

Thuionne de la Project: 02-2692 ENVIRONMENTAL ENGINEERING, INC 2680 Bishop Drive • Suite 203 • San Ramon, CA 94583 TEL (925) 244-6600 · FAX (925) 244-6601

June 3, 2003

Mr. Scott Seery, CHMM Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Subject: Site Located at 7240 Dublin Boulevard, Dublin, California

Dear Scott:

Enclosed for your review is a copy of SOMA's "Soil and Groundwater Investigation" report for the subject property.

Thank you for your time in reviewing our report. Please do not hesitate to call me at (925) 244-6600, if you have any questions or comments.

Sincerely,

Mansour Sepehr, Ph.D., PE Principal Hydrogeologist

Enclosure

cc: Mr. Hooshang Hadjian w/enclosure

Ms. Karen Streich, Chevron Products w/enclosure

SOIL AND GROUNDWATER INVESTIGATION AT

FORMER CHEVRON STATION 7240 Dublin Boulevard Dublin, California JON None County

June 3, 2003

Project 2692

Prepared for

Hooshang Hadjian and Karen Streich (Chevron Products Company) 2108 San Ramon Valley Boulevard San Ramon, California

Prepared by

SOMA Environmental Engineering, Inc. 2680 Bishop Drive, Suite 203 San Ramon, California

CERTIFICATION

This report has been prepared by SOMA Environmental Engineering, Inc. on behalf of Mr. Hooshang Hadjian and Ms. Karen Streich, the former property owners of 7240 Dublin Boulevard, Dublin, California to comply with the Alameda County Health Care Services approved workplan, dated April 9, 2003.

Mansour Sepehr, Ph.D., P.E. Principal Hydrogeologist

TABLE OF CONTENTS

	IFICATION	
LIST	OF TABLES	II
LIST	OF FIGURESI	II
LIST	OF APPENDICESI	٧
1.0	INTRODUCTION	1
1.1 1.2 1.3	PREVIOUS ACTIVITIES	4
2.0	SCOPE OF WORK	5
3.0	INVESTIGATIVE ACTIVITIES	7
_	Installation of Electrical Conductivity Boreholes Drilling Stratigraphy Borehole Drilling and Collecting Soil and Groundwater Samples	8 8 8
3.4 3.5	LABORATORY ANALYSIS	1
4.0	RESULTS1	2
4. 4. 4. 4.	SITE GEOLOGY AND HYDROGEOLOGY 1 ANALYTICAL RESULTS 1 2.1 Soil Analytical Results 2.1 Groundwater Analytical Results 2.1.1 Upper Shallow and Shallow Water-Bearing Zones 2.1.2 Middle Water-Bearing Zone 2.1.3 Deeper Water-Bearing Zone 2.1.4 Mixed Water-Bearing Zone 2.1.4 Mixed Water-Bearing Zone 2.1.4 Preferential Pathway Flow Analysis 1	3 15 15 16 17
5.0	CONCLUSIONS 1	
5.1 5.2 5.3 5.4	SITE GEOLOGY AND HYDROGEOLOGY	0 2 3
6.0	RECOMMENDATIONS 2	:4
7.0	REFERENCES2	:5

List of Tables

Table 1: Field Observations of Groundwater Sampling

Table 2: Capillary Fringe Soil Analytical Results

Table 3: Vadose Zone Soil Analytical Results

Table 4: Groundwater Analytical Results

List of Figures

Figure 1: Site Vicinity Map

Figure 2: Site Map Showing Locations of Existing Monitoring Wells

Figure 3: Site Map Showing Locations of Electrical Conductivity Boreholes,
Direct Push Boreholes, Vadose Zone and Stratigraphy Boreholes

Figure 4: Location of Geologic Cross-Sections A-A' and B-B'

Figure 5: Geologic Cross Section A-A'

Figure 6: Geologic Cross Section B-B'

Figure 7: Contour Map Showing TPH-g Concentrations in Vadose Zone

Figure 8: Contour Map Showing Benzene Concentrations in Vadose Zone

Figure 9: Contour Map Showing MtBE Concentrations in Vadose Zone

Figure 10: Contour Map Showing TPH-g Concentrations in Upper Shallow and Shallow Water-Bearing Zone

Figure 11: Contour Map Showing TPH-g Concentrations in Middle Water-Bearing Zone

Figure 12: Contour Map Showing TPH-g Concentrations in Deeper Water-Bearing Zone

Figure 13: Contour Map Showing Benzene Concentrations in Upper Shallow and Shallow Water-Bearing Zone

Figure 14: Contour Map Showing Benzene Concentrations in Middle Water-Bearing Zone

Figure 15: Contour Map Showing Benzene Concentrations in Deeper Water-Bearing Zone Figure 16: Contour Map Showing MtBE Concentrations in Upper Shallow and

Shallow Water-Bearing Zone

Figure 17: Contour Map Showing MtBE Concentrations in Middle Water-

Bearing Zone

Figure 18: Contour Map Showing MtBE Concentrations in Deeper Water-

Bearing Zone

List of Appendices

Appendix A: Drilling and Encroachment Permits

Appendix B: Stratigraphic Borehole Log and Electrical Conductivity Log

Appendix C: Laboratory Reports of Soil Analytical and Chain of Custody Form

Appendix D: Laboratory Reports of Groundwater Analytical and Chain of Custody

Form

Appendix E: Subsurface Utility Map of Site Vicinity

1.0 INTRODUCTION

This report has been prepared by SOMA Environmental Engineering, Inc., (SOMA) on behalf of Mr. Hooshang Hadjian and Chevron USA, the former property owners. This report is being prepared based on the Alameda County Health Care Services (ACHCS) approved workplan dated April 9, 2003.

As shown in Figure 1, the property is located at 7240 Dublin Boulevard, Dublin, California (the "Site"). The Site is situated at the southwest corner of Dublin Boulevard and Village Parkway with commercial property bordering the Site on the south and San Ramon Creek bordering the subject property on the west. Currently, the Site is being used as a gasoline service station and a car wash facility and is known as Dublin Auto Wash.

1.1 Previous Activities

The first environmental investigation at the Site began in early 1988 when Chevron Product Company (Chevron) hired EA Engineering, Science, and Technology, Inc. (EA) to conduct a soil vapor investigation at the Site. The results of the soil gas survey indicated elevated levels of hydrocarbons beneath the Site, especially around the southern pump island.

In October 1988, HEW Drilling Company installed three groundwater monitoring wells, EA-1 through EA-3. During the installation of the groundwater monitoring wells, groundwater was encountered at depths ranging between 15 to 23 feet below ground surface (bgs). The depths of the groundwater monitoring wells were 35 to 40 feet bgs. Following the installation of the groundwater monitoring wells, the quarterly groundwater monitoring programs began. The groundwater monitoring program is currently conducted at the Site on a quarterly basis.

In February 1989, one 5,000-gallon and two 10,000-gallon underground storage tanks (USTs) were excavated and removed from the Site and replaced with three new USTs. During this activity, soil and groundwater samples were collected and analyzed for petroleum hydrocarbons. Following the USTs' removal and their upgrade, a total of 180 cubic yards of soil was removed and sent to Class I and Class II landfill facilities.

In March 1989 Western Geologic Resources, Inc. (WGR) drilled and sampled five soil boreholes in the area of the former pump island. In addition, nine soil samples were collected from the vicinity of the former product-line trenches at depths ranging from 2.5 feet to 10 feet bgs. Laboratory analyses results indicated total petroleum hydrocarbon (TPH) concentrations from non-detectable to 1,700 milligram per kilograms (mg/Kg).

In May 1990, three vapor extraction wells were installed. Air samples collected from these wells contained a maximum of 29,000 parts per million (ppm) benzene, at the beginning of the test and 5,300 parts per billion ppb after 2,049 minutes into the test.

Following the installation of the three vapor extraction wells in March 1992, the soil vapor extraction (SVE) system began operating. From December 1992 through June 1995, Geraghty & Miller operated the SVE system. Reportedly, during this period a total of 13,470 pounds of hydrocarbons were removed from the subsurface.

In September 1994, Groundwater Technology, Inc. (GTI) installed three groundwater monitoring wells, MW-1 through MW-3. The depths of these wells ranged between 21.5 to 26.5 feet bgs. In March 1995, elevated levels (up to 64,000 microgram per liter (µg/L)) of Methyl tertiary Butyl Ether (MtBE) were reported for the first time in MW-3.

In February 1996, Bay Area Exploration Services, Inc. installed two groundwater monitoring wells, MW-4 and MW-5 each with a total depth of 21.5 feet bgs. During the well installation, soil and groundwater samples were collected and analyzed for petroleum hydrocarbons. No petroleum hydrocarbons were detected in the soil or groundwater samples collected from these wells. Prior consultants designated these wells as upgradient wells that have not been impacted by the petroleum hydrocarbons.

In December 1996, Weiss and Associates conducted a Risk Based Corrective Action (RBCA) and concluded that the Site is a "Low Risk" soil and groundwater petroleum release site and recommended the SVE system be shut down. Based on Weiss Associates' recommendation, the SVE system was shut down, however, the ACHCS required quarterly groundwater monitoring and free product removal reports.

In February 1997, a leak in a stainless steel flex hose to dispenser No. 2 was discovered and reported to the ACHCS. Subsequently, a new product delivery system was installed to replace the existing lines. Free product was also detected in MW-3. The results of subsequent groundwater monitoring events in 1998 and 1999 showed elevated levels of MtBE (up to 13,000 μ g/L) and free product in MW-3.

Due to the occurrence of the new release at the Site, Chevron Product Company conveyed that they should no longer be the responsible party for further site characterization, removal and monitoring of contaminants at the Site. After negotiating with Chevron, Mr. Hooshang Hadjian assumed the responsibility of the new release at the Site.

Currently, the existing eight groundwater monitoring wells at the Site are being monitored by SOMA. Figure 2 illustrates the location of the existing groundwater monitoring wells.

1.2 Regional Geology

East of the San Francisco Bay, northwest-trending folds dominate the landscape with intervening valleys filled with water-laid sediments known as alluvium. Through the past several thousand years, weathering and erosion of these highland areas deposited alluvial sediments of mostly clay and silt into the valley areas. The subject Site is located in one of these alluvial valleys.

1.3 Nature and Extent of Groundwater Contamination

Historical groundwater data has indicated elevated levels of petroleum hydrocarbon constituents in the groundwater beneath the Site. Maximum concentrations of hydrocarbon contaminants have been reported in MW-3, which is located at the northern boundary of the Site next to Dublin Boulevard. GTI completed this 2-inch diameter monitoring well within thick clayey sediments and screened the well from 5 to 25 feet bgs. The maximum reported concentrations of MtBE, benzene, toluene, ethylbenzene and total xylenes (BTEX) and total petroleum hydrocarbons as gasoline (TPH-g) in MW-3 were 162,000, 4,810, 11,400, 2,800, 18,000 and 110,000 μ g/L, respectively. Historically, free phase petroleum product has been reported in MW-3.

Historically, MtBE was also reported in MW-1 and MW-2 at 5,200 and 3,100 μg/L, respectively. MW-1 and MW-2 are also 2-inch diameter wells whose screen intervals are from 5 to 25 feet bgs and 5 to 20 feet bgs, respectively.

The results of the laboratory analyses on the groundwater samples collected from the allegedly downgradient monitoring wells EA-1 through EA-3 do not suggest the presence of elevated levels of MtBE and other groundwater contaminants. However, lithologic logs of EA-1 through EA-3 indicate that these are deeper than the upgradient monitoring wells MW-1 through MW-5. The screened interval of EA-1 and EA-2 are from 10 to 40 feet bgs and the screen interval of EA-3 is from 5 feet to 35 feet bgs. With screen intervals that are much longer than the upgradient wells, the EA wells probably cross connected shallow and deeper water-bearing zones under the Site and groundwater in these wells

probably represents a mixture of several zones. This makes the data interpretation somewhat difficult since the depth and the screen interval of the upgradient and downgradient wells are not identical. Figure 2 shows the location of groundwater monitoring wells.

2.0 Scope of Work

The primary objectives of this investigation are to evaluate the stratigraphy of the underlying sediment beneath the on- and off-site areas and evaluate the vertical distribution of soil and groundwater contamination. SOMA's workplan dated March 21, 2003 proposed CPT technology to determine the Site stratigraphy, number of water-bearing zones and their respective depths. To evaluate the vertical extent of groundwater contaminants, SOMA proposed to sample each water-bearing zone using a direct-push technology (DPT) drilling rig fitted with a specialized groundwater sampling device. SOMA's workplan was verbally approved by Mr. Scott Seery of the ACHCS on March 31, 2003 and formally approved in a letter dated April 9, 2003.

On April 9, 2003, Fisch Environmental (FE) advanced a Cone Penetrometer Test (CPT) borehole at the Site with no data acquisition. FE conveyed that site conditions prevented the CPT probe from responding properly, presumably because the subsurface sediments were too soft. To log the subsurface sediments and determine potential water-bearing zones, electrical conductivity (EC) logging was then proposed to substitute for the CPT technology. Mr. Scott Seery verbally approved the proposed modification on April 9, 2003.

To implement the approved workplan, SOMA complied with these requirements and performed the following tasks:

- Field work preparation: permits, utility clearance, and HASP
- Drilling and logging nine electrical conductivity boreholes (ECBs)
- Drilling and logging one continuously sampled stratigraphic borehole

- Drilling and sampling soil and groundwater in the ECB areas
- Drilling and sampling the vadose zone in the canopy area
- Laboratory analysis
- Preferential flow pathway analysis
- Report preparation and construction of geologic cross sections

The following few paragraphs describe the field work preparation.

Before commencing field activities, SOMA obtained a drilling permit from Zone 7 Water Agency and an encroachment permit to the City of Dublin Public Works - attached as Appendix A. SOMA personnel also contacted Underground Service Alert (USA) to clear proposed drilling areas of subsurface utilities. To further define subsurface utility locations, a private utility locator was subcontracted. Other preparatory activities are described below in Section 3.1.

SOMA conducted this soil and groundwater investigation to evaluate the lateral extent of the soil and groundwater contamination beneath the Site. The field work involved drilling nine electrical conductivity boreholes (ECBs) to identify potential water-bearing zones, nine direct-push Geoprobe boreholes (DPBs) to collect soil and groundwater samples in the ECB locations, one continuously sampled stratigraphic borehole, and eight shallow Geoprobe boreholes to collect vadose-zone soil samples. The soil and groundwater samples were then analyzed for the petroleum hydrocarbon constituents of concern.

Prior to commencing field activity, SOMA also prepared a site-specific health and safety plan (HASP). The HASP provided procedures to protect the field crew from physical and chemical hazards resulting from drilling and groundwater sampling. The HASP also established personnel responsibilities, general safe work practices, field procedures, personal protective equipment standards, decontamination procedures, and emergency action plans.

3.0 Investigative Activities

3.1 Installation of Electrical Conductivity Boreholes

On April 10 and 11, 2003, nine EC boreholes were advanced at locations shown in Figure 3. As shown in the EC logs attached as Appendix B, electrical conductivity logging measures the conductance of a sediment and produces a continuous vertical record of conductance within a borehole. Because clay transmits an electrical current more efficiently (with less degree of resistance) than coarser-grained sediments, the conductivity value (which is defined as the reciprocal of resistivity) increases within the fine-grained sediments and decreases within coarse-grained sediments. Since coarser-grained units are more permeable, these intervals of lower conductance can be interpreted as potential water-bearing zones.

Indirect logging technologies require calibration against soil-core logging to verify correct stratigraphic interpretation. To calibrate the EC data, a stratigraphy borehole (S-1) was drilled and continuously logged adjacent to one of the EC boreholes. SOMA designated the adjacent EC borehole as ECB-S.

As shown in Figure 3, FE advanced nine ECBs at the Site. Most of the ECBs are located in the vicinity of the pump island canopy and surrounding areas. Additional EC boreholes were advanced east and west of the canopy area with two boreholes (ECB-4 and ECB-5) on the east side of the canopy (and USTs) and three boreholes (ECB-2, ECB-7 and ECB-8) on the west side of the canopy area. The EC values recorded during drilling operations were used to construct geologic cross-sections. The location of the geologic cross sections A-A' and B-B' are in Figure 4. Figures 5 and 6 show the geologic cross-sections A-A' and B-B', respectively. As these cross-sections show there are three and occasionally four potential water-bearing zones beneath the Site. These water-

bearing zones are: 1) upper shallow, 2) shallow, 3) middle and 4) deep waterbearing zones.

3.2 Drilling Stratigraphy Borehole

On April 25, 2003, SOMA oversaw the drilling of one stratigraphy borehole (S-1) adjacent to ECB-S. Woodward Drilling advanced and continuously sampled borehole S-1 to a total depth of 49 feet bgs using a hollow-stem auger (HSA) drilling rig. As shown in the Geologic Log of Borehole S-1, attached as Appendix B, the field geologist continuously logged the entire borehole.

The field geologist also collected baggie samples for volatile vapor analysis using a photo-ionization detector (PID) and the PID values are presented on the geologic log. Fragments of sediment samples were placed into a freezer-grade re-sealable plastic bag and heated in the sun for a few minutes before measuring the volatile organic vapor content of the bag sample with the PID.

After completing the sample collection, the drilling crew tremie grouted borehole S-1 to about one-foot bgs with Portland I/II cement mixed with about 5% bentonite. The borehole was then capped with concrete to surface grade.

3.3 Drilling and Collecting Soil and Groundwater Samples

To fully characterize the extent of soil contamination around the damaged stainless steel flex-hose connection of dispenser 2, SOMA conducted an extensive investigation in the immediate vicinity of this point of release. During this investigation, the vadose-zone samples were collected from shallow boreholes adjacent to and near dispenser 2. Deeper soil samples from just above the shallow water-bearing zone (WBZ) were collected from the on-site electrical conductivity boreholes.

3.3.1 Vadose Zone and Capillary Fringe Sampling

On April 23, 2003, SOMA oversaw the drilling and sampling of eight shallow boreholes to characterize the vadose-zone plume in the dispenser island area.

Due to numerous on-site utilities and spatial constraints, and to minimize investigative waste at the Site, HSA drilling was not utilized as originally planned. Instead, SOMA selected a combination of hand-augering and DPT sampling using a Geoprobe rig. Due to the presence of a thick concrete slab, and in order to avoid damaging the drill bit, coreholes were cut through the six to eight-inch thick concrete slab using concrete coring equipment. In the canopy area, the shallow boreholes were hand augered down to the first encountered groundwater or below the anticipated utility depth to 5 feet bgs and sampled with the DPT rig at 6 feet bgs. In locations that were cleared and approved by USA respondents and the private utility locator, soil samples were collected using the DPT rig through the entire depth. After encountering heavily contaminated soils around DPB-3, two additional boreholes, B-7 and B-8, were advanced to delineate the northern boundary of the soil contamination.

To avoid cross contamination from the hand auger, the drilling crew collected soil samples from the hand auger cuttings by shoving a 6-inch long butyrate tube into the center of the soil mass within the auger head. Soil samples collected from the hand auger and those removed from the butyrate-lined Geoprobe sampler were cut into six- to twelve-inch long sections. SOMA's field geologist capped, labeled and placed these samples into a chilled cooler to await field screening.

The field geologist selected vadose-zone samples for lab analysis by field screening the samples using a PID. Fragments from the soil sample were placed into a freezer-grade re-sealable plastic bag and heated in the sun for a few minutes before measuring the volatile content of the bag sample with the PID. After determining which depth contained the highest volatile content, SOMA's geologist collected a soil sample from each soil-filled tube using the EncoreTM sampler. These samples were then labeled and placed into a chilled cooler with chain of custody (COC) documentation pending laboratory delivery.

Capillary fringe soil samples were collected from the groundwater sampling boreholes immediately above the shallow WBZ. SOMA's field geologist collected

soil samples from the capillary fringe using the EncoreTM sampler. The samples were labeled and placed into a chilled cooler with COC documentation pending delivery to the laboratory.

3.3.2 Collecting Groundwater Samples

On April 17, 18, 30 and May 1, 2003, SOMA oversaw the drilling of nine boreholes to collect capillary fringe and groundwater samples. The nine soil and groundwater sampling boreholes were advanced using Direct Push Technology. As shown in Figure 3, these direct-push boreholes were designated DPB-1 through DPB-8 and DPB-S — to indicate this borehole's close proximity to the stratigraphy borehole S-1.

Based on EC data provided by FE, potential shallow and deeper water-bearing zones were selected. Half way through collecting groundwater samples from these zones, on April 17, 2003, Mr. Scott Seery of the ACHCS directed SOMA to attempt to collect groundwater samples from between the shallow and deeper WBZs – herein designated as the middle WBZ. In DPB-2, DPB-4, DPB-5 and DPB-S another potential water-bearing zone above the shallow WBZ was identified, and designated by SOMA as the upper shallow WBZ.

Table 1 presents the depth intervals of potential WBZs in each borehole and the field observations during groundwater sampling. The upper shallow WBZ was identified at the vertical interval of approximately 2 to 6 feet bgs. The shallow WBZ was identified at vertical intervals ranging from approximately 10 to 15 feet bgs to 19 to 23 feet bgs. The middle WBZ was identified at vertical intervals ranging from approximately 19 to 23 feet bgs to 32 to 36 feet bgs. The deeper WBZ was identified at vertical intervals ranging from approximately 32 to 36 feet bgs to 43 to 47 feet bgs. Surface elevation differences at each borehole and stratigraphic variations account for the substantial ranges in depth intervals of the potential WBZs. Based on the EC logs at each borehole, there are at least five feet of clayey sediments that separate the four potential WBZs. The one

exception was borehole DPB-5 where the upper shallow WBZ occurred several feet above the shallow WBZ.

Because the potential water-bearing zones were separated by at least 5 feet of clay, FE determined that the SP-15 Discrete Groundwater Sampler was the most appropriate for the Site. Within each borehole, each WBZ was sampled in vertical sequence starting with the upper shallow or shallow zone and ending with the deeper zone. The enlarged upper end of the SP-15 sampler blocked off the upper portion of the borehole while sampling the subjacent water-bearing zone to prevent cross contamination of the soil and groundwater samples. After sampling each WBZ, the sampling device was removed and decontaminated. To avoid cross contamination in the DPB-5 area, the upper shallow WBZ was sampled in a separate borehole than the shallow, middle and deeper WBZs.

The field geologist immediately decanted the groundwater sample into 40-mL VOA vials that were pre-preserved with hydrochloric acid unless a carbonate reaction was noted. When this reaction occurred, non-preserved VOA vials were used. The 40-mL vials were then properly sealed to prevent the inclusion of any air bubbles within the headspace of the vial. The vials were placed in an ice chest with COC documentation pending delivery to the laboratory for chemical analyses.

3.4 Laboratory Analysis

Soil and groundwater samples collected from the boreholes were analyzed for TPH-g using EPA Method 8015 Modified. BTEX, MTBE, Gas Oxygenates and Lead Scavengers were analyzed using EPA Method 8260. Laboratory analytical reports are included as Appendices C and D.

SOMA initially planned to use a mobile lab to analyze the groundwater samples on-site. However, delays in drilling and technical issues posed by this arrangement rendered the use of a mobile lab impractical. Street drilling time was substantially constrained by the City of Dublin encroachment permit

restrictions. The use of a mobile lab would have resulted in repeated disruptions requiring as much as several days to complete one of the street boreholes. Exaggerated results endemic to mobile labs also rendered on-site analytical services infeasible. With these issues presented to Mr. Scott Seery (ACHCS), this change in the workplan was verbally approved by the regulator on April 9, 2003.

3.5 Grouting Boreholes and Temporary Wells

After SOMA collected soil and groundwater samples, narrow-guage boreholes were tremie grouted up to surface grade. Larger diameter boreholes for vadose-zone and stratigraphic borehole drilling were tremie grouted to one-foot below the ground surface where concrete or sand-enriched cement was then emplaced to surface grade.

4.0 RESULTS

The following is a brief description of the results from our investigation conducted in accordance with the ACHCS-approved workplan for the Site.

4.1 Site Geology and Hydrogeology

The U.S. Geological Survey (USGS) mapped the east side of the Site on fine grained alluvium of Holocene age (less than 10,000 years old). The USGS described this unconsolidated unit as plastic – or expansive - with occasional fresh water gastropods and pelecypods. The west side of the Site was mapped on Late Pleistocene alluvium – estimated to be approximately 10,000 to 70,000 years old. The USGS described this unit to be a weakly consolidated and interbedded sequence of clay, silt, sand and gravel with occasional fresh water gastropod shells. Lithologic logs from prior consultants characterized the upper 30 feet of the Site as mostly clay with some sandy clay interbedded with occasional clayey sand lenses.

Based on the EC borehole data and the stratigraphy borehole log, at least 50 feet of unconsolidated sediments underlie the Site. In the northeastern portion of the investigation area, silty clay and clay constitute over 95% of the upper 50 feet with occasional silt/sand lenses at approximately 5 to 10 feet bgs and an occasional silt/sand stringer below approximately 30 feet bgs. This predominantly clayey area includes boreholes DPB-1, DPB-4 and DPB-5.

In the southwestern portion of the investigation area, the upper 30 to 35 feet consists of mostly silty to sandy clay and clay. Inter-layered with this clayey sequence are several one- to two-foot thick beds of saturated silty to clayey sand that constitute the shallow and middle WBZs. Beneath this inter-layered sequence are mostly sandy clay and clayey sand with some wet sand/silt stringers that constitute the deeper WBZ. This more permeable portion of the investigation area includes boreholes DPB-2, DPB-3, DPB-6, DPB-7 and DPB-8. Geologic cross-sections A-A' and B-B' show the stratigraphy and occurrence of potential water-bearing zones as presented in Figures 5 and 6.

4.2 Analytical Results

Soil and groundwater analytical results show elevated levels of petroleum hydrocarbon contaminants in the western portion of the Site. On the east side of the Site, petroleum hydrocarbon contaminants were either not detected or detected at trace levels. Borehole PID readings indicate that the most heavily contaminated interval of borehole S-1 consists of the uppermost silty clay unit from approximately 4.5 to 15 feet bgs.

4.2.1 Soil Analytical Results

As shown in Tables 2 and 3 and Figures 7 through 9, contaminant levels are highest in the pump island area, near dispenser 2, where a leak in the steel flex-hose connection reportedly occurred.

In the vadose zone, maximum contaminant levels were detected at a depth of 3.5 to 4.0 feet bgs. In boreholes B-2b and B-7, located near the damaged flex-hose

area, the lab detected TPH-g at 92,000,000 and 8,700,000 μ g/Kg, benzene at 12,000 and 7,700 μ g/Kg, toluene at 560,000 and 270,000 μ g/Kg, ethylbenzene at 240,000 and 170,000 μ g/Kg, and total xylenes at 1,550,000 and 920,000 μ g/Kg, respectively. Gas oxygenates MtBE and TAME were detected in borehole B-2b at 21,000 and 20,000 μ g/Kg respectively. MtBE was detected at 7,100 μ g/Kg in B-7 and TAME was not detected in this borehole above 10,000 μ g/Kg. TBA and ethanol were not detected in these two boreholes above the unusually high reporting limits of 100,000 to 1,400,000 μ g/Kg.

Several feet north of B-7, in borehole B-8, at depth 4-5.75 feet the lab detected TPH-g at 9,900 μ g/Kg, benzene at 6.4 μ g/Kg, ethylbenzene at 33 μ g/Kg, and total xylenes at 200 μ g/Kg. Lab analysis also indicated MtBE, TAME, TBA and ethanol concentrations at 47, 12, 88 and 880 μ g/Kg, respectively.

In boreholes B-1, B-3, B-4, B-5, and B-6, the lab did not detect TPH-g, BTEX, MtBE and TAME above reporting limits of 4.2 to 200 μ g/Kg. TBA and ethanol were detected at respective ranges of 83 to 830 μ g/Kg and 94 to 940 μ g/Kg, in soil samples collected at depth intervals of 2.5 to 4 feet bgs.

In the deeper capillary fringe zone, samples were collected immediately above first encountered groundwater at various depths ranging from 9 to 18.75 feet bgs. The highest concentration of petroleum hydrocarbon contaminants were encountered in DPB-3 located adjacent to dispenser 2. In DPB-3 at 14 to 15 feet bgs, the lab detected TPH-g at 3,500,000 μ g/Kg, benzene at 6,600 μ g/Kg, toluene at 120,000 μ g/Kg, ethylbenzene at 43,000 μ g/Kg, total xylenes at 251,000 μ g/Kg, and MtBE at 17,000 μ g/Kg.

In DPB-S, which is located adjacent to stratigraphic borehole S-1 and approximately 20 feet northeast of the pump island area, the lab detected TPH-g at 1,200 μ g/Kg, total xylenes at 360 μ g/Kg, and MtBE at 3,500 μ g/Kg at a depth of 15-16 feet bgs. Benzene, toluene, and ethylbenzene were not detected above an elevated reporting limit of 130 μ g/Kg.

In boreholes DPB-4, DPB-5, DPB-6, and DPB-7, TPH-g and BTEX were not detected above the elevated laboratory reporting limits of 3.9 to 200 µg/Kg. In DPB-4, located east of and near the UST pit, TPH-g was detected at 200 µg/Kg with a chromatographic pattern that does not resemble the gasoline standard. MtBE was detected in DPB-4 and DPB-5 at 41 and 4.5 µg/Kg, respectively.

No TBA and TAME were detected in the capillary-fringe soil samples above the laboratory reporting limits of 3.9 to 1,000,000 µg/Kg.

4.2.1 Groundwater Analytical Results

As shown in Table 4 and Figures 10 through 18, the highest petroleum hydrocarbon contaminant levels were mostly encountered in the immediate vicinity of the pump islands.

4.2.1.1 Upper Shallow and Shallow Water-Bearing Zones

As shown in Table 1, the upper shallow WBZ was identified at the vertical interval of approximately 2 to 6 feet bgs. Groundwater was sampled from this zone in only one location, DPB-5. In this borehole, the lab detected none of the hazardous constituents of concern. In boreholes DPB-2, DPB-4 and DPB-S, the upper shallow zone yielded very little or no groundwater at all. Therefore, due to the insufficient volume of groundwater in these boreholes no groundwater was sampled.

The shallow WBZ was identified at vertical intervals ranging from approximately 10 to 14 feet bgs to 19 to 23 feet bgs. In the shallow WBZ the highest levels of petroleum hydrocarbon contaminants were encountered in DPB-3. In this borehole, the lab detected TPH-g at 48,000 μ g/L, benzene at 400 μ g/L, toluene at 5,800 μ g/L, ethylbenzene at 1,500 μ g/L, and total xylenes at 9,500 μ g/L. MtBE, TAME and TBA were detected at 8,900, 790 and 870 μ g/L, respectively.

Northwest and northeast of the pump island area, in the shallow WBZ of nearby boreholes DPB-1 and DPB-S, the lab detected TPH-g at 12,000 and 20,000 μ g/L, ethylbenzene at 440 and 380 μ g/L, and total xylenes at 2,180 and 6,600 μ g/L, respectively. Benzene and toluene not detected in the shallow WBZ of DPB-S above an elevated reporting limit of 170 μ g/L. In the shallow WBZ of DPB-1, benzene and toluene were reported at 25 μ g/L and 440 μ g/L, respectively. MtBE was detected in the shallow WBZs of DPB-1 and DPB-S at 8,100 and 53,000 μ g/L.

In the shallow WBZ of DPB-6, approximately 50 feet southwest of the pump island area, the lab detected TPH-g at 7,700 μ g/L, benzene at 18 μ g/L, toluene at 77 μ g/L, ethylbenzene at 170, and total xylenes at 640 μ g/L. MtBE was detected in the shallow WBZ of DPB-6 at 5.9 μ g/L. TAME and TBA were not detected in the shallow WBZ of this borehole.

In the shallow WBZ of DPB-5 and DPB-7, the lab did not detect the contaminants of concern.

4.2.1.2 Middle Water-Bearing Zone

The middle WBZ was identified at vertical intervals ranging from approximately 19 to 23 feet bgs to 32 to 36 feet bgs. In the middle WBZ, the highest levels of petroleum hydrocarbon contaminants were also encountered in DPB-3 – located near dispenser 2. In this borehole, the lab detected TPH-g at 62,000 μ g/L, benzene at 700 μ g/L, toluene at 9,900 μ g/L, ethylbenzene at 1,300 μ g/L, total xylenes at 7,900. Gas oxygenates MtBE, TAME and TBA were detected at 4,200 μ g/L, 2,100 μ g/L and 930 μ g/L, respectively.

In the middle WBZ of DPB-7, located approximately 90 feet west/northwest of DPB-3, the second highest level of petroleum hydrocarbon contamination was encountered. In DPB-7, the lab detected TPH-g at 7,000 μ g/L, benzene at 42 μ g/L, toluene at 640 μ g/L, ethylbenzene at 190 μ g/L, and total xylenes at 990

μg/L. MtBE, TAME, and TBA were detected at 300, 110, and 51 μg/L, respectively.

In DPB-6, located southwest of the pump island area, the lab detected TPH-g at 4,700 μ g/L, benzene at 21 μ g/L, toluene at 76 μ g/L, ethylbenzene at 160 μ g/L, and total xylenes at 650 μ g/L. A trace of MtBE was detected at 6.2 μ g/L.

Approximately 20 feet northeast of the pump island area, in the middle WBZ of DPB-S, the lab detected TPH-g at 1,500 μ g/L, benzene at 7.1 μ g/L, ethylbenzene at 7.4 μ g/L, and total xylenes at 170 μ g/L. MtBE and TBA were detected at 760 and 430 μ g/L.

None of the petroleum hydrocarbon constituents of concern were detected in the middle WBZ of DPB-5. This borehole is located approximately 100 feet east of the pump island area and approximately 50 feet east of the UST pit.

4.2.1.3 Deeper Water-Bearing Zone

The deeper WBZ was identified at vertical intervals ranging from approximately 32 to 36 feet bgs to 43 to 47 feet bgs. In this zone, the highest levels of petroleum hydrocarbon contaminants were also encountered in DPB-3. In this borehole, the lab detected TPH-g at 27,000 μ g/L, benzene at 210 μ g/L, toluene at 3,200 μ g/L, ethylbenzene at 640 μ g/L, and total xylenes at 4,100. MtBE, TAME and TBA were detected at 7,700, 610 and 1,100 μ g/L, respectively.

Significant levels of petroleum hydrocarbon contamination in the deeper WBZ were encountered in DPB-S, located approximately 20 feet northeast of the pump islands. In this borehole, the lab detected TPH-g at 4,300 μ g/L and total xylenes at 910. MtBE, TAME and TBA were detected at 42,000, 190, and 15,000 μ g/L, respectively.

Southwest of the pump island area, in DPB-6, petroleum hydrocarbon contamination was also encountered in the deeper WBZ. In this borehole, the lab detected TPH-g at 2,900 μ g/L, benzene at 8.8 μ g/L, toluene at 24 μ g/L, ethylbenzene at 54 μ g/L, and total xylenes at 249 μ g/L. MtBE and TBA were detected at 100 and 58 μ g/L, respectively.

West/northwest of the pump island area, in the deeper WBZ of DPB-7, the lab detected TPH-g at 150 μ g/L and did not detect BTEX, gas oxygenates and lead scavengers except for near trace levels of toluene, ethylbenzene and total xylenes. In boreholes DPB-4 and DPB-5, located east of the pump island area, petroleum hydrocarbon contaminants of concern were also either not detected or detected at near trace levels.

4.2.1.4 Mixed Water-Bearing Zones

The mixed WBZ interval spans all three water-bearing zones, extending to a total depth of 39 feet bgs in DPB-2 and 47 feet bgs in DPB-8. In DPB-2, located approximately 60 feet west of the pump island, no groundwater was encountered in any of the potential water-bearing zones at the time of drilling. To obtain a groundwater sample from DPB-2, a clean PVC well casing was placed into this borehole and sealed at surface grade. After several days, SOMA field personnel returned to collect the groundwater sample. In this borehole, the lab detected TPH-g at 710 μ g/L, benzene at 1.1 μ g/L, ethylbenzene at 18 μ g/L, and total xylenes at 74 μ g/L. MtBE was also detected at 540 μ g/L.

Approximately 150 feet west/northwest of the pump island, in DPB-8, no groundwater was detected in any of the potential WBZs. However, during the withdrawal of the drilling rods, groundwater was observed on the outside of the sampling device. The driller emplaced a clean PVC well casing into DPB-8 and a groundwater sample was collected at that time. In this borehole, the lab did not detect any petroleum hydrocarbon constituents and gasoline additives above the laboratory detection limit.

4.3 Preferential Pathway Flow Analysis

SOMA personnel obtained a subsurface utility map from the San Ramon Valley Services District. A copy of this map is included as Appendix E. This map shows the location and depth of sewer and water utilities in the immediate vicinity of the Site. North of the Site along Dublin Boulevard, aligned between boreholes DPB-1 and DPB-8, this map shows an 18-inch vitrified clay pipe (VCP) sewer line with a depth of 16 to 17 feet bgs. Survey depths to this utility indicate that the sewer line and trench are sloped to the east along Dublin Boulevard and to the southeast along Village Parkway. VCP utilities are typically bedded with coarse-grained material that can also behave as a preferential flow path for contaminated groundwater.

Historical depths to water at the Site range between approximately 7 to 13 feet bgs. This is consistently higher than the depth of the sewer line and indicates that the sewer lines in the Site's vicinity are continually submerged. Based on the fact that elevated levels of groundwater contaminants were detected in the boreholes adjacent to the sewer line, it appears that the sewer line is intercepting and receiving the fuel-impacted groundwater. The trench bedding of this utility line may also be conveying contaminants to the east, under Dublin Boulevard and perhaps to the southeast under Village Parkway.

5.0 CONCLUSIONS

5.1 Site Geology and Hydrogeology

Based on SOMA's continuously sampled stratigraphy borehole and electrical conductivity logs, clay and silty clay deposits comprise most of the subsurface to a depth of 50 feet bgs. However, silty sand, clayey sand and sandy clay deposits occur more frequently than indicated in borehole logs from previous subsurface investigations. In the northeastern portion of the investigation area, silty clay and

clay constitute over 95% of the upper 50 feet with infrequent coarser-grained lenses throughout. In the southwest portion of the Site, however, silty sand lenses are frequently interbedded with silty clay, sandy clay and clayey sand below a depth of approximately 35 to 40 feet bgs. These sediments comprise the deeper WBZ that has been heavily impacted by petroleum hydrocarbon contaminants of concern.

5.2 Soil and Groundwater Contamination

Based on the soil and groundwater analytical results, petroleum hydrocarbon contamination is highest in the dispenser island area and the groundwater plume has migrated off-site to the north and northwest. The highest soil and groundwater levels of TPH-g, benzene and MtBE were encountered in the boreholes adjacent to dispenser 2. The next highest levels of contamination were encountered in DPB-S and DPB-1, respectively located 20 and 30 feet away from DPB-3. Groundwater contamination levels appear to decrease in proportion to distance from borehole DPB-3.

In DPB-3, elevated TPH-g, benzene, MtBE, and TBA levels were detected in the shallow, middle and deep WBZs. In the middle WBZ of this borehole, however, petroleum hydrocarbon levels are slightly higher. Near DPB-3 is monitoring well MW-3 and this well is exclusively completed in the shallow WBZ. The presence of five- to ten-foot thick clay aquitards separating these three zones would impede the downward migration of petroleum hydrocarbons to the lower water-bearing zones.

The petroleum hydrocarbon contamination encountered in DPB-6 may also have originated from dispenser 1 – located at the southern pump island. In a soil gas survey conducted in 1988, EA Engineering Science documented elevated hydrocarbon levels with benzene concentrations as high as 29,000,000 ppb at this pump island. During remedial excavation in this area, soil samples at 10 feet

bgs contained TPH-g as high as 1,700,000 $\mu g/Kg$. DPB-6 is located much closer to dispenser 1 than dispenser 2.

Since the existing groundwater monitoring wells are not exclusively completed and properly installed within each water-bearing zone, the current groundwater flow direction within each WBZ has not been determined. San Ramon Creek passes along the western edge of the Site and it is anticipated that the groundwater is flowing toward this watercourse. However, city sewer lines passing along the south side of Dublin Boulevard (on the north side of the Site) appear to be intercepting the fuel-impacted groundwater and could be skewing the anticipated westward flow direction to the northwest.

Assuming a northwestward groundwater flow direction, the observed pattern of groundwater contamination can be explained. With DPB-S and DPB-3 located north/northwest of and probably downgradient from the UST pit, it is possible that petroleum hydrocarbon contamination encountered in these boreholes also originated from the former USTs. Unusually high levels of petroleum hydrocarbon contamination had been detected in the former UST areas. During the excavation of the former UST pit, the soil contamination levels were high enough to require disposal at Class I and II landfills. Also, the highest gas oxygenate levels were encountered in DPB-S – higher than the dispenser-island source area. It is probable that these higher than dispenser-area levels of gas oxygenates originated from the USTs and that the UST area is another source of groundwater contamination.

In the shallow and deeper WBZ of DPB-S, MtBE and TBA levels were the highest encountered in this investigation. In the middle WBZ of this borehole, however, gas oxygenate levels decreased by at least two orders of magnitude below the shallow and deeper WBZs. Due to slow recharge during groundwater sampling, the middle WBZ of DPB-S required over a day to collect enough groundwater to sample. The log of adjacent borehole S-1 indicates that this middle zone is composed of very stiff silty clay. Based on the unusually

prolonged groundwater sampling period and the presence of very stiff clay in the middle WBZ, the middle zone of DPB-S appears to be relatively impermeable. The relative absence of middle-zone contamination and the relative impermeability of this zone indicate that the middle WBZ of DPB-S probably behaves as a localized aguitard.

5.3 Evaluation of Existing Groundwater Monitoring Network

Reviewing the construction diagram of all existing groundwater monitoring wells indicate that the majority of these wells have been improperly installed. There are currently eight groundwater monitoring wells at the Site. Monitoring wells EA-1 through EA-3 are 4-inch diameter wells each with a total depth of 40 feet. These wells were installed in 1988. The screen intervals of EA-1 and EA-2 are from 10 to 40, while the screen interval of EA-3 is from 5 to 40 feet. As the results of our current investigation indicates, the long screen interval of these wells are causing cross-contamination between the shallow, middle and deep WBZs. Therefore, the existing historical data in terms of groundwater elevation and groundwater chemical data are not representative of any of the water-bearing zones encountered beneath the Site.

Monitoring wells MW-1 through MW-3 were installed in 1994, while MW-4 and MW-5 were installed in 1996. MW-1 through MW-5 are 2-inch diameter wells with total depths of 21.5 to 26.5 feet bgs and screen depths of 20 to 25 feet bgs. Since the middle WBZ starts at approximately 20 feet bgs and MW-1 has been screened from 5 to 25, the probability of cross contamination between the shallow and middle WBZs exists.

The total depth of well MW-2 is approximately 21.5 feet bgs. In the two nearest boreholes, DPB-2 and DPB-6, the middle WBZ starts at 32 feet bgs and 26 feet bgs, respectively. Because the total depth of MW-2 is 21.5 feet bgs and the top of this well is situated two to three feet above the surface grade of DPB-6, it appears that at least six feet of clay separates the bottom of MW-2 from the top of the middle WBZ. This well appears to have been screened exclusively within

the shallow WBZ and may be considered to be representative of the shallow WBZ.

In the area of MW-3, the upper shallow WBZ was not observed in DPB-1 and DPB-3. The middle WBZ of these two boreholes starts at 30 feet bgs and 27 feet bgs, respectively. Since the total depth of MW-3 is 26.5 feet bgs and the top of MW-3 is situated two to three feet above the surface grade of DPB-3, this well is considered to be completed exclusively in the shallow WBZ. The existing data for MW-3 should be treated as a representative data for the shallow WBZ in this area.

As shown in Table 1, wells MW-4 and MW-5 are located in the vicinity of DPB-8 where no upper shallow zone was observed. The total depth of these wells is 21.5 feet bgs with screens installed at 5 to 20 feet bgs. The EC data from DPB-8 also indicates that the top of the middle WBZ starts at approximately 27 feet bgs. Based on the borehole data, it appears that MW-4 and MW-5 have been exclusively completed in the shallow WBZ and historical data for these well should be treated as a representative of the shallow WBZ. However, MW-5 has been installed on the west side of San Ramon Creek, and therefore has no hydrogeologic relevance to the Site.

5.4 Preferential Pathway Flow Analysis

Based on information received from the City of Dublin and on-site historical depths to groundwater data, the nearby sewer line, which passes along Dublin Boulevard may be conveying MtBE and other contaminants of concern off-site to the east. Fuel-impacted groundwater appears to be entering the sewer line trenches and as a result, the sewer lines and their bedding material may be acting as a preferential flow pathway.

6.0 RECOMMENDATIONS

Based on the results of this investigation, we recommend the following:

- Decommissioning on-site wells MW-1 and EA-1 through EA-3 with excessively long screens to eliminate cross-contamination between the water-bearing zones.
- Decommissioning off-site well MW-5 in order to eliminate the source of irrelevant monitoring data.
- Installing groundwater monitoring wells within the shallow, middle, and deeper WBZs to establish the groundwater flow directions within these WBZs.
- When the groundwater flow direction is established in the shallow, middle, and deeper WBZs, we recommend installing additional monitoring wells downgradient from the Site in order to delineate the horizontal extent of off-site contamination in each WBZ.
- Re-surveying all the monitoring wells in order to comply with EDF requirements.
- Sampling the city sewer lines for confirmation purposes and determine if the sewer lines are acting as preferential flow pathways.
- When the Site has been characterized, remedial feasibility studies should be undertaken to analyze the most feasible mode of remediation.

7.0 REFERENCES

EA Engineering, Science, and Technology, March 1988, "Report on Investigation Chevron SS 9-2582, 7240 Dublin Boulevard, Dublin, California.

EA Engineering, Science, and Technology, November 1988, "Report on Investigation Chevron SS 9-2582, 7240 Dublin Boulevard, Dublin, California.

BLANE Tech Services, Inc., March 14, 1989, "Samples Collected from the Gasoline Tank Pit Bottom Following the Evacuation of Water"

Western Geologic Resources, Inc. April 1989, "Soil Sampling, Excavation Disposal"

Western Geologic Resources, Inc. July 1990, "Vadose Zone Characterization Vadose Well Installation and Vacuum Extraction Testing"

Western Geologic Resources, Inc. August 1989, "Soil Boring, Sampling and Excavation"

Gettler Ryan, March 10, 2003, "First Quarter 2003, Groundwater Monitoring and Sampling Report."

SOMA Environmental Engineering, March 31, 2003, "Third Revision of Workplan to Conduct Soil and Groundwater Remediation at Former Chevron Service Station, 7240 Dublin Boulevard, Dublin, California".

U. S. Geologic Survey, 1979, "Flatland Deposits – Their Geology and Engineering Properties and Their Importance to Comprehensive Planning", Professional Paper 943, Plate 3.

Weiss Associates, December, 1996, "Human Health Risk Assessment"

Tables

Table 1: Field Observations of Groundwater Sampling
April 17, 18, 30 & May 1, 2003
7240 Dublin Boulevard, Dublin CA

Borehole	Potential	WBZ Depth ²	Date	Date
Location	Water-Bearing Zone ¹	(feet bgs)	Borehole Drilled	WBZ Sampled
DPB-1	Shallow	16.0-20.0	01-May-03	01-May-03
*	Middle	30.0-34.0	043May203	NS:
	Deep	39.0-43.0	01-May-03	NS
DPB-2	Upper Shallow	5000	10 Apr 00	22-Apr-03
DF 6-2	Shallow	5.0-9.0 19.0-23.0	18-Apr-03 18-Apr-03	Sampled as one
	Middle	32.0-36.0	18-Apr-03	from Temporary
	CANONIC LONG CONTROL AND CONTROL OF THE RESIDENCE CONTROL OF THE PROPERTY OF THE PARTY OF THE PA	39.0-43.0		PVC Casing ³
	Deep	39:U-43.U	18-Apr-03	PVC Casing
DPB-3	Shallow	16.0-20.0	17-Apr-08	1.7-Apr-03
	Middle	27.0-31.0	17-Apr-03	18-Apr-03
	Deep 🐃	39,0-43.0	17-Apr-03	17-Apr-03
DPB-4	Upper Shallow	2.0-6.0	30-Apr-03	NS -
	Shallow	10.0-14.0)	17-Apr-03	NS
	Middle	19.0-23.0	30-Apr-03	NS NS
	Deep	32.0-36.0	17-Apr-03	17-Apr-03
DPB-5	Upper Shallow	7.0-11.0	30-Apr-03	30-Apr-03
	Shallow	11.0115.0	17-Apr-03	17-Apr≠03
	Middle	26.0-30.0	30-Apr-03	30-Apr-03
	Deep	36.0-40.0	. 17-Apr-03.	17-Apr-03
DDD 6		ALICANO ENTRE VICTORIA		CALLED BY THE PARTY OF THE SAME OF THE SAM
DPB-6	Shallow	15.0-19.0	18-Apr-03	18-Apr-03
	Middle	26.0-30.0 }	18-Apr-03	18-Apr-03
	Deep	35.0-39.0	18-Apr-03	18-Apr-03
DPB-7	Shallow	15.0-19.0	18-Apr-03	18-Apr-03
	- Middle	20.0-24.0	18-Apr-03	1/8-Apr-03
	Deep	35.0-39.0	18-Apr-03	18-Apr-03
DPB-8	Shallow	18.0-22.0	01-May-03	01-May-03
	Middle	27.0,31.0	🐧 01-May-03	Sampled as one from
FERRING SELVENTANCE MENTING	Deep	43.0-47.0	01-May-03	Temporary PVC Casing ³
DPB-S	Upper Shallow	2.0-6.0	30-Apr-03	NS
0,00	Shallow	2.0-0.0 44.0-18.0	18-Apr-03	18:Apr÷03
ľ	Middle	26.0-30.0	30-Apr-03	01-May-03
	Deep	35.0-39.0	18-Apr-03	18-Apr-03
<u>_</u>			F 12.1 KF 22	LONG THE THE

NOTES

¹ Potential Water-Bearing Zones determined by Electrical Conductivity Borehole logs

² Borehole DPB-2 elevation approximately four (4) feet higher than DPB-3, -4, -5, and -6 and approximately two (2) feet higher than DPB-1, -7, and -8

None of the potential Water-Bearing Zones yielded groundwater
NS: Not Sampled - potential water-bearing zone did not yield groundwater

Table 2: Vadose Zone Soil Analytical Results April 23, 2003 7240 Dublin Boulevard, Dublin CA

Borehole	Depth	TPH-g	Benzene	Toluene	Ethyl-benzene	Total Xylenes	MtBE	TAME	TBA	Ethanol
Dotellole	(feet bgs)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
B-1	3.5-4.0	<200	<5.0	<5.0	<5.0	<5.0	<5.0	<0.5	<100	<1,000
B-2b	3.5-4.0	92,000,000	12,000	560,000	240,000	1,550,000	21,000	20,000	<100,000	<1,000,000
B-3	3.5-4.0	<190	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	86	860
B-4	2.5-3.0	<1 7 0	<4.2	<4.2	<4.2	<4.2	₹4.2	<4.2	83	830
B-5	3.5-4.0	<190	<4.7	<4.7	<4.7	7.9	<4.7	<4.7	94	940
B-6	2.5-3.0	<170	<4.3	<4.3	<4.3	` <4.3	∞<4.3	<4.3	86	860
B-7	3.5-4.0	8,700,000	7,700	270,000	170,000	920,000	7,100	<10,000	<140,000	<1,400,000
B-8	4:0-5:75	9,900 ^{HY}	6:4	<4.4	33	200	47	-12	88	880

NOTES

Soil samples collected using EPA Method 5035

All other Gas Oxygenates and Lead Scavengers not detected above laboratory detection limits of 3.9 to 1,000,000 ug/kg.

