
THIRD AND FOURTH QUARTERS 1 QUARTERLY GROUNDWATER MONITORING PROGRAM

GERMAN AUTOCRAFT 301 E. 14TH STREET, SAN LEANDRO, CALIFORNIA

Prepared For:

Mr. Seung Lee German Autocraft

Prepared by:

ENVIRONMENTAL TESTING & MGMT. 1792 ROGERS AVENUE SAN JOSE, CALIFORNIA 95112 408,453,1800 FAX: 408,453,1801

Tom Price REA, CHMM Project Manager

Christopher M. Palmer, RG, CEG, HG

Project Geologist

CERTIFIED ENGINEERING GEOLOGIST OF CALL

Report issued February 4, 2000

I. INTRODUCTION2
II. BACKGROUND
II. BACKGROUND 3 III. WORK PERFORMED DURING THIRD AND FOURTH QUARTERS 19993
IV. GROUNDWATER ELEVATION AND GRADIENT 4 V. GROUNDWATER SAMPLING AND ANALYTICAL RESULTS 4
V. GROUNDWATER SAMPLING AND ANALYTICAL RESULTS
VI. DISCUSSION AND CONCLUSIONS
VII. LIMITATIONS
VIII. REFERENCES
TABLE 1. THIRD/FOURTH QUARTERS 1999 GROUNDWATER POTENTIOMETRIC
SURFACE ELEVATION DATA
SURFACE ELEVATION DATA
DATA
TABLE 3a. 9/29/99 - 10/2/99 GROUNDWATER CHEMICAL TEST RESULTS (EPA
METHOD 8015/8020)14
TABLE 3b. 12/29/99 GROUNDWATER CHEMICAL TEST RESULTS (EPA METHOD
8015/8020)
8015/8020)
TABLE 5. HISTORIC GROUNDWATER CHEMICAL TEST RESULTS (FPA METHOD
8015/8020)
PIGURE INDOCATION MAD
FIGURE 4. OFFER 14.19
FIGURE 1: LOCATION MAP 22 FIGURE 2: SITE MAP 23
FIGURE 2: SITE MAP 23 FIGURE 3a: VICINITY MAP WITH GROUNDWATER POTENTIOMETRIC SURFACE
FIGURE 2: SITE MAP
FIGURE 3a: VICINITY MAP WITH GROUNDWATER POTENTIOMETRIC SURFACE ELEVATION CONTOUR MAP (9/29/99)
FIGURE 3a: VICINITY MAP WITH GROUNDWATER POTENTIOMETRIC SURFACE ELEVATION CONTOUR MAP (9/29/99)
FIGURE 3a: VICINITY MAP WITH GROUNDWATER POTENTIOMETRIC SURFACE ELEVATION CONTOUR MAP (9/29/99)
FIGURE 3a: VICINITY MAP WITH GROUNDWATER POTENTIOMETRIC SURFACE ELEVATION CONTOUR MAP (9/29/99)
FIGURE 3a: VICINITY MAP WITH GROUNDWATER POTENTIOMETRIC SURFACE ELEVATION CONTOUR MAP (9/29/99)
FIGURE 3a: VICINITY MAP WITH GROUNDWATER POTENTIOMETRIC SURFACE ELEVATION CONTOUR MAP (9/29/99)
FIGURE 3a: VICINITY MAP WITH GROUNDWATER POTENTIOMETRIC SURFACE ELEVATION CONTOUR MAP (9/29/99)
FIGURE 3a: VICINITY MAP WITH GROUNDWATER POTENTIOMETRIC SURFACE ELEVATION CONTOUR MAP (9/29/99)
FIGURE 3a: VICINITY MAP WITH GROUNDWATER POTENTIOMETRIC SURFACE ELEVATION CONTOUR MAP (9/29/99)
FIGURE 3a: VICINITY MAP WITH GROUNDWATER POTENTIOMETRIC SURFACE ELEVATION CONTOUR MAP (9/29/99)
FIGURE 3a: VICINITY MAP WITH GROUNDWATER POTENTIOMETRIC SURFACE ELEVATION CONTOUR MAP (9/29/99) 24 FIGURE 3b: VICINITY MAP WITH GROUNDWATER POTENTIOMETRIC SURFACE ELEVATION CONTOUR MAP (12/29/99) 25 FIGURE 4a: VICINITY MAP WITH GROUNDWATER TOTAL PETROLEUM HYDROCARBON CONCENTRATIONS (9/29/99-10/2/99) 26 FIGURE 4b: VICINITY MAP WITH GROUNDWATER TOTAL PETROLEUM HYDROCARBON CONCENTRATIONS (12/29/99) 27 FIGURE 5a: VICINITY MAP WITH GROUNDWATER BENZENE CONCENTRATIONS (9/29/99 - 10/2/99) 28 FIGURE 5b: VICINITY MAP WITH GROUNDWATER BENZENE CONCENTRATIONS (12/29/99) 29
FIGURE 3a: VICINITY MAP WITH GROUNDWATER POTENTIOMETRIC SURFACE ELEVATION CONTOUR MAP (9/29/99)
FIGURE 3a: VICINITY MAP WITH GROUNDWATER POTENTIOMETRIC SURFACE ELEVATION CONTOUR MAP (9/29/99)
FIGURE 3a: VICINITY MAP WITH GROUNDWATER POTENTIOMETRIC SURFACE ELEVATION CONTOUR MAP (9/29/99)
FIGURE 3a: VICINITY MAP WITH GROUNDWATER POTENTIOMETRIC SURFACE ELEVATION CONTOUR MAP (9/29/99)

I. INTRODUCTION

Environmental Testing & Management (ETM) has continued the quarterly groundwater monitoring

program and related environmental activities completed during the calendar third and fourth

quarters 1999 at German Autocraft located at 301 East 14th Street in the City of San Leandro,

Alameda County, California (Figure 1). This report is submitted to the Alameda County

Department of Environmental Health (ACDEH) on behalf of Mr. Seung Lee, owner of German

Autocraft. Due to Mr. Lee's financial situation, two quarters' data are presented in this report.

The purpose of this quarterly monitoring program is to evaluate groundwater quality in the area of

five former underground fuel storage tanks (USTs) that were removed in 1990. Data accumulated

from the program will be used to assess seasonal groundwater level fluctuations, changing

groundwater quality conditions, and provide data which will support the development of corrective

action plans at the site. The quarterly monitoring program presents a description of the groundwater

monitoring activities, a compilation of groundwater quality and elevation data and a brief

description of the progress of the development of corrective actions at the site.

The groundwater monitoring program involves sampling and testing of eleven (11) monitoring

wells and one (1) private well located at the Ramirez residence at 141 Farrelly Drive. Installation of

three (3) additional monitoring wells is pending. The schedule of the monitoring program is as

follows:

Quarterly:

141 Farrelly, MW-2, MW-3, MW-8, MW-9, and MW-10

Semi-Annual:

MW-1A, MW-11, and MW-6

Annual:

MW-1, MW-4, and MW-5

2

II. BACKGROUND

German Autocraft is located at 301 E. 14th Street in San Leandro (see Location Map, Figure 1). The approximate locations of buildings, property boundaries, and adjacent streets are presented on the Site Map, Figure 2. For detailed descriptions of prior environmental activities at the subject site, please refer to the references section of this report for a listing of reports which have been submitted to the ACDEH.

III. WORK PERFORMED DURING THIRD AND FOURTH QUARTERS 1999

Work included groundwater level gauging and sampling, data analysis, and report preparation.

Activity highlights during this period are as follows:

- September 29 October 2 1999 ETM measured groundwater elevations and sampled all wells of the monitoring program and the private well at 141 Farrelly Drive.
- December 29, 1999 ETM measured groundwater elevations and sampled wells scheduled for quarterly sampling except the private well at 141 Farrelly Drive.

IV. GROUNDWATER ELEVATION AND GRADIENT

Static groundwater level elevation data collected on September 29, 1999, indicated that over the area studied, the elevation of the shallow groundwater surface ranged from 23.80 to 24.38 feet above mean sea level. The estimated groundwater flow direction was westerly (approximate gradient = 0.002 ft/ft).

Static groundwater level elevation data collected on December 29, 1999, indicated that over the area studied, the elevation of the shallow groundwater surface ranged from 23.23 to 23.75 feet above mean sea level. The estimated groundwater flow direction was westerly (approximate gradient = 0.002 ft/ft).

Table 1 presents the recent groundwater elevation data and Figure 3a and Figure 3b shows estimated groundwater flow direction as interpreted from the groundwater potentiometric elevation data. Table 2 presents historic groundwater elevation data.

The groundwater flow patterns observed these quarters are consistent with previous observations.

V. GROUNDWATER SAMPLING AND ANALYTICAL RESULTS

On September 29 - 30, 1999, groundwater samples were collected from MW-1, MW-2, MW-3, MW-4, MW-5, MW-6, MW-8, MW-9, MW-10, MW-11, MW-1A following the groundwater sampling procedures presented in Appendix A. The groundwater samples were analyzed for TPHg, BTEX by EPA Methods 5030, 8015, and 8020 as tabulated on Table 3. The well at 141 Farrelly Drive was sampled on October 2, 1999 and tested for fuel oxygenates in addition to the other tests previously listed. On December 29, 1999, groundwater samples were collected from MW-2, MW-3, MW-9, and MW-10. Due to difficulty scheduling a Saturday sampling event with the owner

during the holiday season, a sample was not collected from the private well at 141 Farrelly during the fourth quarter. Quarterly sampling of the private well at 141 Farrelly will be resumed next quarter. All samples were tested by Entech Analytical Labs, Inc. of Sunnyvale, California. The laboratory report and chain-of-custody documents are included in Appendix B. The field sampling data sheets are presented in Appendix C. The quality assurance/quality control description is included in Appendix D. Historic groundwater chemical test data by EPA Methods 5030, 8015, and 8020 is tabulated in Table 5.

Selected BTEX chemical constituents continue to exceed their respective California Drinking Water Maximum Contaminant Levels (MCLs) or Federal Action Levels (AL) (Table 3).

The sample collected 9/29/99 from MW-1, located upgradient of the former gasoline tank area, contained: TPHg at 140,000 micrograms per liter (μ g/L); benzene at 6,100 μ g/L which exceeds its MCL of 1 μ g/L; toluene at 35,000 μ g/L which exceeds its MCL of 150 μ g/L; ethyl benzene at 5,400 μ g/L which exceeds its MCL of 700 μ g/L, and; total xylenes at 27,000 μ g/L which exceeds its MCL of 1,750 μ g/L.

The sample collected 9/29/99 from monitoring well MW-1A, along West Broadmoor contained 13,000 μ g/L of TPHg, 63 μ g/L of benzene, 26 μ g/L of toluene, 30 μ g/L of ethyl benzene, and 72 μ g/L of total xylenes.

The sample collected 9/29/99 from MW-2, located down gradient of the former gasoline tank area, contained 17,000 μ g/L of TPHg, 880 μ g/L of benzene, 240 μ g/L of toluene, 830 μ g/L of ethyl benzene, and 1,000 μ g/L of total xylenes.

The sample collected 12/29/99 from MW-2, located down gradient of the former gasoline tank area, contained 11,000 μ g/L of TPHg, 800 μ g/L of benzene, 11 μ g/L of toluene, 860 μ g/L of ethyl benzene, and 780 μ g/L of total xylenes.

The sample collected 9/29/99 from monitoring well MW-3, also located down gradient of the former gasoline tank area, contained 39,000 μ g/L of TPHg, 6,000 μ g/L of benzene, 840 μ g/L of toluene, 2,400 μ g/L of ethyl benzene, and 8,100 μ g/L of total xylenes.

The sample collected 12/29/99 from monitoring well MW-3, also located down gradient of the former gasoline tank area, contained 39,000 μ g/L of TPHg, 4,600 μ g/L of benzene, 790 μ g/L of toluene, 2,400 μ g/L of ethyl benzene, and 8,100 μ g/L of total xylenes.

The sample collected 9/29/99 from monitoring well MW-4, located in the former UST area, contained 48,000 μ g/L of TPHg, 5,300 μ g/L of benzene, 6,800 μ g/L of toluene, 1,700 μ g/L of ethyl benzene, and 7,700 μ g/L of total xylenes.

The sample collected 9/29/99 from monitoring well MW-5 contained 1,200 μ g/L of TPHg, 13 μ g/L of benzene, 4.2 μ g/L of toluene, 2.7 μ g/L of ethyl benzene, and 4.2 μ g/L of total xylenes.

The sample collected 9/29/99 from monitoring well MW-6 contained 330 μ g/L of TPHg, 1.8 μ g/L of benzene, 1.4 μ g/L of toluene, 1.5 μ g/L of ethyl benzene, and <0.5 μ g/L of total xylenes.

The sample collected 9/29/99 from monitoring well MW-8 contained 8,800 μ g/L of TPHg, 140 μ g/L of benzene, <0.5 μ g/L of toluene, 53 μ g/L of ethyl benzene, and <0.5 μ g/L of total xylenes.

The sample collected 12/29/99 from monitoring well MW-8 contained 1,900 μ g/L of TPHg, 64 μ g/L of benzene, 1.0 μ g/L of toluene, 22 μ g/L of ethyl benzene, and 23 μ g/L of total xylenes.

The sample collected 9/29/99 from monitoring well MW-9 contained 42,000 μ g/L of TPHg, 140 μ g/L of benzene, 130 μ g/L of toluene, 1,000 μ g/L of ethyl benzene, and 1,700 μ g/L of total xylenes.

