

5900 Hollis Street, Suite A Emeryville, California 94608 (510) 420-0700

Telephone: www.CRAworld.com Fax: (510) 420-9170

		Anna Santa		KAN		AL		<u> </u>
DATE:	Mary 2	1, 2011		Dr	FERENCE NO	٠.	240902	
DATE:	_ Iviay 5	1, 2011	· · · · · · · · · · · · · · · · · · ·	KE.	PERENCE INC	J	230 West MacArthur Boulevard,	
				Pre	OJECT NAME	E:	Oakland	
To:	Jerry V	Vickham					DECEMEN	
	Alame	eda Cour	ity Environment	tal Health			RECEIVED	
	1131 F	Iarbor Ba	y Parkway, Sui	te 250			11:44 am, Jun 06, 2011	
	Alame	eda, Calif	ornia 94502-657	7			Alameda County	
							Environmental Health	
Please find	d enclos	ed:	Draft Originals	∑ □	Final Other			
			Prints					
Sent via:			Mail		Same Da			
, , .		Ш	Overnight Cou	rier 📐	Other	GeoT	Fracker and Alameda County FTP	
QUAN	TITV	1			DECCI	DIDE	IONI	
1	1111	Closus	e Request		DESCI	KII I I		
						,,		
								-
	Requeste Your Use			For Revie	ew and Comr	ment		· _ ·
			 ·.				· · · · · · · · · · · · · · · · · · ·	
COMME			us couding the c	antanta a	f this docum	nont :	places call Potor Schoofer at	
(510) 420-		uestions	regarding the c	oments o	i uns docum	nem,	please call Peter Schaefer at	
				-				
Copy to:			rown, Shell Oil l		•			
* * *			gy LLC, c/o Ni ont, CA 94538	ck Goyle,	Vintners D	istrib	utors, Inc, 41805 Albrae Street, 2nd Flo	or,
		rrem	oni, CA 74000			/	γ	
Complete	ed by:	Peter Sc	haefer		Signed	ı: /	efn Solf	
		ondence l			~	1		

Jerry Wickham Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577 Denis L. Brown Shell Oil Products US

HSE – Environmental Services 20945 S. Wilmington Ave. Carson, CA 90810-1039 Tel (707) 865 0251 Fax (707) 865 2542 Email denis.1.brown@shell.com

Re:

Shell-branded Service Station 230 West MacArthur Boulevard Oakland, California SAP Code 135676 Incident No. 98995741 ACEH Case No. RO0000303

Dear Mr. Wickham:

The attached document is provided for your review and comment. Upon information and belief, I declare, under penalty of perjury, that the information contained in the attached document is true and correct.

If you have any questions or concerns, please call me at (707) 865-0251.

Sincerely,

Denis L. Brown

Senior Program Manager

CLOSURE REQUEST

SHELL-BRANDED SERVICE STATION 230 WEST MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

SAP CODE INCIDENT NO.

135676

98995741

AGENCY NO. RO0000303

Prepared by: Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, California U.S.A. 94608

Office: (510) 420-0700 Fax: (510) 420-9170

web: http://www.CRAworld.com

MAY 31, 2011 REF. NO. 240902 (8) This report is printed on recycled paper.

TABLE OF CONTENTS

1.0	INTRO	DUCTION1
2.0	LOW-R	ISK CASE CRITERIA1
	2.1	THE LEAK HAS BEEN STOPPED AND ONGOING
		SOURCES HAVE BEEN REMOVED OR REMEDIATED2
	2.2	THE SITE HAS BEEN ADEQUATELY CHARACTERIZED2
	2.2.1	GROUNDWATER2
	2.2.2	SOIL3
	2.3	THE DISSOLVED HYDROCARBON PLUME IS NOT MIGRATING3
	2.4	MINIMAL GROUNDWATER IMPACT CURRENTLY EXISTS, FEW
	,	CONTAMINANTS ARE FOUND AT LEVELS ABOVE ESTABLISHED
		MCLS OR OTHER APPLICABLE WATER-QUALITY OBJECTIVES4
	2.5	NO WATER WELLS, DEEPER DRINKING WATER
		AQUIFERS, SURFACE WATER, OR OTHER
		SENSITIVE RECEPTORS ARE LIKELY TO BE IMPACTED4
	2.6	THE SITE PRESENTS NO SIGNIFICANT
		RISK TO HUMAN HEALTH OR THE ENVIRONMENT5
	2.6.1	GROUNDWATER5
	2.6.2	SOIL VAPOR5
	2.6.3	SOIL6

LIST OF FIGURES (Following Text)

FIGURE 1 VICINITY MAP

FIGURE 2 SITE PLAN

FIGURE 3 GROUNDWATER CONTOUR AND CHEMICAL CONCENTRATION MAP

FIGURE 4 MW-4: MTBE CONCENTRATION AND GROUNDWATER ELEVATION VERSUS TIME

FIGURE 5 MW-5: BENZENE AND ETHYLBENZENE CONCENTRATIONS AND GROUNDWATER ELEVATION VERSUS TIME

LIST OF TABLES (Following Text)

TABLE 1 GROUNDWATER DATA

TABLE 2 HISTORICAL GRAB GROUNDWATER ANALYTICAL DATA

TABLE 3 HISTORICAL SOIL ANALYTICAL DATA

LIST OF APPENDICES

APPENDIX A SITE HISTORY

1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA) prepared this request on behalf of Equilon Enterprises LLC dba Shell Oil Products US (Shell).

The site is a Shell-branded service station located on the northern corner of West MacArthur Boulevard and Piedmont Avenue in Oakland, California (Figure 1). Currently, the site layout consists of a kiosk, three underground storage tanks (USTs), and two dispenser islands (Figure 2). The surrounding area is primarily commercial. A former Gulf service station, now Oakland Auto Works, is located northwest of and adjacent to the site. The Kaiser Oakland Medical Center occupies a portion of the building located directly across West MacArthur Boulevard from the subject site.

A summary of previous work performed at the site is contained in Appendix A. Historical groundwater data are presented on Tables 1 and 2, and historical soil analytical data are presented on Table 3.

2.0 LOW-RISK CASE CRITERIA

Site data demonstrate that the site conditions meet the low-risk groundwater case criteria outlined in the San Francisco Bay Regional Water Quality Control Board's (RWQCB's) January 5, 1996 Regional Board Supplemental Instructions to State Water Board December 8, 1995, Interim Guidance on Required Cleanup at Low-Risk Fuel Sites. These criteria are addressed below.

Note that the RWQCB Groundwater Committee's June 1999 East Bay Plain Groundwater Basin Beneficial Use Evaluation Report for Alameda and Contra Costa Counties, CA, states that the City of Oakland (among other cities) "does not have plans to develop local groundwater resources for drinking water purposes, because of existing or potential saltwater intrusion, contamination, or poor or limited quantity." Although groundwater in this area cannot be precluded from being a potential future source of drinking water, it is not currently a source of drinking water, and given the shallow depth, it is unlikely that the first water-bearing zone would be used as a source of drinking water. Thus, RWQCB non-drinking water environmental screening levels (ESLs)¹ are the appropriate screening levels for this site.

Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater, California Regional Water Quality Control Board, Interim Final - November 2007 [Revised May 2008]

2.1 THE LEAK HAS BEEN STOPPED AND ONGOING SOURCES HAVE BEEN REMOVED OR REMEDIATED

No active leak has been identified. Facility upgrades and dispenser modifications were completed in 1998 and 2005, and the USTs, piping, and dispensers were replaced in 1987. As of January 1, 2003, methyl tertiary-butyl ether (MTBE) is no longer included in the formulation of Shell gasoline. Total petroleum hydrocarbons as gasoline (TPHg), benzene, and ethylbenzene concentrations in groundwater are stable or decreasing, and toluene, xylenes, MTBE, and tertiary-butyl alcohol (TBA, a degradation product of MTBE) have not been detected in groundwater samples at concentrations exceeding RWQCB's ESLs for groundwater where groundwater is not a potential source of drinking water since the fourth quarter of 2000, indicating that there is no ongoing source.

2.2 THE SITE HAS BEEN ADEQUATELY CHARACTERIZED

2.2.1 GROUNDWATER

Historical data from monitoring wells MW-1 through MW-4 and grab groundwater samples from borings SB-9 through SB-11 define benzene, toluene, ethylbenzene, and xylenes (BTEX), MTBE, and TBA impacts horizontally in groundwater to below applicable ESLs. It should be noted that the ESL document states that "TPH ESLs must be used in conjunction with ESLs for related chemicals," in this case BTEX, MTBE, and TBA.

The source area has been adequately characterized by data from monitoring wells MW-4 and MW-5 (SB-8) and grab groundwater samples from borings GS-2, GS-3, and SB-12. Groundwater samples from monitoring wells and grab groundwater samples collected from the dispenser area and UST complex area have contained concentrations of TPHg, BTEX, and MTBE which exceeded the ESLs. Groundwater monitoring data from the first quarter of 2011 (Figure 3 and Table 1) indicate that only TPHg in MW-4 and MW-5 and benzene and ethylbenzene in MW-5 currently exceed the ESLs.

2.2.2 <u>SOIL</u>

The source area has been adequately characterized by soil samples collected during 1987 fuel system replacement, 2005 fuel system upgrades, and soil samples collected during numerous subsequent subsurface investigations.

Analyses of shallow soil samples (less than 12 feet below grade [fbg]) have shown that BTEX and fuel oxygenate detections are below commercial ESLs, with the exceptions listed in the following table. Vadose zone samples from a UST investigation in August 1987 are not considered because these locations were excavated during fuel system replacement in November 1987. Dispenser soil samples D-2 and D-3 and piping samples P-3 and P-5 from 2005 fuel system upgrade activities are also not considered because these locations were subsequently over-excavated.

The state of the s	Computation Community (Computation Community C	TABLE A	
Sample Location/Year	Analyte	Concentration	Commercial ESL
P-4 at 4 fbg/2005	Benzene	4.2 mg/kg	0.27 mg/kg
	Ethylbenzene	39 mg/kg	4.7 mg/kg
	Xylenes	78 mg/kg	11 mg/kg
SB-5 at 3 fbg/2006	Benzene	2.90 mg/kg	0.27 mg/kg
	Toluene	9.47 mg/kg	9.3 mg/kg
	Ethylbenzene	9.46 mg/kg	4.7 mg/kg
	Xylenes	70.6 mg/kg	11 mg/kg

Note: mg/kg = Milligrams per kilogram.

Four deeper soil samples (greater than 12 fbg) contained concentrations of benzene, ethylbenzene, and/or xylenes which exceeded commercial ESLs; however, these results are likely due to groundwater impacts. No toluene, MTBE, or TBA concentrations in deeper soil samples exceeded commercial ESLs.

2.3 THE DISSOLVED HYDROCARBON PLUME IS NOT MIGRATING

As discussed above, BTEX, MTBE, and TBA detections are horizontally defined below ESLs, demonstrating that the plume is not migrating. Decreasing constituent of concern (COC) concentrations in source area well MW-4 indicate that the on-site plume is shrinking (Figure 4). It is anticipated that the currently stable concentrations of TPHg,

benzene, and ethylbenzene in MW-5 (Figure 5) will decline as the plume continues to shrink.

2.4 MINIMAL GROUNDWATER IMPACT CURRENTLY EXISTS, FEW CONTAMINANTS ARE FOUND AT LEVELS ABOVE ESTABLISHED MCLS OR OTHER APPLICABLE WATER-QUALITY OBJECTIVES

Maximum groundwater concentrations from samples collected during the first quarter of 2011 are compared with drinking water ESLs in the following table.

	TABLE BY	
COCs	Current Maximum Concentrations in Site Groundwater (3/25/11, except TBA:7/6/10) Units in µg/l	ESLs Where Groundwater is not a Potential Source of Drinking Water (Tables B and D) Units in µg/l
TPHg	7,600	210
Benzene	150	46
Toluene	10	130
Ethylbenzene	270	43
Xylenes	43	100
MTBE	2.3	1,800
ТВА	ND	18,000

Note: $\mu g/I = Micrograms per liter$

ND = Not detected, reporting limits vary

During the first quarter of 2011, all groundwater detections were at or below applicable drinking water ESLs with the exception of TPHg in wells MW-4 and MW-5 and benzene and ethylbenzene in MW-5. As stated above, the ESL document states that "TPH ESLs must be used in conjunction with ESLs for related chemicals," in this case BTEX, MTBE, and TBA. Figure 4 shows MTBE concentrations in groundwater versus time for well MW-4, and Figure 5 shows benzene and ethylbenzene concentrations in groundwater versus time for well MW-5.