TPH-g analyzed by EPA Method 8015

BTEX, MtBE and Gas Oxygenates analyzed by EPA Method 8260B

Y Sample exhibits chromatographic pattern that does not resembe standard.

Heavier hydrocarbons contributed to the quantitation.

Table 3: Capillary Fringe Soil Analytical Results April 17 & 18, 2003 7240 Dublin Boulevard, Dublin CA

Borehole	Depth	TPH-g	Benzene	Toluene	Ethyl-benzene	Total Xylenes	MtBE
	(feet bgs)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
DPB-3	14.0-15.0	3,500,000	6,600	120,000	43,000	251,000	17,000
DRB-3	1845-1915	<160	<4.2	<4.2	<4.2	<4.2	1,400
DPB-4	9.0-10.0	200 ^Y	<3.9	<3.9	<3.9	<3.9	: 41
DEB#5	111.0312.0	.3 <170	<4.1	† <4.1	<4#I	<4.1	4.5
DPB-6	18.0-18.75	<150	<4.0	<4.0	<4.0	<4.0	<4.0
DPB47	15.5-16.5	<200£	<5.0%	<5.0	<5.0	<5.0	<5.01
DPB-S	15.0-16.0	1,200	<130	<130	<130	360	3,500

NOTES

Soil samples collected using EPA Method 5035

TPH-g analyzed by EPA Method 8015

BTEX, MtBE and Gas Oxygenates analyzed by EPA Method 8260B

Gas Oxygenates and lead scavengers not detected above laboratory detection limits of 3.9 to 1,000,000 ug/Kg

Y Sample exhibits chromatographic pattern that does not resemble standard.

Table 4: Groundwater Analytical Results April 17,18, 30 & May 1, 2003 7240 Dublin Boulevard, Dublin CA

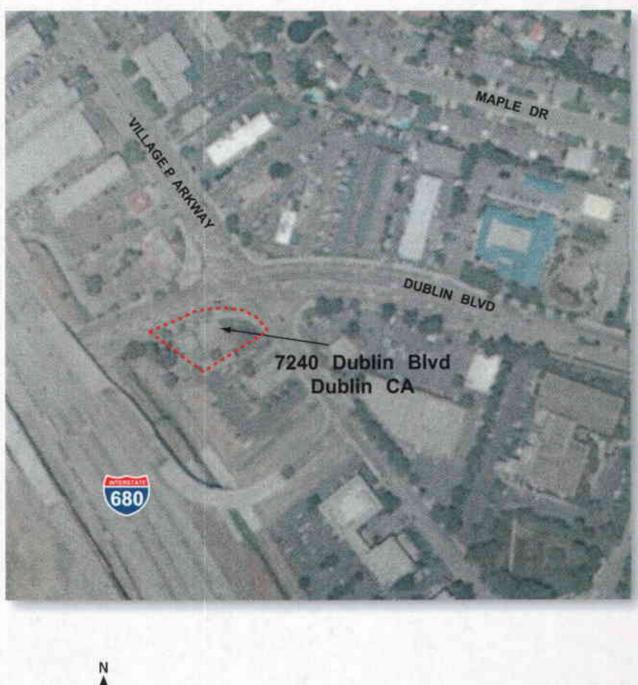
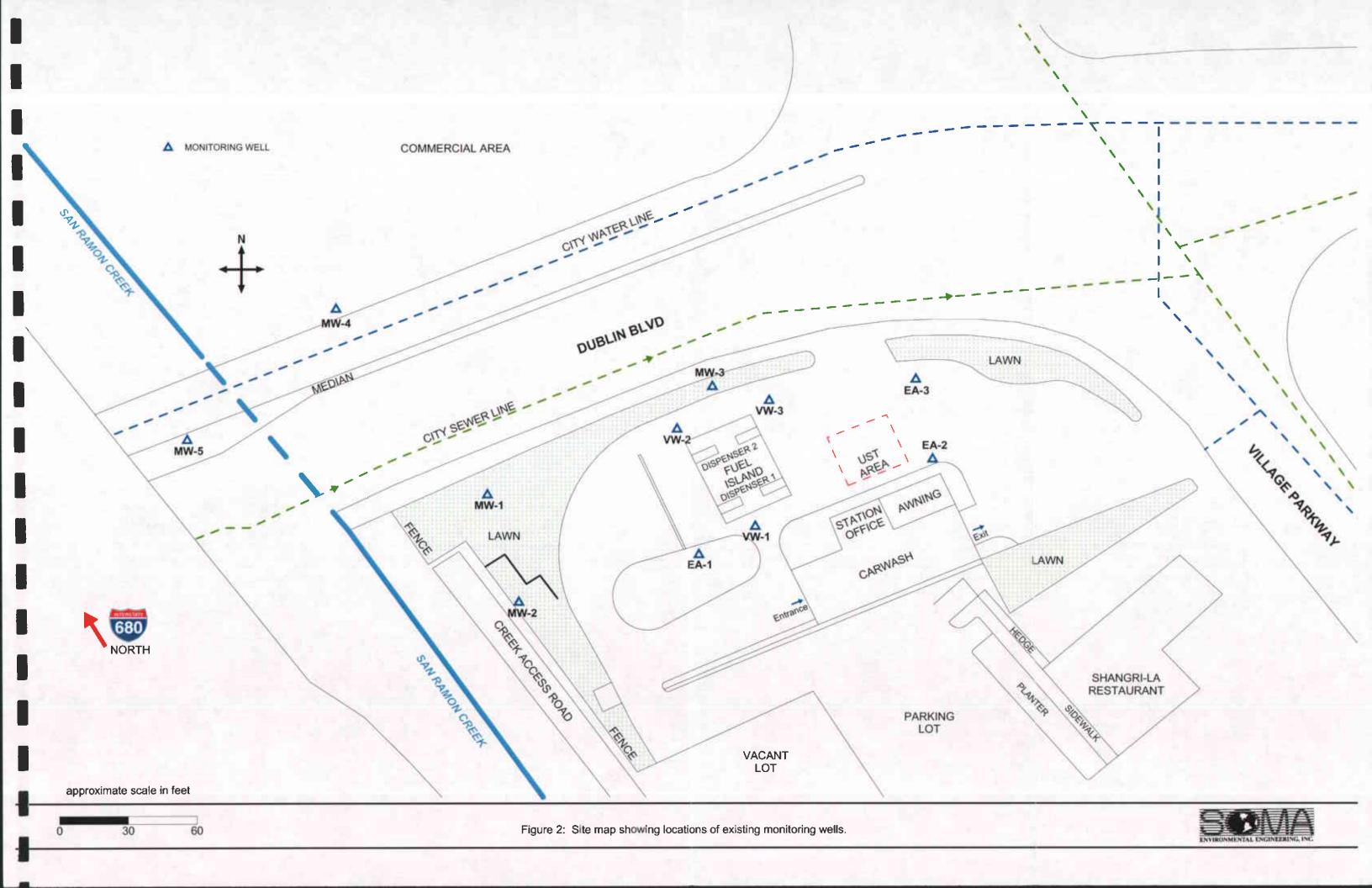
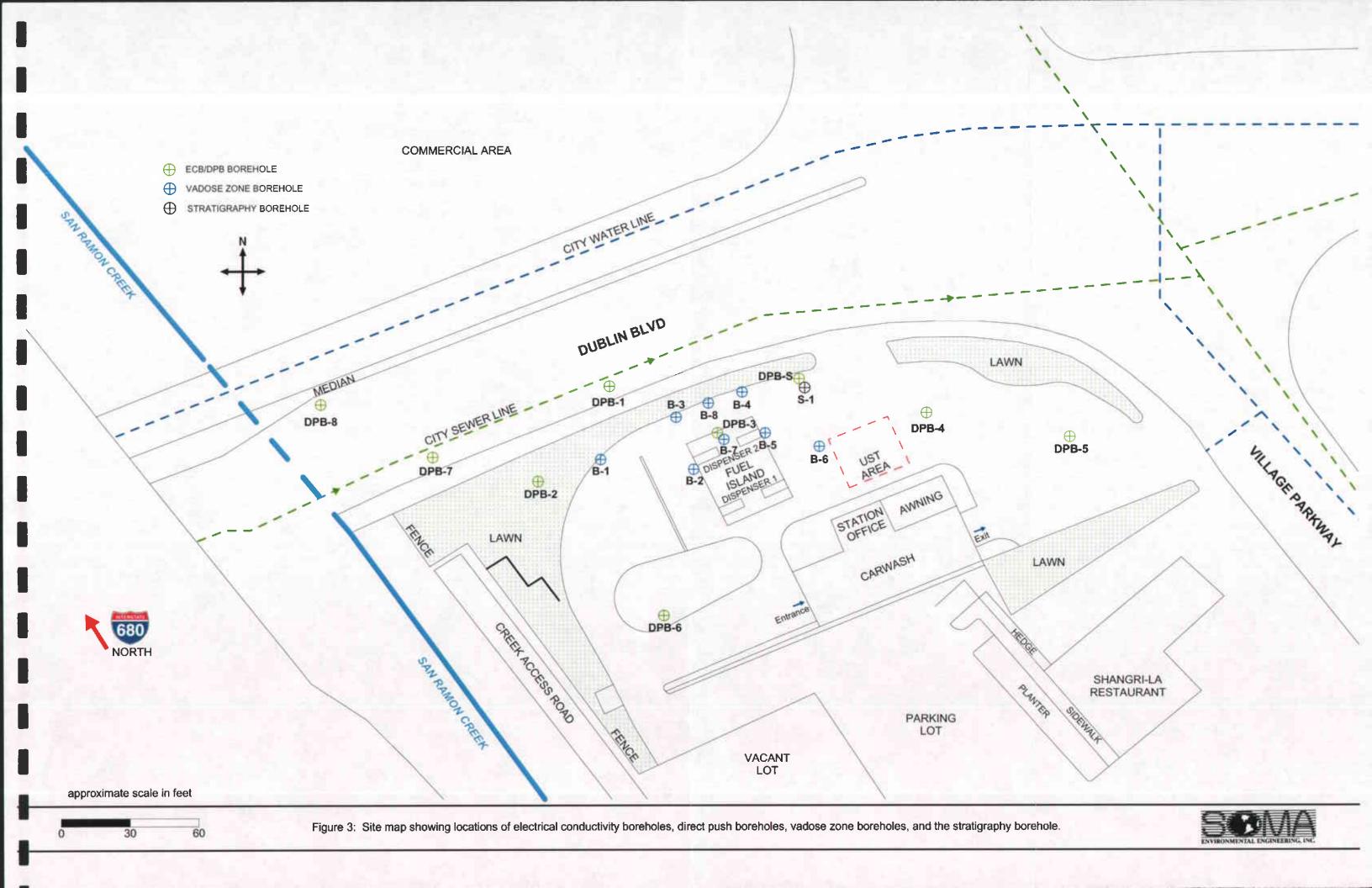
	Donalla	TOU -	D	T - 1				
Borehole	Depth	TPH-g	Benzene	Toluene	Ethyl-benzene	Total Xylenes	MtBE	TAME
	(feet bgs)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
				SHALLOW	WATER-BEARIN			
DPB-5	7.0-11.0	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
			SH	ALLOW WA	TER-BEARING ZO	ONE		
DPB-1	16.0-20.0	12,000	25	440	440	2,180	8,100	<25
DPB-8 🐔	16.0-20.0	48,000.24	400 /	D 5.800	34E 1.5003E	9:500	₹38 :900€	3790 M
DPB-5	11.0-15.0	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	15.0-19.0	7,700 mg	t8	&LQ77.7.1	4.440x 170x3	3 640	源:19第	4x4x4100#
DPB-7	15.0-19.0	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
DPB/S	14.0.18.0	20,000	7 K170 Lib	P 21700	1 2 22 8 B O 7 28 24	% 6,600 ·	:53,990,0	270
			М	IDDLE WAT	ER-BEARING ZO	NE		
DPB-3	27.0-31.0	62,000	700	9,900	1,300	7,900	4,200	2,100
DPB-5	26:0:80:0	≃65 €50 -k¢	₹%±0.5 \%	s <0;5324	k! <0.5020m	\$31505-0.546944	55×0.5	₹ <0,5
DPB-6	26.0-30.0	4,700	21	76	160	650	6.2	<0.8
DPB-75	20,0,2410	27,000C\$*		5640	A 190% THE	990€(-	% 3 00.	4231105c
DPB-S	26.0-30.0	1,500	7.1	<3,1	7.4	170	760	<3.1
		•	DE	EPER WAT	ER-BEARING ZO	NE		
DPB-3	39.0-43.0	27,000	210	3.200	640	4,100	7.700	610
DPB-45	3210-36.0	36. ≥50 °	√ €0.5 .%ak	£ 2.3	<0.57+376	7. 3% T Q 25	5 9 4 ar	£0.5%
DPB-5	36.0-40.0	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
DPB-6	55(0:39.0	2.900	8.8	/t 24	€3/4 5454	(8): 24 9 (8)3(2)	MAN (802)	38.20.670
DPB-7	35.0-39.0	150	<0.5	1.8	0.8	5.7	<0.5	<0.5
DPB-9#	3500139.0	4,900	%=12 3 ×63	<63	£ <63 ±	910 \$	142,000	
			M	XED WATE	R-BEARING ZON			
DPB-2	NA	710	· 1.1	<1.0	18	74	540	<1.0
DPB:6	SHINA J. A	1,33250	<0.5	405	s <0.5		2 0.5%	(E) 20158

NOTES

TPH-g analyzed by EPA Method 8015

BTEX, MtBE and Gas Oxygenates analyzed by EPA Method 8260B

Other Gas Oxygenates and Lead Scavengers not detected above laboratory detection limits of 0.5 to 330,000 ug/L

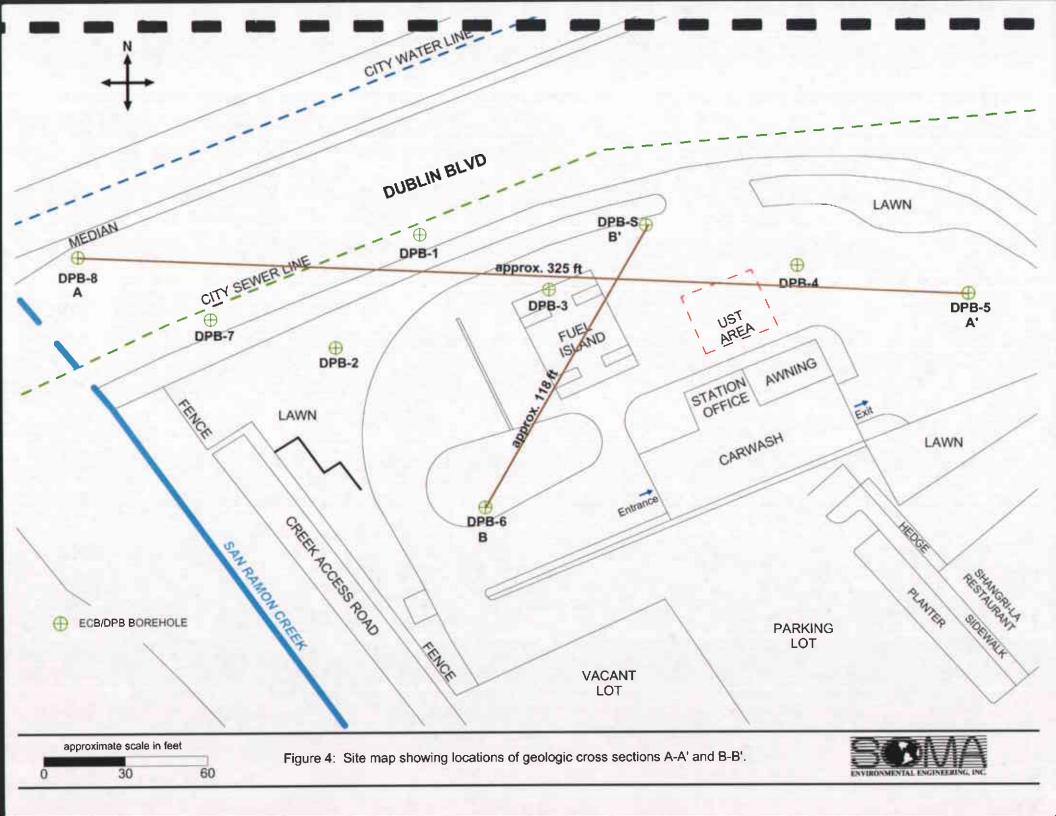


Figure 1: Site vicinity map.

PROJECTION FROM CROSS SECTION LINE

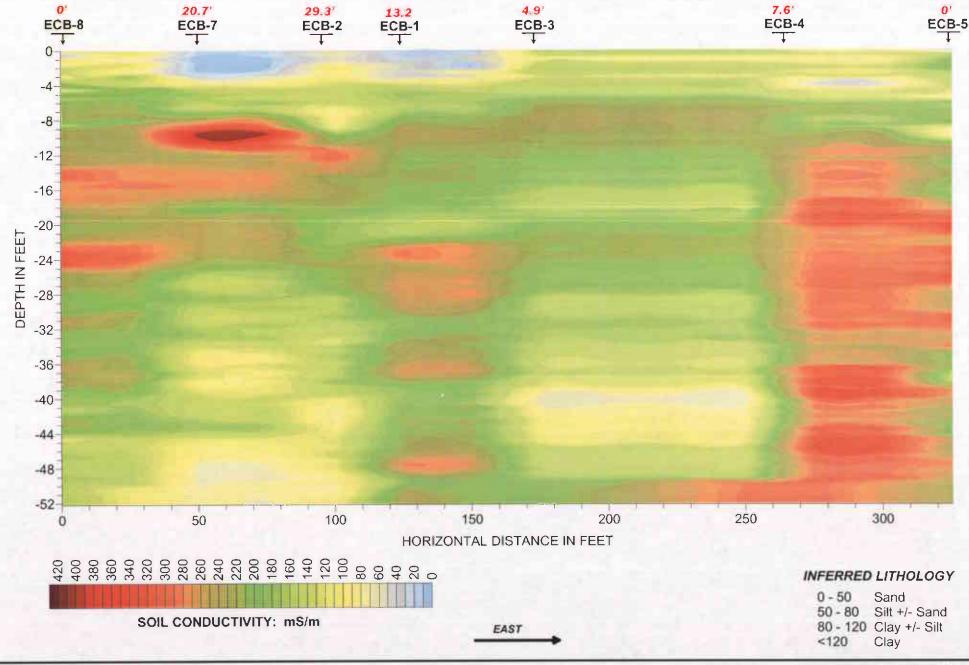
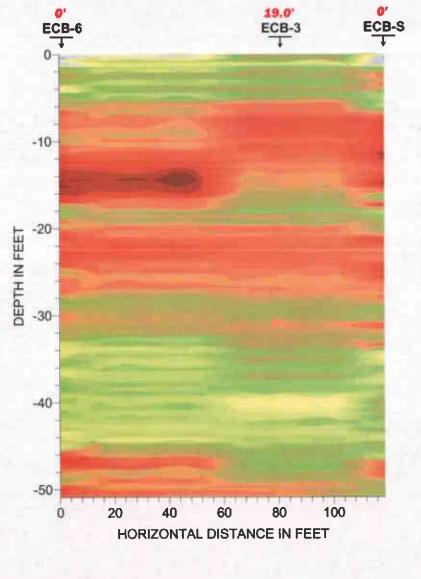
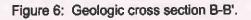
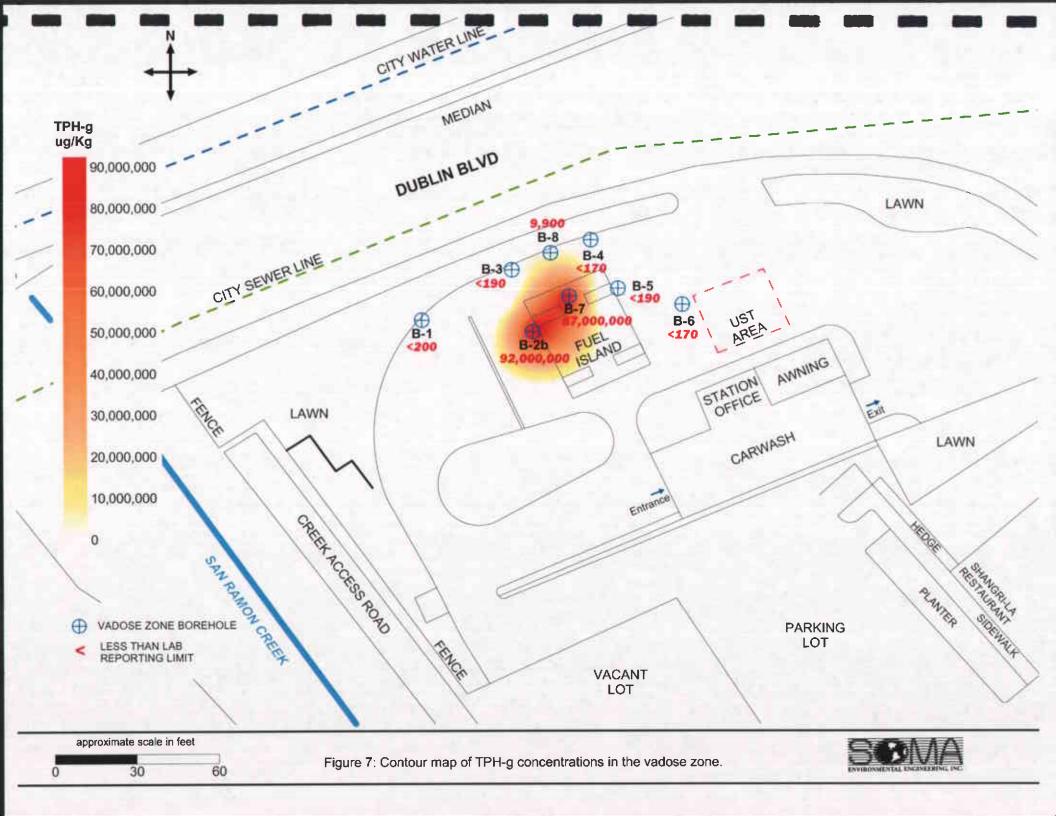
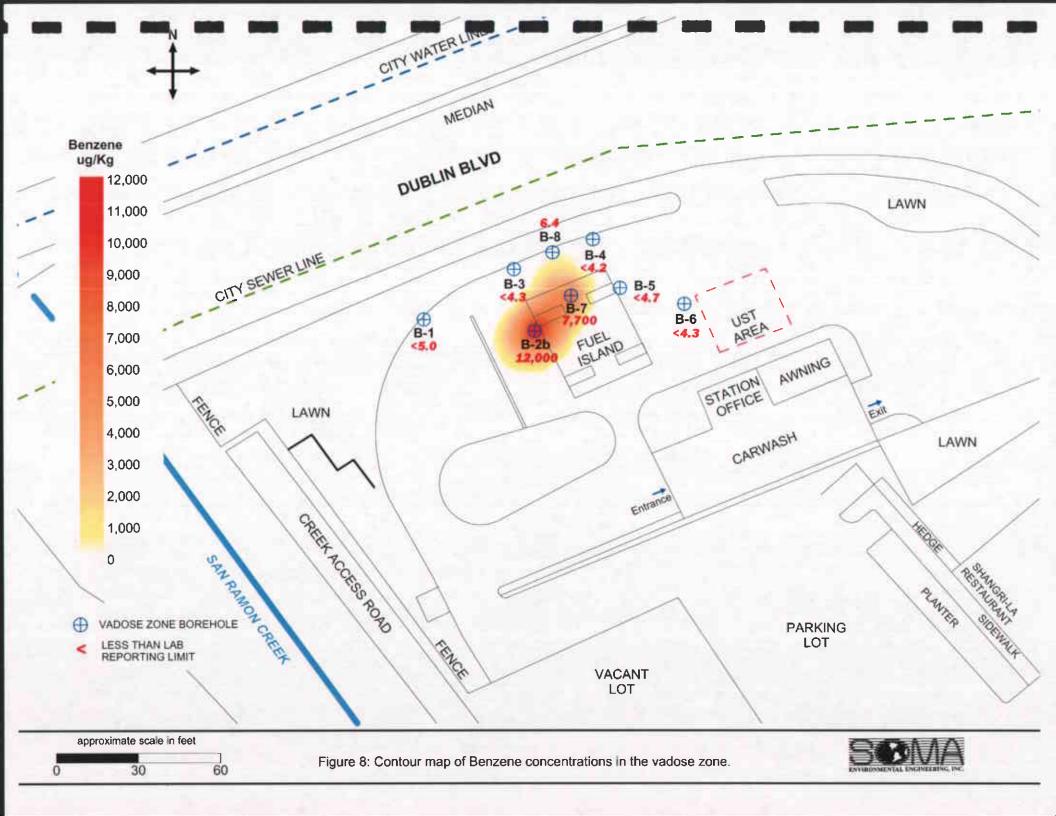



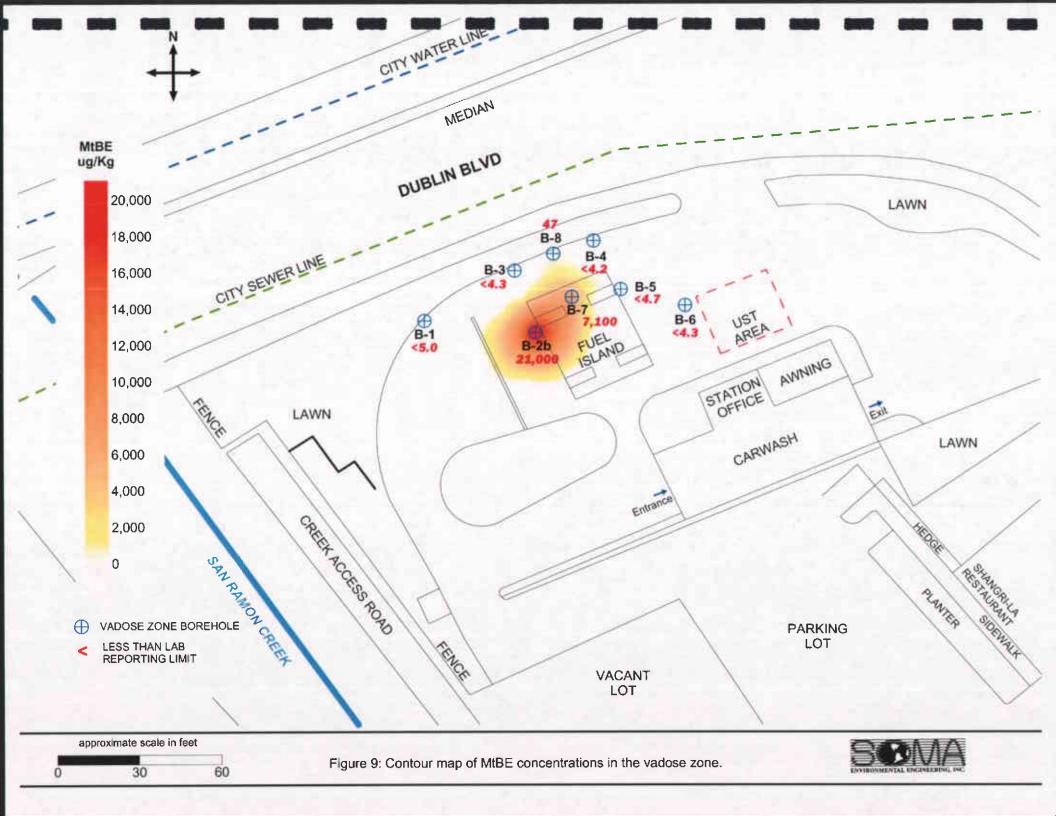
Figure 5: Geologic cross section A-A'.