The sample collected 12/29/99 from monitoring well MW-9 contained 1,100,000 μ g/L of TPHg, 1,200 μ g/L of benzene, 1,300 μ g/L of toluene, 4,300 μ g/L of ethyl benzene, and 8,700 μ g/L of total xylenes.

The sample collected 9/29/99 from monitoring well MW-10 contained 9,300 μ g/L of TPHg, 60 μ g/L of benzene, 38 μ g/L of toluene, 280 μ g/L of ethyl benzene, and 150 μ g/L of total xylenes.

The sample collected 12/29/99 from monitoring well MW-10 contained 5,800 μ g/L of TPHg, 87 μ g/L of benzene, 10 μ g/L of toluene, 420 μ g/L of ethyl benzene, and 180 μ g/L of total xylenes.

The sample collected 9/29/99 from monitoring well MW-11 contained 94 μ g/L of TPHg, <0.5 μ g/L of benzene, <0.5 μ g/L of total xylenes.

The private well sampled on 10/2/99 at 141 Farrelly did not contain gasoline or oxygenated fuel additives above detection limits as follows: $<50 \,\mu\text{g/L}$ of TPHg, $<0.5 \,\mu\text{g/L}$ of benzene, $<0.5 \,\mu\text{g/L}$ of total xylenes; $<20 \,\mu\text{g/L}$ TBA, $<5 \,\mu\text{g/L}$ MTBE, $<5 \,\mu\text{g/L}$ DIPE, $<5 \,\mu\text{g/L}$ ETBE, and $<5 \,\mu\text{g/L}$ TAME.

VI. DISCUSSION AND CONCLUSIONS

Selected wells' various chemical constituents continue to exceed their respective California Drinking Water Maximum Contaminant Levels (MCLs) or Federal Action Levels (AL).

Available data, including data from the September/October and December 1999 monitoring events, indicate that groundwater flow patterns beneath the site are consistent with previous monitoring events for the project.

The current contaminant distribution shows the most elevated TPHG and benzene levels are near the source. The TPHG plume has moved west-northwesterly, as has the benzene plume. Chemical test data from MW-9 showed a significant rise in TPHG and benzene suggesting plume movement to the northwest. TPHG concentrations also rose in well MW-1A, however this contaminant is suspected to occur at another source.

The sample collected from the private well at 141 Farrelly Drive did not contain gasoline or MTBE related fuel additives above laboratory detection limits for the October 2, 1999 sampling event. Due to difficulty scheduling a Saturday sampling event during the holiday season, a sample was not collected from the private well at 141 Farrelly during the final sampling event of 1999. Quarterly sampling of the private well at 141 Farrelly will be resumed next quarter.

YII. LIMITATIONS

The data, information, interpretations and recommendations contained in this report are presented to meet current suggested regulatory requirements for determining groundwater quality on the site. Environmental Testing & Mgmt. is not responsible for laboratory errors or completeness of other consultants reports, and no warranty is made or implied therein.

The conclusions and professional opinions presented herein were developed by ETM using site specific data in accordance with current regulatory guidance and the opinions expressed are subject to revisions in light of new information which may develop in the future.

VIII. REFERENCES

- California Code of Regulations, Title 22, 66260.21, "Environmental Health Standards", 6/23/95.
- Code of Federal Regulations, 40 CFR 260, "Hazardous Waste Management System: General, 7/1/94.
- Chemist Enterprises, Soil and Water Investigation at German Autocraft, 301 East 14th Street, San Leandro, California, April 12, 1995
- The Environmental Construction Company, Preliminary Soil and Groundwater Contamination Assessment, German Autocraft, 301 East 14th Street, San Leandro, California, February 1991.
- The Environmental Construction Company, Underground Storage Tank Removals, German Autocraft, 301 East 14th Street, San Leandro, California, November 1990.
- Environmental Testing and Management, Third and Fourth Quarters 1999 Quarterly Groundwater Monitoring Program German Autocraft, 301 East 14th Street, San Leandro, California, February 4, 2000.
- Environmental Testing and Management, First Quarter 1999 Quarterly Groundwater Monitoring Report, German Autocraft, 301 East 14th Street, San Leandro, California, July 13, 1999.
- Environmental Testing and Management, Fourth Quarter 1998 Quarterly Groundwater Monitoring Report, German Autocraft, 301 East 14th Street, San Leandro, California, January 29, 1999.
- Environmental Testing and Management, Third Quarter 1998 Installation of Six Groundwater Monitoring Wells and Quarterly Monitoring Report, German Autocraft, 301 East 14th Street, San Leandro, California, November 16, 1998.
- Environmental Testing and Management, Second Quarter 1998 Quarterly Groundwater Monitoring Report, German Autocraft, 301 East 14th Street, San Leandro, California, July 10, 1998.
- Environmental Testing and Management, First Quarter 1998 Quarterly Groundwater Monitoring Report, German Autocraft, 301 East 14th Street, San Leandro, California, May 21, 1998.
- Environmental Testing and Management, Fourth Quarter 1997 Quarterly Groundwater Monitoring Report, German Autocraft, 301 East 14th Street, San Leandro, California, December 18, 1997.

- Environmental Testing and Management, Third Quarter 1997 Quarterly Groundwater Monitoring Report, German Autocraft, 301 East 14th Street, San Leandro, California, August 4, 1997.
- Environmental Testing and Management, Second Quarter 1997 Quarterly Groundwater Monitoring Report, German Autocraft, 301 East 14th Street, San Leandro, California, June 11, 1997.
- Environmental Testing and Management, First Quarter 1997 Quarterly Groundwater Monitoring Report, German Autocraft, 301 East 14th Street, San Leandro, California, March 24, 1997.
- Environmental Testing and Management, Fourth Quarter 1996 Quarterly Groundwater Monitoring Report, German Autocraft, 301 East 14th Street, San Leandro, California, January 21, 1997.
- Environmental Testing and Management, Third Quarter 1996 Quarterly Groundwater Monitoring Report, German Autocraft, 301 East 14th Street, San Leandro, California, November 18, 1996.
- Environmental Testing and Management, Second Quarter 1996 Environmental Activities Report, German Autocraft, 301 East 14th Street, San Leandro, California, August 8, 1996.
- Environmental Testing and Management, Continued Soil and Water and Offsite Investigation at German Autocraft, 301 East 14th Street, San Leandro, California, July 12, 1996.
- Environmental Testing and Management, First Quarter 1996 Environmental Activities Report, German Autocraft, 301 East 14th Street, San Leandro, California, May 20, 1996.
- Environmental Testing and Management, Third Quarter 1995 Environmental Activities Report, German Autocraft, 301 East 14th Street, San Leandro, California, October, 1995.
- Environmental Testing and Management, Fourth Quarter 1995 Environmental Activities Report, German Autocraft, 301 East 14th Street, San Leandro, California, February, 1995.
- Woodward-Clyde Consultants, Hydrogeology of Central San Leandro and Remedial Investigation of Regional Groundwater Contamination, San Leandro Plume, San Leandro, California, Volume I, December 23, 1993.

TABLE 1. THIRD/FOURTH QUARTERS 1999 GROUNDWATER POTENTIOMETRIC SURFACE ELEVATION DATA

		Septembe	r 29, 1999	Decembe	r 29, 1999
WELL	CASING	Depth to	Groundwater	Depth to	Groundwater
-	ELEVATION ¹	Groundwater	Elevation	Groundwater	Elevation
MW-1	49.49	25.10	24.39	25.74	23.75
MW-2	50.01	25.89	24.12	26.49	23.52
MW-3	49,32	25.12	24.20	25.72	23.60
MW-4	49,60	25.33	24.27	25.96	23.64
MW-5	49.57	25.31	24.26	25.93	23.64
MW-6	48.06	23.68	24.38	24.31	23.75
MW-8	49.35	25.42	23.93	25.99	23.36
MW-9	48.77	24.72	24.05	25.32	23.45
MW-10	49.92	26.12	23.80	26.69	23.23
MW-11	47.93	23.90	24.03	24.50	23.43
MW-1A	48.24	24.35	23.89	24.95	23.29
141 Farrelly	48,81	<u>-</u>	-	-	-

¹Elevations in feet above mean sea level.

TABLE 2. HISTORICAL GROUNDWATER ELEVATION DATA

Elevation in Feet Above Mean Sea Level

DATE	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-8	MW-9	MW-10	MW-II	MW-1A	141
												Farralley
12/21/90	19.15	-	-	-		-	-	ŧ	-	-	-	-
2/10/95	29.59	29.62	29.57	-	-	-	-	-	ŧ	-	-	-
7/7/95	26.63	26.47	26.50	-	-	-	-	-		-	-	-
8/10/95	25.58	25.40	25.44	-	•	-	-	-	-	-	-	-
9/11/95	24.68	24.49	24.54	-	-	-	-	-	+	-	-	-
10/2/95	24.12	23.94	24.00	-	-	-	-	-	-	-		<u>-</u>
11/7/95	23.36	23.13	23.21	-	-	-	-	-	-	-	-	~
12/8/95	22.77	22.55	22.62	-	-	-	-	-	-	-	-	-
1/12/96	24.35	24.20	24.25	<u>.</u>	-	•	-	-	-	<u>-</u>	-	-
2/12/96	29.04	29.03	29.00	-	-	-	-	_	-	-	-	-
3/12/96	31.75	31.60	31.67	-	-	-	-		-	-		-
4/13/96	29.43	29.25	29.26	-	-	-	-	-	-	-	-	-
5/14/96	27.89	27.68	27.71	-	-	-	-	-	-	-	-	-
6/20/96	27.19	26.97	27.00	-	•	-	-	-	-	_	_	•

DATE	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-8	MW-9	MW-10	MW-11	MW-IA	141
												Farralley
7/26/96	25.95	25.74	25.76	-	_	-	-	-	-	-	-	•
8/19/96	25.16	24.97	25.01	-	_	-	-	_	-		-	-
9/17/96	24.44	24.22	24.27	<u>-</u>	-	-	-	-	-	-	-	-
10/21/96	23.63	23.43	23.48	-	-	_	-	_	_	<u>-</u>	-	_
11/27/96	24.28	24.09	24.13	- ,	-		-	1	-	-	-	-
12/27/96	28.23	28.03	28.11	-		-			!	-	-	-
1/28/97	33.02	32.71	32.78			_	-	-	-	-	-	-
4/25/97	27.14	26.88	26.94	<u>-</u>	-	-	<u>-</u>		-	-	-	-
7/17/97	24.55	24.31	24.37	-	-	-		-	-	<u>-</u>	-	-
10/21/97	22.85	22.69	22.73	_	-	-	-	-	-		_	-
3/10/98	34.35	34.20	34.13	-	_	-	-	_	_	-		-
6/6/98	30.69	30.41	30.47		-	-	-	_	-	-	_	-
9/30/98	25.95	25.68	25.75	-	<u>-</u>	_	-	_	_	-		-
12/30/98	25.13	24.93	24.99	25.05	25.06	25.14	24.75	24.79	24.78	24.78	24.64	
3/13/99	29.98	29.80	29.83	29.89	29.93	29.97	29.58	29.58	29.31	29.56	29.39	28.84

DATE	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-8	MW-9	MW-10	MW-11	MW-1A	141 Farralley
9/29/99	24.39	24.12	24.20	24.27	24.26	24.38	23.93	24.05	23.80	24.03	23.89	-
12/29/99	23.75	23.52	23.60	23.64	23.64	23,75	23.36	23.45	23.23	23.43	23.29	

TABLE 3a. 9/29/99 - 10/2/99 GROUNDWATER CHEMICAL TEST RESULTS (EPA METHOD 8015/8020)

Locations: MW-1, MW-2, MW-3, MW-4, MW-5, MW-6, MW-8, MW-9, MW-10, MW-11, MW-

1A, 141 Farrelly

Date Sampled: September 29 - October 2, 1999 Units: µg/L

WELL	TPHg	BENZENE	TOLUENE	ETHYL- BENZENE	XYLENES
MW-1	140,000	6,100	35,000	5,400	27,000
MW-2	17,000	880	240	830	1,000
MW-3	39,000	6,000	840	2,400	8,100
MW-4	48,000	5,300	6,800	1,700	7,700
MW-5	1,200	13	4.2	2.7	4.2
MW-6	330	1.8	1.4	1.5	<0.5
MW-8	8,800	140	<50	53	<50
MW-9	42,000	140	130	1,000	1,700
MW-10	9,300	60	38	280	150
MW-11	94	<0.5	<0.5	<0.5	<0.5
MW-1A	13,000	63	26	30	72
141 Farrelly	<50	<0.5	<0.5	<0.5	<0.5
MCL/AL ²	-	1	150	700	1,750

²Maximum Contaminant Level or Action Level as established by the State of California, Division of Drinking Water and Environmental Management, Department of Health Services "Summary, Maximum Contaminant and Action Levels" November, 1994.

TABLE 3b. 12/29/99 GROUNDWATER CHEMICAL TEST RESULTS (EPA METHOD 8015/8020)

Locations: MW-2, MW-3, MW-8, MW-9, MW-10

Date Sampled: December 29, 1999 Units: µg/L

WELL	TPHg	BENZENE	TOLUENE	ETHYL- BENZENE	XYLENES
MW-2	11,000	800	11	860	780
MW-3	39,000	4,600	790	2,400	8,100
MW-8	1,900	64	1.0	22	23
MW-9	1,100,000	1,200	1,300	4,300	8,700
MW-10	5,800	87	10	420	180
MCL/AL ³	-	1	150	700	1,750

³Maximum Contaminant Level or Action Level as established by the State of California, Division of Drinking Water and Environmental Management, Department of Health Services "Summary, Maximum Contaminant and Action Levels" November, 1994.