2.5 NO WATER WELLS, DEEPER DRINKING WATER AQUIFERS, SURFACE WATER, OR OTHER SENSITIVE RECEPTORS ARE LIKELY TO BE IMPACTED

Cambria Environmental Technology, Inc.'s (Cambria's) October 31, 2002 Sensitive Receptor Survey, Conduit Study, and Subsurface Investigation Work Plan identified two wells

of unknown use approximately one-half mile west (down gradient) and one well of unknown use approximately 1,500 feet east (up gradient). The well locations are shown on Figure 1. The closest surface water body is an engineered channel of Glen Echo Creek, located 600 feet cross gradient to the south of the site.

Based on the directions and distances to these potential receptors, it is unlikely that they would be impacted by residual soil and groundwater impacts at the site.

2.6 THE SITE PRESENTS NO SIGNIFICANT RISK TO HUMAN HEALTH OR THE ENVIRONMENT

No formal risk assessment has been performed for the site. A discussion of potential risks associated with COCs in groundwater, soil vapor, and soil is presented below.

2.6.1 GROUNDWATER

Down-gradient groundwater concentrations of BTEX, MTBE, and TBA in grab groundwater samples SB-9 through SB-11 collected in 2008 were below the ESLs where groundwater is not a current or potential drinking water source, demonstrating that they do not pose a risk to human health or the environment. The only current exceedences of ESLs are in on-site wells MW-4 and MW-5, which are shallow wells located adjacent to the likely petroleum hydrocarbon source area. As noted above, although groundwater in this area cannot be precluded from being a potential future source of drinking water, it is not currently a source of drinking water, and given the shallow depth, it is highly unlikely that the first water-bearing zone on site would be used as a source of drinking water.

2.6.2 SOIL VAPOR

Risk of soil vapor intrusion due to impacted groundwater can be evaluated by comparing groundwater concentrations with available ESLs. As shown in the following table, current groundwater concentrations meet the most stringent residential standards and do not present a risk for soil vapor intrusion.

	TABLEC	
	Current Maximum Groundwater Concentrations (3/25/11)	Groundwater Screening Levels for Evaluation of Potential Vapor Intrusion Concerns – Residential Land Use (Table E-1)
COCs	Units in μg/l	Units in μg/l
Benzene	150	540
Toluene	10	380,000
Ethylbenzene	270	170,000
Xylenes	43	160,000
MTBE	2.3	24,000

Because vadose zone soil impacts above ESLs are limited, there is little potential for soil vapor migration to impact on-site workers and potential future occupants of the site. Since the air-exchange from customers entering and exiting the station building during all business hours would not allow for significant buildup of vapors from subsurface migration, inhalation risk from vapor intrusion is considered to be low. It is anticipated that the site will remain a service station. This station is part of a service station sale with contract provisions for long term use of the Shell Brand and specific restrictions on site development to commercial uses excluding child day care, elder care, or other similar sensitive uses. These data and site conditions suggest that soil concentrations are unlikely to present significant risk to human health.

2.6.3 SOIL

As shown in the following table, vadose zone soil concentrations of MTBE and TBA (based on 51 samples) do not exceed the commercial land use ESL for shallow soils (less than 12 fbg). Benzene, ethylbenzene, and xylenes detections exceed ESLs in two samples, and one toluene detection exceeds the ESL. These detections are limited to the area of the southwest dispenser island. Vadose zone samples from a UST investigation in August 1987 are not considered because these locations were excavated during fuel system replacement in November 1987. Dispenser soil samples D-2 and D-3 and piping samples P-3 and P-5 from 2005 fuel system upgrade activities are also not considered because these locations were subsequently over-excavated.

	TABLED	
2000 Maria de participar de la constanción de la	Vadose Zone Soil Sample Maximum Concentrations	ESLs for Soils Where Groundwater is Not a Source of Drinking Water, Commercial Land Use (Tables B and D)
COCs	Units in mg/kg	Units in mg/kg
	4.2	
Benzene	P-4-4.0/2005	0.27
	9.47	
Toluene	SB-5-3/2006	9.3
	39	
Ethylbenzene	P-4-4.0/2005	4.7
	78	
Xylenes	P-4-4.0/2005	11
	0.30	·
MTBE	P-4-4.0/2005	8.4
	0.18	
TBA	P-3-3.5/2005	110

The site is paved, so the only direct exposures would likely occur during construction at the station. Any worker doing trenching or excavating at a current or former gasoline station would be properly trained and prepared for encountering potentially impacted soil, and would wear personal protective equipment, as necessary. Therefore, the residual impacted soils do not appear to pose a significant threat to construction workers who may occasionally come in contact with the potentially-impacted soils on site, and any work at this site would require contractors to have appropriate health and safety training to perform the work.

3.0 CLOSURE REQUEST

The site is likely to remain in use as a service station. This station is part of a service station sale with contract provisions for long term use of the Shell Brand and specific restrictions on site development to commercial uses excluding child day care, elder care, or other similar sensitive uses. Given the concentrations of COCs in site soil and groundwater compared to the ESLs as presented above, CRA concludes that the residual petroleum and fuel oxygenate impacts at this site pose very little or no risk to human health or the environment.

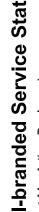
This site meets the RWQCB criteria for a low-risk fuel site. Therefore, on behalf of Shell, we respectfully request closure of this case. CRA requests that Alameda County Environmental Health suspend the groundwater monitoring program during the closure review.

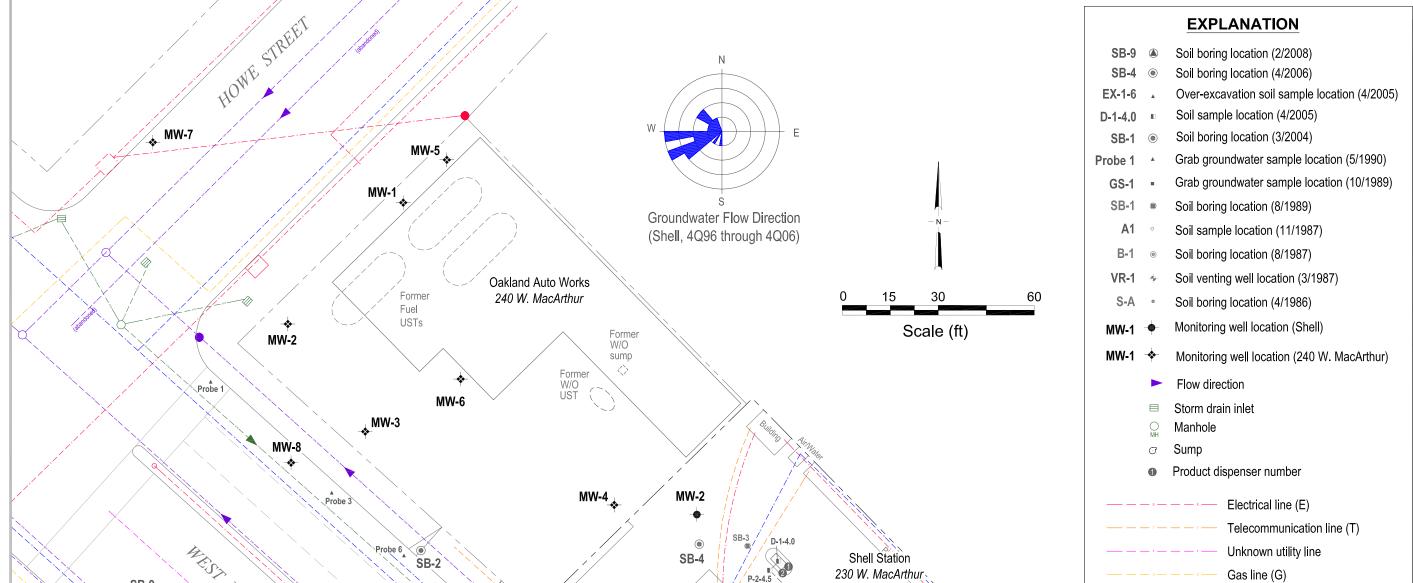
All of Which is Respectfully Submitted, CONESTOGA-ROVERS & ASSOCIATES

Peter Schaefer, CHG, CEO

Anhey K. Corl Aubrey K. Cool, PG

FIGURES


Shell-branded Service Station


230 West MacArthur Boulevard Oakland, California

Vicinity Map

FIGURE

SB-9 Probe 4

> Kaiser Medical Center 235 W. MacArthur

Approximate location of Basement #2

SB-1 MW-5 (SB-8) EX-B2-6.5 (SB-2 (EX-5-6 EX-5-6 SE

Over-excavation areas (2005) Probe 5 SB-10

MW-4

SB-12

GS-2

EX-B-6.5 D-2-1.5, D-2-3.5

SB-6 \ P-3-3.5

P-1-2.0

Former USTs (rect.)

EX-1-6 VR-3 B1 B-2

MW-3

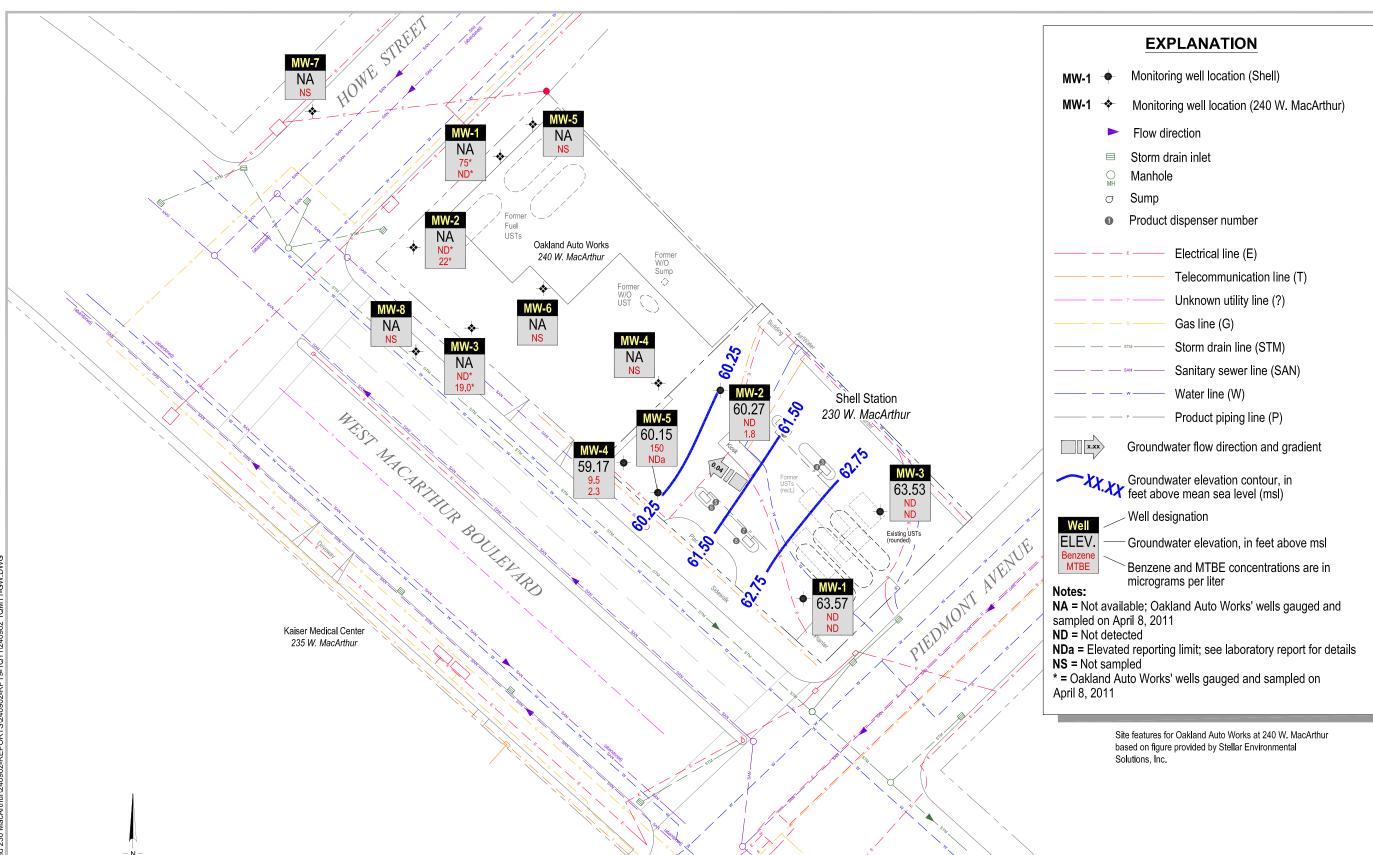
、D2 ⊙

SB-7

Site features for 240 W. MacArthur based on figure provided by Stellar Environmental Solutions, Inc.

