-911	Borehole 1					Surface Completion: Christy box				
Drilling Co:	West Hazmat Drilling	Well Dept				Sur	face l	Elevation: 9.81'			
Drilling Equip:	CME 55	Water Ele	v.:	0.47'			Log	ged I	By: JED		
Sampler Type:	Cal modified split spoon	Casing Elevation: 9.41'				Checked By: CMM					
	Description		Lithology	Depth (feet)	Sample Number	Casing	Annular Scal	3lows/6 inches	Remarks		
100% sand, 0% grav dry (fill).	eenish gray (5GY 4/1) with	ded, loose,	0000 0000 0000	5	MW3-5	*		3 4 11 25	Constituent percentages are visual field estimates only. 5% bentonite grout blank schedule 40 2" diameter well casing hydrated bentonite pellets Lonestar #2/12 sand		
fine grained, moist	(N4) clayey SAND (SC) (2 brown (10YR 5/4) SAND			10	MW3-10		:	15 30 45			
	ned, poorly graded, dense,			15	MW3-15	X	2	23 C 28 40			
				20					Bottom at 18 feet		
ENVIRONMENTA	L SOLUTIONS, INC.				·				Figure No. A-4		
1 Iguic No. A-4											

APPENDIX B

CHAIN OF CUSTODY DOCUMENTATION ANALYTICAL DATA SHEETS

Environmental Services (SDB)

April 6, 1994

ChromaLab File#: 9404027

TRC ENV. CONSULTANTS, INC.

Atten: Jed Douglas

Project: CALTRANS-CAL EAST

Received: April 4, 1994

Project#: 15217-012

3 samples for Gasoline analysis.

Matrix: SOIL

Method: EPA 5030/8015

Sampled on: April 4, 1994

Analyzed on:

April 5, 1994

Run#:

2597

LAB # CLIENT SAMPLE ID	GASOLINE (mg/Kg)	REPORTING LIMIT (mg/Kg)	BLANK RESULT (mg/Kg)	BLANK SPIKE RESULT (%)
48080 B-1-15	N.D.	1.0	N.D.	98
48082 B-2-5	N.D.	1.0	N.D.	98
48083 B-2-10	N.D.	1.0	N.D.	98

ChromaLab, Inc.

Chemist

Eric Tam

Environmental Services (SDB)

April 7, 1994

ChromaLab File No.: 9404027

TRC ENV. CONSULTANTS, INC.

Attn: Jed Douglas

RE: Five soil samples for Oil & Grease analysis

Project Name: CALTRANS-CAL EAST

Project Number: 15217-012

Date Sampled: April 4, 1994
Date Analyzed: April 5, 1994

Date Submitted: April 4, 1994

RESULTS:

Sample	Oil & Grease									
<u>I.D.</u>	(mg/Kg)									
B-1-15	N.D.									
B-1-25	N.D.									
B-2-5	N.D.									
B-2-10	N.D.									
B-2-15	N.D.									
BLANK	N.D.									
DETECTION LIMIT	50									
METHOD OF ANALYSIS	STD METHOD 5520 E & F									

ChromaLab, Inc.

Carolyn M. House

Analyst

Eric Tam

Laboratory Director

CC

Environmental Services (SDB)

April 7, 1994

ChromaLab File#: 9404027

TRC ENV. CONSULTANTS, INC.

Atten: Jed Douglas

Project: CALTRANS-CAL EAST

Project#: 15217-012

Received: April 4, 1994

re: 2 samples for Gasoline and BTEX analysis.

Matrix: SOIL

Sampled on: April 4, 1994 Method: EPA 5030/8015/8020

Analyzed on: April 6, 1994

Run#: 2606

Lab # SAMPLE ID	Gasoline (mg/Kg)	Benzene (ug/Kg)	Toluene (ug/Kg)	Ethyl Benzene (ug/Kg)	Total Xylenes (ug/Kg)
48081 B-1-25	N.D.	N.D.	N.D.	N.D.	N.D.
48084 B-2-15	N.D.	N.D.	N.D.	N.D.	N.D.
DETECTION LIMITS BLANK BLANK SPIKE RECOVERY(%)	1.0	5.0	5.0	5.0	5.0
	N.D.	N.D.	N.D.	N.D.	N.D.
	113	92	107 .	108	109

ChromaLab, Inc.

Billy/Thach

Chemist

Eric Tam

Environmental Services (SDB)

April 11, 1994

ChromaLab File#: 9404027

TRC ENV. CONSULTANTS, INC.

Atten: Jed Douglas

Project: CALTRANS-CAL EAST Project#: 15217-012

Received: April 4, 1994

re: One sample for Volatile Organic Compounds analysis.

Sample: B-1-15 Matrix: SOIL

Lab #: 48080-2632 Sampled: April 4, 1994 Analyzed: April 8, 1994

Method: EPA 8240

	RESULT	REPORTING LIMIT	BLANK RESULT	BLANK SPIKE RESULT
ANALYTE	(ug/Kg)	(ug/Kg)	(ug/Kg)	(%)
ACETONE	N.D.	25	N.D.	
BENZENE	130	5	N.D.	
BROMODICHLOROMETHANE	N.D.	5	N.D.	
BROMOFORM	N.D.	5	N.D.	
BROMOMETHANE	N.D.	5	N.D.	
2-BUTANONE	N.D.	5	N.D.	
CARBON TETRACHLORIDE	N.D.	5 .	N.D.	
CHLOROBENZENE CHLOROETHANE	N.D.	5	N.D.	
CHLOROETHANE	N.D. N.D.	5	N.D.	
2-CHLOROETHYLVINYLETHER	N.D.	5	N.D.	- -
CHLOROFORM CHLOROMETHANE	N.D.	5	N.D.	
CHLOROMETHANE	N.D.	5	N.D.	
DIBROMOCHLOROMETHANE	N.D.	5	N.D.	
1,1-DICHLOROETHANE	N.D.	5	N.D.	
1,2-DICHLOROETHANE	N.D.	5	N.D.	
1,1-DICHLOROETHENE	N.D.	5	N.D.	95
1,2-DICHLOROETHENE (CIS)	N.D.	5	N.D.	
1,2-DICHLOROETHENE (TRANS)	N.D.	5	N.D.	
1,2-DICHLOROPROPANE 1,3-DICHLOROPROPENE (CIS)	N.D.	- 5	Ŋ.D.	
1,3-DICHLOROPROPENE (CIS)	N.D.	5	N.D.	
1,3-DICHLOROPROPENE (TRANS) ETHYL BENZENE	N.D.	5	N.D.	- -
2-HEXANONE	N.D.	5	N.D.	
METHYLENE CHLORIDE	N.D.	5	N.D.	
4-METHYL-2-PENTANONE	N.D. N.D.	25	N.D.	
STYRENE	N.D.	5	N.D. N.D.	
1,1,2,2-TETRACHLOROETHANE	N.D.	D ב	N.D.	82
TETRACHI.OPOETUENE	N.D.	5	N.D.	93
TOLIENE	N.D.	5	N.D.	93
1.1.1-TRICHLOROFTHANE	N.D.) E	N.D.	
1,1,2-TRICHLOROETHANE	N.D.	7.	N.D.	
TRICHLOROETHENE	N.D.	Ę	N.D.	85
TRICHLOROFLUOROMETHANE	N.D.	Ĕ	N.D.	
1,1,2,2-TETRACHLOROETHANE TETRACHLOROETHENE TOLUENE 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TRICHLOROETHENE TRICHLOROFLUOROMETHANE VINYL ACETATE	N.D.	<u>, </u>	N.D.	
VINYL CHLORIDE	N.D.	5	N.D.	
XYLENES (TOTAL)	N.D.	តែមានមានមានមានមានមានមានមានមានមានមានមានមានម	N.D.	

ChromaLab, Inc.

mulled Alte hul

Analyst

aco -

Eric Tam, Lab Director

Environmental Services (SDB)

April 11, 1994

ChromaLab File#: 9404027

TRC ENV. CONSULTANTS, INC.

Atten: Jed Douglas

Project: CALTRANS-CAL EAST

Project#: 15217-012

Received: April 4, 1994

re: One sample for Volatile Organic Compounds analysis.

Sample: B-2-5

Matrix: SOIL

Lab #: 48082-2632 Sampled: April 4, 1994

Analyzed: April 8, 1994

Method: EPA 8240

	• .	REPORTING	BLANK	BLANK SPIKE
	RESULT	LIMIT	RESULT	RESULT
ANALYTE	(uq/Kg)	(ug/Kg)	(ug/Kg)	(왕)
ACETONE	N.D.	25	N.D.	
BENZENE	N.D.	5	N.D.	
BROMODICHLOROMETHANE	N.D.	5	N.D.	
BROMOFORM	N.D.	- 5	N.D.	
BROMOMETHANE	N.D.	5	N.D.	
2-BUTANONE	N.D.	5	N.D.	
CARBON TETRACHLORIDE	N.D.	5	N.D.	
CHLOROBENZENE CHLOROETHANE	N.D.	5	N.D.	
	N.D.	5	N.D.	
2-CHLOROETHYLVINYLETHER	N.D.	5	N.D.	
CHLOROFORM	N.D.	5	N.D.	
CHLOROMETHANE	N.D.	5	M.D.	
DIBROMOCHLOROMETHANE	N.D.	5	${f N}$. ${f D}$.	
1,1-DICHLOROETHANE	N.D.	5	${f N}$. ${f D}$.	
1,2-DICHLOROETHANE	N.D.	5	N.D.	- -
1,1-DICHLOROETHENE	N.D.	5	N.D.	95
1,2-DICHLOROETHENE (CIS)	N.D.	5	N.D.	
1,2-DICHLOROETHENE (TRANS)		5	N.D.	
1,2-DICHLOROPROPANE 1,3-DICHLOROPROPENE (CIS)	N.D.	5	N.D.	 '
1,3-DICHLOROPROPENE (CIS)	N.D.	5	Ŋ.D.	
ETHYL BENZENE	N.D.	5	Ŋ.p.	
2-HEXANONE	N.D. N.D.	5	N.D.	
METHYLENE CHLORIDE	N.D. N.D.	5	N.D.	
4-METHYL-2-PENTANONE	N.D. N.D.	∠ 5	N.D.	
STYRENE	N.D.	5	N.D. N.D.	
1,1,2,2-TETRACHLOROETHANE	N.D.	פ	N.D.	82
TETRACHLOROETHENE	N.D.	5	N.D.	93
TOLUENE	N.D.	5	N.D.	23
1,1,1-TRICHLOROETHANE	N.D.	5	N.D.	
1,1,2-TRICHLOROETHANE	N.D.	7	N.D.	
TRICHLOROETHENE	N.D.	Ę	N.D.	85
TRICHLOROFLUOROMETHANE	N.D.	5	N.D.	·
VINYL ACETATE	N.D.	Š	N.D.	
VINYL CHLORIDE	N.D.	5	N.D.	
XYLENES (TOTAL)	N.D.	សភភភភភភភភភភភភភភភភភភភភភភភភភភភភភភភភភភភភភភ	N.D.	
, :- ;		~	** ** *	•

ChromaLab, Inc.

miliail mitchell

Analyst

The last of the la

Eric Tam, Lab Director

Environmental Services (SDB)

April 11, 1994

ChromaLab File#: 9404027

15217-012

TRC ENV. CONSULTANTS, INC.