TABLE 4. GROUNDWATER CHEMICAL TEST RESULTS (EPA MENTAL SEPA MENTAL

Location: 141 Farrelly

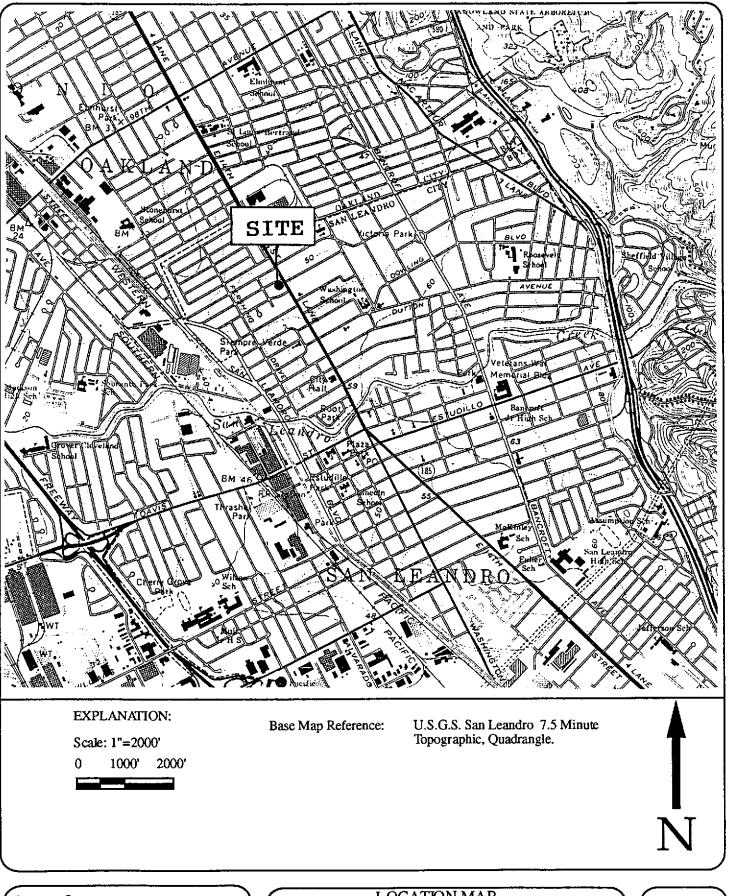
Date Sampled: October 2, 1999 Units: µg/L

WELL	ТВА	MIBE	DIPE		TAME
141 Farrelly	<20	<5	<5	<5	< 5

TABLE 5. HISTORIC GROUNDWATER CHEMICAL TEST RESULTS (EPA METHOD 8015/8020)

Locations: MW-1, MW-2, MW-3, MW-4, MW-5, MW-6, MW-8, MW-9, MW-10, MW-11,

MW-1A, 141 Farrelly Units: μg/L

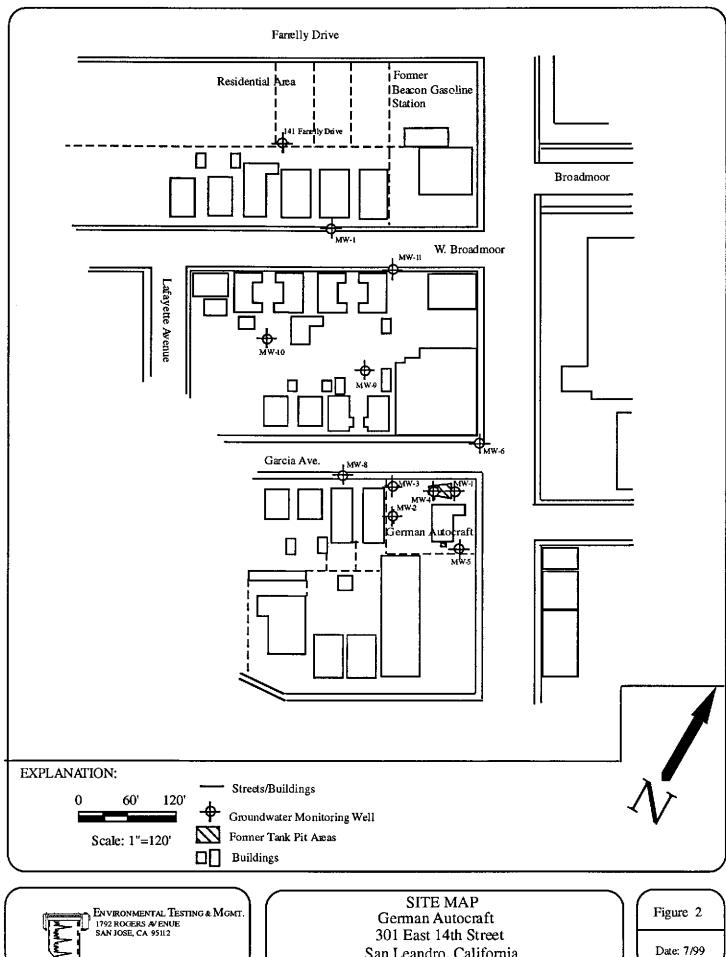

WELL	DATE	ТРНд	BENZENE	TOLUENE	ETHYL- BENZENE	XYLENES
MW-1	12/31/90	51,000	2,200	1,200	<0.5	760
	1/6/95	110,000	13,000	15,000	4,800	13,000
	1/6/95	580,000	29,000	41,000	17,000	43,000
	7/6/95	49,000	8,000	17,000	1,900	9,700
	7/6/95	47,000	4,800	9,500	930	5,000
	10/2/95	120,000	16,000	36,000	3,300	17,000
	10/2/95	160,000	20,000	47,000	5,000	23,000
	1/12/96	1,100,000	11,000	18,000	15,000	51,000
	1/12/96	98,000	2,100	4,600	2,500	10,000
	4/13/96	53,000	1,300	2,900	2,100	10,000
	4/13/96	58,000	820	3,600	2,800	12,000
	7/26/96	91,000	2,900	7,200	2,900	14,000
	7/26/96	67,000	2,300	5,500	2,500	11,000
	10/21/96	210,000	4,800	17,000	2,300	15,000
	10/21/96	210,000	5,400	18,000	2,600	11,000
	1/28/97	120,000	5,600	15,000	2,100	11,000
	1/28/97	130,000	5,500	15,000	2,300	12,000

WELL	DATE	ТРНд	BENZENE	TOLUENE	ETHYL- BENZENE	XYLENES
MW-1	4/25/97	180,000	6,900	20,000	2,600	13,000
	4/25/97	170,000	6,500	20,000	2,500	13,000
	7/17/97	220,000	8,300	41,000	2,700	16,000
	10/21/97	240,000	9,400	33,000	3,300	22,000
	3/10/98	120,000	11,000	46,000	3,700	21,000
	6/6/98	110,000	7,600	32,000	4,800	23,000
	9/30/98	140,000	5,800	29,000	3,500	18,000
	12/30/98	78,000	5,200	24,000	3,200	19,000
	3/23/99	250,000	8,000	43,000	5,200	27,000
	9/29/99	140,000	6,100	35,000	5,400	27,000
MW-2	1/6/95	980,000	9,400	5,600	19,000	42,000
	7/6/95	71,000	5,300	1,800	6,100	9,000
	10/2/95	40,000	2,900	200	2,800	3,600
	1/12/96	260,000	2,600	2,200	6,300	7,800
	4/13/96	30,000	1,900	370	2,300	2,400
	7/26/96	180,000	1,400	640	2,100	5,000
	10/21/96	62,000	2,100	<0.5	2,100	2,700
	1/28/97	46,000	1,500	94	1,800	2,000
	4/25/97	23,000	790	26	820	730
	7/1 7/ 9 7	95,000	2,200	<0.5	3,100	4,300
	10/21/97	31,000	2,000	<0.5	2,100	1,900
	3/10/98	19,000	730	44	820	1,000
	6/6/98	16,000	670	1,100	510	1,200

WELL	DATE	TPHg	BENZENE	TOLUENE	ETHYL- BENZENE	XYLENES
MW-2	9/30/98	24,000	600	77	680	580
	12/30/98	9,300	510	96	450	480
	3/23/99	5,700	580	9.4	400	280
	9/29/99	17,000	880	240	830	1,000
	12/29/99	11,000	800	11	860	780
MW-3	1/6/95	740,000	11,000	2,300	8,300	28,000
	7/6/95	86,000	12,000	8,600	4,900	19,000
	10/2/95	100,000	15,000	11,000	6,000	20,000
	1/12/96	84,000	6,500	4,100	3,200	12,000
	4/13/96	48,000	7,600	3,600	2,800	9,400
	7/26/96	62,000	6,400	3,100	3,000	11,000
	10/21/96	110,000	5,400	2,400	2,500	9,800
	1/28/97	130,000	5,500	15,000	2,300	12,000
	4/25/97	180,000	6,900	20,000	2,600	13,000
	7/17/97	69,000	5,100	1,100	1,800	8,600
	10/21/97	58,000	4,300	1,300	2,100	8,000
	3/10/98	25,000	3,000	1,300	1,100	3,700
	6/6/98	52,000	4,400	1,900	2,300	6,900
	9/30/98	42,000	4,300	1,400	1,800	6,600
	12/30/98	34,000	4,200	770	2,300	9,000
	3/23/99	44,000	3,500	1000	1,700	5,200
	9/29/99	39,000	6,000	840	2,400	8,100
	12/29/99	39,000	4,600	790	2,400	8,100

WELL	DATE	TPHg	BENZENE	TOLUENE	ETHYL- BENZENB	XYLENES
MW-4	12/30/98	12,000	1,200	1,100	290	1,400
	3/23/99	89,000	5,900	8,700	2,000	9,200
	9/29/99	48,000	5,300	6,800	1,700	7,700
MW-5	12/30/98	170	1.1	<0.5	<0.5	0.83
	3/22/99	470	3.8	0.51	2.0	<0.5
	9/29/99	1,200	13	4.2	2.7	4.2
MW-6	12/30/98	400	1.0	<0.5	<0.5	4.8
	3/22/99	390	<0.5	<0.5	<0.5	<0.5
	9/30/99	330	1.8	1.4	1.5	<0.5
MW-8	12/30/98	2,200	70	0.94	26	15
	3/23/99	2,300	34	1.1	15	13
	9/30/99	8,800	140	<50	53	<50
	12/29/99	1,900	64	1.0	22	23
MW-9	12/30/98	25,000	23	<10	180	620
	3/23/99	27,000	35	<20	600	920
	9/30/99	42,000	140	130	1,000	1,700
	12/29/99	1,100,000	1,200	1,300	4,300	8,700
MW-10	12/30/98	6,900	130	19	140	210
	3/23/99	6,600	150	33	240	170
	9/30/99	9,300	60	38	280	150
	12/29/99	5,800	87	10	420	180
MW-11	12/30/98	80	<0.5	<0.5	0.93	1.6
	3/23/99	<50	<0.5	<0.5	<0.5	<0.5

WELL	DATE	TPHg	BENZENE	TOLUENE	ETHYL- BENZENE	XYLENES
MW-11	9/30/99	94	<0.5	<0.5	<0.5	<0.5
MW-1A	5/30/97	12,000	18	8.7	90	540
	12/30/98	51	<0.5	<0.5	<0.5	<0.5
	3/23/99	1,800	4.0	<0.5	3.0	7.5
	3/23/99	2,200	10	0.52	3.1	7.1
	9/30/99	13,000	63	26	30	72
141	4/6/96	<50	<0.5	<0.5	<0.5	<0.5
Farrelly						
	10/2/99	<50	<0.5	<0.5	<0.5	<0.5



