

July 18, 1994 Project 305-085.2B

Mr. Dan Kirk Shell Oil Company P.O. Box 4023 Concord, California 94524

Re: Quarterly Report - Second Quarter 1994
Shell Service Station
230 West MacArthur Boulevard at Piedmont Avenue
Oakland, California
WIC No 204-5508-0703

Dear Mr. Kirk:

The following presents the results of the second quarter 1994 monitoring program for the site referenced above. This letter has been prepared for Shell Oil Company by Pacific Environmental Group, Inc. (PACIFIC).

FINDINGS

Groundwater monitoring wells were gauged and sampled by Blaine Tech Services, Inc. (Blaine) at the direction of PACIFIC on June 6, 1994. Groundwater elevation contours for the sampling date are shown on Figure 1. Table 1 presents groundwater elevation data.

Groundwater analytical data are presented in Table 2. Total petroleum hydrocarbons calculated as gasoline (TPH-g) and benzene concentrations for the June 1994 sampling event are shown on Figure 2. The only positive result of TPH-g was found in Well MW-4 and its duplicate sample. The laboratory noted these results to be the C_6 - C_{12} hydrocarbon range. Blaine's groundwater sampling report, including field data, is presented as Attachment A.

If you have any questions regarding the contents of this letter, please call.

Sincerely,

Pacific Environmental Group, Inc.

Ross W.N. Tinline

Project Geologist

RG 5860

Attachments: Table 1 - Groundwater Elevation Data

Table 2 - Groundwater Analytical Data - Total Petroleum Hydrocarbons

(TPH as Gasoline and BTEX Compounds)

ROSS W.N. TINLINE No. 5860

Figure 1 - Groundwater Elevation Contour Map Figure 2 - TPH-g/Benzene Concentration Map

Attachment A - Groundwater Sampling Report

cc: Ms. Lisa McCann, Regional Water Quality Control Board - S.F. Bay Region

Mr. Craig Mayfield, Alameda County Flood Control and Water

Conservation District

Mr. Gil Wistar, Alameda County Health Department

Table 1 Groundwater Elevation Data

Shell Service Station 230 West MacArthur Boulevard at Piedmont Avenue Oakland, California

Well Number	Date Gauged	Well Elevation (feet, MSL)	Depth to Water (feet, TOC)	Groundwater Elevation (feet, MSL)
MW-1	07/14/88	73.89	13.30	60.59
	10/04/88		13.65	60.24
	11/10/88		13.55	60.34
	12/09/88		13.22	60.67
	01/10/89		12.86	61.03
	01/20/89		12.91	60.98
	02/06/89		12.94	60.95
	03/10/89		12.59	61.30
	06/06/89		14.05	59.84
	09/07/89		14.92	58.97
	12/18/89		14.88	59.01
	03/08/90		14.08	59.81
	06/07/90		13.89	60.00
	09/05/90		14.83	59.06
	12/03/90		15.05	58.84
	03/01/91		14.34	59.55
	06/03/91		14.16	59.73
	09/04/91		14.60	59.29
	03/13/92		13.40	60.49
	06/03/92	I	13.76	60.13
	08/19/92		14.57	59.32
	11/16/92		14.78	59.11
	02/18/93		12.14	61.75
	06/01/93		13.30	60.59
	08/30/93		14.32	59.57
	12/13/93		14.06	59.83
'	03/03/94		13.12	60.77
	06/06/94		14.20	59.69
MW-2	07/14/88	75.24	15.18	60.06
	10/04/88	1	15.30	59.94
ļ	11/10/88	1	15.17	60.07
	12/09/88		14.82	60.42
1	01/20/89		14.54	60.70
	02/06/89		14.59	60.65
	03/10/89	1	14.88	60.36
	06/06/89		15.30	59.94
	09/07/89		16.76	58.48
	12/18/89		16.65	58.59
	03/08/90		15.92	59.32
	06/07/90		16.10	59.14
	09/05/90	į	16.61	58.63
	12/03/90		17.06	58.18
	03/01/91		16.62	58.62

Table 1 (continued) Groundwater Elevation Data

Shell Service Station 230 West MacArthur Boulevard at Piedmont Avenue Oakland, California

Well Number	Date Gauged	Well Elevation (feet, MSL)	Depth To Water (feet, TOC)	Groundwater Elevation (feet, MSL)
MW-2	06/03/91		16.65	58.59
(cont.)	09/04/91		16.57	58.67
	03/13/92		14.66	60.58
	06/03/92		15.90	59.34
	08/19/92		16.72	58.52
	11/16/92		16.66	58.58
	02/18/93		13.88	61.36
	06/01/93		14.74	60.50
	08/30/93		15.85	59.39
•	12/13/93		15.83	59.41
1	03/03/94		14.80	60.44
,	06/06/94		16.65	58.59
MW-3	07/14/88	74.68	14.05	60.63
	10/04/88		14.60	60.08
	11/10/88		14.35	60.33
	12/09/88		14.04	60.64
1	01/10/89		13.70	60.98
	01/20/89		13.72	60.96
	02/06/89		13.75	60.93
	03/10/89		13.42	61.26
	06/06/89		14.52	60.16
	09/07/89		15.52	59.16
	12/18/89]	19.59	55.09
	03/08/90		14.72	59.96
	06/07/90		14.65	60.03
	09/05/90	ļ	15.51	59.17
	12/03/90		14.85	59.83
	03/01/91		14.92	59.76
	06/03/91		14.75	59.93
1	09/04/91		15.14	59.54
	03/13/92		13.50	61.18
	06/03/92		14.39	60.29
	08/19/92		15.08	59.60
	11/16/92		15.43	59. 2 5 61.72
	02/18/93		12.96 13.98	60.70
	06/01/93	1	14.82	59.86
	08/30/93	1	14.82	59.88 59.98
	12/13/93		13.92	60.76
1	03/03/94 06/06/94		14.73	59.95
[00/00/94		17.70	1

Table 1 (continued) Groundwater Elevation Data

Shell Service Station 230 West MacArthur Boulevard at Piedmont Avenue Oakland, California