Atten: Jed Douglas

Project: CALTRANS-CAL EAST

Project#:

Received: April 4, 1994

re: One sample for Volatile Organic Compounds analysis.

Sample: **B-2-10** Matrix: SOIL

Lab #: 48083-2632 Sampled: April 4, 1994 Analyzed: April 8, 1994

Method: EPA 8240

		REPORTING	BLANK	BLANK SPIKE
	RESULT	LIMIT	RESULT	RESULT
ANALYTE	(ug/Kg)	(ug/Kg)	(ug/Kg)	(%)
ACETONE	N.D.	25	N.D.	
BENZENE	N.D.	5	N.D.	
BROMODICHLOROMETHANE	N.D.	• 5	N.D.	
BROMOFORM	N.D.	5	N.D.	
BROMOMETHANE	N.D.	5	N.D.	
2-BUTANONE	N.D. N.D.	5	N.D.	
CARBON TETRACHLORIDE	N.D.	5	N.D.	
CHLOROBENZENE	N.D.	5	N.D.	- , -
CHLOROETHANE	N.D.	5	N.D.	
2-CHLOROETHYLVINYLETHER	N.D.	5	N.D.	
CHLOROFORM	N.D.	. 5	N.D.	
CHLOROMETHANE	N.D.	5	N.D.	
DIBROMOCHLOROMETHANE	N.D.	5	N.D.	
1,1-DICHLOROETHANE	N.D.	5	N.D.	
1,2-DICHLOROETHANE	N.D.	5	N.D.	
1,1-DICHLOROETHENE	N.D.	5	N.D.	95
1,2-DICHLOROETHENE (CIS)	N.D.	5	N.D.	
1,2-DICHLOROETHENE (TRANS)	N.D.	5	N.D.	
1,2-DICHLOROPROPANE	N.D.	5	N.D.	
1,3-DICHLOROPROPENE (CIS)	N.D.	5	N.D.	 .
1,3-DICHLOROPROPENE (TRANS)	N.D.	5	N.D.	
ETHYL BENZENE	N.D.	5	N.D.	
2-HEXANONE	N.D. N.D.	5	N.D.	
METHYLENE CHLORIDE	N.D.	25	N.D.	
4-METHYL-2-PENTANONE	N.D.	5	N.D.	- -
STYRENE	N.D.	5	N.D.	 ,
1,1,2,2-TETRACHLOROETHANE	N.D.	5	N.D.	82
TETRACHLOROETHENE	N.D.	5	N.D.	93
TOLUENE	N.D.	5	N.D.	
1,1,1-TRICHLOROETHANE	N.D.	5	N.D.	
1,1,2-TRICHLOROETHANE	N.D.	5	N.D.	
TRICHLOROETHENE	N.D.	5	N.D.	85 ,
TRICHLOROFLUOROMETHANE	N.D.	5	N.D.	
VINYL ACETATE	N.D.	5	N.D.	
VINYL CHLORIDE	N.D.	5555555555555555555555555555555555555	N.D.	
XYLENES (TOTAL)	N.D.	5	N.D.	

ChromaLab, Inc.

muchael mitum Analyst

Eric Tam, Lab Director

Environmental Services (SDB)

April 11, 1994

ChromaLab File#: 9404027

TRC ENV. CONSULTANTS, INC.

Atten: Jed Douglas

Project: CALTRANS-CAL EAST

Project#: 15217-012

Received: April 4, 1994

re: One sample for CAM 17 Metals analysis.

Sample: B-2-10 Matrix: SOIL

Lab #: 48083-2625 Sampled: April 4, 1994 Analyzed: April 8, 1994

Method: EPA 3050/6010/7471

ANALYTE	RESULT (mq/Kq)	REPORTING LIMIT (mg/Kg)	BLANK RESULT (mg/Kg)	BLANK SPIKE RESULT (%)
ANTIMONY	N.D.	1.0	N.D.	112
ARSENIC	N.D.	0.25	N.D.	99
BARIUM	55	0.25	N.D.	116
BERYLLIUM	N.D.	0.05	N.D.	111
CADMIUM	0.60	0.05	N.D.	119
CHROMIUM	30	0.5	N.D.	118
COBALT	6.2	0.5	N.D.	113
COPPER	7.9	0.25	N.D.	110
LEAD	1.2	0.5	N.D.	100
MOLYBDENUM	1.6	0.25	N.D.	
NICKEL	37	0.5	N.D.	115
SELENIUM	N.D.	0.5	N.D.	115
SILVER	0.95	0.25	N.D.	104
THALLIUM	N.D.	2.0	N.D.	114
VANADIUM	27	0.5	N.D.	
ZINC	21	0.25	N.D.	107
MERCURY	$\overline{\mathtt{N}}.\mathtt{D}.$	0.05	N.D.	82

ChromaLab, Inc.

Charles Woolley

Chemist

Refaat Mankarious

Inorganics Supervisor

Environmental Laboratory (1094)

5 DAYS TURNAROUND

April 11, 1994

ChromaLab File No.: 9404027

TRC ENV. CONSULTANTS, INC.

Attn: Jed Douglas

Project Name: CALTRANS-CAL EAST

Project Number: 15217-012

Date Sampled: April 4, 1994 Date Submitted: April 4, 1994

Date Analyzed: April 11, 1994

RESULTS:

Sample I.D. Reactivity <u>Corrosivity</u> <u>Iqnitability</u> B - 2 - 10No pH 7.7 No BLANK No pH 7.0 No METHOD OF CA Title CA Title CA Title ANALYSIS SEC.66261.23(1-4) SEC.66261.22 SEC.66261.21

ChromaLab, Inc.

Carolyn M. House

Analyst

Eric Tam

Laboratory Director

CC

Environmental Services (SDB)

April 15, 1994

ChromaLab File#: 9404027

TRC ENV. CONSULTANTS, INC.

Atten: Jed Douglas

Project: CALTRANS-CAL EAST

Received: April 4, 1994

re: 4 samples for Lead analysis.

Matrix: SOIL

Sampled on: April 4, 1994 Method: EPA 3050/6010

Extracted: April 8, 1994

Analyzed on: April 9, 1994

Run#:

2625

Project#: 15217-012

LAB # CLIENT SAM	PLE ID	LEAD (mg/Kg)	REPORTING LIMIT (mg/Kg)	BLANK RESULT (mg/Kg)	BLANK SPIKE RESULT (%)
48080 B-1-15		4.3	2.50	N.D.	100
48081 B-1-25		6.3	2.50	N.D.	100
48082 B-2-5		5.8	0.50	N.D.	100
48084 B-2-15		13	0.50	N.D.	100

ChromaLab, Inc.

Chemist

Redal Many

Refaat Mankarious

Inorganics Supervisor

#: 9404027

CHAIN OF CLIENT: TRC

04/11/94

order 15823

PROJECT NO.	PROJE	ECT NAM	IE		0 . 0 -	REF	: 1:		· ***	<i>)</i> ~ 1									
15217-012	Ca	MA	ياس	ς –	Cal East					,	,	, .							
SAMPLERS TSignatu		7			(Printed) Jed Doug	/as	· ·-·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				0		Colo X	/k	y/ ,		REMARKS	
FIELD SAMPLE NUMBER	DATE	TIME	COMP.	GRAB	STATION LOCATION		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		8/1)%)%	5)/ 2/(,	y) Q	7			TIEMATING	
B-1-15	4/4	0900		X	B-1		1	X	X	X			X			<u>.</u> 27	and	lard T	41
B-1-25	11	0910		X	11		1	X		X	X		X	÷					
B-2-5 B-2-10 B-2-15	11	1015		X	Ma-2		1	X	X	X			X						
B-2-10	t(1020		X	/(1	X	X	X		X		X					
B-2-15	и	1025		<u>/</u> ×	١,			X		X	X		\times						
				<u> </u>															
																			-
					·														
Relinquished by: (Sig	nature b	41		: / Tir //S			Reli	nquis	hed b	γ: (Si	gnature	J		Dat	le / Ti	me	Receive	ed by: (Signature	,
(Printed)					(Printed)		(Prir	nted)									(Printed))	
Relinquished by: (Sig	nature)		Dati	e / Tir	Received for Laboratory by (Signature)	<i>,</i> :		Date	/ Tim)e	Remai	ks							
(Printed)	L				(Printed)				ł	\exists									
<u> </u>	· · · · · · · · · · · · · · · · · · ·											mo	ltr.	رين	, (sei			

Environmental Services (SDB)

RECEIVED

July 27, 1994

AUG - 6 1994

Submission #: 9407249

ENV. SOLUTIONS - PETALUMA

Atten: JED DOUGLAS

Project: CALTRANS-CAL EAST

Project#: 94-911

Received: July 22, 1994

re: 7 samples for Gasoline analysis.