ENVIRONMENTAL TESTING & MGMT
111 N. MARKET ST. SUITE 600
SAN JOSE, CALFORNIA 95113

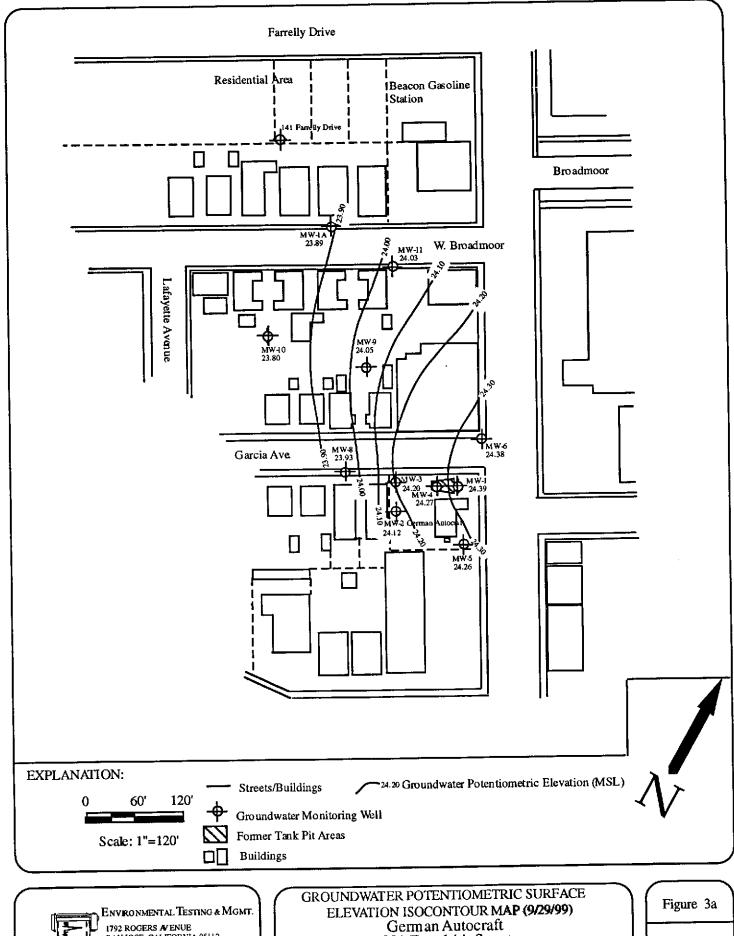
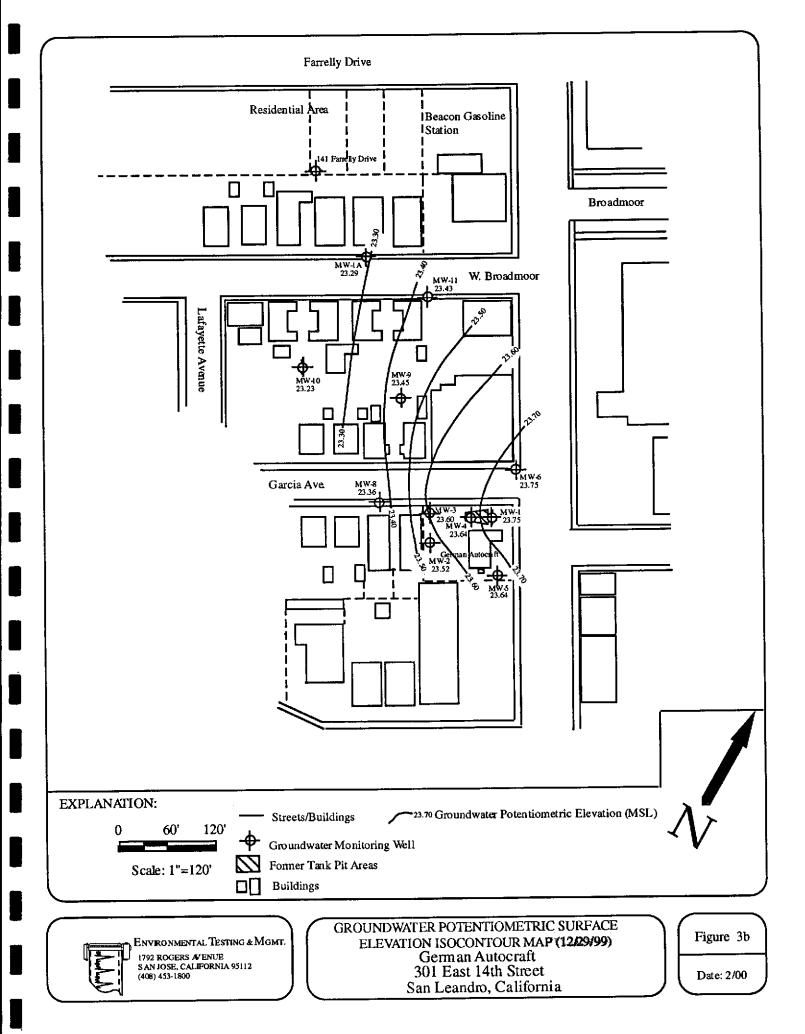
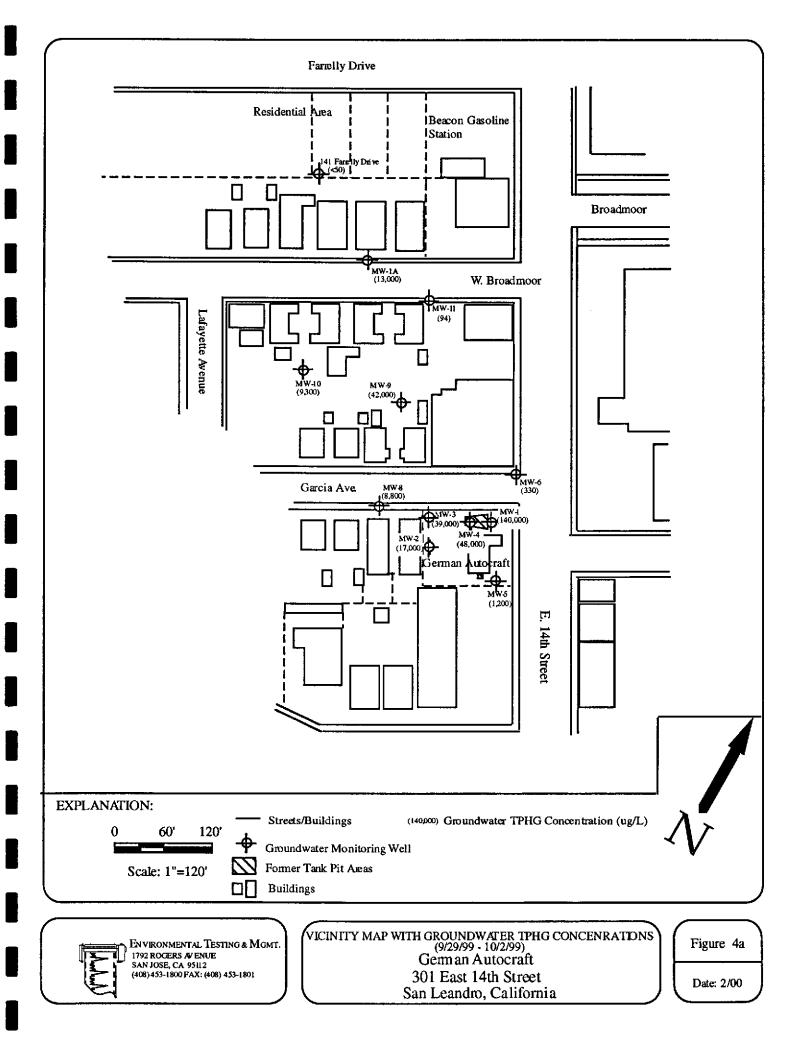
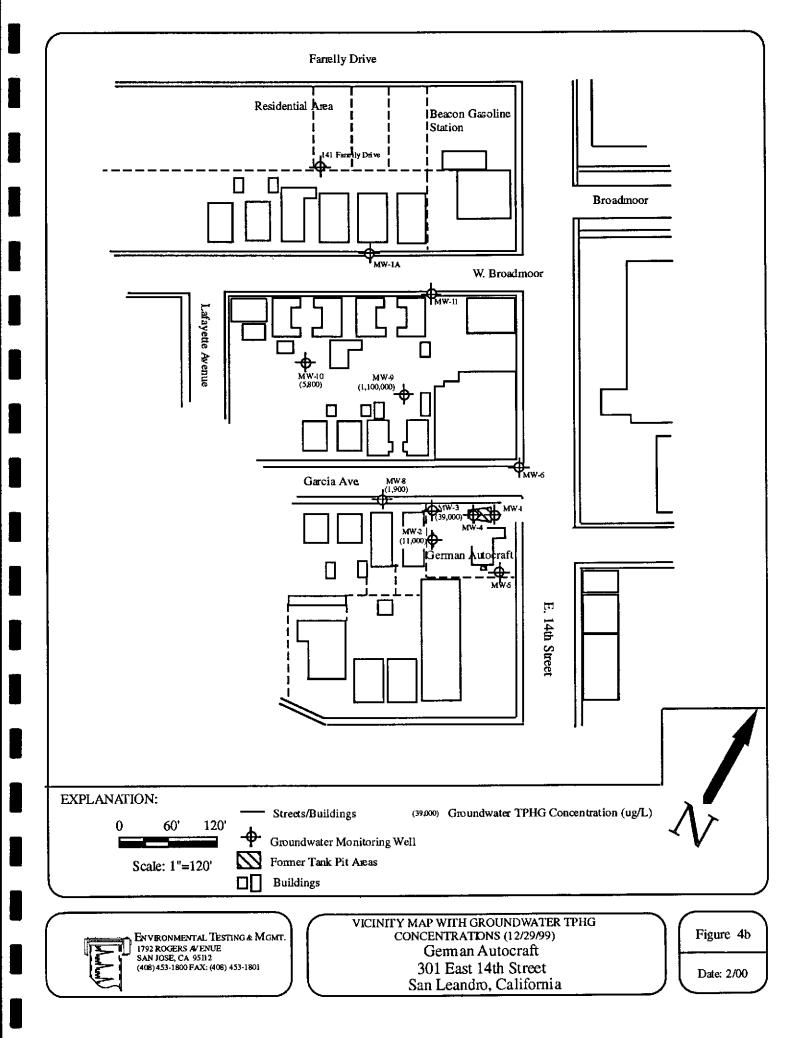

LOCATION MAP
German Autocraft
301 East 14th Street
San Leandro, California

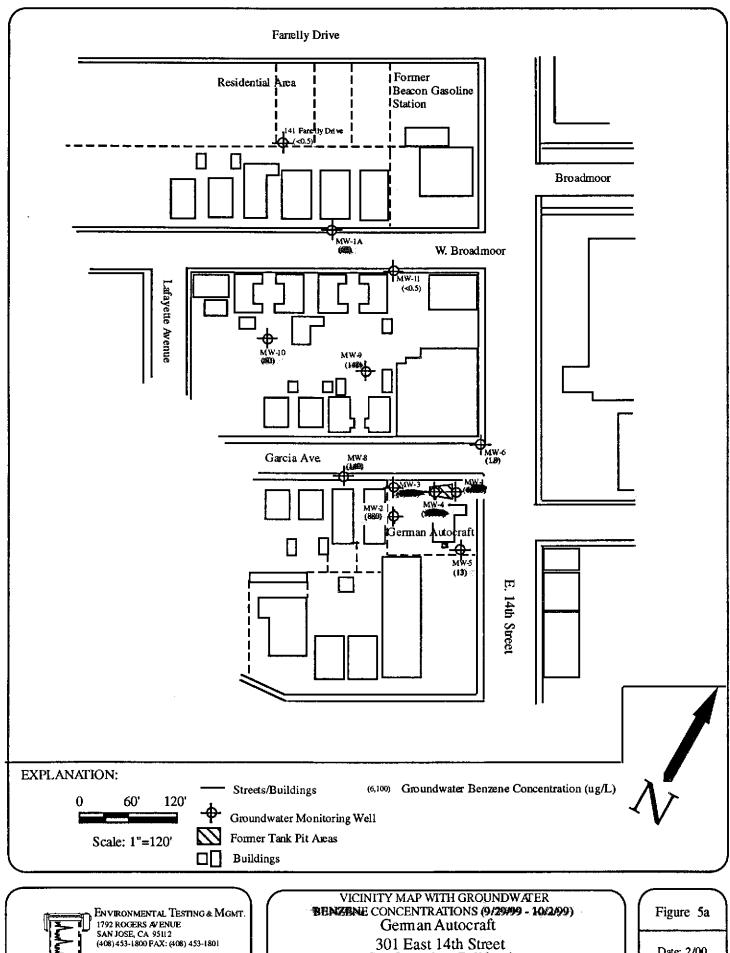
Figure 1

Project No. 94-52 Date: 3/97

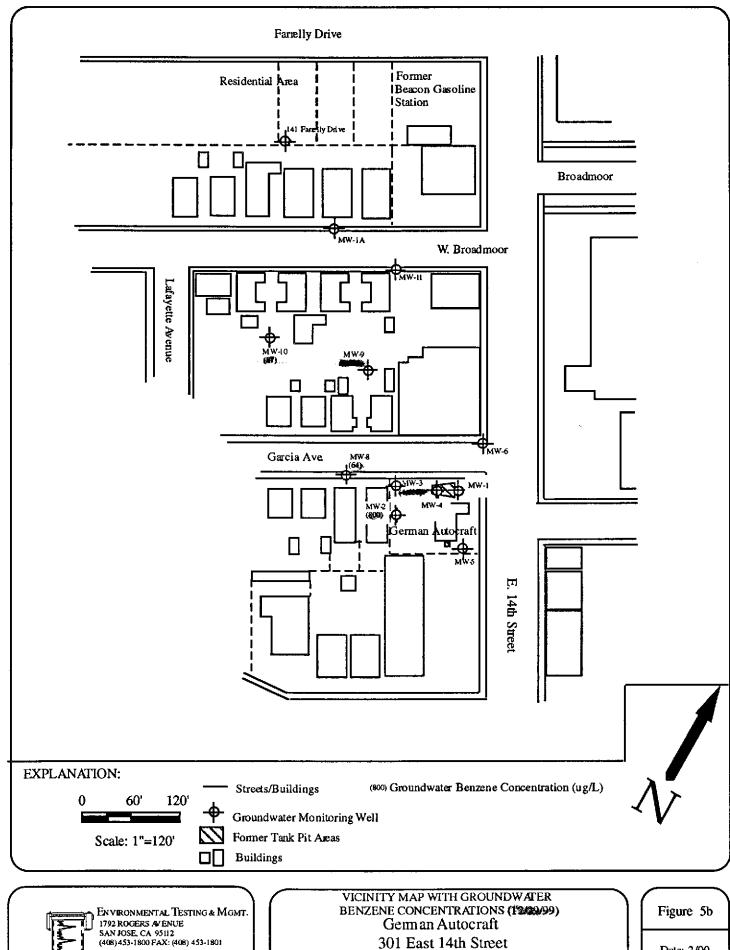

San Leandro, California




1792 ROGERS AVENUE S AN JOSE, CALIFORNIA 95112 (408) 453-1800


ELEVATION ISOCONTOUR MAP (9/29/99)
German Autocraft 301 East 14th Street San Leandro, California

Date: 2/00



301 East 14th Street San Leandro, California

Date: 2/00

301 East 14th Street San Leandro, California

Date: 2/00

APPENDIX A: FIELD SAMPLING AND GAUGING PROCEDURES

GROUNDWATER LEVEL MEASURING AND SAMPLING:

Sampling procedures commenced with measuring static water levels in monitoring wells using an electronic water level indicator accurate to 0.01 inch. Groundwater samples were collected using TeflonTM or stainless steel bailers. The bailers were cleaned prior to lowering into the groundwater by washing with Liquinox or laboratory grade detergent, rinsing with tap water, and drying. Floating product thickness was measured by gently lowering a bailer or preferably an interface sampler into the well casing. The liquid level in the sampler was allowed to equilibrate with the liquid level in the well. After raising the sampler, the thickness of floating product, if present, was measured in the transparent sampler with a ruler or noting the presence of sheen and odor. The wells were then purged a minimum of four well volumes or until the parameters of temperature, conductance, and pH stabilized.