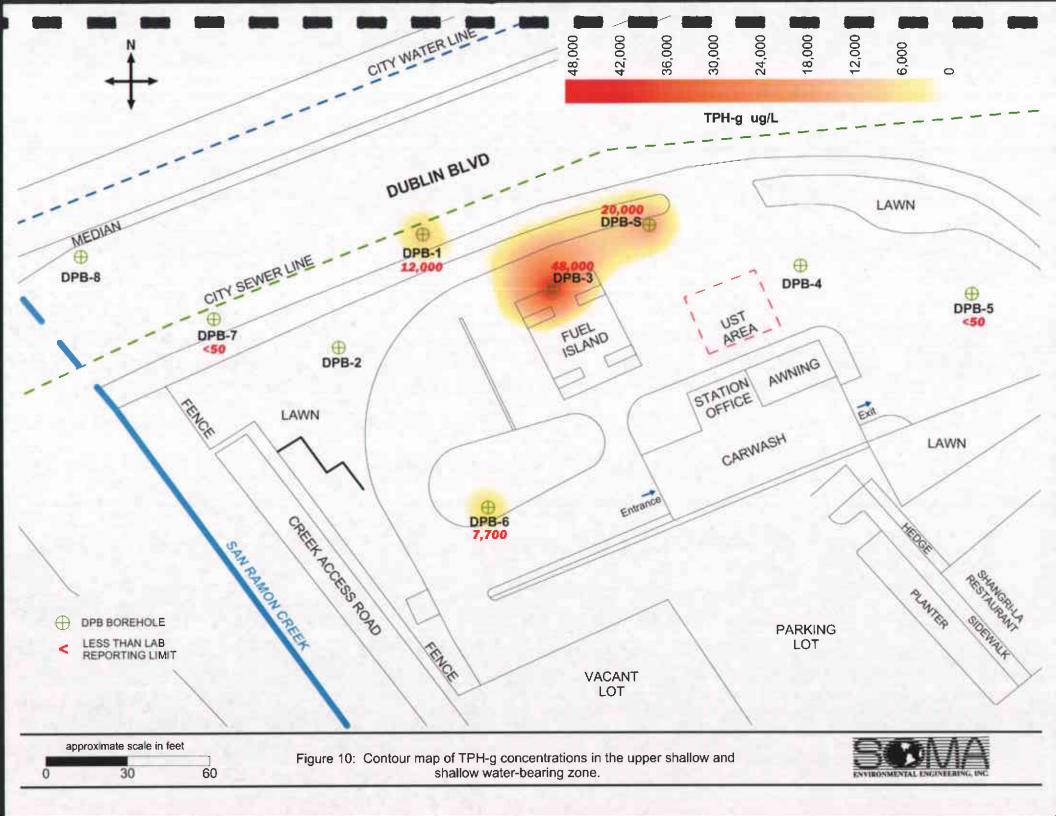


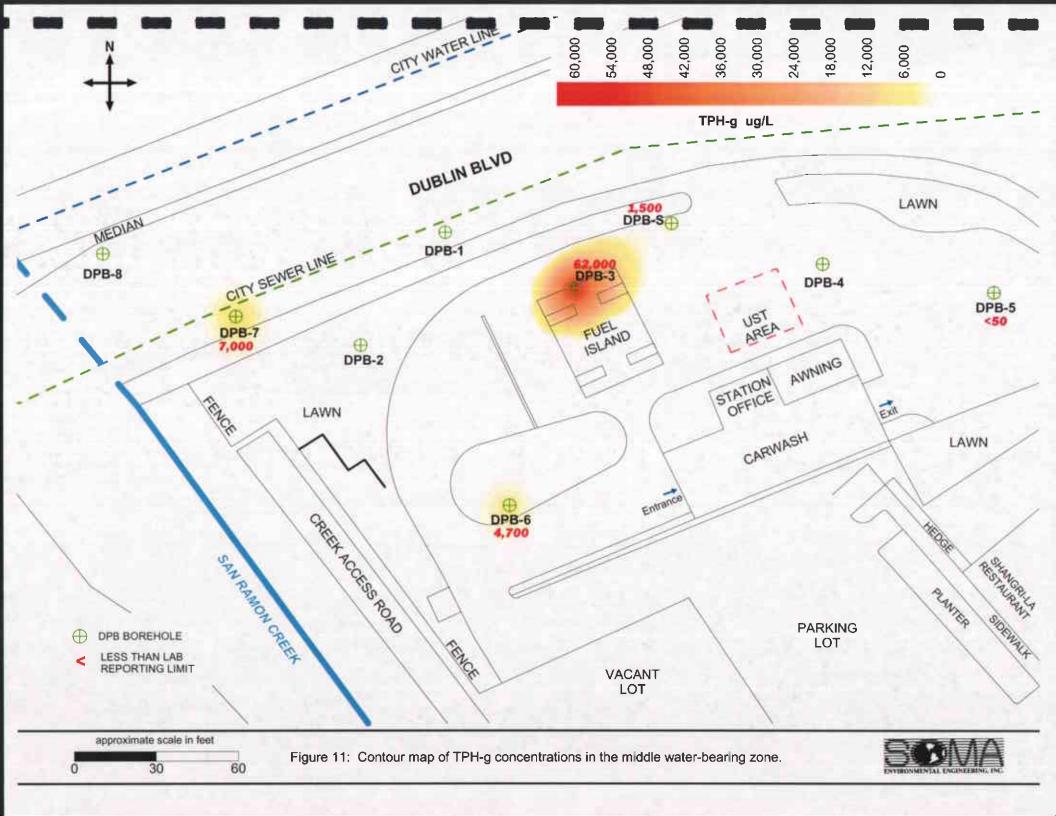
SOIL CONDUCTIVITY: m\$/m

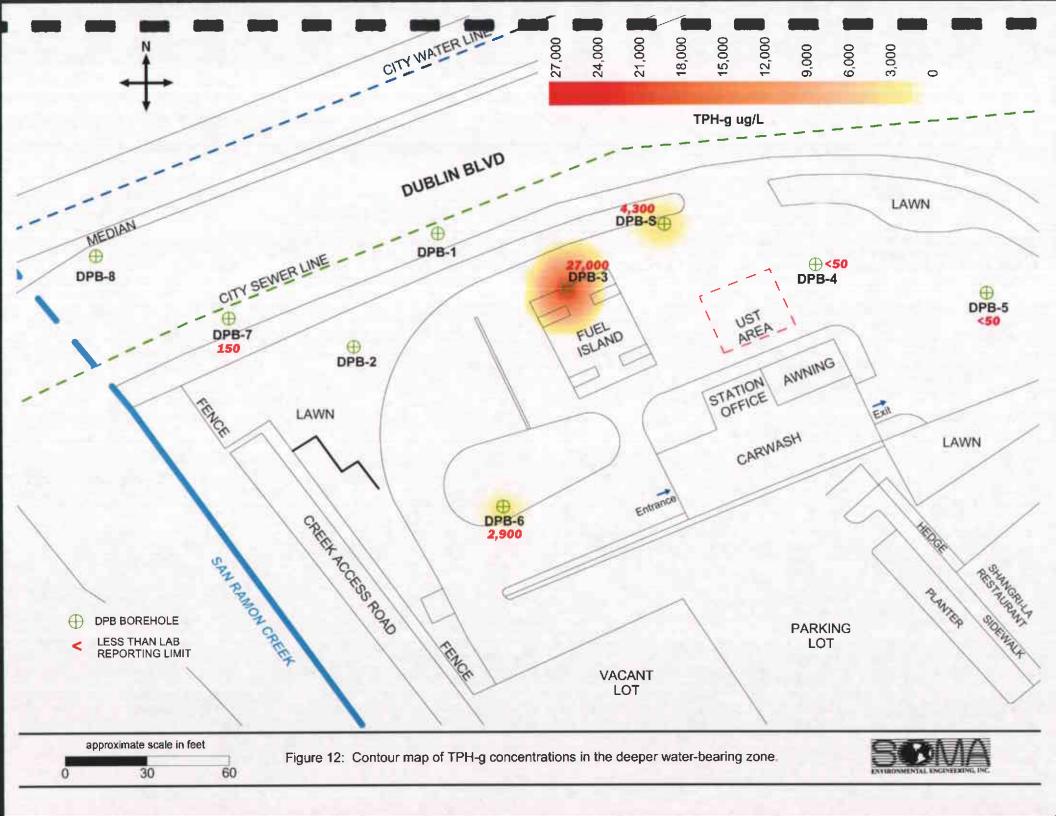

INFERRED LITHOLOGY

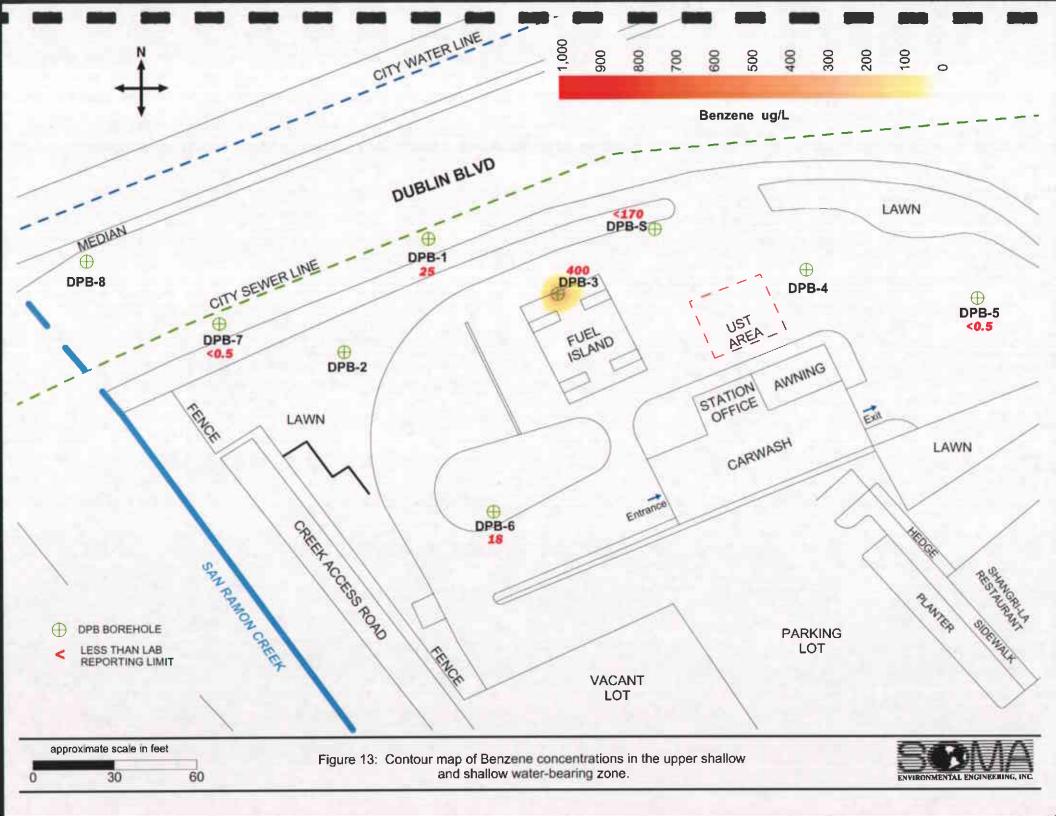

PROJECTION FROM CROSS SECTION LINE

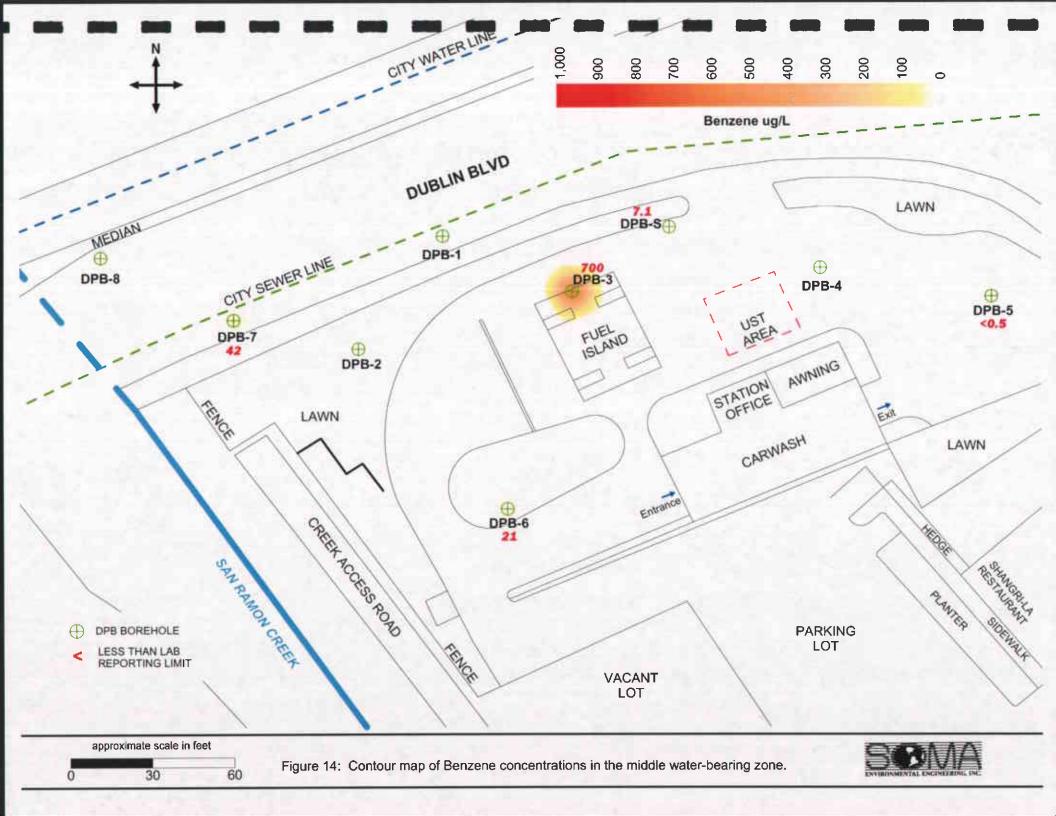

0 - 50 Sand 50 - 80 Silt +/- Sand 80 - 120 Clay +/- Silt <120 Clay

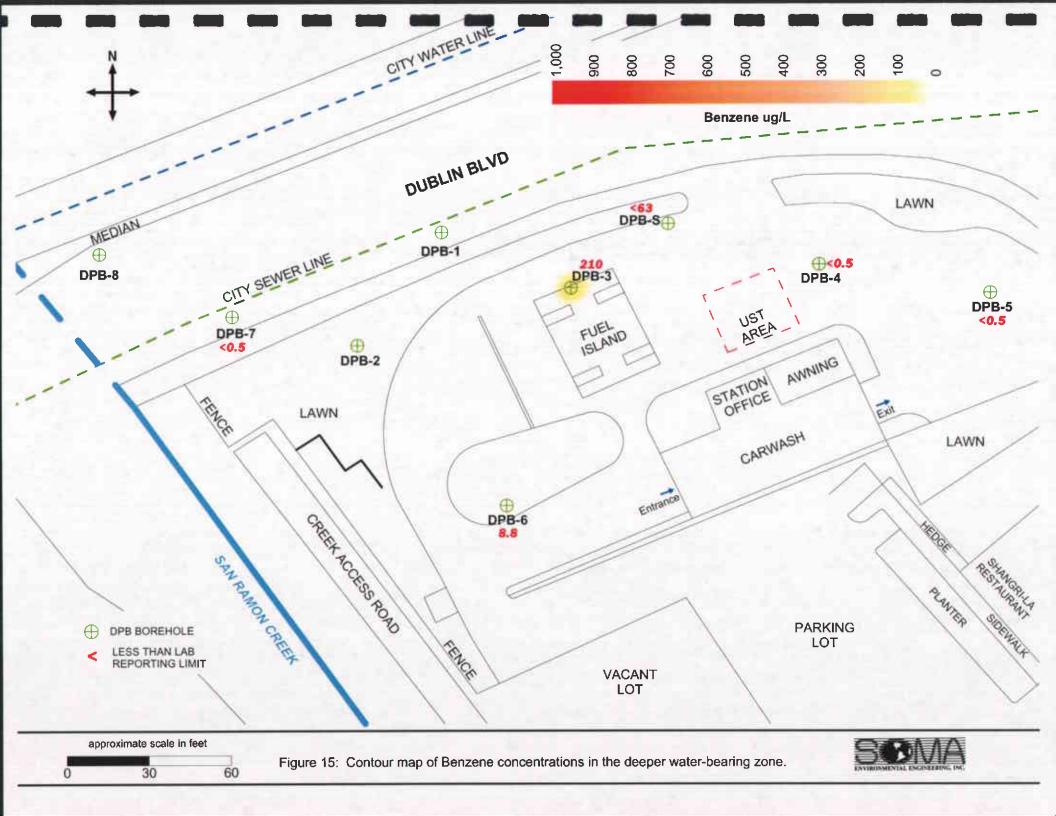


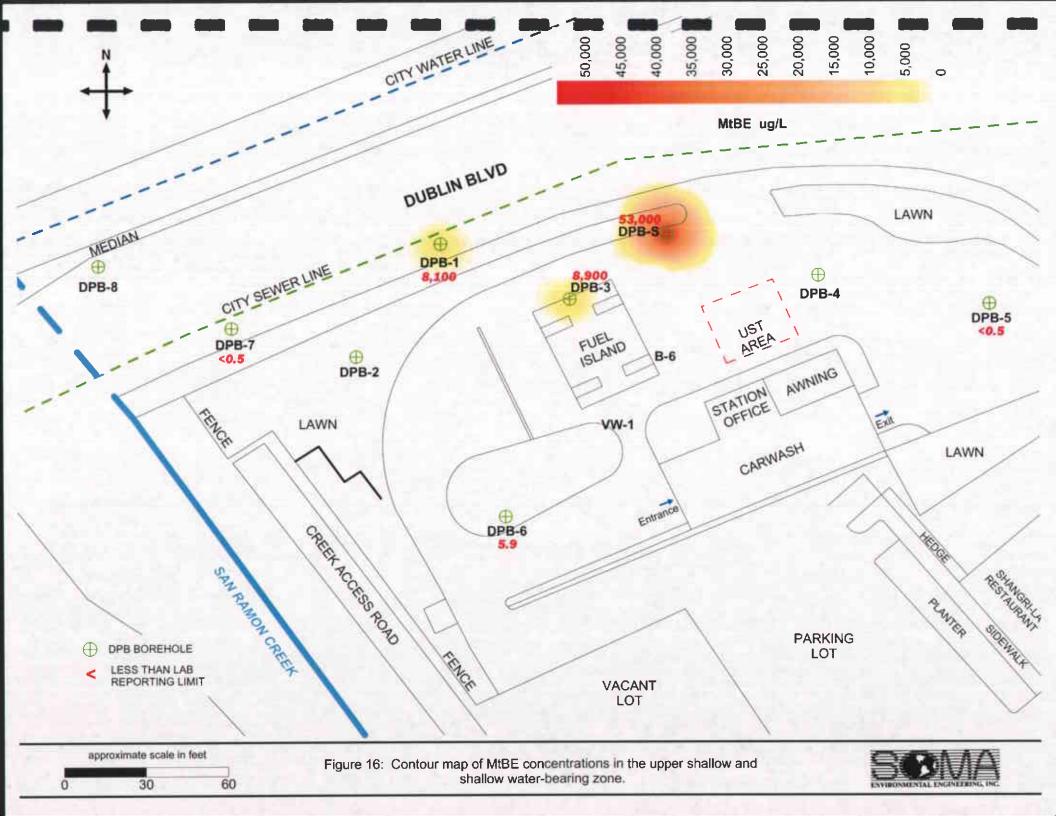


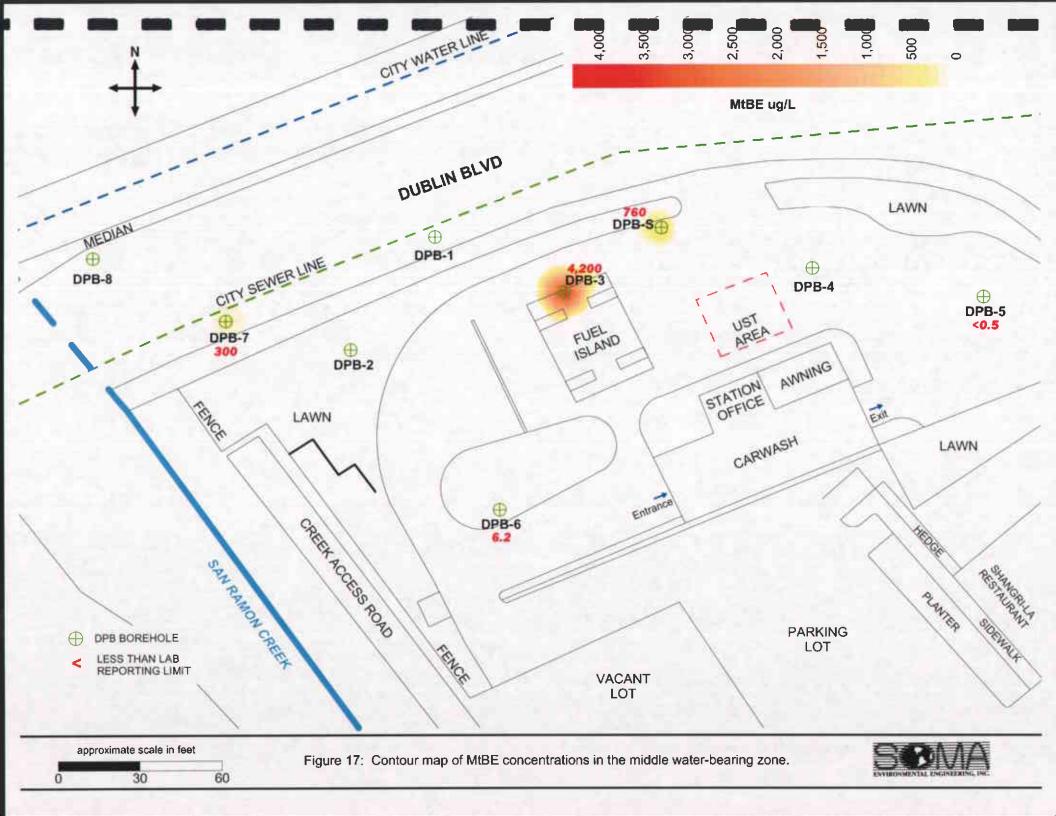


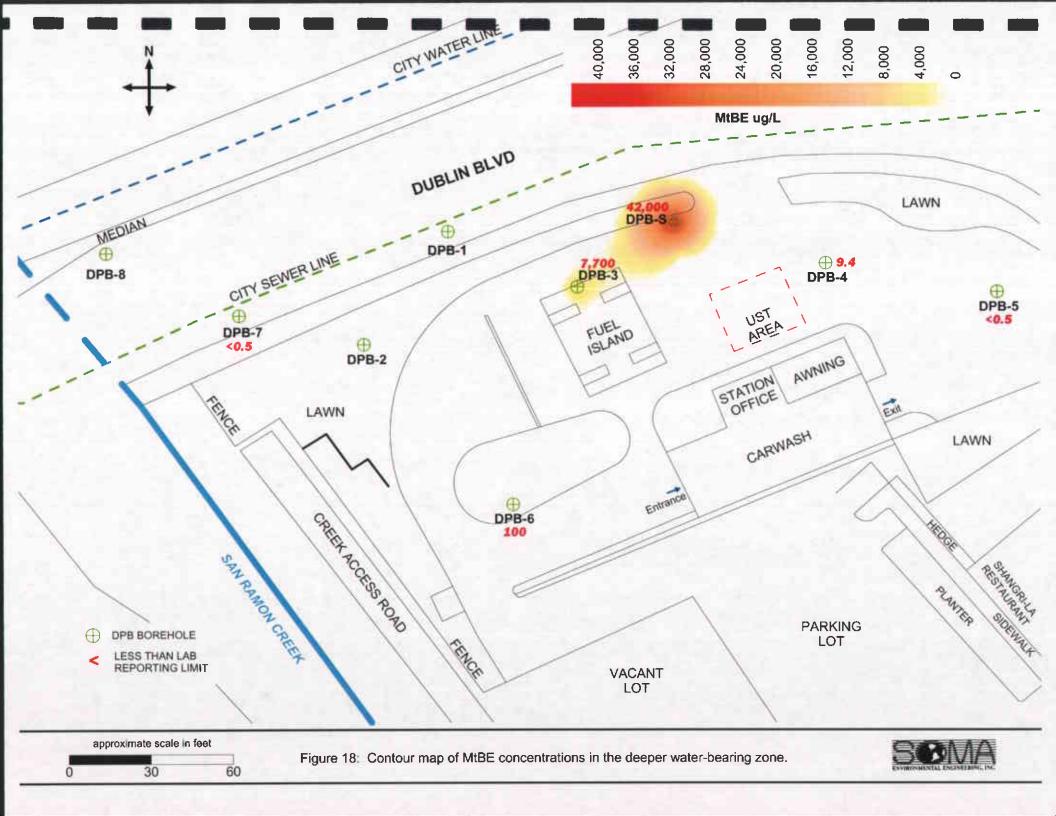












Appendix A

Drilling and Encroachment Permits

WRE\WYMAN\drilling permit.wpd

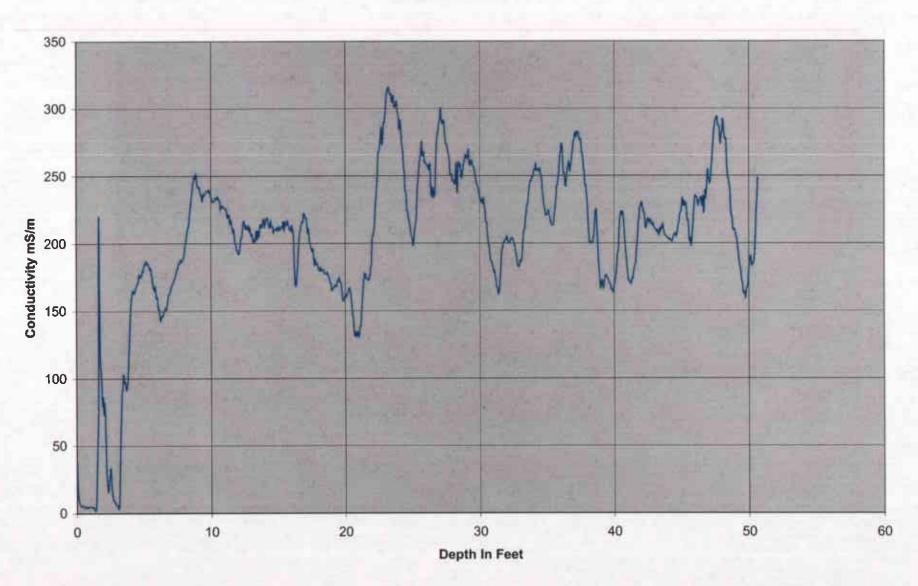
Revised: March 26, 2002

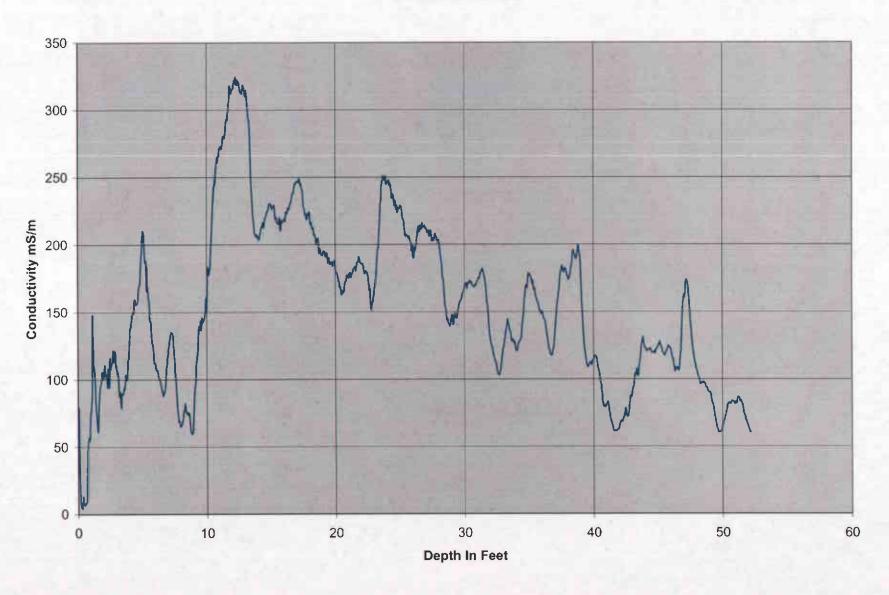
ZONE 7 WATER AGENCY

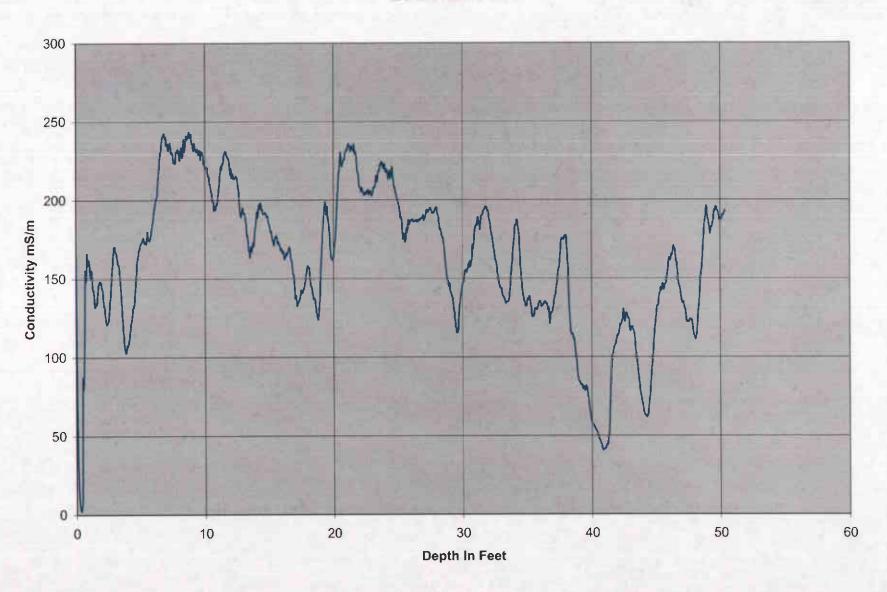
5997 PARKSIDE DRIVE PLEASANTON, CALIFORNIA 94588-5127 VOICE (925) 484-2600 X235 FAX (925) 462-3914

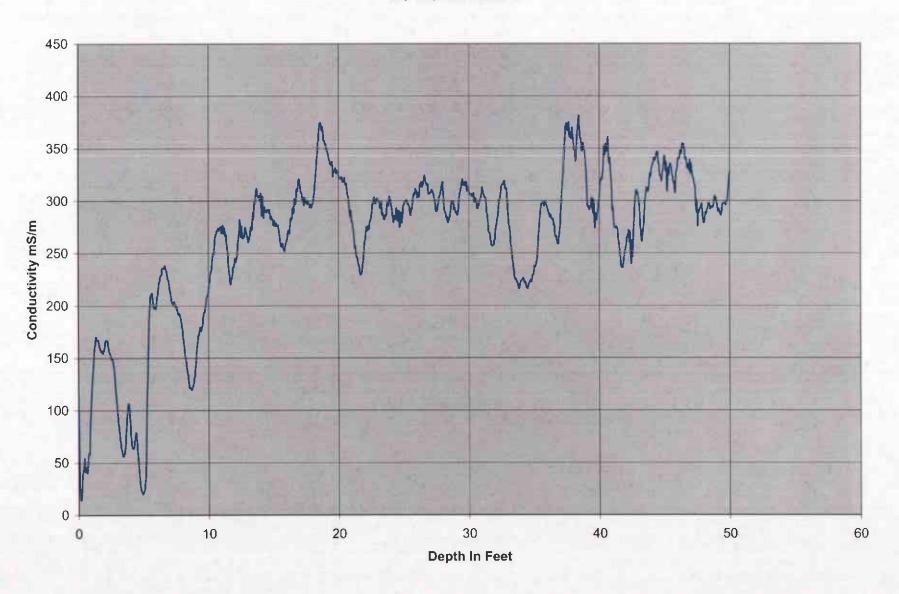
DRILLING PERMIT APPLICATION

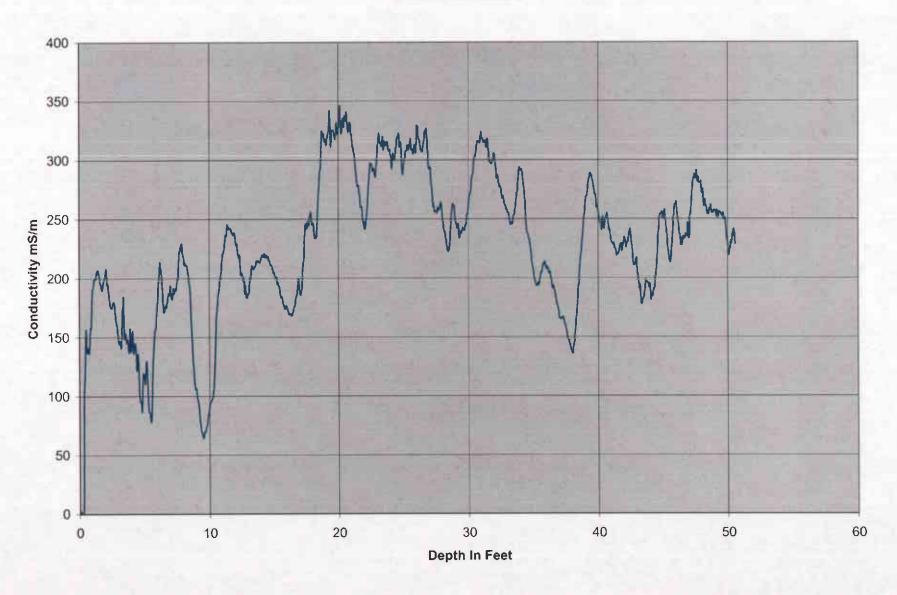
LOCATION OF PROJECT 7240 Rublin Blvd.	PERMIT NUMBER 23033 WELL NUMBER
Collination Constitution Course	APN
California Coordinates Source Accuracy± ft. CCN tt. CCE ft.	PERMIT CONDITIONS
APN	Circled Permit Requirements Apply
CLIENT Name Hooshang Hadiian Address 7240 Dublin Plud Hone City Dublin CA APPLICANT Name SOMA Environmental Engineering Address 2680 Birhop Dr Phone 925 244 6601 City San Pamon CA Zip 94583 TYPE OF PROJECT: Well Construction Geotechnical Investigation Well Destruction XContamination Investigation Other PROPOSED WELL USE: Domestic Irrigation Municipal Remediation Other PROPOSED WELL USE: Domestic Irrigation Municipal Remediation Other PRILLING METHOD: Mud Rotary Air Rotary Hollow Stem Auger Other PRILLING COMPANY Fisch Environmental ORILLING COMPANY FISCH	 A. GENERAL A permit application should be submitted so as to arrive at the Zone 7 office five days prior to proposed starting date. Submit to Zone 7 within 60 days after completion of permitte work the original Department of Water Resources Water We Drillers Report or equivalent for well projects, or drilling log and location sketch for geotechnical projects. Permit Is void if project not begun within 90 days of approved date. B. WATER SUPPLY WELLS Minimum surface seal diameter is four inches greater than the well casing diameter. Minimum seal depth is 50 feet for municipal and industrial well or 20 feet for domestic and imigation wells unless a lesser depth is specially approved. Grout placed by tremie. An access port at least 0.5 inches in diameter is required on the wellhead for water level measurements. A sample port is required on the discharge pipe near the wellhead. C. GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS Minimum surface seal diameter is four inches greater than the well or piezometer casing diameter. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feat.

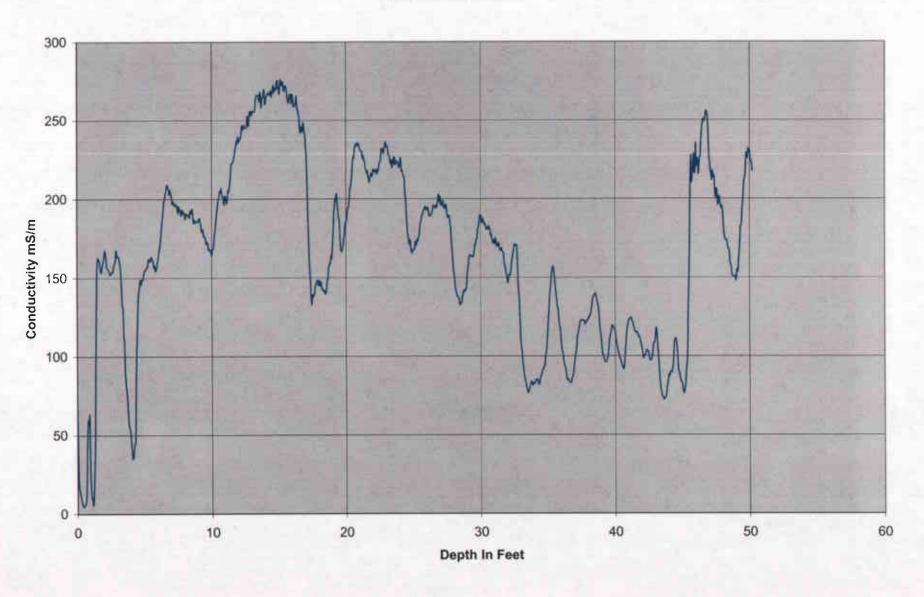


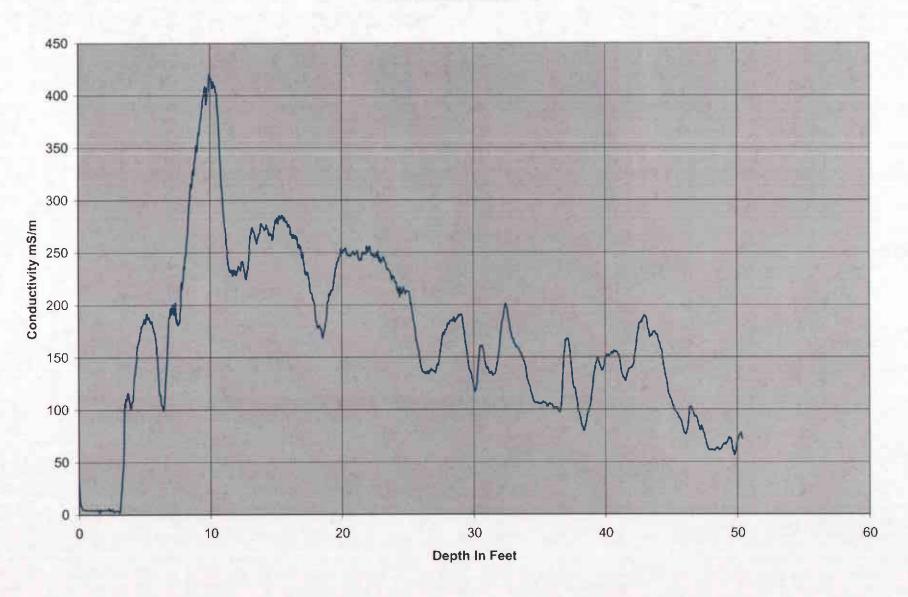

10:352 688 6184

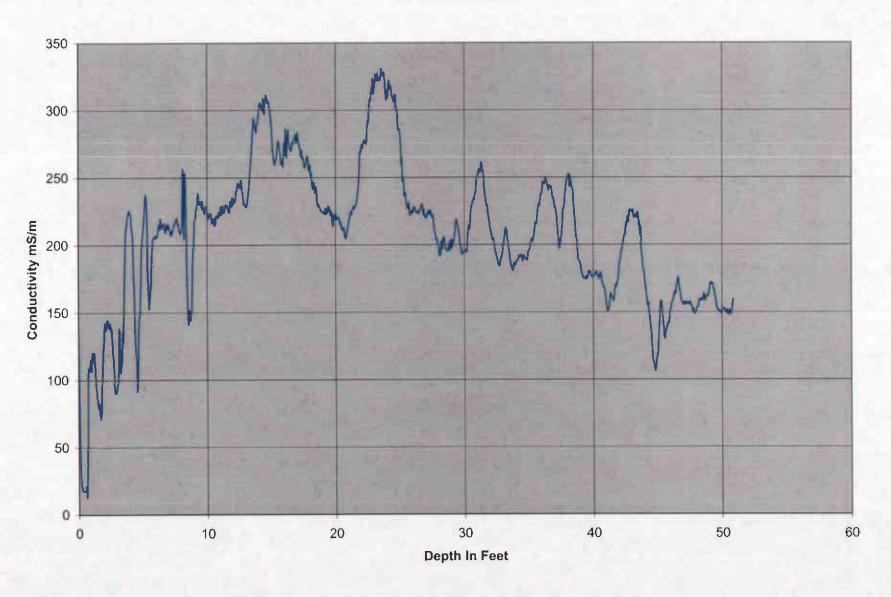

P.001/001

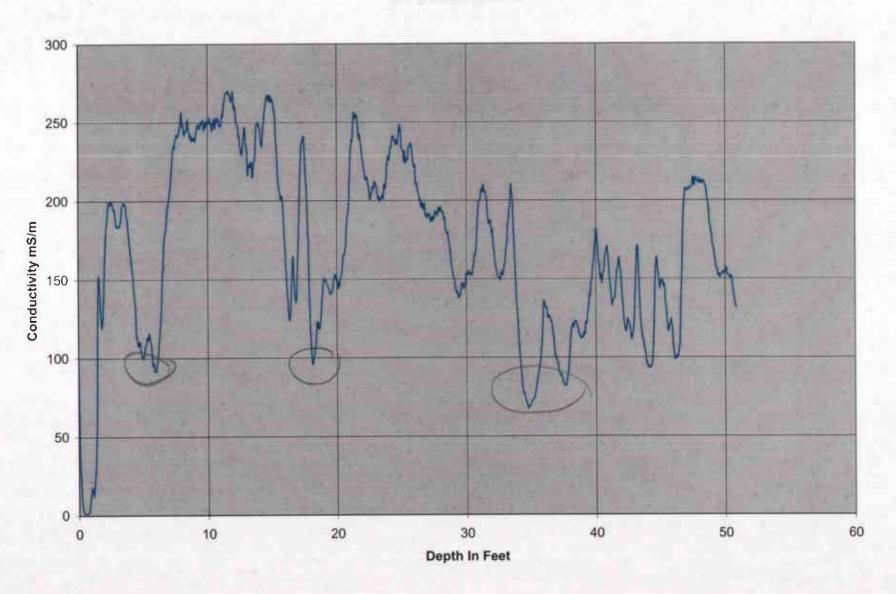

Appendix B

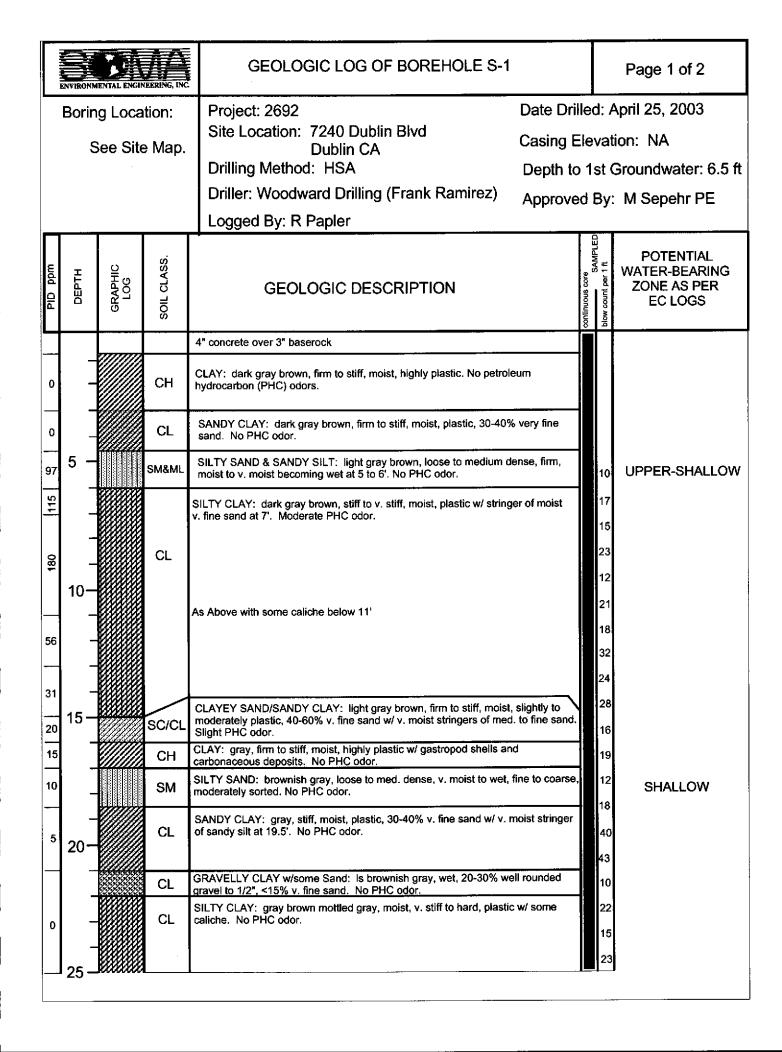

Borehole Logs

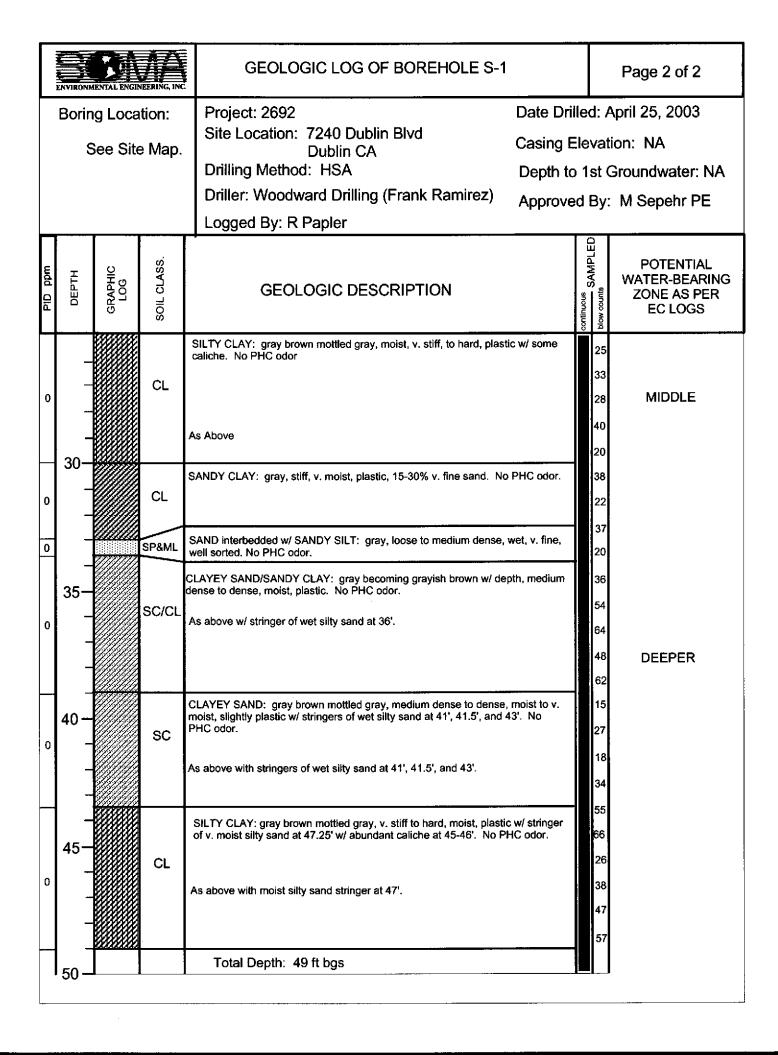












Appendix C

Laboratory Reports of Soil Analytical and Chain of Custody Form

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 9471O, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

SOMA Environmental Engineering Inc. 2680 Bishop Dr. Suite 203 San Ramon, CA 94583

Date: 05-MAY-03 Lab Job Number: 164930

Project ID: 2692

Location: Hadjian/Dublin

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Project Manager

Reviewed by:

Operations Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

Page 1 of 54

Laboratory Number:

164930 (soil)

Client:

SOMA Environmental Engineering Inc.

Project Name:

Hadjian/Dublin

Project Number:

2692

Receipt Date:

04/24/2003

CASE NARRATIVE

This hardcopy data package contains sample results and batch QC results for eight soil samples received from the above referenced project on April 24, 2003. The samples were received cold and intact.

Total Volatile Hydrocarbons:

The recovery for the surrogate bromofluorobenzene trifluorotoluene in the sample B-8@4.5.75 exceeds acceptance limits due to the coelution of the surrogate peak with hydrocarbon peaks. The associated surrogate bromofluorobenzene recovery is acceptable; therefore, there is no affect on the quality of the sample. No analytical problems were encountered.

Purgeable Organics (EPA 8260):

No analytical problems were encountered.

401L

CHAIN OF CUSTODY FORM

Page _____ of _____

ſ		& Tomp	•										C&T /	4971		•			An	aly	ses			
	•	2323 Fifth S Berkeley, C (510)486-09	Street CA 94710 900 Phone				Complex		. ,				LOGIN#	(17)			5 82608							
L	Duciosi No.	(510)486-05					Sampler:		<u>w</u>	Y <u>s</u>	12 1	LX.	· Anc			8	Scalengens	.			-			
-	Project No:	26	972 7240 W	ilin	BIV	٠.	Report To:	<u> </u>	.00	er		(15)				RILDO B	3							
!	Project Nan	ne: Hadjia	n/Dublir	1=	<u> </u>		Company:	5	01	N A		in/	Enq.			स्र	564							
-	Project P.O	.:					Telephone:						- 6600		<u>~</u>	w	4							
	Turnaround	Time: 4 a	marina	•			Fax:	(92	5)	2	44	6601		2015	MTBE	+ 43	- 1						
-	· · · · · · · · · · · · · · · · · · ·				latri	x				erv			·					-	-					ľ
	Laboratory Number	Sample ID.	Sampling Date Time	Soil	Water Waste		# of Containers	HCL	H ₂ SO	HNO3	CE		Field	l Notes	TPH. A.	Breog	1765 OX			-				
۱ţ		B.1 @-25.4°		X	╁		lo				X		Borehole	B-1 at	×	7.	×							
1		B-26@384		¥		Г	10				>			B-2 bat	*	7	×					_		
,		3.3 e3-4°		λ							X			B-3 at	×	ኊ	×		_	_		<u> </u>		
ıſ		B4025-3°		Х			lo		<u> </u>		×			B-4 at	<u> 7</u>	٨	X	_	_			4		
		B.500354	•	Х			10	_	<u> </u>		×	ļ		B-54 AT	<u>*</u>	7	<u>×</u>	_	-	_		┼	\vdash	
		B.L 6253'		×		_	6	<u> </u>	L		×	 		B-60 at	×	У.	ኍ	_	-	_	+-	+		
	O @ W.	B.7 @ 35-4	c .	7	_	_	le	<u> </u>	<u> </u>	ļ	ኢ	4	ļ	B-74	×	×	*	-	╌┼		-	+	 - 	-
		8-804-57		×	_	L	Ů .	<u>بر</u>	↓_	<u> </u>	Х	<u> </u>	<u> </u>	B- 8 4 4 4 5 15	15	YC.	Ж	\dashv	\dashv		-	+		
	σ				_	L	-to-e	<u>K</u>	 	<u> </u>	Х	├		·	├			\vdash	-			╁╌	-	
	<u> </u>						A STATE OF THE PARTY OF THE PAR		┡		_	₩			├	-		-+	-+	+	+-	+-	\vdash	
	a			Ш	_	┡		<u> </u>	-	+-				The state of the s	╁				-		-	+	\vdash	
Į	<u> </u>			Н	+	-			╀	-	╀	┼-			┢		-	-	=	_				
-	Notes:	DF Pequ	11/4 }	Ш		<u></u>	<u> </u>	_		<u> </u>	<u> </u>	⊥ RE	LINQUISHED I	 BY:				RE	CEI	VED	BY	 :	1	
		. or fedo	11.00					_	7	1 1	77)												_
									.)	Ų.	12			24 47 1 003 / 124 P							D/	TE/	TIME	
							.•	ļ., .	<u> </u>	<u>ل</u>				DATE/TIME	<u> </u>		7	-/	}		D/	TE/	ГІМЕ	~
							•	_						DATE/TIME		F	T	#	_	4.	2.J.	03 TE/	// TIME	14. P.
Ļ							Signature	<u> </u>						**************************************	7		-	1:4			RE	CE	100	TO 6

1.000

400

Gasoline by GC/FID (5035 Prep)

Lab #: 164930 Location: Hadilan/Dublin

SOMA Environmental Engineering Inc. Client: Prep: EPA 5035

Analysis: Sampled: Project#: 2692 8015B Soil 04/23/03 Matrix: Units: 04/24/03

mg/Kg Received: Basis: as received

Field ID: B-1@3.5-4 Diln Fac: SAMPLE

Type: Lab ID: Batch#: 81080 164930-001 Analyzed: 04/26/03

Analyte Result Gasoline C7-C12 0.20

Surrogate RRC Limits Trifluorotoluene (FID) 58-144 94 Bromofluorobenzene (FID) 60-146

Field ID: B-2B@3.5-4 400.0 Diln Fac: Type: SAMPLE Batch#: 81124

Lab ID: 164930-002 Analyzed: 04/28/03 Analyte Result RI

<u>9,200</u> Surrogate Limits Trifluorotoluene (FID) 131 58-144

60-146

ield ID: B-3@3.5-4 Diln Fac: 1.000 Type: Lab ID: SAMPLE Batch#: 81124 164930-003 04/28/03 Analyzed:

120

Analyte Gasoline C7-C12 Result 0.19

Surrogate %REC Limits 98 58-144 Trifluorotoluene (FID) Bromofluorobenzene (FID) 98 60-146

ield ID: 1.000 B-4@2.5-3 Diln Fac: SAMPLE ype: Batch#: 81080 Lab ID: 164930-004 Analyzed: 04/26/03

Result ND Gasoline C7-C12 0.17

Surrogate %REC Limits Trifluorotoluene (FID) 91 58-144 Bromofluorobenzene (FID) 85 60-146

*= Value outside of QC limits; see narrative H= Heavier hydrocarbons contributed to the quantitation

Y= Sample exhibits chromatographic pattern which does not resemble standard

D= Not Detected

Gasoline C7-C12

Bromofluorobenzene (FID)

RL= Reporting Limit Page 1 of 3

Gasoline by GC/FID (5035 Prep)

Hadilan/Dublin Lab #: 164930 Location:

Prep: Analysis: EPA 5035 SOMA Environmental Engineering Inc. Client: 8015B Project#: 2692

04/23/03 04/24/03 Soil mg/Kg Sampled: Matrix: Units: Received:

Basis: as received

Field ID:

B-5@3.5-4 SAMPLE

Type: āb ID: 164930-005 Diln Fac:

Batch#:

1.000 81080 04/26/03

Analyzed:

Result Analyte Gasoline C7-C12 ND 0.

%REC Limits Surrogate Trifluorotoluene (FID) 58-144 86 60-146 Bromofluorobenzene (FID)

Field ID:

B-6@2.5-3

SAMPLE Type: Lab ID: 164930-006 Diln Fac:

1.000 81080

Batch#: Analyzed:

04/26/03

Result Gasoline C7-C12 $\overline{\mathrm{ND}}$

Surrogate
Trifluorotoluene (FID) 99 58-144 Bromofluorobenzene (FID) 104 60-146

Field ID: Туре:

B-7@3.5-4 SAMPLE

164930-007

ab ID:

Diln Fac:

Batch#:

200.0 81080

04/26/03 Analyzed:

Analyte Result Gasoline C7-C12 8,700 200

%REC Limits Surrogate Trifluorotoluene (FID) 132 58-144 Bromofluorobenzene (FID) 60-146 110

Field ID:

Type: Lab ID:

B-8@4-5.75

SAMPLE

164930~008

Diln Fac:

Batch#:

5.000

81109

04/26/03 Analyzed:

Analyte Result Gasoline C7-C12 99 H Y 5.0

*REC Limits Surrogate Trifluorotoluene (FID) 132 58-144 Bromofluorobenzene (FID) 147 * 60-146

*= Value outside of QC limits; see narrative

H= Heavier hydrocarbons contributed to the quantitation

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit Page 2 of 3

Gasoline by GC/FID (5035 Prep)

164930 Location: Hadilan/Dublin Lab #:

EPA 5035 SOMA Environmental Engineering Inc. Client: Prep:

Analysis: Project#: 2692 8015B Sampled: 04/23/03 Soil Matrix: 04/24/03

mg/Kg Received: Units: as received Basis:

Type: Läb ID: Diln Fac: BLANK

QC212114

1.000

Batch#:

Analyzed:

81080 04/25/03

Analyte Gasoline C7-C12 Result

ND

%REC Limite Surrogate 89 Trifluorotoluene (FID) 58-144 Bromofluorobenzene (FID) 86 60-146

Type: Lab ID:

BLANK

QC212228

Diln Fac:

Ī.000

Batch#:

81109 04/26/03

Analyzed:

Analyte Result Gasoline C7-C12 ND1.0

Surrogate *REC Limits Trifluorotoluene (FID) 125 58-144 Bromofluorobenzene (FID) 60-146

Type: Lab ID: Diln Fac: BLANK QC212281

 $\bar{1}.000$

Bromofluorobenzene (FID)

Batch#:

81124

Analyzed:

04/28/03

Analyte Result

96

1.0 Gasoline C7-C12 ND %REC Limits Surrogate Trifluorotoluene (FID) 104 58-144

60-146

4.0

^{*=} Value outside of QC limits; see narrative H= Heavier hydrocarbons contributed to the quantitation

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit Page 3 of 3

Chromatogram

Sample #: c

Page 1 of 1

ample Name : 164930-002,81124

: G:\GC05\DATA\118G004.raw Date: 4/28/03 03:57 PM thod : TVHBTXE Time of Injection: 4/28/03 01:29 PM Start Time : 0.00 min Low Point : -2.35 mV End Time : 25.00 min High Point: 317.45 mV Scale Factor: 1.0 Plot Offset: -2 mV Plot Scale: 319.8 mV B-2B@3.5-4 Response [mV] C-6 $\frac{3.135}{3.57.35}$ C-7 **5.18** TRIFLUO -5.36 -5.75 6.19 6.53 7.06 C-8 7.71 -8.89-9.35 >-10.05 >-10.37 0.73 0.99 11.25 11.53 11.76 12.33 **BROMOF** -14.52 -15.09 C-10 15.42 ∠€<u>15.97</u> -16.23 16.63 17:99 -17.58 --17.91 18.31 - 18.90 18.68 -19.32 20.37 C-12 22.68 -24.90

GC19 TVH 'X' Data File (FID)

Sample #: a

Page 1 of 1

ample Name: 164930-007,81080,tvh only

ileName : G:\GC19\DATA\115X036.raw Date: 4/26/03 06:24 AM : TVHBTXE ethod Time of Injection: 4/26/03 05:57 AM Start Time : 0.00 min End Time : 26.80 min Low Point : -36.70 mV High Point : 1051.79 mV Scale Factor: 1.0 Plot Offset: -37 mV Plot Scale: 1088.5 mV Response [mV] -+CB C-6 3.45 -4.16 --4.47 -4.80 -5.29 C-7 5.88 6.40 -6.83 TRIFLUO --7.23 >−7.68 >-8.04 8.60 --9.06 C-8 9.25 -9.77 -10.02 -10.37 -10.85 13.13 12.64 12.92 -13.13 -13.63 14.16 -14.49 145.843 -15.34 BROMOF --15.70 -16.20 C-10 -16.5016.63 ∂=16.90 -17.25 -17.62 -17.95 -18.46 ∞. -18.80 19.18 ==19968 상 ~20.06 20.40 20.66 212605 <u>= 21,64</u>7 -22.95 C-12 ≥23,32 ≥23,54 -23.86 25 45 5 84 5 64

GC04 TVH 'J' Data File FID

ample Name : 164930-008,81109,tvh only Sample #: c Page 1 of 1 : G:\GC04\DATA\116J008.raw ileName Date: 4/28/03 10:14 AM ethod : TVHBTXE Time of Injection: 4/26/03 10:40 PM Start Time : 0.00 min End Time : 26.00 min Low Point : 44.99 mV High Point : 301.00 mV Scale Factor: 1.0 Plot Offset: 45 mV Plot Scale: 256.0 mV Response [mV] -1.21 C-6 -5.39 C-7 5:83 6.58 TRIFLUO -6.83 -7.25 -7.688.03 8.59 -9.02 C-8 9.38 9.73 10.32 10.82 >-11.40 >-11.71 12.06 12.33 12.57 -12.83 13.05 -13.56 13.88 14:18 14.43 BROMOF -15.62 <u>-16,12</u> C-10 16.41 ---16.57 16.83 17.16 17.55 178920 - 18.35 18.73 <u> 19.39</u>.59 19.99 20.33 -20,60 -20.98 <u>-21.59</u> 21.81 22,39 22.72 22.88 C-12 > 23.26 23.46 >-23.77 24.26 24.48 ─24.91 25.48

GC19 TVH 'X' Data File (FID)

Page 1 of 1 mple Name : ccv/lcs,qc212116,81080,03ws0527,5/5000 Sample #: Date: 4/25/03 11:07 AM : G:\GC19\DATA\115X003.raw leName Time of Injection: 4/25/03 10:40 AM : TVHBTXE ethod Low Point : ~37.80 mV High Point : 1051.76 mV End Time : 26.80 min Start Time : 0.00 min Plot Offset: -38 mV Plot Scale: 1089.6 mV cale Factor: 1.0 Gasoline Response [mV] -+CB 1.02 7.76 2.3.2.11 2.82.55 3.06 3.4 1.50 -1.35 C-6 4.40 -4.79 -5.31 C-7 5.81 TRIFLUÖ -7.21 -8.02 8.59 C-8 -9.24 -9.74 -10.00 -10.36 -10.83 -11.45 -11.76 -12.10 -12.36 -12.63 -12.90 -13.11 13.62 -----14.14 -14.46 14.83 15:33 BROMOF ---15.69 -16.19 ----16.48 C-10 16.89 -17.23 -17.60 =17:95 -18:44 -18:78 ₩. ≿18.65 -20.05 -20:39 -20:65 21.23 C-12 -23.30 -23.52 -23.84 34:36 -24.99

	Gasoline by G	C/FID (5035 :	Prep)
Lab #:	164930	Location:	Hadilan/Dublin
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5035
Project#:	2692	Analysis:	· 8015B
Type:	LCS	Basis:	as received
Lab ID:	QC212116	Diln Fac:	1.000
Matrix:	Soil	Batch#:	81080
Units:	mg/Kg	Analyzed:	04/25/03

Analyte	Spiked	Result	%RE(. Limits
Gasoline C7-C12	10.00	9.850	99	78-120
Surrogate				

Surrogate	%REC	Limits
Trifluorotoluene (FID)	104	58-144
Bromofluorobenzene (FID)	90	60-146

Gasoline by GC/FID (5035 Prep)

Lab #: 164930 Location: Hadilan/Dublin

Client: SOMA Environmental Engineering Inc. Prep: EPA 5035
Project#: 2692 Analysis: 8015B

Type: BS Basis: as received

 Lab ID:
 QC212229
 Diln Fac:
 1.000

 Matrix:
 Soil
 Batch#:
 81109

 Units:
 mg/Kg
 Analyzed:
 04/26/03

Analyte Spiked Result %REC Limits
Gasoline C7-C12 10.00 10.86 109 78-120

	Surrogate		%REC	Limits				
1	Trifluorotoluene (F	ID) 1		58-144				
	Bromofluorobenzene	(FID) 1	24	60-146	 	 		

Lab #: 164930 Location: Hadilan/Dublin Client: SOMA Environmental Engineering Inc. Prep: EPA 5035

Project#: 2692 Analysis: 8015B

Type: BSD Basis: as received

 Lab ID:
 QC212233
 Diln Fac:
 1.000

 Matrix:
 Soil
 Batch#:
 81109

 Units:
 mg/Kg
 Analyzed:
 04/27/03

Analyte	SNIKER	Result	%REC		RPL	Lim
Gasoline C7-C12	10.00	10.77	108	78-120	1	20

Surroga	ite	%REC	Limite			
Trifluorotoluene	(FID)	141	58-144			
Bromofluorobenzen	e (FID)	123	60-146			
					 •	

Gasoline by GC/FID (5035 Prep) 164930 Hadilan/Dublin Lab #: Location: Client: SOMA Environmental Engineering Inc. Prep: EPA 5035 Project#: 2692 Analysis: 8015B Matrix: Soil Diln Fac: 1.000 81124 Units: mg/Kg Batch#: Analyzed: 04/28/03 Basis: as received

Type:

BS

Lab ID:

QC212282

Analyte	Spiked	Result	%RE(C Limite	
Gasoline C7-C12	10.00	10.18	102	78-120	·

Surrogate		*REC	Limits
	FID)	123	58-144
Bromofluorobenzene	(FID)	104	60-146

Type:

BSD

Lab ID:

Analyte		Spiked	Result	-6K.EC	Limits	RPD	lrim.
Gasoline C7-C12		15.00	15.38	103	78-120	1	20
		•					
Surrogate	%REC	Limits					
Trifluorotoluene (FID)	130	58-144					
Bromofluorobenzene (FID)	108	60-146					

			Gasoline b	γ GC,	'FID (5035 F	
Lab #: :	16493	10			Location:	Hadilan/Dublin
Client:	SOMA	Environmental	Engineering 1	Inc.	Prep:	EPA 5035
Project#: 2	2692				Analysis:	8015B
Field ID:		ZZZZZZZZZZ			Diln Fac:	1.000
MSS Lab ID	:	164945-004			Batch#:	81080
Matrix:		Soil	•		Sampled:	04/23/03
Units:		mg/Kg			Received:	04/25/03
Basis:		as received			Analyzed:	04/25/03

Type:

MS

Lab ID:

QC212185

Analyte	MSS Result	Spiked	Result	₹RE	C Limits
Gasoline C7-C12	5.256	9.901	12.15	70_	44-133

Surrogate	%REC	Limits
Trifluorotoluene (FID)	118	58-144
Bromofluorobenzene (FID) 120	60-146

Туре:

MSD

Lab ID:

Analyte	Spiked	Result	%RE	2 Limits		Lim
Gasoline C7-C12	10.10	11.92	66	44-133	3	31

	Surroga	ate	%REC	Limits	
Trifluoro	toluene	(FID)	115	58-144	
Bromofluo	robenzer	ne (FID) 113	60-146	

		Purgeable Aro	matics by G	C/MS
Lab #:	164930	Engineering Inc.	Location:	Hadjian/Dublin
Client:	SOMA Environmental		Prep:	EPA 5035
Project#: Field ID:	B-1@3.5-4		Analysis: Diln Fac:	EPA 8260B 1.000
Lab ID:	164930-001		Batch#:	81089
Matrix:	Soil		Sampled:	04/23/03
Units:	ug/Kg		Received:	04/24/03
Basis:	as received		Analyzed:	04/25/03

Analyte	Result	RL	
MTBE	ND	5.0	
Benzene	ND	5.0	
Toluene	ND	5.0	
Chlorobenzene	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	

1,2-Dichloroethane-d4 117 75-128 Toluene-d8 100 80-111 Bromofluorobenzene 104 77-126	Surrogate	%REC	Limits	
Dwama filmonals and a second s	1,2-Dichloroethane-d4	117	75-128	
Bromofluorobenzene 104 77-126	<u></u> L	100	80-111	
	Bromofluorobenzene	104	77-126	

Purgeable Aromatics by GC/MS

Lab #: 164930 Location: Hadjian/Dublin Client: SOMA Environmental Engineering Inc. Prep: EPA 5035

Client: SOMA Environmental Engineering Inc. Prep: EPA 5035
Project#: 2692 Analysis: EPA 8260B

Field ID: B-2B@3.5-4 Basis: as received
Lab ID: 164930-002 Sampled: 04/23/03

 Lab ID:
 164930-002
 Sampled:
 04/23/03

 Matrix:
 Soil
 Received:
 04/24/03

 Units:
 ug/Kg

Analyte Result RL Diln Fac Batch# Analyzed MTBE 21,000 5,000 1,000 81147 04/28/03 Benzene 12,000 5,000 1,000 81147 04/28/03 Toluene 560,000 17,000 3,333 81162 04/29/03 Chlorobenzene ND 5,000 1,000 81147 04/28/03 Ethylbenzene 240,000 17,000 3,333 81162 04/29/03 m,p-Xylenes 1,100,000 17,000 3,333 81162 04/29/03 o-Xylene 450,000 17,000 3,333 81162 04/29/03 1,3-Dichlorobenzene ND5,000 1,000 81147 04/28/03 1,4-Dichlorobenzene ND 5,000 1,000 81147 04/28/03 1,2-Dichlorobenzene ND 5,000 1,000 81147 04/28/03

Surrogate	%REC	Taimits	Diln Fac	Batch#	Analyzed
1,2-Dichloroethane-d4	109	75-128	1,000	81147	04/28/03
Toluene-d8	97	80-111	1,000	81147	04/28/03
Bromofluorobenzene	97	77-126	1,000	81147	04/28/03
					

Purgeable Aromatics by GC/MS						
Lab #:	1649	30			Location:	Hadjian/Dublin
Client:		Environmental	Engineering	Inc.	Prep:	EPA 5035
Project#:	2692				Analysis:	EPA 8260B
Field ID:		B-3@3.5-4			Diln Fac:	0.8621
Lab ID:		164930-003			Batch#:	81132
Matrix:		Soil			Sampled:	04/23/03
Units:		ug/Kg			Received:	04/24/03
Basis:		as received			Analyzed:	04/28/03

Analyte	Result	RL
MTBE	ND	4.3
Benzene	ND	4.3
Toluene	ND	4.3
Chlorobenzene	ND	4.3
Ethylbenzene m,p-Xylenes	ND	4.3
m,p-Xylenes	ND	4.3
o-Xylene	ND	4.3
1,3-Dichlorobenzene	ND	4.3
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND	4.3
1,2-Dichlorobenzene	NDND	4.3

Toluene-d8 99 80-111	Surrogate	%REC	Limits	
77 00 111	1,2-Dichloroethane-d4	111	75-128	
Bromofluorobenzene 97 77-126	Toluene-d8	9 9	80-111	
	Bromofluorobenzene	97	77-126	

		Purgeable Aro	matics by GC/M	S
Lab #:	164930		Location:	Hadjian/Dublin
	SOMA Environmental	Engineering Inc.	Prep:	EPA 5035
Project#:	2692		Analysis:	EPA 8260B
Field ID:	B-4@2.5-3		Diln Fac:	0.8333
Lab ID:	164930-004		Batch#:	81132
Matrix:	Soil		Sampled:	04/23/03
Units:	ug/Kg		Received:	04/24/03
Basis:	as received		Analyzed:	04/28/03