Matrix: SOIL

Sampled: July 21, 1994

Lab Run#: 3504 Analyzed: July 25, 1994

Method: EPA 5030/8015M

Spl # CLIENT SMPL ID	GASOLINE (mg/Kg)	REPORTING LIMIT (mg/Kg)	BLANK RESULT (mg/Kg)	BLANK SPIKE RESULT (%)
58511 MW3-5	1.5	1.0	$\overline{\mathrm{N.D.}}$	112
<i>58512</i> MW3-10	N.D.	1.0	N.D.	112
<i>58513</i> MW1-5	N.D.	1.0	N.D.	112
<i>58514</i> MW3-16.5	N.D.	$\frac{1}{1}$.0	N.D.	112
58515 MW1-10	N.D.	1.0	N.D.	112
<i>58516</i> MW1-15	N.D.	1.0	N.D.	$\bar{1}\bar{1}\bar{2}$
58517 MW1-20	N.D.	1.0	N.D.	112

ChromaLab, Inc.

Jack Kelly Chemist

Ali Kharrazi Organic Manager

Environmental Services (SDB)

July 29, 1994

Submission #: 9407249

July 28, 1994

ENV. SOLUTIONS - PETALUMA

Atten: JED DOUGLAS

Project: CALTRANS-CAL EAST

Project#: 94-911

Analyzed:

Received: July 22, 1994

SOIL

re: 7 samples for Oil & Grease analysis

Matrix:

Sampled: July 21, 1994
Method: STD Method 5520 E & F

Oil & Grease Client (mg/Kg) Sample # Sample I.D. MW3-5 71 58511 N.D. 58512 MW3-10 N.D. 58513 MW3-16.5 N.D. 58514 MW1-5 N.D. 58515 MW1-10 N.D. MW1-15 58516 N.D. MW1-20 58517 N.D. Blank 86% Spike Recovery 83% Dup Spike Recovery Reporting Limit 50

ChromaLab, Inc.

Carolyh M. House

Analyst

Ali Kharrazi

Organic Manager

gg

Environmental Services (SDB)

July 31, 1994

Submission #: 9407249

ENV. SOLUTIONS - PETALUMA

Atten: JED DOUGLAS

Project: CALTRANS-CAL EAST Received: July 22, 1994

Project#: 94-911

re: One sample for Volatile Organic Compounds analysis.

Sample ID:MW3-10

Matrix: SOIL

Sampled: July 21, 1994

Spl #:58512 Run: 3572 Analyzed: July 28, 1994

Method: EPA 8240/8260

		REPORTING	BLANK	BLANK SPIKE
	RESULT	LIMIT	RESULT	RESULT
ANALYTE	(ug/Kg)	(ug/Kg)	(ug/Kg)	
ACETONE	N.D.	25	N.D.	
BENZENE	N.D.	5.0	N.D.	115
BROMODICHLOROMETHANE	N.D.	5.0	N.D.	
BROMOFORM	N D	5.0	N.D.	
BROMOMETHANE	N.D. N.D. N.D. N.D. N.D.	5.0 5.0	N.D.	
2-BUTANONE	N.D.	5.0	N.D.	~
CARBON TETRACHLORIDE	N.D.	5.0	N.D.	
CHLOROBENZENE	N.D.	5.0	N.D.	121
CHLOROETHANE	N.D.	5.0	N.D.	
2-CHLOROETHYLVINYLETHER	N.D.	5.0	N.D.	
CHLOROFORM	N.D.	5.0	N.D.	
CHLOROFORM CHLOROMETHANE	N.D.	5.0	N.D.	
DIBROMOCHLOROMETHANE	N.D.	5.0	N.D.	
1,1-DICHLOROETHANE	N.D.	5.0	N.D.	
1,2-DICHLOROETHANE	N.D.	5.0	N.D.	
1,1-DICHLOROETHENE	N.D. N.D.	5.0	N.D.	158
1,2-DICHLOROETHENE (CIS)	N.D.	5.0	N.D.	
1,2-DICHLOROETHENE (TRANS)	N.D.	5.0	N.D.	· ,
1,2-DICHLOROPROPANE	N.D.	5.0	N.D.	
1,3-DICHLOROPROPENE (CIS)	N.D.	5.0	N.D.	
1,3-DICHLOROPROPENE (TRANS)	N.D.	5.0	N.D.	
ETHYL BENZENE	N.D.	5.0	N.D.	
2-HEXANONE	N.D. N.D.	5.0	N.D.	
METHYLENE CHLORIDE	N.D.	25	N.D.	
4-METHYL-2-PENTANONE	N.D.	5.0	N.D.	
STYRENE	N.D. N.D.	5.0	N.D.	
1,1,2,2-TETRACHLOROETHANE	N.D.	5.0	N.D.	. ~ ~
TETRACHLOROETHENE	N.D.	5.0	N.D.	- -
TOLUENE	N.D.	5.0	N.D.	114
1,1,1-TRICHLOROETHANE	N.D.	5.0	Ŋ.D.	
1,1,2-TRICHLOROETHANE	N.D.	5.0	N.D.	
TRICHLOROETHENE	Ŋ.D.	5.0	Ŋ.D.	110
TRICHLOROFLUOROMETHANE	Ŋ.D.	5.0	N.D.	
VINYL ACETATE VINYL CHLORIDE	N.D.	5.0	N.D.	
	N.D.	5.0	N.D.	
XYLENES (TOTAL)	N.D.	5.0	N.D.	 .

ChromaLab, Inc.

Aaron McMichael

Chemist

Ali Kharrazi Organic Manager

Ali KhaN

OCAPP AARON 17:31:24

Environmental Services (SDB)

July 31, 1994

Submission #: 9407249

ENV. SOLUTIONS - PETALUMA

Atten: JED DOUGLAS

Project: CALTRANS-CAL EAST

Received: July 22, 1994

re: One sample for Volatile Organic Compounds analysis.

Sample ID:MW1-5

Matrix: SOIL

Sampled: July 21, 1994

Spl #:58513 Run: 3572 Analyzed: July 28, 1994

Project#: 94-911

Method: EPA 8240/8260

		REPORTING	BLANK	BLANK SPIKE
	RESULT	LIMIT	RESULT	RESULT
<u>ANALYTE</u>	(ug/Kg)	(ug/Kg)	(ug/Kg)	(%)
ACETONE	N.D.	25	Ñ.D.	
BENZENE	N.D.	5.0	N.D.	115
BROMODICHLOROMETHANE	N.D.	5.0	N.D.	
BROMOFORM	N.D.	5.0	N.D.	
BROMOMETHANE	N.D.	5.0	N.D.	
2-BUTANONE	N.D. N.D.	5.0	N.D.	
CARBON TETRACHLORIDE	N.D.	5.0	N.D.	
CHLOROBENZENE CHLOROETHANE	N.D.	5.0	N.D.	121
CHLOROETHANE	N.D.	5.0	N.D.	
2-CHLOROETHYLVINYLETHER	N.D.	5.0	N.D.	
CHLOROFORM CHLOROMETHANE	N.D.	5.0	N.D.	
DIBROMOCHLOROMETHANE	N.D.	5.0	N.D.	
1,1-DICHLOROETHANE	N.D. N.D. N.D.	5.0	N.D.	
1,1-DICHLOROETHANE 1,2-DICHLOROETHANE	N.D.	5.0	N.D.	
1,1-DICHLOROETHENE	й.D.	5.0	N.D.	
	N.D.	5.0	N.D.	158
1,2-DICHLOROETHENE (CIS) 1,2-DICHLOROETHENE (TRANS)	N.D.	5.0	N.D.	
1,2-DICHLOROPROPANE	N.D.	5.0	N.D.	
1,3-DICHLOROPROPENE (CIS)	N.D.	5.0	Ŋ.D.	
1,3-DICHLOROPROPENE (CIS)	N.D.	5.0	N.D.	
ETHYL BENZENE	N.D. N.D.	5.0 5.0	N.D.	
2-HEXANONE	N.D.	5.0	N.D. N.D.	
METHYLENE CHLORIDE	N.D.	25	N.D.	
4-METHYL-2-PENTANONE	N.D.	5.0	N.D.	
STYRENE	N.D.	5.0	N.D.	
1,1,2,2-TETRACHLOROETHANE	N.D.	5.0	N.D.	
TETRACHLOROETHENE	N.D.	5.0	N.D.	· ·
TOLUENE	N.D.	5.0	N.D.	114
1,1,1-TRICHLOROETHANE	N.D.	5.0	N.D.	
1,1,2-TRICHLOROETHANE	N.D.	5 0	N.D.	
TRICHLOROETHENE	N.D.	5.0 5.0	N.D.	110
TRICHLOROFLUOROMETHANE	N.D.	5.0	N.D.	
VINYL ACETATE	N.D.	5.0	N.D.	
VINYL CHLORIDE	N.D.	5.0	N.D.	. - -
XYLENES (TOTAL)	N.D.	5.0	N.D.	

ChromaLab, Inc.

Aaron McMichael

Chemist

Ali Kharrazi Organic Manager

CAPP AARON 17:31:24

Environmental Services (SDB)

July 31, 1994

Submission #: 9407249

ENV. SOLUTIONS - PETALUMA

Atten: JED DOUGLAS

Project: CALTRANS-CAL EAST

Received: July 22, 1994

Project#: 94-911

re: One sample for Volatile Organic Compounds analysis.