Groundwater samples were collected by gently pouring from the bailer into a 40-milliliter vial until a positive meniscus formed at the top of the vial, each vial was capped, and visually inspected to make sure no bubbles were present. Sample containers are labeled for sampling point reference and chilled on ice immediately after collection. Chain-of-custody documentation was maintained until the samples were received by the laboratory.

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Environmental Testing & Management

1792 Rogers Avenue

San Jose, CA 95112

Attn: Tom Price

Date: 10/8/99

Date Received: 10/1/99

Project: GA

PO #:

Sampled By: Client

Certified Analytical Report

Water Sample Analysis:

Sample ID	MW-1 9/29/99			MW-2			MW-3				
Sample Date				9/29/99			9/29/99				
Sample Time											
Lab #	16664-001			16664-002			16664-003				
	Result	DF	DLR	Result	DF	DLR	Result	DF	DLR	PQL	Method
Results in µg/Liter:											
Analysis Date	10/6/99		•	10/5/99			10/5/99				
TPR-Gas	140,000	200	10000	17,000	100	5000	39,000	50	2500	50	8015M
Benzene	6,100	200	100	880	100	50	6,000	50	25	0.50	8020
Toluene	35,000	200	100	240	100	50	840	50	25	0.50	8020
Ethyl Benzene	5,400	200	100	830	100	50	2,400	50	25	0.50	8020
Xylenes (total)	27,000	200	100	1,000	100	50	8,100	50	25	0,50	8020

DF=Dilution Factor

ND= None Detected above DLR

PQL=Practical Quantitation Limit

DLR=Detection Reporting Limit

· Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Michelle L. Anderson Lab Director

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Environmental Testing & Management

1792 Rogers Avenue

San Jose, CA 95112

Attn: Tom Price

Date: 10/8/99

Date Received: 10/1/99

Project: GA

PO #:

Sampled By: Client

Certified Analytical Report

Water Sample Analysis:

Sample ID	MW-4			MW-5			MW-6				
Sample Date	9/29/99		9/29/99			9/30/99					
Sample Time											
Lab #	16664-004			16664-005			16664-006				
-	Result	DF	DLR	Result	DF	DLR	Result	DF	DLR	PQL	Method
Results in µg/Liter:											
Analysis Date	10/5/99			10/5/99			10/5/99				
TPH-Gas	48,000	50	2500	1,200	1.0	50	330	1.0	50	50	8015M
Benzene	5,300	50	25	13	1.0	0.50	1.8	1.0	0.50	0.50	8020
Toluene	6,800	50	25	4.2	1.0	0.50	1.4	1.0	0.50	0.50	8020
Ethyl Benzene	1,700	50	25	2.7	1.0	0.50	1.5	1.0	0.50	0.50	
Xylenes (total)	7,700	50	25	4.2	1.0	0.50	ND	1.0	0.50	0.50	

DF=Dilution Factor

ND= None Detected above DLR

PQL=Practical Quantitation Limit

DLR=Detection Reporting Limit

Michelle L. Anderson, Lab Director

[·] Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Environmental Testing & Management

1792 Rogers Avenue

San Jose, CA 95112

Attn: Tom Price

Date: 10/8/99

DLR=Detection Reporting Limit

Date Received: 10/1/99

Project: GA

PO #:

Sampled By: Client

Certified Analytical Report

Water Sample Analysis:

Sample ID	MW-8			MW-9			MW-10		· · · · · · · · · · · · · · · · · · ·		
Sample Date	9/30/99		9/30/99			9/30/99					
Sample Time					·		7/30/77				
Lab #	16664-007			16664-008			16664-009				
	Result	DF	DLR	Result	DF	DLR	Result	DF	DLR	PQL	Method
Results in µg/Liter:					- 1					1 QL	ivicinod
Analysis Date	10/5/99			10/5/99			10/5/99				
TPH-Gas	8,800	100	5000	42,000	100	5000	9,300	50	2500	50	8015M
Benzene	140	100	50	140	100	50	60	50	2500	0.50	8020
Toluene	ND	100	50	130	100	50.	38	50	25	0.50	8020
Ethyl Benzene	53	100	501	1,000	100	50	280	50	25	0.50	8020
Xylenes (total)	ND	100	50	1,700	100	50	150	50	25	0.50	8020
DF=Dilution Factor	ND= None Detected above DL						titation Limit				8020 ting Limit

PQL=Practical Quantitation Limit · Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Michelle L. Anderson, Lab Director

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Environmental Testing & Management

1792 Rogers Avenue

San Jose, CA 95112

Attn: Tom Price

Date: 10/8/99

Date Received: 10/1/99

Project: GA

PO #:

Sampled By: Client

Certified Analytical Report

Water Sample Analysis:

Trater Sample Panal	, 5151						 	-	
Sample ID	MW-11			MW-1A			 		
Sample Date	9/30/99			9/30/99					
Sample Time							 		
Lab #	16664-010			16664-011					
	Result	DF	DLR	Result	DF	DLR		PQL	Method
Results in µg/Liter:									
Analysis Date	10/5/99			10/6/99					
TPH-Gas	94 ^x	1.0	50	13,000	10	50 0		50	8015M
Benzene	ND	1.0	0.50	63	10	5		0.50	8020
Toluene	ND	1.0	0.50	26	10	5		0,50	8020
Ethyl Benzene	ND	1.0	0.50	30	10	5		0.50	8020
Xylenes (total)	ND	1.0	0.50	72	10	5		0.50	8020

DF=Dilution Factor

ND= None Detected above DLR

PQL=Practical Quantitation Limit

DLR=Detection Reporting Limit

· Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Michelle L-Anderson, Lab Director

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

STANDARD LAB QUALIFIERS July, 1998

All Entech lab reports now reference standard lab qualifiers. These qualifiers are noted in the adjacent column to the analytical result and are adapted from the U.S. EPA CLP program. The current qualifier list is as follows:

Qualifier	Description
Ū	Compound was analyzed for but not detected
J	Estimated valued for tentatively identified compounds or if result is below PQL but above MDL
N	Presumptive evidence of a compound (for Tentatively Identified Compounds)
В	Analyte is found in the associated Method Blank
E	Compounds whose concentrations exceed the upper level of the calibration range
D	Multiple dilutions reported for analysis; discrepancies between analytes may be due to dilution
X	Results within quantitation range; chromatographic pattern not typical of fuel

METHOD: Gas Chromatography Laboratory Control Sample

QC Batch #: GBG1991006

Matrix: Liquid Units: µg/Liter Date Analyzed: 10/06/99 Quality Control Sample: Blank Spike

	ints. pg brief										
PARAMETER	Method #	MB μg/Liter	SA μg/Liter	SR μg/Liter	SP μg/Liter	SP % R	SPD µg/Liter	SPD %R_	RPD	Q RPD	C LIMITS %R
Benzene	8020	<0.50	5.6	ND	5.9	105	6.1	109	3.8	25	77-129
Toluene	8020	<0.50	29.0	ND	28	96	28	98	1.5	25	82-122
Ethyl Benzene	8020	<0.50	5.7	ND	5.3	93	5.4	94	1.1	25	77-114
Xylenes	8020	<0.50	30.6	ND	29	96	30	98	2.1	25	85-125
Gasoline	8015	<50.0	500	ND	455	91	456	91	0.4	25	75-125
aga-TFT(S.S.)-PID	8020		•	77%	79%		80%				65-135
aaa-TFT(S.S.)-FID	8015			98%	100%		100%				65-135

Definition of Terms:

na: Not Analyzed in QC batch

MB: Method Blank SA: Spike Added SR: Sample Result

RPD(%): Duplicate Analysis - Relative Percent Difference

SP: Spike Result
SP (%R): Spike % Recovery
SPD: Spike Duplicate Result
SPD (%R): Spike % Recovery
nc: Not Calculated

METHOD: Gas Chromatography Laboratory Control Sample

QC Batch #: GBG1991005

Matrix: Liquid Units: µg/Liter

Date Analyzed: 10/05/99 Quality Control Sample: Blank Spike

- Onto											
PARAMETER	Method #	MΒ μg/Liter	SA μg/Liter	SR µg/Liter	SP μg/Liter	SP % R	SPD μg/Liter	SPD %R	RPD	Q0 RPD	C LIMITS %R
Benzene	8020	< 0.50	5.6	ND	6.3	113	6.1	108	4.4	25	77-129
Toluene	8020	< 0.50	29.0	ND	29	100	29	99	1.2	25	82-122
Ethyl Benzene	8020	< 0.50	5.7	ND	5.5	96	5.4	95	1.5	25	77 -1 14
Xylenes	8020	< 0.50	30,6	ND	31	100	30	99	0.7	25	85-125
Gasoline	8015	<50.0	500	ND	455	91	456	91	0.4	25	75-125
aaa-TFT(S.S.)-PID	8020		•	78%	81%		79%				65-135
aaa-TFT(S.S.)-FID	8015			99%	101%		100%				65-135

Definition of Terms:

na: Not Analyzed in QC batch

MB: Method Blank SA: Spike Added SR: Sample Result

RPD(%): Duplicate Analysis - Relative Percent Difference

SP: Spike Result SP (%R): Spike % Recovery SPD: Spike Duplicate Result SPD (%R): Spike % Recovery nc: Not Calculated

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • Telephone: (408) 735-1550 (800) 287-1799 • Fax: (408) 735-1554

Chain of Custody/Analysis Work Order

Client:	ENV. TEST Mamt	Project ID:	GA	LAB USE ONLY
Address:	1793 Rogers AVR	Purchase Order #:		
	San Jose (A 9519	Sampler/Company:	Telephone #:	Samples arrived chilled and intact:
Contact:	Tom Price			Yes No
Telephone #:	453-1800	Special Instructions/Commen	ts	Notes:
Date Received:	· · ·			
Turn Around:	std,			

			Sample I	nformation		Requested Analysis						
Lab #	Sample ID	Grab/ Composite	Matrix	Date Collected	Time Collected	Pres.	Sample Container	179th 3		100		
	mw-1	5	W	9/29/97		The !	fuml was			160	664-00(_
	mw-2	 		9/25/79		1-1-	1				-002	ļ
	mw-3			9/29/99				1			-003	<u> </u>
	MW - 4			7/29/93		1		V			-004	<u> </u>
	MW-5			9/27/97	ľ.			/			-005	
	mw-b			9/32/99							-006	ļ <u>.</u>
	mw-8			9/32/93		1.(_		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		ļ	-007	
	mw-9	ν	V	9/32/99		V		+ V			-008	
Reling, By:	Don	Pin		Received Vai	ilirith	n	10/1199	.35	Date 1	129.	235 p	m
Relinq. By:			· · · · · · · · · · · · · · · · · · ·	Received	Ву:	 			Date	,	Time	
Reling/ By				Received	By:				Date		Time	

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • Telephone: (408) 735-1550 (800) 287-1799 • Fax: (408) 735-1554

Chain of Custody/Analysis Work Order

Project ID: _____ GA

LAB USE ONLY

Client: ENVTEST MGMT Address: 1792 Rosevs AVR

Telep Date R	Address: SACOntact: SACOntact: Abound: SACONTACT	8) 45	209-VS 2019- 20180	5112 Sa	Purc ampler/Com pecial Instru		Telep	hone #:	_	umples arriv Yes otes:	ved chilled and	l intact:
			Sample I	nformation				2X	R	Requested A	Analysis	
Lab#	Sample ID	Grab/ Composite	Matrix	Date Collected	Time Collected	Pres.	Sample Container	TPA3/ BTEX				
	mw-10	4	w	9/3-199		chilly	Acmi VEV33	1		166	64 - 009	
	mw-11	1	1	9/30/99				i	-		- 010	
	mw-1A	1		9/3-/20	,	$\perp $		<u> </u>			- 011	
						+						
								-				
Relinq. By:	\sim	Die	1	Received / Au			15(199	35	Date Date	/93,	Time 35	pm.
Relinq/ By	:			Received	By:				Date		Time	

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Environmental Testing & Management

1792 Rogers Avenue San Jose, CA 95112 Attn: Tom Price Date: 10/12/99 Date Received: 10/4/99

Project Name:
Project Number: GA
P.O. Number:

Sampled By: Tom Price

Certified Analytical Report

Order ID: 16690 Sample Time:		Lab San Samp	-	16690-0 10/2/99		Client Sample ID: 141 Farrelly Matrix: Liquid				
Parameter	Result	DF	PQL	DLR	Units	Analysis Date	QC Batch 1D	Method		
tert-Butanol	ND	1	20	20	μg/L	10/12/99	WMS991011	EPA 8260B		
Methyl-t-butyl Ether	NĎ	1	5	5	μg/L	10/12/99	WMS991011	EPA 8260B		
Diisopropyl Ether	ND	1	5	5	μg/L	10/12/99	WMS991011	EPA 8260B		
Ethyi-t-butyl Ether	ND	1	5	5	μg/L	10/12/99	WMS991011	EPA 8260B		
tert-Amyl Methyl Ether	ND	1	5	5	μg/L	10/12/99	WMS991011	EPA 8260B		
	Surrogat	e		Surrogate	Recovery	Control Lin	uits (%)			
	4-Bromot	luorobenzen	e	131		65 - 13	5			
	Dibromot	luoromethan	e	95		65 - 13	5			
	Toluene-c	i 8		104	,	65 - 13	5			