Well Number	Date Gauged	Well Elevation (feet, MSL)	Depth To Water (feet, TOC)	Groundwater Elevation (feet, MSL)
MW-4	01/23/90	73.83	14.68	59.15
.,,,,,	03/08/90		14.38	59.45
	06/07/90		14.27	59.56
	09/05/90		15.40	58.43
	12/03/90		15.90	57.93
	06/03/91		14.60	59.23
	09/04/91		15.25	58.58
	03/13/92		12.72	61.11
	06/03/92		14.33	59.50
	08/19/92		15.18	58.65
	11/16/92		15.39	58.44
	02/18/93		12.62	61.21
	06/01/93		13.68	60.15
	08/30/93		14.83	59.00
	12/13/93	1	14.50	59.33
	03/03/94		13.48	60.35
	06/06/94		14.26	59.57

MSL = Mean sea level

TOC = Top of casing

Table 2 Groundwater Analytical Data Total Petroleum Hydrocarbons (TPH as Gasoline and BTEX Compounds)

Shell Service Station 230 West MacArthur Boulevard at Piedmont Avenue Oakland, California

Well Number	Date Sampled	TPH as Gasoline (ppb)	Benzene (ppb)	Toluene (ppb)	Ethylbenzene (ppb)	Xylenes (ppb)
MW-1	07/14/88	ND	ND	ND	ND	ND
	10/04/88	ND	8	4.3	ND	9
	11/10/88	ND	ND	ND	ND	ND
	12/09/88	ND	ND	ND	ND	ND
	01/10/89	ND	ND	ND	ND	NA
	01/20/89	ND	ND	NA	NA	ND
	02/06/89	ND	ND	ND	ND	ND
	03/10/89	ND	ND	ND	ND	ND
	06/06/89	ND	ND	ND	ND .	ND
	09/07/89	ND	ND	ND	ND	ND
	12/18/89	ND	ND	ND	ND	ND
	03/08/90	ND	ND	ND	ND	ND
	06/07/90	ND	ND	ND	ND	ND
	09/05/90	ND	ND	ND	ND ·	ND
	12/03/90	ND	ND	ND	ND	ND
	03/01/91	ND	ND	ND	ND	ND
	06/03/91	ND	ND	ND	ND .	ND -
	09/04/91	ND	ND	ND	ND	ND
	03/13/92	ND	ND	ND	ND .	ND
	06/03/92	ND	ND	ND	ND	ND
	08/19/92	87	ND	ND	ND	ND .
	11/16/92	ND	ND	ND	ND	ND
	02/18/93	59*	ND	ND	ND	ND .
	06/01/93	ND	ND	ND	ND	ND
	08/30/93	ND	ND	ND	ND	ND
	12/13/93	ND	ND	ND	ND	ND
	03/03/94	100	ND	ND	ND	ND
	06/06/94	ND	ND	ND	ND	ND
MW-2	07/14/88	ND	7.9	2.6	1.1	4
	10/04/88	90	ND .	1.3	2.3	12
	11/10/88	ND	ND	ND	ND	2
	12/09/88	ND	ND	0.6	ND	3
	_01/20/89	ND	ND	ND	ND	ND
	02/06/89	NA	ND	ND	ND	ND
	03/10/89	ND	ND	ND	ND	ND
	-06/06/89	ND	ND	0.5	ND	ND
	09/07/89	ND	ND	ND	ND	ND
	12/18/89	ND	ND	ND	ND	ND
	03/08/90	· ND	ND	ND	ND	ND

3050852B/2Q94

Table 2 (continued) Groundwater Analytical Data Total Petroleum Hydrocarbons (TPH as Gasoline and BTEX Compounds)

Shell Service Station 230 West MacArthur Boulevard at Piedmont Avenue Oakland, California

Well Number	Date Sampled	TPH as Gasoline (ppb)	Benzene (ppb)	Toluene (ppb)	Ethylbenzene (ppb)	Xylenes (ppb)
MW-2	06/07/90	ND .	ND	ND	ND	ND
(cont.)	09/05/90	ND	ND	ND	ND	ND
` .	12/03/90	ND	ND	ND	ND	ND
	03/01/91	ND	ND	ND	ND	ND
	06/03/91	ND	· ND	ND	ŃD	ND
	09/04/91	ND	ND	ND	ND	ND
	03/13/92	ND	ND	ND	ND	ND
	06/03/92	ND	ND	ND	ND	ND
	08/19/92	67	ND	ND	ND	ND
	11/16/92	50	ND	ND	ND	1.2
	02/18/93	52*	ND	ND	ND	ND
	02/18/93(D)	52*	ND	ND	ND	ND
	06/01/93	ND	ND	ND	ND	ND
	08/30/93	70*	ND	ND	ND	ND
	12/13/93	68*	ND	ND	ND	ND
	03/03/94	280*	ND	ND	ND	ND
	06/06/94	ND	ND	ND	ND	ND
MW-3	07/14/88	ND	ND	ND	ND	ND
	10/04/88	ND	ND	ND	ND	5
	11/10/88	ND	ND	ND	ND	ND
	12/09/88	ND	ND	ND	ND	ND
	01/10/89	ND	ND	ND	ND	NA
	01/20/89	NA	NA	ND	ND	ND
	02/06/89	70 .	ND	ND	ND	ND
	03/10/89	150	ND	ND	ND	ND
	06/06/89	ND	ND	ND	ND	ND
	09/07/89	ND	0.65	ND	ND	ND
	12/06/89	46	1.3	ND	0.44	0.66
	03/08/90	ND	ND	ND	ND	ND
	06/07/90	ND	ND	ND	ND	ND
	09/05/91	ND	ND	ND	ND	ND
	12/03/90	ND	ND	ND	ND	ND
	03/01/91	1.9	59	ND	22	ND
	06/03/91	ND	ND	ND	ND	ND
	09/04/91	ND	ND	ND	ND	ND
	03/13/92	ND	ND	ND	ND	ND
	06/03/92	ND	ND	ND	ND	ND
	08/19/92	92	ND	ND	ND	ND
	08/19/92(D)	76	ND	ND	ND	ND
	11/16/92	200*	ND	ND	ND	ND

3050852B/2Q94

Table 2 (continued)