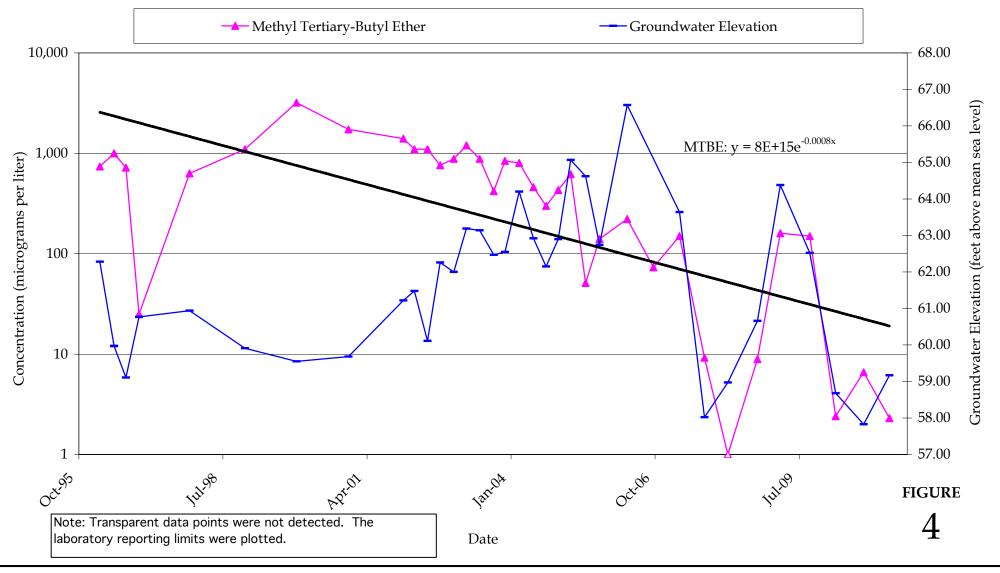
Basement locations are approximate and based on field reconnaissance done by CRA, and are not based on any actual as-built drawings for the building.

Storm drain line (STM)


Product piping line (P)

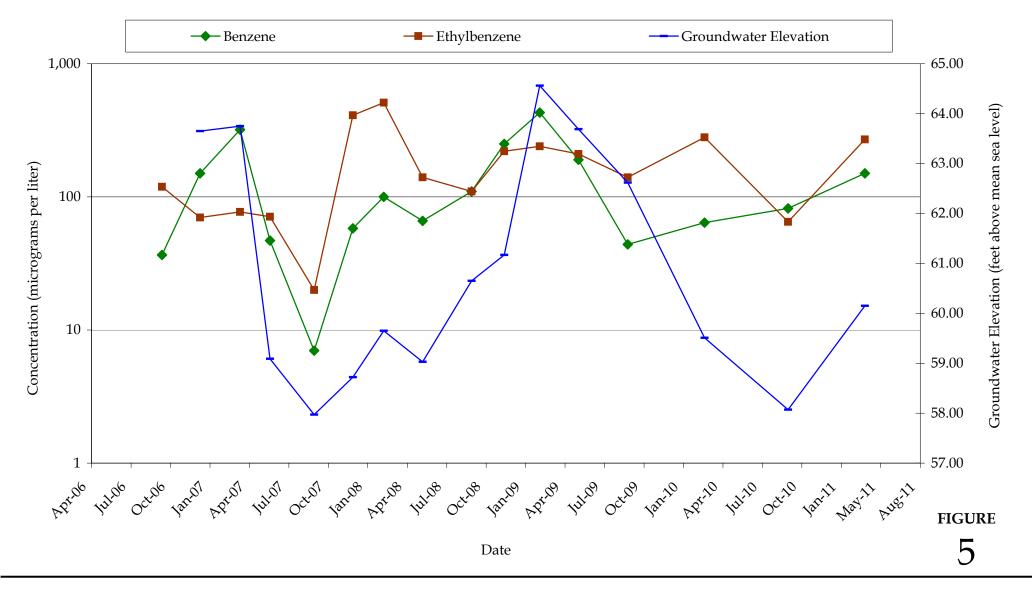
Water line (W)

Sanitary sewer line (SAN)


Shell-branded Service 230 West MacArthur Boulevard Oakland, California

Station

Scale (ft)


FIGURE

Shell-branded Service Station 230 West MacArthur Boulevard Oakland, California

MW-4: MTBE Concentration and Groundwater Elevation vs. Time

Shell-branded Service Station 230 West MacArthur Boulevard Oakland, California

MW-5:
Benzene and Ethylbenzene Concentrations and Groundwater Elevation versus Time

TABLES

TABLE 1 Page 1 of 10

GROUNDWATER DATA SHELL-BRANDED SERVICE STATION 230 WEST MACARTHUR BOULEVARD, OAKLAND, CALIFORNIA

Well ID	Date	ТРРН	В	T	E	X	MTBE 8020	MTBE 8260	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB	тос	Depth to Water	GW Elevation
vveii 1D	Dute												,				
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
MW-1	7/14/1988	ND	ND	ND	ND	ND									73.89	13.30	60.59
MW-1	10/4/1988	ND	8	4.3	ND	9									73.89	13.65	60.24
MW-1	11/10/1988	ND	ND	ND	ND	ND									73.89	13.55	60.34
MW-1	12/9/1988	ND	ND	ND	ND	ND									73.89	13.22	60.67
MW-1	1/10/1989	ND	ND	ND	ND										73.89	12.86	61.03
MW-1	1/20/1989	ND	ND			ND									73.89	12.91	60.98
MW-1	2/6/1989	ND	ND	ND	ND	ND									73.89	12.94	60.95
MW-1	3/10/1989	ND	ND	ND	ND	ND									73.89	12.59	61.30
MW-1	6/6/1989	ND	ND	ND	ND	ND									73.89	14.05	59.84
MW-1	9/7/1989	ND	ND	ND	ND	ND									73.89	14.92	58.97
MW-1	12/18/1989	ND	ND	ND	ND	ND									73.89	14.88	59.01
MW-1	3/8/1990	ND	ND	ND	ND	ND									73.89	14.08	59.81
MW-1	6/7/1990	ND	ND	ND	ND	ND									73.89	13.89	60.00
MW-1	9/5/1990	ND	ND	ND	ND	ND									73.89	14.83	59.06
MW-1	12/3/1990	ND	ND	ND	ND	ND									73.89	15.05	58.84
MW-1	3/1/1991	ND	ND	ND	ND	ND									73.89	14.34	59.55
MW-1	6/3/1991	ND	ND	ND	ND	ND									73.89	14.16	59.73
MW-1	9/4/1991	ND	ND	ND	ND	ND									73.89	14.60	59.29
MW-1	3/13/1992	ND	ND	ND	ND	ND									73.89	13.40	60.49
MW-1	6/3/1992	ND	ND	ND	ND	ND									73.89	13.76	60.13
MW-1	8/19/1992	87	ND	ND	ND	ND									73.89	14.57	59.32
MW-1	11/16/1992	ND	ND	ND	ND	ND									73.89	14.78	59.11
MW-1	2/18/1993	59 a	ND	ND	ND	ND									73.89	12.14	61.75
MW-1	6/1/1993	ND	ND	ND	ND	ND									73.89	13.30	60.59
MW-1	8/30/1993	ND	ND	ND	ND	ND									73.89	14.32	59.57
MW-1	12/13/1993	ND	ND	ND	ND	ND									73.89	14.06	59.83
MW-1	3/3/1994	100	ND	ND	ND	ND									73.89	13.12	60.77
MW-1	6/6/1994	ND	ND	ND	ND	ND									73.89	14.20	59.69
MW-1	9/12/1994	ND	ND	ND	ND	ND									73.89	15.72	58.17
MW-1	12/15/1994	ND	ND	ND	ND	ND									73.89	12.98	60.91
MW-1	3/13/1995 b	60	4.7	9.8	ND	2.9									73.89	11.74	62.15
MW-1	4/21/1995	ND	ND	ND	ND	ND									73.89		
MW-1	6/26/1995	ND	ND	ND	ND	ND									73.89	13.00	60.89
MW-1	9/12/1995	ND	ND	ND	ND	ND									73.89	14.14	59.75
MW-1	3/21/1996	<50	< 0.5	< 0.5	< 0.5	< 0.5	ND								73.89	11.03	62.86
MW-1	6/28/1996	<50	<0.5	< 0.5	<0.5	< 0.5	<2.5								73.89	13.53	60.36
MW-1	9/19/1996	<50	<0.5	< 0.5	<0.5	< 0.5	<2.5								73.89	14.33	59.56
MW-1	12/19/1996														73.89	13.20	60.69
MW-1	12/5/1997														73.89	12.39	61.50
	, ,																

TABLE 1 Page 2 of 10

GROUNDWATER DATA SHELL-BRANDED SERVICE STATION 230 WEST MACARTHUR BOULEVARD, OAKLAND, CALIFORNIA

Well ID	Date	ТРРН	В	T	E	X	MTBE 8020	MTBE 8260	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB	TOC	Depth to Water	GW Elevation
Well ID	Dute												,				
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
MW-1	12/24/1998														73.89	13.59	60.30
MW-1	12/23/1999														73.89	15.63	58.26
MW-1	12/11/2000														73.89	15.36	58.53
MW-1	12/27/2001														73.89	12.09	61.80
MW-1	3/12/2002														73.89	12.33	61.56
MW-1	3/14/2002	< 50	< 0.50	< 0.50	< 0.50	< 0.50		< 5.0							73.89	12.08	61.81
MW-1	6/13/2002														73.89	13.47	60.42
MW-1	9/9/2002														76.92	14.30	62.62
MW-1	12/12/2002														76.92	14.48	62.44
MW-1	3/10/2003	< 50	< 0.50	< 0.50	< 0.50	< 0.50		< 5.0							76.92	12.76	64.16
MW-1	6/10/2003														76.92	13.17	63.75
MW-1	9/16/2003														76.92	14.10	62.82
MW-1	12/3/2003														76.92	13.93	62.99
MW-1	3/11/2004	< 50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50							76.92	12.04	64.88
MW-1	6/17/2004														76.92	13.75	63.17
MW-1	9/13/2004														76.92	14.47	62.45
MW-1	12/7/2004														76.92	13.04	63.88
MW-1	3/3/2005	<50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50	< 2.0	< 2.0	<2.0	< 5.0			76.92	11.31	65.61
MW-1	6/14/2005														76.92	11.87	65.05
MW-1	9/19/2005														76.92	13.91	63.01
MW-1	3/30/2006	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500		< 0.500					< 0.500	< 0.500	76.92	10.60	66.32
MW-1	9/27/2006														76.92	14.06	62.86
MW-1	9/28/2006	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500		< 0.500	< 0.500	< 0.500	< 0.500	<10.0			76.92		
MW-1	12/26/2006														76.92	13.05	63.87
MW-1	3/29/2007	< 50	< 0.50	<1.0	<1.0	<1.0		<1.0							76.92	12.87	64.05
MW-1	6/7/2007														76.92	15.53	61.39
MW-1	9/18/2007	<50 g	< 0.50	<1.0	<1.0	<1.0		<1.0	<2.0	<2.0	<2.0	<10			76.92	15.64	61.28
MW-1	12/17/2007														76.92	15.15	61.77
MW-1	2/27/2008	<50 g	< 0.50	<1.0	<1.0	<1.0		<1.0							76.92	14.41	62.51
MW-1	5/28/2008														76.92	14.40	62.52
MW-1	9/19/2008	59	< 0.50	<1.0	<1.0	<1.0		<1.0	<2.0	<2.0	<2.0	<10			76.92	14.74	62.18
MW-1	12/4/2008														76.92	14.80	62.12
MW-1	2/25/2009	<50	< 0.50	<1.0	<1.0	<1.0		<1.0							76.92	11.91	65.01
MW-1	5/26/2009														76.92	12.73	64.19
MW-1	9/18/2009	< 50	< 0.50	<1.0	<1.0	<1.0		<1.0	<2.0	<2.0	<2.0	<10			76.92	13.82	63.10
MW-1	3/16/2010	< 50	< 0.50	<1.0	<1.0	<1.0		<1.0							76.92	14.60	62.32
MW-1	9/27/2010	< 50	< 0.50	<1.0	<1.0	<1.0		<1.0	<2.0	<2.0	<2.0	<10			76.92	15.46	61.46
MW-1	3/25/2011	<50	<0.50	<.0.50	<0.50	<1.0		<1.0							76.92	13.35	63.57