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Michelle L. Anderson, Laboratory Director

Page 1 of 1

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Environmental Testing & Management

1792 Rogers Avenue

San Jose, CA 95112

Attn: Tom Price

Date: 10/12/99

Date Received: 10/4/99

Project: GA

PO #:

Sampled By: Client

Certified Analytical Report

Liquid Sample Analysis:

Sample ID	141 Farrall	y							Ī	
Sample Date	10/2/99									
Sample Time										
Lab #	16690-001	-		-						
	Result	DF	DLR						PQL	Method
Results in µg/Liter:					1					
Analysis Date	10/6/99									
TPH-Gas	ND	1.0	50		-			<u> </u>	50	8015M
Benzene	ND	1.0	0.50			1			0.50	
Toluene	ND	1.0	0.50				7		0.50	8020
Ethyl Benzene	ND	1.0	0.50				 7		0.50	8020
Xylenes (total)	ND	1.0	0.50				1	<u> </u>	0.50	8020

DF=Dilution Factor

ND= None Detected above DLR

PQL=Practical Quantitation Limit

DLR=Detection Reporting Limit

· Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Michelle L. Anderson, Lab Director

Volatile Organic Compounds Laboratory Control Sample

QC Batch #: WGCMS991011

Matrix: Liquid

Units: µg/L

Date analyzed: 10/11/99 Spiked Sample: Blank Spike

PARAMETER	Method #	SA μg/L	SR µg/L	SP µg/L	SP %R	SPD µg/L	SPD %R	RPD	(RPD	C LIMITS %R
1,1- Dichloroethene	8240/8260	25	ND	18.1	72	19.2	77	5.9	25	50-150
Methyl-tert-butyl ether	8240/8260	25	ND	19.5	78	22.6	90	14.7	25	50-150
Benzene	8240/8260	25	ND	26.6	106	25.5	102	4.2	25	50-150
Trichloroethene	8240/8260	25	ND	22.2	89	23.2	93	4.4	25	50-150
Toluene	8240/8260	25	ND	26.3	105	25.7	103	2.3	25	50-150
Chlorobenzene	8240/8260	25	ND	26.4	106	25.7	103	2.7	25	50-150
Surrogates	ļ	į								
Dibromofluoromethane	8240/8260	<u> </u>	115%	118%		116%	:		ļ	65-135
MTBE-d3	8240/8260		115%	91%		95%				65-135
Toluene -d8	8240/8260		105%	108%		106%			1	65-135
4-Bromofluorobenzene	8240/8260	į	105%	114%		116%]	65-135

Definition of Terms:

na: Not Analyzed in QC batch

SA: Spike Added SR: Sample Result

RPD(%): Duplicate Analysis - Relative Percent Difference

SP: Spike Result

SP (%R): Spike % Recovery

SPD: Spike Duplicate Result

SPD (%R): Spike Duplicate % Recovery

METHOD: Gas Chromatography Laboratory Control Sample

QC Batch #: GBG1991005

Matrix: Liquid

Units: µg/Liter

Date Analyzed: 10/05/99 Quality Control Sample: Blank Spike

PARAMETER	Method #	MB μg/Liter	SA μg/Liter	SR µg/Liter	SP μg/Liter	SP % R	SPD µg/Liter	SPD %R	RPD	Q(RPD	C LIMITS %R
Benzene	8020	<0.50	5.6	ND	6.3	113	6.1	108	4.4	25	77-129
Toluene	8020	< 0.50	29.0	ND	29	100	29	99	1.2	25	82-122
Ethyl Benzene	8020	< 0.50	5.7	ND	5.5	96	5.4	95	1.5	25	77-114
Xylenes	8020	<0.50	30.6	ND	31	100	30	99	0.7	25	85-125
Gasoline	8015	<50.0	500	ND	455	91	456	91	0.4	25	75-125
aaa-TFT(S.S.)-PID	8020			78%	81%		79%		•		65-135
aaa-TFT(S.S.)-FID	8015			99%	101%		100%				65-135

Definition of Terms:

na: Not Analyzed in QC batch

MB: Method Blank SA: Spike Added SR: Sample Result

RPD(%): Duplicate Analysis - Relative Percent Difference

SP: Spike Result
SP (%R): Spike % Recovery
SPD: Spike Duplicate Result
SPD (%R): Spike % Recovery
nc: Not Calculated

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • Telephone: (408) 735-1550 (800) 287-1799 • Fax: (408) 735-1554

Chain of Custody/Analysis Work Order

Client: _	1792 Rogers Ave	Project ID:	GA.	LAB USE ONLY
Contact: _	1792-Rogers Ave SANJOSE CA 95112- Tom Price AOS) 453-1800 S+1.	Purchase Order #: Sampler/Company: Special Instructions/Commen	Telephone #:	Samples arrived chilled and intact: Yes No Notes:
	~		2	

				Requested Analysis											
								70	o a						
Lab #	Sample ID	Grab/ Composite	Matrix	Date Collected	Time Collected	Pres.	Sample Container	5 2	8 260 exysm	<u>.</u>					
	141 Farrelly	G1 ~	N	11/2/99.	,	Chil	iforni Volts	~	V				166	90-0	01_
				, ,											
											į				
····															
											<u> </u>				
· · · · · · · · · · · · · · · · · · ·															
Reling, By:		Dore	2	Received	By:	1		L,	Date	0/4/	19	Ti	me / 6 / ,	o Am	
Relinq. By:		· · · · · · · · · · · · · · · · · · ·		Received	By:	A)	,	Date	-	• • • • • • • • • • • • • • • • • • • •	Ti	ime	1,3	
Reling/ By: Received By:									Date	0141	95)	Ti	ine 101	Dan	
				• • • • • • • • • • • • • • • • • • • •	M				•	\sim t					

CA ELAP# 1-2346

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

January 07, 2000

Tom Price

Environmental Testing & Management 1792 Rogers Avenue San Jose, CA 95112

Order: 18393

Date Collected: 12/29/99

Project Name:

Date Received: 12/30/99

Project Number: GA

P.O. Number:

Project Notes:

On December 30, 1999, 5 samples were received under documentented chain of custody. Results for the following analyses are attached:

<u>Matrix</u>

<u>Test</u> BTEX Method EPA 8020

Liquid

TPH as Gasoline

EPA 8015 MOD. (Purgeable)

Chemical analysis of these samples has been completed. Summaries of the data are contained on the following pages. USEPA protocols for sample storage and preservation were followed.

Entech Analytical Labs, Inc. is certified by the State of California (#2346). If you have any questions regarding procedures or results, please call me at 408-735-1550.

Sincerely,

Ony TWWOgn Fors Michelle L. Anderson

Lab Director

CA ELAP# 1-2346

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Environmental Testing & Management

1792 Rogers Avenue San Jose, CA 95112

Attn: Tom Price

Date: 1/7/00 Date Received: 12/30/99 Project Name:

Project Number: GA
P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 18393		Lab Sa	mple II	D: 18393	3-001		Client Sar	W-2		
Sample Time:		Sam	ple Da t	te: 12/29)/99					
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	800		20	0.5	10	μg/L		1/6/00	WGC4000105	EPA 8020
Toluene	11		20	0.5	10	μg/L		1/6/00	WGC4000105	EPA 8020
Ethyl Benzene	860		20	0.5	10	μg/L		1/6/00	WGC4000105	EPA 8020
Xylenes, Total	780		20	0.5	10	μg/L		1/6/00	WGC4000105	EPA 8020
Aylenes, Total	,				Surre			Surrogate Re	сочегу	Control Limits
					•	ifluorotolu	ene	71		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Gasoline	11000		20	50	1000	μg/L		1/6/00	WGC4000105	EPA 8015 MOD (Purgeable)
					Surro	gate		Surrogate Re	covery	Control Limits
						rifluorotolu	ene	73		65 - 135

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

CA ELAP# I-2346

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Environmental Testing & Management

1792 Rogers Avenue San Jose, CA 95112

Attn: Tom Price

Date: 1/7/00

Date Received: 12/30/99

Project Name:
Project Number: GA
P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 18393		Lab Sa	mple II	D: 1839	3-002							
Sample Time:		Sam	ple Dat	e: 12/29	/99	Matrix: Liquid						
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method		
Benzene	4600		100	0.5	50	μg/L		1/5/00	WGC4A000104	EPA 8020		
Toluene	790		100	0.5	50	μg/L		1/5/00	WGC4A000104	EPA 8020		
Totuene Ethyl Benzene	2400		100	0.5	50	μg/L		1/5/00	WGC4A000104	EPA 8020		
Xylenes, Total	8100		100	0.5	50	μg/L		1/5/00	WGC4A000104	EPA 8020		
Aytenes, Total	0100				Surro	, -		Surrogate Re	covery	Control Limits		
						ifluorotolu	ene	95		65 - 135		
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method		
TPH as Gasoline	39000		100	50	5000	μg/L		1/5/00	WGC4A000104	EPA 8015 MOD. (Purgeable)		
					Surro	gate		Surrogate Re	covery	Control Limits		
						rifluorotoli	iene	101		65 - 135		

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

CA ELAP# I-2346

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Environmental Testing & Management

1792 Rogers Avenue San Jose, CA 95112 Attn: Tom Price Date: 1/7/00 Date Received: 12/30/99

Sampled By: Client

Project Name:
Project Number: GA
P.O. Number:

Certified Analytical Report

Order ID: 18393		Lab Sa	mple II	D: 1839	3-003		Client Sai	1W-8			
Sample Time:		Sam	ple Dat	e: 12/29)/99			Matrix: L	iquid		
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method	
Benzene	64		2	0.5	1	μg/L		1/5/00	WGC4A000104	EPA 8020	
Toluene	1.0		2	0.5	1	μg/L		1/5/00	WGC4A000104	EPA 8020	
Ethyl Benzene	22		2	0.5	1	μg/L		1/5/00	WGC4A000104	EPA 8020	
Xylenes, Total	23		2	0.5	1	μg/L		1/5/00	WGC4A000104	EPA 8020	
					Surro	gate		Surrogate Re	covery	Control Limits	
					aaa-Tr	ifluorotolu	ene	71		65 - 135	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method	
TPH as Gasoline	1900		2	50	100	μg/L		1/5/00	WGC4A000104	EPA 8015 MOD (Purgeable)	
					Surro	gate		Surrogate Re	covery	Control Limits	
					aaa-Tr	- ifluorotolu	ene	73		65 - 135	

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

CA ELAP# 1-2346

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Environmental Testing & Management

1792 Rogers Avenue San Jose, CA 95112 Attn: Tom Price Date: 1/7/00 Date Received: 12/30/99

Project Name:
Project Number: GA
P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 18393		Lab Sa	ımple II): 1839	3-004	Client Sample ID: MW-9						
Sample Time:		Sam	ple Date	e: 12/29	9/99	Matrix: Liquid						
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method		
Benzene	1200		1000	0.5	500	μg/L		1/6/00	WGC4000105	EPA 8020		
Toluene	1300		1000	0.5	500	μg/L		1/6/00	WGC4000105	EPA 8020		
Ethyl Benzene	4300		1000	0.5	500	μg/L		1/6/00	WGC4000105	EPA 8020		
Xylenes, Total	8700		1000	0.5	500	μg/L		1/6/00	WGC4000105	EPA 8020		
11,101100, 10111					Surro	gate		Surrogate Re	covery	Control Limits		
					ааа-Тг	ifluorotolu	iene	100		65 - 135		
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method		
TPH as Gasoline	1100000		1000	50	50000	μg/L		1/6/00	WGC4000105	EPA 8015 MOD (Purgeable)		
					Surro aaa-Tr	gate ifluorotolu	1ene	Surrogate Re	covery	Control Limits 65 - 135		

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Michelle L. Anderson, Laboratory Director

CA ELAP# 1-2346

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Environmental Testing & Management

1792 Rogers Avenue San Jose, CA 95112 Attn: Tom Price

Date: 1/7/00 Date Received: 12/30/99

Project Name: Project Number: GA P.O. Number:

Sampled By: Client

Certified Analytical Report

Order ID: 18	3393	Lab Sa	mple I	D: 1839	3-005		Client Sai	fW-10				
Sample Time:		Sam	ple Dat	e: 12/29	9/99		Matrix: Liquid					
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method		
Benzene	87		10	0.5	5	μg/L		1/5/00	WGC4B000104	EPA 8020		
Toluene	10.0		10	0.5	5	μg/L		1/5/00	WGC4B000104	EPA 8020		
Ethyl Benzene	420		10	0,5	5	μg/L		1/5/00	WGC4B000104	EPA 8020		
Xylenes, Total	180		10	0.5	5	μg/L		1/5/00	WGC4B000104	EPA 8020		
					Surro	gate		Surrogate Re	covery	Control Limits		
					aaa-Tr	iflu o rotolu	ene	66		65 - 135		
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method		
TPH as Gasoline	5800		10	50	500	μg/L		1/5/00	WGC4B000104	EPA 8015 MOD (Purgeable)		
					Surro	gate		Surrogate Re	covery	Control Limits		
					ааа-Тг	ifluorotolu	ene	59		65 - 135		
Comment: Su	rrogate recovery out	of control li	imits due t	to matrix in	terference							