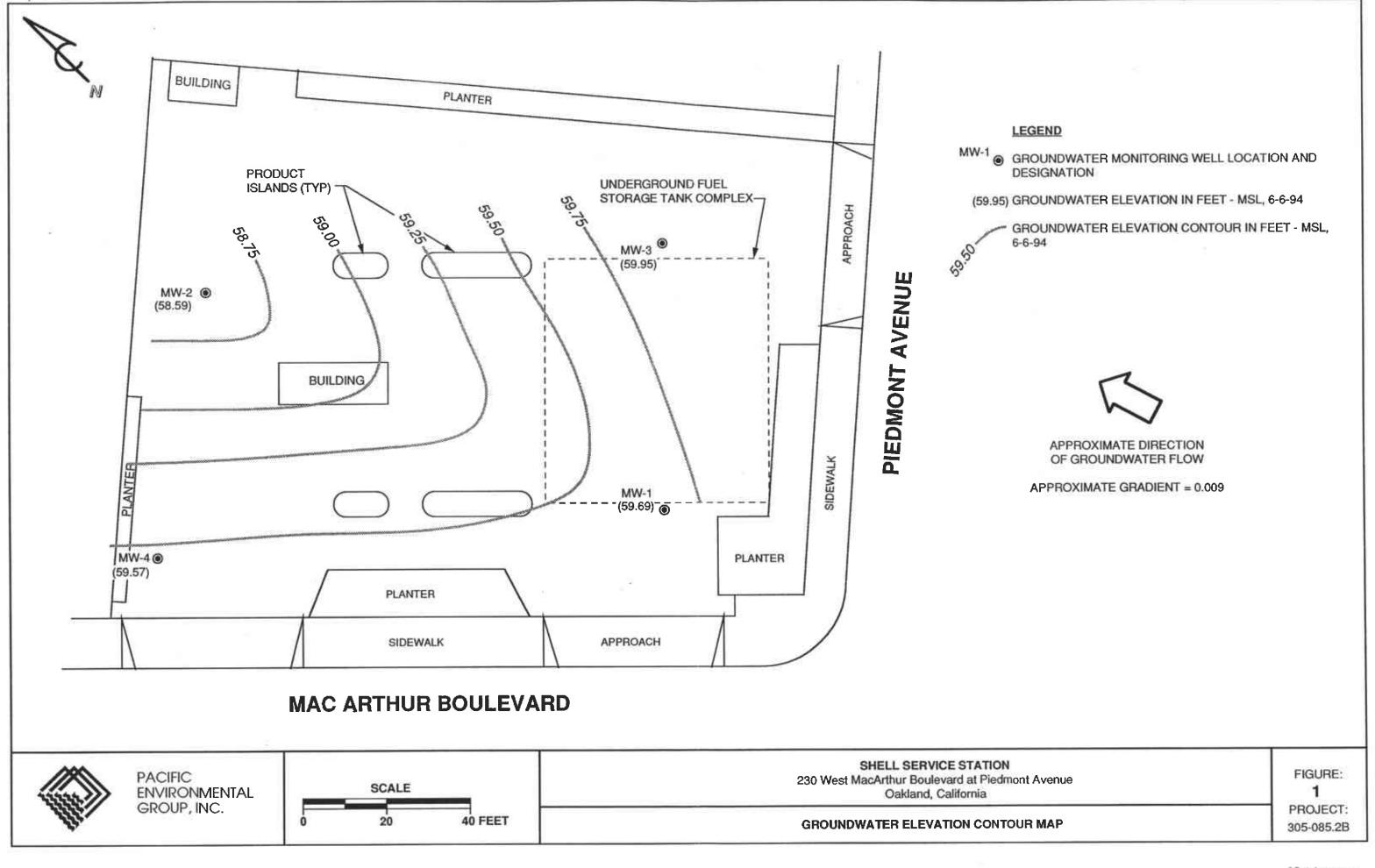
Groundwater Analytical Data

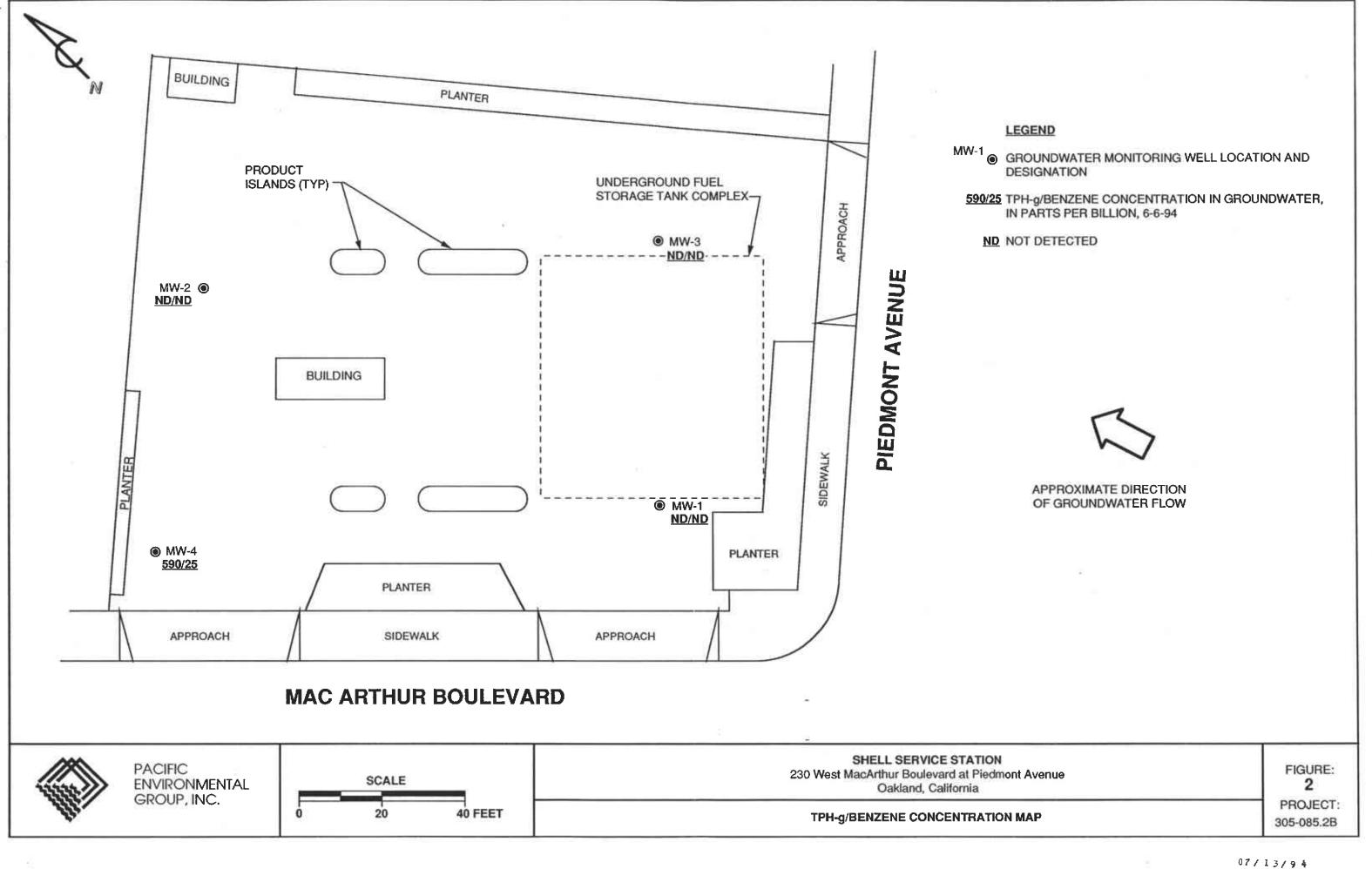
Total Petroleum Hydrocarbons (TPH as Gasoline and BTEX Compounds)