Sample ID:MW3-16.5

Matrix: SOIL

Sampled: July 21, 1994

Spl #:58514 Run: 3572 Analyzed: July 28, 1994

Method: EPA 8240/8260

		REPORTING	BLANK	BLANK SPIKE
	RESULT	LIMIT	RESULT	RESULT
ANALYTE	(ug/Kg)	(ug/Kg)	(ug/Kg)	(%)
ACETONE	N.D.	25	N.D.	
BENZENE	N.D.	5.0	N.D.	115
BROMODICHLOROMETHANE	N.D.	5.0	N.D.	
BROMOFORM	N.D.	5.0 5.0 5.0 5.0	N.D.	
BROMOMETHANE	N.D. N.D. N.D.	5.0	N.D.	
2-BUTANONE	N.D.	5.0	N.D.	
CARBON TETRACHLORIDE	N.D.	5.0	N.D.	
CHLOROBENZENE CHLOROETHANE	N.D.	5.0	N.D.	121
CHLOROETHANE	N.D.	5.0	N.D.	
2-CHLOROETHYLVINYLETHER	N.D.	5.0	N.D.	
CHLOROFORM	N.D.	5.0	N.D.	
CHLOROMETHANE	N.D.	5.0	N.D.	
DIBROMOCHLOROMETHANE	N.D. N.D.	5.0	N.D.	
1,1-DICHLOROETHANE	N.D.	5.0 5.0 5.0	N.D.	
1,2-DICHLOROETHANE 1,1-DICHLOROETHENE	N.D. N.D.	5.0	N.D.	
1,1-DICHLOROETHENE	й.Б.	5.0	N.D.	158
1,2-DICHLOROETHENE (CIS) 1,2-DICHLOROETHENE (TRANS)	N.D.	5.0	Ŋ.D.	
1,2-DICHLOROPROPANE	N.D.	5.0	N.D.	
1,3-DICHLOROPROPENE (CIS)	N.D.	5.0	N.D.	
1,3 DICHLOROPROPENE (CIS) 1,3-DICHLOROPROPENE (TRANS)	N.D.	5.0	N.D.	
ETHYL BENZENE	N.D.	5.0	N.D.	
2-HEXANONE	N.D. N.D.	5.0 5.0	N.D. N.D.	
METHYLENE CHLORIDE	N.D.	25	N.D.	- -
4-METHYL-2-PENTANONE	N.D.	5.0	N.D.	
STYRENE	N.D.	5.0	N.D.	
1,1,2,2-TETRACHLOROETHANE	N.D.	5.0	N.D.	
TETRACHLOROETHENE	N.D.	5.0	N.D.	
TOLUENE	N.D.	5.0	N.D.	114
1,1,1-TRICHLOROETHANE	N.D.	5.0	N.D.	 TT4
1,1,2-TRICHLOROETHANE	N.D.	5.0	N.D.	
TRICHLOROETHENE	N.D.	5.0	N.D.	110
TRICHLOROFLUOROMETHANE	N.D.	5.0	N.D.	
VINYL ACETATE	N.D.	5.0	N.D.	
VINYL CHLORIDE	N.D.	5.0	N.D.	- -
XYLENES (TOTAL)	N.D.	5.0	N.D.	

ChromaLab, Inc.

Maron McMichael

Chemist

Ali Kharrazi Organic Manager

QCAPP AARON 17:31:24

Environmental Services (SDB)

July 31, 1994

Submission #: 9407249

ENV. SOLUTIONS - PETALUMA

Atten: JED DOUGLAS

Project: CALTRANS-CAL EAST

G-CAL EAST Project#: 94-911

Received: July 22, 1994

re: One sample for Volatile Organic Compounds analysis.

Sample ID:MW1-10 Matrix: SOIL

Sampled: July 21, 1994 Spl #:58515 Run: 3572 Analyzed: July 28, 1994

Method: EPA 8240/8260

		REPORTING	BLANK	BLANK SPIKE
	RESULT	LIMIT	RESULT	RESULT
ANALYTE	(ug/Kg)	(ug/Kg)	(ug/Kg)	(%)
ACETONE	N.D.	25	N.D.	
BENZENE	N.D.	5.0	N.D.	115
BROMODICHLOROMETHANE	N.D.	5.0	N.D.	
BROMOFORM	N.D.	5.0	N.D.	
BROMOMETHANE	N.D.	5.0	N.D.	
2-BUTANONE	N.D.	5.0	N.D.	
CARBON TETRACHLORIDE	N.D.	5.0	N.D.	
CHLOROBENZENE	N.D.	5.0	N.D.	121
CHLOROETHANE	N.D.	5.0	N.D.	
2-CHLOROETHYLVINYLETHER	N.D.	5.0	N.D.	
CHLOROFORM	N.D.	5.0	N.D.	'
CHLOROMETHANE	N.D.	5.0 5.0	N.D.	
DIBROMOCHLOROMETHANE	N.D.	5.0	N.D.	
1,1-DICHLOROETHANE	N.D.	5.0	N.D.	
1,2-DICHLOROETHANE	N.D.	5.0	N.D.	
1,1-DICHLOROETHENE	N.D.	5.0	N.D.	158
1,2-DICHLOROETHENE (CIS)	N.D.	5.0	N.D.	
1,2-DICHLOROETHENE (TRANS)	N.D.	5.0	N.D.	
1,2-DICHLOROPROPANE	N.D.	5.0	N.D.	
1,3-DICHLOROPROPENE (CIS)	N.D.	5.0	N.D.	
1,3-DICHLOROPROPENE (TRANS)	N.D.	5.0 5.0	N.D.	
ETHYL BENZENE	N.D.	5.0	N.D.	
2-HEXANONE	N.D.	5.0	N.D.	
METHYLENE CHLORIDE	N.D.	25	N.D.	
4-METHYL-2-PENTANONE	N.D.	5.0	N.D.	
STYRENE	N.D.	5.0 5.0 5.0 5.0	N.D.	
1,1,2,2-TETRACHLOROETHANE	N.D.	5.0	N.D.	
TETRACHLOROETHENE	N.D.	5.0	N.D.	
TOLUENE	N.D.	5.0 5.0 5.0 5.0	N.D.	114
1,1,1-TRICHLOROETHANE	N.D.	5.0	N.D.	·
1,1,2-TRICHLOROETHANE	N.D.	5.0	Ŋ.D.	
TRICHLOROETHENE	N.D.	5.0	Ŋ.D.	110
TRICHLOROFLUOROMETHANE	N.D.	5.0 5.0	Ŋ.D.	- -
VINYL ACETATE	N.D.	5.0	Ŋ.D.	· .
VINYL CHLORIDE	N.D.	5.0	Ŋ.D.	
XYLENES (TOTAL)	N.D.	5.0	N.D.	

ChromaLab, Inc.

Aaron McMichael

Chemist

Ali Kharrazi Organic Manager

QCAPP AARON 17:31:24

Environmental Services (SDB)

July 31, 1994

Submission #: 9407249

94-911

ENV. SOLUTIONS - PETALUMA

Atten: JED DOUGLAS

Project: CALTRANS-CAL EAST

Received: July 22, 1994

re: One sample for Volatile Organic Compounds analysis.

Sample ID:MW1-15

Matrix: SOIL

Sampled: July 21, 1994

Spl #:58516 Run: 3591 Analyzed: July 29, 1994

Project#:

Method: EPA 8240/8260

•	·	REPORTING	BLANK	BLANK SPIKE
·	RESULT	LIMIT	RESULT	RESULT
ANALYTE	(ug/Kg)	(ug/Kg)	(ug/Kg)	(%)
ACETONE	N.D.	25	N.D.	
BENZENE	N.D.	5.0	N.D.	116
BROMODICHLOROMETHANE	N.D.	5.0	N.D.	, - -
BROMOFORM	N.D.	5.0	N.D.	
BROMOMETHANE	N.D.	5.0	N.D.	
2-BUTANONE	N.D.	5.0	N.D.	
CARBON TETRACHLORIDE	N.D.	5.0	N.D.	
CHLOROBENZENE	N.D.	5.0	N.D.	121
CHLOROETHANE	N.D.	5 በ	N.D.	
2-CHLOROETHYLVINYLETHER	N.D.	5.0	N.D.	·
CHLOROFORM	N.D.	5.0	N.D.	
	N.D.	5.0 5.0 5.0 5.0	N.D.	
DIBROMOCHLOROMETHANE	N.D.	5.0	N.D.	
1,1-DICHLOROETHANE	N.D.	5.0	N.D.	
1,2-DICHLOROETHANE	N.D.	5.0	N.D.	
1,1-DICHLOROETHENE	N.D.	5.0	N.D.	146
1,1-DICHLOROETHENE 1,2-DICHLOROETHENE (CIS)	N.D	5.0 5.0	N.D.	
1,2-DICHLOROETHENE (TRANS)	N.D.	5.0	N.D.	 '
1,2-DICHLOROPROPANE	N.D.	5.0	N.D.	
1,2-DICHLOROPROPANE 1,3-DICHLOROPROPENE (CIS)	N.D.	5.0	N.D.	
1,3-DICHLOROPROPENE (TRANS)	N.D.	5.0 5.0 5.0	N.D.	
ETHYL BENZENE	N.D.	5.0	N.D.	
2-HEXANONE	N.D.	5.0	N.D.	
METHYLENE CHLORIDE	N.D.	2 5	N.D.	
4-METHYL-2-PENTANONE	N.D.	5.0	N.D.	
STYRENE	N.D.	0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	N.D.	- -
1,1,2,2-TETRACHLOROETHANE	N.D. N.D.	5.0	N.D.	
TETRACHLOROETHENE	N.D.	5.0	N.D.	
TOLUENE	N.D.	5.0	N.D.	113
1,1,1-TRICHLOROETHANE	N.D.	5.0	N.D.	- -
1,1,2-TRICHLOROETHANE	N.D.	5.0	N.D.	
TRICHLOROETHENE	N.D.	5.0	N.D.	110
TRICHLOROFLUOROMETHANE	N.D.	5.0 5.0	N.D.	
VINYL ACETATE	N.D.	5.0	N.D.	
VINYL_CHLORIDE	N.D.	5.0	N.D.	
XYLENES (TOTAL)	N.D.	5.0	N.D.	