TABLE 1 Page 3 of 10

GROUNDWATER DATA SHELL-BRANDED SERVICE STATION 230 WEST MACARTHUR BOULEVARD, OAKLAND, CALIFORNIA

Well ID	Date	ТРРН	В	T	E	X	MTBE 8020	MTBE 8260	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB	TOC	Depth to Water	GW Elevation
Well 1D	Ditte	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
		(118) 2)	(118/2)	(118) 2)	(118) 2)	(118) 2)	(118) 2)	(118) 2)	(118) 2)	(118) 2)	(118) 2)	(118/2)	(118/2)	(118) 2)	(17102)	0,	(1710.2)
MW-2	7/14/1988	ND	7.9	2.6	1.1	4									75.24	15.18	60.06
MW-2	10/4/1988	90	ND	1.3	2.3	12									75.24	15.30	59.94
MW-2	11/10/1988	ND	ND	ND	ND	2									75.24	15.17	60.07
MW-2	12/9/1988	ND	ND	0.6	ND	3									75.24	14.82	60.42
MW-2	1/20/1989	ND	ND	ND	ND	ND									75.24	14.54	60.70
MW-2	2/6/1989		ND	ND	ND	ND									75.24	14.59	60.65
MW-2	3/10/1989	ND	ND	ND	ND	ND									75.24	14.88	60.36
MW-2	6/6/1989	ND	ND	0.5	ND	ND									75.24	15.30	59.94
MW-2	9/7/1989	ND	ND	ND	ND	ND									75.24	16.76	58.48
MW-2	12/18/1989	ND	ND	ND	ND	ND									75.24	16.65	58.59
MW-2	3/8/1990	ND	ND	ND	ND	ND									75.24	15.92	59.32
MW-2	6/7/1990	ND	ND	ND	ND	ND									75.24	16.10	59.14
MW-2	9/5/1990	ND	ND	ND	ND	ND									75.24	16.61	58.63
MW-2	12/3/1990	ND	ND	ND	ND	ND									75.24	17.06	58.18
MW-2	3/1/1991	ND	ND	ND	ND	ND									75.24	16.62	58.62
MW-2	6/3/1991	ND	ND	ND	ND	ND									75.24	16.65	58.59
MW-2	9/4/1991	ND	ND	ND	ND	ND									75.24	16.57	58.67
MW-2	3/13/1992	ND	ND	ND	ND	ND									75.24	14.66	60.58
MW-2	6/3/1992	ND	ND	ND	ND	ND									75.24	15.90	59.34
MW-2	8/19/1992	67	ND	ND	ND	ND									75.24	16.72	58.52
MW-2	11/16/1992	50	ND	ND	ND	1.2									75.24	16.66	58.58
MW-2	2/18/1993	52 a	ND	ND	ND	ND									75.24	13.88	61.36
MW-2 (D)	2/18/1993	52 a	ND	ND	ND	ND									75.24	13.88	61.36
MW-2	6/1/1993	ND	ND	ND	ND	ND									75.24	14.74	60.50
MW-2	8/30/1993	70 a	ND	ND	ND	ND									75.24	15.85	59.39
MW-2	12/13/1993	68 a	ND	ND	ND	ND									75.24	15.83	59.41
MW-2	3/3/1994	280 a	ND	ND	ND	ND									75.24	14.80	60.44
MW-2	6/6/1994	ND	ND	ND	ND	ND									75.24	16.65	58.59
MW-2	9/12/1994	ND	ND	ND	ND	ND									75.24	16.72	58.52
MW-2	12/15/1994	230 a	ND	ND	ND	ND									75.24	15.25	59.99
MW-2	3/13/1995	ND	2.9	6.3	ND	2.7									75.24	15.32	59.92
MW-2	4/21/1995	ND	ND	ND	ND	ND									75.24		
MW-2	6/26/1995	ND	ND	ND	ND	ND									75.24	14.65	60.59
MW-2	9/12/1995	ND	ND	ND	ND	ND									75.24	15.78	59.46
MW-2	3/21/1996	< 50	< 0.5	< 0.5	< 0.5	< 0.5	ND								75.24	12.72	62.52
MW-2	6/28/1996	<50	<0.5	<0.5	<0.5	<0.5	160								75.24	14.95	60.29
MW-2	9/19/1996	<50	<0.5	<0.5	<0.5	<0.5	27								75.24	15.64	59.60
MW-2	12/19/1996														75.24	14.47	60.77
MW-2	12/5/1997														75.24	14.22	61.02
14144 ~	12/0/1///														/ U.Z-I	11,44	01.02

TABLE 1 Page 4 of 10

GROUNDWATER DATA SHELL-BRANDED SERVICE STATION 230 WEST MACARTHUR BOULEVARD, OAKLAND, CALIFORNIA

Well ID	Date	ТРРН	В	T	E	X	MTBE 8020	MTBE 8260	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB	тос	Depth to Water	GW Elevation
weii 1D	Date																
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
MW-2	12/24/1998														75.24	14.97	60.27
MW-2	12/23/1999														75.24	16.07	59.17
MW-2	12/11/2000														75.24	15.78	59.46
MW-2	12/27/2001							95							75.24	14.25	60.99
MW-2	3/14/2002	120	< 0.50	< 0.50	< 0.50	< 0.50		31							75.24	14.59	60.65
MW-2	6/13/2002	100	< 0.50	< 0.50	< 0.50	< 0.50		32							75.24	14.58	60.66
MW-2	9/9/2002	90	< 0.50	< 0.50	< 0.50	< 0.50		54							78.25	15.49	62.76
MW-2	12/12/2002	92	< 0.50	< 0.50	< 0.50	< 0.50		21							78.25	16.21	62.04
MW-2	3/10/2003	110	< 0.50	< 0.50	< 0.50	< 0.50		33							78.25	14.33	63.92
MW-2	6/10/2003	<50	< 0.50	< 0.50	< 0.50	<1.0		49							78.25	14.48	63.77
MW-2	9/16/2003	<50	< 0.50	< 0.50	< 0.50	<1.0		39							78.25	15.45	62.80
MW-2	12/3/2003	56 a	< 0.50	< 0.50	< 0.50	<1.0		3.6							78.25	15.60	62.65
MW-2	3/11/2004	58 a	< 0.50	< 0.50	< 0.50	<1.0		67							78.25	13.78	64.47
MW-2	6/17/2004	<50	< 0.50	< 0.50	< 0.50	<1.0		40							78.25	14.87	63.38
MW-2	9/13/2004	68 d	< 0.50	< 0.50	< 0.50	<1.0		44	<2.0	<2.0	<2.0	< 5.0			78.25	15.85	62.40
MW-2	12/7/2004	<50 e	< 0.50	< 0.50	< 0.50	<1.0		54							78.25	15.17	63.08
MW-2	3/3/2005	110 e	< 0.50	< 0.50	< 0.50	<1.0		82							78.25	13.38	64.87
MW-2	6/14/2005	<50 e	< 0.50	< 0.50	< 0.50	<1.0		29							78.25	13.95	64.30
MW-2	9/19/2005	< 50	< 0.50	< 0.50	< 0.50	<1.0		31	<2.0	<2.0	<2.0	5.6			78.25	14.78	63.47
MW-2	3/30/2006	<50.0	< 0.500	< 0.500	< 0.500	< 0.500		39.1					< 0.500	< 0.500	78.25	11.60	66.65
MW-2	9/27/2006														78.25	15.42	62.83
MW-2	9/28/2006	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500		16.7	< 0.500	< 0.500	< 0.500	<10.0			78.25		
MW-2	12/26/2006														78.25	14.60	63.65
MW-2	3/29/2007	< 50	< 0.50	<1.0	<1.0	<1.0		13							78.25	14.28	63.97
MW-2	6/7/2007														78.25	18.20	60.05
MW-2	9/18/2007	72 g	< 0.50	<1.0	<1.0	<1.0		1.3	<2.0	<2.0	<2.0	<10			78.25	19.70	58.55
MW-2	12/17/2007														78.25	15.50	62.75
MW-2	2/27/2008	60 g	< 0.50	<1.0	<1.0	<1.0		18							78.25	18.12	60.13
MW-2	5/28/2008														78.25	18.75	59.50
MW-2	9/19/2008	210	< 0.50	<1.0	<1.0	<1.0		15	<2.0	< 2.0	<2.0	<10			78.25	17.35	60.90
MW-2	12/4/2008														78.25	16.78	61.47
MW-2	2/25/2009	120	< 0.50	<1.0	<1.0	<1.0		11							78.25	13.92	64.33
MW-2	5/26/2009														78.25	14.50	63.75
MW-2	9/18/2009	130	< 0.50	<1.0	<1.0	<1.0		5.6	<2.0	< 2.0	<2.0	<10			78.25	14.92	63.33
MW-2	3/16/2010	110	< 0.50	<1.0	<1.0	<1.0		7.6							78.25	18.16	60.09
MW-2	9/27/2010	270	< 0.50	<1.0	<1.0	<1.0		<1.0	<2.0	<2.0	<2.0	<10			78.25	20.81	57.44
MW-2	3/25/2011	120 h	< 0.50	< 0.50	< 0.50	<1.0		1.8							78.25	17.98	60.27
MW-3	7/14/1988	ND	ND	ND	ND	ND									74.68	14.05	60.63

TABLE 1 Page 5 of 10

GROUNDWATER DATA SHELL-BRANDED SERVICE STATION 230 WEST MACARTHUR BOULEVARD, OAKLAND, CALIFORNIA

Well ID	Date	ТРРН	В	T	E	X	MTBE 8020	MTBE 8260	DIPE	ЕТВЕ	TAME	TBA	1,2-DCA	EDB	тос	Depth to Water	GW Elevation
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Ditte	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
MW-3	10/4/1988	ND	ND	ND	ND	5									74.68	14.60	60.08
MW-3	11/10/1988	ND	ND	ND	ND	ND									74.68	14.35	60.33
MW-3	12/9/1988	ND	ND	ND	ND	ND									74.68	14.04	60.64
MW-3	1/10/1989	ND	ND	ND	ND										74.68	13.70	60.98
MW-3	1/20/1989			ND	ND	ND									74.68	13.72	60.96
MW-3	2/6/1989	70	ND	ND	ND	ND									74.68	13.75	60.93
MW-3	3/10/1989	150	ND	ND	ND	ND									74.68	13.42	61.26
MW-3	6/6/1989	ND	ND	ND	ND	ND									74.68	14.52	60.16
MW-3	9/7/1989	ND	0.65	ND	ND	ND									74.68	15.52	59.16
MW-3	12/18/1989	46	1.3	ND	0.44	0.66									74.68	19.59	55.09
MW-3	3/8/1990	ND	ND	ND	ND	ND									74.68	14.72	59.96
MW-3	6/7/1990	ND	ND	ND	ND	ND									74.68	14.65	60.03
MW-3	9/5/1990	ND	ND	ND	ND	ND									74.68	15.51	59.17
MW-3	12/3/1990	ND	ND	ND	ND	ND									74.68	14.85	59.83
MW-3	3/1/1991	1.9	59	ND	22	ND									74.68	14.92	59.76
MW-3	6/3/1991	ND	ND	ND	ND	ND									74.68	14.75	59.93
MW-3	9/4/1991	ND	ND	ND	ND	ND									74.68	15.14	59.54
MW-3	3/13/1992	ND	ND	ND	ND	ND									74.68	13.50	61.18
MW-3	6/3/1992	ND	ND	ND	ND	ND									74.68	14.39	60.29
MW-3	8/19/1992	92	ND	ND	ND	ND									74.68	15.08	59.60
MW-3 (D)	8/19/1992	76	ND	ND	ND	ND									74.68	15.08	59.60
MW-3	11/16/1992	200 a	ND	ND	ND	ND									74.68	15.43	59.25
MW-3 (D)	11/16/1992	140 a	ND	ND	ND	ND									74.68	15.43	59.25
MW-3	2/18/1993	680 a	ND	ND	ND	ND									74.68	12.96	61.72
MW-3	6/1/1993	160 a	ND	ND	ND	ND									74.68	13.98	60.70
MW-3 (D)	6/1/1993	150 a	ND	ND	ND	ND									74.68	13.98	60.70
MW-3	8/30/1993	110 a	ND	ND	ND	ND									74.68	14.82	59.86
MW-3	12/13/1993	140 a	ND	ND	ND	ND									74.68	14.70	59.98
MW-3 (D)	12/13/1993	110 a	ND	ND	ND	ND									74.68	14.70	59.98
MW-3	3/3/1994	61 a	ND	ND	ND	ND									74.68	13.92	60.76
MW-3	6/6/1994	ND	ND	ND	ND	ND									74.68	14.73	59.95
MW-3	9/12/1994	ND	ND	ND	ND	ND									74.68	15.42	59.26
MW-3	12/15/1994	ND	ND	0.9	ND	0.6									74.68	13.80	60.88
MW-3	3/13/1995	100 a	7.9	17	0.7	6.1									74.68	12.41	62.27
MW-3	4/21/1995	60	0.9	1.1	ND	1									74.68		
MW-3	6/26/1995	ND	ND	ND	ND	ND									74.68	13.79	60.89
MW-3	09/12/1995 b	ND	ND	ND	ND	ND									74.68	14.77	59.91
MW-3	3/21/1996	<50	<0.5	<0.5	<0.5	<0.5	17								74.68	11.80	62.88
MW-3	6/28/1996	<50	<0.5	<0.5	<0.5	<0.5	<0.5								74.68	14.19	60.49