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

METHOD: Gas Chromatography Laboratory Control Sample

QC Batch #: WGC4000105

Matrix: Liquid Units: μg/Liter Date Analyzed: 01/05/00 Quality Control Sample: Blank Spike

											
PARAMETER	Method #	MB μg/Liter	SA μg/Liter	SR µg/Liter	SP μg/Liter	SP % R	SPD μg/Liter	SPD %R	% RPD	Q(RPD	C LIMITS %R
Benzene	8020	< 0.50	5.6	ND	4.5	80	4.8	85	6.3	25	70-130
Toluene	8020	< 0.50	31	ND	28	89	29	93	4.3	25	70-130
Ethyl Benzene	8020	< 0.50	6.1	ND	5.4	89	5.7	93	4.6	25	70-130
Xylenes	8020	< 0.50	35	ND	31	88	32	93	5.2	25	7 0-130
Gasoline	8015	<50.0	500	ND	443	89	432	86	2.5	25	70-130
aaa-TFT(S.S.)-FID	8020	, 		114%	112%	'	108%	'	1		65-135
aaa-TFT(S.S.)-PID	8015			107%	103%		94%				65-135

Definition of Terms:

na: Not Analyzed in QC batch

MB: Method Blank SA: Spike Added SR: Sample Result

RPD(%): Duplicate Analysis - Relative Percent Difference

SP: Spike Result
SP (%R): Spike % Recovery
SPD: Spike Duplicate Result
SPD (%R): Spike % Recovery

nc: Not Calculated

METHOD: Gas Chromatography Laboratory Control Sample

QC Batch #: WGC4B000104

Matrix: Liquid Units: μg/Liter Date Analyzed: 01/04/00 Quality Control Sample: Blank Spike

PARAMETER	Method #	MB μg/Liter	SA μg/Liter	SR μg/Liter	SP μg/Liter	SP % R	SPD μg/Liter	SPD %R	% RPD	Q(RPD	C LIMITS %R
Benzene	8020	< 0.50	5.6	ND	5.5	98	4.8	87	12.7	25	70-130
Toluene	8020	<0.50	31	ND	32	103	32	101	2.7	25	70-130
Ethyl Benzene	8020	< 0.50	6.1	ND	6.2	102	5.7	93	8.9	25	70-130
Xylenes	8020	< 0.50	35	ND	34	99	34	98	1.7	25	70-130
Gasoline	8015	<50.0	500	ND	456	91	430	86	5,9	25	70-130
aaa-TFT(S.S.)-FID	8020	,	•	112%	107%	•	103%	,	•		65-135
aaa-TFT(S.S.)-PID	8015			100%	110%		99%				65-135

Definition of Terms:

na: Not Analyzed in QC batch

MB: Method Blank SA: Spike Added SR: Sample Result

RPD(%): Duplicate Analysis - Relative Percent Difference

SP: Spike Result
SP (%R): Spike % Recovery
SPD: Spike Duplicate Result
SPD (%R): Spike % Recovery
nc: Not Calculated

METHOD: Gas Chromatography Laboratory Control Sample

QC Batch #: WGC4A000104

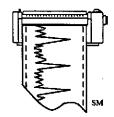
Matrix: Liquid Units: μg/Liter Date Analyzed: 01/04/00 Quality Control Sample: Blank Spike

PARAMETER	Method #	MB μg/Liter	SA μg/Liter	SR μg/Liter	SP μg/Liter	SP % R	SPD μg/Liter	SPD %R	% RPD	Q(RPD	C LIMITS %R
Benzene	8020	< 0.50	5.6	ND	5.0	89	4.9	88	1.1	25	70-130
Toluene	8020	< 0.50	31	ND	29	94	30	94	0.8	25	70-130
Ethyl Benzene	8020	<0.50	6.1	ND	5.9	97	5.5	91	6.8	25	70-130
Xylenes	8020	< 0.50	35	ND	33	94	33	94	0.0	25	70-130
Gasoline	8015	<50.0	500	ND	454	91	434	87	4.5	25	70-130
aaa-TFT(S.S.)-FID	8020	i I	•	112%	110%	•	112%	•	,		65-135
aaa-TFT(S.S.)-PID	8015			100%	99%		102%				65-135

Definition of Terms:

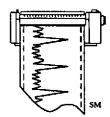
na: Not Analyzed in QC batch

MB: Method Blank SA: Spike Added SR: Sample Result

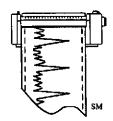

RPD(%): Duplicate Analysis - Relative Percent Difference

SP: Spike Result
SP (%R): Spike % Recovery
SPD: Spike Duplicate Result
SPD (%R): Spike % Recovery
nc: Not Calculated

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • Telephone: (408) 735-1550 (800) 287-1799 • Fax: (408) 735-1554

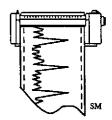

Chain of Custody/Analysis Work Order

	Client: E	IV. TEST	Mant.			Projec	ct ID:		LAB USE ONLY						
Ā	Address: \[\frac{\frac{1}{7}}{2} \] Contact: \[\frac{1}{4} \]	92 Rega	re Ave		Purc	hase Or	der #: Telepi								
	<u>S</u> A	n Jose	CASSI	<u>· a-</u> Sa	ampler/Comp	oany:	Telep	hone #:	S	Samples arrived chilled and intact:					
(Contact:	Tom Pri	ce_		pecial Instruc	tions/C		·		Yes No					
Telep	phone #: 4	es) 4×3-1	800		peciai mstruc	tions/C	omments		I	lotes:	·				
Date K	eceivea:								-						
Turn A	Around:	2+2.					<u></u>								
	GG 11310	0									·				
1828	QO HON		Sample In	formation				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \]	Requested	Analysis				
1900		Grab/		Date	Time		Sample	TP#9 BTEX	j.						
Lab#	Sample ID	Composite	Matrix VV	Collected	Collected	Pres.	Container	+ =	_	187	93-001				
902	MW-3-	5	,	10/25/49		1+41	Hom/ VOAS			107	- 002				
003	MW-3 MW-8			1,				1			- 003				
264	mw-9			1,							-1004				
2005	mw-10			1,					· · ·		-005				
							•								
		<u></u>		<u> </u>											
Relinq. By:	Some	Trice	ر	Received	Received By:					77	Time /5	0			
Relinq. By:	<u></u>	10.		Received	Received/By:				Date		Time				
Reling/By:		· · ·		Received	Received By:					Time Time					


Environmental Testing & Mgmt. 1792 Rogers avenue San Jose, California 95112 408.453.1800 Fax: 408.453.1801

Date: 9/39/99.	Project Name: 67 A .
Project No.:	Well No./Description:/
Depth of Well: 37.3	1 Well Volume: ~~~~~
Depth to Water: <u>25.10</u>	4 Well Volumes:
Casing Diameter: \(\frac{1}{2} \) \(\tag{4}'' \)	Actual Volume Purged:
Calculations:	NIL.
2" - * 0.1632 4" - * 0.653	120
Purge Method: BailerDisp	placement PumpImpinger/Vacuum
Sample Method: A Bailer	Other Specify:
Sheen: No Yes, Describ	be Glight
Odor: No Yes, Describ	be
Field Measurements:	
Time Yolume	pH Temp. E.C. Color
428	7.0 13 1.5+3 4 ray
43 , 4	7.3 7/ 1.5E3 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
4-4, 1	
	7.2 70 1.5F3 3
	7.2 70 1.5F3 3
	7.2 70 1.5F3 3
Remarks:	7.2 70 1.5 F 3 3
Remarks:	7.2 70 1.5 F 3 3
Remarks:	7.2 70 1.5 F 3 3

ENVIRONMENTAL TESTING & MGMT. 1792 ROGERS AVENUE SAN JOSE, CALIFORNIA 95112 408.453.1800 FAX: 408.453.1801


Date: $\frac{9/39/59}{}$	Project Name: (37 A)	
Project No.:	Well No./Description:	
Depth of Well: <u>33.7</u> 4	1 Well Volume:	
Depth to Water: 2587	'4 Well Volumes:	
Casing Diameter: 2" _4"	Actual Volume Purged:	
Calculations:	18	
2" - * 0.1632 4" - * 0.653	128	
Purge Method:Dis	placement PumpImpinger/Vacuum	
Sample Method: X Bailer	Other Specify:	
Sheen: No Yes, Descri	be Very heavy	
Odor:NoYes, Descr	be strong Ac	
Field Measurements:		
Time Yolume	pH Temp. E.C. Color	
25 1.5	7.7 70 0. F3 gray.	
330 30	7.0 10 1.6 E3 11	
340 4.5	7-1 63 2.0/=3 1	
· · · · · · · · · · · · · · · · · · ·		
Remarks:		
	<u>-</u>	
	•	
`		
Complex		

Sampler: ______

Environmental Testing & Mgmt. 1792 Rogers avenue San Jose, California 95112 408.453.1800 FAX: 408.453.1801

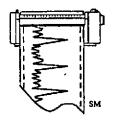
Project No.: __ Depth of Well: 34, 90 1 Well Volume: ______ Depth to Water: 25,12 4 Well Volumes: _____ Casing Diameter: λ^2 2" _ 4" Actual Volume Purged: _____ Calculations: 2" - * 0.1632 4" - * 0.653 Purge Method: X Bailer ___Displacement Pump ___Impinger/Vacuum ___ Sample Method: Y Bailer ___ Other Specify:_ Sheen: No Yes, Describe 4 4 ht Odor: No Yes, Describe Field Measurements: Time Remarks:_

Sampler: _

ENVIRONMENTAL TESTING & MGMT. 1792 ROGERS AVENUE SAN JOSE, CALIFORNIA 95112 408.453.1800 FAX: 408.453.1801

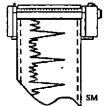

Date: $\frac{9/39/99}{}$	Project Name:	GA	<u> </u>	· -	
Project No.:	Well No./Descr	ription:	1W-4	-	
Depth of Well: 34.32	1 Well Volume	: 1.5			
Depth to Water: <u>25.3</u>	4 Well	l Volumes:			
Casing Diameter: 2"4"	Actual Volume	Purged:			
Calculations:	29				
2" - * 0.1632 4" - * 0.653					
Purge Method: XBailer	Displacement Pump	Impinger/	Vacuum	\$ -	
Sample Method:Bailer	Other Spec		<u> </u>		
Sheen: No Yes, De	scribe <u>Yain</u>	Wo d			
Sheen: No Yes, De Odor: No Yes, De	scribe HC	frit-	Strong	1dc	
Field Measurements:			J		
Time Volume	pН	Temp.	E.C.	Color	
300-1.5	15	-83-	1.9E3	Jray	
305 30		79	1-5E3	<u></u>	
310 4.5	-1.3	7,9	1-763		
400 1.5	7.0	_7)	1.36°	3 _1	<u>-</u>
405 3.0	<u>''z·1</u>	70	1.3E	3	_
A10 Remarks: 4.5	7.0	69	1.3E	3 '11	
		والمراجع	t.		
		* <u>-</u> .			

Sampler: ___


ENVIRONMENTAL TESTING & MGMT. 1792 ROGERS AVENUE SAN JOSE, CALIFORNIA 95112 408.453.1800 FAX: 408.453.1801

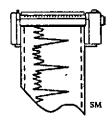
Project Name: ___________ Well No./Description: ______ M w - S Project No.: _ 1 Well Volume: / / Depth of Well: 30.10 Depth to Water: 25.34 Well Volumes: _____ Casing Diameter: Actual Volume Purged: _____ Calculations: 2" - * 0.1632 4" - * 0.653 Purge Method: Y Bailer ___ Displacement Pump ___ Impinger/Vacuum ___ Sample Method: WBailer ___ Other Specify:____ Sheen: Yes, Describe Odor: No Yes, Describe Itc Faint Field Measurements: E.C. Time Volume Temp. Color pН 300 305 Remarks:_

ENVIRONMENTAL TESTING & MGMT. 1792 ROGERS AVENUE SAN JOSE, CALIFORNIA 95112 408.453.1800 FAX: 408.453.1801

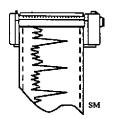

Date:/	30/99	Project Name:	GA.			
f		Well No./Desc	cription: <u>171</u>	1-6	<u>. </u>	
Depth of Wel	1: <u>33 J</u>		e:/. b			
Depth to Wat	er: <u>23.68</u>	4 We	ll Volumes:			
Casing Diame	eter: <u> </u>	and the second s	e Purged:			
Calculations:	•	110				
2" - * 0.1632 4" - * 0.653						
Purge Method	d: X_BailerD	isplacement Pump	pImpinger/	Vacuum		
Sample Meth	od: <u>X</u> Bailer	Other Spe	ecify:			
Sheen: XN	lo 🏖 Yes, Desc	cribe			.	
Odor:	No X Yes, Desc	cribe <u>H</u>			_	
Field Measur	rements:					į s
Time	Yolume	pН	Temp.	E.C.	Color	
			· 1 .	1.5E3	brown	
225	1-1-	7-6	<u> 7 e</u>	1.2F	12.00	
,	3.2	7-2	15 75	2-183	7)	
225	- , -		75		⁷)	,
225 2-30	3.2		75	3-183	³)	
225 2-30	3.2		75	3-183	³)	
225 2-30	3.2		75	3-183	⁷)	
225 230 235	3.2		75	3-183	⁷)	
225 230 235	3.2		75	3-183	7)	

Sampler: _

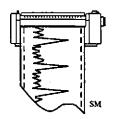
Environmental Testing & Mgmt. 1792 Rogers avenue san Jose, California 95112 408.453.1800 FAX: 408.453.1801