Shell Service Station 230 West MacArthur Boulevard at Piedmont Avenue Oakland, California

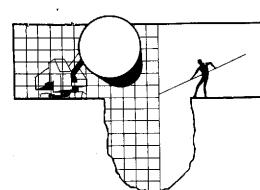
Well Number	Date Sampled	TPH as Gasoline (ppb)	Benzene (ppb)	Toluene (ppb)	Ethylbenzene (ppb)	Xylenes (ppb)
MW-3	11/16/92(D)	140*	ND	ND	ND	ND
(cont.)	02/18/93	680*	ND	ND	ND	ND
(06/01/93	160*	ND	ND	ND	ND
	06/01/93(D)	150*	ND	ND	ND	ND
	08/30/93	110*	ND	ND	ND	ND
	12/13/93	140*	ND	ND	ND	ND ·
	12/13/93(D)	110*	ND	ND	ND	ND
	03/03/94	61*	ND	ND	ND	ND
	06/06/94	ND	ND	ND	ND	ND
MW-4	01/23/90	1,600	100	10	30	20
••••	03/08/90	4,200	260	18	88	39
	06/07/90	2,000	150	6.9	14	17
	09/05/90	1,700	130	10	7.2	19
	12/03/90	2,600	108	41	17	59
	06/03/91	2,800	160	15	8.8	32
	09/04/91		Separate	-Phase Hydrod	arbon Sheen	
	03/13/92	2,700	180	70	5.9	29
	06/03/92	1,700	190	ND	30	23
	08/19/92	170	4.2	ND	0.6	1.0
	11/16/92	2,600	92	49	50	81
	02/18/93	7,400	120	38	51	87
	06/01/93	7,000	1,800	1,700	1,600	1,700
	08/30/93	2,100	80	11	ND	11
	08/30/93(D)	2,100	77	5.6	ND	5.5
	12/13/93	2,000*	20	ND	21	52
	03/03/94	3,500	150	86	85	90
	03/03/94(D)	3,200	130	73	74	76
	06/06/94	590	25	ND	ND	ND
•	06/06/94(D)	400	16	ND	ND	ND

ppb = Parts per billion


ND = Not detected


NA = Not analyzed

(D) = Duplicate sample


See certified analytical reports for detection limits.

^{* =} The concentration reported as gasoline is primarily due to the presence of a discrete hydrocarbon peak not indicative of gasoline.

ATTACHMENT A GROUNDWATER SAMPLING REPORT

BLAINE TECH SERVICES INC.

985 TIMOTHY DRIVE SAN JOSE, CA 95130 (408) 995-5530 FAX (408) 293-8770

JUN 2 5 1994

June 20, 1994

Shell Oil Company P.O. Box 5278 Concord, CA 94520-9998

Attn: Daniel T. Kirk

SITE: Shell WIC #204-5508-0703 230 West MacArthur Blvd. Oakland, California

QUARTER: 2nd quarter of 1994

QUARTERLY GROUNDWATER SAMPLING REPORT 940606-F-1

This report contains data collected during routine inspection, gauging and sampling of groundwater monitoring wells performed by Blaine Tech Services, Inc. in response to the request of the consultant who is overseeing work at this site on behalf of our mutual client, Shell Oil Company. Data collected in the course of our field work is presented in a TABLE OF WELL GAUGING DATA. The field information was collected during our preliminary gauging and inspection of the wells, the subsequent evacuation of each well prior to sampling, and at the time of sampling.

Measurements taken include the total depth of the well and the depth to water. The surface of water was further inspected for the presence of immiscibles which may be present as a thin film (a sheen on the surface of the water) or as a measurable free product zone (FPZ). At intervals during the evacuation phase, the purge water was monitored with instruments that measure electrical conductivity (EC), potential hydrogen (pH), temperature (degrees Fahrenheit), and turbidity (NTU). In the interest of simplicity, fundamental information is tabulated here, while the bulk of the information is turned over directly to the consultant who is making professional interpretations and evaluations of the conditions at the site.

STANDARD PROCEDURES

Evacuation

Groundwater wells are thoroughly purged before sampling to insure that the sample is collected from water that has been newly drawn into the well from the surrounding geologic formation. The selection of equipment to evacuate each well is based on the physical characteristics of the well and what is known about the performance of the formation in which the well has been installed. There are several suitable devices which can be used for evacuation. The most commonly employed devices are air or gas actuated pumps, electric submersible pumps, and hand or mechanically actuated bailers. Our personnel frequently employ USGS/Middleburg positive displacement pumps or similar air actuated pumps which do not agitate the water standing in the well.

Normal evacuation removes three case volumes of water from the well. More than three case volumes of water are removed in cases where more evacuation is needed to achieve stabilization of water parameters and when requested by the local implementing agency. Less water may be removed in cases where the well dewaters and does not recharge to 80% of its original volume within two hours and any additional time our personnel have reason to remain at the site. In such cases, our personnel return to the site within twenty four hours and collect sample material from the water which has recharged into the well case.