TABLE 1 Page 6 of 10

GROUNDWATER DATA SHELL-BRANDED SERVICE STATION 230 WEST MACARTHUR BOULEVARD, OAKLAND, CALIFORNIA

Well ID	Date	ТРРН	В	T	E	X	MTBE 8020	MTBE 8260	DIPE	ЕТВЕ	TAME	TBA	1,2-DCA	EDB	TOC	Depth to Water	GW Elevation
weii 1D	Date												,				
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
MW-3	9/19/1996	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5								74.68	14.85	59.83
MW-3	12/19/1996														74.68	13.61	61.07
MW-3	12/5/1997														74.68	13.16	61.52
MW-3	12/24/1998														74.68	14.08	60.60
MW-3	12/23/1999														74.68	15.92	58.76
MW-3	12/11/2000														74.68	15.31	59.37
MW-3	12/27/2001														74.68	12.84	61.84
MW-3	3/12/2002														74.68	12.54	62.14
MW-3	3/14/2002	< 50	< 0.50	< 0.50	< 0.50	< 0.50		40							74.68	12.78	61.90
MW-3	6/13/2002														74.68	14.06	60.62
MW-3	9/9/2002														77.69	14.77	62.92
MW-3	12/12/2002														77.69	15.11	62.58
MW-3	3/10/2003	< 50	< 0.50	< 0.50	< 0.50	< 0.50		5.4							77.69	13.52	64.17
MW-3	6/10/2003														77.69	13.82	63.87
MW-3	9/16/2003														77.69	14.60	63.09
MW-3	12/3/2003														77.69	14.53	63.16
MW-3	3/11/2004	< 50	< 0.50	< 0.50	< 0.50	<1.0		3.5							77.69	12.38	65.31
MW-3	6/17/2004														77.69	14.28	63.41
MW-3	9/13/2004														77.69	14.78	62.91
MW-3	12/7/2004														77.69	13.77	63.92
MW-3	3/3/2005	120	1.3	< 0.50	< 0.50	2.7		2.3	<2.0	<2.0	<2.0	37			77.69	11.84	65.85
MW-3	6/14/2005														77.69	12.29	65.40
MW-3	9/19/2005														77.69	14.33	63.36
MW-3	3/30/2006	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500		1.72					< 0.500	< 0.500	77.69	10.30	67.39
MW-3	9/27/2006														77.69	14.62	63.07
MW-3	9/28/2006	610	< 0.500	< 0.500	< 0.500	< 0.500		2.83	< 0.500	< 0.500	< 0.500	<10.0			77.69		
MW-3	12/26/2006														77.69	13.82	63.87
MW-3	3/29/2007	< 50	< 0.50	<1.0	<1.0	<1.0		0.78 f							77.69	13.55	64.14
MW-3	6/7/2007														77.69	16.38	61.31
MW-3	9/18/2007	<50 g	< 0.50	<1.0	<1.0	<1.0		1.1	< 2.0	<2.0	<2.0	<10			77.69	16.24	61.45
MW-3	12/17/2007														77.69	19.24	58.45
MW-3	2/27/2008	<50 g	< 0.50	<1.0	<1.0	<1.0		1.4							77.69	14.65	63.04
MW-3	5/28/2008														77.69	15.33	62.36
MW-3	9/19/2008	100	< 0.50	<1.0	<1.0	<1.0		<1.0	<2.0	<2.0	<2.0	<10			77.69	15.53	62.16
MW-3	12/4/2008														77.69	15.38	62.31
MW-3	2/25/2009	88	< 0.50	<1.0	<1.0	<1.0		<1.0							77.69	12.60	65.09
MW-3	5/26/2009														77.69	13.40	64.29
MW-3	9/18/2009	330	< 0.50	<1.0	<1.0	<1.0		<1.0	<2.0	<2.0	<2.0	<10			77.69	14.66	63.03
MW-3	3/16/2010	170	< 0.50	<1.0	<1.0	<1.0		<1.0							77.69	14.73	62.96
	-,,				2.0			0									

TABLE 1 Page 7 of 10

GROUNDWATER DATA SHELL-BRANDED SERVICE STATION 230 WEST MACARTHUR BOULEVARD, OAKLAND, CALIFORNIA

Well ID	Date	ТРРН	В	T	E	X	MTBE 8020	MTBE 8260	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB	TOC	Depth to Water	GW Elevation
Well ID	Dute	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(118/12)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(WIJL)	()1.)	(IVISL)
MW-3	9/27/2010	< 50	< 0.50	<1.0	<1.0	<1.0		<1.0	<2.0	< 2.0	< 2.0	<10			77.69	16.09	61.60
MW-3	3/25/2011	< 50	<0.50	<0.50	<0.50	<1.0		<1.0							77.69	14.16	63.53
MW-4	1/23/1990	1,600	100	10	30	20									73.83	14.68	59.15
MW-4	3/8/1990	4,200	260	18	88	39									73.83	14.38	59.45
MW-4	6/7/1990	2,000	150	6.9	14	17									73.83	14.27	59.56
MW-4	9/5/1990	1,700	130	10	7.2	19									73.83	15.40	58.43
MW-4	12/3/1990	2,600	108	41	17	59									73.83	15.90	57.93
MW-4	6/3/1991	2,800	160	15	8.8	32									73.83	14.60	59.23
MW-4	9/4/1991	Sheen													73.83	15.25	58.58
MW-4	3/13/1992	2,700	180	70	5.9	29									73.83	12.72	61.11
MW-4	6/3/1992	1,700	190	ND	30	23									73.83	14.33	59.50
MW-4	8/19/1992	170	4.2	ND	0.6	1									73.83	15.18	58.65
MW-4	11/16/1992	2,600	92	49	50	81									73.83	15.39	58.44
MW-4	2/18/1993	7,400	120	38	51	87									73.83	12.62	61.21
MW-4	6/1/1993	7,000	1,800	1,700	1,600	1,700									73.83	13.68	60.15
MW-4	8/30/1993	2,100	80	11	ND	11									73.83	14.83	59.00
MW-4 (D)	8/30/1993	2,100	77	5.6	ND	5.5									73.83	14.83	59.00
MW-4	12/13/1993	2,000 a	20	ND	21	52									73.83	14.50	59.33
MW-4	3/3/1994	3,500	150	86	85	90									73.83	13.48	60.35
MW-4 (D)	3/3/1994	3,200	130	73	74	76									73.83	13.48	60.35
MW-4	6/6/1994	590	25	ND	ND	ND									73.83	14.26	59.57
MW-4 (D)	6/6/1994	400	16	ND	ND	ND									73.83	14.26	59.57
MW-4	9/12/1994	1,800	42	ND	3.7	4.7									73.83	15.42	58.41
MW-4 (D)	9/12/1994	2,000	40	ND	5.7	8									73.83	15.42	58.41
MW-4	12/15/1994	2,900	78	14	94	17									73.83	13.43	60.40
MW-4 (D)	12/15/1994	2,900	90	7	96	18									73.83	13.43	60.40
MW-4	3/13/1995	2,700	240	24	99	34									73.83	12.13	61.70
MW-4 (D)	3/13/1995	2,500	300	24	140	28									73.83	12.13	61.70
MW-4	6/25/1995	2,100	87	10	67	25									73.83	13.26	60.57
MW-4 (D)	6/25/1995	2,300	92	12	74	26									73.83	13.26	60.57
MW-4	09/12/1995 b	1,300	33	13	9.3	15									73.83	14.64	59.19
	09/12/1995 b	1,500	2.1	16	11	17									73.83	14.64	59.19
MW-4	3/21/1996	2,100	50	3.2	40	5.4	ND								73.83	11.55	62.28
MW-4 (D)	3/21/1996	1,700	24	<0.5	39	7.2	740								73.83	11.55	62.28
MW-4	6/28/1996	1,300	61	6.2	53	11	1,000								73.83	13.86	59.97
MW-4 (D)	6/28/1996	1,200	29	6.2	50	8.3	1,000								73.83	13.86	59.97
MW-4 (D)	9/19/1996	820	12	<2.5	2.8	4.3	720								73.83	14.72	59.57
MW-4 (D)	9/19/1996	580	9.6	<2.5 <2.5	<2.5	4.5 <2.5	720 760	1,200							73.83	14.72	59.11
101 0 1-4 (D)	2/ 12/ 1220	360	9.0	~2.5	~2.5	~2.5	700	1,200							15.65	14./ 4	J9.11

TABLE 1 Page 8 of 10

GROUNDWATER DATA SHELL-BRANDED SERVICE STATION 230 WEST MACARTHUR BOULEVARD, OAKLAND, CALIFORNIA

Well ID	Date	ТРРН	В	T	E	X	MTBE 8020	MTBE 8260	DIPE	ЕТВЕ	TAME	TBA	1,2-DCA	EDB	тос	Depth to Water	GW Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
MW-4	12/19/1996	1,200	28	<5.0	< 5.0	< 5.0	<25								73.83	13.06	60.77
MW-4	12/5/1997	1,900	36	9	16	18	630								73.83	12.89	60.94
MW-4	12/24/1998	1,100	23	5.3	38	7.9	1,100								73.83	13.92	59.91
MW-4	12/17/1999	1,100	22	21	13	11	3,800	3,200							73.83	14.28	59.55
MW-4	12/23/1999														73.83	16.24	57.59
MW-4	12/11/2000	975	25.0	11.3	< 5.00	< 5.00	1,960	1,730 c							73.83	14.15	59.68
MW-4	12/27/2001	2,000	9.9	< 5.0	18	< 5.0		1,400							73.83	12.61	61.22
MW-4	3/14/2002	1,700	6.6	<2.0	2.1	2.1		1,100							73.83	12.35	61.48
MW-4	6/13/2002	1,200	4.7	<2.0	<2.0	<2.0		1,100							73.83	13.72	60.11
MW-4	9/9/2002	620	3.7	<2.0	<2.0	<2.0		760							76.82	14.56	62.26
MW-4	12/12/2002	1,500	3.9	<2.0	<2.0	<2.0		880							76.82	14.82	62.00
MW-4	3/10/2003	2,300	5.7	0.95	3.8	0.63		1,200							76.82	13.63	63.19
MW-4	6/10/2003	2,200	5.3	< 5.0	< 5.0	<10		880							76.82	13.68	63.14
MW-4	9/16/2003	1,400	< 5.0	< 5.0	< 5.0	<10		420							76.82	14.35	62.47
MW-4	12/3/2003	2,600	5.0	< 5.0	< 5.0	<10		840							76.82	14.27	62.55
MW-4	3/11/2004	1,900 a	6.3	< 5.0	< 5.0	<10		800							76.82	12.62	64.20
MW-4	6/17/2004	1,000	7.4	<2.5	<2.5	< 5.0		460							76.82	13.90	62.92
MW-4	9/13/2004	1,100	4.6	<2.5	<2.5	< 5.0		300	<10	<10	<10	160			76.82	14.67	62.15
MW-4	12/7/2004	2,200	4.6	<2.5	<2.5	< 5.0		430							76.82	13.92	62.90
MW-4	3/3/2005	2,500	5.3	<2.5	<2.5	< 5.0		620							76.82	11.75	65.07
MW-4	6/14/2005	< 50	< 0.50	< 0.50	< 0.50	<1.0		51							76.82	12.20	64.62
MW-4	9/19/2005	1,200	2.7	< 0.50	< 0.50	<1.0		140	8.4	<2.0	<2.0	280			76.82	14.08	62.74
MW-4	3/30/2006	2,740	2.01	< 0.500	< 0.500	< 0.500		222					< 0.500	< 0.500	76.82	10.25	66.57
MW-4	9/27/2006														76.82	14.18	62.64
MW-4	9/28/2006	1,660	0.950	< 0.500	< 0.500	< 0.500		73.3	6.92	< 0.500	< 0.500	77.0			76.82		
MW-4	12/26/2006														76.82	13.25	63.57
MW-4	3/29/2007	2,100	12	0.49 f	<1.0	0.21 f		150							76.82	13.18	63.64
MW-4	6/7/2007														76.82	18.01	58.81
MW-4	9/18/2007	330 g	1.7	<1.0	<1.0	<1.0		9.2	0.86 f	< 2.0	<2.0	<10			76.82	18.80	58.02
MW-4	12/17/2007														76.82	18.50	58.32
MW-4	2/27/2008	210 g	0.61	<1.0	<1.0	<1.0		<1.0							76.82	17.85	58.97
MW-4	5/28/2008														76.82	18.26	58.56
MW-4	9/19/2008	200	4.5	<1.0	<1.0	1.3		8.9	<2.0	<2.0	<2.0	<10			76.82	16.16	60.66
MW-4	12/4/2008														76.82	15.67	61.15
MW-4	2/25/2009	1,700	12	<2.0	4.2	<2.0		160							76.82	12.44	64.38
MW-4	5/26/2009														76.82	13.30	63.52
MW-4	9/18/2009	1,300	0.72	<1.0	<1.0	<1.0		150	56	<2.0	<2.0	160			76.82	14.30	62.52
MW-4	3/16/2010	300	1.2	<1.0	<1.0	<1.0		2.4							76.82	18.14	58.68
MW-4	9/27/2010	150	1.3	<1.0	<1.0	<1.0		6.6	<2.0	<2.0	<2.0	<10			76.82	18.99	57.83
74111 3	7/21/2010	100	1.0	1.0	1.0	11.0		0.0	-2.0	-2.0	-2.0	-10			70.02	10.77	07.00