ChromaLab, Inc.

Aaron McMichael

Chemist

Ali Kharrazi Organic Manager

OCAPP AARON 17:31:24

Environmental Services (SDB)

July 31, 1994

Submission #: 9407249

ENV. SOLUTIONS - PETALUMA

Atten: JED DOUGLAS

Project: CALTRANS-CAL EAST

Received: July 22, 1994

re: One sample for Volatile Organic Compounds analysis.

Sample ID:MW1-20

Matrix: SOIL

Sampled: July 21, 1994

Spl #:58517 Run: 3591 Analyzed: July 29, 1994

Project#:

Method: EPA 8240/8260

,		REPORTING	BLANK	BLANK SPIKE
	RESULT	LIMIT	RESULT	RESULT
ANALYTE	(ug/Kg)	(uq/Kg)	(ug/Kg)	(%)
ACETONE	N.D.	25	N.D.	
BENZENE	N.D.	5.0	N.D.	116
BROMODICHLOROMETHANE	N.D.	5.0	N.D.	
BROMOFORM	N.D.	5.0	N.D.	
BROMOMETHANE	N.D.	5.0	N.D.	
2-BUTANONE	N.D. N.D.	5.0	N.D.	
CARBON TETRACHLORIDE	N.D.	5.0	N.D.	
CHLOROBENZENE	N.D.	5.0	N.D.	121
CHLOROETHANE	N.D.	5.0 5.0 5.0 5.0	N.D.	
2-CHLOROETHYLVINYLETHER	N.D.	5.0	N.D.	
CHLOROFORM	N.D.	5.0	N.D.	
CHLOROMETHANE	N.D.	5.0	N.D.	
DIBROMOCHLOROMETHANE	N.D.	5.0	N.D.	
1,1-DICHLOROETHANE	N.D.	5.0 5.0 5.0 5.0 5.0 5.0 5.0	N.D.	
1,2-DICHLOROETHANE	N.D.	5.0	N.D.	
1,1-DICHLOROETHENE 1,2-DICHLOROETHENE (CIS)	Ŋ.D.	5.0	N.D.	146
1,2-DICHLOROETHENE (CIS) 1,2-DICHLOROETHENE (TRANS)	N.D.	5.0	N.D.	- -
1,2-DICHLOROPROPANE	N.D.	5.0	N.D.	- -
1,3-DICHLOROPROPENE (CIS)	N.D.	5.0	N.D.	
1,3-DICHLOROPROPENE (CIS)	N.D.	5.0	N.D.	-
ETHYL BENZENE	N.D.	5.0	N.D.	
2-HEXANONE	N.D. N.D. N.D.	5.0 5.0	N.D. N.D.	. - -
METHYLENE CHLORIDE	N D	25	N.D.	
4-METHYL-2-PENTANONE	N.D.	5.0	N.D.	
STYRENE	N.D.	5.0	N.D.	
1,1,2,2-TETRACHLOROETHANE	N.D.	5.0	N.D.	
TETRACHLOROETHENE	N.D.	5.0	N.D.	
TOLUENE	N.D.	5.0	N.D.	113
1,1,1-TRICHLOROETHANE	N.D.	5.0	N.D.	7.7
1,1,2-TRICHLOROETHANE	N.D. N.D.	5.0	N.D.	
TRICHLOROETHENE	N.D.	5.0	N.D.	110
TRICHLOROFLUOROMETHANE	N.D.	5.0	N.D.	
VINYL ACETATE	N.D.	5.0	N.D.	
VINYL CHLORIDE	N.D.	5.0	N.D.	
XYLENES (TOTAL)	N.D.	5.0	N.D.	·

ChromaLab, Inc.

Aaron McMichael

Chemist

Ali Kharrazi Organic Manager

OCAPP AARON 17:31:24

Environmental Services (SDB)

July 31, 1994

Submission #: 9407249

ENV. SOLUTIONS - PETALUMA

Atten: JED DOUGLAS

Project: CALTRANS-CAL EAST

Received: July 22, 1994

re: One sample for Volatile Organic Compounds analysis.

Sample ID:MW3-5

Matrix: SOIL

Sampled: July 21, 1994

Spl #:58511 Run: 3596 Analyzed: July 31, 1994

Project#: 94-911

Method: EPA 8240/8260

		REPORTING	BLANK	BLANK SPIKE
	RESULT	LIMIT	RESULT	RESULT
ANALYTE	(ug/Kg)	(ug/Kg)	(ug/Kg)	(%)
ACETONE	60	25	N.D.	
BENZENE	25	5.0	N.D.	114
BROMODICHLOROMETHANE	NT TO	5.0	N.D.	
BROMOFORM	N.D. N.D. N.D. N.D. N.D.	5.0	N.D.	
BROMOMETHANE	N.D.	5.0	N.D.	- -
2-BUTANONE	N.D.	5.0	N.D.	
CARBON TETRACHLORIDE	N.D.	5.0	N.D.	
CHLOROBENZENE	N.D.	5.0 5.0	N.D.	121
CHLOROETHANE	N.D.	5.0	N.D.	·
2-CHLOROETHYLVINYLETHER	N.D.	5.0	N.D.	
CHLOROFORM	N.D.	5.0	N.D.	
CHLOROMETHANE	N.D. N.D.	5.0	N.D.	
DIBROMOCHLOROMETHANE	N.D.	5.0	N.D.	
1,1-DICHLOROETHANE	N.D.	5.0	N.D.	
1,2-DICHLOROETHANE	N.D.	5.0	N.D.	
1,1-DICHLOROETHENE	N.D.	5.0	N.D.	145
1,2-DICHLOROETHENE (CIS)	N.D.	5.0	N.D.	
1,2-DICHLOROETHENE (TRANS)	N.D.	5.0	N.D.	
1,2-DICHLOROPROPANE	N.D.	5.0	N.D.	
1,3-DICHLOROPROPENE (CIS)	N.D.	5.0	N.D.	
1,3-DICHLOROPROPENE (TRANS)	N.D.	5.0	N.D.	
ETHYL BENZENE	39	5.0	N.D.	
2-HEXANONE	N.D.	5.0	N.D.	
METHYLENE CHLORIDE	N.D.	25	N.D.	
4-METHYL-2-PENTANONE	N.D.	5.0	N.D.	
STYRENE	N.D.	5.0	N.D.	
1,1,2,2-TETRACHLOROETHANE	N.D.	5.0	N.D.	
TETRACHLOROETHENE	N.D.	5.0	N.D.	
TOLUENE	N.D.	5.0	N.D.	112
1,1,1-TRICHLOROETHANE	N.D.	5.0	N.D.	
1,1,2-TRICHLOROETHANE	N.D.	5.0	N.D.	
TRICHLOROETHENE	N.D.	5.0	N.D.	113
TRICHLOROFLUOROMETHANE	N.D.	5.0	N.D.	
VINYL ACETATE	N.D.	5.0	N.D.	
VINYL CHLORIDE	N.D.	5.0	N.D.	
XYLENES (TOTAL)	7.7	5.0	N.D.	

ChromaLab, Inc.

alaron McMichael

Chemist

Ali Kharrazi Organic Manager

QCAPP AARON 17:31:24

Environmental Services (SDB)

August 1, 1994

Submission #: 9407249

ENV. SOLUTIONS - PETALUMA

Atten: JED DOUGLAS

Project: CALTRANS-CAL EAST

Received: July 22, 1994

Project#: 94-911

re: One sample for CAM 17 Metals analysis.

Sample ID: MW1-20 Matrix: SOIL Extracted: July 27, 1994 Sampled: July 21, 1994 Spl #:58517 Run: 3543 Analyzed: July 29, 1994

Sampled: July 21, 1994 Method: EPA 3050/6010/7471

		REPORTING	BLANK	BLANK SPIKE
	RESULT	LIMIT	RESULT	RESULT
ANALYTE	(mg/Kg)	(mq/Kq)	(mg/Kg)	(%)
ANTIMONY	1.7	1.0	N.D.	95
ARSENIC	N.D.	0.25	N.D.	90
BARIUM	47	0.25	N.D.	103
BERYLLIUM	N.D.	0.05	N.D.	97
CADMIUM	N.D.	0.05	N.D.	103
CHROMIUM	54	0.5	N.D.	109
COBALT	5.1	0.5	N.D.	96
COPPER	5.7	0.25	N.D.	94
LEAD	3.4	0.5	N.D.	99
MOLYBDENUM	N.D.	0.25	N.D.	~-
NICKEL	32	0.5	N.D.	102
SELENIUM	N.D.	0.5	N.D.	86
SILVER	N.D.	0.25	N.D.	91
THALLIUM	N.D.	2.0	N.D.	91
VANADIUM	21	0.5	N.D.	99
ZINC	26	0.25	N.D.	100
MERCURY	N.D.	0.05	N.D.	98

ChromaLab, Inc.

Doina Danet

Chemist

Anni - Man

Environmental Services (SDB)

August 1, 1994

Submission #: 9407249

ENV. SOLUTIONS - PETALUMA

Atten: JED DOUGLAS

Project: CALTRANS-CAL EAST

Project#: 94-911

Received: July 22, 1994

re: One sample for CAM 17 Metals analysis.