Decontamination

All apparatus is brought to the site in clean and serviceable condition. The equipment is decontaminated after each use and before leaving the site. Effluent water from purging and on-site equipment cleaning is collected and transported to Shell's Martinez Manufacturing Complex in Martinez, California.

Free Product Skimmer

The column headed, VOLUME OF IMMISCIBLES REMOVED (ml) is included in the TABLE OF WELL GAUGING DATA to cover situations where a free product skimming device must be removed from the well prior to gauging. Skimmers are installed in wells with a free product zone on the surface of the water. The skimmer is a free product recovery device which often prevents normal well gauging and free product zone measurements. The 2.0" and 3.0" PetroTraps fall into the category of devices that obstruct normal gauging. In cases where the consultant elects to have our personnel pull the skimmers out of the well and gauge the well, our personnel perform the additional task of draining the accumulated free product out of the PetroTrap before putting it back in the well. This

recovered free product is measured and logged in the VOLUME OF IMMISCIBLES REMOVED column. Gauging at such sites is performed in accordance with specific directions from the professional consulting firm overseeing work at the site on Shell's behalf.

Sample Containers

Sample material is collected in specially prepared containers which are provided by the laboratory that performs the analyses.

Sampling

Sample material is collected in stainless steel bailer type devices normally fitted with both a top and a bottom check valve. Water is promptly decanted into new sample containers in a manner which reduces the loss of volatile constituents and follows the applicable EPA standard for handling volatile organic and semi-volatile compounds.

Following collection, samples are promptly placed in an ice chest containing prefrozen blocks of an inert ice substitute such as Blue Ice or Super Ice. The samples are maintained in either an ice chest or a refrigerator until delivered into the custody of the laboratory.

Sample Designations

All sample containers are identified with a site designation and a discrete sample identification number specific to that particular groundwater well. Additional standard notations (e.g. time, date, sampler) are also made on the label.

Chain of Custody

Samples are continuously maintained in an appropriate cooled container while in our custody and until delivered to the laboratory under a standard Shell Oil Company chain of custody. If the samples are taken charge of by a different party (such as another person from our office, a courier, etc.) prior to being delivered to the laboratory, appropriate release and acceptance records are made on the chain of custody (time, date, and signature of the person releasing the samples followed by the time, date and signature of the person accepting custody of the samples).

Hazardous Materials Testing Laboratory

The samples obtained at this site were delivered to Sequoia Analytical Laboratory in Redwood City, California. Sequoia Analytical Laboratory is a California Department of Health Services certified Hazardous Materials Testing Laboratory and is listed as DOHS HMTL #1210.

Objective Information Collection

Blaine Tech Services, Inc. performs specialized environmental sampling and documentation as an independent third party. In order to avoid compromising the objectivity necessary for the proper and disinterested performance of this work, Blaine Tech Services, Inc. performs no consulting and does not become involved in the marketing or installation of remedial systems of any kind. Blaine Tech Services, Inc. is concerned only with the generation of objective information, not with the use of that information to support evaluations and recommendations concerning the environmental condition of the site. Even the straightforward interpretation of objective analytical data is better performed by interested regulatory agencies, and those engineers and geologists who are engaged in the work of providing professional opinions about the site and proposals to perform additional investigation or design remedial systems.

Reportage

Submission of this report and the attached laboratory report to interested regulatory agencies is handled by the consultant in charge of the project. Any professional evaluations or recommendations will be made by the consultant under separate cover.

Please call if we can be of any further assistance.

Richard C. Blaine

RCB/lp

attachments: table of well gauging data

chain of custody

certified analytical report

cc: Pacific Environmental Group, Inc. 2025 Gateway Place, Suite #440 San Jose, CA 95110

ATTN: Rhonda Barrick

TABLE OF WELL GAUGING DATA

WELL I.D.	DATA COLLECTION DATE	MEASUREMENT REFERENCED TO	QUALITATIVE OBSERVATIONS	DEPTH TO FIRST IMMISCIBLES LIQUID (FPZ)	THICKNESS OF IMMISCIBLES LIQUID ZONE	VOLUME OF IMMISCIBLES REMOVED	DEPTH TO WATER	DEPTH TO WELL BOTTOM
			(sheen)	(feet)	(feet)	(ml)	(feet)	(feet)
MW-1	6/6/94	TOC		NONE	<u></u>	. ·	14.20	29.54
MW-2	6/6/94	TOC	-	NONE	_	-	16.65	27.86
MW-3	6/6/94	TOC		NONE			14.73	28.28
MW-4 *	6/6/94	TOC		NONE		. -	14.26	23.93

^{*} Sample DUP was a duplicate sample taken from well MW-4.