TABLE 1 Page 9 of 10

GROUNDWATER DATA SHELL-BRANDED SERVICE STATION 230 WEST MACARTHUR BOULEVARD, OAKLAND, CALIFORNIA

Well ID	Date	ТРРН	В	T	E	X	MTBE 8020	MTBE 8260	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB	TOC	Depth to Water	GW Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
MW-4	3/25/2011	770	9.5	0.59	11	1.3		2.3							76.82	17.65	59.17
MW-5	9/22/2006														76.97	14.21	62.76
MW-5	9/27/2006														76.97	14.35	62.62
MW-5	9/28/2006	10,800	36.6	2.08	119	9.04		15.1	3.61	< 0.500	< 0.500	<10.0			76.97		
MW-5	12/26/2006	5,000	150	5.2	70	16		35							76.97	13.32	63.65
MW-5	3/29/2007	7,700	320	10	77	19.0 f		32							76.97	13.22	63.75
MW-5	6/7/2007	7,600	47	4.6	71	13.7		40							76.97	17.88	59.09
MW-5	9/18/2007	4,300 g	7.0	1.1	20	1.93 f		21	0.82 f	< 2.0	<2.0	15			76.97	19.00	57.97
MW-5	12/17/2007	6,900 g	58.0	9.9	410	15.8		< 5.0							76.97	18.25	58.72
MW-5	2/27/2008	6,500 g	100	13	510	32.1		26							76.97	17.32	59.65
MW-5	5/28/2008	3,200	66	5.7	140	6.7		46							76.97	17.94	59.03
MW-5	9/19/2008	3,200	110	6.3	110	12.0		<1.0	7.0	<2.0	<2.0	10			76.97	16.32	60.65
MW-5	12/4/2008	5,900	250	14	220	28.3		< 2.0							76.97	15.80	61.17
MW-5	2/25/2009	7,400	430	28	240	73		17							76.97	12.41	64.56
MW-5	5/26/2009	6,800	190	18	210	83		5.5							76.97	13.28	63.69
MW-5	9/18/2009	4,200	44	< 5.0	140	20		6.0	<10	<10	<10	< 50			76.97	14.35	62.62
MW-5	3/16/2010	15,000	64	5.7	280	21		6.4							76.97	17.46	59.51
MW-5	9/27/2010	6,100	82	<10	65	13		<10	<20	<20	<20	<100			76.97	18.90	58.07
MW-5	3/25/2011	7.600	150	10	270	43		< 5.0							76.97	16.82	60.15

Abbreviations:

TPPH = Total petroleum hydrocarbons as gasoline by EPA Method 8260B; prior to December 27, 2001, by EPA Method 8015.

BTEX = Benzene, toluene, ethylbenzene, xylenes by EPA Method 8260B; prior to December 27, 2001, by EPA Method 8020.

MTBE = Methyl tertiary-butyl ether

DIPE = Di-isopropyl ether, analyzed by EPA Method 8260B

ETBE = Ethyl tertiary-butyl ether, analyzed by EPA Method 8260B

TAME = Tertiary-amyl methyl ether, analyzed by EPA Method 8260B

TBA = Tertiary-butyl alcohol, analyzed by EPA Method 8260B

1,2-DCA = 1,2-Dichloroethane, analyzed by EPA Method 8260B

EDB = 1,2-Dibromoethane or Ethylene Dibromide, analyzed by EPA Method 8260B

TOC = Top of casing elevation

GW = Groundwater

ug/L = Micrograms per liter

MSL = Mean sea level

ft. = Feet

<n = Below detection limit

(D) = Duplicate sample

ND = Not detected at or above the quantitative limit.

TABLE 1 Page 10 of 10

GROUNDWATER DATA SHELL-BRANDED SERVICE STATION 230 WEST MACARTHUR BOULEVARD, OAKLAND, CALIFORNIA

							MTBE	MTBE								Depth to	GW
Well ID	Date	TPPH	В	T	\boldsymbol{E}	\boldsymbol{X}	8020	8260	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB	TOC	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)

--- = Not applicable

Notes:

- a = Chromatogram pattern indicates the presence of an unidentified hydrocarbon/Hydrocarbon does not match pattern of laboratory's standard.
- b = The laboratory noted the sample was analyzed after the method specified holding time.
- c = This sample was analyzed outside of EPA recommended hold time.
- d = Sample contains discrete peak in gasoline range.
- e = The concentration reported reflects individual or discrete unidentified peaks not matching a typical fuel pattern.
- f = Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
- g = Analyzed by EPA Method 8015B (M).
- h = Hydrocarbon result partly due to individual peak(s) in quantitation range

Site surveyed January 30, 2002 by Virgil Chavez Land Surveying of Vallejo, CA.

Well MW-5 surveyed on May 10, 2006 by Virgil Chavez Land Surveying of Vallejo, CA.

TABLE 2

Sample ID	Date	трнд	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	TBA	DIPE	ETBE	TAME
GS-1 ^a	10/17/1989	<50 ^b	<0.5 ^b	<0.5 ^b	<0.6 ^b	<1.5 ^b					
GS-2 ^a	10/17/1989	5,600 ^b	340 ^b	27 ^b	1,200 ^b	62 ^b					
GS-3 ^a	10/17/1989	8,800 ^b	380 ^b	6 ^b	580 ^b	42 ^b					
Probe 1	5/19/1990	<50	<0.5	<0.5	<0.5	<0.5					
Probe 2	5/19/1990	25,000	280	290	160	470					
Probe 3	5/19/1990	< 50	< 0.5	< 0.5	< 0.5	< 0.5					
Probe 4	5/19/1990	<50	5	< 0.5	2	< 0.5					
Probe 5	5/19/1990	<50	1	2	1	4					
Probe 6	5/19/1990	31,000	430	600	240	1,400					
SB-1-W	3/24/2004	10,000	430	75	98	44	110				
SB-2-W	3/24/2004	520	4.9	<1.0	<1.0	<2.0	320				
SB-4-W1	4/5/2006	<50.0	<1.00	50.4	3.92	13.3	29.2	15.1	<1.00	<1.00	<1.00
SB-7-W1	4/6/2006	<50.0	<1.00	<1.00	<1.00	<3.00	<1.00	<10.0	<1.00	<1.00	<1.00
SB-8-W1	4/6/2006	34,000	404	22.5	110	56.8	15.0	40.2	26.6	<1.00	<1.00
CD 0	2 /4 /2000	1 500°	-2.50	 0	-1 O	.4.0	120	-4.0	. 0	.2 0	
SB-9	2/1/2008	1,700°	< 0.50	<1.0	<1.0	<1.0	120	<10	<2.0	<2.0	<2.0
SB-10	2/1/2008	<50°	< 0.50	<1.0	<1.0	<1.0	94	<10	<2.0	<2.0	<2.0
SB-11	2/1/2008	<50°	< 0.50	14	<1.0	<1.0	2.6	<10	<2.0	<2.0	<2.0
SB-12	2/1/2008	4,900°	120	11	170	42.2	33	100	11	<2.0	<2.0
Groundwater	(≤10 fbg) ESL ^d :	210	46	130	43	100	1,800	18,000	NA	NA	NA

Notes:

All results in micrograms per liter $(\mu g/l)$ unless otherwise indicated.

TPHg = Total petroleum hydrocarbons as gasoline analyzed by EPA Method 8260B; before 2004, analyzed by EPA Method 8015 unless otherwise noted

Benzene, toluene, ethylbenzene, and xylenes analyzed by EPA Method 8260B; before 2004, analyzed by EPA Method 8015 unless otherwise noted

MTBE = Methyl tertiary-butyl ether analyzed by EPA Method 8260B

TBA = Tertiary-butyl alcohol analyzed by EPA Method 8260B

DIPE = Di-isopropyl ether analyzed by EPA Method 8260B

ETBE = Ethyl tertiary-butyl ether analyzed by EPA Method 8260B

TAME = Tertiary-amyl methyl ether analyzed by EPA Method 8260B

<x = Not detected at reporting limit x

--- = Not analyzed

TABLE 2

HISTORICAL GRAB GROUNDWATER ANALYTICAL DATA SHELL-BRANDED SERVICE STATION 230 WEST MACARTHUR BOULEVARD, OAKLAND, CALIFORNIA

ESL = Environmental screening level NA= No available ESL Results in **bold** equal or exceed applicable ESL

- a = Sample collected from temporary well
- b = Analyzed by unknown method
- c = Analyzed by EPA Method 8015M
- d = San Francisco Bay Regional Water Quality Control Board ESL for groundwater where groundwater is not a source of drinking water (Tables B and D of *Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater*, California Regional Water Quality Control Board, Interim Final November 2007 [Revised May 2008]).