Analyte	Result	RL
MTBE	ND	4.2
Benzene	ND	4.2
Toluene	ND	4.2
Chlorobenzene	ND	4.2
Ethylbenzene	ND	4.2
m,p-Xylenes	ND	4.2
o-Xylene	ND	4.2
1,3-Dichlorobenzene	ND	4.2
1,4-Dichlorobenzene	ND	4.2
1,2-Dichlorobenzene	ND	4.2

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	111	75-128	· .
Toluene-d8	99	80-111	
Bromofluorobenzene	94	77-126	

		Purgeable	Aro	matics by G	IC/MS
Lab #:	164930			Location:	Hadjian/Dublin
Client:	SOMA Environmental	Engineering	Inc.	Prep:	EPA 5035
Project#:	2692			Analysis:	EPA 8260B
Field ID:	B-5@3.5-4			Diln Fac:	0.9434
Lab ID:	164930-005			Batch#:	81132
Matrix:	Soil			Sampled:	04/23/03
Units:	ug/Kg			Received:	04/24/03
Basis:	as received			Analyzed:	04/28/03

<u> </u>		
Analyte	Result	RL
MTBE	ND	4.7
Benzene	ND	4.7
Toluene	ND	4.7
Chlorobenzene	ND	4.7
Ethylbenzene	ND	4.7
m,p-Xylenes	7.9	4.7
o-Xylene	ND	4.7
1,3-Dichlorobenzene	ND	4.7
1,4-Dichlorobenzene	ND	4.7
1,2-Dichlorobenzene	MD	4.7

Surrogate	%RBC	Limits
1,2-Dichloroethane-d4	110	75-128
Toluene-d8	100	80-111
Bromofluorobenzene	94	77-126

		Purceal	ole Aromatics by GC/	MS
	Lab #:	164930	Location:	Hadjian/Dublin
	Client:	SOMA Environmental Engineeri	ng Inc. Prep:	EPA 5035
٦.	Project#:	2692	Analysis:	EPA 8260B
┙	Field ID:	B-6@2.5-3	Diln Fac:	0.8621
	Lab ID:	164930-006	Batch#:	81132
4	Matrix:	Soil	Sampled:	04/23/03
	Units:	ug/Kg	Received:	04/24/03
	Basis:	as received	Analyzed:	04/28/03

Analyte	Result	RL	
MTBE	ND	4.3	
Benzene	ND	4.3	
Toluene	ND	4.3	
Chlorobenzene	ND .	4.3	
Ethylbenzene	ND	4.3	
m,p-Xylenes	ND	4.3	
o-Xylene	ND	4.3	
1,3-Dichlorobenzene	ND	4.3	
1,4-Dichlorobenzene	ND	4.3	
1,2-Dichlorobenzene	ND	4.3	

	· · · · · · · · · · · · · · · · · · ·		
	Surrogate	********	Limits
٠,	1,2-Dichloroethane-d4	111	75-128
	Toluene-d8	99	80-111
	Bromofluorobenzene	97	77-126
			······································

	Purgeable Aro	matics by (3C/MS
Lab #:	164930	Location:	Hadjian/Dublin
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5035
Project#:	2692	Analysis:	EPA 8260B
Field ID:	B-7@3.5-4	Basis:	as received
Lab ID:	164930-007	Sampled:	04/23/03
Matrix:	Soil	Received:	04/24/03
Units:	ug/Kg		

Analyte	Result		Diln Fac		
		RL			Analyzed
MTBE	7,100	7,100	1,429	81162	04/29/03
Benzene	7,700	7,100	1,429	81162	04/29/03
Toluene	270,000	13,000	2,500	81193	04/30/03
Chlorobenzene	ND	7,100	1,429	81162	04/29/03
_ Ethylbenzene	170,000	7,100	1,429	81162	04/29/03
m,p-Xylenes	640,000	13,000	2,500	81193	04/30/03
o-Xylene	280,000	13,000	2,500	81193	04/30/03
1,3-Dichlorobenzene	ND	7,100	1,429	81162	04/29/03
1,4-Dichlorobenzene	ND	7,100	1,429	81162	04/29/03
1,2-Dichlorobenzene	ND	7,100	1,429	81162	04/29/03

Surrogate	%REC	Limite	Diln	Fac Batch#	Analyzed
1,2-Dichloroethane-d4	102	75-128	1,429	81162	04/29/03
Toluene-d8	100	80-111	1,429	81162	04/29/03
Bromofluorobenzene	89	77-126	1,429	81162	04/29/03

		Purgeable A	romatics by G	C/MS
Lab #:	164930		Location:	Hadjian/Dublin
Client:	SOMA Environmental	Engineering Ind	:. Prep:	EPA 5035
Project#:	2692		Analysis:	EPA 8260B
Field ID:	B-8@4-5.75		Diln Fac:	0.8772
Lab ID:	164930-008		Batch#:	81089
Matrix:	Soil		Sampled:	04/23/03
Units:	ug/Kg		Received:	04/24/03
Basis:	as received		Analyzed:	04/26/03

Analyte	Result	RL
MTBE	47	4.4
Benzene	6.4	4.4
Toluene	ND	4.4
Chlorobenzene	ND	4.4
Ethylbenzene	33	4.4 .
m,p-Xylenes	200	4.4
o-Xylene	ND	4.4
1,3-Dichlorobenzene	ND	4.4
1,4-Dichlorobenzene	ND	4.4
1,2-Dichlorobenzene	ND	4.4

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	102	75-128
Toluene-d8	100	80-111
Bromofluorobenzene	95	77-126

	Purgeable Arc	omatics by G	gc/ms
Lab #:	164930	Location:	Hadjian/Dublin
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5035
Project#:	2692	Analysis:	EPA 8260B
Type:	BLANK	Basis:	as received
Lab ID:	QC212180	Diln Fac:	1.000
Matrix:	Soil	Batch#:	81089
Units:	ug/Kg	Analyzed:	04/25/03

Analyte	Result	RL
MTBE	ND	5.0
Benzene	ND	5.0
Toluene	ND	5.0
Chlorobenzene	ND .	5.0
Ethylbenzene	ND	5.0
m,p-Xylenes	ND	5.0
o-Xylene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	112	75-128	
Toluene-d8	100	80-111	
Bromofluorobenzene	100	77-126	·

	Purgeable Arc	omatics by G	C/MS
Lab #:	164930	Location:	Hadjian/Dublin
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5035
Project#:	2692	Analysis:	EPA 8260B
Type:	BLANK	Basis:	as received
Lab ID:	QC212311	Diln Fac:	1.000
Matrix:	Soil	Batch#:	81132
Units:	ug/Kg	Analyzed:	04/28/03

Analyte	Result	PL PL	
MTBE	ND	5.0	********
Benzene	ND	5.0	
Toluene	ИD	5.0	
Chlorobenzene	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	104	75-128
Toluene-d8	99	80-111
Bromofluorobenzene	95	77-126

	Purgeable Arc	matics by G0	C/MS
,Lab #:	164930	Location:	Hadjian/Dublin
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5035
Project#:	2692	Analysis:	EPA 8260B
Type:	BLANK	Basis:	as received
Lab ID:	QC212318	Diln Fac:	1.000
Matrix:	Soil	Batch#:	81132
Units:	ug/Kg	Analyzed:	04/28/03

Analyte	Result	RL
MTBE	ND	5.0
Benzene	ND	5.0
Toluene	ND	5.0
Chlorobenzene	ND	5.0
Ethylbenzene	ND	5.0
m,p-Xylenes	ND	5.0
o-Xylene	NĎ	5.0
1,3-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	106	75-128
Toluene-d8	100	80-111
Bromofluorobenzene	90	77-126
•		

Purgeable Aromatics by GC/MS Lab #: 164930 Hadjian/Dublin Location: Client: SOMA Environmental Engineering Inc. Prep: EPA 5035 Project#: 2692 EPA 8260B Analysis: BLANK Type: Diln Fac: 1.000 Lab ID: QC212371 Batch#: 81147 Matrix: Water Analyzed: 04/28/03 Units: ug/L

Analyte	Result	RL
MTBE	ND	5.0
Benzene	ND	5.0
Toluene	ND	5.0
Chlorobenzene	ИD	5.0
Ethylbenzene	ND	5.0
m,p-Xylenes	ND	5.0
o-Xylene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0

1,2-Dichloroethane-d4 106 75-128	Surrogate	*REC	Limits	
	1,2-Dichloroethane-d4	106	75-128	
Bromofluorobenzene 90 77-126	Toluene-d8	100	80-111	
	Bromofluorobenzene	90	77-126	

		Purgeable Aro	matics by	GC/MS
Lab #:	164930		Location:	Hadjian/Dublin
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5035
Project#:	2692		Analysis:	EPA 8260B
Type:	BLANK		Diln Fac:	1.000
Lab ID:	QC212428		Batch#:	81162
Matrix:	Water		Analyzed:	04/29/03
Units:	ug/L			

Analyte	Result	RL
MTBE	ND	5.0
Benzene	ND	5.0
Toluene	ND	5.0
Chlorobenzene	ND	5.0
Ethylbenzene	ND	5.0
m,p-Xylenes	ND	5.0
o-Xylene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0

Surrogate	%rec	Limits
1,2-Dichloroethane-d4	105	75-128
Toluene-d8	100	80-111
Bromofluorobenzene	93	77-126

Purgeable Aromatics by GC/MS Lab #: 164930 Hadjian/Dublin Location: Client: SOMA Environmental Engineering Inc. Prep: EPA 5035 Project#: 2692 EPA 8260B Analysis: BLANK Туре: Diln Fac: 1.000 Lab ID: QC212568 Batch#: 81193 Matrix: Water Analyzed: 04/30/03 Units: ug/L

			0000000000
Analyte	Result	RL	
MTBE	ND	5.0	
Benzene	ND	5.0	
Toluene	ND	5.0	
Chlorobenzene	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	

1 2 Dightereathers 44 100	Limits	
1,2-Dichloroethane-d4 100	75-128	i
Toluene-d8 98	80-111	
Bromofluorobenzene 95	77-126	

		Purgeable Aro	matics by G	PC/MS
Lab #:	164930		Location:	Hadjian/Dublin
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5035
Project#:	2692		Analysis:	EPA 8260B
Type:	LCS		Basis:	as received
Lab ID:	QC212149		Diln Fac:	1.000
Matrix:	Soil		Batch#:	81089
Units:	ug/Kg		Analyzed:	04/25/03

Analyte	Spiked	Result	4re(: Limite
Benzene	50.00	48.53	97	77-120
Toluene	50.00	49.58	99	80-120
Chlorobenzene	50.00	47.93	96	80-120

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	108	75-128	
Toluene-d8	102	80-111	
Bromofluorobenzene	98	77-126	

		Purgeable Ar	omatics by G	ic/ms
Lab #: 164	930		Location:	Hadjian/Dublin
Client: SOM	A Environmental	Engineering Inc.	Prep:	EPA 5035
Project#: 269	2		Analysis:	EPA 8260B
Field ID:	ZZZZZZZZZ		Diln Fac:	1.667
MSS Lab ID:	164906-002		Batch#:	81089
Matrix:	Soil		Sampled:	04/23/03
Units:	ug/Kg		Received:	04/23/03
Basis:	as received		Analyzed:	04/26/03

Гуре:

MS

Lab ID:

QC212220

Analyt	e MSS Resu	1t	Spiked	Result	%RE(C Limits
Benzene	<0.	1300	83.33	66.58	80	55-125
Toluene	<0.	3300	83.33	66.47	80	48-131
Chlorobenzene	<0.	2600	83.33	47.83	57	42-128

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	101	75-128
Toluene-d8	100	80-111
Bromofluorobenzene	90	77-126

Type:

MSD

Lab ID:

Analyte	Spiked	Result	%RE(] Limite	RPD	Lim
Benzene	83.33	68.64	82	55-125	3	20
Toluene	83.33	64.24	77	48-131	3	20
Chlorobenzene	83.33	46.71	56	42-128	2	23
						

Surrogate	%RBC	Limits		
1,2-Dichloroethane-d4	100	75-128		
Toluene-d8	101	80-111		
Bromofluorobenzene	91	77-126	 	

Purgeable Aromatics by GC/MS

Lab #: 164930 Location: Hadjian/Dublin Client: SOMA Environmental Engineering Inc. Prep: EPA 5035

Client: SOMA Environmental Engineering Inc. Prep: EPA 5035
Project#: 2692 Analysis: EPA 8260B

Type: LCS Basis: as received Lab ID: QC212310 Diln Fac: 1.000

 Lab ID:
 QC212310
 Diln Fac:
 1.000

 Matrix:
 Soil
 Batch#:
 81132

 Units:
 ug/Kg
 Analyzed:
 04/28/03

Analyte	Spiked	Result	%REC	Limita	
Benzene	50.00	48.78	98	77-120	
Toluene	50.00	49.51	99	80-120	
Chlorobenzene	50.00	47.37	95	80-120	

	Surrogate	%REC	Limits
	1,2-Dichloroethane-d4	104	75-128
	Toluene-d8	100	80-111
L	Bromofluorobenzene	90	77-126

		Purgeable Aro	matics by GC	?/MS
Lab #: 164	930		Location:	Hadjian/Dublin
Client: SOM	MA Environmental	Engineering Inc.	Prep:	EPA 5035
Project#: 269	92		Analysis:	EPA 8260B
Field ID:	ZZZZZZZZZ		Diln Fac:	1.000
MSS Lab ID:	164964-001		Batch#:	81132
Matrix:	Soil		Sampled:	04/24/03
Units:	ug/Kg		Received:	04/25/03
Basis:	as received		Analyzed:	04/28/03

Гуре:

MS

Lab ID:

QC212316

Analyte	MSS Result	Spiked	Result	%RE	C Limits
Benzene	<0.08100	50.00	47.59	95	55-125
Toluene	<0.2000	50.00	49.37	99	48-131
Chlorobenzene	<0.1600	50.00	46.50	93	42-128

*REC	Limits	
4 105	75-128	
100	80-111	
93	77-126	
	4 105 100	100 80-111

Type:

MSD

Lab ID:

Analyte	Spiked	Result	%RE(. Limits	RPD	Lim
Benzene	50.00	46.97	94	55-125	1	20
Toluene	50.00	48.65	97	48-131	1	20
Chlorobenzene	50.00	46.11	92	42-128	1	23
			···			

	-128
Toluene-d8 99 80 Bromofluorobenzene 94 77	-111
Bromofluorobenzene 94 77	-126

Purgeable Aromatics by GC/MS

Lab #: 164930 Location: Hadjian/Dublin

Client: SOMA Environmental Engineering Inc. Prep: EPA 5035
Project#: 2692 Analysis: EPA 8260B

 Type:
 LCS
 Diln Fac:
 1.000

 Lab ID:
 QC212370
 Batch#:
 81147

 Matrix:
 Water
 Analyzed:
 04/28/03

Units: ug/L

Analyte	Spiked			Limits
Велгепе	50.00	48.94	98	77-120
Toluene	50.00	50.67	101	80-120
Chlorobenzene	50.00	50.28	101	80-120

Surrogate	%REC] Limits
1,2-Dichloroethane-d4	101	75-128
Toluene-d8	100	80~111
Bromofluorobenzene	92	77-126

		Purgeable Aro	matics by G	C/MS
Lab #: 1649	930		Location:	Hadjian/Dublin
Client: SOM	A Environmental E	Ingineering Inc.	Prep:	EPA 5035
Project#: 2692	2		Analysis:	EPA 8260B
Field ID:	B-7@3.5-4		Diln Fac:	250.0
MSS Lab ID:	164930-007		Batch#:	81147
Matrix:	Soil		Sampled:	04/23/03
Units:	ug/Kg		Received:	04/24/03
Basis:	as received		Analyzed:	04/29/03

MS

Lab ID:

QC212373

Analyte	MSS Result	Spiked	Result	%REC	Limits
Benzene	6,506	12,500	17,650	89	55-125
Toluene	199,800 >LR	12,500	188,200 >LR	-93 NM	1 48-131
Chlorobenzene	301.4	12,500	12,470	97	42-128

*REC	Limits
105	75-128
93	80-111
100	77-126
	105 93

MSD

Lab ID:

QC212374

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Benzene	12,500	17,150	85	55-125	3	20
Toluene	12,500	182,000 >LR	-142	NM 48-131	NC	20
Chlorobenzene	12,500	12,000	94	42-128	4	23
			•			

Surrogate	*REC	Limits	
1,2-Dichloroethane-d4	103	75-128	
Toluene-d8	94	80-111	
Bromofluorobenzene	98	77-126	

NC= Not Calculated

NM= Not Meaningful

LR= Response exceeds instrument's linear range RPD= Relative Percent Difference

Page 1 of 1

04/29/03

Purgeable Aromatics by GC/MS

Lab #: 164930 Location: Hadjian/Dublin

Client: SOMA Environmental Engineering Inc. Prep: EPA 5035
Project#: 2692 Analysis: EPA 8260B

Type: LCS Diln Fac: 1.000
Lab ID: QC212427 Batch#: 81162

Matrix: Water Analyzed: Units: ug/L

Analyte	Spiked	Result	%RE(I Limits
Benzene	50.00	46.48	93	77-120
Toluene	50.00	48.78	98	80-120
Chlorobenzene	50.00	47.76	96	80-120

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	107	75-128
Toluene-d8	98	80-111
Bromofluorobenzene	93	77-126

Client: SOMA Environmental Engineering Inc. Pre	ation: Hadjian/Dublin
	acton. madjtan/bubiti
Project# 2692	ep: EPA 5035
Ala	alysis: EPA 8260B
Field ID: ZZZZZZZZZ Dil	n Fac: 100.0
MSS Lab ID: 164962-005 Bat	ch#: 81162
Matrix: Soil Sam	pled: 04/24/03
Units: ug/Kg Rec	eived: 04/25/03
Basis: as received Ana	alyzed: 04/30/03

MŞ

Lab ID: QC212516

Analyte	MSS Result	Spiked	Result	%REC	Limits
Benzene	<8.100	5,000	4,992	100	55-125
Toluene	<20.00	5,000	5,106	102	48-131
Chlorobenzene	<16.00	5,000	5,101	102	42-128

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	100	75-128
Toluene-d8	100	80-111
Bromofluorobenzene	92	77-126

MSD

Lab ID:

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Benzene	5,000	4,853	97	55-125	3	20
Toluene	5,000	5,164	103	48-131	1	20
Chlorobenzene	5,000	5,078	102	42-128	0	23
					•	

Surrogate	%REC	Limite
1,2-Dichloroethane-d4	99	75-128
Toluene-d8	100	80-111
Bromofluorobenzene	94	77~126

	Purgeabl	e Aromatics by GC	:/мs
Lab #:	164930	Location:	Hadjian/Dublin
Client:	SOMA Environmental Engineering	Inc. Prep:	EPA 5035
Project#:	2692	Analysis:	EPA 8260B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC212567	Batch#:	81193
Matrix:	Water	Analyzed:	04/30/03
Units:	ug/L	_	

Analyte	Spiked	Result	%REC	Limits	
Benzene	50.00	47.90	96	77-120	
Toluene	50.00	50.32	101	80-120	1
Chlorobenzene	50.00	50.16	100	80-120	

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	105	75-128	
Toluene-d8	99	80-111	
Bromofluorobenzene	95	77-126	

		Purgeable Aro	matics by (FC/MS
Lab #: 16	4930		Location:	Hadjian/Dublin
Client: SO	MA Environmental	Engineering Inc.	Prep:	EPA 5035
Project#: 26	92		Analysis:	EPA 8260B
Field ID:	B-7@3.5-4	•	Diln Fac:	2,500
MSS Lab ID:	164930-007		Batch#:	81193
Matrix:	Soil		Sampled:	04/23/03
Units:	ug/Kg		Received:	04/24/03
Basis:	as received		Analyzed:	04/30/03

MS

Lab ID:

QC212589

Analyte	MSS Result	Spiked	Result	%RE(Limits
Benzene	5,467	125,000	115,600	88	55-125
Toluene	266,300	125,000	352,400	69	48-131
Chlorobenzene	<390.0	125,000	114,600	92	42-128

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	104	75-128
Toluene-d8	99	80-111
Bromofluorobenzene	95	77-126

Type:

MSD

Lab ID:

QC212590

	Analyte	Spiked	Result	%REC	Limite	RPD	Lim
	Benzene	125,000	125,400	96	55-125	8	20
1	Toluene	125,000	409,200	114	48-131	15	20
	Chlorobenzene	125,000	123,000	98	42-128	7	23

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	104	75-128
Toluene-d8	100	80-111
Bromofluorobenzene	94	77-126

		Gasoline Oxyg	enates by GC	
Lab #: Client: Project#:	164930 SOMA Environmental 2692	Engineering Inc.	Location: Prep: Analysis:	Hadjian/Dublin EPA 5030B EPA 8260B
Basis: Sampled:	as received 04/23/03		Received:	04/24/03

Field ID: B-1@3.5-4 Units: ug/Kg
Type: SAMPLE Diln Fac: 1.000
Lab ID: 164930-001 Batch#: 81089
Matrix: Soil Analyzed: 04/25/03

ATT A A A A A A A A A A A A A A A A A A			
Analyte	Resu	lt RL	
tert-Butyl Alcohol (TBA)	ND	100	
MTBE	ND	5.0	
Isopropyl Ether (DIPE)	ND	5.0	
Ethyl tert-Butyl Ether (ETBE)	ND	5.0	
Methyl tert-Amyl Ether (TAME)	ND	5.0	
1,2-Dichloroethane	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Ethanol	ND	1,000	

Surrogate	REC	Limits	
Dibromofluoromethane	108	74-124	
1,2-Dichloroethane-d4	117	75-128	
Toluene-d8	100	80-111	
Bromofluorobenzene	104	75-127	

 Field ID:
 B-2B@3.5-4
 Units:
 ug/Kg

 Type:
 SAMPLE
 Diln Fac:
 1,000

 Lab ID:
 164930-002
 Batch#:
 81147

 Matrix:
 Soil
 Analyzed:
 04/28/03

	Analyte	Result	RL
	tert-Butyl Alcohol (TBA)	ND	100,000
	MTBE	21,000	5,000
	Isopropyl Ether (DIPE)	ND	5,000
7	Ethyl tert-Butyl Ether (ETBE)	ND	5,000
- 1	Methyl tert-Amyl Ether (TAME)	20,000	5,000
۲	1,2-Dichloroethane	ND	5,000
	1,2-Dibromoethane	ND	5,000
	Ethanol	ND	1,000,000

Dibromofluoromethane 97 74-124 1,2-Dichloroethane-d4 109 75-128 Toluene-d8 97 80-111	Surrogate	*REC	C Limits
Toluene-d8 97 80-111	Dibromofluoromethane	97	
101dene-do	1,2-Dichloroethane-d4	109	75-128
la 63 3	Toluene-d8	97	80-111
Bromofluorobenzene 97 75-127	Bromofluorobenzene	97	75-127

NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 1 of 7

		Gasoline Oxyg	enates by GC/M	
	Lab #:	164930	Location:	Hadjian/Dublin
_	Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5030B
4	Project#:	2692	Analysis:	EPA 8260B
	Basis:	as received	Received:	04/24/03
-	Sampled:	04/23/03		

ug/Kg 0.8621 rield ID: B-3@3.5-4 Units: SAMPLE Type: Lab ID: Diln Fac: 164930-003 Batch#: 81132 04/28/03 Analyzed: Matrix: Soil Result Analyte tert-Butyl Alcohol (TBA) ND 86 ND4.3 MTBE Isopropyl Ether (DIPE) Ethyl tert-Butyl Ether (ETBE) Methyl tert-Amyl Ether (TAME) 4.3 ND ND 4.3 4.3 ND

 Surrogate
 *RBC
 Limits

 Dibromofluoromethane
 99
 74-124

 1,2-Dichloroethane-d4
 111
 75-128

 Toluene-d8
 99
 80-111

 Bromofluorobenzene
 97
 75-127

4.3

4.3

860

Field ID: B-4@2.5-3 Units: ug/Kg
Type: SAMPLE Diln Fac: 0.8333
Lab ID: 164930-004 Batch#: 81132
Matrix: Soil Analyzed: 04/28/03

ND

ND

ND

Analyte tert-Butyl Alcohol (TBA) Result ND 83 4.2 ND Isopropyl Ether (DIPE) Ethyl tert-Butyl Ether (ETBE) Methyl tert-Amyl Ether (TAME) ND 4.2 4.2 ND ND 4.2 1,2-Dichloroethane ND 4.2 1,2-Dibromoethane ND 4.2 <u>Ethanol</u> ND830

Surrogate	%REC	Limits
Dibromofluoromethane	100	74-124
1,2-Dichloroethane-d4	111	75-128
Toluene-d8	99	80-111
Bromofluorobenzene	94	75-127

1,2-Dichloroethane

1,2-Dibromoethane

<u>Ethanol</u>

		Gasoline Oxyg	enates by	GC/MS	
Lab #: Client: Project#:	164930 SOMA Environmental 2692	Engineering Inc.	Location: Prep: Analysis:	Hadjian/Dublin EPA 5030B EPA 8260B	
Basis: Sampled:	as received 04/23/03		Received:	04/24/03	

Field ID: Type: Lab ID:

Matrix:

B-5@3.5-4 SAMPLE 164930-005 Soil Units: Diln Fac: Batch#: Analyzed: ug/Kg 0.9434 81132 04/28/03

Analyte		••	***************************************
tert-Butyl Alcohol (TBA)	ND	RL 94	
MTBE	ND	4 7	
Isopropyl Ether (DIPE)	ND	4.7	
Ethyl tert-Butyl Ether (ETBE)	ND	4.7	
Methyl tert-Amyl Ether (TAME)	ND	4.7	
1,2-Dichloroethane	ND	4.7	
1,2-Dibromoethane	ND	4.7	
Ethanol	ND	940	

Surrogate £28C Limits	
Dibromofluoromethane 98 74-124	
1,2-Dichloroethane-d4 110 75-128	
■ Toluene-d8 100 80-111	
Bromofluorobenzene 94 75-127	

Field ID: Type: Lab ID:

Matrix:

B-6@2.5-3 SAMPLE 164930-006 Soil Units: Diln Fac: Batch#: Analyzed: ug/Kg 0.8621 81132 04/28/03

Analyte tert-Butyl Alcohol (TBA) Result ND 86 MTBE 4.3 ND Isopropyl Ether (DIPE)
Ethyl tert-Butyl Ether (ETBE)
Methyl tert-Amyl Ether (TAME)
1,2-Dichloroethane
1,2-Dibromoethane ND ND 4.3 ND 4.3 ND 4.3 ND 4.3 Ethanol ND 860

Surrogate	%REC	Limits	
Dibromofluoromethane	102	74-124	
1,2-Dichloroethane-d4	111	75-128	
Toluene-d8	99	80-111	
Bromofluorobenzene	97	75-127	

NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 3 of 7

Gasoline Oxygenates by GC/MS

164930 Location:

Hadjian/Dublin EPA 5030B EPA 8260B 04/24/03 Lab #: Client: SOMA Environmental Engineering Inc.

Prep: Analysis: Received: Project#: 2692

Basis: as received 04/23/03 Sampled:

Field ID: B-7@3.5-4

ug/Kg 1,429 Type: Lab ID: SAMPLE Diln Fac: 164930-007 Batch#: 81162

Matrix: 04/29/03 Soil Analyzed:

Analyte	Result	31	
tert-Butyl Alcohol (TBA)	ND	140,000	
MTBE	7,100	7,100	
Isopropyl Ether (DIPE)	ND	7,100	
Ethyl tert-Butyl Ether (ETBE)	ND	7,100	
Methyl tert-Amyl Ether (TAME)	10,000	7,100	
1,2-Dichloroethane	ND	7,100	
1,2-Dibromoethane	ND	7,100	
Ethanol	ND	1,400,000	

Units:

	Stoppogate	%REC	Dimi ta
	Dibromofluoromethane	96	74-124
	1,2-Dichloroethane-d4	102	75-128
	Toluene-d8	100	80-111
[Bromofluorobenzene	89	75-127

Field ID: B-8@4-5.75 Units: ug/Kg 0.8772 SAMPLE Type: Diln Fac:

Lab ID: 164930-008 Batch#: 81089 Matrix: 04/26/03 Soil Analyzed:

	Analyte	Re	esult	RL	
te	rt-Butyl Alcohol (TBA)	ND		88	
MT	BE _		47	4.4	
Isc	opropyl Ether (DIPE)	ND		4.4	
Etl	nyl tert-Butyl Ether (ETBE)	ND		4.4	
Met	thyl tert-Amyl Ether (TAME)		12	4.4	1
1,2	2-Dichloroethane	ND		4.4	
	2-Dibromoethane	ND		4.4	
Etl	nanol	ND		880	

	Surrogate	WARE C	Marin Ces	
	Dibromofluoromethane	94	74-124	
я	1,2-Dichloroethane-d4	102	75-128	
•	Toluene-d8	100	80-111	
	Bromofluorobenzene	95	75-127	
			·	

Gasoline Oxygenates by GC/MS

Lab #: 164930 Location: Hadjian/Dublin
Client: SOMA Environmental Engineering Inc. Prep: EPA 5030B
Project#: 2692 Analysis: EPA 8260B
Basis: as received Received: 04/24/03
Sampled: 04/23/03

Type: Lab ID: BLANK QC212150 Soil Diln Fac: Batch#: Analyzed: 1.000 81089 04/25/03

Matrix: Soil Units: ug/Kg

٩	Analyte		Result RL
	tert-Butyl Alcohol (TBA)	NA	
	MTBE	1	ND 5.0
ı	Isopropyl Ether (DIPE)	NA	
	Ethyl tert-Butyl Ether (ETBE)	NA	
1	Methyl tert-Amyl Ether (TAME)	NΑ	
-	1,2-Dichloroethane]	ND 5.0
	1,2-Dibromoethane		ND 5.0
	Ethanol	NA	
	•		

Surrogate	%REC	Limite
Dibromofluoromethane	101	74-124
1,2-Dichloroethane-d4	111	75-128
Toluene-d8	100	80-111
Bromofluorobenzene	102	75-127

Type: Lab ID: Matrix: Jnits:

BLANK QC212180 Soil ug/Kg Diln Fac: Batch#: Analyzed: 1.000 81089 04/25/03

Analyte	Resul	.t RL
tert-Butyl Alcohol (TBA)	ND	100
MTBE	ND	5.0
Isopropyl Ether (DIPE)	ND	5.0
TEthyl tert-Butyl Ether (ETBE)	ND	5.0
Methyl tert-Amyl Ether (TAME)	ND	5.0
d 1,2-Dichloroethane	ND	5.0
1,2-Dibromoethane	ND	5.0
Éthanol	ND	1,000

	Surrogate	*REC	Limits
	Dibromofluoromethane	106	74-124
	1,2-Dichloroethane-d4	112	75-128
9	Toluene-d8	100	80-111
	Bromofluorobenzene	100	75-127

NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 5 of 7

Type: Lab ID: Matrix:

Jnits:

BLANK QC212311 Soil ug/Kg Diln Fac: Batch#: Analyzed:

1.000 81132 04/28/03

Analyte tert-Butyl Alcohol (TBA) Result NA ND MTBE 5.0 Isopropyl Ether (DIPE)
Ethyl tert-Butyl Ether (ETBE)
Methyl tert-Amyl Ether (TAME)
1,2-Dichloroethane
1,2-Dibromoethane NA NANA ND 5.0 ND 5.0 Ethanol NΑ

Dibromofluoromethane	Surrogate	*REC	Minito
Toluene-d8 99 80-111 Bromofluorobenzene 95 75-127	Dibromofluoromethane	97	7 4 7 5 4
Bromofluorobenzene 95 75-127	1,2-Dichloroethane-d4	104	75-128
		99	80-111
	Bromofluorobenzene	95	

Type: Lab ID: Matrix:

Units:

BLANK QC212318 Soil ug/Kg Diln Fac: Batch#: Analyzed:

1.000 81132 04/28/03

-				
-	Analyte	Resul	RL	
_	tert-Butyl Alcohol (TBA)	ND	100	
	MTBE	ND	5.0	
	Isopropyl Ether (DIPE)	ND	5.0	
П	Ethyl tert-Butyl Ether (ETBE)	ND	5.0	j
ı	Methyl tert-Amyl Ether (TAME)	ND	5.0	
	1,2-Dichloroethane	ND	5.0	
П	1,2-Dibromoethane	ND	5.0	
Ę	Ethanol	ND	1,000	

Surrogate	%REC	Limits
Dibromofluoromethane	95	74 - 124
1,2-Dichloroethane-d4	106	75-128
■ Toluene-d8	100	80-111
Bromofluorobenzene	90	75-127

NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 6 of 7

Gasoline Oxygenates by GC/MS Lab #: 164930 Location: Hadjian/Dublin EPA 5030B Client: SOMA Environmental Engineering Inc. Prep: EPA 8260B 04/24/03 Project#: 2692 Analysis: Received: as received 04/23/03 Basis: Sampled

Type: Lab ID: Matrix: BLANK QC212371 Water Diln Fac: Batch#: Analyzed:

1.000 81147 04/28/03

Matrix: Water Units: ug/L Analyte

Analyte	Resu	lt RL	
tert-Butyl Alcohol (TBA)	ND	100	-
MTBE	ND	5.0	
Isopropyl Ether (DIPE)	ND	5.0	
Ethyl tert-Butyl Ether (ETBE)	ND	5.0	
Methyl tert-Amyl Ether (TAME)	ND	5.0	
1,2-Dichloroethane	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Ethanol	ND	1,000	

Surrogate	*RE(C Limits
Dibromofluoromethane	95	74-124
1,2-Dichloroethane-d4	106	75-128
Toluene-d8	100	80-111
Bromofluorobenzene	90	75-127

Type: Lab ID: Matrix: Jnits: BLANK QC212428 Water ug/L Diln Fac: Batch#: Analyzed:

1.000 81162 04/29/03

<u>Analyte</u>	Rest	ilt RL
tert-Butyl Alcohol (TBA)	ND	100
MTBE Isopropyl Ether (DIPE)	ND	5.0
	ND	5.0
₹ Ethyl tert-Butyl Ether (ETBE)	ND	5.0
Methyl tert-Amyl Ether (TAME)	ND	5.0
▲ 1,2-Dichloroethane	ND	5.0
1,2-Dibromoethane	ND	5.0
Ethanol	ND	1,000

Surrogate	*REC	Limits	
Dibromofluoromethane	97	74-124	
1,2-Dichloroethane-d4	105	75-128	
Toluene-d8	100	80-111	
Bromofluorobenzene	93	75-127	

NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 7 of 7

	Gasoline Oxyg	enates by G	C/MS
Lab #:	164930	Location:	Hadjian/Dublin
	SOMA Environmental Engineering Inc.	Prep:	EPA 5030B
Project#:	2692	Analysis:	EPA 8260B
Type:	LCS	Basis:	as received
Lab ID:	QC212149	Diln Fac:	1.000
Matrix:	Soil	Batch#:	81089
Units:	ug/Kg	Analyzed:	04/25/03

			Webnic		. Minico	
MTBE		50.00	48.93	98	63-121	
Surrogate	*REC	Limits				
Dibromofluoromethane	103	74-124				
1,2-Dichloroethane-d4	108	75-128				
Toluene-d8	102	80-111				
Bromofluorobenzene	0.0	75 177				

			Gasoline	Ожуд	enates by G	C/MS
Lab #:	16493	30			Location:	Hadjian/Dublin
		Environmental	Engineering	Inc.	Prep:	EPA 5030B
Project#:	2692				Analysis:	EPA 8260B
Field ID:		ZZZZZZZZZ			Diln Fac:	1.667
MSS Lab ID	11	164906-002			Batch#:	81089
Matrix:		Soil			Sampled:	04/23/03
Units:		ug/Kg			Received:	04/23/03
Basis:		as received			Analyzed:	04/26/03

MS

Lab ID:

QC212220

MTBE	<0.3300	83.33	72.80	87	53-131
		Spiked	Result	%REC	Limits

Surrogate	%REC	Limits
Dibromofluoromethane	94	74-124
1,2-Dichloroethane-d4	101	75-128
Toluene-d8	100	80-111
Bromofluorobenzene	90	75-127
	 -	· · · · · · · · · · · · · · · · · · ·

Гуре:

MSD

Lab ID:

QC212221

Anaryte	Spiked	Result	*RE	C Limits	RPD	Lim
MTBE	83.33	73.82	89	53-131	1	30
						, -
Surrogate	%REC Limits				990000000000	***************
	PARC DIMICS					

Surrogate	%REC	! Limits
Dibromofluoromethane	94	74-124
1,2-Dichloroethane-d4	100	75-128
Toluene-d8	101	80-111
Bromofluorobenzene	91	75-127
· · · · · · · · · · · · · · · · · · ·		

	Ga	soline Oxygenates by	GC/MS
Lab #:	164930	Location:	Hadjian/Dublin
	SOMA Environmental Engi	neering Inc. Prep:	EPA 5030B
Project#:	2692	Analysis:	EPA 8260B
Type:	LCS	Basis:	as received
Lab ID:	QC212310	Diln Fac:	1.000
Matrix:	Soil	Batch#:	81132
Units:	ug/Kg	Analyzed:	04/28/03

MTBE		50.00	45.99	92	63-121	
Surrogate	%REC	: Limits				
Dibromofluoromethane	96	74-124				************
1,2-Dichloroethane-d4	104	75-128				
Toluene-d8	100	80-111				
Bromofluorobenzene	90	75-127				

			Gasoline	Ожуд	enates by G	ec/ms
Lab #:	16493	3.0			Location:	Hadding (Dobling
Client:		Environmental	Engineering	Inc.	Prep:	Hadjian/Dublin EPA 5030B
Project#:					Analysis:	EPA 8260B
Field ID:		ZZZZZZZZZZ			Diln Fac:	1.000
MSS Lab II):	164964-001			Batch#:	81132
Matrix:		Soil			Sampled:	04/24/03
Units:		ug/Kg			Received:	04/25/03
Basis:		as received			Analyzed:	04/28/03

MS

Lab ID:

QC212316

Analyte	MSS Result	Spiked	Result	*REC	Limits
MTBE	<0.2000	50.00	46.89	94	53-131
Surrogate					

Surrogate	%RBC	Limits
Dibromofluoromethane	98	74-124
1,2-Dichloroethane-d4	105	75-128
_ Toluene-d8	100	80-111
Bromofluorobenzene	93	75-127
· · · · · · · · · · · · · · · · · · ·		

fype:

Toluene-d8

Bromofluorobenzene

MSD

Lab ID:

QC212317

Analyte		Spiked	Result	*RE	C Limits	RPE	Lim
MTBE		50.00	46.10	92	53-131	2	30
Surrogate	%REC	Limits					
Dibromofluoromethane	98	74-124					
1,2-Dichloroethane-d4	104	75-128					

80-111

75-127

99

94

	Gasoline Oxyg	enates by GC	/ms
Lab #:	164930	Location:	Hadjian/Dublin
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5030B
Project#:	2692	Analysis:	EPA 8260B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC212370	Batch#:	81147
Matrix:	Water	Analyzed:	04/28/03
Units:	ug/L	-	

Analyte		Spiked	Result	%RB(Limits	
MTBE		50.00	46.70	93	63-121	
Surrogate	*REC	Limite				
Dibromofluoromethane	96	74-124				
1,2-Dichloroethane-d4	101	75-128				
Toluene-d8	100	80~111				
Bromofluorobenzene	92	75-127				

		Gasoline Oxyg	enates by (GC/MS
Lab #: 1649	30		Location:	Hadjian/Dublin
Client: SOMA	Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#: 2692			Analysis:	EPA 8260B
Field ID:	B-7@3.5-4	· · · · · · · · · · · · · · · · · · ·	Diln Fac:	250.0
MSS Lab ID:	164930-007	•	Batch#:	81147
Matrix:	Soil		Sampled:	04/23/03
Units:	ug/Kg		Received:	04/24/03
Basis:	as received		Analyzed:	04/29/03

MS

Lab ID:

QC212373

Analyte	MSS Result	Spiked	Résult	*REC	Limits
MTBE	7,244	12,500	19,730	100	53-131

Surrogate	%RBC	Limits
Dibromofluoromethane	97	74-124
1,2-Dichloroethane-d4	105	75-128
Toluene-d8	93	80-111
Bromofluorobenzene	100	75-127

Гуре:

Toluene-d8

Bromofluorobenzene

MSD

Lab ID:

QC212374

Analyte		Spiked	Result	%RE(: Limits	RPD	Lim
MTBE		12,500	19,310	97	53-131	2	30
Surrogate	%REC	Limits					
Surrogate Dibromofluoromethane 1,2-Dichloroethane-d4	%REC 95	Limits 74-124					

80-111

75-127

94

98

	Gasoline Ожуд	genates by G	C/MS
Lab #:	164930	Location:	Hadjian/Dublin
	SOMA Environmental Engineering Inc.	Prep:	EPA 5030B
Project#:	2692	Analysis:	EPA 8260B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC212427	Batch#:	81162
Matrix:	Water	Analyzed:	04/29/03
Units:	ug/L		

MTBE		50.00	46.05	92	63-121	
Surrogate	*REC	' Limits				
Dibromofluoromethane	99	74-124				
1,2-Dichloroethane-d4	107	75-128				
Toluene-d8	98	80-111				
Bromofluorobenzene	93	75~127				

			Gasoline	Охуд	enates by G	ic/ms
Lab #:	16493	30			Location:	Hadjian/Dublin
Client:		Environmental	Engineering	Inc.	Prep:	EPA 5030B
Project#:	2692				Analysis:	EPA 8260B
Field ID:		ZZZZZZZZZ			Diln Fac:	100.0
MSS Lab II	D:	164962-005			Batch#:	81162
Matrix:		Soil			Sampled:	04/24/03
Units:		ug/Kg			Received:	04/25/03
Basis:		as received			Analyzed:	04/30/03

MS

Lab ID:

QC212516

	MSS Result	Spiked	Result	%REC	2 Limits
MTBE	<20.00	5,000	4,659	93	53-131

Surrogate	%REC	² Limits
Dibromofluoromethane	91	74-124
1,2-Dichloroethane-d4	100	75-128
Toluene-d8	100	80-111
Bromofluorobenzene	92	75-127

Гуре:

Bromofluorobenzene

MSD

Lab ID:

QC212517

Spiked Result %REC Limits RPD Lim

MTBE		5,000	4,775	96	53-131	2	30
Surrogate	%REC	Limits					
Dibromofluoromethane	94	74-124				***************************************	
1,2-Dichloroethane-d4	99	75-128					
Toluene-d8	100	80-111					

75-127

94

Appendix D

Laboratory Reports of Groundwater Analytical and Chain of Custody Form

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900, Fax (510) 486-0532

ANALYTICAL REPORT

Prepared for:

SOMA Environmental Engineering Inc. 2680 Bishop Dr. Suite 203 San Ramon, CA 94583

Date: 30-APR-03

Lab Job Number: 164846 Project ID: 2692

Location: Hadjian/Dublin

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Reviewed by:

ns Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

Page 1 of 38

CHAIN OF CUSTODY FORM

Page ____of ____

Analyses

Curtis & Tompkins, Ltd.

Analytical Laboratory Since 1878 2323 Fifth Street Berkeley, CA 94710 (510)486-0900 Phone (510)486-0532 Fax

Project No:	2692
Project Name	.7240 Dublin Blvd

Project P.O.:

Project No:	2692_
Duniant Name	.7240 Dublin Blvd

Turnaround Time:

C&T LOGIN#_	١	1	u	0	46
LOGIN#_	\downarrow	0	_(0	

Report To:

Sampler:

Matrix

Telephone: (925) 244-11(100)

	Fax:	(91	15	<u>) 1</u>	44	. 1	100	 	
		Preservative							
,	4 - 6		0	33					

	Laboratory Number		1	Soil	Water	Waste	# of Containers	HCL	H ₂ SO	HNO3	ICE		Field Notes	STEX	1205 C						
-4	-	DPB-3@14:16	4 Kg 05	ኦ		j	X 6				×		Direct Rish Bovehol 1301/ x 3	Δ	x		Ш	丄			
·5		DPB-40.9-10	7	×			y 6				7	•	4 ot q: 10 x -	ر ،	k						
-b	· >	DPE So NO		X			X 6				X		5at 11:12 x >		k .		Ш	ightharpoonup			
7	1	DPB1218-18	ZWO2	x			X6				X		Latis. Re x				Ш				<u></u>
8	0	DPB 7015 16	£	٨			16				ኦ		7-21-152113x X	\sqcup	ᅩ		Ш	ightharpoonup			
9		DPB-Se-16-16	1 . F	Σ			76				λ		Sat 15-10x	<u>. </u>	×		Ш	\perp			<u></u>
ĺ	OBO	DPB3e18-1	a's K	አ			46				х		3/118=14=x	x	М		Ш				<u>. </u>
	Tr F		•				214				7										
	0			T	\Box	\Box	4/21														
	Q								-								\coprod				_
	B																				
																					_
											,					1	 -		[1 1	i

Notes: EDF Required

Encores lept from since collection su attached photocopy SAMPLES -004-010 SHOVLD READ CONTAINERS

Signature

RELINQUISHED BY:

182 21 Aproca, DATE/TIME

DATE/TIME

DATE/TIME

DATE/TIME

RECEIVED BY:

DATE/TIME

real in tap

Laboratory Number:

164846 (soil)

Client:

SOMA Environmental Engineering Inc.

Project Name:

Hadjian/Dublin

Project Number:

2692

Receipt Date:

04/21/2003

CASE NARRATIVE

This hardcopy data package contains sample results and batch QC results for three soil samples received from the above referenced project on April 21, 2003. The samples were received cold and intact.

Total Volatile Hydrocarbons:

The trifluorotoluene surrogate recoveries for samples DPB-6S, DPB-6M, DPB-6D, and the matrix spikes exceed acceptance limits due to coelution of the surrogate peak with hydrocarbon peaks. The associated bromofluorobenzene surrogate recoveries were acceptable and therefore, there is no affect on the quality of the sample results. No other analytical problems were encountered.

Purgeable Organics (EPA 8260):

No analytical problems were encountered.

Gasoline by GC/FID (5035 Prep)

Hadjian/Dublin Lab #: 164846 Location:

Client: SOMA Environmental Engineering Inc. EPA 5035

Prep: Analysis: 8015B Project#: 2692 Soil Batch#: 80943 Matrix:

Received: 04/21/03 mg/Kg Units: Basis: as received

200.0 ield ID: DPB-3@14'-15' Diln Fac: SAMPLE Sampled:

'уре: ab ID: 04/17/03 Analyzed: 04/22/03 164846-004

Analyte Result 200 Gasoline C7-C12 3,500

Surrogate %RBC Limits Trifluorotoluene (FID) 107 58~144 Bromofluorobenzene (FID) 109 60-146

Field ID: DPB-4@9'-10' Diln Fac: 1.000 SAMPLE Sampled: 04/17/03 ype: 04/22/03 ab ID: 164846-005 Analyzed:

Analyte Result Gasoline C7-C12 0.20 Y 0.16 %REC Limits Surrogate Trifluorotoluene (FID) 95

107 Bromofluorobenzene (FID) 60-146

58~144

Field ID: DPB-5@11-12' Diln Fac: 1.000 04/17/03 SAMPLE Sampled: уре: Analyzed: ab ID: 04/22/03 164846-006

Analyte Result Gasoline C7-C12 0.17

Surrogate Trifluorotoluene (FID) %REC Limits 96 58-144 Bromofluorobenzene (FID) 107 60-146

1.000 Field ID: DPB-6@18-18.75 Diln Fac: 04/18/03 04/22/03 SAMPLE Sampled: Type: Analyzed: 164846-007 ab ID:

Result Analyte PT.