						٤.																9		
		SHELL OIL COMPANY RETAIL ENVIRONMENTAL ENGINEERING - WEST								СН	All \$0	O V 1 loh	F C	:US 940	TO:	DY G-	REC	CORD		o: 6-6-94				
		Silo Addross: 230 West MacArthur Blvd., Oakland					Analysis Regulred					LAB: A												
		WIC#:	204-	5508-	0703																T	CHECK OHE (I) LOX OHE)		TVIN AROUND BME
		Shell Engino Dan Kirk	or;				Phone 175-6 Fax #:	No.:	(510)													4 15] H11	24 hours
		Consultani N Blaine Te 985 Timot	ch Serv hy Driv	ices.	s: Inc. an Jose				<u> </u>				ŀ		6 8020		· 		\$ \$\frac{1}{2}\$			Salt Clossity/Okposal] 441	44 hours Differmon
•	(.	Consultant C Jim Kel	Contact:			- 1	Phono 195-5 Fax II;	No:	(408) 8773	Gas	Die xe!)		A 8240)		S& BIEX				١.	芝		Closelly/Disposed	1441 1441	Other []
		Comments:			٠	 		-		Mod	GPA 8015 Mod. D	0/602)	lcs (EPA	7	PH 5015				40 ni	ש	~	Wistor Rem, or Sys. C) HB	HOTE: Notiny tob su soon as Foulble of 24/48 hrs. TAE
		Sampled by:				ريسسد	E			5015	80 15	503	P G	3002	flon J	.			Size	Z) UZ	N/Y e			
		Printed Name Sample	ID	Dale Dale	LeDeg _e Sludge	soll	Water	Alr	No. of	TPH (EPA	IPH GPA	STEX (EPA 8020/602)	Volcille Organics	Test for Disposed	Combination 1PH			Asbestos	Container Size	Preparation Use	Сопрозне	MATERIAL DESCRIPTION		SAMPLE CONDITION/ COMMENTS
	•	MW-I	iuna 9:5.J	6/6/4			X		3			ıa	>	-	X			¥	ŭ	1		440657 9 -0	,,	
	t <u>.</u>	MW-2	io;oə	\perp			Х								X					I				
	,	MW-3	10:26	$\perp \! \! \perp \! \! \mid$		٠	Х								X							-0	,	P
. *	f	MW-4	/0: / ()	<u> </u>	· 	,	Х								X			,				-0	4	
	5	DUP			•		X							,	X							-0	<u> </u>	141 a km
	J		1:54	1			<u>~</u>		$\neg \uparrow$						~							·· -o	6	
·		1B 1	ab	$\frac{1}{2}$			X		2	_			_	_	X	_		_	<u>\forall </u>	\checkmark	_	-0	†	H . 38 Av. 17
	•	Rollinguisticati	(ylgrjolure)		Pilnie	d Nome	<u></u>			Dole	601	17	Xoc	olved	(ปฏก	olure					יפוחור	i Name: , ,	_L_	Dale: GA
	,	Rollagushed by	(Jonalaria)		i'ilnio •	d Nome	11	у <u> </u>		Ilm		21/1	Roc	olvod	بر (باری) (باریان)	alúro	u	41	e poly	71		Nome:		Dole:
	,	Kolinguished By	(ปฏิกัดไปเจ):		_	d Nome				Date Itme	o: ''		Rec Z	glvod - J	(Jon	(olnte)						I Name: iTH (≧ , G)¢∈55	 -	Date; %=294

680 Chesapeake Drive 1900 Bates Avenue, Suite L Concord, CA 94520

Redwood City, CA 94063 819 Striker Avenue, Suite 8 Sacramento, CA 95834

(415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Blaine Tech Services, Inc. 985 Timothy Drive San Jose, CA 95133 Attention: Jim Keller

Project: 940606-F1, Shell, 230 W. MacArthur Bl

Enclosed are the results from 7 water samples received at Sequoia Analytical on June 8,1994. The requested analyses are listed below:

SAMPLE #	SAMPLE DESCRIPTION	DATE OF COLLECTION	TEST METHOD
4F53901	Water, MW-1	6/6/94	EPA 5030/8015 Mod./8020
4F53902	Water, MW-2	6/6/94	EPA 5030/8015 Mod./8020
4F53903	Water, MW-3	6/6/94	EPA 5030/8015 Mod./8020
4F53904	Water, MW-4	6/6/94	EPA 5030/8015 Mod./8020
4F53905	Water, Dup	6/6/94	EPA 5030/8015 Mod./8020
4F53906	Water, EB	6/6/94	EPA 5030/8015 Mod./8020
4F53907	Water, TB	6/6/94	EPA 5030/8015 Mod./8020

Please contact me if you have any questions. In the meantime, thank you for the opportunity to work with you on this project.

Very truly yours,

SEQUOIA ANALYTICAL

Suzanne Chin Project Manager

680 Chesapeake Drive 1900 Bates Avenue, Suite L. Concord, CA 94520 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Sacramento, CA 95834

(415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Blaine Tech Services, Inc. 985 Timothy Drive San Jose, CA 95133

Client Project ID: Sample Matrix:

940606-F1, Shell, 230 W. MacArthur Water

Sampled: Received: Jun 6, 1994 Jun 8, 1994

Attention: Jim Keller

Analysis Method:

EPA 5030/8015 Mod./8020

Reported:

Jun 14, 1994

First Sample #:

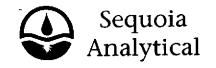
4F53901

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit μg/L	Sample I.D. 4F53901 MW-1	Sample I.D. 4F53902 MW-2	Sample I.D. 4F53903 MW-3	Sample I.D. 4F53904 MW-4	Sample I.D. 4F53905 Dup	Sample I.D. 4F53906 EB
Purgeable Hydrocarbons	50	N.D.	N.D.	N.D.	590	400	N.D.
Benzene	0.50	N.D.	N.D.	N.D.	25	16	N.D.
Toluene	0.50	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Ethyl Benzene	0.50	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Total Xylenes	0.50	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Chromatogram Pa	ttern:				C6 - C12	C6 - C12	

Quality Control Data

Report Limit Multiplication Factor:	1.0	1.0	1.0	5.0	5.0	1.0
Date Analyzed:	6/9/94	6/10/94	6/10/94	6/13/94	6/13/94	6/10/94
Instrument Identification:	GCHP-2	GCHP-2	GCHP-2	GCHP-17	GCHP-17	GCHP-2
Surrogate Recovery, %: (QC Limits = 70-130%)	92	88	88	92	82	90


Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Suzanne Chin Project Manager

4F53901.BLA <1>

680 Chesapeake Drive 1900 Bates Avenue, Suite L 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Concord, CA 94520 Sacramento, CA 95834 (415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Blaine Tech Services, Inc. 985 Timothy Drive San Jose, CA 95133 Attention: Jim Keller Client Project ID: Sample Matrix: 940606-F1, Shell, 230 W. MacArthur Water

Sampled: Received: Jun 6, 1994 Jun 8, 1994

Analysis Method:

EPA 5030/8015 Mod./8020

Reported:

Jun 14, 1994

First Sample #:

4F53907

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit μg/L	Sample I.D. 4F53907 TB		
Purgeable Hydrocarbons	50	N.D.	s.	
Benzene	0.50	N.D.		
Toluene	0.50	N.D.		
Ethyl Benzene	0.50	N.D.		
Total Xylenes	0.50	N.D.		
Chromatogram Pa	ttern:			

Quality Control Data

Report Limit Multiplication Factor:

1.0

Date Analyzed:

6/10/94

Instrument Identification:

GCHP-2

Surrogate Recovery, %:

91

(QC Limits = 70-130%)

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard.

Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Suzanne Chin Project Manager

680 Chesapeake Drive 1900 Bates Avenue, Suite L 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Concord, CA 94520 Sacramento, CA 95834 (415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Blaine Tech Services, Inc.

Client Project ID: 940606-F1, Shell, 230 W. MacArthur Bl

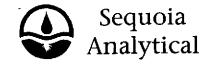
985 Timothy Drive San Jose, CA 95133 Matrix: Liquid

Attention: Jim Keller

QC Sample Group: 4F53901

Reported:

Jun 14, 1994


QUALITY CONTROL DATA REPORT

441413000					
ANALYTE	Benzene	Toluene	Ethyl Benzene	Xylenes	
			Benzene		
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Analyst:	J. Minkel	J. Minkel	J. Minkel	J. Minkel	
		×		-	
MS/MSD					
Batch#:	4F33301	4F33301	4F33301	4F33301	
Date Prepared:	•	-	_		
Date Analyzed:	6/9/94	6/9/94	6/9/94	6/9/94	
Instrument I.D.#:	GCHP-2	GCHP-2	GCHP-2	GCHP-2	
Conc. Spiked:	10 μg/L	10 μg/L	10 μg/L	30 μg/L	
-	. -,	,			
Matrix Spike					
% Recovery:	100	110	110	107	
Matrix Spike					
Duplicate %					
Recovery:	110	110	110	110	
-					
Relative %					
Difference:	9.5	0.0	0.0	2.8	
LCS Batch#:					
ECS Datch#.	-	-	•	-	
Date Prepared:		-	-	-	
Date Analyzed:		-	-	-	
Instrument l.D.#:	-	-	-	-	
LCS %					
Recovery:			_	_	
necovery.	-	-	-	•	
% Recovery			.		
Control Limits:	71-133	72-128	72-130	71-120	

SEQUOIA ANALYTICAL

Suzanne Chin Project Manager Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

680 Chesapeake Drive 1900 Bates Avenue, Suite L Concord, CA 94520 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063

(415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Blaine Tech Services, Inc.

985 Timothy Drive

San Jose, CA 95133 Attention: Jim Keller

Client Project ID:

940606-F1, Shell, 230 W. MacArthur Bl

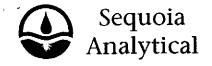
Matrix:

Liquid

QC Sample Group: 4F53902-03, 06-07

Reported:

Jun 14, 1994


QUALITY CONTROL DATA REPORT

411111					
ANALYTE	Benzene	Toluene	Ethyl Benzene	Xylenes	
			20,,22		
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Analyst:	J. Minkel	J. Minkel	J. Minkel	J. Minkel	
MS/MSD					
Batch#:	4F47202	4F47202	4F47202	4F47202	
Date Prepared:	•	-	-	-	
Date Analyzed:	6/10/94	6/10/94	6/10/94	6/10/94	
Instrument I.D.#:	GCHP-17	GCHP-17	GCHP-17	GCHP-17	
Conc. Spiked:	10 μg/L	10 µg/L	10 µg/L	30 μg/L	
Matrix Spike					
% Recovery:	93	93	93	90	
Matrix Spike					
Duplicate %					•
Recovery:	86	86	86	87	
Relative %					
Difference:	7.8	7.8	7.8	3.4	
LCS Batch#:		-	-		
Date Prepared:		_	•	-	
Date Analyzed:	-	-		-	
Instrument I.D.#:	-	-	•	-	
LCS %				*	
Recovery:	•	-	-	•	
% Recovery					
Control Limits:	71-133	72-128	72-130	71-120	

SEQUOIA ANALYTICAL

Suzanne Chin Project Manager Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

680 Chesapeake Drive 1900 Bates Avenue, Suite L 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Concord, CA 94520 Sacramento, CA 95834 (415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Blaine Tech Services, Inc. 985 Timothy Drive Client Project ID:

940606-F1, Shell, 230 W. MacArthur Bl

Matrix:

Liquid

San Jose, CA 95133 Attention: Jim Keller

QC Sample Group: 4F53904-05

Reported:

Jun 14, 1994

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl	Xylenes	
			Benzene		
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Analyst:	J. Minkel	J. Minkel	J. Minkel	J. Minkel	
MS/MSD					
Batch#:	4F60004	4F60004	4F60004	4F60004	
Date Prepared:	-	•	•	-	
Date Analyzed:	6/13/94	6/13/94	6/13/94	6/13/94	•
Instrument I.D.#:	GCHP-17	GCHP-17	GCHP-17	GCHP-17	
Conc. Spiked:	10 μg/L	10 μg/L	10 μg/L	30 μg/L	
Matrix Spike					
% Recovery:	100	100	100	100	
Matrix Spike				÷	
Duplicate %					
Recovery:	90	91	93	93	
Relative %					
Difference:	11	9.4	7.3	7.3	
LCS Batch#:	•			-	
Date Prepared:				_	
Date Analyzed:	_	-	-		
Instrument I.D.#:	-	-	-	-	
LCS %					•
Recovery:		-	• •		
% Recovery					- · · · · · · · · · · · · · · · · · · ·
Control Limits:	71-133	72-128	72-130	71-120	

SEQUOIA ANALYTICAL

Suzanne Chin Project Manager Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

Project	#:940601	0-F1	Wic	# 204-5	508 -0	703			
Sampler:	TFIML		Dat	e Sampled:	-10-94	·			
Well I.D	·: MW-1		Wel	l Diameter: (circle one)	2 3 4 6			
Total Well Depth: Depth to Water: Before 29.54 After Before 14.20 After									
	· · · · · · · · · · · · · · · · · · ·								
	Free Produ			ckness of Fre		reet):			
Measurem	ents refere	nced to:	(Pvd)	Grade	Other				
(12 =	nversion Factor (VCF): (4 ² /4) = m) /231 = in/fact = diameter (in.) = 2.1436 = in3/gal		1" = 0.2 1" = 0.2 1" = 0.2 4" = 0.4 6" = 1.4 20" = 4.0 12" = 6.8	7 5 7					
10.0)	×	3	- ••	30.0	•			
	Volume	- ·	Specified V	olumes =	gallons				
Purging:	Bailer D Middleburg Electric S Suction Pu Type of In	ubmersib. mp D	•	Sampli	Suction	urg O c Submersible O			
TIME	TEMP. (F)	рH	COND.	TURBIDITY:	VOLUME REMOVED:	OBSERVATIONS:			
9:43	(plaid	7.)	450	18.3	10.0				
9:46	67.1	7.1	490	2,5	20,5				
9:47	Gb.7	7, 1	490	2.3	30.5				
				-					
Did Well	. Dewater?	If ye	s, gals.	Gallons	Actually Ev	acuated: 37,5			
Sampling	Time: 9/6.	<u> </u>							
Sample I	.D.: MW -	\	Lal	ocatory: _SE	₹				
Analyzed	for: TPH .	-67,							
Duplicat	e I.D.:		Cle	eaning Blank I	.D.:				
Analyzed	i for:								
Shipping	Notations:								
Addition	nal Notation	15:							