TABLE 3

Sample ID	Date	Depth (fbg)	ТРНд	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	TBA	DIPE	ETBE	TAME	Total Lead	Organic Lead
S-A	4/14/1986	4 - 5.5	17 ^a											
S-A	4/14/1986	8.5 - 10	1,200 ^a											
S-A	4/14/1986	11 - 12.5	4,300 ^a											
S-A	4/14/1986	13.5 - 15	ND ^a											
S-B	4/14/1986	5 - 6.5	36 ^a											
S-B	4/14/1986	8 - 9.5	78 ^a											
S-B	4/14/1986	12 - 13	6.4 ^a										11.0^{b}	
S-C	4/14/1986	4 - 5.5	ND^{a}											
S-C	4/14/1986	7 - 8.5	ND^{a}											
S-C	4/14/1986	11 - 12.5	ND^{a}											
S-C	4/14/1986	13.5 - 15	5,700°											
S-D	4/14/1986	Composite	571 ^a											
B-1 @ 4'	8/28/1987	4	412	<0.05	< 0.05	<0.1	5.4						65.9 ^d	
B-1 @ 6'	8/28/1987	6	1,440	< 0.05	< 0.05	<0.1	130						26.4 ^d	
B-1 @ 8'	8/28/1987	8	1,870	< 0.05	4.3	14	325						14.3 ^d	
B-1 @ 10'	8/28/1987	10	<10	< 0.05	< 0.050	<0.1	<0.1						<5 ^d	
B-1 @ 12'	8/28/1987	12	122	0.60	0.36	0.38	0.33						<5 ^d	
B-1 @ 14'	8/28/1987	14	52	<0.05	<0.05	<0.1	<0.1						<5 ^d	
B-2 @ 5'	8/28/1987	5	<10	<0.05	1.5	5.7	<0.1						<5 ^d	
B-2 @ 6-7'	8/28/1987	6 - 7	<10	< 0.05	0.37	0.55	<0.1						<5 ^d	

TABLE 3

Sample ID	Date	Depth (fbg)	ТРНд	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	TBA	DIPE	ЕТВЕ	TAME	Total Lead	Organic Lead
B-2 @ 8-9'	8/28/1987	8 - 9	<10	0.5	0.4	0.3	<0.1						<5 ^d	
B-2 @ 10'	8/28/1987	10	<10	< 0.05	< 0.05	< 0.1	<0.1						<5 ^d	
B-2 @ 12'	8/28/1987	12	<10	<0.05	<0.05	<0.1	<0.1						<5 ^d	
A1	11/5/1987	15	380	1.6	2.2		55							
A2	11/5/1987	15	310	1.3	1.3		33							
B1	11/5/1987	15	480	4.3	0.5		22							
B2	11/5/1987	15	9.1	1.6	0.3		0.1							
C1	11/5/1987	15	12	1.5	< 0.1		1.1							
C2	11/5/1987	15	170	4.1	< 0.1		2.4							
D1	11/5/1987	15	8.6	< 0.1	<0.1		< 0.10							
D2	11/5/1987	15	44	<0.1	<0.1		5.3							
MW1-2	7/11/1988	10	<10	< 0.003	0.0116	< 0.003	< 0.003							
MW1-3	7/11/1988	15	<10	< 0.003	0.0129	< 0.003	0.0051							
MW1-4	7/11/1988	20	<10	<0.003	0.0230	<0.003	<0.003							
MW2-1	7/11/1988	5	<10	< 0.003	0.0161	< 0.003	< 0.003							
MW2-2	7/11/1988	10	<10	< 0.003	0.0093	< 0.003	< 0.003							
MW2-3	7/11/1988	15	<10	<0.003	0.010	<0.003	<0.003							
MW3-1	7/12/1988	10	278	< 0.050	0.388	< 0.003	0.411						11 ^e	
MW3-2	7/12/1988	15	<10	< 0.003	0.0367	< 0.003	< 0.003						8.3 ^e	
MW3-3	7/12/1988	20	<10	< 0.003	0.0304	0.0076	< 0.003							

TABLE 3

Sample ID	Date	Depth (fbg)	ТРНд	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	TBA	DIPE	ЕТВЕ	TAME	Total Lead	Organic Lead
SB1-1	8/16/1989	5	<1.0	< 0.05	<0.1	<0.1	<0.1							
SB1-2	8/16/1989	10	<1.0	< 0.05	< 0.1	<0.1	<0.1							
SB1-3	8/16/1989	15	<1.0	< 0.05	< 0.1	<0.1	<0.1							
SB1 (composite)	8/16/1989	Composite											4.5 ^a	<0.05
SB2-1	8/16/1989	5.5	<1.0	<0.05	<0.1	<0.1	<0.1							
SB2-2	8/16/1989	10.5	<1.0	< 0.05	< 0.1	< 0.1	<0.1							
SB2-3	8/16/1989	15.5	490	< 0.05	0.28	1.3	1.0							
SB2 (composite)	8/16/1989	Composite											2.5 ^a	< 0.05
SB3-1	8/16/1989	4.5	6.6	<0.05	0.26	0.14	0.63							
SB3-2	8/16/1989	9.5	<1.0	< 0.05	< 0.1	<0.1	<0.1							
SB3-3	8/16/1989	15.5	<1.0	< 0.05	< 0.1	< 0.1	< 0.1							
SB3 (composite)	8/16/1989	Composite											5.5 ^a	<0.05
SB-1-5'	3/24/2004	5	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050						
SB-1-10'	3/24/2004	10	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050						
SB-1-15'	3/24/2004	15	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.0078						
SB-1-17'	3/24/2004	17	12	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025						
SB-1-19.5'	3/24/2004	19.5	43	< 0.024	< 0.024	< 0.024	< 0.024	< 0.024						
SB-2-5'	3/24/2004	5	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050						
SB-2-10'	3/24/2004	10	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050						
SB-2-15'	3/24/2004	15	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050						
SB-2-17'	3/24/2004	17	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.0099						

TABLE 3

Sample ID	Date	Depth (fbg)	ТРНд	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	TBA	DIPE	ETBE	TAME	Total Lead	Organic Lead
SB-2-19.5'	3/24/2004	19.5	10	<0.025	<0.025	<0.025	<0.025	<0.025						
D-1-4.0	4/18/2005	4.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	6.2	
D-2-1.5	4/18/2005	1.5	1,700	< 0.40	2.4	3.8	5.4	< 0.40	<2.0	< 0.40	< 0.40	< 0.40	130	
D-2-3.5	4/18/2005	3.5	940	0.060	6.6	9.5	85	< 0.025	< 0.15	< 0.025	< 0.025	< 0.025	8.0	
D-3-3.0	4/18/2005	3.0	2.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	<0.0050	< 0.0050	6.5	
D-4-4.0	4/18/2005	4.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	<0.0050	<0.0050	<0.0050	<0.0050	8.1	
P-1-2.0	4/18/2005	2.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	4.2	
P-2-4.5	4/18/2005	4.5	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	9.7	
P-3-3.5	4/18/2005	3.5	620	< 0.025	0.20	1.6	6.1	0.066	0.18	< 0.025	< 0.025	< 0.025	22	
P-4-4.0	4/18/2005	4.0	2,700	4.2	1.6	39	78	0.30	<1.5	<0.25	<0.25	<0.25	140	
P-5-4.0	4/18/2005	4.0	1,600	0.98	0.28	7.4	13	< 0.25	<1.5	< 0.25	< 0.25	< 0.25	11	
EX-1-6	4/28/2005	6.0	830	< 0.50	1.4	4.1	< 0.50	< 0.50	<2.5	<1.0	< 0.50	< 0.50	7.2	
EX-2-6	4/28/2005	6.0	200	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	<1.0	< 0.50	< 0.50	7.1	
EX-3-6	4/28/2005	6.0	7.3	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.015	< 0.010	< 0.0050	< 0.0050	4.1	
EX-4-6	4/28/2005	6.0	21	< 0.023	< 0.023	< 0.023	< 0.023	< 0.023	< 0.046	< 0.023	< 0.023	< 0.023	12	

TABLE 3

Sample ID	Date	Depth (fbg)	ТРНд	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	TBA	DIPE	ETBE	TAME	Total Lead	Organic Lead
EX-B-6.5	4/28/2005	6.5	<1.0	<0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.017	< 0.010	< 0.0050	< 0.0050	3.6	
EX-5-6	4/28/2005	6.0	7.6	< 0.019	< 0.019	< 0.019	0.10	< 0.019	< 0.038	< 0.038	< 0.019	< 0.019	4.1	
EX-6-6	4/28/2005	6.0	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.013	< 0.010	< 0.0050	< 0.0050	7.3	
EX-B2-6.5	4/28/2005	6.5	260	< 0.50	<0.50	1.6	1.5	<0.50	<2.5	3.3	< 0.50	<0.50	4.0	
SB-4-5	4/4/2006	5.0	<0.100	<0.00200	<0.00200	<0.00200	<0.00500	<0.00200	<0.0500	<0.00200	<0.00500	<0.00200		
SB-4-11.5	4/5/2006	11.5	<0.100	<0.00200	<0.00200	<0.00200	< 0.00500	<0.00200	< 0.0500	<0.00200	< 0.00500	<0.00200		
SB-4-15.5	4/5/2006	15.5	0.544	<0.00200	0.119	0.00995	0.0388	<0.00200	<0.0500	<0.00200	<0.00500	<0.00200		
SB-5-3	4/4/2006	3.0	1,510 ^f	2.90 ^f	9.47 ^f	9.46 ^f	70.6 ^f	0.00403	<0.0500	0.0142	<0.00500	<0.00200		
SB-6-3	4/4/2006	3.0	0.638	<0.00200	<0.00200	<0.00200	<0.00500	<0.00200	<0.0500	<0.00200	<0.00500	<0.00200		
SB-6-6.5	4/5/2006	6.5	< 0.100	< 0.00200	< 0.00200	< 0.00200	< 0.00500	0.00418	< 0.0500	< 0.00200	< 0.00500	< 0.00200		
SB-6-9.5	4/5/2006	9.5	2.43	0.0168	< 0.00200	0.00746	< 0.00500	0.00970	< 0.0500	< 0.00200	< 0.00500	< 0.00200		
SB-6-12	4/6/2006	12.0	6.16	0.0160	<0.00200	0.0319	0.0222	0.00541	<0.0500	<0.00200	<0.00500	<0.00200		
SB-7-5	4/4/2006	5.0	0.452	<0.00200	<0.00200	0.00325	0.0199	<0.00200	<0.0500	<0.00200	<0.00500	<0.00200		
SB-7-10	4/6/2006	10.0	< 0.100	< 0.00200	< 0.00200	< 0.00200	< 0.00500	0.00221	< 0.0500	< 0.00200	< 0.00500	< 0.00200		
SB-7-15	4/6/2006	15.0	<0.100	<0.00200	<0.00200	<0.00200	<0.00500	<0.00200	<0.0500	<0.00200	<0.00500	<0.00200		
SB-8-5	4/4/2006	5.0	<0.100	<0.00200	<0.00200	<0.00200	<0.00500	<0.00200	<0.0500	<0.00200	<0.00500	<0.00200		
SB-8-10	4/6/2006	10.0	< 0.100	0.00340	< 0.00200	< 0.00200	< 0.00500	< 0.00200	< 0.0500	< 0.00200	< 0.00500	< 0.00200		
SB-8-14	4/6/2006	14.0	0.942	0.0588	0.00204	0.00416	<0.00500	0.00855	< 0.0500	0.0132	<0.00500	<0.00200		
SB-9-7	2/1/2008	7	<0.50 ^g	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050	<0.010	<0.010	< 0.010		

TABLE 3

Sample ID	Date	Depth (fbg)	ТРНд	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	TBA	DIPE	ETBE	TAME	Total Lead	Organic Lead
SB-9-11.5	2/1/2008	11.5	<0.50 ^g	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050	<0.010	<0.010	< 0.010		
SB-9-15.5	2/1/2008	15.5	<0.50 ^g	<0.0050	< 0.0050	< 0.0050	<0.010	< 0.0050	< 0.050	<0.010	< 0.010	< 0.010		
SB-10-7 SB-10-11.5	2/1/2008 2/1/2008	7 11.5	<0.50 ^g	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.010 <0.010	<0.0050 <0.0050	<0.050 <0.050	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010		
SB-10-15.5	2/1/2008	15.5	<0.50 ^g	<0.0050	<0.0050	<0.0050	<0.010	< 0.0050	<0.050	<0.010	< 0.010	< 0.010		
SB-11-7.5 SB-11-11.5	2/1/2008 2/1/2008	7.5 11.5	<0.50 ^g	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.010 <0.010	<0.0050 <0.0050	<0.050 <0.050	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	 	
SB-11-15.5	2/1/2008	15.5	<0.50 ^g	< 0.0050	< 0.0050	< 0.0050	<0.010	< 0.0050	< 0.050	<0.010	<0.010	< 0.010		
SB-12-7.5 SB-12-11 SB-12-15.5	2/1/2008 2/1/2008 2/1/2008	7.5 11 15.5	<0.50 ^g <0.50 ^g <0.50 ^g	<0.0050 <0.0050 <0.0050	<0.0050 <0.0050 <0.0050	<0.0050 <0.0050 <0.0050	<0.010 <0.010 <0.010	<0.0050 <0.0050 0.0053	<0.050 <0.050 <0.050	<0.010 <0.010 <0.010	<0.010 <0.010 <0.010	<0.010 <0.010 <0.010	 	
Challan Cail (1			180	0.27	9.3	4.7	11	8.4	110	NA	NA	NA	750	NA
Shallow Soil (≤1 Deep Soil (>10 fl			180	2.0	9.3	4.7	11	8.4	110	NA NA	NA NA	NA NA	750 750	NA NA

Notes:

All results in milligrams per kilogram (mg/kg) unless otherwise indicated.

fbg = Feet below grade

TPHg = Total petroleum hydrocarbons as gasoline analyzed by EPA Method 8260B; before 2004, analyzed by EPA Method 8015 unless otherwise noted Benzene, toluene, ethylbenzene, and xylenes analyzed by EPA Method 8260B; before 2004, analyzed by EPA Method 8020

 $MTBE = Methyl \ tertiary-butyl \ ether \ analyzed \ by \ EPA \ Method \ 8260B$

TBA = Tertiary-butyl alcohol analyzed by EPA Method 8260B

DIPE = Di-isopropyl ether analyzed by EPA Method 8260B

TABLE 3

HISTORICAL SOIL ANALYTICAL DATA SHELL-BRANDED SERVICE STATION 230 WEST MACARTHUR BOULEVARD, OAKLAND, CALIFORNIA

Depth Ethyl-Total Total Organic Sample ID MTBE TBADIPE ETBE **TAME** Lead (fbg) benzene *Xylenes* Lead Date TPHg Benzene Toluene

ETBE = Ethyl tertiary-butyl ether analyzed by EPA Method 8260B

TAME = Tertiary-amyl methyl ether analyzed by EPA Method 8260B

Total Lead analyzed by EPA Method 6010 unless otherwise noted

Organic lead analyzed by Cal LUFT Manual, 12/87 unless otherwise noted

ND = Not detected; detection limit unknown

<x = Not detected at reporting limit x

-- = Not analyzed

ESL = Environmental screening level

NA= No available ESL

Results in **bold** equal or exceed applicable ESL

Shading indicates that soil sample location was subsequently excavated; results are not representative of residual soil.