Gasoline C7-C12 0.15

*REC Limits Surroqate Trifluorotoluene (FID) 98 58-144 60-146 110 Bromofluorobenzene (FID)

Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 1 of 2

GC19 TVH 'X' Data File (FID)

ample Name: 164846-004,80943 Sample #: b Page 1 of 1 : G:\GC19\DATA\111X041.raw lleName Date: 4/22/03 12:17 PM : TVHBTXE Time of Injection: 4/22/03 11:34 AM Start Time : 0.00 min End Time : 26.80 min Low Point : -37.86 mV High Point: 1051.62 mV cale Factor: 1.0 Plot Offset: -38 mV Plot Scale: 1089.5 mV DPB-3014'-15' Response [mV] -+CB _1.00 -1.15 C-6 ~5.28 C-7 5.85 TRIFLUO --7.67 -8.02 8.58 C-8 9.23 -9.74 -10.00 -10.34 10.83 -11.44 -11.75 12.10 12.62 12.89 13.10 13.61 -14.14 14.47 **BROMOF** ------15.69 -16.18 C-10 -16.48 16.61 -16.89 --17.23 18:94 -18:44 -18:48 -19:17 -19:64 17,60 -20.04 --20.38 --20.65 21.03 21.63 -22.93 C-12

GC19 TVH 'X' Data File (FID)

Sample #: b

Date: 4/22/03 09:46 AM

Page 1 of 1

ample Name: 164846-005,80943

'ileName

': G:\GC19\DATA\111X037.raw

Method : TVHBTXE Time of Injection: 4/22/03 09:19 AM Start Time : 0.00 min End Time : 26.80 min Low Point : 4.36 mV High Point: 212.51 mV cale Factor: 1.0 Plot Offset: 4 mV Plot Scale: 208.2 mV DPB-409'-10 Response [mV] 1.00 -1.14 5180 224 -2.39 C-6 -3:48 -3.96 -4.30 -4.75 -5.25 C-7 -6.35 TRIFLUO --6.80 -7.42 -8.04 -8.56 <u>-9,043</u> -9.56 C-8 -10.00 -10.34 -10.79 **BROMOF-**15.68 -16.17 16.47 C-10 -16.87 17.19 ≻-17.53 -18.18 18.80 19.98 -21.85 22.40 22.92 C-12 23,50 24.03 -25.63

1.000

Gasoline by GC/FID (5035 Prep)

Hadjian/Dublin Lab #: 164846 Location:

Prep: Analysis: Client: SOMA Environmental Engineering Inc. EPA 5035

8015B Project#: 2692 Matrix: Soil Batch#: 80943 Units: Received: 04/21/03

mg/Kg <u>as received</u> Basis:

Field ID: DPB-7@15.5-16.5 Diln Fac:

04/18/03 'ype: SAMPLE Sampled: 164846-008 Analyzed: 04/21/03

Analyte Result Gasoline C7-C12 ND 0.20

%REC Limits Surrogate Trifluorotoluene (FID) 89 58-144 Bromofluorobenzene (FID) 96 60-146

Field ID: Diln Fac: DPB-S@15-16' 1.000 Sampled: 04/18/03 SAMPLE 'ype: 04/22/03 ab ID: 164846-009 Analyzed:

RI Analyte Result Gasoline C7-C12 1.2 0.18

Surrogate Trifluorotoluene (FID) 107 58-144 Bromofluorobenzene (FID) 99 <u>60-146</u>

Field ID: DPB-3@18.5-19.5 Diln Fac: 1.000 04/17/03 Гуре: SAMPLE Sampled:

lab ID: 164846-010 04/22/03 Analyzed:

Analyte Result Gasoline C7-C12 ND 0.16

Surrogate %REC Limits 96 Trifluorotoluene (FID) 58-144 Bromofluorobenzene (FID) 110 60-146

BLANK 1.000 Diln Fac: Type: 04/21/03 Lab ID: QC211582 Analyzed:

Analyte Result Gasoline C7-C12 ND 1.0

Surrogate %REC Limits Trifluorotoluene (FID) 58-144 88 Bromofluorobenzene (FID) 96 60-146

Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected

RL= Reporting Limit Page 2 of 2

GC19 TVH 'X' Data File (FID)

ample Name : 164846-009,80943

: G:\GC19\DATA\111X027.raw ileName

Method : TVHBTXE

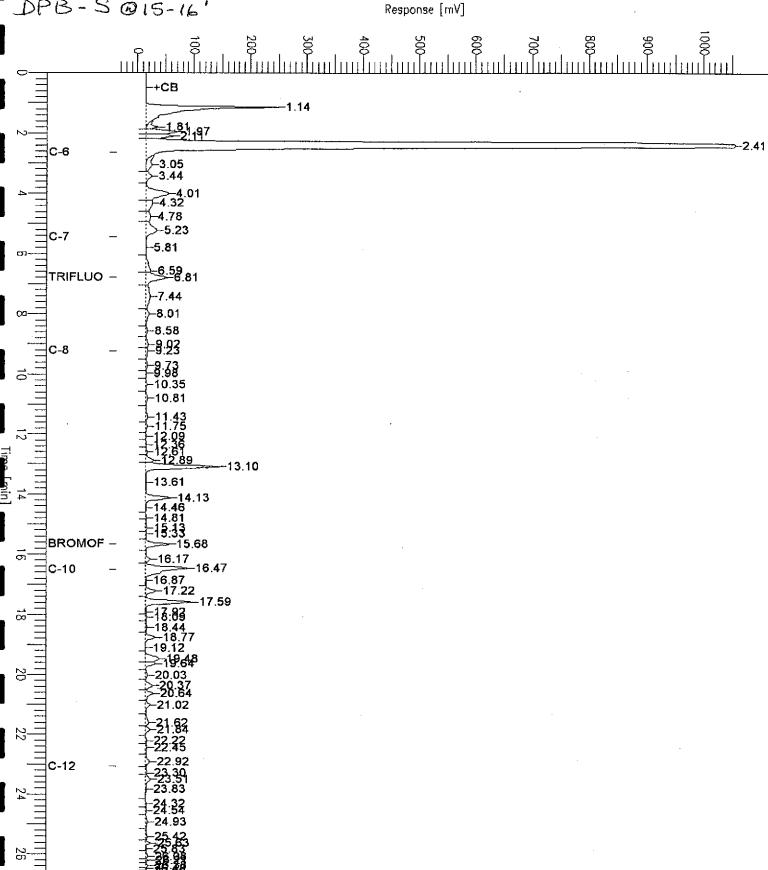
Start Time : 0.00 min cale Factor: 1.0

End Time : 26.80 min Plot Offset: ~38 mV

Sample #: a

Page 1 of 1

Date: 4/22/03 01:17 AM


Time of Injection: 4/22/03 12:49 AM

Low Point: -38.04 mV

High Point: 1055.70 mV

Plot Scale: 1093.7 mV

GC19 TVH 'X' Data File (FID)

ample Name : ccv/lcs,qc211584,80943,03ws0527,5/5000

ileName : G:\GC19\DATA\111x002.raw

Method : TVHBTXE

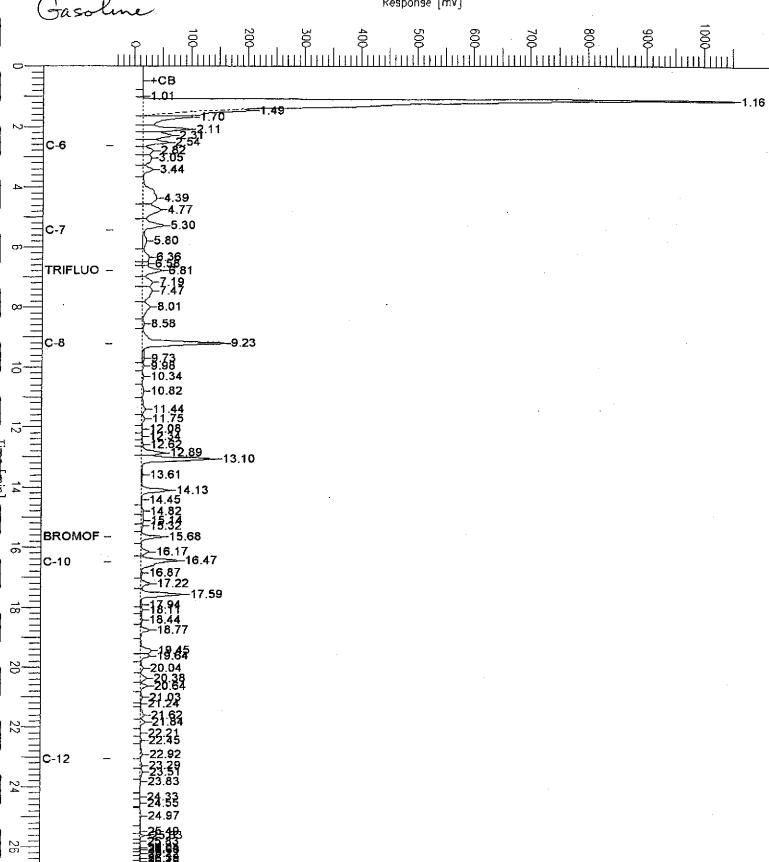
Start Time : 0.00 min cale Factor: 1.0

End Time : 26.80 min Plot Offset: -38 mV

Sample #:

Page 1 of 1

Date: 4/21/03 11:49 AM


Time of Injection: 4/21/03 09:10 AM

Low Point : -37.90 mV

Plot Scale: 1089.7 mV

High Point: 1051.82 mV

		Gasoline by GC	/FID (5035	Prep)
Lab #:	164846		Location:	Hadjian/Dublin
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5035
Project#:	2692		Analysis:	8015B
Type:	LCS		Basis:	as received
Lab ID:	QC211584		Diln Fac:	1.000
Matrix:	Soil		Batch#:	80943
Units:	mg/Kg		Analyzed:	04/21/03

Analyte		Spiked	Result	%RB(Limits	
Gasoline C7-C12		10.00	9.741	97	78-120	
Surrogate	%REC	: Limits				
Trifluorotoluene (FID)	97	58-144				
Bromofluorobenzene (FTD)	92	60-146				ŀ

		Gasoline by GC	/FID (5035	Prep)
Lab #: 1648	46		Location:	Hadjian/Dublin
Client: SOMA	Environmental	Engineering Inc.	Prep:	EPA 5035
Project#: 2692			Analysis:	8015B
Field ID:	ZZZZZZZZZZ		Diln Fac:	1.000
MSS Lab ID:	164818-007		Batch#:	80943
Matrix:	Soil		Sampled:	04/17/03
Units:	mg/Kg		Received:	04/17/03
Basis:	as received		Analyzed:	04/21/03

MS

Lab ID: QC211656

Analyte	MSS Result	Spiked	Result	%RI	EC Limits
Gasoline C7-C12	<0.06400	9.615	6.760	70	44-133

Surrogate	RREC	Limits
Trifluorotoluene (FID)	98	58-144
Bromofluorobenzene (FID)	100	60-146

Type:

MSD

Analyte

Lab ID:

QC211657

Result %REC Limits RPD Lim

Gasoline C7-C12		10.31	8.667	84	44-133	18	31
Surrogate	2-pre	Limits					
Trifluorotoluene (FID)	106	58-144					
Bromofluorobenzene (FID)	102	60-146					

Spiked

	Purgeable Arc	mmatics by GO	3/MS
Lab #:	164846	Location:	Hadjian/Dublin
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5035
Project#:	2692	Analysis:	EPA 8260B
Field ID:	DPB-3@14'-15'	Diln Fac:	1,000
Lab ID:	164846-004	Batch#:	81024
Matrix:	Soil	Sampled:	04/17/03
Units:	ug/Kg	Received:	04/21/03
Basis:	as received	Analyzed:	04/23/03

Analyte	Result	RL
MTBE	17,000	5,000
Benzene	6,600	5,000
Toluene	120,000	5,000
Chlorobenzene	ND	5,000
Ethylbenzene	43,000	5,000
m,p-Xylenes	180,000	5,000
o-Xylene	71,000	5,000
1,3-Dichlorobenzene	ND	5,000
1,4-Dichlorobenzene	ND	5,000
1,2-Dichlorobenzene	ND	5,000

Surrogate	*KEC	Limits
1,2-Dichloroethane-d4	102	75-128
Toluene-d8	101	80-111
Bromofluorobenzene	96	77-126

	Purgeable Arc	matics by G	C/MS
Lab #:	164846	Location:	Hadjian/Dublin
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5035
Project#:	2692	Analysis:	EPA 8260B
Field ID:	DPB-4@9'-10'	Diln Fac:	0.7813
Lab ID:	164846-005	Batch#:	81023
Matrix:	Soil	Sampled:	04/17/03
Units:	ug/Kg	Received:	04/21/03
Basis:	as received	Analyzed:	04/24/03

MIDE	Result	RL
MTBE	41	3.9
Benzene	ND	3.9
Toluene	ND	3.9
Chlorobenzene	ND	3.9
Ethylbenzene	ND	3.9
m,p-Xylenes	ND	3.9
o-Xylene	ND	3.9
1,3-Dichlorobenzene	ND	3.9
1,4-Dichlorobenzene	ND	3.9
1,2-Dichlorobenzene	ND	3.9

	•	
Surrogate	%REC	Limits
1,2-Dichloroethane-d4	105	75-128
Toluene-d8	101	80-111
Bromofluorobenzene	98	77-126

			Purgeable Aro	matics by 6	IC/MS
	Lab #:	164846		Location:	Hadjian/Dublin
	Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5035
	Project#:	2692		Analysis:	EPA 8260B
	Field ID:	DPB-5@11-12	<u> </u>	Diln Fac:	0.8197
	Lab ID:	164846-006		Batch#:	81056
١	Matrix:	Soil		Sampled:	04/17/03
	Units:	ug/Kg		Received:	04/21/03
	Basis:	as received	·····	Analyzed:	04/24/03

An	alyte	Result	RL	
MTBE		4.5	4.1	
Benzene	NE		4.1	
Toluene	NI.)	4.1	
Chlorobenzene	NE)	4.1	
Ethylbenzene	NE)	4.1	
m,p-Xylenes	NE)	4.1	
o-Xylene	NI)	4.1	
1,3-Dichlorob	enzene NI)	4 - 1	
1,4-Dichlorob	enzene ND)	4.1	
1,2-Dichlorob	enzene NI)	4.1	

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	106	75-128	***********
Toluene-d8	101	80-111	
Bromofluorobenzene	101	77-126	٠

	Purgeable Arc	omatics by GO	C/MS
Lab #:	164846	Location:	Hadjian/Dublin
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5035
Project#:	2692	Analysis:	EPA 8260B
Field ID:	DPB-6@18-18.75	Diln Fac:	0.8065
Lab ID:	164846-007	Batch#:	81003
Matrix:	Soil	Sampled:	04/18/03
Units:	ug/Kg	Received:	04/21/03
Basis:	as received	Analyzed:	04/22/03

	Result	RL
MTBE	ND	4.0
Benzene	ND	4.0
Toluene	ND	4.0
Chlorobenzene	ND	4.0
Ethylbenzene	ND	4.0
m,p-Xylenes	ND	4.0
o-Xylene	ND	4.0
1,3-Dichlorobenzene	ND	4.0
1,4-Dichlorobenzene	ND	4.0
1,2-Dichlorobenzene	ND .	4.0

_			2.0
Ę	Surrogate	*REC	Limits
ı	1,2-Dichloroethane-d4	97	75-128
	Toluene-d8	100	80-111
	Bromofluorobenzene	93	77-126

	Purgeable Arc	matics by GO	:/MS
Lab #:	164846	Location:	Hadjian/Dublin
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5035
Project#:	2692	Analysis:	EPA 8260B
Field ID:	DPB-7@15.5-16.5	Diln Fac:	1.000
Lab ID:	164846-008	Batch#:	81003
Matrix:	Soil	Sampled:	04/18/03
Units:	ug/Kg	Received:	04/21/03
Basis:	as received	Analyzed:	04/22/03

Analyte	Result	RL
MTBE	ND	5.0
Benzene	ND	5.0
Toluene	ND	5.0
Chlorobenzene	ND	5.0
Ethylbenzene	ND	5.0
m,p-Xylenes	ND	5.0
o-Xylene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	97	75-128
Toluene-d8	100	80-111
Bromofluorobenzene	95	77-126

		Purgeable Aro	matics by G	C/MS
	Lab #:	164846	Location:	Hadjian/Dublin
٦	Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5035
	Project#:	2692	Analysis:	EPA 8260B
	Field ID:	DPB-S@15-16'	Diln Fac:	25.00
۹	Lab ID:	164846-009	Batch#:	81057
1	Matrix:	Soil	Sampled:	04/18/03
	Units:	ug/Kg	Received:	04/21/03
	Basis:	as received	Analyzed:	04/24/03

🗮	Analyte	Result	RL	
ľ	MTBE	3,500	130	
. I	Benzene	ND	130	
	Toluene	ND	130	
	Chlorobenzene	ND	130	
]	Ethylbenzene	ND	130	
1	m,p-Xylenes	360	130	
(o-Xylene	ND	130	
1	l,3-Dichlorobenzene	ND	130	
₹:	1,4-Dichlorobenzene	ND	130	
:	l,2-Dichlorobenzene	ND	130	

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	107	75-128
Toluene-d8	101	80-111
Bromofluorobenzene	93	77-126

Purgeable Aromatics by GC/MS

Lab #: 164846 Location: Hadjian/Dublin

Client: SOMA Environmental Engineering Inc. EPA 5035 Prep: Project#: 2692 Analysis: EPA 8260B

Field ID: DPB-3@18.5-19.5

Basis: as received

Lab ID: 164846-010 04/17/03 Sampled: Matrix: Soil Received: 04/21/03

Units: ug/Kg

Analyte	Result	RL	Diln Pac	: Batch#	Analyzed
MTBE	1,400	130	25.00	81024	04/24/03
Benzene	ND	4.2	0.8333	81003	04/22/03
Toluene	ND	4.2	0.8333	81003	04/22/03
Chlorobenzene	ND	4.2	0.8333	81003	04/22/03
Ethylbenzene	ND	4.2	0.8333	81003	04/22/03
m,p-Xylenes	ND	4.2	0.8333	81003	04/22/03
o-Xylene	ND	4.2	0.8333	81003	04/22/03
1,3-Dichlorobenzene	ND	4.2	0.8333	81003	04/22/03
1,4-Dichlorobenzene	ND	4.2	0.8333	81003	04/22/03
1,2-Dichlorobenzene	ND	4.2	0.8333	81003	04/22/03

I	Surrogate	%REC	. Limita	Diln F	ac Batch#	Analyzed
L	1,2-Dichloroethane-d4	97	75-128	0.8333	81003	04/22/03
	Toluene-d8	101	80-111	0.8333	81003	04/22/03
E	Bromofluorobenzene	96	77-126	0.8333	81003	04/22/03
					···	

		Purgeable Aro	matics by	GC/MS
Lab #:	164846		Location:	Hadjian/Dublin
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5035
Project#:	2692		Analysis:	EPA 8260B
Type:	BLANK		Basis:	as received
Lab ID:	QC211812		Diln Fac:	1.000
Matrix:	Soil		Batch#:	81003
Units:	ug/Kg		Analyzed:	04/22/03

·			
Analyte	Result	RL	
MTBE	ND	5.0	
Benzene	ND	5.0	
Toluene	ND	5.0	
Chlorobenzene	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	

Surrogate	*REC	Limits	
1,2-Dichloroethane-d4	106	75-128	
Toluene-d8	100	80-111	
Bromofluorobenzene	100	77-126	

	Purge	able Aromatics by GC/	MS
Lab #:	164846	Location:	Hadjian/Dublin
Client:	SOMA Environmental Enginee	ring Inc. Prep:	EPA 5035
Project#:	2692	Analysis:	EPA 8260B
Type:	BLANK	Basis:	as received
Lab ID:	QC211889	Diln Fac:	1.000
Matrix:	Soil	Batch#:	81023
Units:	ug/Kg	Analyzed:	04/23/03

Analyte	Result	RL	
MTBE	ND	5.0	
Benzene	ND	5.0	
Toluene	ND	5.0	
Chlorobenzene	ND	5.0	
Ethylbenzene	ND	5.0	
${\tt m,p-Xylenes}$	ND	5.0	
o-Xylene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	j

	Surrogate	%RBC	Limits
L	1,2-Dichloroethane-d4	103	75-128
	Toluene-d8	99	80-111
ď	Bromofluorobenzene	95	77-126

		Purgeable Aro	matics by G	C/MS
Lab #:	164846		Location:	Hadjian/Dublin
Client:	SOMA Environmenta	l Engineering Inc.	Prep:	EPA 5035
Project#:	2692		Analysis:	EPA 8260B
Type:	BLANK		Basis:	as received
Lab ID:	QC212003		Diln Fac:	1.000
Matrix:	Soil		Batch#:	81056
Units:	ug/Kg		Analyzed:	04/24/03

Analyte	Result	RI
MTBE	ND	5.0
Benzene	ND	5.0
Toluene	ND	5.0
Chlorobenzene	ND	5.0
Ethylbenzene	ND	5.0
m,p-Xylenes	ND	5.0
o-Xylene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0

Surrogate	%REC	Limite	
1,2-Dichloroethane-d4	106	75-128	
Toluene-d8	100	80-111	İ
Bromofluorobenzene	98	77-126	

	Purgeable Ar	omatics by G	C/MS
Lab #:	164846	Location:	Hadjian/Dublin
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5035
Project#:	2692	Analysis:	EPA 8260B
Type:	BLANK	Basis:	as received
Lab ID:	QC212022	Diln Fac:	1.000
Matrix:	Soil	Batch#:	81056
Units:	ug/Kg	Analyzed:	04/24/03

	Analyte		RL	
	MTBE	ND	5.0	
_	Benzene	ND	5.0	
	Toluene	ND	5.0	
4	Chlorobenzene	ND	5.0	
	Ethylbenzene	ND	5.0	
	m,p-Xylenes	ND	5.0	
	o-Xylene	ND	5.0	
	1,3-Dichlorobenzene	ND	5.0	
	1,4-Dichlorobenzene	ND	5.0	
	1,2-Dichlorobenzene	ND	5.0	

Surrogata	*REC	Limits	
1,2-Dichloroethane-d4	111	75-128	
Toluene-d8	101	80-111	
Bromofluorobenzene	100	77-126	

		Purgeable Aro	matics by GC	/ns
Project#:	164846 SOMA Environmental 2692	Engineering Inc.	Location: Prep: Analysis:	Hadjian/Dublin EPA 5035 EPA 8260B
Type: Lab ID: Matrix: Units:	LCS QC212002 Soil ug/Kg		Basis: Diln Fac: Batch#: Analyzed:	as received 1.000 81056 04/24/03

Analyte	Spiked	Result	2077	Limits
Benzene	50.00	49.47	99	77-120
Toluene	50.00	50.40	101	80-120
Chlorobenzene	50.00	49.04	98	80-120

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	108	75-128	
Toluene-d8	101	80-111	
Bromofluorobenzene	97	77-126	

	Purgeable Aro	matics by Go	C/MS
Lab #:	164846	Location:	Hadjian/Dublin
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5035
Project#:	2692	Analysis:	EPA 8260B
Matrix:	Soil	Diln Fac:	1.000
Units:	ug/Kg	Batch#:	81003
Basis:	as received	Analyzed:	04/22/03

BS

Lab ID:

QC211810

Analyte	Spiked	Result	%RE(Limits	
Benzene	50.00	48.94	98	77-120	
Toluene	50.00	49.65	99	80-120	
Chlorobenzene	50.00	48.19	96	80-120	

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	105	75-128	
Toluene-d8	100	80-111	
Bromofluorobenzene	103	77-126	

Type:

BSD

Lab ID:

Analyte	Spiked	Result	% R F (' Limits	D OIL	
Benzene	50.00	48.74	97	77-120	0	20
Toluene	50.00	48.44	97	80-120	2	20
Chlorobenzene	50.00	47.78	96	80~120	1	20

Surrogate	%REC	2 Limits
1,2-Dichloroethane-d4	106	75-128
Toluene-d8	100	80-111
Bromofluorobenzene	99	77-126

		Purgeable Arc	matics by 0	JC/MS
Lab #:	164846		Location:	Hadjian/Dublin
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5035
Project#:	2692		Analysis:	EPA 8260B
Matrix:	Soil		Diln Fac:	1.000
Units:	ug/Kg		Batch#:	81023
Basis:	as received		Analyzed:	04/23/03

BS

Lab ID:

QC211929

. Analyte	Spiked	Result	%REC	Limits
Benzene	50.00	51.28	103	77-120
Toluene	50.00	52.06	104	80-120
Chlorobenzene	50.00	50.84	102	80-120

Surrogate	%REC	2 Limits
1,2-Dichloroethane-d4	100	75-128
Toluene-d8	101	80~111
Bromofluorobenzene	90	77-126

Type:

BSD

Lab ID:

Analyte	Spiked	Result	%REC	Limits	RED	Lim
Benzene	50.00	44.22	88	77-120	15	20
Toluene `	50.00	45.64	91	80-120	13	20
Chlorobenzene	50.00	45.00	90	80-120	12	20

Surrogate	*REC	Limits
1,2-Dichloroethane-d4	102	75-128
Toluene-d8	99	80-111
Bromofluorobenzene	97	77-126

Purgeable Aromatics by GC/MS								
Lab #:	16484	-		Location:	Hadjian/Dublin			
Client:	SOMA :	Environmental	Engineering Inc.	Prep:	EPA 5035			
Project#:	2692			Analysis:	EPA 8260B			
Field ID:		ZZZZZZZZZZ		Diln Fac:	1.042			
MSS Lab II):	164913-003		Batch#:	81056			
Matrix:		Soil		Sampled:	04/23/03			
Units:		ug/Kg		Received:	04/24/03			
Basis:		as received		Analyzed:	04/25/03			

MS

Lab ID: QC212004

_			·····		
Chlorobenzene	<0.1600	52.08	45.76	88	42-128
Chlorobonnon		32.00	40.75	94	48-131
Toluene	<0.2000	52.08	48.76	0.4	40 774
t .	₹0.08400	52.08	46.36	89	55-125
Benzene	<0.08400	F2 00			
Analyte	MSS Result	Spiked	Result	\$ P P(Limits
	000000000000000000000000000000000000000				

Surrogate	%REC	Limits				
1,2-Dichloroethane-d4	114	75-128				
Toluene-d8	101	80-111				
Bromofluorobenzene	102	77-126	·	•		

Гуре:

Toluene-d8

Bromofluorobenzene

MSD

Lab ID:

QC212005

Benzene	52.08	43.08	83	55-125	7	20
Toluene	52.08	45.21	87	48-131	8	20
Chlorobenzene	52.08	41.77	80	42-128	9	23

80-111

77-126

101

102

PD=	Rel	ati	ve	Percent	Difference
Page	1	of	1		

		Purgeable Aro	matics by Go	C/MS
	54846		Location:	Hadjian/Dublin
	OMA Environmental	Engineering Inc.	Prep:	EPA 5035
Project#: 26	592		Analysis:	EPA 8260B
Field ID:	DPB-S@15-16		Diln Fac:	25.00
MSS Lab ID:	164846-009		Batch#:	81057
Matrix:	Soil		Sampled:	04/18/03
Units:	ug/Kg		Received:	04/21/03
Basis:	as received		Analyzed:	04/25/03

Гуре:

MS

Lab ID:

QC212008

Analyte	MSS Result	Spiked	Result	%REC	2 Limits
Benzene	<2.000	1,250	1,153	92	55-125
Toluene	<4.900	1,250	1,177	94	48-131
Chlorobenzene	<3.900	1,250	1,175	94	42-128

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	105	75-128
Toluene-d8	102	80-111
Bromofluorobenzene	95	77-126
·		

Гуре:

MSD

Lab ID:

97	55-125	· • • • • • • • • • • • • • • • • • • •	
		5	20
98	48-131	4	20
		5	23
	99		

Surrogate	%RE(Limits	
1,2-Dichloroethane-d4	99	75-128	
Toluene-d8	99	80-111	
Bromofluorobenzene	96	77-126	
			

Gasoline Oxygenates by GC/MS Lab #: 164846 Hadjian/Dublin EPA 5030B Location: Client: SOMA Environmental Engineering Inc. Prep: Project#: 2692 EPA 8260B <u>Analysis:</u> Basis: as received Received: 04/21/03

Field ID: Type: Lab ID: Matrix:

Units:

DPB-3@14'-15' SAMPLE

164846-004 Soil ug/Kg Diln Fac:

Batch#: Sampled: Analyzed: 1,000 81024

04/17/03 04/23/03

Analyte	Result	vi.	000000000000000000000000000000000000000
tert-Butyl Alcohol (TBA)	ND	100,000	
MTBE	17,000	5,000	
Isopropyl Ether (DIPE)	ND	5,000	
Ethyl tert-Butyl Ether (ETBE)	ND	5,000	
Methyl tert-Amyl Ether (TAME)	ND	5,000	
1,2-Dichloroethane	ND	5,000	
1,2-Dibromoethane	ND	5,000	
Ethanol	ND	1,000,000	
		17000,000	

Surrogate	*REC	Limits
Dibromofluoromethane	94	74-124
1,2-Dichloroethane-d4	102	75-128
Toluene-d8	101	80-111
Bromofluorobenzene	96	75-127

Field ID: Type: Lab ID:

Matrix:

Jnits:

DPB-4@9'-10' SAMPLE 164846-005

Soil ug/Kg Diln Fac: Batch#:

Batch#: Sampled: Analyzed: 0.7813 81023 04/17/03 04/24/03

awana Vise Result tert-Butyl Alcohol (TBA) ND 78 MTBE 41 3.9 Isopropyl Ether (DIPE)
Ethyl tert-Butyl Ether (ETBE)
Methyl tert-Amyl Ether (TAME)
1,2-Dichloroethane ND 3.9 ND 3.9 ND 3.9 ND 3.9 1,2-Dibromoethane ND 3.9 Ethanol ND 78Ō

Surrogate	%REC	ojmijes	
Dibromofluoromethane	97	74-124	
1,2-Dichloroethane-d4	105	75-128	
Toluene-d8	101	80-111	
Bromofluorobenzene	98	75-127	

NA= Not Analyzed D= Not Detected L= Reporting Limit Page 1 of 8

Gasoline Oxygenates by GC/MS

Lab #: 164846 Location: Hadjian/Dublin
Client: SOMA Environmental Engineering Inc. Prep: EPA 5030B
Project#: 2692 Analysis: EPA 8260B
Basis: as received Received: 04/21/03

Field ID:

Type: Lab ID: DPB-5@11-12'

SAMPLE 164846-006

Matrix: Units: Soil ug/Kg Diln Fac:

Batch#: Sampled: Analyzed: 0.8197 81056 04/17/03

nalyzed: 04/24/03

Analyte Result Rt. tert-Butyl Alcohol (TBA) ND 82 MTBE	

Isopropyl Ether (DIPE) ND 4.1	
Ethyl tert-Butyl Ether (ETBE) ND 4.1	
Methyl tert-Amyl Ether (TAME) ND 4 1	
1 3 Dieblasseller (IAME)	
1,2-Dichloroethane ND 4.1	
1,2-Dibromoethane ND 41	
Pthonol	
Ethanoi ND 820	

Surrogate	%REC	Limits	
Dibromofluoromethane	101	74-124	
1,2-Dichloroethane-d4	106	75-128	
Toluene-d8	101	80-111	
Bromofluorobenzene	101	75-127	

Field ID:

Type: Lab ID: DPB-6@18-18.75 SAMPLE

164846-007

Matrix: Soil Units: ug/Kg Diln Fac: Batch#: Sampled: Analyzed:

0.8065 81003 04/18/

04/18/03 d: 04/22/03

Resoult	D 1
ND	81
ND	4.0
ND	810
	ND ND ND ND ND ND

Surrogate	*REC	Limits	
Dibromofluoromethane	96	74-124	
1,2-Dichloroethane-d4	97	75-128	
Toluene-d8	100	80-111	
Bromofluorobenzene	93	75-127	
	*		

Gasoline Oxygenates by GC/MS Lab #: 164846 Hadjian/Dublin EPA 5030B EPA 8260B 04/21/03 Location: Client: SOMA Environmental Engineering Inc. Prep: Project#: <u> 26</u>92 Analysis: Received: Basis: as received

Field ID: Type: Lab ID:

Matrix:

Units:

DPB-7@15.5-16.5 SAMPLE

ug/Kg

164846-008 Soil

Diln Fac:

Batch#:

1.000 81003

Sampled: Analyzed: 04/18/03 04/22/03

WINDOWS CO.		
Analyte	Rest	all PT
tert-Butyl Alcohol (TBA)	ND	100
MTBE	ND	5.0
Isopropyl Ether (DIPE)	ND	5.0
Ethyl tert-Butyl Ether (ETBE)	ND	5.0
Metnyl tert-Amyl Ether (TAME)	ND	5.0
1,2-Dichloroethane	ND	5.0
1,2-Dibromoethane	NĎ	5.0
Ethanol	ND_	1,000

Surrogate	*REC	86 P. 4116 P. 42	
Dibromofluoromethane	93	74-124	
1,2-Dichloroethane-d4	97	75-128	
Toluene-d8	100	80-111	
Bromofluorobenzene	95	75-127	

ield ID:

DPB-S@15-16'

SAMPLE

Type: Lab ID: 164846-009 Soil

Matrix: Jnits: ug/Kg Diln Fac: Batch#:

25.00 81057

Sampled: Analyzed:

04/18/03 04/24/03

Analyte	Result	RI.	
tert-Butyl Alcohol (TBA)	ND	2,500	
MTBE	3,500	130	
Isopropyl Ether (DIPE)	ND	130	
Ethyl tert-Butyl Ether (ETBE)	ND	130	
Methyl tert-Amyl Ether (TAME) 1,2-Dichloroethane	ND	130	
1,2-Dichioroethane	ND	130	
YEthanol	ND ND	130	•
Z CILCLE O M	ND	25,000	

Surrogate	*REC	Limits	
Dibromofluoromethane	97	74-124	
1,2-Dichloroethane-d4	107	75-128	
Toluene-d8	101	80-111	•
Bromofluorobenzene	93	75-127	

Gasoline Oxygenates by GC/MS Lab #: Client: 164846 Location: Hadjian/Dublin Prep: Analysis: Received: SOMA Environmental Engineering Inc. EPA 5030B Project#: 2692 EPA 8260B 04/21/03 Basis: as received

Field ID:

Matrix:

Soil

DPB-3@18.5-19.5 SAMPLE Type: Lab ID: Units: ug/Kg 04/17/03 164846-010 Sampled:

Analyte	Result	RI.	and the second second		AND ENGINEERS
tert-Butyl Alcohol (TBA)	ND	83	0.8333	81003	04/22/03
MTBE	1,400	130	25.00	81024	04/24/03
Isopropyl Ether (DIPE)	ND	4.2	0.8333	81003	04/22/03
Ethyl tert-Butyl Ether (ETBE)	ND	4.2	0.8333	81003	04/22/03
1.2-Dichloroethane					
1,2-Dibromoethane					
Ethanol	ND	— · - 			
Methyl tert-Amyl Ether (TAME) 1,2-Dichloroethane 1,2-Dibromoethane Ethanol	ND ND ND ND	4.2 4.2 4.2 830	0.8333 0.8333 0.8333 0.8333	81003 81003 81003 81003	04/22/03 04/22/03 04/22/03 04/22/03

Sur roga te	S.R.E.	elle i jan kara	05.08,788	Fac Batch# Analyzed
Dibromofluoromethane	96	74-124	0.8333	81003 04/22/03
1,2-Dichloroethane-d4	97	75-128	0.8333	81003 04/22/03
Toluene-d8 Bromofluorobenzene	101	80-111	0.8333	
Bromorraorobenzene	96	75-127	0.8333	81003 04/22/03

Type: Lab ID: Matrix: Units:

BLANK QC211812 Soil

ug/Kg

Diln Fac: Batch#: Analyzed: 1.000 81003 04/22/03

Analyte	Res	ult RL
tert-Butyl Alcohol (TBA)	ND	100
MTBE	ND	5.0
Isopropyl Ether (DIPE)	ND	5.0
■ Ethyl tert-Butyl Ether (ETBE)	ND	5.0
Ethyl tert-Butyl Ether (ETBE) Methyl tert-Amyl Ether (TAME)	ND	5.0
1,2-Dichloroethane	ND	5.0
	ND	5.0
Ethanol	ND	1,000

Dibromofluoromethane 103 74-124 1,2-Dichloroethane-d4 106 75-128 Toluene-d8 100 80-111 Bromofluorobenzene 100 75-127	Surrogate	%REC	Limits	
Toluene-d8 100 80-111	Dibromofluoromethane	103	74-124	
50 50 111	1,2-Dichloroethane-d4	106	75-128	
Bromofluorobenzene 100 75-127		100	80-111	
	Bromofluorobenzene	100	75-127	

Gasoline Oxygenates by GC/MS

Lab #: 164846 Location: Hadjian/Dublin
Client: SOMA Environmental Engineering Inc. Prep: EPA 5030B
Project#: 2692 Analysis: EPA 8260B
Basis: as received Received: 04/21/03

Type: Lab ID: Matrix: BLANK QC211889 Soil ug/Kg Diln Fac: Batch#: Analyzed:

1.000 81023 04/23/03

Matrix: Soil Units: ug/Kg

Analyte		
tert-Butyl Alcohol (TBA)	Kesult	RL
	ND	100
MTBE	ND	5.0
Isopropyl Ether (DIPE)	ND	5.0
Ethyl tert-Butyl Ether (ETBE)	ND	5.0
Methyl tert-Amyl Ether (TAME)	ND	5.0
1,2-Dichloroethane	ND	5.0
1,2-Dibromoethane	ND	5.0
Ethanol	ND	1,000

Surrogate	%REC	C Limits
Dibromofluoromethane	95	74-124
1,2-Dichloroethane-d4	103	75-128
Toluene-d8	99	80-111
Bromofluorobenzene	95	75-127

Type: Lab ID:

BLANK QC211890 Matrix:

Soil

Result	
NA	
NA	
NA .	
NA	:
NA	
NA	
NA	
NA	
	NA NA NA NA NA NA

Surrogata	Pec	900 W 1000 0000 0000 0000 0000 0000 0000
	EGX.	illt
DISTOROLIGIE CHARLE	NA	
1,2-Dichloroethane-d4	NA	ł
Toluene-d8	NA	
<u> Bromoiluorobenzene</u>	NA NA	

Gasoline Oxygenates by GC/MS

Lab #: 164846 Location: Hadjian/Dublin
Client: SOMA Environmental Engineering Inc. Prep: EPA 5030B
Project#: 2692 Analysis: EPA 8260B

Basis: as received Received: 04/21/03

Type: Lab ID: BLANK QC212003 Soil Diln Fac: Batch#: Analyzed: 1.000 81056 04/24/03

Matrix: Soil Units: ug/Kg

Analyte Result RE tert-Butyl Alcohol (TBA) ND 100 MTBE ND 5.0 Isopropyl Ether (DIPE) ND 5.0 Ethyl tert-Butyl Ether (ETBE) Methyl tert-Amyl Ether (TAME) 1,2-Dichloroethane 5.0 ND ND 5.0 ND5.0 1,2-Dibromoethane ND 5.0 Ethanol ND ,000

Surrogate	*REC	Limits
Dibromofluoromethane	101	74-124
1,2-Dichloroethane-d4	106	75-128
Toluene-d8	100	80-111
Bromofluorobenzene	98	75-127

Type: Lab ID: BLANK QC212022 Soil Diln Fac:

1.000 81056

Matrix: Soil Units: ug/Kg Batch#: Analyzed:

81056 04/24/03

Analyte		Result
tert-Butyl Alcohol (TBA)	NA	
MTBE		ND 5.0
Isopropyl Ether (DIPE)	NA	
Ethyl tert-Butyl Ether (ETBE)	NA	
Methyl tert-Amyl Ether (TAME)	NA	
1,2-Dichloroethane		ND 5.0
1,2-Dibromoethane		ND 5.0
Ethanol	NA	

Surrogate	%REC		
Dibromofluoromethane	102	74-124	
1,2-Dichloroethane-d4	111	75-128	
Toluene-d8	101	80-111	
Bromofluorobenzene	100	75-127	

	Gasoline Oxyg	jenates by G	С/МВ
Lab #:	164846	Location:	Hadjian/Dublin
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5030B
Project#:	2692	Analysis:	EPA 8260B
Type:	LCS	Basis:	as received
Lab ID:	QC212002	Diln Fac:	1.000
Matrix:	Soil	Batch#:	81056
Units:	ug/Kg	Analyzed:	04/24/03

_		30.00	47.52	22	03-121	
-	MTBE	50.00	49 52	99	63-121	
		Spiked		%RE	C Limits	

Surrogate	%REC	Limite
Dibromofluoromethane	103	74-124
1,2-Dichloroethane-d4	108	75-128
Toluene-d8	101	80-111
Bromofluorobenzene	97	75-127

		Gasoline Oxyg	enates by	GC/MS
Lab #:	164846		Location:	Hadjian/Dublin
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2692		Analysis:	EPA 8260B
Matrix:	Soil		Diln Fac:	1.000
Units:	ug/Kg		Batch#:	81003
Basis:	as received		Analyzed:	04/22/03

Туре:

BS

Lab ID:

QC211810

Analyte	Spiked	Permit	9.RE	C Limits
MTBE	50.00	48.43	97	63-121

Surrogate	%REC	Limits
Dibromofluoromethane	104	74-124
1,2-Dichloroethane-d4	105	75-128
┙ Toluene-d8	100	80-111
Bromofluorobenzene	103	75-127

[vpe:

BSD

Lab ID:

d	Analyte	Spiked	Result	*REC	Limits	REE	Lin
	MTBE	50.0	00 48.3	1 97	63-121	0	20
_							

Surrogate	%REC	Linits
Dibromofluoromethane	105	74-124
1,2-Dichloroethane-d4	106	75-128
Toluene-d8	100	80-111
Bromofluorobenzene	99	75-127

		Gasoline Oxyg	enates by (C/MS
Lab #:	164846		Location:	Hadjian/Dublin
	SOMA Environmental H	Engineering Inc.	Prep:	EPA 5030B
Project#:	2692		Analysis:	EPA 8260B
Matrix:	Soil		Diln Fac:	1.000
Units:	ug/Kg		Batch#:	81023
Basis:	as received		Analyzed:	04/23/03

BS

Lab ID:

QC211929

		· · · · · · · · · · · · · · · · · · ·			
MTBE	50.00	47.62	95	63-121	
Analyte	Spiked	Result	%RE(2 Limits	

Surrogate	*REC	Limits
Dibromofluoromethane	96	74-124
1,2-Dichloroethane-d4	100	75-128
Toluene-d8	101	80-111
Bromofluorobenzene	90	75-127
"		· · · · · · · · · · · · · · · · · · ·

Type:

Bromofluorobenzene

BSD

Lab ID:

QC211930

MOTOR				%RB(Limits	3330Aeee8556	Lim
MTBE		50.00	43.65	87	63-121	9	20
Surrogate		\$60,7900 Programme					
	*REC	' Limits					
Dibromofluoromethane	*REC	74-124					
Dibromofluoromethane 1,2-Dichloroethane-d4							

75-127

97

		Gasoline C	xygenates by G	c/ ns
Lab #: 1648	46		Location:	Hadjian/Dublin
Client: SOMA	Environmental	Engineering I	nc. Prep:	EPA 5030B
Project#: 2692			Analysis:	EPA 8260B
Field ID:	ZZZZZZZZZ		Diln Fac:	1.042
MSS Lab ID:	164913-003		Batch#:	81056
Matrix:	Soil		Sampled:	04/23/03
Units:	ug/Kg		Received:	04/24/03
Basis:	as received		Analyzed:	04/25/03

Гуре:

MS

Lab ID:

QC212004

Analyte	MSS Re	sult	Spiked	Result	%RE	C Limits
MTBE	<	0.2100	52.08	45.95	88	53-131
Surrogate	%REC	Limits				
Dibromofluoromethane	106	74-124				
1,2-Dichloroethane-d4	114	75-128				
Toluene-d8	101	80-111				
Bromofluorobenzene	102	75-127				

Type:

MSD

Lab ID:

MTBE		52.08	40.86	78	53-131	12	30
Surrogate	%REC	. Limits					
Dibromofluoromethane	104	74-124				**************	*********
1,2-Dichloroethane-d4	112	75-128					
Toluene-d8	101	80-111					
Bromofluorobenzene	102	75-127					

genates by GC	/ms
Location:	Hadjian/Dublin
Prep:	EPA 5030B
Analysis:	EPA 8260B
Diln Fac:	25.00
Batch#:	81057
Sampled:	04/18/03
Received:	04/21/03
Analyzed:	04/25/03
	Location: Prep: Analysis: Diln Fac: Batch#: Sampled: Received:

MS

Lab ID:

QC212008

Analyte	MSS R	esult	Spiked	Result	%R50	Limits
MTBE	BE 3,466		1,250	4,514	84	53-131
Surrogate	%REC	Limits				
Dibromofluoromethane	99	74-124				
1,2-Dichloroethane-d4	105	75-128				
Toluene-d8	102	80-111				
Bromofluorobenzene	95	75-127				

Туре:

MSD

Lab ID:

MTBE		1,250	4,512	84	53-131	0	30
		· .					
Surrogate	%REC	I Limits					
Dibromofluoromethane	96	74-124					
1,2-Dichloroethane-d4	99	75-128					
Toluene-d8	99	80-111					
Bromofluorobenzene	96	75-127					

Appendix D

Laboratory Reports of Groundwater Analytical and Chain of Custody Form

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 9471O, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

SOMA Environmental Engineering Inc. 2680 Bishop Dr. Suite 203 San Ramon, CA 94583

Date: 05-MAY-03

Lab Job Number: 164930 Project ID: 2692

Location: Hadjian/Dublin

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Project Manager

Reviewed by:

Operations Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

Page 1 of 24

Laboratory Number:

164930 (water)

Client:

SOMA Environmental Engineering Inc.

Project Name:

Hadjian/Dublin

Project Number:

2692

Receipt Date:

04/24/2003

CASE NARRATIVE

This hardcopy data package contains sample results and batch QC results for one water sample received from the above referenced project on April 24, 2003. The sample was received cold and intact.

Total Volatile Hydrocarbons:

The recoveries for the surrogate trifluorotoluene in the matrix spikes exceed acceptance limits due to the coelution of the surrogate peak with hydrocarbon peaks. The associated surrogate bromofluorobenzene recoveries are acceptable; therefore, there is no affect on the quality of the sample. No analytical problems were encountered.

Purgeable Organics (EPA 8260):

No analytical problems were encountered.

bW

CHAIN OF CUSTODY FORM

Page ___u of _!