Sample ID: MW1-15 Matrix: SOIL Extracted: July 27, 1994

Sampled: July 21, 1994 Spl #:58516 Run: 3543 Analyzed: July 29, 1994

Method: EPA 3050/6010/7471

	•	REPORTING	BLANK	BLANK SPIKE
-	RESULT	LIMIT	RESULT	RESULT
ANALYTE	(mg/Kg)	(mg/Kg)	(mq/Kq)	(%)
ANTIMONY	N.D.	1.0	N.D.	95
ARSENIC	N.D.	0.25	N.D.	90
BARIUM	55	0.25	N.D.	103
BERYLLIUM	N.D.	0.05	N.D.	97
CADMIUM	N.D.	0.05	N.D.	103
CHROMIUM	58	0.5	N.D.	109
COBALT	6.6	0.5	N.D.	96
COPPER	5.3	0.25	N.D.	94
LEAD	4.0	0.5	N.D.	99
MOLYBDENUM	N.D.	0.25	N.D.	
NICKEL	36	0.5	N.D.	102
SELENIUM	N.D.	0.5	N.D.	86
SILVER	. N.D.	0.25	N.D.	91
THALLIUM	N.D.	2.0	N.D.	91
VANADIUM	21	0.5	N.D.	99
ZINC	26	0.25	N.D.	100
MERCURY	N.D.	0.05	N.D.	98

ChromaLab, Inc.

Doina Danet

Chemist

Eric Tam

Environmental Services (SDB)

August 1, 1994

Submission #: 9407249

ENV. SOLUTIONS - PETALUMA

Atten: JED DOUGLAS

Project: CALTRANS-CAL EAST

Received: July 22, 1994

Project#: 94-911

re: One sample for CAM 17 Metals analysis.

Sample ID:MW1-10 Matrix: SOIL

Extracted: July 27, 1994 Sampled: July 21, 1994 Spl #:58515 Run: 3543 Analyzed: July 29, 1994

Method: EPA 3050/6010/7471

		REPORTING	BLANK	BLANK SPIKE
	RESULT	LIMIT	RESULT	RESULT
ANALYTE	(mq/Kq)	(mq/Kq)	(mg/Kg)	(%)
ANTIMONY	1.4	1.0	Ñ.D.	95
ARSENIC	N.D.	0.25	N.D.	90
BARIUM	58	0.25	N.D.	103
BERYLLIUM	N.D.	0.05	N.D.	97
CADMIUM	N.D.	0.05	N.D.	103
CHROMIUM	54	0.5	N.D.	109
COBALT	5.7	0.5	N.D.	96
COPPER ,	6.9	0.25	N.D.	94
LEAD	5.7	0.5	N.D.	99
MOLYBDENUM	N.D.	0.25	N.D.	
NICKEL	36	0.5	N.D.	102
SELENIUM	N.D.	0.5	N.D.	. 86
SILVER	N.D.	0.25	N.D.	91
THALLIUM	N.D.	2.0	N.D.	91
VANADIUM	26	0.5	N.D.	99
ZINC	26	0.25	N.D.	100
MERCURY	N.D.	0.05	N.D.	98

ChromaLab, Inc.

Doina Danet

Chemist

Eric Tam

Environmental Services (SDB)

August 1, 1994

Submission #: 9407249

ENV. SOLUTIONS - PETALUMA

Atten: JED DOUGLAS

Project: CALTRANS-CAL EAST

Received: July 22, 1994

Project#: 94-911

re: One sample for CAM 17 Metals analysis.

Sample ID:MW3-16.5

Matrix: SOIL Extracted: July 26, 1994

Sampled: July 21, 1994 Spl #:58514 Run: 3543 Analyzed: July 29, 1994

Method: EPA 3050/6010/7471

		REPORTING	BLANK	BLANK SPIKE
	RESULT	LIMIT	RESULT	RESULT
ANALYTE	(mg/Kg)	(mg/Kg)	(mg/Kg)	(%)
ANTIMONY	1.9	1.0	N.D.	95
ARSENIC	N.D.	0.25	N.D.	90
BARIUM	50	0.25	N.D.	103
BERYLLIUM	N.D.	0.05	N.D.	97
CADMIUM	N.D.	0.05	N.D.	103
CHROMIUM	47	0.5	N.D.	109
COBALT	4.6	0.5	N.D.	96
COPPER	4.6	0.25	N.D.	94
LEAD	4.4	0.5	N.D.	99
MOLYBDENUM	N.D.	0.25	N.D.	
NICKEL	29	0.5	N.D.	102
SELENIUM	8.1	0.5	N.D.	86
SILVER	N.D.	0.25	N.D.	91
THALLIUM	N.D.	2.0	N.D.	91
VANADIUM	19	0.5	N.D.	99
ZINC	21	0.25	N.D.	100
MERCURY	N.D.	0.05	N.D.	98

ChromaLab, Inc.

Doina Danet

Chemist

Eric Tam

Environmental Services (SDB)

August 1, 1994

Submission #: 9407249

ENV. SOLUTIONS - PETALUMA

Atten: JED DOUGLAS

Project: CALTRANS-CAL EAST

Received: July 22, 1994

Project#: 94-911

re: One sample for CAM 17 Metals analysis.

Sample ID:MW1-5 Matrix: SOIL Extracted: July 27, 1994

Sampled: July 21, 1994 Spl #:58513 Run: 3543 Analyzed: July 29, 1994

Method: EPA 3050/6010/7471

ANALYTE	RESULT (mg/Kg)	REPORTING LIMIT (mg/Kg)	BLANK RESULT (mq/Kq)	BLANK SPIKE RESULT (%)
ANTIMONY	3.5	1.0	N.D.	95
ARSENIC	N.D.	0.25	N.D.	90
BARIUM	63	0.25	N.D.	103
BERYLLIUM	0.14	0.05	N.D.	97
CADMIUM	N.D.	0.05	N.D.	103
CHROMIUM	74	0.5	N.D.	109
COBALT	5.7	0.5	N.D.	96
COPPER	7.7	0.25	N.D.	94
LEAD	5.9	0.5	N.D.	99
MOLYBDENUM	N.D.	0.25	N.D.	
NICKEL	42	0.5	N.D.	102
SELENIUM	$2\overline{4}$	0.5	N.D.	86
SILVER	N.D.	0.25	N.D.	91
THALLIUM	N.D.	2.0	N.D.	91
VANADIUM	38	0.5	N.D.	99
ZINC	31	0.25	N.D.	100
MERCURY	N.D.	0.05	N.D.	98

ChromaLab, Inc.

Doina Danet

Chemist

Fric Tam

Environmental Services (SDB)

August 1, 1994

Submission #: 9407249

ENV. SOLUTIONS - PETALUMA

Atten: JED DOUGLAS

Project: CALTRANS-CAL EAST

Received: July 22, 1994

Project#: 94-911

re: One sample for CAM 17 Metals analysis.

Sample ID: MW3-10 Matrix: SOIL Extracted: July 27, 1994

Sampled: July 21, 1994 Spl #:58512 Run: 3543 Analyzed: July 29, 1994

Method: EPA 3050/6010/7471

		REPORTING	BLANK	BLANK SPIKE	
	RESULT	LIMIT	RESULT	RESULT	
ANALYTE	(mq/Kq)	(mq/Kq)	(mg/Kg)	(%)	
ANTIMONY	N.D.	1.0	Ň.D.	95	
ARSENIC	N.D.	0.25	N.D.	90	
BARIUM	62	0.25	N.D.	103	
BERYLLIUM	N.D.	0.05	N.D.	97	
CADMIUM	N.D.	0.05	N.D.	103	
CHROMIUM	53	0.5	N.D.	109	
COBALT	6.4	0.5	N.D.	96	
COPPER	7.6	0.25	N.D.	94	
LEAD	9.1	0.5	N.D.	99	
MOLYBDENUM	N.D.	0.25	N.D.		
NICKEL	38	0.5	N.D.	102	
SELENIUM	N.D.	0.5	N.D.	86	
SILVER	N.D.	0.25	N.D.	91	
THALLIUM	N.D.	2.0	N.D.	91	
VANADIUM	25	0.5	N.D.	99	
ZINC	26	0.25	N.D.	100	
MERCURY	N.D.	0.05	N.D.	98	

ChromaLab, Inc.

Doina Danet

Chemist

Eric Tam

Laboratory Director

mas for

Environmental Services (SDB)

August 1, 1994

Submission #: 9407249

ENV. SOLUTIONS - PETALUMA

Atten: JED DOUGLAS

Project: CALTRANS-CAL EAST

Received: July 22, 1994

Project#: 94-911

re: One sample for CAM 17 Metals analysis.

Sample ID: MW3-5 Matrix: SOIL Extracted: July 27, 1994 Sampled: July 21, 1994 Spl #:58511 Run: 3543 Analyzed: July 29, 1994

Method: EPA 3050/6010/7471

ANALYTE	RESULT (mg/Kg)	REPORTING LIMIT (mg/Kg)	BLANK RESULT (mq/Kq)	BLANK SPIKE RESULT (%)
ANTIMONY	N.D.	1.0	N.D.	95
ARSENIC	N.D.	0.25	N.D.	90
BARIUM	44	0.25	N.D.	103
BERYLLIUM	N.D.	0.05	N.D.	97
CADMIUM	N.D.	0.05	N.D.	103
CHROMIUM	42	0.5	N.D.	109
COBALT	6.1	0.5	N.D.	96
COPPER	18	0.25	N.D.	94
LEAD	27	0.5	N.D.	99
MOLYBDENUM	N.D.	0.25	N.D.	
NICKEL	15	0.5	N.D.	102
SELENIUM	N.D.	0.5	N.D.	86
SILVER	N.D.	0.25	N.D.	91
THALLIUM	N.D.	2.0	N.D.	91
VANADIUM	22	0.5	N.D.	99
ZINC	69	0.25	N.D.	100
MERCURY	0.18	0.05	N.D.	98

ChromaLab, Inc.