- a = Analytical method is unknown
- b = Total lead analyzed by unknown method
- c = Composite of four samples taken from depths of 4 5 fbg, 7 8.5 fbg, 11 12.5 fbg, and 13.5 15 fbg
- d = Lead analyzed by EPA Method 7421
- e = Total lead analyzed by EPA Method 7240
- f = Initial analysis within holding time. Reanalysis for the required dilution or confirmation was past holding time.
- g = Analyzed by EPA Method 8015M
- h = San Francisco Bay Regional Water Quality Control Board commercial/industrial ESL for soil where groundwater is not a source of drinking water (Tables B and D of *Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater*, California Regional Water Quality Control Board, Interim Final November 2007 [Revised May 2008]).

APPENDIX A

SITE HISTORY

SITE HISTORY

1986 Site Investigation: In April 1986, Emcon Associates of San Jose, California drilled four exploratory borings (S-A through S-D) within the tank complex to total depths of 20.5 feet below grade (fbg). Groundwater was encountered at approximately 13 fbg. Soil samples contained up to 5,700 milligrams per kilogram (mg/kg) total hydrocarbons.

1986 Additional Site Assessment: In December 1986, W.W. Irwin, Inc. (Irwin) drilled 38 soil vapor probes. Irwin concluded that hydrocarbons were primarily in the area of the underground storage tanks (USTs) and dispenser islands.

1987 Soil Vapor Extraction (SVE): In March 1987, Wayne Perry Construction, Inc. (WP) installed SVE wells (VR-1, VR-2, and VR-3) and operated an SVE and treatment system between April and November 1987. In their January 26, 1988 Review of Venting Operations, WP concluded that the venting operation had significantly decreased the contamination levels.

1987 Subsurface Investigation: In August 1987, WP drilled two soil borings (B-1 and B-2) to characterize petroleum hydrocarbons remaining in the soil. Soil samples contained up to 1,870 mg/kg total hydrocarbons as gasoline (TPHg; B-1 at 8 fbg). WP's January 26, 1988 Review of Venting Operations documents this investigation.

1987 UST Replacement: In November 1987, Crosby & Overton, Inc. removed two 8,000-gallon gasoline USTs and one 10,000-gallon gasoline UST, and Kaprealian Associates (KA) collected soil samples from the bottom of the UST excavation. Soil samples contained up to 480 mg/kg TPHg, 4.3 mg/kg benzene, 2.2 mg/kg toluene, and 55 mg/kg xylenes. KA's December 1, 1987 Soil Sampling Investigation report documents the UST removal and sampling. New USTs were installed in the same excavation.

1988 Subsurface Investigation: In July 1988, Ensco Environmental Services Inc. (Ensco) installed three groundwater monitoring wells (MW-1 through MW-3). Soil samples from the well borings contained up to 278 mg/kg TPHg (MW-3 at 10 fbg). Ensco's September 30, 1988 Soil and Groundwater Investigation report documents this investigation.

1989 Subsurface Investigation: In August 1989, Ensco drilled three soil borings (SB-1 through SB-3) in the area adjacent to the pump islands. Soil samples contained up to 490 mg/kg TPHg. Benzene was not detected in these soil samples. Ensco's October 9, 1989 September Quarterly Report documents investigation results.

1989 Groundwater Survey: On October 10, 1989, NET Pacific drilled three borings (GS-1 through GS-3) to obtain grab groundwater samples from the area adjacent to the pump islands. Grab groundwater samples contained up to 8,800 micrograms per liter (μ g/l) TPHg, 380 μ g/l benzene, 27 μ g/l toluene, 1,200 μ g/l ethylbenzene, and 62 μ g/l xylenes. TPHg and benzene, toluene, ethylbenzene, and xylenes (BTEX) were not detected in the grab groundwater sample from boring GS-1. Ensco's January 19, 1990, December Quarterly Report presents the investigation results.

1990 *Well Installation:* In January 1990, Ensco installed one monitoring well (MW-4). Ensco's March 29, 1990 *March Quarterly Report* documents the well installation.

1990 Subsurface Investigation: In May 1990, CHIPS Environmental Consulting, Inc. drilled six borings (Probe 1 through Probe 6) in the sidewalk along West MacArthur Boulevard to obtain shallow grab groundwater samples. Grab groundwater samples contained up to 31,000 μ g/l TPHg, 430 μ g/l benzene, 600 μ g/l toluene, 240 μ g/l ethylbenzene, and 1,400 μ g/l xylenes. TPHg and BTEX were not detected in the grab groundwater samples from borings Probe 1 or Probe 3. Exceltech, Inc.'s July 3, 1990 *June Quarterly Report* documents this investigation.

1998 Dispenser and Turbine Sump Upgrades: In February 1998, Paradiso Mechanical, Inc. added secondary containment to the existing dispensers and the turbine sumps above the USTs. Cambria Environmental Technology, Inc. (Cambria) inspected the dispenser and tank excavation areas. The City of Oakland inspector did not require soil sampling from the dispenser or tank excavations. No field indications of hydrocarbons, such as staining or odor, were observed in the excavations. Cambria's March 10, 1998 1998 Upgrade Site Inspection Report details these observations.

2002 Sensitive Receptor Survey (SRS), Conduit Study Report, and Subsurface Investigation Work Plan: Cambria's conduit study identified a storm drain located just west of the site, along West MacArthur Boulevard, that may act as a preferential pathway for contaminant migration. The SRS identified two wells of unknown use located approximately one-half mile down gradient and one well of unknown use located approximately 1,500 feet up gradient. Due to the distance from the site to the nearest identified wells, operations at the site are unlikely to impact these receptors. Cambria identified Glen Echo Creek, located approximately 600 feet south of the site, as the nearest surface water body. Since groundwater flow has historically been to the west-southwest, petroleum hydrocarbons and fuel oxygenates from the site are not expected to impact Glen Echo Creek. Cambria's October 31, 2002 Sensitive Receptor

Survey, Conduit Study Report, and Subsurface Investigation Work Plan presents details of the SRS and conduit study.

2003 SRS: In October 2003, Cambria completed an additional SRS. The SRS was conducted to identify basements within 200 feet, surface water and sensitive habitats within 500 feet, hospitals, residential care and childcare facilities within 1,000 feet, and water wells within one-half mile. No basements were observed within 200 feet. No surface water or sensitive habitats were observed within 500 feet. Snow White Day Care (214 West MacArthur Boulevard) is located approximately 150 feet from the site. Kaiser Permanente Hospital (280 West MacArthur Boulevard) is located approximately 450 feet from the site. National Hispanic University (262 Grand Avenue) is located approximately 825 feet from the site. No additional water wells were identified within one-half mile of the site.

2004 Subsurface Investigation: In March 2004, two soil borings (SB-1 and SB-2) were drilled adjacent to the storm drain located just west of the site, and soil and groundwater samples were collected. Soil samples contained up to 43 mg/kg TPHg and 0.0099 mg/kg methyl tertiary-butyl ether (MTBE). BTEX were not detected in soil samples. The soil samples containing TPHg and/or MTBE were from saturated soils or from within the capillary fringe and were likely an indication of groundwater impacts. Grab groundwater samples contained up to 10,000 μ g/l TPHg, 430 μ g/l benzene, 75 μ g/l toluene, 98 μ g/l ethylbenzene, 44 μ g/l xylenes, and 320 μ g/l MTBE. Cambria's July 2, 2004 Subsurface Investigation Report documents the investigation.

2005 Fueling System Upgrade: In April 2005, Cambria collected soil samples from beneath the site's dispensers and piping following an upgrade of the site's fueling system. Five dispenser soil samples and five piping trench soil samples were collected. Soil samples contained up to 2,700 mg/kg TPHg, 4.2 mg/kg benzene, 6.6 mg/kg toluene, 39 mg/kg ethylbenzene, 85 mg/kg xylenes, and 0.30 mg/kg MTBE. Based on these initial soil sampling results, Shell filed an UST Unauthorized Release (Leak)/Contamination Site Report on April 26, 2005 and conducted over-excavation of impacted soils. Following over-excavation, Cambria collected eight over-excavation bottom and side-wall samples. Soil samples contained up to 830 mg/kg TPHg, 1.4 mg/kg toluene, 4.1 mg/kg ethylbenzene, 1.5 mg/kg xylenes, and 0.017 mg/kg MTBE. Details of the sampling are included in Cambria's June 23, 2005 Dispenser and Piping Upgrade and Limited Over-Excavation Soil Sampling Report.

2005 Site Conceptual Model (SCM): In September 2005, Cambria submitted an SCM which recommended additional soil sampling, a semiannual groundwater monitoring schedule for all site wells, continued coordinated monitoring with 240 W. MacArthur

Boulevard, and risk evaluation. Cambria's September 23, 2005 SCM details these recommendations.

2006 Subsurface Investigation: In April 2006, Cambria drilled four soil borings (SB-4, SB-6, SB-7, and SB-8) at the site. Soil boring SB-8 was converted into on-site groundwater monitoring well MW-5. Soil samples from the borings contained up to 1,510 mg/kg TPHg, 2.90 mg/kg benzene, 9.47 mg/kg toluene, 9.46 mg/kg ethylbenzene, 70.6 mg/kg xylenes, 0.00970 mg/kg MTBE, and 0.0142 mg/kg di-isopropyl ether (DIPE). Grab groundwater samples contained up to 34,000 μg/l TPHg, 404 μg/l benzene, 22.5 μg/l toluene, 110 μg/l ethylbenzene, 56.8 μg/l xylenes, 29.2 μg/l MTBE, 40.2 μg/l tertiary-butyl alcohol (TBA), and 26.6 μg/l DIPE. Cambria's May 30, 2006 Subsurface Investigation and Monitoring Well Installation Report documents the investigation.

2008 Subsurface Investigation: In February 2008, Conestoga-Rovers & Associates (CRA) drilled three off-site soil borings (SB-9, SB-10, and SB-11) southwest and west of well MW-5 to further delineate groundwater impacts down gradient, and one on-site soil boring (SB-12) was drilled adjacent to well MW-5 for groundwater data comparison. Only one soil sample contained MTBE (0.0053 mg/kg in SB-12 at 15.5 fbg). TPHg, BTEX, TBA, DIPE, ethyl tertiary-butyl ether (ETBE), and tertiary-amyl methyl ether (TAME) were not detected in the soil samples. Off-site grab groundwater samples contained up to 1,700 μ g/l TPHg, 14 μ g/l toluene, and 120 μ g/l MTBE. Benzene, ethylbenzene, xylenes, TBA, DIPE, ETBE, and TAME were not detected in the off-site grab groundwater samples. The on-site grab groundwater sample contained 4,900 μ g/l TPHg, 120 μ g/l benzene, 11 μ g/l toluene, 170 μ g/l ethylbenzene, 42.2 μ g/l xylenes, 33 μ g/l MTBE, 100 μ g/l TBA, and 11 μ g/l DIPE. CRA's April 25, 2008 Site Investigation Report documents this investigation.

Groundwater Monitoring: Groundwater monitoring has been conducted at the site since July 1988. Since the fourth quarter of 2003, coordinated monitoring and sampling has been conducted with the adjacent former gas station (currently Oakland Auto Works) at 240 West MacArthur Boulevard. The depth to groundwater at the site has ranged from 11.31 and 16.76 fbg. Groundwater flow direction is typically toward the west to southwest, but has occasionally ranged to the northwest.