Project #: 940:06 - FA Wic # 204 - 5508 - 0703								
Sampler: TF/ML Date Sampled: 6-6-94								
Well I.D.: MW-> Well Diameter: (circle one) 2 3 4 6								
Total Well Depth: Depth to Water:								
Before,	7. S(p A:	Eter	Befo) re 16.65	After			
Depth to Free Product: Thickness of Free Product (feet):								
Measurements referenced to: (PVC) Grade Other								
{12 = \$2 = \$2 = \$2 = \$2 = \$2 = \$2 = \$2 =	iversian Factor (VCF): (4 ⁷ /4) = n) /221 in/fact = diameter (in.) = 3.2416 in1/gal		2" = 0.16 3" = 0.27 4" = 0.65	= 0.16 = 0.37 = 0.65 = 1.47 = 4.60				
7.5	-	×	3		93.5			
1 Case	Volume		Specified Vo	olumes =	gallons			
Purging:	Purging: Bailer							
TIME	TEMP. (F)	ÞН	COND.	TURBIDITY:	VOLUME REMOVED:	OBSERVATIONS:		
9:59	67.6	72	630	C, O	7.5			
10:01	68.2	5.1	660	2,2	15.0			
10:03	(38,16	7.0	630	1.5	22.5			
			4					
Did Well	Dewater?	If yes	gals.	Gallons	Actually Ev			
Sampling	Time: 150	2						
Sample I.D.: MW-1- Laboratory: SEQ								
	for: TPH-C		37 <i>EX</i>					
Duplicat		-	Cle	aning Blank I	.D.: EB	954		
Analyzed	for:							
Shipping	Shipping Notations:							
Addition	Additional Notations:							

Project	#: 94060L	0 - F1	Wic	# 204-5	508-0	703		
Sampler: TF/ML Date Sampled: 6-6-94								
Well I.D.: MW-3 Well Diameter: (circle one) 2 3 4 6								
Total Well Depth: Depth to Water:								
Before 38.28 After Before 14.73 After								
Depth to Free Product: Thickness of Free Product (feet):								
Measurem	ents refere	ced to:	PVC	Grade	Other			
(12 = 	Values Conversion Factor (VCr): (12 = (4 ² /4) = r) /211 There (12 = in/feet 4 = 0.16 4 = 0.17 4 = 0.16 12 = in/feet 4 = 1.47 50 = 4.06 11 = 1.416 12 = in/feet							
9.0	,	x	3		27.0	· · · · · · · · · · · · · · · · · · ·		
1 Case	Volume	. ^ -	Specified Vo	olumes =	gallons	· · · · · · · · · · · · · · · · · · ·		
Purging:	Purging: Bailer Middleburg Electric Submersible Suction Pump Type of Installed Pump Sampling: Bailer Middleburg Electric Submersible Suction Pump Installed Installed Pump Installed Pump							
TIME	TEMP. (F)	рн	COND.	TURBIDITY:	VOLUME REMOVED:	OBSERVATIONS:		
1018	65.1	7./	550	7.0	7.0	. /		
1021	69.0	7.0	490	5.2	18.0			
102-4		7.0	500	6.8	5.20	/		
			· · · · · · · · · · · · · · · · · · ·					
Did Well	Dewater? µ0	If yes	s, gals.	Gallons J	Actually Ev	acuated: 27,070		
Sampling	Time: /O.	26						
Sample I.D.: MW - 3 Laboratory: SEQ -								
Analyzed for: TPH-67 - BTGY								
Duplicat				aning Blank I	.D.:	_		
Analyzed	for:							
Shipping	Shipping Notations:							
Additional Notations:								

		_						
Project	#: 94060	26-	Fl Wid	= # 2C4 -	5508-0	703		
Sampler: TF/ML Date Sampled: 6-6-94								
Well I.D.: MW-4 Well Diameter: (circle one) 2 3 4 6								
Total Well Depth: Depth to Water:								
Before 23.93 After Before 14.26 After								
Depth to Free Product: Thickness of Free Product (feet):								
Measurem	ments refere	nced to:	€ŶĈ	Grade	Other			
√3474 □ 32 12 14 17	inversion Fector (VCF): - (e ⁷ /4) + n)/221 - in/feet - tlemeter (in.) - 1.1416 - thirtyst		VCF SA SE SE SE SE SE SE SE SE SE SE SE SE SE					
6.5		×	3	· · · · · · · · · · · · · · · · · · ·	195	_		
	Volume	- ^ -	Specified V	olumes =	gallons			
Purging:	Purging: Bailer D Sampling: Bailer M Middleburg D Middleburg D Electric Submersible D Suction Pump D Suction Pump D Installed Pump D							
TIME	TEMP. (F)	PH '	COND.	TURBIDITY:	VOLUME REMOVED:	OBSERVATIONS:		
1032	627	7.2	580	>200	6.5			
1035	107.9	7. 2	530	3200	1.3.0			
1038	68.3	7./	590	>200	19.5			
<u> </u>								
						•		
Did Well	Dewater?	If yes	, gals.	Gallons 2	ctually Ev	acuated: 30.0		
Sampling	Time: 104	0						
Sample I.	<u> </u>	4	Lab	oratory: SEG	}			
Analyzed	for: TPH-G	7 B	TEX		-	-		
	1.D.: Du			aning Blank I.	D.:			
Analyzed	for: TPI	46-B	TOR					
Shipping	Notations:							
Additiona	l Notation:	:		•				