Doina Danet

Chemist

Eric Tam

(Printed)

CHAIN OF CUSTODY RECORD 249/58511.58517 PROJECT NO. PROJECT NAME Castrans - Cal Cast **PARAMETERS** 94-911 SUBM #: 9407249 SAMPLERS: (Signature) Jed Douglas CLIENT: ENVSOL-PET DUE: 07/29/94 REF #:17356 SAMPLE DATE TIME STATION LOCATION NUMBER 7121 0840 Informs to record MW3-5 Mw-3 MW3-10 1. 0845 MW3-16.5 0820 MW-1 0940 0945 11 MW-1-15 0955 nw-1-20 1000 1/ Relinquished by: (Signature) Date / Time Received by: (Signature). Relinquished by: (Signature) Date / Time Received by: (Signature) 7-22-811:41 (Printed)
IT: m Evan S (Printed) Jim Luma Received for Laboratory by: Date / Time Date / Time | Remarks Relinquished by: (Signature) 1/9/11:40 Standard TAT X22/94 10:10

Environmental Services (SDB)

August 1, 1994

AUG 1 7 1994

Submission #: 9407322

ENV. SOLUTIONS - PETALUMA

Atten: Jed Douglas

Project: CALTRANS-CAL EAST

Received: July 28, 1994

Project#: 94-911

re: One sample for Volatile Organic Compounds analysis.

Sample ID:W-1

Matrix: WATER

Sampled: July 27, 1994

Spl #:59105 Run: 3615 Analyzed: July 31, 1994

Method: EPA 8240/8260

		REPORTING	BLANK	BLANK SPIKE
	RESULT	LIMIT	RESULT	RESULT
ANALYTE	(ug/L)	(ug/L)	(ug/L)	(%)
ACETONE	N.D.	5.0	N.D.	
BENZENE	N.D.	2.0	N.D.	114
BROMODICHLOROMETHANE	N.D.	2.0	N.D.	
BROMOFORM	N.D.	2.0 2.0	N.D.	
BROMOMETHANE	N.D.	2.0	N.D.	
METHYL ETHYL KETONE	3.4	2.0	N.D.	
CARBON TETRACHLORIDE	N.D.	2.0	N.D.	
CHLOROBENZENE	N.D.	2.0	N.D.	121
CHLOROETHANE	N.D.	2.0	N.D.	
2-CHLOROETHYLVINYL ETHER	N.D.	2.0	N.D.	
CHLOROFORM	N.D.	2.0	N.D.	·
CHLOROFORM CHLOROMETHANE	N.D.	2.0	N.D.	
DIBROMOCHLOROMETHANE	N.D.	2.0	N.D.	
1,1-DICHLOROETHANE	N.D.	2.0	N.D.	- -
1,2-DICHLOROETHANE	4 2	2.0	N.D.	
1,1-DICHLOROETHENE	N.D.	2.0	N.D.	145
CIS-1,2-DICHLOROETHENE	N.D.	2.0	N.D.	
1,2-DICHLOROETHANE 1,1-DICHLOROETHENE CIS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE	N.D.	2.0	N.D.	
1,2-DICHLOROPROPANE	N.D.	2.0	N.D.	- <i>-</i>
CIS-1,3-DICHLOROPROPENE	N.D.	2.0	N.D.	'
TRANS-1,3-DICHLOROPROPENE	N.D.	2.0	N.D.	
ETUTPONYDNE	и.р.	2.0	N.D.	
2-HEXANONE	N.D.	2.0	N.D.	
METHYLENE CHLORIDE	N.D.	5.0	N.D.	- -
METHYL ISOBUTYL KETONE	N.D.	2.0	N.D.	· -
STYRENE	N.D.	2.0	N.D.	
1,1,2,2-TETRACHLOROETHANE		2.0	N.D.	
TETRACHLOROETHENE	N.D.	2.0	N.D.	
TOLUENE	N.D.	2.0	N.D.	112
1,1,1-TRICHLOROETHANE	N.D.	2.0	N.D.	·
1,1,2-TRICHLOROETHANE	N.D.	2.0	N.D.	
TRICHLOROETHENE	N.D.	2.0	N.D.	113
TRICHLOROFLUOROMETHANE	N.D.	2.0	N.D.	
VINYL ACETATE	N.D.	2.0	N.D.	
VINYL CHLORIDE	Ŋ.D.	2.0	Ŋ.D.	
XYLENES	N.D.	2.0	N.D.	

ChromaLab, Inc.

Aaron McMicha

Chemist

Ali Kharrazi Organic Manager

OCAPP AARON 13:23:49

Environmental Services (SDB)

August 1, 1994

Submission #: 9407322

ENV. SOLUTIONS - PETALUMA

Atten: Jed Douglas

Project: CALTRANS-CAL EAST

Project#: 94-911

Received: July 28, 1994

re: One sample for Volatile Organic Compounds analysis.

Sample ID:W-2

Matrix: WATER

Sampled: July 27, 1994

Spl #:59106 Run: 3615 Analyzed: July 31, 1994

Method: EPA 8240/8260

	REPORTING	BLANK	BLANK SPIKE
RESULT	LIMIT	RESULT	RESULT
(ug/L)	(ug/L)		(%)
	5.0		
			114
	$\bar{2}.0$		
	2.0		
N.D.	2.0	N.D.	121
N.D.	2.0	Ñ.D.	
N.D.	2.0		
N.D.	2.0	N.D.	- -
N.D.	$\bar{2}.\bar{0}$	N.D.	
N.D.	2.0		145
N.D.	2.0	N.D.	
N.D.	2.0		
N.D.			
N.D.	2.0		
N.D.	2.0	N.D.	
N.D.	2.0	N.D.	,
N.D.	2.0	N.D.	
N.D.	5.0	N.D.	
N.D.	2.0	N.D.	
N.D.	2.0	N.D.	
N.D.	2.0		
	2.0	N.D.	
N.D.	2.0	N.D.	112
N.D.	2.0		
N.D.	2.0		
N.D.	2.0	N.D.	113
	2.0		
	2.0		
N.D.	2.0	N.D.	<u></u>
	(ug/L) N.D. RESULT (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L	RESULT LIMIT RESULT (ug/L) (ug/L) (ug/L) N.D. 5.0 N.D. N.D. 2.0 N.D.	

ChromaLab, Inc.

Maron McMichael

Chemist

Ali Kharrazi Organic Manager

GCAPP AARON 13:23:49

Environmental Services (SDB)

August 1, 1994

Submission #: 9407322

94 - 911

ENV. SOLUTIONS - PETALUMA

Atten: Jed Douglas

Project: CALTRANS-CAL EAST

Received: July 28, 1994

re: One sample for Volatile Organic Compounds analysis.

Sample ID:W-3

Matrix: WATER

Project#:

Sampled: July 27, 1994

Spl #:59107 Run: 3615 Analyzed: July 31, 1994

Method: EPA 8240/8260

		REPORTING	BLANK	
	RESULT	LIMIT	RESULT	RESULT
ANALYTE	(ug/L)	(ug/L)	(ug/L)	(%)
ACETONE	N.D.	5.0	Ñ.D.	
BENZENE	N.D.	2.0	N.D.	114
BROMODICHLOROMETHANE	N.D.	2.0	N.D.	
BROMOFORM	N.D.	2.0	N.D.	
BROMOMETHANE	N.D.	2.0	N.D.	
METHYL ETHYL KETONE	N.D.	2.0	N.D.	
CARBON TETRACHLORIDE	N.D.	2.0	N.D.	· + -
CHLOROBENZENE	N.D.	2.0	N.D.	121
CHLOROETHANE	N.D.	2.0	N.D.	
2-CHLOROETHYLVINYL ETHER	N.D.	2.0	N.D.	
CHLOROFORM	N.D.	2.0	N.D.	
CHLOROMETHANE	N.D.	2.0	N.D.	
DIBROMOCHLOROMETHANE	N.D.	2.0	N.D.	
1,1-DICHLOROETHANE	N.D.	2.0	N.D.	 ,
1,2-DICHLOROETHANE	N.D.	2.0	N.D.	
1,1-DICHLOROETHENE CIS-1,2-DICHLOROETHENE	N.D.	2.0	N.D.	145
CIS-1,2-DICHLOROETHENE	N.D.	2.0	N.D.	- -
TRANS-1 2-DICHIOPOPTURNE	N.D.	2.0	N.D.	- -
1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE	N.D.	2.0	N.D.	
CIS-1,3-DICHLOROPROPENE	N.D.	2.0	N.D.	
IRANS-I, 3-DICHLOROPROPENE	N.D.	2.0	N.D.	·
ETHYLBENZENE	N.D.	2.0	N.D.	
2-HEXANONE	N.D.	2.0	N.D.	
METHYLENE CHLORIDE	N.D.	5.0	N.D.	
METHYL ISOBUTYL KETONE	N.D.	2.0	N.D.	_ =
STYRENE	N.D.	$\bar{2}.0$	N.D.	
1,1,2,2-TETRACHLOROETHANE	N.D.	$\frac{1}{2}.0$	N.D.	
TETRACHLOROETHENE	N.D.	2.0	N.D.	
TOLUENE	N.D.	2.0	N.D.	112
1,1,1-TRICHLOROETHANE	N.D.	2.0	N.D.	· - -
1,1,2-TRICHLOROETHANE	N.D.	2.0	N.D.	
TRICHLOROETHENE	N.D.	2.0	N.D.	113
TRICHLOROFLUOROMETHANE	N.D.	2.0	N.D.	
VINYL ACETATE	N.D.	2.0	N.D.	
VINYL CHLORIDE	N.D.	2.0	N.D.	
XYLENES	N.D.	2.0	N.D.	
	== · ·	- · ·		

ChromaLab, Inc.

Maron McMichael

Chemist

Ali Kharrazi Organic Manager

QCAPP AARON 13:23:49

Environmental Services (SDB)

August 3, 1994

Submission #: 9407322

ENV. SOLUTIONS - PETALUMA

Atten: Jed Douglas

Project: CALTRANS-CAL EAST

Project#: 94-911

Received: July 28, 1994

re: 3 samples for Oil & Grease analysis

Matrix: WATER

Sampled: July 27, 1994

Analyzed: August 1, 1994

Method: STD Method 5520 B & F

Sample #	Client Sample ID	Oil & Grease (mg/ <u>L)</u>
59105	W-1	N.D.
59106	W-2	N.D.
59107	W-3	N.D.
Blank		N.D.
Spike Recove		114%
Dup Spike Re		109%
Reporting L:	ımıt	1.0

ChromaLab, Inc.