-			
(Curtis	& Tompkins, I	_td

Analytical Laboratory Since 1878 2323 Fifth Street Berkeley, CA 94710 (510)486-0900 Phone

C&T LOGIN#_	164930

Analyses

	(510)486-05			_]	9	Sampler:	1	ZΨ	P	4	Z	V V		d	. 777								
Project No:	2697				F	Report To:	1	200	40	V	Pa	pur		8000	200	•							
Project Nan		TLAU RULL	ارسا	NV d		Company :						Eng.		·	7								
Project P.O	<u>.:</u>				_1	Telephone:	_(<u>'42</u>	5))]	44	1.6600	2015	78	4					İ	-	1	
Turnaround	Time:	man				Fax:						.4401	X	S MTBE	15.77				j	-		ļ. 1	
			M	atri	X		P	res	erv	ati	ve		۱,		8	<u>, </u>				-	ļ		١
Laboratory Number	Sample ID	Sampling Date Time	Soil	Waste		# of Containers	HCL	H ₂ SO	HNO3	S		Field Notes	TPH-a	क्राज्य	van (
 	⊅ PB·2.X	12 447 003		\mathbf{x}		4	X			×	1	Direct Rush Borende 2	×	X	*					-		_	-
			\coprod					_	<u> </u>	L	1-						\vdash				\dashv		\dashv
>		_						ļ		ļ.,	\bot					 	\vdash						┨
-			\coprod		\sqcup			<u> </u>	<u> </u>	ļ.	4-		}			 	\vdash			ᅱ			-
0				<u> </u>	lacksquare			<u> </u>	_	<u> </u>	_		\vdash		_			_	-				\dashv
- + e					\sqcup			L	<u> </u>	↓_	+				-	 						-+	ᅱ
0 8 8			$oxed{oxed}$		Ц					\vdash	4					\vdash	$\vdash \vdash$					+	┪
圧しつ	<u> </u>		$\perp \downarrow$	↓	\sqcup		_	<u> </u>	<u> </u>	╀	 		\vdash	-		-	┝─┤				\dashv		ᅱ
0			Ш	_ _	<u> </u>		<u> </u>	_	├	╀-	+				 	\vdash	\vdash	-				_	ㅓ
Ω			\coprod		$\sqcup \downarrow$		_	 	_	_	+		-	\vdash	 —	 	\vdash	\vdash			_		ᅥ
Œ			1	\bot	\sqcup	·	<u> </u>		lacksquare	lacksquare	-		╁┈			-	\forall	\forall					-
نـ			Ш		\sqcup			<u> </u>	ļ	<u> </u>	+		-		├-	├─				-	\dashv		┪
								<u> </u>	<u> </u>		_L			l	<u> </u>	Ļ_	CE		<u> </u>				커
Notes: E	DF Requir	ad									R	ELINQUISHED BY:	ــــ			HE	:CE	IVE	ט כ) T ;			4
	•					(X	N	7		24 NY 2003/1245P]×		{	7				DA	E/T	IME	
							1	$^{\prime}$						7	\sum_{i}	abla							_]
												DATE/TIME		_		4				-		IME	_
							X					DATE/TIME	×	.(V	W	<u></u>	y	N	DA DA		12:41 IME	5

Signature

Total Volatile Hydrocarbons Lab #: 164930 Location: Hadjian/Dublin Client: SOMA Environmental Engineering Inc. Prep: EPA 5030B Project#: 2692 Analysis: 8015B Field ID: DPB-2 81087 Batch#: Matrix: Water Sampled: 04/22/03 Units: ug/L Received: 04/24/03 Diln Fac: 1.000

Type:

SAMPLE

Lab ID:

164930-009

Analyzed:

04/26/03

Analyte	Result	RL	
Gasoline C7-C12	710	50	

Surrogate	%RE(SC Limits
Trifluorotoluene (FID)	137	68-145 ·
Bromofluorobenzene (FID)	128	66-143

BLANK

Lab ID:

QC212141

Analyzed:

04/25/03

Analyte	Result	RL	
Gasoline C7-C12	ND	50	

	Surroga		%REC	Limits	
	Trifluorotoluene	(FID)	121	68-145	
Ⴂ	Bromofluorobenzene	= (FID)	116	66-143	

GC04 TVH 'J' Data File FID

Page 1 of 1

mple Name : 164930-009,81087

Sample #: c3 Date: 4/28/03 08:14 AM leName : G:\GC04\DATA\115J026.raw Start Time : 0.00 min Time of Injection: 4/26/03 03:09 AM Low Point : 41.05 mV Plot Scale: 340.2 mV End Time : 26.00 min High Point : 381.24 mV Scale Factor: 1.0 Plot Offset: 41 mV DPB-Z Response [mV] -1.19 2.51 C-6 3.34 3.60 4.04 $\frac{4.41}{4.65}$ C-7 -5.265.92 **-6**.65______6.82 TRIFLUO -7.49 7.98 -8.34 -8.71 -9.22 C-8 -10.33-10.71 1.36 1.73 2.93 12.54 12.54 12.83 --14.07 BROMOF ---15.62 16.11 C-10 ----17.17 18:84 18.39 ----18.73 ==-19.46 19.99 20.33 - 20.60 --20.98 22.33 C-12 -22.88 -23.24 23.46 24:48 -24.89 25.48

GC04 TVH 'J' Data File FID

Sample #:

Page 1 of 1

ple Name : ccv/lcs,qc212143,81087,03ws0527,5/5000

Date: 4/28/03 08:13 AM eName echod : G:\GC04\DATA\115J002.raw Time of Injection: 4/25/03 12:22 PM : TVHBTXE Start Time : 0.00 min End Time : 26.00 min Low Point : 49.06 mV High Point : 219.32 mV Plot Scale: 170.3 mV Plot Offset: 49 mV ale Factor: 1.0 Gasoline Response [mV] 9.93 1.20 1.76_{1.86}1.64 2.50^{2.28} 2.74 C-6 -3.59 C-7 --5.38 -5.88 -6.83TRIFLUO - $\frac{7.23}{5.50}$ 8.60 C-8 9.21 10.31 10.81 >-11.40 >-11.71 12.83 -13.0413.55 --14.07 15.62 BROMOF-16.11 C-10 -16.41- 16.56 16.81 -17.17 -17.5417.88 18.07 18.36 -18.73==19.69 -19.99 20.33 20.60 -20.98 C-12 23.46 23.77 34.36 -24.90 25.51

	Total	Volatile Hydrocarbon	18
Lab #:	164930	Location:	Hadjian/Dublin
Client:	SOMA Environmental Engineeri	ing Inc. Prep:	EPA 5030B
Project#:	2692	Analysis:	8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC212143	Batch#:	81087
Matrix:	Water	Analyzed:	04/25/03
Units:	ug/L		, , , , , ,

0.000,010	2,000	2,145	107	79-120
Gasoline C7-C12	2.000	2 145		
Analyte	Spiked	Result		Limits

Surrogate	%RBC	: Limits	
Trifluorotoluene (FID)	135	68-145	**
Bromofluorobenzene (FID)	121	66-143	
			_

Lab #: 164930 Location: Hadjian/Dublin Client: SOMA Environmental Engineering Inc. Prep: EPA 5030B Project#: 2692 Analysis: 8015B Field ID: ZZZZZZZZZZ Batch#: 81087 MSS Lab ID: 164934-002 Sampled: 04/24/03 Matrix: Water Received: 04/24/03 Units: ug/L Analyzed: 04/25/03 Diln Fac: 1.000				Total Volati	lle Hydrocarbo	ns
Project#: 2692 Analysis: 8015B Field ID: ZZZZZZZZZZ Batch#: 81087 MSS Lab ID: 164934-002 Sampled: 04/24/03 Matrix: Water Received: 04/24/03 Units: ug/L Analyzed: 04/25/03	Lab #:	16493	30		Location:	Hadjian/Dublin
Field ID: ZZZZZZZZZ Batch#: 81087 MSS Lab ID: 164934-002 Sampled: 04/24/03 Matrix: Water Received: 04/24/03 Units: ug/L Analyzed: 04/25/03	H		Environmental	Engineering Inc	. Prep:	EPA 5030B
MSS Lab ID: 164934-002 Sampled: 04/24/03 Matrix: Water Received: 04/24/03 Units: ug/L Analyzed: 04/25/03	Project#: :	2692			Analysis:	8015B
Matrix: Water Received: 04/24/03 Units: ug/L Analyzed: 04/25/03	Field ID:		ZZZZZZZZZZ		Batch#:	81087
Units: ug/L Analyzed: 04/25/03	MSS Lab ID	:	164934-002		Sampled:	04/24/03
Analy2ca: 04/25/05	Matrix:		Water		Received:	04/24/03
Diln Fac: 1.000	Units:		ug/L		Analyzed:	04/25/03
	Diln Fac:		1.000			

MS

Lab ID:

QC212164

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	36.08	2,000	2,242	110	67-120
Surrogate	%REC Limits				
Trifluorotoluene (FID)	150 * 68-145				
Bromofluorobenzene (FID)	134 66-143				I

MSD

Lab ID:

Analyte		Spiked	Result	%RE(: Limits	RPD	Lim
Gasoline C7-C12		2,000	2,234	110	67-120	0	20
	%REC	Limits					
Trifluorotoluene (FID)	152 *	68-145					
Bromofluorobenzene (FID)	135	66-143					1

^{*=} Value outside of QC limits; see narrative RPD= Relative Percent Difference Page 1 of 1

		Purgeable Aro	matics by Go	:/ms
Lab #:	164930		Location:	Hadjian/Dublin
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2692		Analysis:	EPA 8260B
Field ID:	DPB-2		Units:	ug/L
Lab ID:	164930-009		Sampled:	04/22/03
Matrix:	Water		Received:	04/24/03

Analyte	Result	RL	Diln Fa	c Batch#	Analyzed
MTBE	540	2.0	4.000	81125	04/29/03
Benzene	1.1	1.0	2.000	81074	04/26/03
Toluene	ND	1.0	2.000	81074	04/26/03
Chlorobenzene	ND	1.0	2.000	81074	04/26/03
Ethylbenzene	. 18	1.0	2.000	81074	04/26/03
m,p-Xylenes	45	1.0	2.000	81074	04/26/03
o-Xylene	29	1.0	2.000	81074	04/26/03
1,3-Dichlorobenzene	ND	1.0	2.000	81074	04/26/03
1,4-Dichlorobenzene	ND	1.0	2.000	81074	04/26/03
1,2-Dichlorobenzene	ND	1.0	2.000	81074	04/26/03

Surrogate	%REC	Limits	Diln	Fac Batch#	Analyzed	
1,2-Dichloroethane-d4	107	77-130	2.000	81074	04/26/03	
Toluene-d8	96	80-120	2.000	81074	04/26/03	
Bromofluorobenzene	101	80-120	2.000	81074	04/26/03	
					······	

	Purgeable Aro	matics by G	C/MS
Lab #:	164930	Location:	Hadjian/Dublin
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5030B
Project#:	2692	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC212075	Batch#:	81074
Matrix:	Water	Analyzed:	04/25/03
Units:	ug/L		

Analyte	Result	RL	
MTBE	ND	0.5	
Benzene	ND	0.5	
Toluene	ND .	0.5	
Chlorobenzene	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	

Surrogate	%RBC	Limits
1,2-Dichloroethane-d4	108	77-130
Toluene-d8	99	80-120
Bromofluorobenzene	101	80-120

			Purgeable	Aro	matics by G	IC/MS
Lab #:	164930	0			Location:	Hadjian/Dublin
Client:		Environmental	Engineering	Inc.	Prep:	EPA 5030B
Project#:	2692				Analysis:	EPA 8260B
Type:		BLANK			Diln Fac:	1.000
Lab ID:		QC212076			Batch#:	81074
Matrix:		Water			Analyzed:	04/25/03
Units:		ug/L			· · · · · · · · · · · · · · · · · · ·	

Analyte	Result	RL
MTBE	ND	0.5
Benzene	ND	0.5
Toluene	ND	0.5
Chlorobenzene	ND ·	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	107	77-130
Toluene-d8	99	80-120
Bromofluorobenzene	101	80-120

		Purgeable Aro	matics by GC/M	S
Lab #:	164930		Location:	Hadjian/Dublin
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2692		Analysis:	EPA 8260B
Type:	BLANK		Diln Fac:	1.000
Lab ID:	QC212285		Batch#:	81125
Matrix:	Water		Analyzed:	04/28/03
Units:	ug/L			

Analyte	Result	RL
MTBE	ND	0.5
Benzene	ND	0.5
- Toluene	ND	0.5
Chlorobenzene	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	105	77-130
Toluene-d8	98	80-120
Bromofluorobenzene	101	80-120

		Purgeable Aro	matics by (FC/MS
Lab #:	164930		Location:	Hadjian/Dublin
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2692		Analysis:	EPA 8260B
Type:	BLANK		Diln Fac:	1.000
Lab ID:	QC212286		Batch#:	81125
Matrix:	Water		Analyzed:	04/28/03
Units:	ug/L		-	

Result	RL	
ND	0.5	
ND	0.5	
ИD	0.5	
ND	0.5	
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 0.5 ND 0.5 ND 0.5 ND 0.5 ND 0.5 ND 0.5 ND 0.5 ND 0.5 ND 0.5 ND 0.5 ND 0.5 ND 0.5

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	108	77-130
Toluene-d8	97	80-120
Bromofluorobenzene	101	80-120

			Purgeable Ar	ematics by (GC/MS
Lab #:	16493	-		Location:	Hadjian/Dublin
Client:	SOMA	Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2692			Analysis:	EPA 8260B
Туре:		LCS		Diln Fac:	1.000
Lab ID:		QC212074		Batch#;	81074
Matrix:		Water		Analyzed:	04/25/03
Units:		ug/L			

		ppiked	Kesult	61.50	Limits	
Benzene		50.00	50.06	100	76-120	
Toluene		50.00	48.76	98	79-120	
Chlorobenzene		50.00	44.74	89	80-120	
Surrogate	%REC	! Limits				
1,2-Dichloroethane-d4	106	77-130				***********
Toluene-d8	98	80-120				

80-120

80-120

98

100

Bromofluorobenzene

Purgeable Aromatics by GC/MS						
	64930			Location:	Hadjian/Dublin	
	OMA Environmental	Engineering :	Inc.	Prep:	EPA 5030B	
Project#: 2	692			Analysis:	EPA 8260B	
Field ID:	ZZZZZZZZZZ			Batch#:	81074	
MSS Lab ID:	164891-003			Sampled:	04/22/03	
Matrix:	Water			Received:	04/22/03	
Units:	ug/L			Analyzed:	04/25/03	
Diln Fac:	1.000					

MS

Lab ID: QC212110

Analyte	MSS Result	Spiked	Result	%RE(Limits
Benzene	<0.07000	50.00	48.75	97	79-120
Toluene	<0.06000	50.00	46.73	93	75-120
Chlorobenzene	<0.1000	50.00	45.66	91	80-120

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	116	77-130
Toluene-d8	97	80-120
Bromofluorobenzene	100	80-120

MSD

Lab ID: QC212111

Analyte	Spiked	Result	&RE(. Limits	RPD	Lim
Benzene	50.00	46.73	93	79-120	4	20
Toluene	50.00	45.45	91	75-120	3	20
Chlorobenzene	50.00	44.88	90	80-120	2	20

1,2-Dichloroethane-d4 112 77-130 Toluene-d8 96 80-120 Bromofluorobenzene 101 80-120	Surrogate	%REC	Limits	
50 00 120	1,2-Dichloroethane-d4	112	77-130	
Bromofluorobenzene 101 80-120	Toluene-d8	96	80-120	
	Bromofluorobenzene	101	80-120	Ì

	Purgeable Arc	matics by GC/M	S
Lab #: 164930 Client: SOMA Environ Project#: 2692	mental Engineering Inc.	Location: Prep: Analysis:	Hadjian/Dublin EPA 5030B EPA 8260B
Field ID: ZZZZZZ MSS Lab ID: 16489: Matrix: Water Units: ug/L Diln Fac: 1.000	1-004	Batch#: Sampled: Received: Analyzed:	81074 04/22/03 04/22/03 04/25/03

MS

Lab ID:

QC212112

Analyte	MSS Result	Spiked	Result	%RE(Limits
Benzene	<0.07000	50.00	48.65	97	79-120
Toluene	<0.06000	50.00	47.12	94	75-120
Chlorobenzene	<0.1000	50.00	45.19	90	80-120

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	109	77-130	
Toluene-d8	96	80-120	
Bromofluorobenzene	100	80-120	

Type :

MSD

Lab ID:

Analyte	Spiked	Result	%RE(. Limits	RPD	T. im
Benzene	50.00	49.20	98	79-120	1	20
Toluene	50.00	47.24	94	75-120	0	20
Chlorobenzene	50.00	46.01	92	80-120	2	20

Surrogate	* PRC	Limits
1,2-Dichloroethane-d4	108	77-130
m-3 10		
Toluene-d8	95	80-120
Dromof?		
Bromofluorobenzene	102	80-120

	Purgeable Arc	matics by G	C/MS
Lab #: 164930		Location:	Hadjian/Dublin
	al Engineering Inc.	Prep:	EPA 5030B
Project#: 2692		Analysis:	EPA 8260B
Matrix: Water		Batch#:	81125
Units: ug/L		Analyzed:	04/28/03
Diln Fac: 1.000			

BS

Lab ID: QC212283

Benzene	50.00	49.37	99	76-120
Toluene	50.00	48.40	97	79-120
Chlorobenzene	50.00	45.45	91	80-120

Bromofluorobenzene	100	80-120
Toluene-d8	102	80-120
1,2-Dichloroethane-d4	110	77-130
Surrogate	%REC	Limits

BSD

Lab ID:

QC212284

Analyte		Spiked	Result	%REC	2 Limits	RPD	Lir
Benzene		50.00	48.17	96	76-120	2	20
Toluene		50.00	46.56	93	79-120	4	20
Chlorobenzene		50.00	45.27	91	80-120	0	20
<u></u>							
	*RBC						
Surrogate 1,2-Dichloroethane-d4 Toluene-d8	%REC 108 99	Limits 77-130 80-120					

		Gasoline Oxyg	enates by	GC/MS
Lab #: Client: Project#:	164930 SOMA Environmental 2692	Engineering Inc.	Location: Prep: Analysis:	Hadjian/Dublin EPA 5030B EPA 8260B
Field ID: Matrix: Units:	DPB-2 Water uq/L		Sampled: Received:	04/22/03 04/24/03

Type:

SAMPLE

Lab ID:

164930-009

Analyte	Result	RT.	Dilln Fa	c Batch# A	na wzed
tert-Butyl Alcohol (TBA)	ND	20	2.000	81074 0	4/26/03
MTBE	540	2.0	4.000		4/29/03
Isopropyl Ether (DIPE)	ND	1.0	2.000	·	4/26/03
Ethyl tert-Butyl Ether (ETBE)	ND	1.0	2.000		4/26/03
Methyl tert-Amyl Ether (TAME)	ND	1.0	2.000		4/26/03
1,2-Dichloroethane	ND	1.0	2.000		4/26/03
1,2-Dibromoethane	ND.	1.0	2.000		4/26/03
Ethanol	ND	2,000	2.000		4/26/03

		Limits	Diln Fac	·· baccn#	Analy:	Zec
Dibromofluoromethane	107	80-121	2.000	81074	04/26	703
1,2-Dichloroethane-d4	107	77-130	2.000	81074	04/26	/03
Toluene-d8	96	80-120	2.000	81074	04/26	/03
Bromofluorobenzene	101	80-120	2.000	81074	04/26	/03

Type: Lab ID: Diln Fac:

BLANK QC212075 1.000 Batch#: Analyzed: 81074 04/25/03

Analyte		RL
tert-Butyl Alcohol (TBA) MTBE	NA ND	0.5
Isopropyl Ether (DIPE) Ethyl tert-Butyl Ether (ETBE)	NA	
Methyl tert-Amyl Ether (TAME)	NA NA	
1,2-Dichloroethane	ND	0.5
1,2-Dibromoethane Ethanol	ND NA	0.5

Surrogate	%RKC	C Damits
■ Dibromofluoromethane	103	80-121
1,2-Dichloroethane-d4	108	77-130
■ Toluene-d8	99	80-120
Bromofluorobenzene	101	80-120
" · · · · · · · · · · · · · · · · · · ·		

NA= Not Analyzed ND= Not Detected L= Reporting Limit Page 1 of 3

Gasoline Oxygenates by GC/MS Lab #: Client: 164930 Location: Hadjian/Dublin SOMA Environmental Engineering Inc. EPA 5030B Prep: Project#: Field ID: 2692 EPA 8260B 04/22/03 04/24/03 Analysis: Sampled: DPB-2 Water ug/L Matrix: Received: Units:

Type: Lab ID: Diln Fac:

BLANK QC212076 1.000

Batch#: Analyzed: 81074 04/25/03

	Analyte	Fes	ult RL
	tert-Butyl Alcohol (TBA)	ND	10
	MTBE	ND	0.5
- 1	Isopropyl Ether (DIPE)	ND	0.5
	Ethyl tert-Butyl Ether (ETBE)	ND	0.5
	Methyl tert-Amyl Ether (TAME)	ND	0.5
9	1,2-Dichloroethane	ND	0.5
	1,2-Dibromoethane Ethanol	ND	0.5
	Ethanot	ND	1,000
	Surrogate	%REC L	mits
٦	Dibromofluoromethane		-121
- 1	1,2-Dichloroethane-d4	107 77	-130
	Toluene-d8	99 80	-120
	Bromofluorobenzene	101 80	-120

Type: Lab ID: Diln Fac:

BLANK QC212285 1.000 Batch#: Analyzed: 81125 04/28/03

Analyte	Result	RL	
tert-Butyl Alcohol (TBA)	NA		
MTBE	ND	0.5	
Isopropyl Ether (DIPE)	NA	0.5	
Ethyl tert-Butyl Ether (ET	BE) NA		
Methyl tert-Amyl Ether (TA	ME) NA		
1 7 Tai a la 1	ND	0.5	
1,2-Dichioroethane	ND	0.5	
Ethanol_	NA	0.5	

Surrogate	%REC	Lamits	
Dibromofluoromethane	104	80-121	
1,2-Dichloroethane-d4	105	77-130	
Toluene-d8	98	80-120	
Bromofluorobenzene	101	80-120	

NA= Not Analyzed ND= Not Detected L= Reporting Limit Page 2 of 3

Gasoline Oxygenates by GC/MS Lab #: 164930 SOMA Environmental Engineering Inc. Hadjian/Dublin EPA 5030B EPA 8260B 04/22/03 Location: Client: Prep: Analysis: Sampled: Project#: Field ID: 2692 DPB-2 Matrix: Water ug/L Received: 04/24/03 Units:

Type: Lab ID: Diln Fac:

BLANK QC212286 1.000 Batch#: Analyzed:

81125

04/28/03

	Analyte	Rest	It RL
	tert-Butyl Alcohol (TBA)	ND	10
	MTBE	ND	0.5
	Isopropyl Ether (DIPE)	ND	0.5
_	Ethyl tert-Butyl Ether (ETBE)	ND	0.5
	Methyl tert-Amyl Ether (TAME)	ND	0.5
	1,2-Dichloroethane	ND	0.5
	1,2-Dibromoethane	ND	0.5
	Ethanol	ND	1,000

Surrogate	% REC	Limits	
Dibromofluoromethane	105	80-121	
1,2-Dichloroethane-d4 Toluene-d8	108 97	77-130 80-120	·
Bromofluorobenzene	101	80-120	

Gasoline Oxygenates by GC/MS Lab #: 164930 Location: Hadjian/Dublin SOMA Environmental Engineering Inc. Client: EPA 5030B Prep: Project#: 2692 Analysis: EPA 8260B Type: LCS Diln Fac: 1.000 Lab ID: QC212074 Batch#: 81074 Matrix: Water Analyzed: 04/25/03 Units: ug/L

	e	Spiked	Result	%REC] Limits	
MTBE		50.00	45.56	91	49-144	***************************************
	te %	REC Limits				S. (1000)
**************************************	<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>					

Surrogate	%REC	Limits
Dibromofluoromethane	107	80-121
1,2-Dichloroethane-d4	106	77-130
Toluene-d8	98	80-120
Bromofluorobenzene	100	80-120

		Gasoline	Охуд	enates by	gc/ms
	54930			Location:	Hadjian/Dublin
	OMA Environmental	Engineering	Inc.	Prep:	EPA 5030B
Project#: 26	592			Analysis:	EPA 8260B
Field ID:	ZZZZZZZZZ			Batch#:	81074
MSS Lab ID:	164891-003			Sampled:	04/22/03
Matrix:	Water			Received:	04/22/03
Units:	ug/L			Analyzed:	04/25/03
Diln Fac:	1.000				

Type:

MS

Lab ID:

QC212110

Analyte	MSS F	esult	Spiked	Result	%REC	Limits
MTBE	<	0.04900	50.00	57.07	114	49-144
Surrogate	%REC	Limits				
Dibromofluoromethane	109	80-121				
1,2-Dichloroethane-d4	116	77-130	•			
Toluene-d8	97	80-120				
Bromofluorobenzene	100	80-120		•		

Туре:

MSD

Lab ID:

QC212111

Analyte		Spiked	Result	%REC	Limits	RPD	Lin
MTBE	· · · · · · · · · · · · · · · · · · ·	50.00	56.73	113	49-144	1	21
Surrogate	RREC	Limits					
55 * 1					***********		
Dibromofluoromethane	109	80-121					
1,2-Dichloroethane-d4	109 112	80-121 77-130					

	Gasoline Oxyg	enates by GC/M	S
Lab #: 164930		Location:	Hadjian/Dublin
	ironmental Engineering Inc.	Prep:	EPA 5030B
Project#: 2692		Analysis:	EPA 8260B
Field ID: Z	ZZZZZZZZZ	Batch#:	81074
MSS Lab ID: 16	54891-004	Sampled:	04/22/03
Matrix: Wa	ater	Received:	04/22/03
Units: us	g/L	Analyzed:	04/25/03
Diln Fac: 1	.000		

Type:

MS

Lab ID:

QC212112

Analyte	MSS R	esult	Spiked	Result	%REC	Limits
MTBE	<	0.04900	50.00	53.25	107	49-144
Surrogate	%REC	Limits				
Dibromofluoromethane	108	80-121 .				
1,2-Dichloroethane-d4	109	77-130				
Toluene-d8	96	80-120				
Bromofluorobenzene	100	80-120				

Type:

MTBE

MSD

Analyte

Lab ID:

QC212113

Spiked Result %REC Limits RPD Lim

_,	MTBE		50.00	53.68	107	49-144	1	21
	•							
	Surrogate	%REC	Limits					
•	Dibromofluoromethane	108	80-121					
	1,2-Dichloroethane-d4	108	77-130					
	Toluene-d8	95	80-120					
	Bromofluorobenzene	102	80-120					

Gasoline Oxygenates by GC/MS Lab #: 164930 Location: Hadjian/Dublin SOMA Environmental Engineering Inc. Client: Prep: EPA 5030B Project#: 2692 Analysis: EPA 8260B Matrix: Water Batch#: 81125 Units: ug/L Analyzed: 04/28/03 Diln Fac: 1.000

Type:

BS

Lab ID:

QC212283

MTBE		50.00	47 53	٥٥	40 144
		30.00	47.52	95	49-144
Surrogate					
	%REC				
Dibromofluoromethane	106	80-121			
1,2-Dichloroethane-d4	110	77-130			
Toluene-d8	102	80-120			
Bromofluorobenzene	100	80-120			

Type:

BSD

Lab ID:

QC212284

Analyte		Spiked	Result	Result %REC			Lim
MTBE		50.00	46.77	94	49-144	2	21
Surrogate	%REC	Limits					
Dibromofluoromethane	106	80-121					
1,2-Dichloroethane-d4	108	77-130					
Toluene-d8	99	80-120					
Bromofluorobenzene	101	80-120					

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900, Fax (510) 486-0532

ANALYTICAL REPORT

Prepared for:

SOMA Environmental Engineering Inc. 2680 Bishop Dr. Suite 203 San Ramon, CA 94583

Date: 30-APR-03

Lab Job Number: 164832 Project ID: 2692

Location: Hadjian/Dublin

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Project Manager

Reviewed by:

Opezations Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

Page 1 of __44

CHAIN OF CUSTODY FORM

Page _____of ____

Curtis	& Tomp	kins, Ltd												`.		An	alys	es		
Analytic		y Since 1878	3							C&T	164832			<u> </u>						
	2323 Fifth S						:			LOGIN # _	10 10 7 6					Ì				
1	Berkeley, C (510)486-09						•				\sim		8020	2						
	(510)486-05			Sampler:	R	<u>W</u>	Vi)	de.	سنه		V		2	SUNB						
Project No:	2692	-		Report To:						/	4	7 .	ω	.	i		ŀ			
Project Nan	ne: Hadilan	7240 Authin / Dultin	BNA-	Company:		•			•			Ì	3760	ויי	<u>.</u>					
Project P.O	•			Telephone									æ	1000						
Turnaround	l Time: 5	1sard		Fax:			-			6601		8015	<i>i</i> i	110						
			Matri	x		res		•		7	,	170	MTBE	7				1		
		Sampling	_ a		Τ.		Ē					ړ.	\	Γ 4					-	
Laboratory	Sample ID.	Date	Soil Water Waste	# of Containers	[달	H ₂ SO	HNO3	ICE			Field Notes	 	1212V	15	ľ					
Number	, -	Time	≶ ≷ ``	Containers	1	I	I	_			shallow	TPW.	14	1/1						
	DPB.36	718 246	×	1 A	×			×		Drect Rus	h Borehol 3.	1	×	×			4./	1	\bot	$\perp \perp$
	DPR-55	V 83%	Y	4	×			>		1	·5 shallan	تح	Χ	مر		\mathcal{A}			\bot	11
У	PPB-74	94			\bot	┢									4	\perp	┷	$\bot \downarrow$		
} -	PPB.3d	1 MOS 35%		4	×	<u> </u>		¥		Prof Rig	h Borehous dup	٩	<u> </u>	γο		\dashv		$\downarrow \downarrow \downarrow$	┷	
0	DPB-44	1250		4	×			×			-4	7	Х	χı	_		\bot	 	_	
- + o	DDB-54	945	×	4	×	$oxed{oxed}$		×	ļ		<u>.5 \</u>	\triangle	×	X.	_	\dashv	+	1-1	\dashv	4-4
0 8 0	DPB-76	8 MO 95	×	4	×	ļ		X			1 1 1 1 2 1 2 2 2		ゝ	у.	_		+	$\downarrow \downarrow \downarrow$	_	1
	DPB. 7m	1612		4	X			×	L		1_1312 #3551	,	×	۴		_	<u> </u>	┼┼	-	
0	DPB.74	1050		4	×	<u> </u>	<u> </u>	X.			·7 Lup	Κ.	۶	×		\dashv	+	$\downarrow \downarrow$	—	4-1
Ω	DPB-Ss	7 45 k	X	4	X	_		X			·s shallow	-	<u>\</u>	X			╬	↓	+	\perp
a	DPB-Sd	830	×	4	<u> </u>	<u> </u>		X	_	<u> </u>	·S det?	X	×	×	<u> </u>	4	4	++		
	DPB-3m	<u> </u>	×	4	×	 	ļ,	K	<u> </u>		3 mistale	×	×(S		-1	-	+	-	4-4
					1		ļ							7 7	<u> </u>					
Notes: ED	F Require	d -							RI	ELINQUISH			an.	ا- ا	RE	CEI	/ED	BY:		
f	1 - alt 40 0	d analy: 8-pps:5d pps:54		11.5		1/1	N	7			DATE TIME	P								
20	~ anoone	C. Carry	5 "			χL	//	_	12	2WPaper	DATE/TIME							DATE	E/TIM	E
Ν̈́	o Heli	B-Dry Sd	P4 DP1	513M						· · · · · · · · · · · · · · · · · · ·		<u> </u>						DAT	ر د و ری -	<u>_</u>
		PPB. 56	9 PP	6.0a-	-						DATE/TIME	_		4		5/			E/TIM	=
# 1250 > 60°											DATE/TIME	×	9	Ien.	aLC	Town	he	DATE		<i>E</i> /4

Mid intact in le

Lab #: 164832

Client: SOMA Environmental Engineering Inc.

Project#:

Matrix: Water

Units: uq/L Location:

Prep:

<u>Analysis</u> 8015B

Received: 04/18/03

500

Field ID:

Type: Lab ID: DPB-35 SAMPLE

164832-001

10.00

Batch#:

Sampled:

80937

04/17/03

Hadjian/Dublin

EPA 5030B

Diln Fac:

Analyzed:

04/20/03

Analyte Gasoline C7-C12

Result 48,000

68-145

66-143

Surrogate Trifluorotoluene (FID)

REC Limits Bromofluorobenzene (FID)

112 100

Field ID:

Гуре: Lab ID: DPB-5\$

SAMPLE 164832-002

Diln Fac:

1.000

Batch#:

Sampled: Analyzed: 04/17/03

Analyte

Surrogate

Result

%REC ISINGEE

68-145

66-143

RL

04/19/03

Gasoline C7-C12

Trifluorotoluene (FID) Bromofluorobenzene (FID)

95 103

ield ID:

Type: Lab ID: DPB-3D SAMPLE

Diln Fac:

<u> Analyte</u>

164832-003

Batch#:

Sampled:

80937

04/17/03

Analyzed: 04/20/03

5.000

Result

RL

Gasoline C7-C12

27,000

250

Surrogate

101

Trifluorotoluene (FID) Bromofluorobenzene (FID) %REC Limits 115

68-145 66-143

ield ID:

DPB-4D

SAMPLE 164832-004 Batch#:

80932

Sampled: Analyzed: 04/17/03 04/19/03

āb ID: iln Fac:

Type:

1.000

Result

RL.

50

Analyte Gasoline C7-C12

ND

Surrogate Trifluorotoluene (FID)

96

PREC LA MILES

Bromofluorobenzene (FID)

102

68-145 66-143

D= Not Detected

L= Reporting Limit age 1 of 4

1.1

Lab #: 164832 Location: Hadjian/Dublin

Client: SOMA Environmental Engineering Inc. Prep: EPA 5030B Project#: 8015B

<u>Analysis</u> Water Matrix: 04/18/03 Received:

Units: uq/L

Field ID:

DPB-5D Гуре: SAMPLE

Lab ID: 164832-005 Diln Fac:

1.000

Batch#:

Sampled:

80932 04/17/03

04/19/03 Analyzed:

Analyte Result C7-C12 Gasoline 50

Surrogate AREC THIS S Trifluorotoluene (FID) 93 68-145 Bromofluorobenzene (FID) 103 66-143

ield ID:

DPB-7S Type: Lab ID: SAMPLE

164832-006

Diln Fac: 1.000 Batch#:

Sampled: Analyzed: 80932

04/18/03 04/19/03

Analyte Result RL Gasoline C7-C12 ND 50

Surrogate SREC Limite Trifluorotoluene (FID) 93 68-145 Bromofluorobenzene (FID) 102 66-143

Field ID:

Type: Lab ID: DPB-7M SAMPLE

164832-007

Diln Fac:

1.000

Batch#:

Sampled: Analyzed: 80937

04/18/03 04/20/03

Analyte Result RL Gasoline C7-C12 7.000 50

Surrogate %REC Limits Trifluorotoluene (FID) 120 68-145 Bromofluorobenzene (FID) 107 66-143

Field ID:

Type: ab ID: DPB-7D SAMPLE

164832-008

Batch#:

80932

Sampled: Analyzed: 04/18/03 04/19/03

Diln Fac: 1.000

Aualyte Result RL Gasoline C7-C12 150 50

Surrogate RECEIVAGE FE Trifluorotoluene (FID) 98 68-145 Bromofluorobenzene (FID) 101 66-143

ND= Not Detected RL= Reporting Limit Page 2 of 4

Lab #: 164832 Location: Hadjian/Dublin

Client: SOMA Environmental Engineering Inc. EPA 5030B Prep:

8015B 04/18/03 Project#: 2692 Analysis: Matrix: Water

Received: Units: <u>uq/L</u>

ield ID:

DPB-SS

Гуре: SAMPLE Lab ID: 164832-009

Diln Fac: 20.00 Batch#:

Sampled: Analyzed: 80937 04/18/03 04/19/03

Analyte Result;41 Gasoline C7-C12 20,000 1,000

Surrogate %REC Limits Trifluorotoluene (FID) 109 68-145 Bromofluorobenzene (FID) 103 66-143

ield ID:

DPB-SD

Type: Lab ID: SAMPLE 164832-010 Þiln Fac:

1.000

Batch#:

Sampled: Analyzed: 80932

04/18/03 04/19/03

Analyte Result RI. Gasoline C7-C12 4,300 50 Surroqate %REC Limite

Trifluorotoluene (FID) 106 68-145 Bromofluorobenzene (FID) 101 66-143

Field ID:

DPB-3M SAMPLE Type: 164832-011

Lab ID: iln Fac:

20.00

Batch#:

Sampled:

80937 04/18/03

Analyzed: 04/19/03

Analyte Result RL Gasoline C7-C12 62,000 000

Surrogate %REC_Limits Trifluorotoluene (FID) 99 68-145 Bromofluorobenzene (FID) 100 66-143

Type: Lab ID: piln Fac: BLANK 1.000

QC211530

Batch#:

80932

Analyzed:

04/18/03

Analyte Result Gasoline C7-C12 ND 50

%RBC Limits Surrogate Trifluorotoluene (FID) 88 68-145 Bromofluorobenzene (FID) 92 66-143

D= Not Detected L= Reporting Limit Page 3 of 4

Location:

Prep: Analysis: Received:

164832 Lab #:

Client: SOMA Environmental Engineering Inc.

Project#: 2692

Matrix: Water

Units: uq/L

BLANK

Type: Lab ID: Diln Fac:

QC211554 1.000

Batch#: Analyzed:

80937

04/19/03

Hadjian/Dublin EPA 5030B 8015B 04/18/03

Analy	te Result	<u> </u>	
Gasoline C7-C12	ND	50	

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	91	68-145	
Bromofluorobenzene (FID)	99	66-143	

Sample #: c7

Page 1 of 1

ample Name: 164832-001,80937

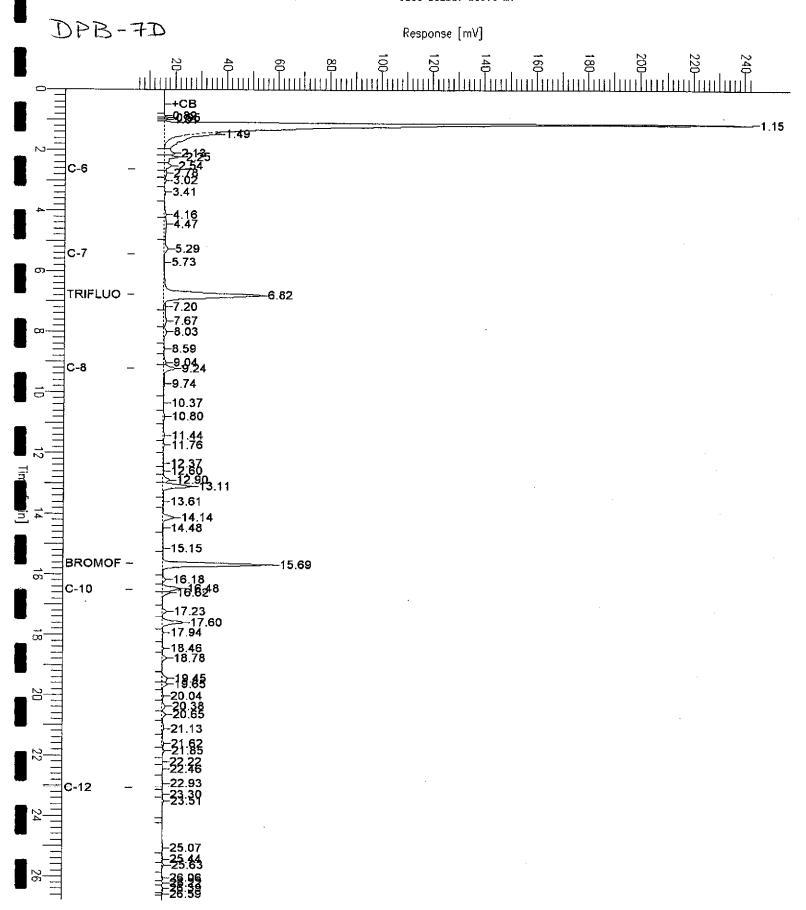
ileName : G:\GC19\DATA\109X008.raw Date: 4/20/03 01:24 AM Method : TVHBTXE Time of Injection: 4/20/03 12:57 AM Start Time : 0.00 min End Time : 26.80 min Low Point : -14.96 mV High Point: 612,87 mV cale Factor: 1.0 Plot Offset: -15 mV Plot Scale: 627.8 mV DPB-35 Response [mV] +CB 1.00. -1.15 <u>∠2.12</u> -2.40C-6 [2.83 [3.03 -3.45 4.17 -4.55 **─**5.30 C-7 -5.85 <u>-6.61</u>6.82 TRIFLUO --7.22 -7.48 -8.00 8.58 C-8 9.24 -8:33 -10.38 -10.80 -11.15 -11.76 -12.36 <u>-12 90</u> -13.1 -13.58 -14.14 -14.80 >--15.15 BROMOF --15.69 --16.18 C-10 -16.48 17.23 -17.60 £1<u>3:83</u> -18.46-18.78 -19.13 9.69.50 -20.04 20.38 20.65 -21.03 ≥21,83 ≥21,83 22.22 22.46 ≻22.93 -23.29 >-23.52 -23.84 C-12 -24:33 -24.97 25 44 25 63

ample Name: 164832-003,80937 Sample #: c7 Date : 4/20/03 04:14 AM Page 1 of 1 ileName : G:\GC19\DATA\109X013.raw : TVHBTXE Method Time of Injection: 4/20/03 03:47 AM Start Time : 0.00 min End Time : 26.80 min Low Point: -22.42 mV High Point: 756.04 mV bale Factor: 1.0 Plot Offset: -22 mV Plot Scale: 778.5 mV DPB-3D Response [mV] -+CB =0.95 -1.15 <u>~2.13</u> -2.40C-6 -3.03 3.45 -5.29 C-7 -5.84 6.60 TRIFLUO --8.01 -8.36 -8.38 C-8 9.24 -9.73 -9.99 -10.37 -10.82 11.43 12 90 -13.11 13.59 -14.14 -14.82 >-15.15 BROMOF -----15.69 -16.18 ---16.48 C-10 16:62 -17.23 -17.60 **≘13:83** -18.46 ____18.78 -19.11 ==1918550 -20.04 -20.38 -20.65 -21.03 -21.83 -21.85 22.22 22.46 -22.93 C-12 -23,29 -23,52 -23.85 34 33 -24.97

imple Name: 164832-007,80937 Sample #: c7 Page 1 of 1 : G:\GC19\DATA\109X010.raw lleName Date: 4/20/03 02:32 AM Method : TVHBTXE Time of Injection: 4/20/03 02:05 AM Start Time : 0.00 min End Time : 26.80 min Low Point : -26.32 mV High Point: 844.60 mV pale Factor: 1.0 Plot Offset: -26 mV Plot Scale: 870.9 mV DPB-7M Response [mV] -+CB 0.8 -1.15 **71.49** -2.41C-6 -3.82 -3.86 3.45 -5.29 C-7 -5.84 <u>-6.60</u>.82 TRIFLUO -7.22 7.68 -8.02 -8.58 C-8 9.25 -9.74 -9.99 -10.37 -10.82 -11.44 -11.76 12.91 -13.1 -13.60 -14.14 14.48 -14.82 ≔15.15 BROMOF ----15.69 -16,19 C-10 16.48 -17.23 -17.60 -13.83 -18.46 18.78 -19.12 1918550 -20.04 20.38 20.65 -21.03 ≥21.85 -22.26 -22.36 -22.93 G-12 23.30 23.52 23.84 24 33 -24.98 25.44 25.63 25.63 26.39

ample Name : 164832-008,80932,tvh only leName : G:\GC19\DATA\108X026.raw : TVHBIXE Method Start Time : 0.00 min pale Factor: 1.0

End Time : 26.80 min Plot Offset: 4 mV


Sample #: a1 Date: 4/19/03 05:31 AM

Page 1 of 1

Time of Injection: 4/19/03 05:04 AM

Plot Scale: 238.6 mV

Low Point : 4.23 mV High Point : 242.86 mV

ample Name : 164832-009,80937

ileName : G:\GC19\DATA\109X006.raw

Method : TVHBTXE

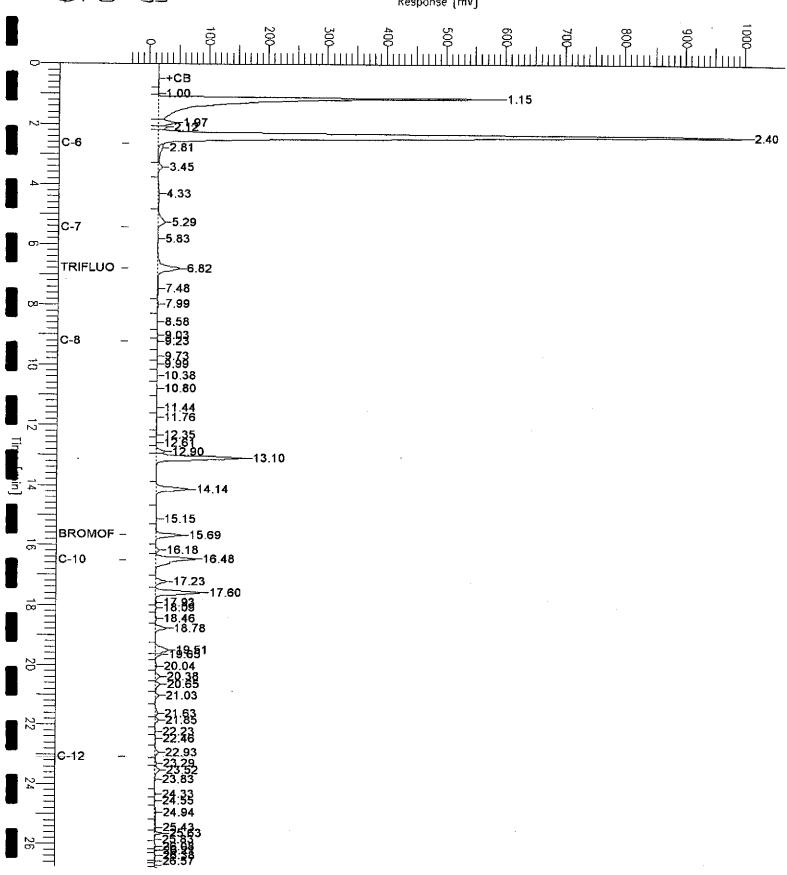
Start Time : 0.00 min cale Factor: 1.0

End Time : 26.80 min Plot Offset: -35 mV

Sample #: c1

Page 1 of 1

Date: 4/20/03 12:16 AM


Time of Injection: 4/19/03 11:48 PM High Point: 1003.46 mV

Low Point : -34.88 mV

Plot Scale: 1038.3 mV

Response [mV]

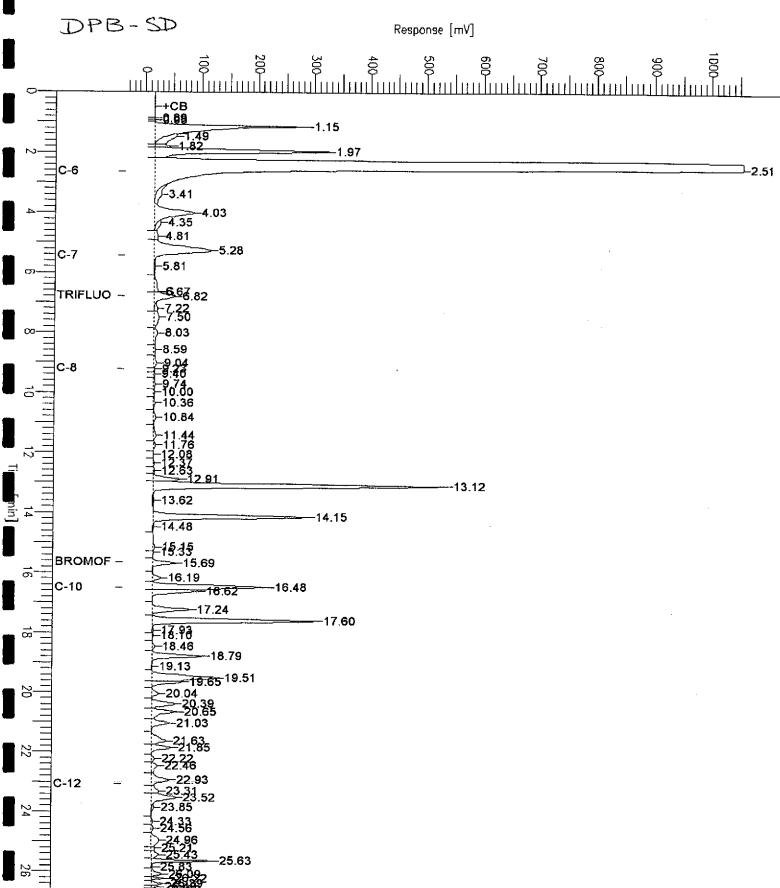
ample Name : 164832-010,80932,tvh only ileName : G:\GC19\DATA\108X031.raw

Method : TVHBTXE

Start Time : 0.00 min cale Factor: 1.0

End Time : 26.80 min Plot Offset: -36 mV Sample #: a7

Page 1 of 1


Date: 4/19/03 06:49 PM

Time of Injection: 4/19/03 07:54 AM

Low Point: -36.42 mV

High Point : 1055.76 mV

Plot Scale: 1092.2 mV

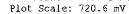
ample Name : 164832-011,80937

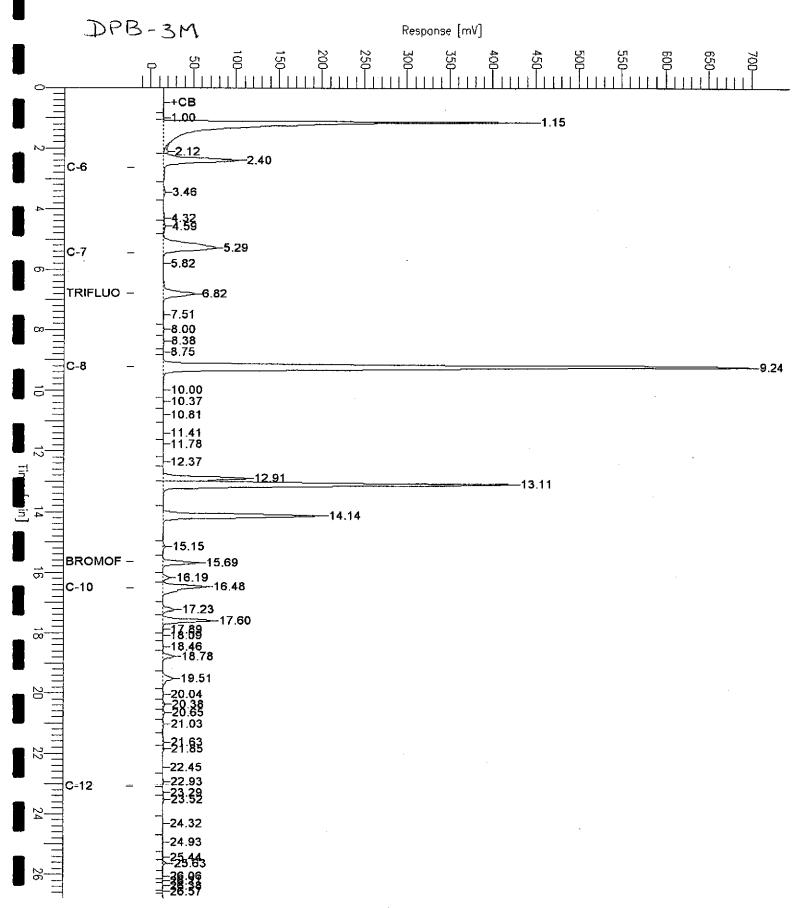
: G:\GC19\DATA\109X004.raw

Method : TVHBTXE Start Time : 0.00 min

lleName

End Time : 26.80 min tale Factor: 1.0 Plot Offset: -20 mV


Page 1 of 1


Sample #: c1 Date : 4/19/03 11:08 PM

Time of Injection: 4/19/03 10:41 PM

Low Point : -19.72 mV

High Point: 700.87 mV

mple Name : ccv/bs,qc211555,80937,03ws0527,5/5000 leName : g:\gc19\data\109x002.raw leName

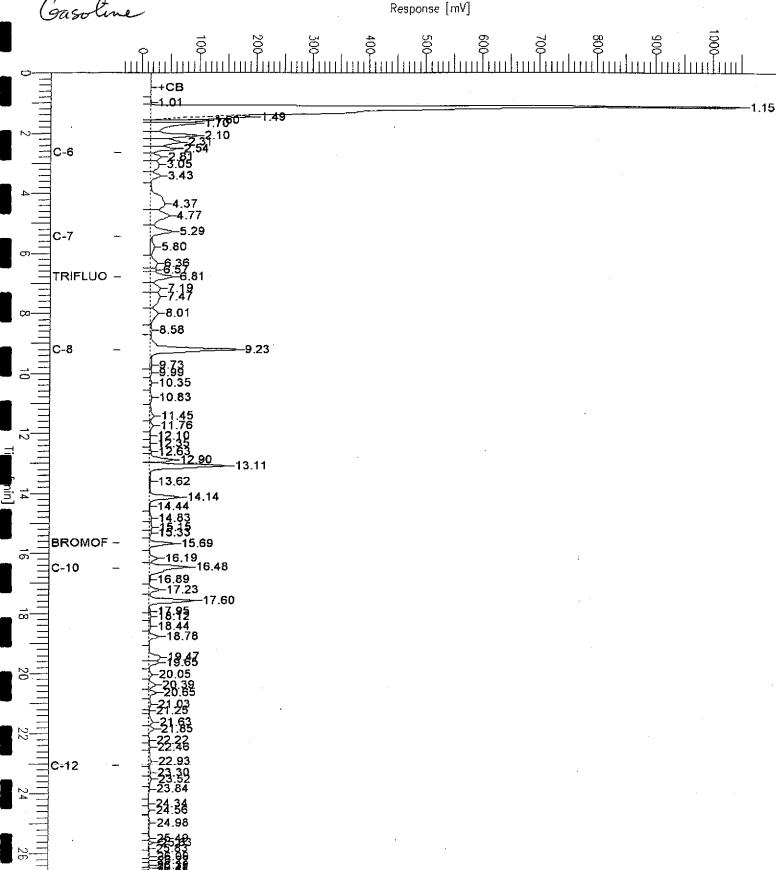
Method : TVHBTXE

Start Time : 0.00 min ale Factor: 1.0

End Time : 26.80 min Plot Offset: -37 mV

Sample #:

Page 1 of 1


Date: 4/19/03 10:04 PM

Time of Injection: 4/19/03 09:33 PM Low Point : -37.15 mV

High Point: 1051.70 mV

Plot Scale: 1088.8 mV

	Total Vola	tile Hydrocarbon	lS.
Lab #:	164832	Location:	Hadjian/Dublin
Client:	SOMA Environmental Engineering In	ıc. Prep:	EPA 5030B
Project#:	2692	Analysis:	8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC211532	Batch#:	80932
Matrix:	Water	Analyzed:	04/18/03
Units:	ug/L		

Analyte	Spiked	Result	%RBC	Limits
Gasoline C7-C12	2,000	1,925	96	79-120

	Surrogate	%REC	Limits
7	Trifluorotoluene (FID)	101	68-145
	Bromofluorobenzene (FID)	93	66-143

		Total Vol	latil	e Hydrocarbons	
Lab #: 164	832			Location:	Hadjian/Dublin
Client: SON	IA Environmental	Engineering	Inc.	Prep:	EPA 5030B
Project#: 269	92			Analysis:	8015B
Field ID:	ZZZZZZZZZZ			Batch#:	80932
MSS Lab ID:	164829-003			Sampled:	04/18/03
Matrix:	Water			Received:	04/18/03
Units:	ug/L			Analyzed:	04/19/03
Diln Fac:	1.000				

Type:

MS

Lab ID:

QC211536

Analyte	MSS Re	sult	Spiked	Result	%REC	Limits
Gasoline C7-C12	<1	2.00	2,000	2,038	102	67-120
Surrogate	%REC	Limits				
Trifluorotoluene (FID)	110	68-145		<u> </u>		
Bromofluorobenzene (FID)	106	66-143		•		j.

type:

MSD

Lab ID:

Analyte Spiked Result %RBC Limits RPD Lim

QC211537

Gasoline C7-C12		2,000	2,018	101	67-120	1	20
	***************************************				*****************************		
Surrogate	%rec	Limits					
Trifluorotoluene (FID)	109	68-145					
Bromofluorobenzene (FID)	104	66-143					İ

Total Volatile Hydrocarbons Lab #: 164832 Location: Hadjian/Dublin Client: SOMA Environmental Engineering Inc. EPA 5030B Prep: Project#: 2692 Analysis: 8015B Matrix: Water Diln Fac: 1.000 Units: ug/L Batch#: 80937

Гуре: Lab ID: BS

QC211555

Analyzed:

04/19/03

Analyte	Spiked		%REC	Limits
Gasoline C7-C12	2,000	2,076	104	79-120

Surrogate	%REC	Limits
Trifluorotoluene (FID)	111	68-145
Bromofluorobenzene (FID)	107	66-143

Туре:

BSD

ab ID:

QC211557

Analyzed:

04/20/03

Analyte		Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12		2,000	2,002	100	79-120	4	20
Surrogate	SREC	Limits					
Trifluorotoluene (FID)	108	68-145					
Bromofluorobenzene (FID)	102	66-143					

		Purgeable Aro	matics by GC/M	S
Lab #:	164832		Location:	Hadjian/Dublin
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2692		Analysis:	EPA 8260B
Field ID:	DPB-3S		Batch#:	80960
Lab ID:	164832-001		Sampled:	04/17/03
Matrix:	Water		Received:	04/18/03
Units:	ug/L		Analyzed:	04/21/03
Diln Fac:	50.00			

Analyte	Result	RL	
MTBE	8,900	25	
Benzene	400	25	
Toluene	.5,800	25	
Chlorobenzene	ND	25	
Ethylbenzene	1,500	25	
m,p-Xylenes	6,900	25	
o-Xylene	2,600	25	
1,3-Dichlorobenzene	ND	25	
1,4-Dichlorobenzene	ND	25	
1,2-Dichlorobenzene	ND ND	25	

I	Surrogate	%REC	Limits	
L	1,2-Dichloroethane-d4	98	77-130	
	Toluene-d8	98	80-120	
ď	Bromofluorobenzene	97	80-120	
				The state of the s

		Purgeable Are	omatics by G	₽C/MB
Lab #:	164832		Location:	Hadjian/Dublin
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2692		Analysis:	EPA 8260B
Field ID:	DPB-5S		Batch#:	80960
Lab ID:	164832-002		Sampled:	04/17/03
Matrix:	Water		Received:	04/18/03
Units:	ug/L		Analyzed:	04/21/03
Diln Fac:	1.000			

Analyte	Result	RI.
MTBE	ND	0.5
Benzene	ND	0.5
Toluene	ND	0.5
Chlorobenzene	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes o-Xylene	ND	0.5
o-Xylene	ND .	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	100	77-130
Toluene-d8	98	80-120
Bromofluorobenzene	97	80-120

		Purgeable Arc	matics by G	IC/MS
Lab #:	164832		Location:	Hadjian/Dublin
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2692		Analysis:	EPA 8260B
Field ID:	DPB-3D		Batch#:	80960
Lab ID:	164832-003		Sampled:	04/17/03
Matrix:	Water		Received:	04/18/03
Units:	ug/L		Analyzed:	04/21/03
Diln Fac:	50.00			

Analyte	Result	RL	
MTBE	7,700	25	
Benzene	210	25	
Toluene	3,200	25	
Chlorobenzene	ND	25	
Ethylbenzene	640	25	
m,p-Xylenes	2,800	25	
o-Xylene	1,300	25	
1,3-Dichlorobenzene	ND	25	
1,4-Dichlorobenzene	ND	25	
1,2-Dichlorobenzene	ND	25	

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	98	77-130
Toluene-d8	99	80-120
Bromofluorobenzene	100	80-120

		Purgeable Ar	comatics by GO	C/MS
Lab #:	164832		Location:	Hadjian/Dublin
Client:	SOMA Environmental	Engineering Inc	. Prep:	EPA 5030B
Project#:	2692		Analysis:	EPA 8260B
Field ID:	DPB-4D		Batch#:	80960
Lab ID:	164832-004		Sampled:	04/17/03
Matrix:	Water		Received:	04/18/03
Units:	ug/L		Analyzed:	04/21/03
Diln Fac:	1.000			

Analyte	Result	RL:	
MTBE	9.4	0.5	
Benzene	ND	0.5	
Toluene	2.3	0.5	
Chlorobenzene	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	1.2	0.5	
o-Xylene	0.7	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	

1,2-Dichloroethane-d4 102 77-130 Toluene-d8 98 80-120 Bromofluorobenzene 100 80-120	Surrogate	%REC	Limits
1	1,2-Dichloroethane-d4	1.02	77-130
Bromofluorobenzene 100 80-120	Toluene-d8	98	80-120
	Bromofluorobenzene	100	80-120

			Purgeable	a Aro	matics by G	C/MS
Lab #:	1648	32			Location:	Hadjian/Dublin
Client:		Environmental	Engineering	Inc.	Prep:	EPA 5030B
Project#:	2692				Analysis:	EPA 8260B
Field ID:		DPB-5D			Batch#:	80960
Lab ID:		164832-005			Sampled:	04/17/03
Matrix:		Water			Received:	04/18/03
Units:		ug/L			Analyzed:	04/21/03
Diln Fac:		1.000				

	Analyte	Result	RI	
	MTBE	ND	0.5	
	Benzene	ND .	0.5	
7	Toluene	ND	0.5	
╝	Chlorobenzene	ND	0.5	
	Ethylbenzene	ND	0.5	
	m,p-Xylenes	ND	0.5	
ı	o-Xylene	ND	0.5	
	1,3-Dichlorobenzene	ND	0.5	
	1,4-Dichlorobenzene	ND	0.5	
7	1,2-Dichlorobenzene	ND	0.5	

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	101	77-130
Toluene-d8	98	80-120
Bromofluorobenzene	101	80-120

		Purgeable	. Aroi	natics by GO	7/MS
					-,
Lab #: 16	64832			Location:	Hadjian/Dublin
Client: So	OMA Environmental	Engineering	Inc.	Prep:	EPA 5030B
Project#: 26	692			Analysis:	EPA 8260B
Field ID:	DPB-7S			Batch#:	80960
Lab ID:	164832-006			Sampled:	04/18/03
Matrix:	Water			Received:	04/18/03
Units:	\mathtt{ug}/\mathtt{L}			Analyzed:	04/21/03
Diln Fac:	1.000			-	

Result	RL
ND	0.5
ND	. 0.5
ND	0.5
ND	0.5
ND	0.5
ND	0.5
N D	0.5
ND	0.5
ND	0.5
ND	0.5
	ND ND ND ND ND ND ND ND ND ND ND ND ND

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	101	77-130	
Toluene-d8	97	80-120	
Bromofluorobenzene	99	80-120	

		Purgeable Aro	matics by G	GC/MS
Lab #:	164832		Location:	Hadjian/Dublin
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2692		Analysis:	EPA 8260B
Field ID:	DPB-7M		Units:	ug/L
Lab ID:	164832-007		Sampled:	04/18/03
Matrix:	Water		Received:	04/18/03

Analyte	Result	RL	Diln Fa	c Batch#	Analyzed
MTBE	300	2.5	5.000	80984	04/22/03
Benzene	42	0.5	1.000	80960	04/21/03
Toluene	640	2.5	5.000	80984	04/22/03
Chlorobenzene	ND	0.5	1.000	80960	04/21/03
Ethylbenzene	190	0.5	1.000	80960	04/21/03
m,p-Xylenes	680	2.5	5.000	80984	04/22/03
o-Xylene	310	2.5	5.000	80984	04/22/03
1,3-Dichlorobenzene	ND	0.5	1.000	80960	04/21/03
1,4-Dichlorobenzene	ND	0.5	1.000	80960	04/21/03
1,2-Dichlorobenzene	ND	0.5	1.000	80960	04/21/03

Surrogate	*REC	Limits	Diln	ac Batch#	Analyzed
1,2-Dichloroethane-d4	99	77-130	1.000	80960	04/21/03
Toluene-d8	99	80-120	1.000	80960	04/21/03
Bromofluorobenzene	101	80~120	1.000	80960	04/21/03

		Purgeable	Aromatics by (GC/MS
Lab #:	164832		Location:	Hadjian/Dublin
Client:	SOMA Environmental	Engineering I	nc. Prep:	EPA 5030B
Project#:	2692		Analysis:	EPA 8260B
Field ID:	DPB-7D		Batch#:	80984
Lab ID:	164832-008		Sampled:	04/18/03
Matrix:	Water		Received:	04/18/03
Units:	ug/L		Analyzed:	04/22/03
Diln Fac:	1.000			

Analyte	Result	和
MTBE	ND	0.5
Benzene	ND .	0.5
Toluene	1.8	0.5
Chlorobenzene	ND	0.5
Ethylbenzene	0.8	0.5
m,p-Xylenes	4.3	0.5
o-Xylene	1.4	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND ·	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	101	77-130	
Toluene-d8	99	80-120	À
Bromofluorobenzene	99	80-120	

		Purgeable Arc	omatics by GC/M	S
Lab #:	164832		Location:	Hadjian/Dublin
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2692		Analysis:	EPA 8260B
Field ID:	DPB-SS		Batch#:	80960
Lab ID:	164832-009		Sampled:	04/18/03
Matrix:	Water		Received:	04/18/03
Units:	ug/L		Analyzed:	04/22/03
Diln Fac:	333.3			

	Result	RL	
MTBE	53,000	170	
Benzene	ND	170	
Toluene	ИD	170	
Chlorobenzene	ND	170	
Ethylbenzene	380	170	
m,p-Xylenes	5,000	170	
o-Xylene	1,600	170	
1,3-Dichlorobenzene	ND	170	
1,4-Dichlorobenzene	ND	170	
1,2-Dichlorobenzene	ND	170	

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	98	77-130
Toluene-d8	97	80-120
Bromofluorobenzene	99	80-120

			Purgeable Aro	matics by	GC/MS
Tab #	16400	ī.		-	W. 411 - (5.11)
Lab #:	16483	_		Location:	Hadjian/Dublin
Client:		Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2692			Analysis:	EPA 8260B
Field ID:		DPB-SD		Sampled:	04/18/03
Lab ID:		164832-010		Received:	04/18/03
Matrix:		Water		Analyzed:	04/22/03
Units:		ug/L			

Analyte	Result	RI	Diln Fa	c Batch#
Analyte MTBE	42,000	170	333.3	80984
Benzene	•			
	ND 	63	125.0	80960
Toluene	ND	63	125.0	80960
Chlorobenzene	ND	63	125.0	80960
Ethylbenzene	ND	63	125.0	80960
m,p-Xylenes	640	63	125.0	80960
o-Xylene	270	63	125.0	80960
1,3-Dichlorobenzene	ND	63	125.0	80960
1,4-Dichlorobenzene	ND	63	125.0	80960
1,2-Dichlorobenzene	ND	63	125.0	80960

Surrogate	%REC	. Limits	Diln F	ac Batch#
1,2-Dichloroethane-d4	99	77-130	125.0	80960
Toluene-d8	99	80-120	125.0	80960
Bromofluorobenzene	99	80-120	125.0	80960

		Purgeable Ar	comatics by GCC	:/MS
Lab #:	164832		Location:	Hadjian/Dublin
	SOMA Environmental	Engineering Inc	. Prep:	EPA 5030B
Project#:	2692		Analysis:	EPA 8260B
Field ID:	DPB-3M		Batch#:	80960
Lab ID:	164832-011		Sampled:	04/18/03
Matrix:	Water		Received:	04/18/03
Units:	ug/L		Analyzed:	04/22/03
Diln Fac:	50.00		-	

Analyte	Result	RL	
MTBE	4,200	25	
Benzene	700	25	·
Toluene	9,900	25	•
Chlorobenzene	ND	25	
Ethylbenzene	1,300	25	
m,p-Xylenes	5,400	25	
o-Xylene	2,500	25	
1,3-Dichlorobenzene	ND	25	
1,4-Dichlorobenzene	ND	25	
1,2-Dichlorobenzene	ND	25	

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	99	77-130	
Toluene-d8	. 98	80-120	
Bromofluorobenzene	98	80-120	

Purgeable Aromatics by GC/MS

Lab #: 164832

Client: SOMA Environmental Engineering Inc.

Project#: 2692

Matrix: Water Units: ug/L

Diln Fac: 1.000

Location: Prep:

Hadjian/Dublin

EPA 5030B

EPA 8260B

Analysis: Batch#:

80960

04/21/03 Analyzed:

Type:

BS

Lab ID:

QC211647

Analyte	Spiked	Result	%RE(2 Limits
Benzene	50.00	47.51	95	76-120
Toluene	50.00	47.31	95	79-120
Chlorobenzene	50.00	48.11	96	80-120

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	101	77-130	
Toluene-d8	98	80-120	
Bromofluorobenzene	100	80-120	

Type:

BŞD

Lab ID:

QC211648

Analyte	Spiked	Result	%RE(Limits	RPI	Lim
Benzene	50.00	47.28	95	76-120	0	20
Toluene	50.00	46.86	94	79-120	1	20
Chlorobenzene	50.00	47.54	95	80-120	1	20

Surrogate	%REC	! Limits
1,2-Dichloroethane-d4	98	77-130
Toluene-d8	99	80-120
Bromofluorobenzene	100	80-120

		Purgeable Aron	matics by	GC/MS
Lab #:	164832		Location:	Hadjian/Dublin
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2692		Analysis:	EPA 8260B
Type:	BLANK		Diln Fac:	1.000
Lab ID:	QC211649		Batch#:	80960
Matrix:	Water		Analyzed:	04/21/03

Analyte	Result	RL	
MTBE	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
Chlorobenzene	ND	0.5	
Ethylbenzene	ND	0.5	•
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	100	77-130
Toluene-d8	98	80-120
Bromofluorobenzene	101	80-120

Units:

ug/L

Purgeable Aromatics by GC/MS Hadjian/Dublin Lab #: 164832 Location: SOMA Environmental Engineering Inc. EPA 5030B Client: Prep: Project#: 2692 Analysis: EPA 8260B BLANK Diln Fac: 1.000 Type: 80960 Lab ID: QC211650 Batch#: Matrix: Analyzed: 04/21/03 Water Units: ug/L

	<u>-</u>	
Analyte	Result	RL
MTBE	ND	0.5
Benzene	ND	0.5
Toluene	ND	0.5
Chlorobenzene	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5
		

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	101	77-130
Toluene-d8	98	80-120
Bromofluorobenzene	101	80-120

Purgeable Aromatics by GC/MS

Lab #: 164832

Client: SOMA Environmental Engineering Inc.

Project#: 2692

Matrix: Water Units: ug/L Diln Fac: 1.000

Prep: Analysis:

Batch#: Analyzed:

Location:

EPA 5030B EPA 8260B

Hadjian/Dublin

80984

04/22/03

Type:

BS

Lab ID:

QC211732

	Analyte	Spiked	Result	%RE(C Limits
٦	Benzene	. 50.00	48.85	98	76-120
	Toluene	50.00	48.52	97	79-120
	Chlorobenzene	50.00	48.21	96	80-120

Surrogate	%REC	Limits			
1,2-Dichloroethane-d4	99	77-130			
Toluene-d8	97	80-120	•	•	
Bromofluorobenzene	100	80-120			

Type:

BSD

Lab ID:

QC211733

Analyte	Spiked	Result	%REC	! Limits	RPD	Lim
Benzene	50.00	48.14	96	76-120	1	20
Toluene	50.00	47.67	95	79-120	2	20
Chlorobenzene	50.00	47.58	95	80-120	1	20

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	98	77-130	
Toluene-d8	98	80-120	
Bromofluorobenzene	100	80-120	

		Purgeable Aro	matics by (JC/MS
Lab #:	164832		Location:	Hadjian/Dublin
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2692		Analysis:	EPA 8260B
Type:	BLANK		Diln Fac:	1.000
Lab ID:	QC211734		Batch#:	80984
Matrix:	Water		Analyzed:	04/22/03
Units:	ug/L			

Analyte	Result	RI ₄
MTBE	ND	0.5
Benzene	ND	0.5
Toluene	ND	0.5
Chlorobenzene	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	101	77-130
Toluene-d8	98	80-120
Bromofluorobenzene	100	80-120

Purgeable Aromatics by GC/MS

Lab #: 164832 Location: Hadjian/Dublin

Client: SOMA Environmental Engineering Inc. Prep: EPA 5030B

Project#: 2692 Analysis: EPA 8260B

 Type:
 BLANK
 Diln Fac:
 1.000

 Lab ID:
 QC211735
 Batch#:
 80984

 Matrix:
 Water
 Analyzed:
 04/22/03

Units: ug/L

Analyte	Result	RL	
MTBE	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
Chlorobenzene	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	

	Bromofluorobenzene	101	80-120
٦	Toluene-d8	97	80-120
	1,2-Dichloroethane-d4	101	77-130
	Surrogate	%REC	Limits

Gasoline Oxygenates by GC/MS 164832 Lab #: Location: Hadjian/Dublin EPA 5030B EPA 8260B Client: SOMA Environmental Engineering Inc. Prep: Project#: 2692 Analysis: Matrix: Water 04/18/03 Received: ug/L Units:

Field ID: Type: Lab ID:

DPB-3S SAMPLE 164832-001

Batch#: Sampled: Analyzed:

80960 04/17/03 04/21/03

Diln Fac:

50.00

Analyte	Result	RL
tert-Butyl Alcohol (TBA)	870	500
MTBE	8,900	25
Isopropyl Ether (DIPE)	ND	25
Ethyl tert-Butyl Ether (ETBE)	ND	25
Methyl tert-Amyl Ether (TAME)	· 790	25
1,2-Dichloroethane	ND	25
1,2-Dibromoethane	ND	25
Ethanol	ND ·	50,000

Surrogate	%REC	Limits	
■ Dibromofluoromethane	99	80-121	
1,2-Dichloroethane-d4	98	77-130	
Toluene-d8	98	80-120	
Bromofluorobenzene	97	80-120	

ield ID: Type:

DPB-5S SAMPLE 164832-002

Batch#: Sampled: Analyzed:

80960 04/17/03 04/21/03

Lab ID: diln Fac: 1.000

Analyte	Result	RL
tert-Butyl Alcohol (TBA)	ND	10
MTBE	ND	0.5
Isopropyl Ether (DIPE)	ND	0.5
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
Methyl tert-Amyl Ether (TAME)	ND	0.5
1,2-Dichloroethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Ethanol	ND	1.000

Surrogate	%REC	Limits	
Dibromofluoromethane	104	80-121	
1,2-Dichloroethane-d4	100	77-130	Ī
Toluene-d8	98	80-120	ŀ
Bromofluorobenzene	97	80-120	

A= Not Analyzed D= Not Detected RL= Reporting Limit Page 1 of 8

Gasoline Oxygenates by GC/MS Lab #: Client: Hadjian/Dublin EPA 5030B EPA 8260B 04/18/03 164832 Location: SOMA Environmental Engineering Inc. Prep: Analysis: 2692 Project#: Matrix: Water Received: Units: ug/L

Field ID: Type: Lab ID:

DPB-3D SAMPLE 164832-003 Batch#: Sampled: Analyzed:

80960 04/17/03 04/21/03

Diln Fac: 50.00

Result	PL
1,100	500
7,700	25
ND	25
ND	25
610	25
ND	25
ND	25
ND	50,000
	1,100 7,700 ND ND 610 ND ND

Dibromofluoromethane 100 80-121 1,2-Dichloroethane-d4 98 77-130 Toluene-d8 99 80-120 Bromofluorobenzene 100 80-120	Surrogate	%REC	Limits	
Toluene-d8 99 80-120	Dibromofluoromethane	100	80-121	
	1,2-Dichloroethane-d4	98	77-130	
Bromofluorobenzene 100 80-120	Toluene-d8	99	80-120	
	Bromofluorobenzene	100	80-120	,

Field ID: Type:

DPB-4D SAMPLE 164832-004 Batch#: Sampled: Analyzed:

80960 04/17/03 04/21/03

Lâb ID: Diln Fac:

1.000

Analyte	Result	ŘL	
tert-Butyl Alcohol (TBA)	19	1.0	-
MTBE	9.4	0.5	
Isopropyl Ether (DIPE)	ND	0.5	- 1
Isopropyl Ether (DIPE) Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
Methyl tert-Amyl Ether (TAME)	ND	0.5	- 1
1,2-Dichloroethane 1,2-Dibromoethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethanol	ND	1,000	

Surrogate	%REC	Limits	
Dibromofluoromethane	102	80-121	
1,2-Dichloroethane-d4	102	77-130	'
Toluene-d8	98	80-120	
Bromofluorobenzene	100	80-120	

IA= Not Analyzed ID= Not Detected RL= Reporting Limit Page 2 of 8

Gasoline Oxygenates by GC/MS

Lab #: 164832 Location: Hadjian/Dublin Client: SOMA Environmental Engineering Inc. Prep: EPA 5030B Project#: 2692 Analysis: EPA 8260B

Project#: 2692 Analysis: EPA 8260B
Matrix: Water Received: 04/18/03
Units: uq/L

Field ID:

DPB-5D SAMPLE 164832-005 Batch#: Sampled:

Analyzed:

80960 04/17/03 04/21/03

Type: SAMPLE Lab ID: 164832-Diln Fac: 1.000

Analyte Result tert-Butyl Alcohol (TBA) ND 10 MTBE ND 0.5 Isopropyl Ether (DIPE) Ethyl tert-Butyl Ether (ETBE) Methyl tert-Amyl Ether (TAME) 0.5 ND ND ND 0.5 1,2-Dichloroethane 0.5 ND 1,2-Dibromoethane ND0.5 <u>Ethanol</u> 000

 Surrogate
 REC Limits

 Dibromofluoromethane
 103
 80-121

 1,2-Dichloroethane-d4
 101
 77-130

 Toluene-d8
 98
 80-120

 Bromofluorobenzene
 101
 80-120

Field ID:

DPB-7S SAMPLE 164832-006 Batch#: Sampled: Analyzed: 80960 04/18/03 04/21/03

Type: SAMPLE Lab ID: 164832-Diln Fac: 1.000

Atalyte	Result	RL
tert-Butyl Alcohol (TBA)	ND	10
MTBE	ND	0.5
Isopropyl Ether (DIPE)	ND	0.5
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
Methyl tert-Amyl Ether (TAME)	ND	0.5
1,2-Dichloroethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Ethanol	ND	1,000

Surrogate	%REC	Limits
Dibromofluoromethane	103	80-121
1,2-Dichloroethane-d4	101	77-130
₹Toluene-d8	97	80-120
Bromofluorobenzene	99	80-120

Gasoline Oxygenates by GC/MS 164832 Lab #: Location: Hadjian/Dublin EPA 5030B EPA 8260B Client: SOMA Environmental Engineering Inc. Prep: Project#: 2692 Analysis: Matrix: Water 04/18/03 Received: Units: uq/L

Field ID: Type:

DPB~7M SAMPLE Lab ID: Sampled: 164832-007 04/18/03

	Analyte	Result	RL	Diln Fa	c Batch# Analyzed
	tert-Butyl Alcohol (TBA)	51	10	1.000	80960 04/21/03
7	MTBE	300	2.5	5.000	80984 04/22/03
	Isopropyl Ether (DIPE)	ND	0.5	1.000	80960 04/21/03
	Ethyl tert-Butyl Ether (ETBE)	ND	0.5	1.000	80960 04/21/03
	Methyl tert-Amyl Ether (TAME)	110	0.5	1.000	80960 04/21/03
	1,2-Dichloroethane	ND	0.5	1.000	80960 04/21/03
- 1	1,2-Dibromoethane	ND.	0.5	1.000	80960 04/21/03
_	<u> Ethanol</u>	ND	1,000	1.000	80960 04/21/03
			·		

	MAR HAAA DINGARDING AND AND AND AND						
Surrogate	%REC	Limits	Diln	Fac Batch#	Analy:	zed	
Dibromofluoromethane	99	80-121	1.000	80960	04/21,	/03	
1,2-Dichloroethane-d4	99	77-130	1.000	80960	04/21,	/03	
Toluene-d8	99	80-120	1.000	80960	04/21	/03	
Bromofluorobenzene	101	80-120	1.000	80960	04/21	/03	

Field ID:

DPB-7D SAMPLE 164832-008 Batch#: Sampled: Analyzed: 80984 04/18/03 04/22/03

Гуре: Lab ID: Diln Fac: 1.000

Analyte Result tert-Butyl Alcohol (TBA) ND 10 MTBE ND 0.5 Isopropyl Ether (DIPE) Ethyl tert-Butyl Ether (ETBE) Methyl tert-Amyl Ether (TAME) 0.5 0.5 0.5 ND NDND 1,2-Dichloroethane ND 0.5 1,2-Dibromoethane ND 0.5 **Ethanol** ND,000

Surrogate	%REC	Limits	
Dibromofluoromethane	107	80-121	
1,2-Dichloroethane-d4	101	77-130	
Toluene-d8	99	80-120	
Bromofluorobenzene	99	80-120	

A= Not Analyzed D= Not Detected RL= Reporting Limit Page 4 of 8

Gasoline Oxygenates by GC/MS

Lab #: Client: 164832 Location: Hadjian/Dublin

EPA 5030B EPA 8260B 04/18/03 SOMA Environmental Engineering Inc. Prep: Analysis:

Project#: Matrix: Water ug/L Received: Units:

Field ID: Type: Lab ID:

DPB-SS SAMPLE 164832-009

Batch#:

Sampled: Analyzed:

80960 04/18/03 04/22/03

Diln Fac: 333.3

Analyte Result RL tert-Butyl Alcohol (TBA) 19,000 3,300 MTBE 53,000 170	
1 MTRF 52 000 170	
Isopropyl Ether (DIPE) ND 170	
Ethyl tert-Butyl Ether (ETBE) ND 170	
Methyl tert-Amyl Ether (TAME) 270 170	
1,2-Dichloroethane ND 170	
1,2-Dibromoethane ND 170	
Ethanol ND 330,000	

Surrogate	%REC	Limite
Dibromofluoromethane	102	80-121
1,2-Dichloroethane-d4	98	77-130
Toluene-d8	97	80-120
Bromofluorobenzene	99	80-120

ield ID:

DPB-SD SAMPLE Sampled: Analyzed:

04/18/03 04/22/03

Type: Lab ID: 164832-010

Analyte	Result	RL	Diln Fac	: Batch#
tert-Butyl Alcohol (TBA)	15,000	1,300	125.0	80960
MTBE	42,000	170	333.3	80984
Isopropyl Ether (DIPE)	ND	63	125.0	80960
Ethyl tert-Butyl Ether (ETBE)	ND	63	125.0	80960
Methyl tert-Amyl Ether (TAME)	190	63	125.0	80960
1,2-Dichloroethane	ND	63	125.0	80960
1,2-Dibromoethane	ND	63	125.0	80960
Ethanol	ND	. 130,000	125.0	80960

Swingeate	%REC		Diln	Fac Batch#
Dibromofluoromethane	101	80-121	125.0	80960
1,2-Dichloroethane-d4	99	77-130	125.0	80960
Toluene-d8	99	80-120	125.0	80960
- Bromofluorobenzene	99	80-120	125.0	80960

Gasoline Oxygenates by GC/MS 164832 Hadjian/Dublin Lab #: Location: EPA 5030B EPA 8260B Prep: Analysis: Client: SOMA Environmental Engineering Inc. Project#: 2692 Matrix: Water Received: 04/18/03 Units: uq/L

Field ID:

DPB-3M SAMPLE 164832-011 Batch#: Sampled: Analyzed:

80960 04/18/03 04/22/03

Type: Lab ID: Diln Fac:

50.00

Analvte	Result	RL
tert-Butyl Alcohol (TBA)	930	500
MTBE	4,200	25
Isopropyl Ether (DIPE)	ND	25
Ethyl tert-Butyl Ether (ETBE)	ND	25
Methyl tert-Amyl Ether (TAME)	2,100	25
1,2-Dichloroethane	ND	25
1,2-Dibromoethane	ND	25
Ethanol	ND	50,000

Surrogate	%REC	2 Limits
Dibromofluoromethane	102	80-121
1,2-Dichloroethane-d4	99	77-130
Toluene-d8	98	80-120
Bromofluorobenzene	98	80-120

Type: Lab ID:

BLANK QC211649 1.000

Batch#: Analyzed:

80960 04/21/03

Diln Fac:

Analyte	Regult	RL
tert-Butyl Alcohol (TBA)	NA	
MTBE	ND	0.5
Isopropyl Ether (DIPE)	NA	
Ethyl tert-Butyl Ether (ETBE)	NA	
Methyl tert-Amyl Ether (TAME)	NA	
1,2-Dichloroethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Ethanol	NA	

Surrogate	%REC	Limits	
Dibromofluoromethane	104	80-121	
1,2-Dichloroethane-d4	100	77-130	
Toluene-d8	98	80-120	
Bromofluorobenzene	101	80-120	

Gasoline Oxygenates by GC/MS Hadjian/Dublin Lab #: 164832 Location: Client: SOMA Environmental Engineering Inc. EPA 5030B Prep: Project#: 2692 Analysis: EPA 8260B Water 04/18/03 Matrix: Received: Units: uq/L

Type: Lab ID: Diln Fac: BLANK QC211650 1.000 Batch#: Analyzed: 80960 04/21/03

Analyte Result tert-Butyl Alcohol (TBA) ND 10 ND 0.5 Isopropyl Ether (DIPE) Ethyl tert-Butyl Ether (ETBE) Methyl tert-Amyl Ether (TAME) 0.5 ND0.5 ND ND 0.5 1,2-Dichloroethane 0.5 ND 1,2-Dibromoethane ND 0.5 Ethanol 000 ND

1				
-	Surrogate	%REC	Limits	
	Dibromofluoromethane	105	80-121	
-	1,2-Dichloroethane-d4	101	77-130	
H	Toluene-d8	98	80-120	
	Bromofluorobenzene	101	80-120	

Type: Lab ID: Diln Fac: BLANK QC211734 1.000 Batch#: Analyzed: 80984 04/22/03

Analyte Result tert-Butyl Alcohol (TBA) MTBE ND 0.5 Isopropyl Ether (DIPE) Ethyl tert-Butyl Ether (ETBE) Methyl tert-Amyl Ether (TAME) NA NA NA 1,2-Dichloroethane ND 0.5 1,2-Dibromoethane 0.5 ND Ethanol

Surrogate	%REC	Limits	
Dibromofluoromethane	106	80-121	
1,2-Dichloroethane-d4	101	77-130	
Toluene-d8	98	80-120	
Bromofluorobenzene	100	80-120	

NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 7 of 8

Gasoline Oxygenates by GC/MS

Lab #: 164832 Location: Hadjian/Dublin
Client: SOMA Environmental Engineering Inc. Prep: EPA 5030B
Project#: 2692 Analysis: EPA 8260B
Matrix: Water Received: 04/18/03
Units: uq/L

Type: Lab ID: Diln Fac: BLANK QC211735 1.000 Batch#: Analyzed: 80984 04/22/03

Analyte	Resn	1+ Pf.
tert-Butyl Alcohol (TBA)	ND	10
MTBE	ND	0.5
Isopropyl Ether (DIPE)	ND	0.5
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
Methyl tert-Amyl Ether (TAME)	ND	0.5
1,2-Dichloroethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Ethanol	ND	1,000

Surrogate	%REC	Limits	
Dibromofluoromethane	105	80-121	
1,2-Dichloroethane-d4	101	77-130	
Toluene-d8	97	80-120	
Bromofluorobenzene	101	80-120	
	· · · · · · · · · · · · · · · · · · ·		

Gasoline Oxygenates by GC/MS Lab #: 164832 Location: Hadjian/Dublin Client: SOMA Environmental Engineering Inc. Prep: EPA 5030B Project#: 2692 EPA 8260B Analysis: Matrix: Water Batch#: 80960 Units: ug/L Analyzed: 04/21/03 Diln Fac:

Type:

BS

1.000

Lab ID:

QC211647

Analyte	Spiked	Result	*REC	Limits
MTBE	50.00	50.51	101	49-144

Surrogate	%REC	Limits
Dibromofluoromethane	98	80-121
1,2-Dichloroethane-d4	101	77-130
Toluene-d8	98	80-120
Bromofluorobenzene	100	80-120

BSD

Lab ID:

QC211648

_							
P	MTBE	50.00	51.68	103	49-144	2	21
	Analyte	Spiked	Result	~~~***********************************	Limits	RPD	Lim

Surrogate	%REC	Limits
Dibromofluoromethane	100	80-121
1,2-Dichloroethane-d4	98	77-130
┙ Toluene-d8	99	80-120
Bromofluorobenzene	100	80-120

Gasoline Oxygenates by GC/MS Lab #: 164832 Hadjian/Dublin Location: Client: SOMA Environmental Engineering Inc. EPA 5030B Prep: Project#: 2692 Analysis: EPA 8260B Matrix: Water 80984 Batch#: Units: ug/L Analyzed: 04/22/03 Diln Fac: 1.000

Type:

BS

Lab ID:

QC211732

Analyte		Spiked	Result	%REC	Limits	
MTBE		50.00	51.18	102	49-144	
	%REC	Limits				
Dibromofluoromethane	103	80-121				

Surrogate	REC	Limits
Dibromofluoromethane	103	80-121
1,2-Dichloroethane-d4	99	77-130
Toluene-d8	97	80-120
Bromofluorobenzene	100	80-120

Toluene-d8

Bromofluorobenzene

BSD

Lab ID:

QC211733

%REC Limits RPD Lim

Result

MTBE		50.00	50.92	102	49-144	1	21
Surrogate	%REC	Limits					
Dibromofluoromethane	101	80-121					
1,2-Dichloroethane-d4	98	77-130					ŀ

Spiked

80-120

80-120

98

100

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900, Fax (510) 486-0532

ANALYTICAL REPORT

Prepared for:

SOMA Environmental Engineering Inc. 2680 Bishop Dr. Suite 203 San Ramon, CA 94583

Date: 30-APR-03

Lab Job Number: 164846 Project ID: 2692

Location: Hadjian/Dublin

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

roject Manager

Reviewed by:

Nons Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

Page 1 of <u>30</u>

CHAIN OF CUSTODY FORM

Page ____lof __l

Analyses

Curtis	& Tomp	kins, L	_td.										•					,	Anai	yse	? \$		
E .	al Laboratory											C&T	+	4846	r					,			
	2323 Fifth S		_									LOGIN#	10	10,									
	Berkeley, C												•	X									
	(510)486-09 (510)486-05		e 			Sampler:	18	W	7/	41	LA					38	Scavenger's						
Project No:	210	92		. 121. /	,	Report To:	_1	200	14	<u>r_</u>	74	plex ! Eng	·			52100 B	7						
Project Nar	ne: Hadija	1240 A	PIN.	2	-	Company:		01	MΑ	E	n/	! Eng		·			43						
Project P.O						Telephone:	_(92	\sim	24	4.	6400	-		SOK	MYBE	~ nd .						
Turnaround	Time: 5/1	ndar				Fax:						660	 _		<u>حر</u>	2	100 Parts						
				Mati	_			res			Γ.	<u> </u>				4	P						
Laboratory Number	Sample ID.	Time	, C	Water	Waste	# of Containers	HCL	HzSO	HNO3	ICE			Field N	otes S	TPHA	ठ्याब	940						
	DPB-64	SMAL	20%	1		4	×			×		Direct P	ISh Bo	Veholib:	X]				—	1-1	\dashv	_
•	DPB-6m	2	145	×		4	×			×			<u> </u>	:miadl	1 %	٨		+	 	┼	$\vdash \vdash$		4-4
, <u> </u>	DPB-61	1	515p	k		4	×			×	<u> </u>	<u>'</u>	V	: deep	K	X.	*			┿	1	_	
-				$\bot \bot$			<u> </u>	Щ		:					┿			+		╁	1		+
0		-		$\bot \bot$	_	<u> </u>	ļ	_			ļ	ļ			┼─			\dashv		十	+ +	+	+
- + o				#	-						-				╫		\dashv	-	十	+	1-1	-	+
OBO					_		_				1	 		·	+	 		-	+	+	1	-	+-
<u>r</u>	 			╫		 	\vdash			_	-			<u></u>	 	-	\vdash	十	+-	+		$\neg \vdash$	+
0	<u> </u>	 		++	┿					_		+			 			-	十	+		$\neg \vdash$	
a O		 		++	╁		-		-	H	┢	+			1				\neg	1			
		 	- -	+	十		_											$\overline{}$	\bot		made Institu		
		 	- 	++	1					一	T								\perp	$oxed{oxed}$			
Notes: 巨	OF Require	1		<u> </u>					L		R	ELINQUIS	HED BY	7:				REC	EIV	ED I	BY:		
			77			/	二	\sqrt{I}	<u>^</u>					21 Ap 2003/112	4_								
50	ce attach	ea pur	uco	Py.		(W.	L			- RWPa	11-	DATE/TIME	<u> </u>						DAT	E/TIN	ΛE
				_				7			. —			DATE/TIME	-	.1					DΔT	E/TIN	WE Q
							 							DATE/TIME	-	L		<u></u>	7 .	4	15/1		11:0
							+							DATE/TIME	1 /	Ja	na A	T14	mbr	/		E/TIN	
<u> </u>						Signature	•					··			τv	, , , , ,	1		1		1	Ac e	tin

Laboratory Number:

164846 (water)

Client:

SOMA Environmental Engineering Inc.

Project Name:

Hadjian/Dublin

Project Number:

2692

Receipt Date:

04/21/2003

CASE NARRATIVE

This hardcopy data package contains sample results and batch QC results for seven water samples received from the above referenced project on April 21, 2003. The samples were received cold and intact.

Total Volatile Hydrocarbons:

No analytical problems were encountered.

Purgeable Organics (EPA 8260):

No analytical problems were encountered.

Total Volatile Hydrocarbons

Lab #: 164846 Hadjian/Dublin Location: EPA 5030B

Prep: Analysis: Client: SOMA Environmental Engineering Inc.

Project#: 2692 8015B 04/18/03 Water Matrix: Sampled: ug/L 80973 Units: Received: 04/21/03 Batch#:

Field ID:

DPB-6S SAMPLE Diln Fac: Analyzed:

2.000 04/22/03

164846-001

Analyte Gasoline C7-C12 Result RL 7,700 100

Surrogate
Trifluorotoluene (FID) %REC Limits 154 * 68-145 Bromofluorobenzene (FID) 66-143

Field ID:

DPB-6M

SAMPLE

Diln Fac:

Analyzed:

1.000 04/21/03

164846-002

Analyte Result RL Gasoline C7-C12 4,700 50

Surrogate *REC Limits Trifluorotoluene (FID) 158 68-145 Bromofluorobenzene (FID) 1.18 66-143

Field ID:

ype: āb ID: DPB-6D SAMPLE

164846-003

Diln Fac:

1.000

Analyzed: 04/21/03

50

Analyte Result

Gasoline C7-C12 2,900

Surrogate %REC Limits Trifluorotoluene (FID) 151 * 68-145 Bromofluorobenzene (FID) 123 66-143

Type:

Gasoline C7-C12

BLANK QC211679 Diln Fac:

1.000

Lab ID: 04/21/03 Analyzed: Analyte Result

ND

Surrogate %REC Limits Trifluorotoluene (FID) 122 68-145 Bromofluorobenzene (FID) 120 66-143

= Value outside of QC limits; see narrative ND= Not Detected RL= Reporting Limit Tage 1 of 1

mple Name : 164846-001,80973 Sample #: a7 Page 1 of 1 leName : G:\GC04\DATA\111J015.raw Date: 4/22/03 10:25 AM Method : TVHBTXE Time of Injection: 4/22/03 09:23 AM Start Time : 0.00 min End Time : 26.00 min Low Point : 41.72 mV High Point : 373.12 mV ale Factor: 1.0 Plot Offset: 42 mV Plot Scale: 331.4 mV DPB-65 Response [mV] 1.48 1.64 <u>≤17.86</u> 2.27 C-6 5–3.26 -3.59-4.34 ----4.61 €4.91 --5.35 C-7 5.91 <u>≥=6</u>681 TRIFLUO --7.2<mark>3</mark>.98 -7.49 >-7.98 8.59 9.00 C-8 --9.20 9.39 10.34 10.76 12.82 13.04 13.52 14.07 15.07 15.31 BROMOF ---15.61 16.11 C-10 -16.40 17.16 -17.5318.63 18.38 18.72 - 19.5819.44 -19.98 $\frac{-20.32}{-20.59}$ ---20.97 =<u>21</u>258 22.14 -22.38 C-12 ---22.86 23.23 23.45 23.75 24:45 -24.85 25.47

mple Name : mss,164846-002,80973 Sample #: b7 Page 1 of 1 : G:\GC04\DATA\111J006.raw leName Date: 4/22/03 10:44 AM Method : TVHBTXE Time of Injection: 4/21/03 06:15 PM Start Time : 0.00 min End Time : 26.00 min Low Point : 32.06 mV High Point : 556.30 mV ale Factor: 1.0 Plot Offset: 32 mV Plot Scale: 524.2 mV DPB-6M Response [mV] 2.27 3.26 3.26 3.26 C-6 ≥-4,34 ≤-4,61 -4.91 -5.37 5.91 <u>~6.7</u>€.81 TRIFLUO -7<u>.24</u> 7.49 7.99 8.60 C-8 9.20 10.31 10.76 12.82 13.04 14.07 -14.68 >-15.06 **BROMOF**--15.61 16.10 C-10 -16.40 17.16 -17.53 =18.83 -18.37-18.72 -19.44--20.97 =21.579C-12 >-22.86 23.23 23.44 23.73 24:23 -24.85 25.47 ~--25.97

mple Name : 164846-003,80973 Sample #: a7 Page 1 of 1 : G:\GC04\DATA\111J008.raw leName Date: 4/22/03 10:25 AM Method : TVHBTXE Time of Injection: 4/21/03 07:26 PM Start Time : 0.00 min End Time : 26.00 min Low Point : 41.70 mV High Point : 364.82 mV ale Factor: 1.0 Plot Offset: 42 mV Plot Scale: 323.1 mV DPB-6D Response [mV] 2.50 C-6 -3.58 4.00 4.92 C-7 5.90 **-6**.66 TRIFLUO --6.82 7,23 7,48 -8.00 C-8 9.20 12.82 -13.03 -14.06 14.74 > 15.06 BROMOF--15.61 16.10 C-10 -16.40 17.16 17.53 F18.87 -18.38 -18.72 19.02 -19.44--19.98 20.32 20.58 ---20.97 22.38 22.38 C-12 --22.86 23.2323.44 23,74 24:24 -24.86 25.47 ~=-25.97

Sample #:

Page 1 of 1

ple Name : ccv/lcs,qc211680,80973,03ws0527,5/5000

: G:\GC04\DATA\111J001.raw eName Date: 4/22/03 10:25 AM Method : TVHBTXE Time of Injection: 4/21/03 03:14 PM End Time : 26.00 min Start Time : 0.00 min Low Point : 48.25 mV High Point : 230.94 mV le Factor: 1.0 Plot Offset: 48 mV Plot Scale: 182.7 mV Gasoline Response [mV] C-6 ->-3.59 4.03 -4.90 -5.38C-7 5.88 TRIFLUO ---6.83 $\frac{723}{50}$ ---8.02 8.59 C-8 -9.20 9.68 9.95 -10.30 10.80 >-11.39 >-11.70 12.04 12.57 13.04 13.55 14.06 BROMOF -15.61 ------16.10 C-10 -16.407-16.81 --17.16 17.53 18 04 18 35 --18.72 -19.98 2120₉97 <u>=-21.58</u> 22 13 22 538 22 22.85 C-12 ≥23,23 ≥23,45 -23.73 24.43 -24.8925.47 >-25.97

Total Volatile Hydrocarbons

Lab #: 164846

SOMA Environmental Engineering Inc.