Date: $\frac{9}{3}$	199.	Project Name:	GA	<u> </u>		
Project No.:		Well No./Desc	cription:	W-8		
Depth of Well:	33.2	1 Well Volum	e: <u>11.3</u>			
Depth to Water:	25.40	4 We	ll Volumes:			
Casing Diamete	r:X_2" _4"	Actual Volum	e Purged:	_	\$100 	
Calculations:	1	77 15 -				
2" - * 0.1632 4" - * 0.653		128				
Purge Method:	XBailerD	isplacement Pump	pImpinger/	Vacuum		
Sample Method	: X_Bailer	Other Spe	ecify:			
Sheen: No	Yes, Desc	cribe				
11	_	cribe			_	
Field Measuren	/\					
Time	Volune	Hq	Temp.	E.C.	Color	
208	1.3	6.8	77_	1.6 =3	gray	*
210	<u> </u>	Lob_	73	1.5£3	<u>'</u> '	
215	3.9	6.4	7.0	1.3E3	3	
						
				<u>.</u>	·),	
Remarks:			à	***	<i>;</i>	
		······				<u> </u>

ENVIRONMENTAL TESTING & MGMT. 1792 ROGERS AVENUE SAN JOSE, CALIFORNIA 95112 408.453.1800 FAX: 408.453.1801


Date: 9/30/99. Project Name: GA Project No.: _____ Depth of Well: 34.3 1 Well Volume: 1 6 Depth to Water: 24.73 4 Well Volumes: _____ Casing Diameter: 2" _4" Actual Volume Purged: _____ Calculations: 2" - * 0.1632 4" - * 0.653 Purge Method: X Bailer ___Displacement Pump ___Impinger/Vacuum ___ Sample Method: X Bailer ___ Other Specify:_____ Sheen: Y No Yes, Describe No X Yes, Describe 172 Field Measurements: E.C. рΗ Temp. Color Time Volume

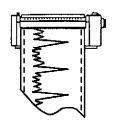
Sampler:


ENVIRONMENTAL TESTING & MGMT. 1792 ROGERS AVENUE SAN JOSE, CALIFORNIA 95112 408.453.1800 FAX: 408.453.1801

Date: 9/20/95.	Project Name:	GA	•		
Project No.:	Well No./Des	cription:	W-10		
Depth of Well: 38.90		1e: 12			
Depth to Water: 26.12	4 We	ell Volumes:			
Casing Diameter: 2" _4"	Actual Volum	ne Purged:			
Calculations:	ماء م فسنس				
2" - * 0.1632 4" - * 0.653	12	2			
Purge Method:BailerI	Displacement Pum	pImpinger/	Vacuum		
Sample Method: ABailer	Other Spa	ecify:			
Sheen: No Yes, Des	cribe				
Odor: No Yes, Des	cribe 14-c	6.x	·	_	
Field Measurements:					
Time Volume	Η <u>α</u>	Temp.	E.C.	Color	
125 2	-1.7	83	1. OE3	gray.	
130 4	1.7	76	1.323	1, 1	
135 b	6.7.	74	1-4E3	4	
Remarks:	· · ·			12	

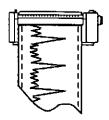
	3	•	·	,,,,,,	
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √				-	
Sampler:					

Environmental Testing & Mgmt. 1792 Rogers avenue San Jose, California 95112 408.453.1800 FAX: 408.453.1801

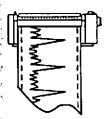

Date: $9/3$	199.	Project Name:	GA.			
Project No.: _		Well No./Desc	cription: \underline{m}	w-11		
Depth of Well	34.30	1 Well Volume	e: <u>~</u> }			
Depth to Wate	r: <u>93.90</u>	4 We	ll Volumes:			
Casing Diame	ter: 2" _4"	Actual Volume	e Purged:	_		
Calculations:	'\	11 16				
2" - * 0.1632 4" - * 0.653		-11-				
Purge Method	: X BailerD	isplacement Pump	Impinger/	Vacuum		
Sample Metho	d: Bailer	Other Spe	cify:			
Sheen: X No	Yes, Desc	ribe	· · · · · · · · · · · · · · · · · · ·			
	No Yes, Desc					
Field Measure	ments:					
Time	<u>Volume</u>	рН	Temp.	E.C.	Color	
1240	2 · v	1-4	77	1.383	promy-	
1945	4.0	7.2	<u>75</u>	1.3E3		
1250	6.0	7-0	74	1.3F3	4	
		·			***	
No.	<u></u>	: 				
Remarks:	<u> </u>				1	
	<u>. </u>					
					_,	
Sampler						

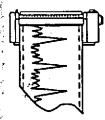
Sampler: _

ENVIRONMENTAL TESTING & MGMT. 1792 ROGERS AVENUE SAN JOSE, CALIFORNIA 95112 408.453.1800 FAX: 408.453.1801

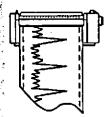

Date: <u>9/3 p</u>	199.	Project Name: _	G7# -		
Project No.:		Well No./Descrip	ption: <u>M</u>	W- 1A	
Depth of Well: <u>ح</u>	3.45	1 Well Volume:	11.5		-
Depth to Water:	24.35	4 Well	Volumes:		
Casing Diameter:	_2" _4"	Actual Volume I	Purged:		
Calculations:	`	29			
2" - * 0.1632 4" - * 0.653					
Purge Method:	BailerDisp	lacement Pump	Impinger/Va	cuum	
Sample Method:	_Bailer	Other Special	fy:		
Sheen: No _	Yes, Describ	e			<u></u>
Odor: No	Yes, Describ	e HC	·		
Field Measurement					
Time \(\frac{1}{2}\)	/olume	рН	Temp.	E.C.	Color
107	<u> 2 · b</u>	1.0	30	1.3E3	gray.
10 16	4.0	7. t	73_	1.1E3	
1830	6.0.	<u>"7.0</u>	<u> 79 </u>	1.4£3	_5
	<u></u>				;
					
Remarks:	n				
		<u> </u>	·	<u> </u>	4
•		<u>.</u>			
	•	•			

Environmental Testing & Mgmt. 1792 Rogers avenue san Jose, California 95112 408.453-1800 Fax: 408.453.1801


Date: 10/2/99	Project Name:	GA.		
Project No.:	Well No./Descrip	tion: [4]	Farvelly	
Depth of Well: 42.30	1 Well Volume: _		ţ	
Depth to Water: 25.48	4 Well V	olumes:		
Casing Diameter:2"4"	Actual Volume Po	urged:		
Calculations:				
2" - * 0.1632 4" - * 0.653				
Purge Method:BailerDisp	lacement Pump	Impinger/Vac	cuum	
Sample Method: X Bailer	Other Specify	/:		
Sheen: Yes, Describ	e			
Odor: Yes, Describ	e			
Field Measurements:				
Time <u>Volume</u>	pН	Temp.	E.C.	Color
	 		 	
	,			
		·		
•				
Remarks: grabsav	nple c	mly/N	o purge	•
		·		

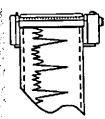

ENVIRONMENTAL TESTING & MGMT. 1792 ROGERS AVENUE SAN JOSE, CALIFORNIA 95112 408.453-1800 FAX: 408.453.1801

Date: 12/29	199.	Project Name:	GA.		
Project No.:		Well No./Descrip	otion:	10-2	
Depth of Well: 3		1 Well Volume:			
Depth to Water: 2	_	4 Well V	/olumes:		
Casing Diameter: Y	_2" _4"	Actual Volume P	urged:	_	
Calculations:	p	TH			
2" - * 0.1632 4" - * 0.653		11.2			
Purge Method: V	BailerDisp	lacement Pump	Impinger	Vacuum	
Sample Method: \(\frac{1}{2} \)	_Bailer	Other Specif	y:		
Sheen: No	Yes, Describ	e heavy	<u> </u>		
Odor:No _		. /			_
Field Measurements	s:				
Time V	<u>olume</u>	рН	Temp.	E.C.	Color
<u> 350 .</u>) · o	7.1	51	1.0E3	gray.
450 -	50	7.0	50	1.7£3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		· .			
	<u>.</u>				
Remarks:					
					
Sampler:					


Environmental Testing & Mgmt. 1792 Rogers avenue San Jose, California 95112 408.453-1800 Fax: 408.453.1801

Date: $12/29/99$.	Project Name:	- 4 }. - 4 }.
Project No.:	Well No./Description:	
Depth of Well: 34.9	1 Well Volume: 2	
Depth to Water: 25.73	4 Well Volumes:	
Casing Diameter: \(\sum 2'' \) 4"	Actual Volume Purged:	िक्ष (१८) - पुरे
Calculations:	ric.	사원 # - * : : : : : : : : : : : : : : : : : :
2" - * 0.1632 4" - * 0.653		160 - 36 - 3
Purge Method: <u> Bailer</u> Di	isplacement PumpImpinger/Vacuum	
Sample Method:Bailer	Other Specify:	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Sheen: VNo Yes, Descr	ribe	
Odor:NoYes, Descr	ribe Mild HC	_ `
Field Measurements:		
Time Volume	pH Temp. E.C.	Color
2.0	7.0 S6 1.2F3	gray
415 4.6	7.1 57 1.2E3	· //
420 6.0	and the same of th	
,	•	
	4	***************************************
Remarks:		
remarks,		# <u>1</u> 19 34
		• 15 -
·		Marie Salari
Sampler:		* Att

Environmental Testing & MGMT. 1792 ROGERS AVENUE SAN JOSE, CALIFORNIA 95112 408.453-1800 FAX: 408.453.1801


Date: 12/2	7/99.	Project Name: GA	
Project No.:	, 	Well No./Description:	8
Depth of Well:	29.5		
Depth to Water:		4 Well Volumes:	
Casing Diameter:	2" _4"	Actual Volume Purged:	
Calculations:		3.4.5	ΟΛ. 1 2 Αγ.
2" - * 0.1632 4" - * 0.653		1270	
Purge Method: <u>/</u>	_BailerI	7.2 o Displacement PumpImpinger/Vacuu	m
Sample Method:	∠Bailer	Other Specify:	
Sheen:No	Yes, Des	cribe	
Odor:No	∠Yes, Des	cribe frint HC.	
Field Measureme	ents:		
Time ·	Volume		C. Color
255	3.0	NON - OPERA	TIONAL GRAY/TOM
		ye.	
-210			
·			
·			•
-			<u></u>
Remarks:			A
			<u> </u>
			A0 4 1.4
Sampler:			**

Sampler:

ENVIRONMENTAL TESTING & MGMT. 1792 ROGERS AVENUE SAN JOSE, CALIFORNIA 95112 408.453-1800 FAX: 408.453.1801

	1	<i>A</i> -		- (1) (1) - (1) 원
Date: 13/39/15.	Project Name:			All the second of the second o
Project No.:	Well No./Descript	ion:	<u> </u>	<u> </u>
Depth of Well: 34.3	1 Well Volume:	12		
Depth to Water: 25 3 3	- 4 Well V	olumes:	_	
Casing Diameter: 2" _4"	Actual Volume Pu	rged:		- 74 - 44 - - 7
Calculations:	16			Trage Trage Trage
2" - * 0.1632 - 4" - * 0.653	126			
Purge Method: WBailerDis	placement Pump	Impinger/Va	acuum	e de la companya de La companya de la co
Sample Method: 1 Bailer	Other Specify	*		
Sheen:NoYes, Descri	be <u>beav</u>	y/ac	ross Sul	free
Odor: L_NoYes, Descri	be		<u> </u>	
Field Measurements:	• •			
Time Volume	<u>Hq</u>	Tem p .	E.C.	Color
327 2.0	6.8	60	1.3E3	gray
33) A.O.	N F			
337 6.0	7.1	62	1.3E3	- to
· 				***
				· · · · · · · · · · · · · · · · · · ·
Remarks:				16
			·	
	•			# 15 # 15 # 154

Environmental Testing & Mgmt. 1792 Rogers avenue san Jose, California 95112 408.453-1800 Fax: 408.453.1801

Date: 13/29/99.	Project Name:GA	
Project No.:	Well No./Description:	> <u></u>
Depth of Well: 38 90	1 Well Volume:	
Depth to Water: 26.67	4 Well Volumes:	
Casing Diameter: 2" 4"	Actual Volume Purged:	
Calculations:	12	* *** * ***
2" - * 0.1632 4" - * 0.653	15.2	
•	splacement PumpImpinger/Vacuum	-
Sample Method: Bailer	Other Specify:	
Sheen: Yes, Descr		1
Odor:NoYes, Descr	ibe HC slight, ag	ea.
Field Measurements:	•	
Time Yolume	pH Temp. E.C.	Color
228 2	1.4 67 1.3	E3 tan/gray.
. 2		- / / /
<u> 332 4 </u>		ef3 11
237 6		- / / /
237		ef3 11
237 <u>-</u>		ef3 11
237 <u>6</u>		ef3 11
237 4 237 6 Remarks:		ef3 11
237 <u>6</u>		ef3 11
237 <u>6</u>		ef3 11

APPENDIX D: QUALITY ASSURANCE/QUALITY CONTROL PROGRAM

The quality assurance/quality control measures used for groundwater sampling conducted on 9/29/99 - 10/2/99 and 12/29/99 included the following:

• Groundwater samples were collected in triplicate 40 milliliter vials.

APPENDIX E: REPORT DISTRIBUTION LIST

Copies of this report have been mailed to the attention of the following parties:

Seung Lee German Autocraft 301 E. 14th Street San Leandro, California 94577

Scott O. Seery Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, #250 Alameda, California 94502-6577

Mike Bakaldin City of San Leandro Fire Department 835 E. 14th Street, Suite 200 San Leandro, California 94577