Alex Tam

Analytical Chemist

Ali Kharrazi Organic Manager

gg

Environmental Services (SDB)

August 3, 1994

Submission #: 9407322

(Revised 8/8/94)

ENV. SOLUTIONS - PETALUMA

Atten: Jed Douglas

Project: CALTRANS-CAL EAST

Project #: 94-911

Received: July 28, 1994

3 samples for Diesel analysis

Matrix: WATER

Sampled: July 27, 1994

Method: EPA 3510/8015

Analyzed: August 3, 1994

	Client	Diesel
Sample #	Sample ID	(μq/L)
59105	W-1	N.D.
59106	W-2	N.D.
59107	W-3	N.D.ª

a - Unknown Hydrocarbon in gasoline/kerosene range was observed in sample. If quantified as kerosene, concentration would be 62 μ g/L.

Blank N.D. Spike Recovery 92% Dup Spike Recovery 103% Reporting Limit 50

ChromaLab, Inc.

Sirirat Chullakorn

Analytical Chemist

Ali Kharrazi Organic Manager

gg

Environmental Services (SDB)

August 4, 1994

Submission #: 9407322

ENV. SOLUTIONS - PETALUMA

Atten: Jed Douglas

Project: CALTRANS-CAL EAST

Received: July 28, 1994

Project#: 94-911

3 samples for Gasoline analysis.

Matrix: WATER

Sampled: July 27, 1994

Lab Run#: 3619

Analyzed: August 2, 1994

Method: EPA 5030/8015M

Spl # CLIENT SMPL ID	GASOLINE (mg/L)	REPORTING LIMIT (mg/L)	BLANK RESULT (mg/L)	BLANK SPIKE RESULT (%)
59105 W-1	0.12	0.05	Ñ.D.	109
59106 W-2	N.D.	0.05	N.D.	109
59107 W-3	0.13	0.05	N.D.	109

ThromaLab, Inc.

Billy/Thach

Chemist

Ali Kharrazi Organic Manager

Environmental Services (SDB)

August 8, 1994

Submission #: 9407322

ENV. SOLUTIONS - PETALUMA

Atten: Jed Douglas

Project: CALTRANS-CAL EAST Received:

July 28, 1994

Project#: 94-911

re: One sample for CAM 17 Metals analysis.

Matrix: WATER Extracted: August 8, 1994 Sample ID:W-1

Spl #:59105 Run: 3628 Analyzed: August 8, 1994 Sampled: July 27, 1994

Method: EPA 3010/6010/7470

		REPORTING	BLANK	BLANK SPIKE
	RESULT	LIMIT	RESULT	RESULT
ANALYTE	(mg/L)	(mg/L)	(mq/L)	(%)
ANTIMONY	Ň.D.	0.02	Ň.D.	91
ARSENIC	N.D.	0.005	N.D.	82
BARIUM	0.069	0.005	N.D.	93
BERYLLIUM	N.D.	0.001	N.D.	97
CADMIUM	N.D.	0.001	N.D.	93
CHROMIUM	0.011	0.01	N.D.	97
COBALT	N.D.	0.01	N.D.	92
COPPER	N.D.	0.005	N.D.	91
LEAD	N.D.	0.01	N.D.	94
MOLYBDENUM	0.0059	0.005	0.0083	
NICKEL	N.D.	0.02	N.D.	94
SELENIUM	N.D.	0.01	0.011	83
SILVER	N.D.	0.005	N.D.	88
THALLIUM	0.040	0.01	0.021	83
VANADIUM	N.D.	0.01	N.D.	95
ZINC	0.38	0.01	N.D.	94_
MERCURY	N.D.	0.001	N.D.	107

ChromaLab, Inc.

Chemist

Eric Tam

Environmental Services (SDB)

August 8, 1994

Submission #: 9407322

ENV. SOLUTIONS - PETALUMA

Atten: Jed Douglas

Project: CALTRANS-CAL EAST

Received: July 28, 1994

Project#: 94-911

re: One sample for CAM 17 Metals analysis.

Sample ID:W-2 Matrix: WATER Extracted: August 8, 1994

Sampled: July 27, 1994 Spl #:59106 Run: 3628 Analyzed: August 8, 1994

Method: EPA 3010/6010/7470

		REPORTING	BLANK	BLANK SPIKE
	RESULT	LIMIT	RESULT	RESULT
ANALYTE	(mg/L)	(mg/L)	(mq/L)	(%)
ANTIMONY	Ň.D.	0.02	Ñ.D.	91
ARSENIC	N.D.	0.005	N.D.	82
BARIUM	0.11	0.005	N.D.	93
BERYLLIUM	N.D.	0.001	N.D.	97
CADMIUM	N.D.	0.001	N.D.	93
CHROMIUM	N.D.	0.01	N.D.	97
COBALT	N.D.	0.01	N.D.	92
COPPER	N.D.	0.005	N.D.	91
LEAD	N.D.	0.01	N.D.	94
MOLYBDENUM	0.0066	0.005	0.0083	
NICKEL	N.D.	0.02	N.D.	94
SELENIUM	N.D.	0.01	0.011	83
SILVER	N.D.	0.005	N.D.	88
THALLIUM	0.017	0.01	0.021	83
VANADIUM	N.D.	0.01	N.D.	95
ZINC	0.012	0.01	N.D.	94
MERCURY	N.D.	0.001	N.D.	107

ChromaLab, Inc.

Doina Danet

Chemist

Eric Tam

Environmental Services (SDB)

August 8, 1994

Submission #: 9407322

ENV. SOLUTIONS - PETALUMA

Atten: Jed Douglas

Project: CALTRANS-CAL EAST Received:

July 28, 1994

Project#: 94-911

One sample for CAM 17 Metals analysis.

Matrix: WATER Extracted: August 8, 1994 Sample ID:W-3

Spl #:59107 Run: 3628 Analyzed: August 8, 1994

Sampled: July 27, 1994 Method: EPA 3010/6010/7470

		REPORTING	BLANK	BLANK SPIKE
	RESULT	LIMIT	RESULT	RESULT
ANALYTE	(mg/L)	(mq/L)	(mq/L)	(%)
ANTIMONY	N.D.	0.02	Ň.D.	91
ARSENIC	N.D.	0.005	N.D.	82
BARIUM	0.21	0.005	N.D.	93
BERYLLIUM	N.D.	0.001	N.D.	97
CADMIUM	N.D.	0.001	N.D.	93
CHROMIUM	N.D.	0.01	N.D.	97
COBALT	N.D.	0.01	N.D.	. 92
COPPER	N.D.	0.005	N.D.	91
LEAD	N.D.	0.01	N.D.	94
MOLYBDENUM	N.D.	0.005	0.0083	
NICKEL	N.D.	0.02	N.D.	94
SELENIUM	N.D.	0.01	0.011	83
SILVER	N.D.	0.005	N.D.	88
THALLIUM	N.D.	0.01	0.021	83
VANADIUM	N.D.	0.01	N.D.	95
ZINC	0.17	0.01	N.D.	94
MERCURY	N.D.	0.001	N.D.	107

ChromaLab, Inc.

Chemist

Eric Tam

CHAIN OF COSTODY RECORD 322/5 900 3 - 5900 5 No 10212

PROJECT NO.	PROJE	ECT NAM	AE.					7	7		-/	<u> </u>			11616
94-911	Ca	STr	àn	- کر	Cal East			/2/	Д,	 -	r.	ARAM	– c	LIENT	: 9407322 : ENVSOL-PET
SAMPLERS: (Signally	196				Cal Easy (Printed) Jeal Douglas		S. S		7/00					IUE: !EF #:	08/04/94 17440
FIELD SAMPLE NUMBER	DATE	TIME	COMP	GRAB	STATION LOCATION	/\$	♂ /.	%	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7	**	6/			/
	7/27	1215		Χ	MW-1 MW-2	6	X	X	X	X	K				
W-2	11	1230	<u></u>	X	Mw-2	6	X	X	X	X	X				
W-3	lt .	1245	1		MW-3	6	X	X	X	X	X				Standard TAT
	<u> </u> '	<u> </u> '	\perp			<u> </u>									TAT
	<u> </u> '	<u> </u>	igspace	<u> </u>		<u> </u>	_								
	<u> </u> '	 '	<u> </u>	.!	,	'									
	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>									
	<u> </u> '	<u> </u>	 	ļ!			<u> </u>		ļ						
	ļ	ļ		<u> '</u>		-	<u> </u>								
		ļ	_	<u> </u>			<u> </u>								
	ļ	ļ	<u> </u>	<u> </u> '		 									
	<u> </u>	<u> </u>	<u> </u>	<u> </u>					<u> </u>						
Relinquished by: (Sig	gnature	1		te / Tin		Reli	inquis	hed b	y: /Sig	gnature **	, 		Dat	te / Tim	Received by: (Signature)
Seel Do			-2		(Printed)	(Prir	nted)				,			!	(Printed)
Relinquished by: (Sig	jnature)		Date	te / Tir	me Received for Laboratory by: (Signature)	<u>-</u>	Date	/ Tin	ne	Remai	rks ,	Te	-	41	Preserve prior 5 6010
(Printed)					(Printed) 8 Morent		**************************************	. F		′	70	ין ל	UM	nin	5 6010
<u> </u>					- 10 CIMI										

DISTRIBUTION

Soil and Groundwater Investigation Report Cal East 505 Cedar Street Oakland, California

Caltrans Contract Number 53U495 Task Order Number 04-192211-05

Environmental Solutions, Inc. Project No. 94-911

September 27, 1994

California Department of Transportation (CALTRANS)
Environmental Engineering Branch
111 Grand Avenue, 14th Floor
Oakland, California 94623

5 Copies

Attention:

Mr. Chris Wilson

Environmental Solutions, Inc. 1201 North McDowell Boulevard Petaluma, CA 94954 3 Copies