Client:

Project#: 2692

Type:

LCS Lab ID: QC211680

Matrix: Water

Units: ug/L Location:

Prep:

Hadjian/Dublin

EPA 5030B

Analysis:

8015B

Diln Fac:

1.000

Batch#:

80973

Analyzed:

04/21/03

Analyte	a	Spiked	Result	%REC	Limits
Gasoline C7-C12		2,000	2,289	114	79-120

Surrogate	%REC	Limits
Trifluorotoluene (FID)	136	68-145
Bromofluorobenzene (FID)	124	66-143

			Total Volatil	e Hydrocark	ons
Lab #: :	16484	.6		Location:	Hadjian/Dublin
Client: 8	SOMA	Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#: 2	2692			Analysis:	8015B
Field ID:		DPB-6M		Batch#:	80973
MSS Lab ID	:	164846-002		Sampled:	04/18/03
Matrix:		Water		Received:	04/21/03
Units:		ug/L		Analyzed:	04/21/03
Diln Fac:		1.000		-	

Туре:

MS

Lab ID:

QC211681

Analyte	MSS Result	Spiked	Result	%R)	EC Limits
Gasoline C7-C12	4,684	2,000	6,279	80	67-120

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	161 *	68-145	
Bromofluorobenzene (FID)	126	66-143	

Type:

MSD

Lab ID:

QC211682

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	2,000	6,229	77	67-120	1	20
	%REC Limits					
Trifluorotoluene (FTD)	166 * 60 145		***************************************		- Constitution of the Constitution	

Trifluorotoluene (FID) 166 * 68-145	Surrogate	%REC	ē.	Limits
Bromofluorobenzene (FID) 131 66-143	Trifluorotoluene (FID)	166 *	*	
	Bromofluorobenzene (FID)	131		66-143

			Purgeable Aro	matics by GO	C/MS
Lab #:	16484	16		Location:	Hadjian/Dublin
Client:	SOMA	Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2692			Analysis:	EPA 8260B
Field ID:	34 7 C F	DPB-6S	, ,	Batch#:	81046
Lab ID:		164846-001		Sampled:	04/18/03
Matrix:		Water		Received:	04/21/03
Units:		ug/L		Analyzed:	04/24/03
Diln Fac:		2.000			•

Analyte	Result	RLi	
MTBE	5.9	1.0	*************
Benzene	18	1.0	
Toluene	77	1.0	
Chlorobenzene	ND	1.0	
Ethylbenzene	170	1.0	
m,p-Xylenes	450	1.0	
o-Xylene	190	1.0	
o-Xylene 1,3-Dichlorobenzene	ND	1.0	
1,4-Dichlorobenzene	ND	1.0	
1,2-Dichlorobenzene	ND	1.0	

			•
Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	99	77-130	
Toluene-d8	99	80-120	
Bromofluorobenzene	100	80-120	

		Purgeable Arc	matics by G	C/MS
Lab #:	164846		Location:	Hadjian/Dublin
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2692		Analysis:	EPA 8260B
Field ID:	DPB-6M		Batch#:	81046
Lab ID:	164846-002		Sampled:	04/18/03
Matrix:	Water		Received:	04/21/03
Units:	ug/L		Analyzed:	04/24/03
Diln Fac:	1.667	•	_	

Analyte	Result	RL	
MTBE	6.2	0.8	
Benzene	21	0.8	
Toluene	76	0.8	
Chlorobenzene	ND	0.8	
Ethylbenzene	160	0.8	
m,p-Xylenes	440	0.8	
o-Xylene	210	0.8	
1,3-Dichlorobenzene	№ D	0.8	
1,4-Dichlorobenzene	ND	0.8	
1,2-Dichlorobenzene	ND	0.8	

Surrogate	*REC	Limits
1,2-Dichloroethane-d4	96	77-130
Toluene-d8	95	80-120
Bromofluorobenzene	98	80-120

			Purgeable	Aroma	tics by	GC/MS	
Lab #:	164846			Lo	ocation:	Had	ljian/Dublin
Client:	SOMA Enviro	nmental	Engineering	Inc. P	rep:		5030B
Project#:	2692		_	Aı	nalysis:	EPA	8260B
Field ID:	DPB-	6D		Ва	atch#:	810	146
Lab ID:	1648	46-003		Sa	ampled:	04/	18/03
Matrix:	Wate	r		Re	eceived:	04/	21/03
Units:	ug/L			Aı	nalyzed:	04/	24/03
Diln Fac:	1.00	0			1	•	,

Analyte	Result	RL	
MTBE	100	0.5	
Benzene	8.8	0.5	
Toluene	24	0.5	
Chlorobenzene	ND	0.5	
Ethylbenzene	54	0.5	
m,p-Xylenes	170	0.5	
o-Xylene	79	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	4
1,2-Dichlorobenzene	ND	0.5	

Surrogate	%REC	: Limits
1,2-Dichloroethane-d4	96	77-130
Toluene-d8	97	80-120
Bromofluorobenzene	98	80-120

Purgeable Aromatics by GC/MS Lab #: 164846 Location: Hadjian/Dublin SOMA Environmental Engineering Inc. Client: Prep: EPA 5035 Project#: 2692 Analysis: EPA 8260B BLANK Type: Diln Fac: 1.000 Lab ID: QC211892 Batch#: 81024 Matrix: Water Analyzed: 04/23/03 Units: ug/L

Analyte	Result	RL
MTBE	ND	5.0
Benzene	ND	5.0
Toluene	ND	5.0
Chlorobenzene	ND	5.0
Ethylbenzene	ND	5.0
m,p-Xylenes o-Xylene	ND	5.0
o-Xylene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0

Surrogate	%REC	Limita
1,2-Dichloroethane-d4	100	75-128
Toluene-d8	98	80-111
Bromofluorobenzene	91	77-126

	Purgeable Aro	matics by G	C/MS
Lab #:	164846	Location:	Hadjian/Dublin
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5035
Project#:	2692	Analysis:	EPA 8260B
Туре:	BLANK	Diln Fac:	1.000
Lab ID:	QC211928	Batch#:	81024
Matrix:	Water	Analyzed:	04/23/03
Units:	ug/L		

Analyte	Result	RL	
MTBE	ND	5.0	*********
Benzene	ND	5.0	
Toluene	ND	5.0	
Chlorobenzene	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes o-Xylene	ND	5.0	
	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	

1,2-Dichloroethane-d4 100 75-128 Toluene-d8 101 80-111 Bromofluorobenzene 96 77-126	Surrogate	%rec	Limits	
	1,2-Dichloroethane-d4	100		
Bromofluorobenzene 96 77-126	Toluene-d8	101	80-111	
	Bromofluorobenzene	96	77-126	

		Purgeable Aro	matics by	GC/MS
Lab #:	164846		Location:	Hadjian/Dublin
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2692		Analysis:	EPA 8260B
Type: Lab ID:	BLANK		Diln Fac:	1.000
Lab ID:	QC211962		Batch#:	81046
Matrix:	Water		Analyzed:	04/24/03
Units:	ug/L		-	

Analyte	Result	RL
MTBE	ND	0.5
Benzene	ND	0.5
Toluene	ND	0.5
Chlorobenzene	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND .	0.5
o-Xylene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

1,2-Dichloroethane-d4 103 77-130 Toluene-d8 97 80-120	Bromofluorobenzene	101	80-120	
Surrogate Sket Limits		97	80-120	
Surrogate Sket Limits	1,2-Dichloroethane-d4	103		***************************************
	Surrogate	%REC	Limite	

		Purgeable Aro	matics by	GC/MS
Lab #:	164846		Location:	Hadjian/Dublin
	SOMA Environmental	Engineering Inc.	Prep:	EPA 5035
Project#:	2692		Analysis:	EPA 8260B
Туре:	BLANK		Diln Fac:	1.000
Lab ID:	QC212007		Batch#:	81057
Matrix:	Water		Analyzed:	04/24/03
Units:	ug/L			

Analyte	Result	RL	
MTBE	ND	5.0	
Benzene	ND	5.0	
Toluene	ND	5.0	
_Chlorobenzene	ND	5.0	•
Ethylbenzene	ND	5.0	
m,p-Xylenes o-Xylene	ND	5.0	
o-Xylene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	105	75-128
Toluene-d8	100	80-111
Bromofluorobenzene	101	77-126

		Purgeable Aro	matics by G	IC/MS
Lab #: .	164846		Location:	Hadjian/Dublin
	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2692		Analysis:	EPA 8260B
Matrix:	Water		Batch#:	81046
Units:	ug/L		Analyzed:	04/24/03
Diln Fac:	1.000		-	

Type:

BŞ

Lab ID:

QC211959

Analyte	Spiked	Result	%REC	Limits
Benzene	50.00	49.85	100	76-120
Toluene	50:00	50.25	100	79-120
Chlorobenzene	50.00	50.71	101	80-120

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	99	77-130	
Toluene-d8	98	80-120	
Bromofluorobenzene	98	80-120	

/pe:

BSD

Lab ID:

QC211960

Analyte	Spiked	Result	%RE	Limits	RPI) Lim
Benzene	50.00	49.18	98	76-120	1	20
foluene	50.00	49.14	98	79-120	2	20
Chlorobenzene	50.00	49.02	98	80-120	3	20

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	101	77-130
Toluene-d8	98	80-120
Bromofluorobenzene	98	80-120

Purgeable Aromatics by GC/MS Lab #: 164846 Hadjian/Dublin Location: Client: SOMA Environmental Engineering Inc. EPA 5035 Prep: Project#: 2692 Analysis: EPA 8260B Type: Lab ID: LCS Diln Fac: 1.000 QC211891 Batch#: 81024 Matrix: Water Analyzed: 04/23/03 Units: ug/L

Analyte	Spiked	Result	00000000000000000000000000000000000000	Limits	
Benzene	50.00	51.88	104	77-120	
Toluene	50.00	52.57	105	80-120	
Chlorobenzene	50.00	52.20	104	80-120	

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	97	75-128
Toluene-d8	100	80-111
Bromofluorobenzene	93	77-126

Purgeable Aromatics by GC/MS

Lab #: 164846 Location: Hadjian/Dublin

Client: SOMA Environmental Engineering Inc. Prep: EPA 5035

 Project#: 2692
 Analysis:
 EPA 8260B

 Type:
 LCS
 Diln Fac:
 1.000

 Type:
 LCS
 Diln Fac:
 1.000

 Lab ID:
 QC212006
 Batch#:
 81057

Matrix: Water Analyzed: 04/24/03 Units: ug/L

Result Analyte Spiked %REC Limits Benzene 50.00 49.96 100 77-120 Toluene 50.00 51.44 103 80-120 Chlorobenzene 50.00 51.02 102 80-120

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	103	75-128	
Toluene-d8	99	80-111	i
Bromofluorobenzene	97	77-126	

			Purgeable Aro	matics by	GC/MS
	16484	.6		Location:	Hadjian/Dublin
		Environmental	Engineering Inc.	Prep:	EPA 5035
Project#: 2	2692			Analysis:	EPA 8260B
Field ID:		ZZZZZZZZZ		Batch#:	81024
MSS Lab ID:	:	164748-001		Sampled:	04/15/03
Matrix:		TCLP Leachat	te	Received:	04/15/03
Units:		ug/L		Analyzed:	04/23/03
Diln Fac:		0.9900			

Type:

MS

Lab ID:

QC211912

Analyte	MSS Result	Spiked	Result	%REC	Limits
Benzene	<0.2300	49.50	48.80	99	55-125
Toluene	<0.2200	49.50	50.22	101	48-131
Chlorobenzene	<0.2400	49.50	49.35	100	42~128

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	99	75-128
Toluene-d8	102	80-111
Bromofluorobenzene	94	77-126

Type:

MSD

Lab ID:

Analyte	Spiked	Result	%REC	Limita	RPD	Lim
Benzene	49.50	51.75	105	55-125	6	20
Toluene	49.50	53.35	108	48-131	6	20
Chlorobenzene	49.50	52.67	106	42-128	6	23

Surrogate		Limits
1,2-Dichloroethane-d4	101	75-128
Toluene-d8	101	80-111
Bromofluorobenzene	96	77-126

		Gasoline Oxyg	enates by G	C/MS
Lab #:	164846	Engineering Inc.	Location:	Hadjian/Dublin
Client:	SOMA Environmental		Prep:	EPA 5030B
Project#:	2692		Analysis:	EPA 8260B
Matrix:	Water		Sampled:	04/18/03
Units:	ug/L		Received:	04/21/03
Batch#:	81046		Analyzed:	04/24/03

Field ID: ype:

DPB-6S SAMPLE

Lab ID: Diln Fac:

164846-001 2.000

Analyte	Rei	sult	RL	
tert-Butyl Alcohol (TBA)	ND		20	
MTBE		5.9	1.0	
Isopropyl Ether (DIPE)	ND		1.0	
Ethyl tert-Butyl Ether (ETBE)	ND		1.0	
Methyl tert-Amyl Ether (TAME)	ND		1.0	
1,2-Dichloroethane	ND		1.0	
1,2-Dibromoethane	ND		1.0	
Ethanol	ND		2,000	

Surrogate	% REC	Limits
_Dibromofluoromethane	103	80-121
1,2-Dichloroethane-d4	99	77-130
Toluene-d8	99	80-120
Bromofluorobenzene	100	80-120

ield ID: Type:

DPB-6M SAMPLE Lab ID: Diln Fac:

164846-002

1.667

Analyte	Result	RL
tert-Butyl Alcohol (TBA)	ND	17
MTBE	6.2	0.8
<pre></pre>	ND	0.8
Ethyl tert-Butyl Ether (ETBE)	ND	0.8
Methyl tert-Amyl Ether (TAME)	ND	0.8
T1,2-Dichloroethane	ND	0.8
1,2-Dibromoethane	ND	0.8
Ethanol	ND	1,700

Surrogate %REC Limits	
Dibromofluoromethane 102 80-121	
1,2-Dichloroethane-d4 96 77-130	
Toluene-d8 95 80-120	
Bromofluorobenzene 98 80-120	

		Gasoline Oxyg	enates by G	C/MS
Lab #:	164846	Engineering Inc.	Location:	Hadjian/Dublin
Client:	SOMA Environmental		Prep:	EPA 5030B
Project#:	2692		Analysis:	EPA 8260B
-Matrix:	Water		Sampled:	04/18/03
Units:	ug/L		Received:	04/21/03
Batch#:	81046		Analyzed:	04/24/03

Field ID: ype:

DPB-6D SAMPLE

Lab ID: Diln Fac:

164846-003 1.000

Analyte	Result	RL
tert-Butyl Alcohol (TBA)	58	10
MTBE	100	0.5
Isopropyl Ether (DIPE)	ND .	0.5
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
Methyl tert-Amyl Ether (TAME)	ND	0.5
1,2-Dichloroethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Ethanol	ND	1,000

Surrogate	%REC	Limits
Dibromofluoromethane	100	80-121
1,2-Dichloroethane-d4	96	77-130
Foluene-d8	97	80-120
Bromofluorobenzene	98	80-120

уре: Lab ID: BLANK QC211961 Diln Fac:

1.000

Result	RI	
NA		
ND	0.5	
NA	•	
NA		
AN		
ND	0.5	
ND	0.5	
NA		
	NA ND NA NA NA NA NA ND ND	ND 0.5 NA NA NA ND 0.5 ND 0.5 ND 0.5

T000T000000000000000000000000000000000			
Surrogate	*REC	Limits	
Dibromofluoromethane	110	80-121	
1,2-Dichloroethane-d4	103	77-130	
Toluene-d8	98	80-120	
Bromofluorobenzene	102	80-120	

N= Not Analyzed
N= Not Detected
RL= Reporting Limit
Page 2 of 3

		Gasoline Oxyg	enates by G	IC/MS
Lab #:	164846	Engineering Inc.	Location:	Hadjian/Dublin
Client:	SOMA Environmental		Prep:	EPA 5030B
Project#:	2692		Analysis:	EPA 8260B
Matrix:	Water		Sampled:	04/18/03
Units:	ug/L		Received:	04/21/03
Batch#:	81046		Analyzed:	04/24/03

Type: ab ID: BLANK QC211962

Diln Fac:

1.000

tert-Butyl Alcohol (TBA)	ND	<u>10</u>
LMTBE	ND	0.5
Isopropyl Ether (DIPE)	ND	0.5
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
Methyl tert-Amyl Ether (TAME)	ND	0.5
1,2-Dichloroethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Ethanol	ND	1,000

Sucrogate	%REC	Limits
⊥ Dibromofluoromethane	107	80-121
1,2-Dichloroethane-d4	103	77-130
Toluene-d8	97	80-120
Bromofluorobenzene	101	80-120

Gasoline Oxygenates by GC/MB Lab #: 164846 Location: Hadjian/Dublin Client: SOMA Environmental Engineering Inc. Prep: EPA 5030B Project#: 2692 Analysis: EPA 8260B Basis: as received 04/21/03 Received:

ype: Lab ID: Matrix: nits: BLANK QC211892 Water ug/L

Diln Fac: Batch#: Analyzed: 1.000 81024 04/23/03

Analyte Result tert-Butyl Alcohol (TBA) ΝĀ ND 5.0 Isopropyl Ether (DIPE)
Ethyl tert-Butyl Ether (ETBE)
Methyl tert-Amyl Ether (TAME) NA NΑ NA 1,2-Dichloroethane ND 5.0 1,2-Dibromoethane ND 5.0 Ethanol NA

Surrogate	%REC	Limits
LDibromofluoromethane	96	74 - 124
1,2-Dichloroethane-d4	100	75-128
Toluene-d8	98	80-111
Bromofluorobenzene	91	75-127

Type: Lab ID: Matrix: nits: BLANK QC211928 Water ug/L Diln Fac: Batch#: Analyzed: 1.000 81024 04/23/03

Analyte tert-Butyl Alcohol (TBA) Result ND 100 MTBEND 5.0 Isopropyl Ether (DIPE) ND 5.0 Ethyl tert-Butyl Ether (ETBE) Methyl tert-Amyl Ether (TAME) ND 5.0 ND 5.0 1,2-Dichloroetĥane ND 5.0 1,2-Dibromoethane ND 5.0 Ethanol 000

Surrogate	%REC	Ginst 9
Dibromofluoromethane	96	74-124
1,2-Dichloroethane-d4	100	75-128
Toluene-d8	101	80-111
Bromofluorobenzene	96	75-127

A= Not Analyzed
AD= Not Detected
RL= Reporting Limit
Page 6 of 8

ype: Lab ID: Matrix: BLANK QC212007 Water Diln Fac: Batch#: Analyzed: 1.000 81057 04/24/03

nits: water nits: ug/L

Analusha		
	Kesu	lt <u>RL</u>
tert-Butyl Alcohol (TBA)	n_{D}	100
LMTBE	ND	5.0
Isopropyl Ether (DIPE)	ND	5.0
Ethyl tert-Butyl Ether (ETBE)	ND	5.0
Methyl tert-Amyl Ether (TAME)	ND	5.0
1,2-Dichloroethane	ND	5.0
1,2-Dibromoethane	ND	5.0
Ethanol	ИD	1,000

Surrogate	%REC	Limits	
Dibromofluoromethane	101	74-124	
1,2-Dichloroethane-d4	105	75-128	
Toluene-d8	100	80-111	
Bromofluorobenzene	101	75-127	

Gasoline Oxygenates by GC/MS

Lab #: 164846

SOMA Environmental Engineering Inc.

Project#: 2692

Matrix: Units:

Client:

ug/L Diln Fac:

Water

1.000

Type:

BS

Lab ID:

Location:

Analysis: Batch#:

Analyzed:

Prep:

QC211959

Hadjian/Dublin EPA 5030B

EPA 8260B

04/24/03

81046

%REC Limits Analyte Spiked Result MTBE 50.00 51.71 103 49-144

Surrogate	%REC	Limits
Dibromofluoromethane	102	80-121
1,2-Dichloroethane-d4	99	77-130
Foluene-d8	98	80~120
Bromofluorobenzene	98	80-120

Type:

BSD

Lab ID:

Analyte	Spiked	Result	%REC	Limits	R₽D	Lim
MTBE	50.00	51.87	104	49-144	0	21
•	•					
					0000000000000	

Surrogate	%REC	Limits	
Dibromofluoromethane	103	80-121	
_1,2-Dichloroethane-d4	101	77-130	
Toluene-d8	98	80-120	
Bromofluorobenzene	98	80-120	

	Gasoline Oxyg	enates by G	C/MS
Lab #:	164846	Location:	Hadjian/Dublin
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5030B
Project#:	2692	Analysis:	EPA 8260B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC211891	Batch#:	81024
Matrix:	Water	Analyzed:	04/23/03
Units:	ug/L		

wrrat i ca		Shawaa	N-08-U.L.C	SAM.	Manua Ca	
MTBE		50.00	47.86	96	63-121	
Surrogate	%REC	Limits				
Dibromofluoromethane	95	74-124				1
1,2-Dichloroethane-d4	97	75-128				

80-111

75-127

100

93

Toluene-d8

Bromofluorobenzene

		Gasoline Oxyg	enates by G	C/MS
Lab #:	164846		Location:	Hadjian/Dublin
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2692		Analysis:	EPA 8260B
Гуре:	LCS	· · · · · · · · · · · · · · · · · · ·	Diln Fac:	1.000
Lab ID:	OC212006		Batch#:	81057
Matrix:	Water		Analyzed:	04/24/03
Jnits:	ug/L			

MTBE		50.00	49.55	99	63-121
Surrogate	%REC	: Limita			
_Dibromofluoromethane	100	74-124			•
1,2-Dichloroethane-d4	103	75-128			
Toluene-d8	99	80-111			
Bromofluorobenzene	97	75-127			

	Gasoline Oxyg	enates by GC/M	S
Lab #: 164846		Location:	Hadjian/Dublin
Client: SOMA E	nvironmental Engineering Inc.	Prep:	EPA 5030B
Project#: 2692		Analysis:	EPA 8260B
Field ID:	ZZZZZZZZZ	Batch#:	81024
MSS Lab ID:	164748-001	Sampled:	04/15/03
Matrix:	TCLP Leachate	Received:	04/15/03
Units:	ug/L	Analyzed:	04/23/03
Diln Fac:	0.9900		

гуре:

MS

Lab ID:

QC211912

Analyte		Spiked	Result	4RE	C Limits
MTBE	<0.2100	49.50	48.18	97	53-131

Surrogate	%REC	Limits
Dibromofluoromethane	98	74-124
1,2-Dichloroethane-d4	99	75-128
Toluene-d8	102	80-111
Bromofluorobenzene	94	75-127

ype:

MSD

Lab ID:

Analyte	Spiked	Result	*RBC	Limits	K P D	L:1.00
MTBE	49.50	50.36	102	53-131	4	30
Cheronata	SPRC Limite		000000000000000000000000000000000000000			9909999999999999

Dibromofluoromethane 97 74-124 1,2-Dichloroethane-d4 101 75-128 Toluene-d8 101 80-111 Bromofluorobenzene 96 75-127	Surrogate	%REC	Limits
Toluene-d8 101 80-111	Dibromofluoromethane	97	74-124
	1,2-Dichloroethane-d4	101	75-128
Bromofluorobenzene 96 75-127	Toluene-d8	101	80-111
	Bromofluorobenzene	96	75-127

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900, Fax (510) 486-0532

ANALYTICAL REPORT

Prepared for:

SOMA Environmental Engineering Inc. 2680 Bishop Dr. Suite 203 San Ramon, CA 94583

Date: 16-MAY-03 Lab Job Number: 165060

Project ID: 2692

Location: Hadjian/Dublin

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

rbject Maliage

Reviewed by:

peratrions Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

Page 1 of 21

CHAIN OF CUSTODY FORM

Page ____ of _1___

Curtis & Tompkins, Ltd.									- 1	чпа	iyse	35			
Analytical Laboratory Since 1878					C&T 165 060 [т	—т			ı
2323 Fifth Street					LOGIN# 102			3							
Berkeley, CA 94710								BLOCK							
(510)486-0900 Phone (510)486-0532 Fax	Sampler:	PW PA	10101	V	W 7			A							
	San and Tax	7	47.	,				ş							ĺ
Project No: 2000	Heport 10:	Loger	<u> </u>	PL	~		26	4							
Project No: 2190 Poble Blod Project Name: Had Jan Paldin	Company:	40MA	Envi	Er	rg		STOO B	ZZANEM GEK.	-						
Project P.O.:	Telephone:	(a) 5) -	244-	106	(D)		٧	7					-		
			•			Ý	171	1							
Turnaround Time: Standard	Fax:	(4757) Prese				8015	MIBE	+	-					'	1
Matrix				e			4	8	.						l
Laboratory Complete Sampling	# of Containers		킯삤		Field Notes	∸ م	53	- 0							ļ
Laboratory Number Sample ID. Sampling Date Size Time	Containers	포 모	£ ~			141	124	12]
PPB-15 MANY 10 00 X	1 ,	×	×			۵ر	¥	×					\bot		1
DPR - 604 10 WD 925 6 X	4	x	Y		5 shallan	y .	¥	Ж	_			\square	_	+	4
> DDB.5m NONGE GAS 1 X	4	x	×		5 middle	<i>*</i> _	Х	Ж	_	-	+	\vdash	+	—	4
- DPB-8 Jun 345 p X	4	X	X		8 .	بخ	Х	×	+	+	+	\vdash	+	十	1
O PPE·SM WAR APL X	4	X	<u> 'Y</u>	_	S MAGALE	ж	٢.	_	-	╁╴	+-	\vdash	十	1	1
2 + 6			_	-					+	┪	-	\Box	十		1
0 8 8							,							T]
										\perp			\dashv		1
						_	<u> </u>		_	\bot		-	-		┪
	Preservation (0116011		_		╞	┪		\rightarrow	\dashv	+	\vdash		+	-
	Tes Li No	11 11		<u> </u>		-	-		-	+	+	-	\Rightarrow		1
				<u> </u>	TI MONICUED BY:	┢	1	l	RF(L CEIV	/ED	HY:			1
Notes: EDF OUTPUT REQUIRED)		1/	H1	ELINQUISHED BY:	\vdash									te_
	i	M	W /	r	RW Park DATE/TIME	Γ					, ,,,,,,,	DAT	re/TII	ME]
Received © On Ice		1													1_
Cold Ambient Lintact					DATE/TIME	L						DAT	re/TII		-
					عــــــــــــــــــــــــــــــــــــ	L	\cap	5	5-2	- 0 ⁻ 3	8	TAGE	(U) Jeafii	.00 ME	4
	Signature				UA1E/TIME	ĮZ'	8	_				$\overline{}$	5		_

Total Volatile Hydrocarbons

Lab #: 165060 Location: Hadjian/Dublin

Client: EPA 5030B SOMA Environmental Engineering Inc. Prep: 8015B

Project#: 2692 Analysis: Water 05/02/03 Matrix: Received:

Units: ug/L Analyzed: 05/02/03

Batch#: 81246

Field ID:

DPB-1S

SAMPLE ype:

165060-001

Diln Fac:

5.000

Sampled: 05/02/03

Analyte Result RL Gasoline C7-C12 12,000 250

Surrogate %REC Limits Frifluorotoluene (FID) 139 68-145 Bromofluorobenzene (FID) 105 66-143

Field ID:

DPB-5US

SAMPLE

Sampled:

1.000

04/30/03

ab ID:

165060-002

Analyte	A TO U.A.U.	RL	
Gasoline C7-C12	ND	50	

				
Surrogate	%REC	Limits		
Trifluorotoluene (FID)	105	68-145		
Bromofluorobenzene (FID)	103	66-143		

ield ID:

DPB-5M

Diln Fac:

Diln Fac:

1.000

Type: ab ID:

SAMPLE 165060-003 Sampled: 04/30/03

Annitoha	Pesult	RL	
	······································	A	
Gasoline C7-C12	ND	50	•
GGBOIIIC O, CID	2125		

Surrogate	*REC	Limits	
	106	68-145	
Bromofluorobenzene (FID)	101	66-143	

= Not Detected RL= Reporting Limit age 1 of 2

Total Volatile Hydrocarbons Location: Hadjian/Dublin ab #: 165060 EPA 5030B client: SOMA Environmental Engineering Inc. Prep: Analysis: 8015B Project#: 2692 05/02/03 Matrix: Water Received: Jnits: ug/L Analyzed: 05/02/03 Batch#: 81246

Field ID:

DPB-8

pe: ab ID:

SAMPLE

165060-004

Diln Fac:

1.000

Sampled:

05/01/03

■ Analyte	Result		
Gasoline C7-C12	ND	50	-

Surrogate	%RBC	Limits
Frifluorotoluene (FID)	105	68-145
Bromofluorobenzene (FID)	101	66-143

Field ID:

DPB-SM

Diln Fac:

1.000

SAMPLE

Sampled:

05/01/03

b ID:

165060-005

Analyte	Result	RL	
Gasoline C7-C12	1,500	50	

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	113	68-145	,
Bromofluorobenzene (FID)	104	66-143	

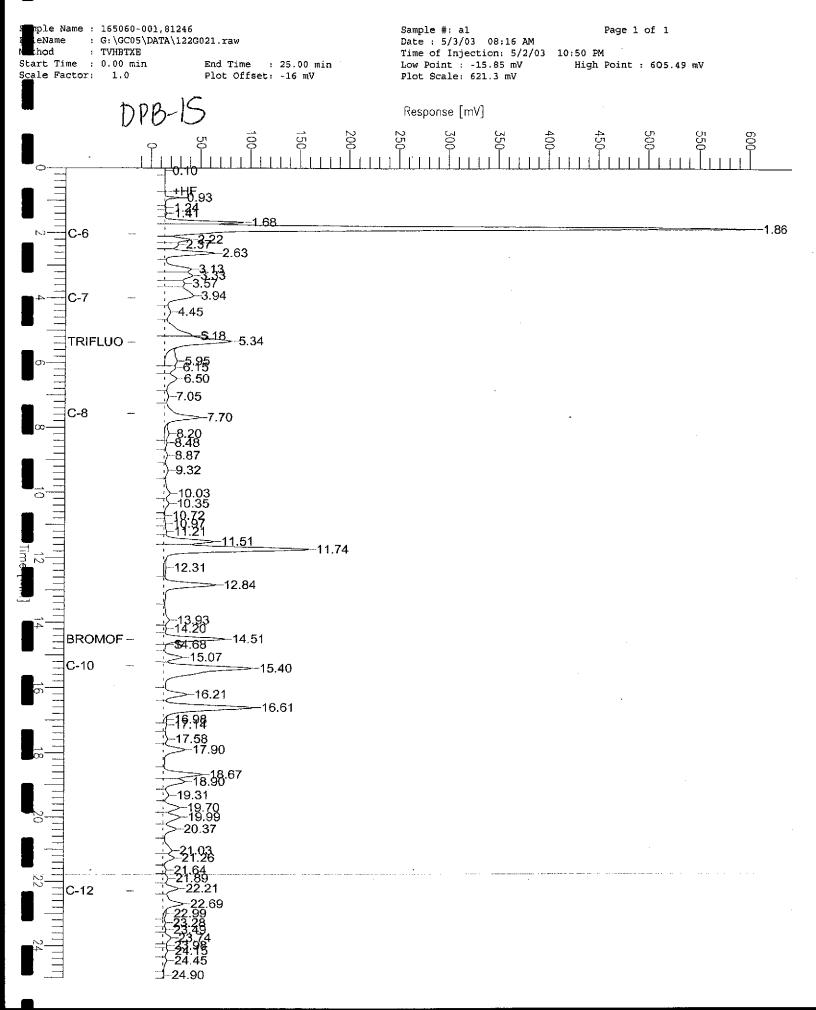
.vpe:

BLANK

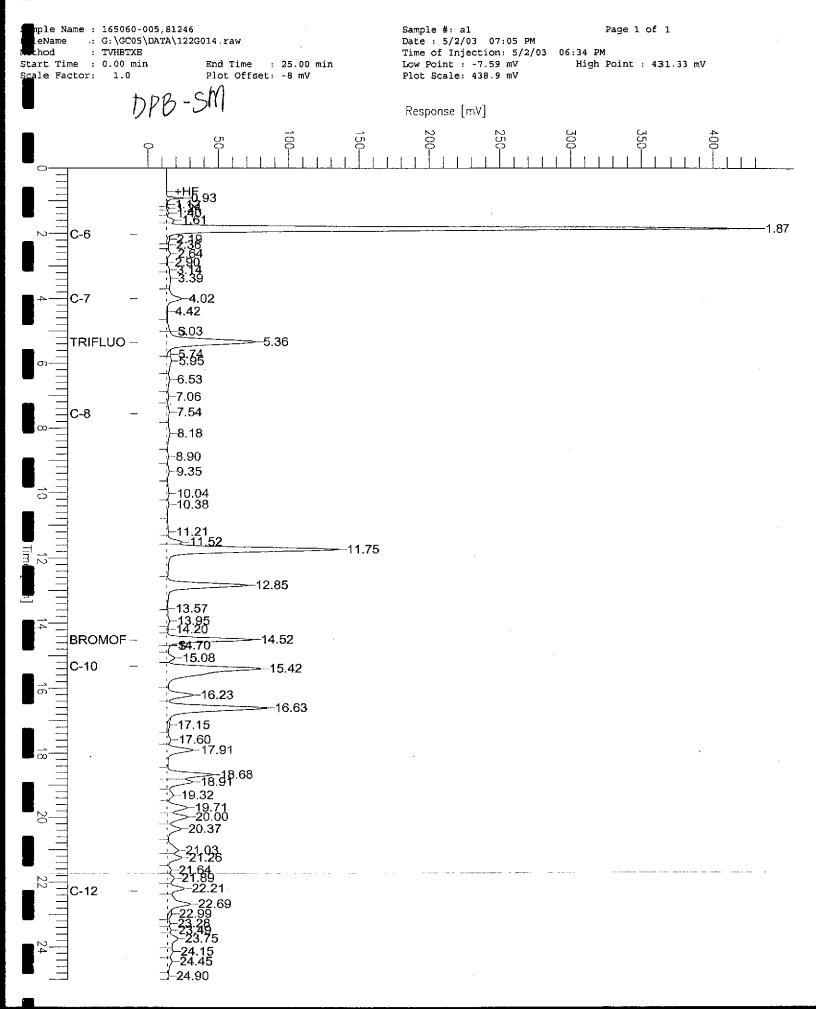
Diln Fac:

1.000

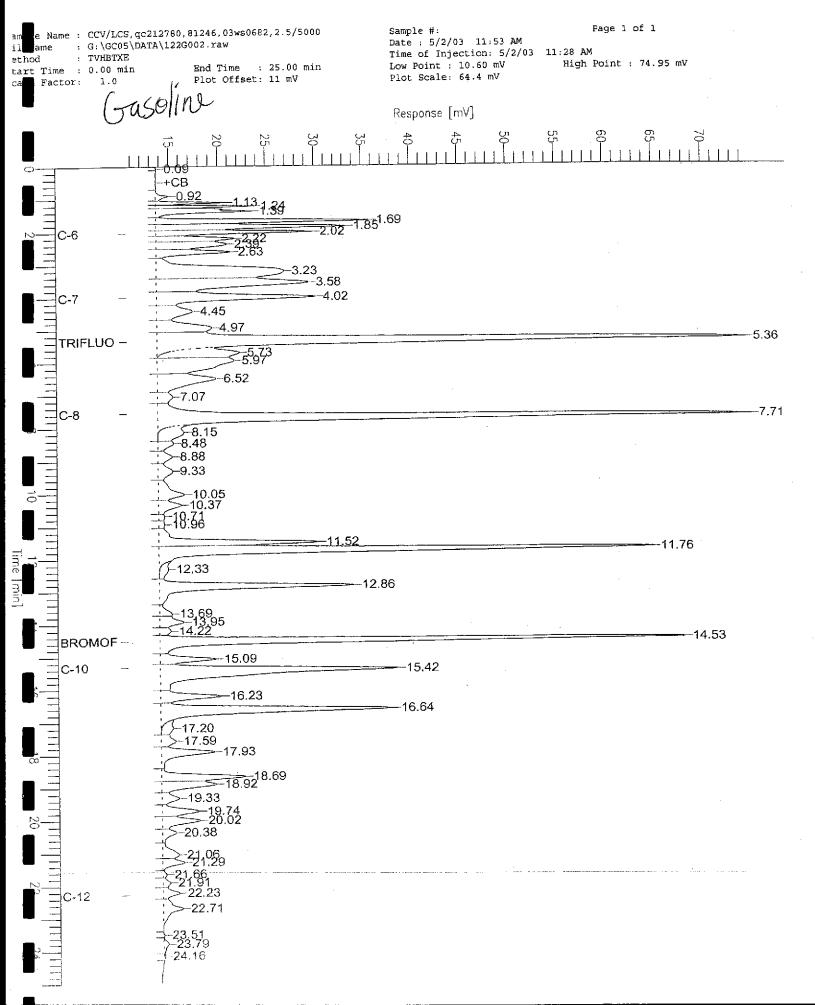
Lab ID:


QC212779

Analyte	Result	RL	
Gasoline C7-C12	ND	50	


Surrogate	%REC	I Limits
Trifluorotoluene (FID)	100	68-145
_Bromofluorobenzene (FID)	91	66-143

>= Not Detected RL= Reporting Limit age 2 of 2


Chromatogram

Chromatogram

Chromatogram

Total Volatile Hydrocarbons Hadjian/Dublin Lab #: 165060 Location: SOMA Environmental Engineering Inc. EPA 5030B Client: Prep: 8015B Analysis: Project#: 2692 LCS Diln Fac: 1.000 Туре: QC212780 Batch#: 81246 Lab ID: Analyzed: 05/02/03 Matrix: Water Units: ug/L

Analyte		Pagnit		C Limits	
Analyce Gasoline C7-C12	1,000	969.6	97	79-120	

Bromofluorobenzene (FID)	95	66-143
Trifluorotoluene (FID)	112	68-145
Surrogate	%REC	Limite

			Total Volatil	e Hydrocarl	oons
Lab #:	16506	50		Location:	Hadjian/Dublin
	SOMA	Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2692			Analysis:	8015B
Field ID:		DPB-5M		Batch#:	81246
MSS Lab II);	165060-003		Sampled:	04/30/03
Matrix:		Water		Received:	05/02/03
Units:		ug/L		Analyzed:	05/02/03
Diln Fac:		1.000		<u></u>	

Type:

MS

Lab ID:

QC212812

Gasoline C7-C12 21.86 2,000 1,900 94 67-120	Analyte MS	S Result	Spiked	Result	%REC	C Limits
	Gasoline C7-C12	21.86	2,000	1,900	94	67-120

Surrogate	%REG	Limits	
Trifluorotoluene (FID)	122	68-145	
Bromofluorobenzene (FID)	110	66-143	

Type:

MSD

Lab ID:

Analyte	Spiked	Result	%REC	Limits	RPE) Lim
Gasoline C7-C12	2,000	1,914	95	67-120	1	20
000011110 0, 011						

Surrogate	%RE	C Limits	
Trifluorotoluene (FID)	120	68-145	
Bromofluorobenzene (FID)	110	66-143	┙

		Purgeable Aro	matics by	GC/MS
Lab #:	165060		Location:	Hadjian/Dublin
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2692		Analysis:	EPA 8260B
Field ID:	DPB-1S	*****	Batch#:	81280
ab ID:	165060-001	•	Sampled:	05/02/03
Matrix:	Water		Received:	05/02/03
Units:	ug/L		Analyzed:	05/06/03
Diln Fac:	50.00			

Analyte	Result	RL	
MTBE	8,100	25	
Benzene	25	25	
Toluene	440	25	
Chlorobenzene	ND	25	
Ethylbenzene	440	25	į
n,p-Xylenes o-Xylene	1,700	25	
	480	25	
.,3-Dichlorobenzene	ND	25	
.,4-Dichlorobenzene	ND	25	
1,2-Dichlorobenzene	ND	25	

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	100	77-130
Toluene-d8	96	80-120
romofluorobenzene	97	80-120

ļ		Purgeable Aro	matics by G	ic/ms
ab #:	165060		Location:	Hadjian/Dublin
lient:	SOMA Environmenta	l Engineering Inc.	Prep:	EPA 5030B
roject#:		3 3	Analysis:	EPA 8260B
ield ID:			Batch#:	81280
ab ID:	165060-002	}	Sampled:	04/30/03
atrix:	Water		Received:	05/02/03
nits:	ug/L		Analyzed:	05/06/03
iln Fac:	1.000			

Analyte	Result	RL .
TBE	ND	0.5
enzene	ND	0.5
Toluene	ND	0.5
■hlorobenzene	ND	0.5
thylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
,3-Dichlorobenzene	ND	0.5
, 4-Dichlorobenzene	ИD	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	103	77-130	
woluene-d8	97	80-120	·
romofluorobenzene	97	80-120	

	Purgeal	ole Aromatics by G	C/MS
ab #:	165060	Location:	Hadjian/Dublin
elient:	SOMA Environmental Engineeri	ng Inc. Prep:	EPA 5030B
Project#:	_	Analysis:	EPA 8260B
ield ID:	DPB-5M	Batch#:	81280
ab ID:	165060-003	Sampled:	04/30/03
Matrix:	Water	Received:	05/02/03
	ug/L	Analyzed:	05/06/03
Units: iln Fac:	1.000		

Analyte	Result	ŘĹ
TBE	ND	0.5
enzene	ND	0.5
Toluene	ND	0.5
hlorobenzene	ND	0.5
	ND	0.5
m.p-Xvlenes	ND	0.5
thylbenzene m,p-Xylenes c-Xylene	ND	0.5
,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ИD	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	101	77-130
Toluene-d8	96	80-120
3romofluorobenzene	99	80-120

		Purgeable Aro	matics by GO	:/мs
ab #:	165060		Location:	Hadjian/Dublin
elient:	SOMA Environmental En	ngineering Inc.	Prep:	EPA 5030B
Project#:		· •	Analysis:	EPA 8260B
ield ID:	DPB-8		Batch#:	81280
ab ID:	165060-004		Sampled:	05/01/03
Matrix:	Water		Received:	05/02/03
<u> U</u> nits:	ug/L		Analyzed:	05/06/03
iln Fac:	1.000			

Analyte	Result	RL	
TBE	ND	0.5	
enzene	ND	0.5	
Toluene	ND	0.5	
Thlorobenzene	ND	0.5	
thylbenzene	ND	0.5	
thylbenzene m,p-Xylenes	ND	0.5	
_o-Xylene	ND	0.5	
,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	103	77-130
Toluene-d8	96	80-120
romofluorobenzene	97	80-120

ab #:	165060		Location:	Hadjian/Dublin
lient:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2692	_	Analysis:	EPA 8260B
ield ID:	DPB-SM		Batch#:	81280
ab ID:	165060-005		Sampled:	05/01/03
Matrix:	Water		Received:	05/02/03
Units:	ug/L		Analyzed:	05/06/03
iln Fac:	6.250		-	

Analyte	Result	RL
TBE	760	3.1
enzene	7.1	3.1
Toluene	ND	3.1
hlorobenzene	ND	3.1
thylbenzene	7.4	3.1
thylbenzene m,p-Xylenes	120	3.1
o-Xylene	50	3.1
.,3-Dichlorobenzene	ND	3.1
1,4-Dichlorobenzene	ND	3.1
1,2-Dichlorobenzene	ND	3.1

Surrogate	%REC	' Limits	
1,2-Dichloroethane-d4	99	77-130	
Toluene-d8	97	80-120	
romofluorobenzene	98	80-120	

	Purge	able Aromatics by GC	/ns
ab #: lient: Project#:	165060 SOMA Environmental Enginee 2692	Location: ring Inc. Prep: Analysis:	Hadjian/Dublin EPA 5030B EPA 8260B
ype: ab ID: Matrix: Units:	BLANK QC212922 Water ug/L	Diln Fac: Batch#: Analyzed:	1.000 81280 05/05/03

Analyte	Result	RL	
MTBE	ND	0.5	
enzene	ND	0.5	
oluene	ND	0.5	
Chlorobenzene	ND	0.5	
	ND	0.5	
thylbenzene ,p-Xylenes o-Xylene	ND	0.5	
o-Xvlene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
,4-Dichlorobenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	

Surrogate	%RBC	Limits
,2-Dichloroethane-d4	103	77-130
Toluene-d8	98	80-120
Bromofluorobenzene	99	80-120

	Purgeable Aro	matics by GO	C/MS
ab #:	165060	Location:	Hadjian/Dublin
	SOMA Environmental Engineering Inc.	Prep:	EPA 5030B
Project#:	2692	Analysis:	EPA 8260B
latrix:	Water	Batch#:	81280
nits: Diln Fac:	ug/L	Analyzed:	05/05/03
Diln Fac:	1.000		

Type:

BS

Lab ID:

QC212919

Analyte	Spiked	Result	*REC	: Limita
Benzene	50.00	49.19	98	76-120
Toluene	50.00	48.33	97	79-120
Chlorobenzene	50.00	49.23	98	80-120

Surrogate	%REC	Limits		
.,2-Dichloroethane-d4	97	77-130		
Toluene-d8	95	80-120		
Bromofluorobenzene	96	80~120	 	

pe:

BSD

Lab ID:

Analyte	Spiked	Result	%RE(: Limits	RPD	Liin
Benzene	50.00	48.40	97	76-120	2	20
l'oluene	50.00	47.67	95	79-120	1	20
Chlorobenzene	50.00	48.10	96	80-120	2	20

Surrogate	¥REC	Limits	
1,2-Dichloroethane-d4	98	77-130	
Toluene-d8	97	80-120	
Bromofluorobenzene	97	80-120	

		Gasoline Oxyg	enates by GC/	
Lab #:	165060	Engineering Inc.	Location:	Hadjian/Dublin
Client:	SOMA Environmental		Prep:	EPA 5030B
roject#:	2692		Analysis:	EPA 8260B
atrix:	Water		Batch#:	81280
Units:	uq/L		Received:	05/02/03

eld ID: Type:

DPB-1S SAMPLE 165060-001

Diln Fac: Sampled: Analyzed: 50.00 05/02/03 05/06/03

Analyte	Result	Ri	
ert-Butyl Alcohol (TBA)	ND	500	
TBE	8,100	25	
sopropyl Ether (DIPE)	ND	25	
thyl tert-Butyl Ether (ETBE) ethyl tert-Amyl Ether (TAME)	ND	25	
ethyl tert-Amyl Ether (TAME)	ND	25	
,2-Dichloroethane	ND	25	
,2-Dibromoethane	ND	25	
thanol	. ND	50,000	·

		ANAMANAN MANAN MANANANANAN MANANAN	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0000000000000000000000000000000000000	
Chrromate	******	Limits			
Dibromofluoromethane	107	80-121			
, 2-Dichloroethane-d4	100	77-130			
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0	00 100			i i
Coluene-d8	96	80-120			
	07	80-120			
Bromofluorobenzene	97	00-120			

eld ID: Type: Lab ID:

DPB-5US SAMPLE 165060-002 Diln Fac: Sampled: Analyzed: 1.000 04/30/03 05/06/03

1,000

Analyte tert-Butyl Alcohol (TBA) Result 10 $\overline{\mathtt{ND}}$ 0.5 0.5 0.5 0.5 ND Isopropyl Ether (DIPE)
Ethyl tert-Butyl Ether (ETBE)
Methyl tert-Amyl Ether (TAME) ND NDND1,2-Dichloroethane ND 0.5 1,2-Dibromoethane Ethanol ND

ND

Surrogate	%REC	Limits	
Dibromofluoromethane	107	80-121	
1,2-Dichloroethane-d4	103	77-130	
Foluene-d8	97	80-120	
Bromofluorobenzene	97	80-120	

		Gasoline Oxyg	enates by GC,	
Lab #:	165060	Engineering Inc.	Location:	Hadjian/Dublin
Client:	SOMA Environmental		Prep:	EPA 5030B
Project#:	2692		Analysis:	EPA 8260B
atrix:	Water		Batch#:	81280
Units:	ug/L		Received:	05/02/03

eld ID: Type:

DPB-5M SAMPLE 165060-003 Diln Fac: Sampled: Analyzed:

1.000 04/30/03 05/06/03

Analyte	Result	RL
tert-Butyl Alcohol (TBA)	ND	10
MTBE	ND	0.5
sopropyl Ether (DIPE)	ND	0.5
sopropyl Ether (DIPE) thyl tert-Butyl Ether (ETBE) dethyl tert-Amyl Ether (TAME)	ND	0.5
Jethyl tert-Amyl Ether (TAME)	ND	0.5
1,2-Dichloroethane	ND	0.5
1,2-Dibromoethane	ND	0.5
thanol	ND	1,000

Surrogate	\$1.EC	Limits	
Dibromofluoromethane	107	80-121	
1,2-Dichloroethane-d4	101	77-130	
oluene-d8	96	80-120	
Bromofluorobenzene	99	80-120	

eld ID: Type: Lab ID:

DPB-8 SAMPLE 165060-004

Diln Fac: Sampled: Analyzed:

1.000 05/01/03 05/06/03

tert-Butyl Alcohol (TBA) MTBE Isopropyl Ether (DIPE) Ethyl tert-Butyl Ether (ETBE) Methyl tert-Amyl Ether (TAME) 1,2-Dichloroethane 1,2-Dibromoethane	ND ND	10 0.5 0.5 0.5 0.5 0.5 0.5	
Ethanol	ND	1,000	·

	\$ P F C	### PK \$77 6 27 1880	
	106	00 101	
Dibromofluoromethane	106	80-121	
1,2-Dichloroethane-d4	103	77-130	;
	96	80-120	
Foluene-d8	90		
Bromofluorobenzene	97	80-120	

		Gasoline Oxyg	enates by G	
Lab #:	165060	Engineering Inc.	Location:	Hadjian/Dublin
Client:	SOMA Environmental		Prep:	EPA 5030B
roject#:	2692		Analysis:	EPA 8260B
atrix:	Water		Batch#:	81280
Units:	uq/L		Received:	05/02/03

Field ID: Type: Leb ID: DPB-SM SAMPLE 165060-005 Diln Fac: Sampled: Analyzed: 6.250 05/01/03 05/06/03

Analyte tert-Butyl Alcohol (TBA) (TBE sopropyl Ether (DIPE) thyl tert-Butyl Ether (ETBE) Methyl tert-Amyl Ether (TAME) 1,2-Dichloroethane 1,2-Dibromoethane thanol	Result 430 760 ND ND ND ND ND ND ND ND ND	RL 63 3.1 3.1 3.1 3.1 3.1 3.1 6.300	
--	---	---	--

Surrogate	%REC	jimits	
Dibromofluoromethane	105	80-121	
, 2-Dichloroethane-d4	99	77-130	
oluene-d8	97	80-120	
Bromofluorobenzene	98	80-120	

pe: Lab ID: BLANK QC212921 Diln Fac: Analyzed: 1.000 05/05/03

Analyte	Result	R
:ert-Butyl Alcohol (TBA) MTBE	NA ND	0.5
Isopropyl Ether (DIPE) Ethyl tert-Butyl Ether (ETBE)	NA NA	
Methyl tert-Amyl Ether (TAME) 1,2-Dichloroethane	NA ND	0.5
1,2-Dibromoethane Ethanol	ND NA	0.5

Surrogate	*REC	Limits	
	100	80-121	
Dibromofluoromethane	105		
1,2-Dichloroethane-d4	101	77-130	
I, Z-Dichioroechane-u4			
Toluene-d8	95	80-120	
	20	00 100	· · · · · · · · · · · · · · · · · · ·
Bromofluorobenzene	98	80-120	
31031110101			

A= Not Analyzed D= Not Detected RL= Reporting Limit Page 3 of 4

		Gasoline Oxyg	enates by G	
	165060 SOMA Environmental 2692	Engineering Inc.	Location: Prep: Analysis:	Hadjian/Dublin EPA 5030B EPA 8260B
roject#: atrix: Units:	Water uq/L		Batch#: Received:	81280 05/02/03

Type: Lab ID: BLANK QC212922 Diln Fac: Analyzed: 1.000 05/05/03

Analyte ert-Butyl Alcohol (TBA) MTBE Isopropyl Ether (DIPE) thyl tert-Butyl Ether (ETBE) ethyl tert-Amyl Ether (TAME)	Result ND ND ND ND ND ND	RE 10 0.5 0.5 0.5 0.5
1,2-Dichloroethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Ethanol	ND	1,000

		inits
Dibromofluoromethane	106	90-121
1,2-Dichloroethane-d4	103	77-130
moluene-d8	98	80-120
romofluorobenzene	99	80-120

Gasoline Oxygenates by GC/MS Hadjian/Dublin Location: 165060 EPA 5030B SOMA Environmental Engineering Inc. Prep: lient: EPA 8260B Analysis: Project#: 2692 81280 Batch#: Water atrix: 05/05/03 Analyzed: nits: ug/L 1.000 Diln Fac:

Type:

BS

Lab ID:

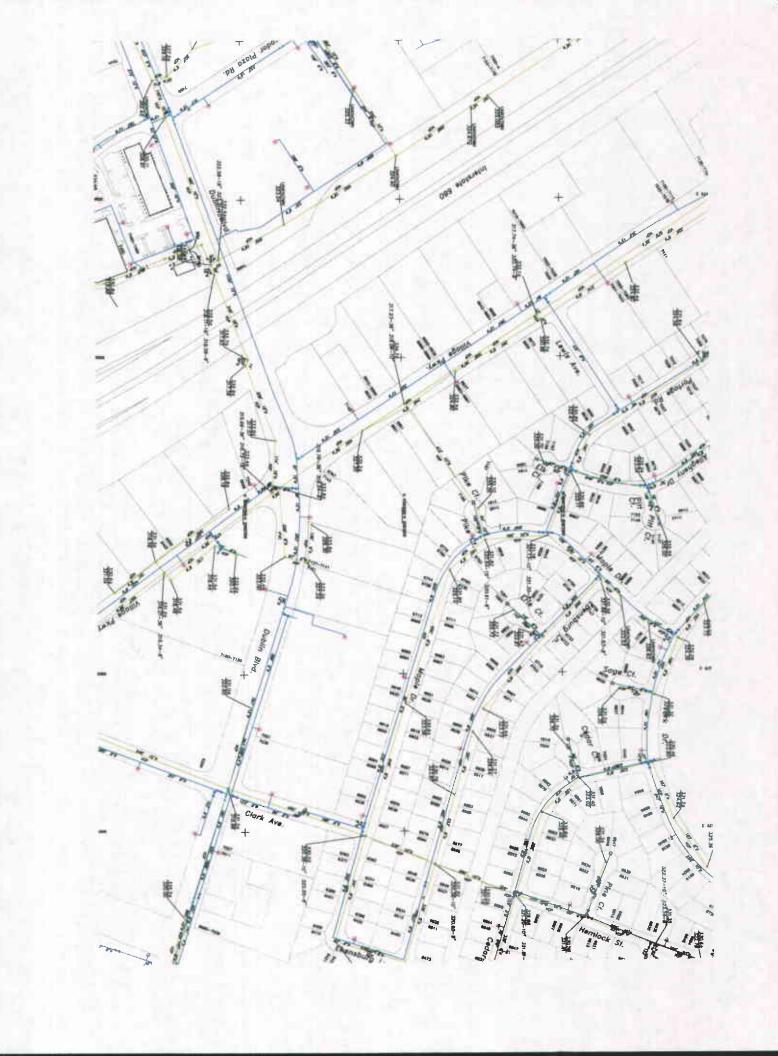
QC212919

Analyte	Spiked	Result	%RBC	Limits
MTBE	50.00	55.02	110	49-144

Surrogate	*REC	Limits
Dibromofluoromethane	101	80-121
1,2-Dichloroethane-d4	97	77-130
oluene-d8	95	80-120
romofluorobenzene	96	80-120

Type:

BSD


Lab ID:

	Tanalarka	Spiked	Result	*REC	Limits	RPL	Lim
	4TBE	50.00	54.43	109	49-144	1	21
1.	1190						

Surrogate	%REC	2 Limits
Dibromofluoromethane	101	80-121
1,2-Dichloroethane-d4	98	77-130
Toluene-d8	97	80-120
3romofluorobenzene	97	80-120

Appendix E

Subsurface Utility Map of Site Vicinity

